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Abstract—The monumental goal of Artificial Intelligence (AI)
is to model general solutions that can be applied to perform
a variety of tasks that normally demand human intelligence to
solve. Traditionally human game developers painstakingly design
and tweak levels until achieving the precise output of their
heart’s desire. In the gaming industry, AI for level generation
can reduce the need for labour-intensive human design. A general
game AI for level generation can only be created once we have
a method to describe video games. Video Game Description
Language (VGDL) is a high-level language for describing 2D
arcade games that consists of two parts, a game and level
description. Using this language allows us to analyze games at
their mechanical level. The problem of General Video Game Level
Generation (GVG-LG) can thus be defined as follows: construct
a generator that, given a game (e.g. described in VGDL) which
can be played by some AI player, builds any required number
of different levels for that game which are enjoyable for humans
to play [1]. This research investigates the characteristics of
what makes automation of general level generation for 2D video
games difficult, identifying what exactly makes it so challenging.
Solutions such as algorithmic approaches and design patterns
shall be presented. By investigating the techniques that have been
used so far, empirical evidence will provide key insight into which
techniques are most promising to improve level generation quality
in the future.

Index Terms—Algorithms, AI, Design Patterns, Game Level
Generation, VGDL

I. INTRODUCTION

Pong is thought to be the first video game ever created. It was
designed in 1958 [2]. Since then, only more video games have
been made, and the levels that were created were specifically
designed for individual games. Playing and creating games
has become increasingly popular over the last few decades. In
a short amount of time, realism and complexity of gameplay
have increased drastically. It is because of this complexity
that we focus on 2D game levels for this research. 2D game
levels are the most interesting for our generation research
since these are used in Procedural Content Generation (PCG),
which has been very impressive for several years. Although
3D games are also used in PCG and are just as important,
we chose to do this research about 2D games, since these are
easier to start with.

We conducted this research to have a better insight into

the ways of generating content for games in general. Using
AI systems to create general content based on an unknown
context was something we had not seen before and is still
new territory. This research provided us with new insights
into 2D video game level generation and taught us about the
far-reaching possibilities of AI.
We will focus specifically on current methods for generating
games and solving problems using AI. With this focus, we
can determine if they can be used in the future for extending
the current approach of general video game level generation.
Determining what new techniques there are to improve the
current methods.

This literature study will answer the following research
question: What makes general level generation of 2D
video games so difficult? We will answer this question by
considering the following sub research questions:

• How have these techniques been used in the GVG-LG
competition and do they improve the current state of
research in general level generation?

• What are the similarities between levels of different 2D
video games? Can knowledge of these similarities be used
to improve general level generation?

• How can level generation techniques be combined to
create better general level generators?

First, we offer a background of the connection between AI,
video games, and problem-solving. In section III, we discuss
how video games are constructed and what designs overlap
in several games. Then in section IV, we describe the current
ways of generating, and we talk about the GVG-AI compe-
tition. The current situation can be improved, which we will
discuss in section V. Finally, we conclude our research and
answer our research question in section VI.

II. BACKGROUND

In order to efficiently solve a problem, it is necessary to
understand it. One of the main problems in level generation
research is the quantization of the many variables that make
level generation hard. There is not a single generally applicable
useful heuristic to measure the levels and components. For
example, criteria that the level must be enjoyable for the



player who plays the generated level. It is complex to quantify
enjoyable levels as this is a non-descriptive and subjective
quality of games. On top of that, given the fact that each
game has a different set of rules and controls, it is challenging
to create levels that are playable, unique, and to some extent,
challenging.

We define a playable level to be a level that a player with
any experience can win. Researchers have tried to use many
methodologies to test the automatically generated levels by
creating AI agents first to play and win the level before letting
a human play and judge the level. These researchers did not
provide definite answers to the level generation problem.
However, it helps create a search space of possible solutions
and creates a framework for the evaluation of generated levels.
The GVG-AI competition is an example of this in practice
and is a treasure trove of data. After developing a method to
evaluate level quality, it was then possible for research to turn
its attention to the level generation problem. Since there is not
much support for frameworks to generate levels, researchers
at New York University and the University of Essex decided
to take it upon themselves to solve the task at hand [3]. Their
focus has been directed at level generation, and the main
challenge that they found was that designs are made for a
specific domain of games. The current human designers have
tailored expertise for specific rather than for general 2D games.

A. GVG - AI Competition

The General Video Game AI (GVG-AI) competition is a
competition sponsored by DeepMind from Google in which
participants try to create AI’s that would play and win a
wide variety of 2D games [4]. The competition was mostly
focused on the General Video Game Playing (GVGP) aspect
for multiple years, but lately, there have been two new tracks
added: Level and Rule Generation. There have been many
different approaches to the competitions every year (GVGP
and since recently level generation), and the researchers
tried to recreate these results and improve the agents that
participated in the competition.

Level generation has been supplemented by adding an
interface with features like parameterizing existing games
[5]. The automatic level generation has the potential to create
many more times the current number of levels than humans
can manually produce. Possibly the most challenging form
of automatic level generation is when there is a new type of
game that has unknown rules before generation (unseen game).

The root problem appears to be describing the game to
the agent in a comprehensible manner. One of the ways
was to use Design Patterns to help quantify details of the
game level classes: solid sprites, collectible sprites, harmful
sprites, enemies, and other sprites. Through their modeling,
it has been advised to choose design patterns based on their
assigned probability value of occurrence in real games. This

method increased the variety of design patterns used and the
abilities of the 2D game platform, thus improving levels and
the games overall [6].

Another method was a Hyper-Heuristic [7] approach where
the higher-level agent chooses lower-level agents (existing
agents which were the winners of the competitions) which
perform well in playing specific games. The hyper-agent
learns to make a better selection of these agents. Each of
these methods helps us solve the question of how the games
should be played and won, which would help us understand
how to automate the design of the game levels. They have
shown glimpses of promise as they were outperforming
the winning agents. There is still a lot to be tested as the
GVG-AI competition is new, and solving this playability
would implicitly help us with game level generation.

B. GVG - LG Framework

General Video Game Level Generation (GVG-LG) is a Java
framework developed by researchers at New York University
and the University of Essex. This framework is part of the
GVG-AI competition, and studies have been made about the
results ever since. The problem of level generation dates
back to the problem of the Procedural Content Generation
(PCG). It has been a much-researched topic that covered
everything from textures generation to game rules creation.
The main focus is to remove the human out of the equation
and utilize more of the algorithmic approaches like Random,
Constructive, and Search-Based Artificial Intelligence. Due
to technological developments, that field has been evolving
[3]. These technical improvements result in content becoming
more sophisticated and computationally expensive and thus
create a greater need in video game consumers for new levels,
especially in the market of small devices [6].

As mentioned before, the Design Patterns have been one
of the most effective tools to help with level generation
categorization and design. The problem refers to a standard
and recurring design element in object-oriented development,
and they give insight to designers about architectural
knowledge and provide a template for many situations. The
patterns provide a shared vocabulary to name objects and
structures that human game designers create and shape, and
set rules to express how these building blocks fit together
[8]. Unfortunately, a significant challenge of Design Patterns
is that there could be many undiscovered patterns as there
are countless games, which is significantly more than what
the GVG-AI creators provide (a whopping 92 different 2D
games) that have to be analyzed [6]. Also, there could be a
lot of duplicate Design Patterns, or the patterns might have
some attributes that are different, but the game could go
under the same name as the sprite design is game dependent.
This ambiguity could cause possible conceptual agreement
conflicts of the Design Patterns. Design Patterns should be,
hence, standardized and agreed upon in order to choose



the right patterns coherently, avoiding double work for the
researchers. However, limited research makes it challenging,
forming a consensus amongst generating levels. Also, there
is minimal documentation for design choices made in games
and levels [8].

C. Algorithmic approaches

Since humanity has overcome the technical limitations,
researches started writing different algorithms and trying
variations of self-defined parameters. Currently, the research
in a level generation has limited since level generation
is a new field. However, the papers so far tend to use
very similar general approaches to tackle the problem, and
they have been significant efforts made to make the most
optimal generators. Some methods were more promising that
other but the reproduced research results show that there
is somewhat of an agreement on what is useful and what is not.

1) Constructive: One of the oldest PCG algorithmic
approaches is constructive. This method has a
structured/iterative approach with specific rules. The
algorithm has to abide by these rules. The algorithms utilize
a procedural approach that involves adding each element of
a level step-by-step [3]. A variation of this is the generate
and test technique (also known as search-based). Once the
game level is constructed, it is tested whether the level
is of a sufficient playability [9]. The difference is that a
simple constructive algorithmic method does not perform
any improvement iterations and returns an answer without
any further consideration. However, it is not very creative
and is still semi-random as their requirements are numerical,
with few rules on placing components. The study from New
York University has shown that players of game levels (from
a flight test) cannot spot the difference between Random
and Constructive methods, where Random methodology is
to place everything in random places until it is a sound
level. The constructive algorithmic method has been ranked
worse than the random method [10]. Even other studies have
shown that this approach does not guarantee achieving the
playability of levels every time [10].

2) Search-Based: A Search-Based approach (also known
as Generate-and-Test) is a method where each generator uses
heuristic functions to check if the current levels generated are
improving and pass on some aspects and add mutations to
the next generation of levels. This method provides constant
improvements in the level based on fitness functions [3]. The
parameters that improve continually have to be representative
and thus well chosen. One of the approaches is to test the
levels’ aesthetics (in a mathematical representation) and
difficulty. Researchers from Islamabad have shown that it is
possible to quantify these metrics and that with their method,
levels become more appealing and challenging [9]. The
problem is that these tests, while they are promising based on
the results, were only executed on a handful of games with

very similar game-play.

3) Hyper-Agent: The hyper-Heuristic approach is a top-
down technique of choosing the best agent there is based on
the context and the ”learned” decision tree (learning happens
through searching for the features of the game). This area
has been researched at New York University and focuses on
the playing aspect of GVG-AI, but the technique could have
some merit for level generation. The approach is that multiple
sub-agents specialize in certain games with specific features.
These agents are selected by the hyper-agent that learns about
the games through game feature collection later classified
by an algorithm. Next, there is the selection process of the
sub-agent (low-level agent), which then performs the task
at hand (in this case, plays the games). The reason for this
approach was that there was no optimal AI agent and play
each game well. The lower-level agents are good at specific
games but fail in playing general games, while higher-level
agents tend to be suitable for general games [7]. Therefore, the
researchers opted for a hybrid approach. Their algorithm uses
already pre-existing low-level agents while the hyper-agent
selects them. The hyper-agents continuously learn by using
online playing to help improve the decision-making process
about the lower-level agent selection. The authors of this idea
claimed that the algorithm outperformed the winners of 2014
and 2015 competitions showing that there is promise in the
hyper-heuristic approach, and there are still possibilities for
improvement for the future like diversification of 2D games
[7]. The reason is that there are very few samples of levels
and games the agent can play and learn from the data provided.

III. THE PROBLEM OF LEVEL GENERATION FOR 2D VIDEO
GAMES

Generating video game levels is one of the oldest ways of
algorithmic creation of game content [11]. Each video game
has a different type of level to play. This variety makes it hard
to create a generator for generating levels that are playable
in several games. In the past, developers were limited in the
technological possibilities of the hardware devices. These
limitations make them use Procedural Content Generation
(PCG) techniques to make it possible to create the content for
small disk or memory devices. Nowadays, these technological
limitations are decreasing, and game level generation is more
important than ever for new video games [3].

A. From description to a level

Every Video Game Description Language (VGDL) has several
criteria that they have to meet. For example, a VGDL has to
be human-readable and extensible [12], which makes sense
because, in this way, it should simplify the reading such that
it is easily extendable. Once we have a description language,
it is possible to start generating game levels that consist
of several aspects that are dividable into three components,
namely Tile, Graph, and Vector. As the literature shows,



several games were analyzed to create a schema with the
division of these three parts [13].

A simple video game is separatable into several
components: Map, Objects, Player Definitions, Avatars,
Physics, Events, and Rules [12]. These parts are used in most
games but applied differently, which makes the levels for
these games more unique. Game Definition Language (GDL)
is a logic-based language, similar to Prolog [14]. VGDL
derives its core from GDL. Although its purpose is to express
2d arcade games [15].

B. Design patterns used for game levels

Design patterns are solutions to recurring design problems
[16]. Applying these patterns is particularly popular amongst
the Object Orientated Programming Languages community.
Localizing instances of these design patterns in existing
software produced without explicit use of patterns can
improve the maintainability of software. Applying design
patterns proved to be helpful. This lead to the development of
tools such as the Pat system. These tools help to discover or
recover design information. [17]. In the context of 2D video
games, design patterns are describable as the in-game tasks
that the player needs to solve in order to play successfully.
In the gaming community, it is particularly interesting to
develop tools that abstract design patterns from VGDL and
then generate levels for a game of any general genre. For a
level to be enjoyable, it needs to strike an appropriate balance
between rewarding and challenging the player [18]. Games
often are dissimilar, having very different gameplay objectives
and tasks [19]. When generating levels, we should understand
that some games share more commonalities among each other
than they do with other games. Arcade game genres, such as
dungeon-crawlers, horror games, space shooters, first-person
shooters, and platformers, have been identified [20]. By using
clustering techniques, as shown in figure 1, game genres can
be discovered. In the context of general level generation, we
can potentially use this idea to take a new unseen game given
in VGDL and use a generator that is most suited for that
particular genre.

2D video games do share some fundamental characteristics. A
game level is traditionally composed of cells, a section of the
level where the player can choose a new path. Sharif, Zafar,
and Muhammad, describe items placed on cells that fall in one
of the following four categories [6].

• Solid Sprites: Blocks the movement of the player.
• Collectible Sprites: Can be destroyed by the player on

interaction.
• Harmful Sprites: Are harmful and can kill the player on

interaction.
• Enemies: Agents having ammunition and are harmful to

the player.

Fig. 1. Illustration of general game genre clustering courtesy of Heintz and
Law [21]

Design patterns compartmentalise the features of games into
categories and are useful in content generators [22].

C. Procedural Content Generation

Procedural Content Generation (PCG) is the creation of game
content with minimal human involvement. Procedural content
generators capture game rules as an input and then generate
original content for a game [6]. By treating the challenge of
level generation as an optimization challenge, fitness functions
create the best levels according to some criteria. Algebraic
approaches have also created suitable levels by satisfying a set
of constraints [23]. One fascinating example of a PCG is that
of Rychnovsky’s level editor. This editor has the drawback
of having no control over the difficulty of the generated
levels. This lack of control is because it first generates a
level layout and then places game objects in specific locations
based on some prior knowledge of the VGDL. After that,
Rychnovsky tested level playability by verifying a solution
using an algorithm similar to Breadth-First Search (BFS) [10].
In the case of Super Mario Brothers (SMB), it proves that
it is possible to notice design patterns by abstracting levels
into micro-, meso- and macro-patterns. With some loss of
generality, it generates new levels, which replicate the macro-
patterns of selected input levels.
Micro-patters occur in video game levels. An example of this
is the vertical slices in super Mario in figure 2. Meso-patterns
are the gameplay features such as groups of enemies, gaps
to jump over, valleys boxing in parts of the level, allowing
the player to choose multiple paths and elevating Mario with
the aid of stairs. Finally, macro-patterns are sequences of
meso-patterns. Usage of micro-patterns is as the building
blocks in a search-based PCG approach that searches for
macro-patterns. This hierarchy of level abstraction allows
for the handling of different aspects of the level generation
ranging from low-level detail (micro) to full level overview
(macro) [24].



Fig. 2. SMB level 1 and Micro-pattern identification courtesy of Dahlskog
& Togelius [24]

D. Graphs

The benefit of using graphs, according to Londoño and
Missura, ”is that they enable us to establish semantic
relationships between the elements of the levels. Specifically,
edges allow us to connect several elements and to give
meaning to those connections.” Londoño and Missura have
used SMB levels to learn Graph Grammars that can generate
new SMB levels. These grammars encode and abstract
structural properties of the SMB levels together with their
respective probabilities of occurrence. The inferred grammar
then creates SMB levels satisfying property constraints [25].

E. Monte Carlo Search Trees

Markov chains train on a corpus of SMB levels. Markov
chains proved ”closed” in the sense that they generate levels
with similar properties as the input SMB level. Similar to
Rychnovsky’s level editor, the main problem with using
Markov chains to generate levels is that they offer little to no
guarantees about the levels that they generate [26].

F. General Adversarial Network

General Adversarial Networks (GAN) is a specialized Machine
Learning class that uses a two-player game where the players
are the Generator and Discriminator. The Generator tries to
maximize the errors in the data that it is fed and generates
new data. The Discriminator, on the other hand, minimizes
the errors by trying to identify the fake from the real data.

Then through backward propagation, the error weights are
increased and decreased respectively [27]. It uses a generative
technique which helps to generate new levels based on very
few examples given as training data. This technique generates
new content using methods such as Latent Variable Evolution
(LVE) or Interactive Evolutionary Computation (IEC). A study
applying both of these techniques illustrated that a human
player (from a flight test) prefers levels that use a mix of
these methods, indicating that these techniques generate fun
and exciting level designs for two games: Legend of Zelda and
Super Mario Brothers [28]. This method seems to be the most
promising so far and should be researched further in a wider
variety of games. The apparent limitation of this currently is
that level generation using this method is only used in the
games mentioned above and is not generally applicable. Also,
records show that it occasionally generate unwinnable levels
due to the game constraints not being followed correctly.

IV. THE CURRENT STATE OF GVG - LG

The concept of a level generation framework has been around
for quite some time. This lead to many people developing
a framework for level generators. One of which resulted
in the GVG-LG framework. At the moment of writing, the
GVG-LG framework seems to be the most reached one. After
the development of the GVG-LG framework, the Random,
Constructive, and Search-Based Level Generators (SB-LG)
made there debut within the framework, of which the SB-LG
proved to be the best [6]. As Level Generation is not a
fully explored field, the frameworks’ primary use is in the
GVG-AI Competition. At this stage, the framework is only
able to process single-player, 2D games. The generators are
scored based on orientated rankings sorted by scores in the
constraints. However, these scores do not always translate
to proper levels. Therefore, when it comes to the GVG-AI
competition, the level generators are still judged by humans.

A. Methods used

The current explored fields of GVG-LG fall under three
categories: Random generators, which, as the name suggests,
works very simply: randomize a level until it creates a
playable one. Constructive level generators use a game
analyzer to try and place the sprites of the game in strategic
locations. Moreover, lastly Search-Based (SB) generators
use fitness functions based on GVG-AI to determine how
challenging a level is.

1) Random Generators: Random generators for game
levels rely on a set of probabilities. These probabilities are
manually tweaked to provide the best game levels. It starts
with an empty map, and for every cell picks a random sprite
to place. There are a few conditional rules in the selection:
There should always be precisely one avatar, and every sprite
has at least one uses.



2) Constructive Generators: The constructive level
generator starts by analyzing the Game Description. During
this analysis, it tries to divide all the sprites into one of five
categories, avatar, solid, collectible, harmful, and others. The
Game Analyzer, used for this analysis, provides additional
data on each sprite [3]. Data such as whether the sprite
spawns another sprite, and if a sprite is a termination sprite.
Data from the analysis is used during the constructive level
generators four core states. The core states are Building a
level layout, Add an avatar sprite, add harmful sprites, Add
collectibles and other sprites.

Building a level layout.
If there are solid sprites, the generator takes a type of solid
sprite and encloses the level with it. Then based on the
calculated solid percentage from the analysis, it fills in the
level using solid sprites that are connected. The generator
makes sure that it will not block off areas by enclosing it
with solid sprites.

Add an avatar sprite.
The generator places a random avatar on a free location.

Add harmful sprites.
Based on the calculated harmful percentage from the analysis,
the generator fills in the level using harmful sprites. If a
harmful sprite has the label ”moving”, then the generator
will pick a free location away from the avatar. If it is not a
moving sprite, it will select any open position.

Add collectibles and other sprites.
Based on the sprites’ cover percentage, the generator will
place random sprites at free locations.

In its post-processing phase, the generator will make sure that
there are enough termination sprites, as stated in the analysis.
It will keep adding sprites until this is the case.

Improvements
During the initial study of Khalifa et al., the Random Gen-
erator and the Constructive Generator appeared to be indis-
tinguishable [3]. One of the potential problems, as theorized
by Dallmeier, is missing collectibles [29]. These missing
collectibles could lead to a Constructively Generated level
that is unplayable. We encountered two improvements on the
Constructive Generator.

Dallmeier himself presented the first improvement. His
approach was to add a new step at the end. In this step,
the Generator checks if all collectible sprites are present. If
not, a missing sprite gets added to the level. In the survey,
he conducted it shows that people will now clearly pick the
Constructive Generator over the Random Generator [29]. Of
the 76 responses, 61 preferred the Constructive Generator over
the random generator.

The other improvement came from the 3rd pace contestants
of the GVG-LG competition of 2018, Adeel Zafar, who

implemented a Pattern-based Generator. This generator
upholds specific patterns in the sprites of the level based
on the data from the GameAnalyzer. The idea behind this
approach is hard to state as we were unable to find a
publication about it. We deduced all data on this improvement
from the code submitted and the ranking of the GVG-LG
competition of 2018. Reaching third place with this approach
means that they did improve on the original Constructive
Generator. A full analysis of the workings of this algorithm
is outside the scope of this paper.

3) Search-Based Generators: For problems where the
search space is too large to be explored exhaustively, that
means too large to test every possible solution. A search-based
algorithm can provide a solution. These algorithms try to
find a smart approach to come to a solution. An example of
this is Genetic Algorithms. These use a fitness function (or
also called cost function) that determines the value of the
found solution. For values that are equal or higher than the
configured threshold, that solution gets returned.

In the framework provided for the GVG-LG, a Feasible
Infeasible 2 Population Genetic Algorithm is presented [30]
[3]. This algorithm uses two populations at once, one for
feasible chromosomes and one for infeasible chromosomes.
The task of the feasible population is to improve the over-
all fitness for all chromosomes. The infeasible population
specializes in decreasing the number of chromosomes that
violate the problem constraints. They evolve independently
but can exchange children. The Constructive level generator, as
described in the previous part, generates the initial populations.
The algorithm uses a one-point crossover that swaps two
chromosomes around a random tile in the level. The mutation
has three operators:

• Create a random sprite on a random tile
• Destroy all sprites on a random tile
• Swap two tiles

For its fitness function, it uses an altered version of the
winning agent of the 2014 edition of GVG-AI, Adrienctx. It
was changed to make it behave a little more like a human
player. In addition to Adrienctx, the fitness function makes use
of OneStepLookAhead and DoNothing. Both these extra agents
will run as many steps as Adrienctx did. It also differentiates
between two heuristic functions from the feasible population,
Score Difference Fitness, and Unique Rule Fitness. The in-
feasible population has to adhere to seven different constraints.

• Avatar Number: A level can have one avatar
• Sprite Number: Must have at least one sprite that is not

spawned by other sprites
• Goal Number: The goal limit must check out.
• Cover Percentage: 5% to 30% of the level must be

covered
• Solution Length: Solving the level must take at least 200

steps
• Win: Adrienctx must win



• Death: The DoNothing must not die at the start and
should not succeed in the same amount of steps as
Adrienctx.

Variations
As an alternative to the Genetic algorithm in the GVG frame-
work, Dallmier did a study on multiple Monte Carlo (MC)
methods [29]. The choice to use MC methods is because of
their capability to approximate the real value of a state [31].
These values come from pseudo-randomly simulating actions.
The results from these actions present the estimated values.

The first method was the Monte Carlo Tree Search
(MCTS). This method consisted of four phases, selection,
expansion, rollout, and backpropagation [29], [31]. In the con-
structed tree, each node contains its value and the number of
times it is visited. In the first phase, it selects a node to expand.
The selected node gets expanded by an MC rollout until it
reaches a terminal state. The terminated state is evaluated and
through back-propagation distributed through the tree. Back-
propagation will update all the visited nodes from the first
phase. For the selection phase, the Upper Confidence bound
applied to Trees (UCT) is used [32] [29]. The expansion phase
uses a method proposed by Coulom. This method adds one
node per run [29], [33]. Rollouts are preformed randomly and
the results backpropagated in the default way [29].

The second method is the Nested Monte Carlo Search
(NMCS). As the name suggests, it nests levels. It operates
on the idea that when an action has a good score on a lower
level, it will also score well on a higher level. On its base
level, NMCS operates similarly to MCTS. It randomly picks
an action until it reaches a final state. From its nested level
onward, it recursively searches the lower-level for a legal
action to take. From this, it returns the value of the final
state. It continues until it can no longer find a better final
state. Figure 3 shows an example of the first three iterations.
Different from MCTS, NMCS does not rely on building a
partial search tree. It memorizes the optimal sequence and
result that it has found so far. This sequence gets passed on
to the next run. It is passing on the sequence that guarantees
that the next run can only be as good or improve, but not
degrade. The only parameter for adjusting this algorithm is
the number of used nesting levels. Increasing this number
increases the runtime, therefore in this project, values from 0
to 3 where considered. Even though NMCS is not tweakable
for exploration or exploitation, it managed to outperform
NCTS [29].

The final method is the Nested Rollout Policy Adaption
(NRPA). Different from the first two methods, this one does
not purely use randomness for the rollout phase. This method
makes use of policy for determining a series of actions. For
any state and any legal action, it computes a code. These
codes allow for using domain-specific knowledge. A code will
return the same value for a different, yet a sufficiently similar
state-action pair. The calculated code provides a policy for the
rollout. This policy makes it so that an action is considered

Fig. 3. First three iterations of the NMCS method. The black lines indicate
an allowed action. A curly line indicates a lower level search [29]

relatively to the policy value. The remaining structure of this
method is similar to that of NMCS, making use of nested
levels. The other differences are a specifiable amount of
lower-level searches that are initiated for each higher-level
search and during the passing on phase. Here the following
policy is adopted based on a configured learning rate. As
for tweaking for exploration or exploitation, NRPA does not
explicitly contain these parameters. However, picking a high
number of lower-level searches results in the same behavior as
exploration. Picking a low learning rate has the same effect,
as it results in a slow convergence [29].

For the evaluation of these methods, an improved version
of the Direct Fitness Function is used. This version contains
more features and does not use Simulation-based Fitness
Functions to strengthen MC search-based algorithms. The
evaluation function employed by Dallmeier uses 11 features
consisting of the following: Accessibility, Avatar number, Con-
nected walls, Cover-percentage, Ends initially, Goal distance,
Neutral-harmful ration, Simplest avatar, Sprite number, Space
around avatar, and Symmetry. All these features are weighted
integer values, resulting in the following formula.

fdirectScore =

∑
i(wifi)∑
i(wi)

(1)

Where wi is the weight and fi the ith feature [29].

In the end, the methods performed well and have proven to
be good alternatives to Genetic algorithms. All three methods
provided very similar scores, so a definite winner stays
undetermined. Dallmeier stated that for future experiments,
an improvement upon the evaluation function would be
beneficial.

4) Unsupervised Learning: Guzdial and Riedl used an
unsupervised process to generate SMB levels from a model
trained on SMB gameplay videos. The model could represent
probabilistic relationships between shapes and properties.
This effect is achievable by learning models of shape-to-shape
relationships from gameplay videos. For example generative
and probabilistic models As illustrated in the figures 4 and 5
[34].



Fig. 4. Example of D node courtesy of Guzdial and Riedl

Fig. 5. Visualization of the basic probabilistic model [34]

B. The best out there

At the date of publication, 2018 is the latest version of
the GVG-AI competition www.gvgai.net where judges gave
a score on the various level generators. As mentioned
beforehand, the framework itself will firstly score the
generators, after which judges will give a final verdict of the
scores. This first score given by the framework can however
be taken with a grain of salt, as it does not translate in any
way to what the judges will score. A team that had been at
number one on the leader-board scored by the framework
came in 6th place after being judged by the jury. Again it is
difficult for a framework to know what ’Fun’ is.

The top-ranking Level Generator of 2018 was of a German
student team called ’Architect.’ Their structure for a level

generator built on the default genetic system provided by the
framework. With the difference instead of using a one-point
crossover, is uses a two-point crossover and its constructive
initialization with a more simplified version of the sample
constructive method, almost clinging to a random method
[35]. Their methods were far from perfect, however, as they
received a jury score of almost 65%. So does this mean
their submission was the best generator in general? It all
depends on the games. The GVG-AI LG competition only
tests with about four different games. Generators that create
fairly dense levels might not fare well against games that
require the player to move often to complete the level. In
the competition for 2016, 2 out of 4 games used to rate the
generators required open, sparsely filled playing fields for
the game to be even playable. With the next competition in
2018, 2 out of 3 games preformed better by having smaller,
more dense levels. Therefore, in constructive generators, to
classify the game genre is vital to define the right constraints.
For these algorithms, its ability to create a level that is also
solvable is still one of the biggest challenges. This challenge
might be why Architect’s submission won the competition,
as, in its first step, the algorithm only fills 10% of the level
with sprites apart from the already created layout and position
of the player. As it starts relatively small, the search based
algorithm can slowly add new sprites if the level is not
challenging enough.

The generators in the competition only have a maximum
of 5 hours to generate the levels and should, therefore, be
as optimized as possible. Here is where the introduction
of a tournament based system shows potential. A system
making only small changes on a level will take a significant
amount of time, especially if the level turns out to be faulty
in the end. With a tournament system, the initial level a
search-based algorithm can start with will likely show fewer
flaws. As it seems at the moment, Constructive and Search-
Based algorithms seem to be the best out there. With more
experimental approaches like Pattern-based or tournament
selections, however, have yet to show their potential.

V. DISCUSSION

As discussed, the main challenges of level generation
are accurate benchmarking methods and finding the best
construction method for the creation of levels. However, there
are many unexplored little details about video games like
genres, story-lines, and general design perspectives that could
help with better game categorization. Optimal game qualities
are hard to quantify as they are subjective. Having these
categorizations could potentially help improve design patterns
and avoid the problematic duplication of design patterns levels.

The field of Level Generation is a new field with limited
research conducted so far. Generative Adversarial Networks
(with evolution and exploration methodology) and Hyper-
Agent methods have shown the most promise in terms of
results. However, there is a tiny variation done in metrics and

www.gvgai.net


tests. We think that more games have to go through GAN
level-generation and test on the quality of the levels created.
On top of that, we think that also utilization of Hyper-
Heuristics could help us develop a more accurate system that
would produce quality results every time due to the ability to
pick from many specialized AIs and knowing which is the
best choice. Most research focuses on game-playing AIs, and
it could be used in a level generation as experts suggest there
is no ”one-size-fits-all” solution.

The final approach of how we think the system should function
is best represented through the work of Kees Fani at Delft Uni-
versity of Technology, as displayed in Figure 6. Even though
it is simple, it provides a rough idea of what the combination
of GAN and Hyper-Heuristic agents would provide.

Fig. 6. Generation Process overview courtesy of Kees Fani

In order for the literature study to definitively answer the
question What makes general level generation for 2D
video games so difficult? we answered the following sub
research questions:

• How have techniques been used in the GVG-LG
competition and do they improve the current state of
research in general level generation?
As indicated by the top-ranking Level Generator of 2018,
empirical evidence suggests that Genetic Evolutionary
algorithms are highly promising. These algorithms
commonly employ a fitness function to generate levels
from an initial feasible population. The state of the art
technique used a constructive initialization with some
randomization. The competition winner received a jury
score of almost 65%. Thus there is still room to improve
upon the best general level generators.

• What are the similarities between levels of different
2D video games? Can knowledge of these similarities
be used to improve general level generation? In the
context of 2D video games, design patterns are the
in-game tasks that the player needs to solve in order
to play successfully. In the gaming community, it is of
particular interest to develop tools that abstract design
patterns from VGDL and then generate levels for a
game of any general genre. Games often differ from one

another greatly [19]. When generating levels, we should
understand that some games share more commonalities
among each other than they do with other games. Arcade
game genres, such as dungeon-crawlers, horror games,
space shooters, first-person shooters, and platformers,
are identified.

• How can level generation techniques be combined to
create better general level generators?
As described by Kees Fani, The best solution on offer
may be to combine multiple generators. Each generator
is specialized for a specific game genre. The following
steps can provide this specialization.

1) Tagging the game with the appropriate tags that are
extracted from the arbitrary game given in VGDL.

2) Choosing the most appropriate generator from a set of
generators that has been trained previously on a specific
type/genre of game.

3) Generate the level by using the most appropriate gen-
erator with the specific attributes of the game given in
VGDL.

VI. CONCLUSION

The motivation for this literature study was to learn from
the good, the bad, and the ugly of procedural automation.
Determining which level generation techniques have been
successful from the GVG-AI competition and are promising
for future general level generation research. Constructive and
Search-Based algorithms have shown to perform well when
generating levels. Having gained vital insight from answering
the sub research questions identified it is now possible to
provide an answer to the primary research question posed
What makes general level generation for 2D video games
so difficult? The most challenging test of automatic level
generation is when a generator receives a game of an unseen
genre in VGDL. The critical challenge is that a game of a new
genre is challenging to create levels for since it is not possible
to match it to a similar generator that has been pre-trained
on a corpus of training data. Similar to specialized human
game designers, the literature indicates specialization of level
generation research within a particular game/genre such as
SMB/platformer. It is harder to create a general generator for
a game level that achieves better performance than one that
has specialized in that particular one already.
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