<]
TUDelft

Delft University of Technology

Document Version
Final published version

Licence
CCBY

Citation (APA)
Weyrer, S., Manzl, P., Schwab, A. L., & Gerstmayr, J. (2026). Path following and stabilization of a bicycle model using a
reinforcement learning approach. Multibody System Dynamics. https://doi.org/10.1007/s11044-026-10144-x

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.

Unless copyright is transferred by contract or statute, it remains with the copyright holder.

Sharing and reuse

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1007/s11044-026-10144-x

Multibody System Dynamics
https://doi.org/10.1007/s11044-026-10144-x

RESEARCH |

()

Check for
updates

Path following and stabilization of a bicycle model using a
reinforcement learning approach

Sebastian Weyrer' . Peter Manzl' - A.L. Schwab? - Johannes Gerstmayr'

Received: 28 July 2025 / Accepted: 15 January 2026
© The Author(s) 2026

Abstract

Over the years, complex control approaches have been developed to control the motion of
a bicycle. Reinforcement Learning (RL), a branch of machine learning, promises to be an
automated approach for solving optimal control problems. By interacting with and observ-
ing an environment, a so-called agent is trained, ultimately leading to a learned controller.
The present work introduces a pure RL approach to do path following with a virtual bicycle
model while simultaneously stabilizing it laterally. The bicycle, modeled using the Whipple
benchmark model and multibody system dynamics, has no stabilization aids. The observa-
tion of the environment consists of the minimal positional and velocity coordinates of the
bicycle, as well as of information about the path ahead of the bicycle provided by mov-
ing preview points. Both path following and stabilization of the bicycle model are achieved
exclusively by controlling the steering angle setpoint of the bicycle. Curriculum learning
is applied as a state-of-the-art training strategy. Different settings for the RL approach are
investigated and compared. The ability of the learned controllers to do path following and
stabilization of the bicycle model traveling between 2 m/s and 7 m/s along complex paths
including full circles, slalom maneuvers, and lane changes is demonstrated. Explanatory
methods for machine learning are used to analyze the learned controller and identify con-
nections to research in bicycle dynamics.

Keywords Reinforcement learning - Path following - Stabilization - Bicycle model -
Curriculum learning - Machine learning

X J. Gerstmayr
johannes.gerstmayr@uibk.ac.at

S. Weyrer
sebastian.weyrer @uibk.ac.at

P. Manzl
peter.manzl @uibk.ac.at

A.L. Schwab
a.l.schwab @tudelft.nl

Department of Mechatronics, University of Innsbruck, TechnikerstraBe 13, Innsbruck, 6020, Tyrol,
Austria

Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, Delft,
2628 CD, South Holland, The Netherlands

Published online: 29 January 2026 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11044-026-10144-x&domain=pdf
mailto:johannes.gerstmayr@uibk.ac.at
mailto:sebastian.weyrer@uibk.ac.at
mailto:peter.manzl@uibk.ac.at
mailto:a.l.schwab@tudelft.nl

S. Weyrer et al.

1 Introduction

Bicycle dynamics is a subject within dynamics studying the motion of bicycles under the
influence of forces. Understanding bicycle dynamics is essential for developing controllers
for bicycle models.

There is an increasing trend in multibody systems to apply machine learning methods,
in the range between feed-forward networks for surrogate models [1] and large language
models to model dynamic systems [2]. Also to address control problems, Reinforcement
Learning (RL), a sub-area of machine learning, has been successfully applied to various
multibody systems [3]. The idea of RL is that an agent learns to solve a task by observing
the dynamic environment, receiving a reward signal, and returning actions to the dynamic
environment without being supervised [4, 5]. The agent thus learns an observation-action
mapping that is deployed as a learned controller. RL provides a general framework to address
optimal control problems [6].

The question arises of whether RL could serve as a viable approach for controlling bi-
cycles modeled as multibody systems. Answering this research question is of theoretical
interest by showing the applicability of RL alongside other control approaches and holds
practical potential for autonomous two wheeled systems like the one build in [7]. Towards
answering the question, the state-of-the-art is considered from two perspectives in the fol-
lowing: bicycle control methods apart from RL and RL related approaches.

The control of the motion of a bicycle has attracted many researchers over the years [8].
Probably because of the speed-dependent lateral stability and the non-minimal phase be-
havior, that is, to stabilize a bicycle one has to steer into the direction of the undesired fall
[9]. Most of the attention has been directed towards stabilizing the lateral dynamics of the
bicycle and not so much on path following. A good overview on the dynamics and control of
a bicycle is presented in [10]. After 2013, more work emerged on the control of the bicycle.
The focus of the present work is on path following, which of course must include lateral sta-
bility control. A passive velocity field controller for path following has been introduced by
Yin and Yamakita [11]. Their system is then passive with respect to external force perturba-
tions. Turnwald et al. [12] introduce a passivity-based path following control for a bicycle.
The steering and forward speed are controlled using a generalized canonical transformation
on their port-Hamiltonian system of the bicycle. A classic multi-loop control structure is
used by Shafiei and Emami [13] for path following of an unmanned bicycle. A classic LQR
based controller for straight path following and cornering for a bicycle robot has been de-
signed and built by Seekhao et al. [14], where the lateral dynamics of the bicycle is stabilized
by an additional non-inverted pendulum. A model predictive controller with constraints on
the lean, steer, heading as well as position of the bicycle is used by Persson et al. [15] for the
design of a path following controller for a riderless bicycle. He et al. [16] present a learning
based control framework for path following of a bicycle robot. For path following both steer
and forward speed actuation are used. The lateral dynamics of the bicycle robot is stabilized
by a controlled non-inverted pendulum. In the German-language doctoral thesis [7], a con-
trol law for the lateral stabilization of a slow-moving bicycle is derived and analyzed using
a multibody simulation. A pedelec prototype is built to test the assistance system in the real
world.

The idea of using an RL approach to control bicycle models is not new. An article from
Randlov and Alstrgm [17] published in 1998 shows that RL can be used to keep a bicycle
model upright and steer it to a target point that is 1000 m away from the initial position of the
vehicle. The paper suggests using shaping, where two separate neural networks are used. The
articles from Le and Chung [18] and Le et al. [19], published in the late years of 2010, show

@ Springer

Path following and stabilization of a bicycle model using RL

that shaping is not necessary when further evolved RL algorithms are used, as a single agent
learns to steer the bicycle model to the target point without it tipping over. The latter two
works mainly adopt the bicycle model from [17]. In an approach that does not use RL per
se, but shows that neural networks, in general, can be useful for controlling bicycles, Cook
[20] manually devised a neural network controller with only two neurons as an example of
a simple tracking controller. In the early years of 2020, Zhu et al. [21, 22] propose different
RL approaches to do path following with a bicycle model even on curved pavements. The
works do not consider lateral stabilization of the bicycle model as the therein used model
has an integrated inertia wheel to enhance its stability. In a just published work, Huo et al.
[23] introduce a hierarchical residual RL approach to do path following and stabilization of
a bicycle model. Their approach uses the residual connections between different controllers.
The RL based controllers are used as compensators for simplifications made for the design
of the main controllers: For lateral stabilization, they are using a LQR based controller and
for path following a Stanley [24] based controller. Huo et al. report a lack of convergence
when using a purely RL based approach for path following and therefore do not pursue this
approach further.

Despite various important contributions in the field of using RL with bicycle models,
as of this writing, a research gap remains to the best of knowledge: the development of a
purely RL based approach that can be used both to stabilize a bicycle model and to do path
following along arbitrary paths.

The objective of the present work is to show that a purely RL based approach can be used
to follow arbitrary paths with a benchmark bicycle model while simultaneously stabilizing it
laterally across a range of forward velocities. The objective is pursued through the applica-
tion of established RL methods in combination with state-of-the art training techniques and
the systematic development of an RL environment. Findings in bicycle dynamics are incor-
porated in the analysis of the learned controller. The focus of the study is not to benchmark
the RL approach against other control approaches.

In the present work, the bicycle model has no balance aids such as inertia wheels or
non-inverted pendulums. The agent must learn to do path following and stabilization of the
bicycle model exclusively by outputting set values for the steering angle of the bicycle. The
bicycle in the present work is modeled using the so-called Whipple bicycle [25], which is
regarded as a benchmark model to study bicycle dynamics [26]. The Whipple bicycle reflects
the dynamic characteristics of the bicycle found on the road today, having a positive trail
and being unstable when moving at low and high forward velocities and self-stable when
moving at a specific speed range [8]. In intuitive control approaches, the speed-dependent
lateral stability of the bicycle can be considered by switching between different control
laws depending on the bicycle’s forward velocity [27]. This adds an intriguing aspect to
the present work, since the agent must implicitly learn the required regime-dependency to
stabilize the Whipple bicycle. Thereby, the agent must learn to cope with different forward
velocities, underlining the practical significance of the present work by addressing a system
where the velocity of the bicycle is set by the cyclist while path following and stabilization
of the bicycle is done by automated steering movements. By incorporating preview points
that add information about the path ahead to the observation, the fully data-driven approach
is expected to enable proactive behavior even in challenging path scenarios. Finally, by using
explanatory methods for machine learning, the present work aims to verify that the learned
controller shows the basic mechanisms of controlling a bicycle, closing the circle to bicycle
dynamics.

An additional aspect of the present work is that the environment is virtual, with the bi-
cycle implemented as a multibody model. Using a virtual environment is accompanied by

@ Springer

S. Weyrer et al.

<
i
e

Fig. 1 Whipple bicycle shown in the reference configuration where it stands upright without the handlebar
being turned. The position of the Center of Mass (COM) of the rear wheel, the rear body, the handlebar, and
the front wheel is marked, as well as the two ground contact points P and Q, the two wheel radii rg and rp,
and the trail ¢ of the bicycle. The global frame, denoted as O-frame, is shown

simplifications resulting from the bicycle model and its surrounding. It is assumed that the
bicycle model drives on a perfectly leveled surface.

The simplifications and preparatory work associated with the bicycle model to apply an
RL approach mark the beginning of this article. Afterwards, the applied RL framework is
described, followed by an outline of the learning process with the application of curricu-
lum learning as a training strategy. The subsequent section analyzes the learning process
and evaluates how accurately the learned controllers can do path following and stabiliza-
tion of the bicycle model at different forward velocities and along different types of paths.
Explanatory methods for machine learning are used to analyze a learned controller. Finally,
the presented results are discussed. To complement the work, videos of the virtual bicycle
model are provided as supplementary material.

2 Bicycle model and associated preparatory work

The bicycle model used in the present work is the Whipple bicycle [25]. The Whipple bi-
cycle is often used to study bicycle dynamics [26] and the linearized equations of motion
for the Whipple bicycle are presented in a benchmark paper [8]. In this section, the bicycle
model itself and the preparatory work that is required to use the bicycle model with the RL
approach are described.

2.1 Characteristics
The Whipple bicycle, shown in Fig. 1, consists of four rigid bodies, namely the Rear wheel
(R), the Front wheel (F), the rear Body (B) being the bicycle frame and the rider, and the

Handlebar (H) that includes the fork. The bodies are interconnected by three frictionless
revolute joints, one at the bicycle head tube and two at the wheel hubs. The Whipple bicycle

@ Springer

Path following and stabilization of a bicycle model using RL

Fig.2 Whipple bicycle drawn 5
with its minimal coordinates on §
positional base and the pitch
angle 6g. The upright cylinder
marked with W represents the
yaw angle, the mounting attached
to the rear dropout is used to
illustrate the roll angle ¢ that is
independent of the pitch angle 6
of the rear body. Note that the
pitch angle 6 is not a minimal
coordinate of the bicycle, but is
needed later for the coordinates
mappings

(Xp> V)

has a tilted steering axis and a fork offset. Due to the fork offset of the bicycle, the front
wheel hub is not located on the steering axis, but at a constant distance to it. The Whipple
bicycle has a positive trail c. The rider body is assumed to be rigidly connected to the frame
of the bicycle. The wheels are modeled using geometrically ideal thin discs, each having one
contact point with the flat level ground. The contact points of the wheels with the ground are
called P and Q. The geometrical and mechanical parameters of the bicycle model are taken
from [8]. The bicycle model is subjected to gravitational acceleration. The bicycle model is
self-stable when traveling at a forward velocity between 4.3 ms~! and 6 ms~' [8], as initial
perturbations of the bicycle model subside over time if moving in this range for the forward
velocity.

2.2 Minimal coordinates

To use RL, an observation must be defined which describes the environment in such a way
that the agent can learn selecting a suitable action [4]. In the present work, the observation
includes the minimal coordinates of the bicycle model. For the degree of freedom on posi-
tional base, fi = 6n—by, =24 —17 =7 follows, where n is the number of rigid bodies of the
system and by, the number of geometric constraints in the system [8]. The number of geomet-
ric constraints is the sum of the number of constraints resulting from the revolute joints plus
two, as the wheels cannot penetrate the ground. In Fig. 2, the minimal coordinates on po-
sitional base of the system are illustrated. Since the bicycle has non-holonomic constraints,
the degree of freedom on velocity base is further reduced to f = fi, —b* =7 —4 =3,
where b* is the number of non-holonomic constraints [8]. Per wheel, two non-holonomic
constraints are added since neither side-slipping nor free spinning of the wheels is possible
in the used bicycle model. In Table 1, the minimal coordinates on positional and velocity
base are given. The vector q € R'° of the minimal coordinates reads

. & 4T
(I=[XP w» ¥ o9 & 6 9F(/’59F]- (D

@ Springer

S. Weyrer et al.

Table 1 Minimal coordinates of the Whipple bicycle that are part of the observation describing the environ-
ment. The T-frame used is defined in Appendix A

Notation ~ Description

Xp x-coordinate of the global position of the rear wheel contact point

Yp y-coordinate of the global position of the rear wheel contact point

14 yaw angle between the x-axes of the O-frame and the Ty-frame around the z-axis of the 0-frame

7 roll angle around the x-axis of the T1-frame, where ¢ = 0 means that the z-axes of the T-frame
and the O-frame are parallel

8 steering angle

OrR rear wheel rotation angle

O front wheel rotation angle

[roll angular velocity

) steering angular velocity

O front wheel rotation angular velocity

Table 2 Description of the coordinates (coord.) mappings that must be established for using the multibody
model of the bicycle in the RL framework

Redundant — Minimal Minimal — Redundant

compute the minimal coord. (on positional and compute the redundant coord. (on positional and
velocity base) from the current configuration of the velocity base) when the environment is reset since
bicycle since the minimal coord. are part of the the environment is reset by randomly initializing
observation describing the environment; without the minimal coord. of the bicycle model; without
this transformation the observation of the this transformation the simulation could not restart
environment could not be computed after the environment is reset

2.3 Coordinates mappings

For the multibody model, a redundant formulation is used, representing the configuration of
each rigid body with a translation and rotation. The redundant formulation avoids the need
to derive the equations of motion specifically for the bicycle model, as it relies on tested
components implemented within a multibody simulation framework. Furthermore, the re-
dundant formulation facilitates extensions of the bicycle model. The redundant formulation
could naturally accommodate the loss of wheel contact on uneven pavement, which would
result in a variable degree of freedom throughout a simulated ride. Further examples for
a future extension are the use of flexible bodies, each of which could be modeled using
the floating frame of reference formulation [28], or the inclusion of joint clearance, which
would impose unilateral constraints on the system [29]. By using a redundant formulation,
a mapping of the redundant coordinates to the minimal coordinates and vice versa must be
established before setting up the RL framework. In Table 2, the two mappings are described,
as well as why the two mappings are required.

In Appendix A, the mapping of the redundant to the minimal coordinates and the map-
ping of the minimal to the redundant coordinates are shown. The mappings, which are also
useful for work outside the RL context, include both the positional and velocity base.

@ Springer

Path following and stabilization of a bicycle model using RL

Fig.3 Scheme of the RL R
framework. An agent can choose >
. R Agent
an action based on the >
. . =
observation of a dynamic S - -
environment. A numerical reward i § =
signal is passed pack to the agent g 2 <
2)
o
Environment [«

2.4 Model of the steering drive

The bicycle model is controlled by the set value . for the steering angle of the bicycle
model. The set steering angle is converted into a steering torque t by a PD controller. The
steering torque t is imprinted between the rear body and the fork of the bicycle model
and acts around the steering axis, modeling a drive sitting in the bicycle head. The steering
torque 7 reads

T =P —8e) + DG —), (€5

where § is the steering angle of the bicycle model and § is the steering angular velocity.
For the set value of the steering angular velocity, dsc = 0 applies, as the steering angular
velocity § is not controlled. The two parameters of the PD controller are set P =9 Nm and

D = 1.6 Nms. In Appendix B, it is described how the values for P and D are found.

3 Reinforcement learning framework

In an RL framework, the agent can choose an action based on an observation describing
the environment.! The action chosen by the agent changes the dynamic environment. The
new observation and a reward are passed back to the agent, closing the agent-environment
loop, see Fig. 3 [4]. Based on the new observation, the agent again selects an action. The
reward is a numerical signal. The agent tries to maximize the cumulative reward. Learning
means that the data obtained when passing through the agent-environment loop is used to
adapt the behavior, i.e. the policy, of the agent. The method used to adapt the behavior is
defined by the specific RL algorithm used. In the present work, mainly the off-policy Soft
Actor Critic (SAC) algorithm is used, first introduced in the work [31]. The SAC algorithm
is off-policy, so it uses a replay buffer, where the data obtained when running through the
RL framework is saved. After every single run through the RL framework, a batch sam-
pled from the replay buffer is used to adapt the behavior of the agent [31]. If the agent is
implemented using neural networks, the concept of RL is extended to Deep Reinforcement
Learning (DRL). Adapting the behavior of the agent in the context of DRL means that the
weights and biases in the neural networks are adapted [5]. Within typical implementations,
an SAC agent consists of five neural networks [32]. In the present work, the terms RL and
DRL are used synonymously, as all agents are implemented using neural networks. After a

Note that in the RL literature, the terms observation and state are often used interchangeably. Strictly speak-
ing, the state is a complete non-redundant description of a system, while the observation may be incomplete
or includes redundant information [30]. Since the agent in this work receives the state of the bicycle, i.e. the
minimal coordinates on positional and velocity base, refer to Sect. 2.2, but rather than the complete informa-
tion about the path only a preview of the path, the agent effectively receives an observation.

@ Springer

S. Weyrer et al.

specified number of learning steps, or once a designated performance criterion is met during
training, the behavior of the agent is no longer adapted. The observation—action mapping
of the agent is deployed as a controller. In the case of the SAC algorithm, the deployed
controller consists of the actor. The actor is one of the five neural networks that constitute
an SAC agent. The actor represents an observation-conditioned probability distribution over
the actions [31] by outputting means and standard deviations for each action dimension. To
act as a deterministic learned controller, the mean action is selected for each observation,
effectively functioning as a feedback controller [30]. The reader should note the following
distinction used throughout this article:

e Agent: The agent learns in a data-driven manner within the agent—environment loop and
uses neural networks internally to adapt its behavior.

e Learned Controller: The learned controller is the observation—action mapping acquired
by the agent, i.e., a feedback controller. It consists of components of the agent (e.g., the
learned actor) but remains fixed and is not adapted during operation.

The framework set up for the present work is Python (version 3.11.5) based. The multi-
body simulation code Exudyn? is used for the multibody simulation of the bicycle model.
Exudyn is based on C++4- and available as Python package [33]. Exudyn provides an inter-
face class that connects the multibody system to OpenAIGym? [34]. OpenAIGym in turn
provides a standardized port to already existing implementations of RL algorithms. The RL
algorithms used in the present work are part of Stable-Baselines3* [32], which provides
implementations of seven different RL algorithms.

In the following, four main parts of the RL framework are described, namely the en-
vironment, the observation, the reward, and the action. At certain points in the following
descriptions, several possible settings for the RL framework are given. The different set-
tings for the RL framework are compared to each other later when presenting the results.

3.1 Environment

The environment consists of the simulated bicycle model and the path the bicycle should
follow. As outlined in Sect. 2.3, the multibody model of the bicycle is implemented using a
redundant formulation. The differential algebraic equations resulting from the redundant for-
mulation and assembled by Exudyn are solved using the generalized-«o solver implemented
in Exudyn. The step size of the solver is set 0.005 s. The RL algorithm interacts every
h = 0.05 s with the environment, with 1/ being the controller frequency. Thus, 10 simula-
tion steps are made until a new action is applied to the multibody system. The update time %
is set higher than the step size of the solver, so that the dynamics of the environment can be
learned in fewer interactions between the agent and the environment. The visualization of
the bicycle model is shown in Fig. 4, left.

The paths the bicycle model should follow are built using three different element types,
namely linear elements, polynomial elements, and circular elements, see Fig. 4, right. The
linear element is defined by its length L. The circular element is defined using an angle ®
and a radius R. The polynomial element is defined by its length Lp and width Wp. The
polynomial elements are all of degree five. In the present work, two families of paths are
used, see Fig. 5. For the learning of the agents, paths are initialized randomly in a wide

2https://github.com/jgerstmayr/EXUDYN (used version: 1.8.0).
3https://github.com/Farama—Foundation/Gymnasium (used version: 0.21.0).
4https://github.com/DLR-RM/stable—baselines} (used version: 1.7.0).

@ Springer

https://github.com/jgerstmayr/EXUDYN
https://github.com/Farama-Foundation/Gymnasium
https://github.com/DLR-RM/stable-baselines3

Path following and stabilization of a bicycle model using RL

o

I !

Fig.4 (Left) The visualization of the virtual bicycle model is shown. (Right) Examples of the three element
types with which the paths in the present work are constructed are drawn with their corresponding geometric
properties

Fig.5 (Left) Four examples of randomly generated paths which are used in the learning process are shown.
Short parts of the paths are drawn each to prevent clustering in the figure. (Right) The benchmark path that
is used to evaluate the performance of the learned controllers is shown. For the benchmark path, @ =5 m
applies

range using the reset procedure, so that the agents not only learn to follow a specific path,
but to follow arbitrary paths. For the performance evaluation of the learned controllers, ad-
ditionally, a benchmark path is introduced, including a full circle, a slalom, curves, two lane
changes, and straight elements.

3.2 Observation

The observation in the present work contains a potentially redundant formulation of the
minimal coordinates of the bicycle model and preview information describing the path the
bicycle should follow. Both parts are described now.

In the preparatory work associated with the bicycle model, its minimal coordinates q are
defined, see Sect. 2.2 and Equation (1). One part of the observation vector o are the minimal
coordinates, either in the form of q or in the form of an alternative redundant formulation
q' € R!!. In the alternative formulation, the yaw angle W is represented using a unity vector
with the two components

Xy =cos W and yy =sinW. 3)

@ Springer

S. Weyrer et al.

<y
in~}
z

Fig. 6 Scheme of the procedure to get preview information of the path. The preview points required for
the preview information are obtained by moving along the path by the preview distance As, starting with
the point Ppg. The point Ppg is the point on the path nearest to the rear wheel contact point P. The point
Pqo is the point on the path nearest to the front wheel contact point Q and can be used later for the reward
computation

Consequently, the alternative redundant formulation for q reads

d=[x y» Xv yo ¢ 8§ 6k 6 ¢ 3§ éF]T- €]

The preview information of the path is incorporated in the observation o using the vector
tp € RCevtD where Nprev = 4 is the number of preview points used to compute the vector tp.
The vector tp represents the course of the path ahead of the bicycle model given in the C-
frame. The C-frame is defined in Equation (A.3). To obtain the vector tp, it is started with the
point Pp illustrated in Fig. 6. The vector pointing from the rear wheel contact point to Ppy
is projected on the y-axis of the C-frame. The length of the projection is the first entry of the
vector tp, denoted as #py. The point Ppy is moved along the path by the preview distance As.
This gives the first preview point, called Pp;. Again, the vector that is pointing from P to Pp;
is projected on the y-axis of the C-frame, which gives the second entry tp; of the vector tp.
Repeating this procedure, the vector tp finally reads

T
to=[tpo fp1 I fp3 Ips] . Q)]
Subsuming, the observation vector o follows as

4

q q
0= or 0= . 6
t t (6)

The two formulations for the observation vector o are compared to each other in the results
section, as are two ways to set the preview distance As.

@ Springer

Path following and stabilization of a bicycle model using RL

3.3 Reward

To represent the two components of the here investigated task of doing path following with
a bicycle model and stabilizing it laterally, the reward p € [0, 1] is the linear combination of
the two parts py and p,,.

P=X1" Pyt X2" Py @)

For the two reward weights x; + x» = 1 applies.

The first part py € [0, 1] rewards the agent when the bicycle is close to the path. A dis-
tance referred to as #, (not to be confused with #py in the preview vector, see Sect. 3.1) is
used. The distance f, can either be the Euclidean distance d (P, Ppy) between the rear wheel
contact point P and Ppy or the Euclidean distance d(Q, Pq) between the front wheel con-
tact point Q and Pgg. The points Ppy and Pgo are shown in Fig. 6. A relationship must be
introduced to compute the part o, with the distance 7. Either a linear relationship reading

in Ny—H
py=pyt= ®)
y

or a relationship forming the normalized Gaussian bell curve, reading

py = py? =exp (—O.Stg))

can be used. The distance threshold 7y is set to 3.5 m. As explained later, the environment
is reset if the bicycle model drives further away than 5, from the path. Consequently, when
the distance between the bicycle model and the path becomes maximum, the part p;i“ of the
reward equals zero.

The part p, € [0, 1] is computed using the roll angle ¢.

Ny — |9
= de 71 (10)
Ny

By computing the part p,, this way, the agent is penalized if the bicycle leans. The roll angle
threshold 7, is set to 45°. If the magnitude of the roll angle ¢ exceeds 7,, the environment
is reset. Consequently, when the magnitude of the roll angle ¢ becomes maximum, the part
P, of the reward equals zero. Although this reward part is conflicting with training the agent
to follow paths including curves, since with a curve the roll angle ¢ must be non-zero, it will
be investigated later whether and to what extent this interferes with the learning progress.

The two described options to obtain the distance 7y will be compared to each other later,
as well as using Equation (8) or Equation (9) to compute the part p,. Furthermore, the
influence of the reward weights x; and x, is analyzed.

3.4 Action

The bicycle model is controlled by taking steering actions. The control input for the bicycle
model is the set value 8¢ € [—70°, 70°] for the steering angle, as described in Sect. 2.4. The
interval given for §g, is substantiated in Appendix B.

@ Springer

S. Weyrer et al.

4 Learning process with curriculum learning

The learning process is the process that generates data with the multibody simulation envi-
ronment and uses this data to optimize the function approximators of the agent. The learning
processes in the present work consist of n, = 4 - 10° learning steps, since, as shown later,
the validation results no longer change significantly at this level of training. One learning
step is one run through the RL framework. This means that one learning process uses data
generated in ny, - © = 55.5 hours of simulated bicycle rides, with /& being the time a selected
action is applied, see Sect. 3.1. The learning process can be divided into episodes, whereby
the end of an episode can trigger certain procedures in the learning process, as described
later. An episode ends when at least one of the conditions listed below is met:

e The episode consists of ny,, = 1200 learning steps, so that one episode represents a bi-
cycle ride with a maximum duration of n,,,x - # = 60 s. Note that when this condition is
met, the environment is not necessarily reset before the start of the next episode, see next
subsection.

o Atleast one of the two thresholds ny and 7, is exceeded and the environment is reset. The
two thresholds 7, and 7, are defined in Sect. 3.3.

As long as the learning process does not contain ny, learning steps, a new episode starts
when the previous episode ended.

In addition to running through the RL framework, the learning process must reset the en-
vironment when certain conditions are met. Furthermore, validations are performed during
the learning process to monitor the progress of learning. During the learning process, a train-
ing strategy called Curriculum Learning (CL) is applied. The reset procedure, the validation
procedure, and the CL are explained now in more detail.

4.1 Resetting the environment

Primarily, the environment of the RL framework must be reset if the control task is failed and
should be solved again. The reset procedure is therefore called when the roll angle ¢ of the
bicycle model exceeds the roll angle threshold n,, or/and when the distance between the rear
wheel contact point P and the point Ppy exceeds the distance threshold 7. In other words,
reset is called when the bicycle has fallen over or/and driven far away from the path. If two
consecutive episodes contain the maximum number of learning steps n,,x and no reset was
called between the episodes, the environment is also reset. Resetting the environment at this
condition ensures that the learning agent that already succeeds in solving the control task
without exceeding the thresholds ny and 7, still finds a variety of initial conditions to learn
from. The reset procedure initializes the configuration of the bicycle model as well as the
path the bicycle model should follow.

The configuration of the bicycle model is initialized by randomly setting the minimal
coordinates of the bicycle model in the intervals given in the upper part of Table 3. The roll
angle @, the steering angle §, and their angular velocities are not set to zero when initializing
the bicycle model. By initially perturbing the bicycle model, the agent should learn how to
stabilize the bicycle by just observing the beginnings of every simulated bicycle ride. The
forward velocity of the bicycle model is set randomly between vy, and v,x. Note that the
bicycle cannot accelerate or decelerate in the simulated bicycle rides, as described in Sect. 1.
Since the forward velocity is not a minimal coordinate of the bicycle model, it is converted
into the front wheel rotation angular velocity 6 using

v

bp=—, (11)
Ir

@ Springer

Path following and stabilization of a bicycle model using RL

Table 3 Intervals in which the parameters of the environment are initialized when reset is called, where for
each parameter x an interval a < x < b is given. The table indicates which initialization intervals are used to
apply CL, see also Table 4. For those parameters, no concrete interval can be given

Parameter Initialization interval CL

a b

bicycle model

coordinates xp and yp of the contact point P —10m 10 m no
yaw angle W —m rad 7 rad no
roll angle ¢ —0.01 rad 0.01 rad no
steering angle § —0.01 rad 0.01 rad no
wheel rotation angles 6g and O —m rad 7 rad no
roll angular velocity ¢ —0.05 rads~ ! 0.05 rads~! no
steering angular velocity § —0.01 rads~! 0.01 rads~! no
front wheel rotation angular velocity 6 set with the forward velocity v -

forward velocity v Umin Umax yes

path

length of linear elements L Sm 15m no
angle of circular elements ¢ /4 rad /2 rad no
radius of circular elements R Rmin Rmax yes
length of polynomial elements Lp Lp min Lp max yes
width of polynomial segments Wp WP, min WP, max yes

with rg being the radius of the front wheel. The parameters not necessary for solving the
control task, i.e. the contact point P = (xp, yp), the yaw angle W, and the wheel rotation
angles O and O, are initialized in wide intervals so that the agent learns their irrelevance.
The randomly initialized path the bicycle model should follow lies in the plane spanned
by the x- and the y-axes of the O-frame. The beginning of the path is placed where the
contact point P of the rear wheel of the bicycle is initialized. The beginning of the path
is rotated so that the angle of the tangent of the path at the point P is inside the interval
[W — 5°, W 4 5°], where W is the yaw angle the bicycle is initialized with. The path is
initialized by appending a random sequence of the three element types the path can consist
of, see Sect. 3.1. Not only the sequence of element types, but also the geometric properties of
each individual element of the path are initialized randomly in a given interval. The intervals
for the geometric properties of the elements are given in the lower part of Table 3. The sign
of the curvature of the circular elements is selected at random so that with a probability of
50% the element is positively or negatively curved. The same is done with the width |Wp|
of the polynomial elements to specify the direction of the transfer. It is specified that the
initialized path does not start with a circular element so that after resetting, where the bicycle
model may be perturbed, the task does not become unachievable. Additionally, it is defined
that 40% of the elements in the initialized path should be circular elements, 40% should be
polynomial elements, and 20% should be straight elements. This is specified so that the path
does not contain long straight sections with which a behavior to follow the straight elements
but not the other two types of elements could be exploited. The family of paths assembled
in the way of the present work cannot be followed by the bicycle model exactly, because
the dynamic characteristics of the bicycle impose limitations in its maneuverability [35]. In
particular, step-like changes in the curvature of the path result in a path error between the

@ Springer

S. Weyrer et al.

bicycle model and the path, alike a bicycle traveling on real roads. To start the turn of a
bicycle, the handlebar must be turned in the opposite direction, known as counter-steering,
so that the bicycle leaves the desired path [8, 35]. This dynamic property of the bicycle
model must be learned by the agents, trying to follow the path as closely as possible.

4.2 Validation during the learning process

The validation procedure is to monitor the success of the learning process. In the learning
process, a validation is always carried out if both of the following conditions are fulfilled: An
episode reaches 7, learning steps and the last validation was 4000 or more learning steps
ago. The first condition is imposed because it is assumed that, upon reaching the maximum
number of steps in an episode, the task can already be partially solved and it makes sense to
validate the performance. The latter condition is set to save computing time, as an already
well-trained agent is not validated after each episode. A validation consists of 10 simulated
bicycle rides of a duration of 30 s. To do path following and stabilization of the bicycle
model in these simulated bicycle rides, the actor of the agent in its current state of training is
used to get a learned controller, deterministically outputting set values for the steering angle
of the bicycle based on received observations. Before each of the simulated bicycle rides
in the validation, the environment is reset using the procedure and initialization intervals
described in Sect. 4.1. Each simulated bicycle ride is then scored using a normalized error
e € [0, 1]

sk olge (12)

{ 1 if ny or n, is exceeded
e; =

If the bicycle model has fallen over or driven far away from the path, which means that the
control task is not solved, e¢; = 1 is set. Otherwise, the error ¢; is computed using the mean
of #y measured over the last 80% of the duration of the simulated bicycle ride, denoted as
fo.80%- The first 20% of the bicycle ride are ignored for this computation, in order to make ¢;
independent of the perturbations the bicycle model may be initialized with. Remark that the
distance fq is calculated the same as for the reward p, which is described in Sect. 3.3. An
error threshold 7. is introduced, reading

_ 0.2 m _ 0.2 m

= =" — ~0.057. 13
Ne " i5m 13)

In a validation process, a single simulated bicycle ride is called successful if ¢; < 5, holds.
Since a validation consists of 10 simulated bicycle rides, a validation results in 10 errors e;.

4.3 Curriculum learning

Curriculum Learning (CL) is a training strategy for the field of machine learning that was
first formalized in the work [36]. When doing CL, the task to be solved becomes increasingly
complex as the learning proceeds in order to improve the quality of the learned policy and
the speed of the learning process as compared to learning the complex task directly. CL
is applied in the present work by changing the initialization interval of some parameters,
marked in Table 3, throughout learning.

The adaptation of the initialization intervals is done using discrete stages, called parts of
the curriculum. The functionality of the curriculum applied in the present work is schemati-
cally illustrated in Fig. 7. A linear relationship over ng.. = 10,000 learning steps is used in

@ Springer

Path following and stabilization of a bicycle model using RL

Fig.7 Scheme of a four-part > ©
curriculum in which the @(\% . &‘b@ .;\(5@ .;0%@ & 0&"
initialization range of one . \‘\of él\ (\\Q\ & ' Q\’\o \‘\Qf
parameter is adjusted. When a e;b& T T P & @(b@
validation is fully successful, g A q, “’ ,b‘ © > -
with all errors e; < ne, the next 2]] ! 12
part of the curriculum is initiated. g i Maee <
During changing the initialization g E]
range within nge. learning steps, & 5
no validation is done. A fully o @
successful validation in the last g £
part of the curriculum represents g =
the end of the curriculum § 2
E £
n M. |

steps

Table 4 Intervals in which the parameters that are changed throughout the learning process are initialized in
each part of the four-part curriculum, where for each parameter x an interval a < x < b is given

Parameter Initialization range at curriculum part

1 2 3 4

a b a b a b a b
forward velocity v in ms~! 4 4 2 7 2 7 2 7
radius of circular elements R in m 14 14 12 14 10 14 8 14
length of polynomial elements Lp in m 20 22 18 22 16 22 14 22
width of polynomial elements Wp in m 2 2 2 4 2 6 2 8

the present work to extend the initialization intervals. In Table 4, the initialization intervals
that are changed with the parts of the curriculum are given. It can be seen that the curriculum
in the present work extends the forward velocity at which the bicycle is initialized from a
constant value of 4 ms~! to a wide range of speeds. The speed range goes from 2 ms™!, a
velocity at which the bicycle is in a highly unstable mode, via the self-stable velocity range
from 4.3 ms™! to 6 ms™!, up to 7 ms~', where the bicycle is again mildly unstable [8]. This
makes the task more complex in two ways, since the policy must get speed-dependent, see
introductory Sect. 1, and the slower bicycle is more difficult to stabilize [8]. As the learn-
ing proceeds, the curriculum also makes the paths to be followed more complex by adding
sharper turns and steeper transfers to the assembled paths.

5 Results

The section on the results is divided into five parts. Firstly, different settings for the RL
framework are listed. Secondly, the learning process when using the different settings is
analyzed. Afterwards, the performance of the learned controllers is evaluated. Then, a simu-
lated bicycle ride along the benchmark path is analyzed in more detail. Finally, explanatory
methods are applied to analyze the functioning of a learned controller. For more statistical
robustness of the presented results, five learning processes, referred to as runs, initialized

@ Springer

S. Weyrer et al.

Table5 Variation of the RL framework. The single parameter that distinguishes the alt(1-5) settings from the
proposed (prop.) settings is highlighted

Settings qvq As to Py X1 Algorithm
prop. q v0.4s d(P, Ppy) pin 1 SAC
alt(1) q v0.4s d(P, Ppy) oy 1 SAC
alt(2) q 2m d(P, Ppy) Py 1 SAC
alt(3) q v0.4s d(Q.Pqo) pin 1 SAC
alt(4) q v0.4s d(P, Ppg) oy * 1 SAC
alt(5) q v0.4s d(P, Ppp) pyn 0.5 SAC

with a different random seed, are done under the investigated settings. Therefore, through-
out this section, selection procedures are performed to start with a general analysis and get
a single learned controller that is analyzed.

5.1 Investigated settings for the RL framework

The settings for the RL framework concern the observation vector o, the design of the re-
ward p, and the used RL algorithm.

In the observation vector o, either the vector q for the minimal coordinates of the bicycle
model, see Equation (1), or a redundant formulation q' with the yaw of the bicycle given as a
unity vector, see Equation (4), is used. Furthermore, the preview distance As used to obtain
the preview information is either set constant with As =2 m or scaled with the forward
velocity v of the bicycle, reading

As=v04s. (14)

The distance 7, used to compute the part p, of the reward is either the distance d (P, Ppo)
using the rear wheel contact point P, or the distance d(Q, Pyo) using the front wheel contact
point Q. With this distance, either a linear relationship p?“, see Equation (8), or an expo-
nential relationship pSXp, see Equation (9), can be used to compute the part py of the reward.
The reward weights x; and x, are adjustable, see Equation (7). In the present work, either
x1=1and x, =0 or x; = x, = 0.5 is used. The latter setting is used to investigate how the
inconsistency of the two reward parts py and p,,, which is described in Sect. 3.3, disrupts the
learning progress.

While any RL algorithm can be used in the introduced RL framework, as long as a contin-
uous action space is supported by the algorithm, the SAC algorithm [31] performed signifi-
cantly better in initial tests than the A2C algorithm introduced in the work [37] and the PPO
algorithm introduced in the work [38], commonly referred to by their abbreviations. The
results shown are therefore achieved exclusively with the SAC algorithm. The implementa-
tion of SAC in Stable-Baselines3 with the hyperparameters given in [31] is used. Variations
in the network architecture of the networks used within the agent have not shown positive
effects on the learning process, so the default settings from Stable-Baselines3 are used here
as well.

In Table 5, the investigated settings are listed. Proposed settings are defined, to which
each alternative combination of settings differs in one single parameter to better understand
their influence on learning and the learned controllers.

@ Springer

Path following and stabilization of a bicycle model using RL

Fig.8 The learning steps taken %106
by the runs to complete the
curriculum are indicated with
dots for each RL framework
setting. The mean of the learning
steps, i.e. the required learning
steps, is shown for each setting
using a bar (x Not all of the
runs done with these settings
have reached the end of the 0

curriculum) pr(l)p. alt(l) alt(2) alt(3) alt(4) alt(5)(x)

required learning steps
[\
1

Fig.9 (Top) Validation error e
with the proposed and alt(1-2, 5)
settings plotted over the learning
steps. The mean validation error
of the five runs done with each
of the settings is drawn, as well
as the area between the minimal
and maximal validation error.

A Simple Moving Average
(SMA) filter with 20 data points 0.2 4 [l Il | k‘Afww’\l. |
is applied. (Bottom) Parts of the ¢
curriculum in which the
individual runs with the
different settings are, plotted over
the learning steps. Part 5
corresponds to ending the
curriculum in Fig. 7 (Color figure
online)

prop.
alt(1)
alt(2)
alt(5)

(=1
oo
1

o
>
1
:

validation error
S
=
]
}

T

—&— prop.

44— alt(1) +— 1
—_—
——

alt(2)
alt(5)

curriculum part
w
1

5.2 Learning process

To analyze the learning process with the different settings for the RL framework, the re-
quired learning steps, the progression of the validation error over the learning steps, and the
learning steps required in the parts of the curriculum are considered.

The number of learning steps required when using specific settings for the RL framework
is the mean number of learning steps the runs with these settings take to end the curriculum.
As can be seen in Fig. 8, the alt(2) settings, where the preview distance As is not scaled with
the forward velocity v, and the alt(5) settings, where the reward weights x; and x, are set
equally, require more than 2.5 - 10° learning steps. The proposed and alt(1, 3-4) settings
require less than 2 - 10° learning steps. With regard to the alt(1) settings, this implies that the
yaw representation does not influence the required learning steps.

As described in Sect. 4.2, each validation during the learning process results in 10 er-
rors e;. To obtain the learning progress, the validation error e, being the mean value of the
errors e;, is computed over the learning steps for each run. Thus, five errors e can be com-
puted over the learning steps for each setting. In Fig. 9, the validation error e is plotted for
the proposed and the alt(1-2, 5) settings over the learning steps, as well as the parts of the
curriculum in which the runs with these settings are. No significant difference is observed

@ Springer

S. Weyrer et al.

between the proposed and the alt(1) settings, where the yaw of the bicycle is given as an
angle value. In the first part of the curriculum, the learning process with the proposed and
the alt(2) settings with a non velocity-scaled preview distance As does not differ signifi-
cantly, since the velocity scaling of As has no influence in the first part of the curriculum,
with the forward velocity of the bicycle being constant, see Table 4. In the second part of
the curriculum, the interval for the forward velocity v is extended and the learning processes
with the alt(2) settings take an average of 264% of the learning steps taken when using the
proposed settings. Furthermore, the mean validation error rises above 0.4 with the alt(2)
settings. The learning with the alt(2) settings does not recover from the delay in the second
part of the curriculum until the end of the learning process, necessitating the higher number
of required learning steps already shown in Fig. 8. Two learning processes finish the cur-
riculum in 7, learning steps if the alt(5) settings with equally weighted reward parts are
used. The other runs stay in the second and third part of the curriculum until 7 learning
steps are reached. The validation error starts to increase after 2.5 - 10° learning steps, im-
plying that including the part p, in the reward disrupts the learning significantly. Learning
processes with the alt(3) settings, where the front wheel contact point Q is used to obtain
the distance #y, and the alt(4) settings, where the exponential relationship py" is used, show
no significant difference from learning processes with the proposed or the alt(1) settings.

5.3 Performance of the learned controllers

In this section, the performance of the learned controllers is shown, as well as the influ-
ence the settings for the RL framework have on the performance of the learned controllers.
Firstly, it is described at which point in a run the adaptation of the agent is stopped and the
observation-action mapping is deployed as controller and how the performance is measured.
Afterwards, the learned controllers are tested with the family of paths used during learning
and along the benchmark path. At the end of this section, a learned controller is tested
traversing a road intersection and thereby compared to two methods from the literature.

5.3.1 Controller selection and performance measure

The actor network, see Sect. 3 for more information about this network, of the agent is
saved periodically during training. For performance evaluation, the most recent actor net-
work that successfully completed all validation tests during training is deployed as learned
controller. This ensures that the evaluated learned controllers represent the most advanced
training state attainable within n, learning steps. Consequently, five learned controllers are
evaluated each with the proposed and alt(1-4) settings and two learned controllers are evalu-
ated with the alt(5) settings. During the simulated bicycle rides with the bicycle model being
controlled by the learned controllers, the distance 7y = d(P, Pp) is tracked. Note that also
for the alt(3) settings, where d(Q, Pqo) is used to compute the reward, the distance d (P, Ppo)
using the rear wheel contact point P is used here so that the results are comparable. The
mean of the measured distance #, during the bicycle ride when using the learned controller k
at a forward velocity of v is denoted as 7y (v). The maximum of the measured distance 7, is
denoted as 7y (v). Both values are used to quantify the performance of the learned controller
k. Assuming that the learned controllers k € NN [1, N] are deployed from the N runs with
the proposed settings, the distance 7' (v) reading

1<
T) =~ k) (15)
k=1

@ Springer

Path following and stabilization of a bicycle model using RL

—e— prop. —— alt(2) —— alt(4)

—— alt(1) alt(3) —— alt(5)
randomly generated paths

s o o o
= - — o
W (=) W (=]

1 1 1 1

distance T(v) in m

0.20

benchmark path

distance T(v) in m

o o o
= = —
5 o <
1 1 1

2 3 4 5 6 7
forward velocity in ms”

Ton(¥) 3
0.60 - ! 0, 1) : K
: 0 20m

g
£ 0.40
o
<o~ . N D
000 T T T T T T
2 3 4 5 6 7

o i
forward velocity in ms

Fig. 10 (Top, Middle) Distance T (v) plotted over the forward velocity v for the investigated settings when
two different types of paths are used (schematic representation of the paths shown). (Bottom) Two individual
learned controllers are analyzed in more detail. The mean #y 1 (v) and maximal distance tA(), 1(v) are plotted,
giving the performance of the two learned controllers over the investigated velocity range along the bench-
mark path

gives the overall performance of the proposed settings at the forward velocity of v. In the
following, T (v) is computed for all the settings shown in Table 5 with 2 ms ! <v<7ms!
applying for the forward velocity v. Note that during the simulated bicycle rides, the same
observation settings apply as during learning. If, for example, an agent is trained with a non
velocity-scaled preview distance, the resulting learned controller is also evaluated with the
preview distance being non velocity-scaled.

5.3.2 Performance along randomly generated paths

The randomly generated paths for evaluation always start in the origin of the O-frame and are
assembled identically as in the last part of the curriculum by the reset procedure described in
Sect. 4.1. The bicycle model is initialized in the reference configuration, see Fig. 1, with the
rear wheel contact point P on the path. The duration of the simulated bicycle rides is set to
30 s. In the upper part of Fig. 10, the distance T (v) is plotted for different settings. If one or
more of the five learned controllers that can be deployed from one setting fails at a specific
forward velocity v, the corresponding marker in the plot is shown translucent and connected
by dotted lines. From the outset, this is the case for all markers of the alt(5) settings since
only two agents finish the curriculum and thus only two learned controllers can be tested. It

@ Springer

S. Weyrer et al.

Table 6 Maximal values for N Value i Velocity v i 1
;0, 1(v) and 70,1 (v) when the two ame alue in m elocity v in ms
selected learned controllers are
used to do path following and controller 1 trained using the proposed settings
stabilization of the bicycle model maximal value for 7y 1 (v) 0.69 7
along. t,he benchmmk path. The maximal value for 7y 1 (v) 0.09 7
velocities at which the maximal ’
values occur are given controller 1 trained using the alt(3) settings
maximal value for 7g | (v) 0.58 7
maximal value for 7 | (v) 0.13 2.25

is seen that all of the controllers learned using the proposed and the alt(1-4) settings are able
to do path following and stabilization of the bicycle model along the randomly generated
paths over the entire speed range. Taken together, for the evaluation of the proposed and
alt(1-4) settings 525 simulated bicycle rides are made in total (21 velocities are tested with
the learned controllers resulting from the five runs for each of the five settings) and in all
525 bicycle rides the bicycle is controlled successfully. In other words, none of the agents
trained with the proposed and alt(1-4) settings results in a learned controller that fails in
solving the control task for the type of paths the agents are trained with.

5.3.3 Performance along the benchmark path

The bicycle model is again initialized in the reference configuration, with the rear wheel
contact point P standing at the starting point of the benchmark path, whose geometric prop-
erties are found in Fig. 5. The simulated bicycle rides along the benchmark path do not
have a time limit, but the simulations stop when the bicycle returns to the start point. Fig-
ure 10 shows that all of the controllers learned using the proposed settings manage to do
path following and stabilization of the bicycle model along the benchmark path over the
entire velocity range. The same applies for the controllers learned using the alt(3) settings,
where the distance d(Q, Pgy) with the front wheel contact point Q is used to compute the
reward. The distance T (v) when using the proposed settings is below 0.2 m over the entire
speed range. At 4.25 ms~! the distance T equals 0.08 m, being the smallest distance T (v)
for the proposed settings. It is found that at the lower end of the investigated velocity range,
T reads 0.19 m and at the upper end T equals 0.15 m. For each of the alt(1, 4) settings,
one learned controller does not succeed at 2 ms~'. Two controllers learned using the alt(2)
settings do not succeed at 2 ms~! and one learned controller using the alt(2) settings fails at
2.25 ms~!. This fact will be part of the closing discussion of the present work.

For each of the proposed and the alt(3) settings, one learned controller is now analyzed
in more detail. To select the best learned controller among the five controllers obtained from
the five runs under these two settings, the maximal distance #y(v) for each controller k
trained with these settings is computed. The value for f, (v) is maximal at a certain for-
ward velocity. The learned controller with the smallest maximal value for foyk(v) is selected.
Doing so, for the proposed settings and the alt(3) settings one learned controller, called
controller 1 (k= 1) is chosen each. In the bottom part of Fig. 10, the distance val-
ues 7y, 1(v) and fo.1(v) are plotted over the velocity when these two learned controllers are
used. Put plainly, the figure shows the performance of the controllers depending on the for-
ward velocity of the bicycle, with the mean distance to the benchmark path and the maximal
distance being given. Table 6 shows the maximal values of these two distances.

@ Springer

Path following and stabilization of a bicycle model using RL

—>— path
20.0 - —— Stanley by Huo et al.

= 175 4 RL-Stanley by Huo et al.
E ours (alt(3), k=1)
£ 15.0
=
g
oy 12.5 4 > 2 e~
E \/
'S 10.0
)

7.5 4

5.0 T T T T T T T

0 5 10 15 20 25 30 35 40
global x-position in m

Fig. 11 Extreme curvature test of the here presented approach, the Stanley controller, and the RL-Stanley
controller introduced in [23]. The front wheel contact points Q of the bicycles are tracked while the bicycle
models move at 4 m s~ 1. Note that in [23] a slightly different bicycle model is used than the one used in the
present work, as it does not adopt the benchmark model from [8], see Sect. 2.1, and the present work uses
preview points (Color figure online)

5.3.4 Performance under extreme curvature

The path shown in Fig. 11 represents a road intersection where the bicycle is supposed to
turn right coming from below. This extreme curvature task is used in [23] to test the Stan-
ley controller, but also the therein presented hybrid Stanley-RL approach, which is shortly
described in the introductory Sect. 1 of the present work.

In the following, controller 1 trained with the alt(3) settings is used to perform the
same task. The alt(3) settings were selected because, as in [23], the front wheel contact point
is shown in Fig. 11, substantiating choosing a controller learned using the Euclidean distance
d(Q, Pqo). It is seen that the bicycle model controlled solely by the Stanley controller devi-
ates from the desired path. Introducing an RL-based compensator improves path-following
performance clearly. However, the fully RL-based approach from the present work, incorpo-
rating preview points, CL, and various framework adaptations, shows a significantly smaller
deviation: While the Stanley-RL approach exhibits a maximum deviation of approximately
6 m, the method proposed in the present work remains within 2 m of the path.

Remember, that the agents have not seen the extreme curvature task during training, but
the learned controller still manages to do path following along the path while stabilizing
the bicycle model laterally. This fact will be part of the closing discussion of the present
work. However, it should be noted beforehand that the purpose of this comparison is not to
demonstrate that the purely RL based approach presented here is superior to other methods,
as the approaches differ substantially. For instance, the approach presented here utilizes
preview points, which is not the case for the method presented in [23], see also introductory
Sect. 1.

5.4 Bicycleride along the benchmark path in detail

In this section, a simulated bicycle ride along the benchmark path is analyzed in more detail,
with the controller 1 learned using the proposed settings controlling the bicycle model

traveling at 4 ms™!.

@ Springer

S. Weyrer et al.

Fig. 12 Roll angle ¢, steering
angle 8, and curvature « of the
path plotted over the first 200 m
of the benchmark path.
Controller 1 learned using
the proposed settings is used to
do path following and
stabilization of the bicycle
model. The bicycle model travels
at4 ms~!

angle in rad

- 0.10

-1

- 0.05

- 0.00

angle in rad

- -0.05

curvature in m

--0.10

T T T
0 50 100 150 200
arc length in m

In Fig. 12, the roll angle ¢, the steering angle §, and the (negated) curvature « of the
benchmark path are plotted over the first 200 m of the benchmark path. It is seen that the roll
angle ¢ of the bicycle model is proportional to the curvature « of the path. In the zoomed-in
area, it is seen that the steering angle § is permanently adjusted by the learned controller and
that § gets negative, that is steering to the right, prior to the left curved circle. Such a counter-
steering action is necessary to steer the bicycle in the desired direction [35], refer to Sect. 4.1.
Figure 13, Frame (a) also shows this counter-steering action done before the bicycle follows
the full circle. With the counter-steering, the roll angle ¢ gets negative. Along the full circle,
a negative roll angle ¢, induced by the prior counter-steering, is kept. The learned controller
sets the steering angle § positive, keeping the bicycle model upright by steering into the
direction of the undesired fall [9], see also introductory Sect. 1, and doing path following
along the circle. Frame (b) refers to a point where the curvature « changes the sign. Frame
(c) shows the bicycle traveling along the flat curve of the path. In Frame (d), the bicycle
enters the first polynomial transfer. Frames (e) and (f) show the bicycle traveling along the
so-called hard lane change. It is seen that the hard lane change is challenging to follow with
the bicycle traveling at 4 ms~!.

The supplementary material to the present work contains videos that show the con-
troller 1 learned using the proposed settings being used to do path following and sta-
bilization of the bicycle model along the benchmark path, but also along other paths and at
different forward velocities.

5.5 Explanation for the output of the learned controller

In Sect. 5.4, a simulated bicycle ride along the benchmark path using the controller 1
trained with the proposed settings is described in detail. During the slalom part of the bench-
mark path, the observation vector o is saved every time the learned controller interacts with
the environment so that observations are gained that equally represent the bicycle model
doing path following along left and right curves. Using these observations, characteristics
of the learned observation-action mapping are explained in this section using the SHapley
Additive exPlanations (SHAP) values.

@ Springer

Path following and stabilization of a bicycle model using RL

® (e)

—>— benchmark path

- === rear wheel contact

@ (®) ©

Fig. 13 Rear wheel contact point P tracked when the controller 1 learned using the proposed settings
is used to do path following and stabilization of the bicycle model along the benchmark path. Six different
frames (a)-(f) from the visualization of the multibody simulation are shown at specific points of the simulated
bicycle ride. The circles shown on the street illustrate the points Ppg, ..., Pps used to get the preview infor-
mation of the path, see Fig. 6. The bicycle model travels at 4 ms™

SHAP values are a measure for the feature importance, introduced in the work [39]. The
features are the elements in the input vector, being the elements of the observation vector o.
The permutation explainer, implemented in the eponymous Python package SHAP, is used
to compute the SHAP values. For each individual observation, being a saved observation
vector o, every feature can be assigned a SHAP value. A positive SHAP value of a feature
in an observation means that the feature positively influences the output of the learned con-
troller in that observation, while a negative SHAP value means that the feature negatively
influences the output. Remember that the output of the learned controller, i.e. the output of
the observation-action mapping, is the set value Js for the steering angle.

In Fig. 14, the importance of the features measured by the SHAP values is shown. The
features are ordered by their mean absolute SHAP value. The roll angle ¢ is the feature
having the greatest impact on the output of the learned controller. In the observations with a

5https://github.com/shap/shap (used version: 0.45.0).

@ Springer

https://github.com/shap/shap

S. Weyrer et al.

Fig. 14 Impact of the features on High
the output of a learned controller

measured by the SHAP values. L4 ° ‘*“M
Each dot represents a single
observation. The vertical

alignment of the dot indicates tpa M‘ g
whether the output is positively @ .o . . e ES
or negatively influenced by the

corresponding feature in the tpa “.

observation. The color of the dot

indicates whether the value of others -"

this feature is high or low in the , | , Low
observation (Color figure online) -1 0 1

impact on output (SHAP value)

positive roll angle ¢, the roll angle ¢ contributes negatively to the output. Thus, a positive
roll angle ¢ pulls the set value J, for the steering angle down and vice versa. The entry p3
of the preview vector tp is the second most important feature based on the mean absolute
SHAP values. Observations with a positive value for fp; negatively impact the output. The
same applies to #p, but in the observations this feature does not contribute that much to
the output of the learned controller as fp3. There are observations, in which the roll angular
velocity ¢ has a relatively high impact on the output. However, in most of the outputs, the
roll angular velocity ¢ is near to zero, not influencing the set value J for the steering angle.
The mean absolute SHAP value of #p4, which represents the preview point that is most ahead
of the bicycle, is smaller than that of the roll angular velocity ¢. The other features are taken
together as others, as they do not influence the output of the learned controller as much as
the other features do, according to the SHAP values. The fact that xy and yy describing the
yaw of the bicycle are part of others is in line with the finding that the yaw representation
does not influence the learning process, see Sect. 5.2, since the yaw does not influence the
output of the learned controller heavily.

6 Discussion

This section starts by discussing the different investigated settings for the RL framework.
Afterwards, the results shown for the performance of the learned controllers are debated.
Finally, the explanation for the outputs of a learned controller given by the SHAP values is
compared to already known mechanisms for controlling a bicycle.

In Sect. 5.2, it is shown that using a constant preview distance As or including the part
Py in the reward lowers the learning performance. On the former, we find that scaling As
with the forward velocity reduces the learning volume. The learned policy must, because
of using the Whipple bicycle, take the forward velocity into account to stabilize the bicycle
laterally. The scaling of the preview distance eliminates another speed-dependence of the
policy. What is striking at first is that the speed-dependence of the policy is not represented
by the SHAP values, see Fig. 14, since the front wheel rotation angular velocity 6F is clas-
sified into others. The reason for this is not the lack of speed-dependence in the policy, but
the way the SHAP values are computed. In the simulated bicycle ride used to obtain the ob-
servations for the explanation, the bicycle travels at a constant forward velocity of 4 ms™!,
see Sect. 5.5. Thus, the permutation explainer iterates over almost constant values for the
front wheel rotation angular velocity 6F with the output of the learned controller not chang-
ing within this iteration. Regarding the reward design, we discuss whether including the roll

@ Springer

Path following and stabilization of a bicycle model using RL

angle ¢ in a more sophisticated way than using the deviation from zero, see Equation (10),
would make the consideration of the part p, beneficial for the learning progress, i.e. using
the deviation from an optimal roll angle that must be computed for the current position of the
bicycle. We also think of using the roll angular velocity ¢ and a threshold 5 instead of the
roll angle ¢ and the roll angle threshold 7, in Equation (10). Initial tests with x; = x» =0.5
show that when using ¢ the learning improves in comparison to that with the alt(5) settings,
but is still worse than when only using p;.

In Sect. 5.3, it is shown that all controllers learned using the proposed and alt(1-4) set-
tings succeed along the type of paths that is used during the learning process. However,
individual learned controllers fail along the benchmark path at the lower end of the inves-
tigated range for the forward velocity. To explain this, we have a look at the bicycle rides
along the benchmark path and find that the individual learned controllers fail at two spe-
cific segments of the benchmark path, namely the full circle and the hard lane change. We
suspect that these two segments are not part of the learning process and therefore cause dif-
ficulties, which we want to demonstrate in the following. Due to the geometric properties
of the hard lane change, see Fig. 5, the hard lane change does not occur in the paths during
learning, see Table 4. To estimate the probability P of a full circle being part of a single
path during learning, it is assumed that for the bicycle traveling at 2 ms~! the path is 120 m
long, resulting from 7, that is specified in Sect. 4. In the first step, 10* paths are generated
at random using the reset procedure described in Sect. 4.1 and the initialization intervals
from the last part of the curriculum. Using the expected value for the uniformly distributed
angle @ of a circular element, a full circle is made out of approximately five consecutive
circular elements with the same curvature. In the randomly generated paths, 20 paths have
five circular elements in a row with the same curvature, resulting in P = 20/ 10* = 0.002
for the probability of a full circle. The two segments are therefore most likely neither part
of the learning process nor of the validation process, which, in combination with a low for-
ward velocity, leads to individual learned controllers failing. The speed-dependence is due
to the increasing difficulty of stabilizing the bicycle model as velocity decreases and the
real part of the Whipple bicycle’s eigenvalues increases [8]. On the one hand, the results for
the benchmark path show that segments that are not part of paths used during the learning
process can cause difficulties for the learned controllers, in particular at low forward veloc-
ities. On the other hand, the results show that most of the learned controllers have induced
a policy with which path following and stabilization of the bicycle model can be done at
all investigated forward velocities along a path that includes two segments that the agents
statistically have not seen during learning, indicating a form of generalization capabilities.
Looking, for example, at the controller 1 trained with the proposed settings, a max-
imal mean distance of 0.09 m is found along the benchmark path at 7 ms~!, being 9% of
the wheelbase of the bicycle model. We feel that this is very accurate, considering that the
benchmark path cannot be followed exactly due to the step-like curvature changes along
the path and the hard lane change that is challenging to follow especially at higher forward
velocities. The generalization capabilities are further supported by the fact that learned con-
trollers, we have tested controller 1 trained with the proposed and alt(3) settings, can
manage the extreme curvature test, see Sect. 5.3.4, which is not part of the learning process.

In Sect. 5.5, SHAP values are used to explain the output of a learned controller. For a
better understanding of this explanation, we discuss here a scenario in which the bicycle
model is traveling on a straight and is to turn left. At first, the elements of the preview vector
take on positive values. A combination of three of these elements, with #p3 being considered
the most, see Fig. 14, negatively influences the outputted set value for the steering angle.
Thus, the learned controller does not steer the bicycle to the left, but to the right. The learned

@ Springer

S. Weyrer et al.

controller does counter-steering, which is what we expect the agent to learn, as explained in
Sect. 4.1. With this counter-steering, the contact points P and Q move to the right, the roll
angle ¢ gets negative, and the bicycle starts to lean into the left turn. As the agent learns to
steer into the direction of the undesired fall, see introductory Sect. 1, a negative roll angle
¢ pulls the output of the learned controller up, which means that the handlebar is turned to
the left, as the bicycle leans to the left. The steering angle § gets positive and the leaned
bicycle follows the left turn. We find that the learned controller also respects the roll angular
velocity ¢, which is suspected, as some bicycle controllers use ¢ as controlled variable, see
for example the intuitive approach described in [27]. Taken together, in the learned controller
we find the two fundamental mechanisms of controlling bicycles considering the SHAP
values, that is, to steer into the direction of the undesired fall and to do counter-steering.

7 Conclusion

Before future research is addressed, the present work is concluded by five key statements:

e Itis demonstrated that a purely Reinforcement Learning (RL) based approach can be used
to do path following with the Whipple bicycle while simultaneously stabilizing it laterally.
No stabilization aids are needed. The agent learns to do path following and stabilization
of the bicycle model exclusively by setting the steering angle.

e It is shown that the RL approach works for a wide range of forward velocities and that a
speed-dependent policy is learned. The bicycle is presented as an example of RL being
successfully applied to a regime-dependent control problem.

e Curriculum learning as a training strategy is used to make the RL approach applicable for
the wide range of forward velocities and arbitrary paths.

e A learned controller resulting of an agent is presented, being able to steer the bicycle
model along a benchmark path with a maximum mean distance of 0.09 m over the entire
velocity range from 2 ms™! to 7 ms~!. The benchmark path consists of a full circle, a
slalom, curves, two lane changes, and straight elements.

e The explanation for the output of the learned controller shows that basic mechanisms for
controlling bicycles are learned. This builds a bridge to research in the field of bicycle
dynamics.

Future research might address the practical realization of an intelligent bicycle, where a
learned controller does path following and stabilization of the bicycle while its forward
velocity is set by the cyclist. Here, above all, the modeling of the bicycle must be refined in
order to facilitate the Sim-to-Real transfer, explained in the work [40] for RL in the field of
robotics. The adaptation of the model concerns not only the bicycle model itself, but also the
path on which the bicycle travels, being, for example, uneven. In addition, future work must
consider a way of obtaining the preview information of the path. Possible approaches might
be camera systems or the usage of mapped cycling routes. Furthermore, future academic
works can use the benchmark path shown in Fig. 5 to compare the performance of bicycle
controllers with the approach presented here or with one another.

Appendix A: Coordinates mappings for the whipple bicycle
In this section, it is shown how the output of a multibody simulation of the Whipple bicycle,

introduced in [25], can be mapped to the minimal coordinates of the bicycle model. After-
wards, the mapping from the bicycle’s minimal coordinates to the redundant coordinates

@ Springer

Path following and stabilization of a bicycle model using RL

Table 7 Notation and spatial transformations used for the coordinates mappings

Notation Description

0 zero matrix (or zero vector)

1 unity matrix

Krplp2 vector pointing from the point P; to the point P, with its coordinates formulated in the
K-frame

KMR rotation that rotates coordinates of vectors formulated in the M-frame into the K-frame:

K, — KMp . M,

KM homogeneous transformation that transforms coordinates of vectors formulated in the
M-frame into the K-frame

a skew symmetric matrix of the vector a; used to calculate the cross product c =a x b as
a matrix vector multiplication: c=2a-b

Rote («0) rotation by « around the unity vector e

Fig. 15 Whipple bicycle shown in the reference configuration, with characteristic geometric parameters and
coordinate systems that are needed for the coordinates mappings. Each coordinate system /C; is described by
its origin and unity vectors X;, y;, and z;

is described. The relation between the minimal coordinates and the redundant coordinates
on both the positional and velocity base of this non-holonomic system is shown in detail.
In Table 7, the notation used in this section is given. The reference frames and geometric
properties drawn in Fig. 15 are used in the following.

The global O-frame, the T;-frame, and the Tz-frame lie in the ground plane. The origin
of the latter two frames each lies in the contact point of the wheel and its z-axis points
towards the respective wheel hub. The R-, B-, H-, and F-frame are body-fixed frames of
the eponymous bodies with their origin each being located at the COM of the rigid body.
The R- and the F-frame are defined in such a way that their x-axes are the rotation axes
of the wheels. The B- and the H-frame can each be translated to two further points on the

@ Springer

S. Weyrer et al.

corresponding rigid body which is indicated with the subscript 1 and 2 for the rear body
and with 2 and 3 for the handlebar. Two reference frames are marked with a star. They are
obtained by rotating the B-frame by the negated frame angle « around its y-axis and the H-
frame by the negated steering axis tilt A around its y-axis. In the following mappings, also
the two wheel radii rg and r, the frame length d,, the fork length d,, and the fork offset d;
are used.

A.1 Mapping of redundant to minimal coordinates using sensors

A clear explanation of the minimal coordinates of the Whipple bicycle can be found in [8].
The specific minimal coordinates used in the present work are those described in the main
text of the article. To calculate the minimal coordinates, sensors are defined in the interface
of the multibody simulation code. One sensor measures the position of the contact point
P and thus provides the minimal coordinates xp and yp. Another sensor gives the rotation
matrix “®R describing the spatial orientation of the rear body in the global frame. Since the
global frame can be turned into the B-frame by performing a sequence of turns

%8R = Rot, (¥) - Roty (¢) - Roty (6g) , (A.1)

the yaw angle W and the roll angle ¢ can be computed using the equations given in [41].
The angle 65 is the pitch of the frame and not further needed for the mapping of redundant
to minimal coordinates. The steering angle §, the rear wheel rotation angle 6z, and the front
wheel rotation angle 6r are output variables of sensors measuring the corresponding revolute
joint angles. The roll angular velocity ¢ is the component of the rear body angular velocity
in the direction of the x-axis of the T;-frame. Thus, it can be written as the inner product

¢ = ("xr,, "ws), (A2)
where g is the output quantity of a sensor attached to the rear body. The x-axis OXTI is
known via a homogeneous transformation matrix reading
Rot, (¥) Or Rot, 0
OTIT: () op . (gﬂ)) (A3)
0 1 0 1
oc

The remaining two minimal coordinates, namely the steering angular velocity § and the front
wheel rotation angular velocity g are measured by sensors attached to the corresponding
revolute joint.

A.2 Mapping of minimal to redundant coordinates

In the following, it is shown how the redundant coordinates on positional and velocity base
of the four rigid bodies the Whipple bicycle consist of can be computed from the minimal
coordinates of the Whipple bicycle.

At first, four homogeneous transformation matrices are defined, representing the position
and orientation of the bodies. The pose of the rear body is given by

Rot, (9g) T'r, 1 Br
0B — 0Ty, |: yo(B) 11>1>1 :||:0 PlfCOM:|) (A4)

0B

@ Springer

Path following and stabilization of a bicycle model using RL

OTiT follows from equation (A.3). The pitch angle g satisfies the fact that the rear body
can pitch, which means that it can rotate around its y-axis. In [42], it is shown that an
analytical solution for 6 given the bicycle minimal coordinates exists. In [43], a geometric
way to derive a fourth degree polynomial in 6 is introduced. In Sect. C, a convenient way
using rotation matrices to get the polynomial in 8 and thus 6g is derived. The rear wheel is
represented with

or _ o8 p . | RO (3) 0| [Rot(®r) 0 . AS5)
0 1 0 1

The transformation °®1'T used therein results from Equation (A.4). Using Equation (A.4),

also the handle can be represented as follows:

OH _ OB, |:R0ty (=2) BrBCOMHCOM i| . [ROtz () 0i| . |:R0t)’ *) 0:| . (A.6)
0 1 0 1 0 1

The pose of the front wheel reads

Rot, (2) Hr Roty (0r) 0
OFp — OH |: 0(2) H(:10MP3 i| . |: o F 1] ’ (A7)

where “IT is taken from Equation (A.6).

Furthermore, the translational and angular velocities of the rigid bodies must be com-
puted, using the bicycle’s minimal coordinates. The following sequence of computations is
followed in the present work:

. angular velocity of B-frame
. angular velocity of H-frame
. angular velocity of F-frame
. translational velocity of F-frame

translational velocity of H-frame
translational velocity of B-frame
translational velocity of R-frame
angular velocity of R-frame.

AW =
®© N W

It is started with the angular velocity of the rear body, that reads

0 @
Swg=1|0 |+ TR | 65 | . (A.8)
N 0

In Sect. C, it is described how the pitch angular velocity 65 can be computed using rotation
matrices. The yaw angular velocity W results from

. 1
¥ = —sin(u; — ¥Y)v, (A.9)
w

where the forward velocity v of the bicycle is computed using the front wheel rotation
angular velocity éF and the radius rg of the front wheel: v =1 - ép. The wheelbase w of the
bicycle is computed using Equation (C.6). The angle 1 describes the direction of motion
of the front wheel contact point Q. Since the rotation matrix 'R is already known from
Equation (A.7), this angle can be calculated by taking

%R =Rot, (111) - Roty (112) - Roty (13) (A.10)

@ Springer

S. Weyrer et al.

into account, using the formulas shown in [41]. The angles w, and @3 are not needed. The
angular velocity of the handle is computed using the relative angular velocity between the
rear body and the handle which results exclusively from the revolute joint connecting the
rear body and the handle. It follows

0
Pwpy =Roty (=1) | 0 |, (A.11)
5

with A being the steering axis tilt. Finally, for the handle applies

‘wy =""R (Pop + Pwpy) . (A.12)
The same procedure is used to get the angular velocity of the front wheel

wr =""R (Mo + "our) . (A.13)

where the relative angular velocity between the handle and the wheel results from the front
wheel hub and reads

Howe =[0 6¢ 0] . (A.14)

The translational velocity of the front wheel follows with Euler’s first theorem for kinematics
to

OVF = OVH3 = OVT3 =+ OZ)T3 OI'QP3 . (AIS)

The therein used velocity of the front wheel contact point Q, that is ®vr,, is computed using
the angle 11, and the bicycle’s forward velocity v.

COS 41
Ovp, = v | sinuy (A.16)

0

Remember that v is computed using the front wheel rotation angular velocity 6. The angular
velocity of the T3-frame needed for Equation (A.15) results from that of the front wheel, but
without its rotation angular velocity:

0
Swr, =R | Rwp + | —6: | | . (A.17)
0
Now, v can be computed and it is continued with the velocity of the handle, reading

0 0 0~ 0
VH = VH; + “wy I'pi;Heom - (AIS)

With the translational velocity of the bicycle’s head

0 0 0 0% 0
VB, = VH, = VH + @H THcoyP; » (A.19)

@ Springer

Path following and stabilization of a bicycle model using RL

the one of the rear body follows to
Ovg =vg, + @ re,Beoy - (A.20)
The translational velocity of the rear wheel reads
Ovg ="vg, ="vg + g OrBCOMPl . (A2D)
Finally, the angular velocity of the rear wheel can be expressed by
‘wr =R (Pwp +Pogr) . (A22)

The relative angular velocity between the rear body and the rear wheel results from the rear
wheel hub. It is denoted as

BwBR = [0 éR O]T . (A23)

Since the therein used rear wheel rotation angular velocity is not an element of the minimal
coordinates of the bicycle, it must be computed. Using the angular velocity of the T;-frame
that reads

0
Tor, =TR%p + | —63 |, (A24)
0

the translational velocity of it in its own frame can be computed as shown below.
Tiye, =Tvg +T1%r, Trp,p (A.25)

Only the x-component of this vector is different from zero, which results from the fact
that the wheels are slip free to the side. Consequently, the absolute velocity of the rear
contact point P reads vy, = [l 0 0] - Ttyr,. The velocity vr, only results from the rear
wheel rotational angular velocity Or. Thus, the rear wheel rotation angular velocity can be
computed with

. v

O = —L (A.26)

IR

where the radius rg of the rear wheel is used. This completes the mapping from the minimal
to the redundant coordinates.

Appendix B: Threshold value for the steering angle of the whipple
bicycle and step response of the steering angle

In this section, a threshold value for the steering angle § of the Whipple bicycle is defined.
The threshold value is used to define a range in which the set value §g for the steering angle
the agent can output must be. With this threshold value, the step response of the steering
angle § is shown, which may be used to design controllers for the bicycle model, such as a
PD controller mapping a set value J, for the steering angle to a steering torque.

@ Springer

S. Weyrer et al.

Table 8 Tabular representation

of the dependency between the Roll angle ¢ Steering angle § Angle p
roll angle ¢, the steering angle 8,
and the direction of motion pj of ~ 0° 0° 0°
the front wheel contact point Q 0° 60° 58.8°
of the Whipple bicycle. The 0° 70° 69.11°
minimal coordinates except of ¢ ’
and 6 of the Whipple bicycle are _45° 0° 0°
zeroed
—45° 60° 81.66°
—45° 70° 92.16°
45° 0° 0°
45° —60° —81.66°
45° —70° —92.16°

As a result of the tilted steering axis and the fork offset of the Whipple bicycle, the direc-
tion of motion of the front wheel contact point Q relative to the T;-frame is not equal to the
steering angle § of the Whipple bicycle, see Table 8. In the table, it can be seen that the direc-
tion of motion of the front wheel contact point, given by the angle 11, deviates significantly
from the steering angle §, especially in configurations of the Whipple bicycle where [¢| > 0
applies. The angle w; is computed using Equation (A.10). Since the magnitude of the roll
angle of the bicycle model in the present work should not exceed the threshold 5, = 45°
and the direction of motion of the front wheel contact point Q must not exceed £90°, a limit
for the steering angle § can be defined. It is assumed that limiting the steering angle 6 to an
value of £70° is sufficient (although || slightly exceeds 90° when the bicycle is rolled by
|¢| = 45°). Consequently, the set value 8 the agent can output for the steering angle must
be in the interval of —70° to 70°.

The step response of the steering angle § is used to determine the two parameters P
and D of a PD controller that gives the torque t that is imprinted between the rear body
and the fork of the bicycle model. To get the step response, the stationary bicycle model is
simulated when the set value 8 for the steering angle follows

0° <0
Sser(1) = {700 (>0 (B.1)

For this particular simulation, the gravitational acceleration is zeroed so that the bicycle
does not fall over. In Fig. 16, the step response of the steering angle § is shown. It is defined
that the two parameters P and D should be set in a way so that the maximal value of the
step response does not overshoot the set value by more than 10%. By setting P =9 Nm and
D = 1.6 Nms the specified criterion is fulfilled.

Appendix C: Pitch angle and pitch angular velocity of the whipple
bicycle with rotation matrices

In the following, a way to compute the pitch angle 05 of the Whipple bicycle’s rear body us-
ing rotation matrices is shown, when the minimal coordinates of the bicycle model are given.
The notation and reference frames that are used in Sect. A are also used in the following.

@ Springer

Path following and stabilization of a bicycle model using RL

Fig. 16 Step response of the 1.50

steering angle § with the bicycle | ________

being stationary when the set D R

value §get for the steering angle

follows the function shown. To = 1.00 1

obtain the step response, the Z

gravitational acceleration is 3 0.75 1

zeroed. The defined maximal 2

permissible value dmax for the = 0.50 1 —

step response is also shown o544+ /L Oset,

_____ 6max

0.00 T T T T T

T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time in s

It is started by getting the z-axis “zr, from the T, -frame formulated in the global O-frame.
This vector is the last column of the rotation matrix
OTiR =Rot, (¥) - Rot, () . (C.1)
To rotate the O-frame into the B*-frame, the rotation matrix

"R =TIR . Rot, () -Rot, (—a) (C.2)
—_——

OBR

is used, with the pitch angle 6 being unknown. The x-axis *xp-« is the first column of this
matrix. The rotation matrix for the H*-frame follows

OH'R = BR . Rot, (—1) - Rot, (). (C3)

BH*R

The axes xy+, *yu+, and z» are the columns of this matrix. As shown in [43], it is possible
to calculate a unity vector h that points from the front wheel hub in the direction of Q by
performing two steps:

0 0 of
f=—10|[+]%m-|0]], 0 = (C.4)
1 1
A vector pointing from P to Q can be computed by
Ol'pQ = I'ROZT] + dIOXB* — d20ZH* + d3OXH* + rFOh . (CS)

Here, 1R, 1%, di, d, and d3 are bicycle geometries independent of the bicycle’s configuration.
The wheelbase w of the Whipple bicycle in its current configuration reads

w = |rpo] . (C.6)

Setting the constraint that both wheels each touch the ground at one point leads to a scalar
equation reading

‘rpo[0 0 1] =0. (C.7)

@ Springer

S. Weyrer et al.

If the bicycle’s minimal coordinates are given, the only unknown in this equation is the
pitch angle 8. Consequently, a calculation of it with Newton’s method with the initial guess
0g = 0 [43] is possible.

A function for the pitch angular velocity 6g of the shape g g, 9,6, 9, S) can be gained
by deriving Equation (C.7) with respect to time. Thus, also the pitch angular velocity 65 is
known.

Supplementary information The online version contains supplementary material available at https://doi.org/
10.1007/s11044-026-10144-x.

Acknowledgements The computational results presented here have been achieved partly using the LEO HPC
infrastructure of the University of Innsbruck.

Author contributions S.W.: formal analysis, data curation, investigation, methodology, software, validation,
visualization, and writing of the original draft. P.M.: methodology, software, data curation, formal analysis,
and conceptualization. A.S.: Formal analysis, conceptualization, and writing of original draft. J.G.: concep-
tualization, methodology, project administration, and supervision. All authors reviewed and approved the
manuscript.

Funding information Open access funding provided by University of Innsbruck and Medical University of
Innsbruck.

Data availability The data that support the findings of this study are available from the corresponding author,
Johannes Gerstmayr, upon reasonable request.

Preprint An early stage version of this work has been uploaded as a preprint to arXiv, available at https://doi.
org/10.48550/arXiv.2407.17156.

Declarations

Competing interests Non-financial interests: Johannes Gerstmayr and A. L. Schwab are members of the
Editorial Advisory Board of Multibody System Dynamics.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Choi, H.-S., An, J., Han, S., Kim, J.-G., Jung, J.-Y., Choi, J., Orzechowski, G., Mikkola, A., Choi,
J.H.: Data-driven simulation for general-purpose multibody dynamics using Deep Neural Networks.
Multibody Syst. Dyn. 51, 419-454 (2021). https://doi.org/10.1007/s11044-020-09772-8

2. Gerstmayr, J., Manzl, P., Pieber, M.: Multibody models generated from natural language. Multibody
Syst. Dyn. 62, 249-271 (2024). https://doi.org/10.1007/s11044-023-09962-0

3. Hashemi, A., Orzechowski, G., Mikkola, A., McPhee, J.: Multibody dynamics and control using machine
learning. Multibody Syst. Dyn. 58, 397-431 (2023). https://doi.org/10.1007/s11044-023-09884-x

4. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (2020).
http://incompleteideas.net/book/the-book-2nd.html

5. Zai, A., Brown, B.: Deep Reinforcement Learning in Action. Manning Publications, Shelter Island
(2020)

@ Springer

https://doi.org/10.1007/s11044-026-10144-x
https://doi.org/10.1007/s11044-026-10144-x
https://doi.org/10.48550/arXiv.2407.17156
https://doi.org/10.48550/arXiv.2407.17156
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11044-020-09772-8
https://doi.org/10.1007/s11044-023-09962-0
https://doi.org/10.1007/s11044-023-09884-x
http://incompleteideas.net/book/the-book-2nd.html

Path following and stabilization of a bicycle model using RL

10.

11.

12.

13.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.
26.

27.

. Sutton, R.S., Barto, A.G., Williams, R.J.: Reinforcement learning is direct adaptive optimal control.

IEEE Control Syst. Mag. 12 (1992). https://doi.org/10.1109/37.126844

. Hanakam, Y.: Querstabilisierung elektrisch unterstiitzter Fahrridder bei niedrigen Geschwindigkeiten.

Ph.D. thesis, Universitit Rostock (2023)

. Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.L.: Linearized dynamics equations for the

balance and steer of a bicycle: a benchmark and review. Proc. Royal Soc. A 463, 1955-1982 (2007).
https://doi.org/10.1098/rspa.2007.1857

. Kooijman, J.D.G., Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.L.: A bicycle can be self-

stable without gyroscopic or caster effects. Science 332(6027), 339-342 (2011). https://doi.org/10.1126/
science.1201959

Schwab, A.L., Meijaard, J.P.: A review on bicycle dynamics and rider control. Veh. Syst. Dyn. 51,
1059-1090 (2013). https://doi.org/10.1080/00423114.2013.793365

Yin, S., Yamakita, M.: Passive velocity field control approach to bicycle robot path following. In:
2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE),
pp. 1654-1659 (2016). https://doi.org/10.1109/SICE.2016.7749208

Turnwald, A., Schifer, M., Liu, S.: Passivity-based trajectory tracking control for an autonomous bicycle.
In: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, pp. 2607-2612
(2018). https://doi.org/10.1109/IECON.2018.8591382

Shafiei, M.H., Emami, M.: Design of a robust path tracking controller for an unmanned bicycle with
guaranteed stability of roll dynamics. Syst. Sci. Control Eng. 7(1), 12-19 (2019). https://doi.org/10.
1080/21642583.2018.1555062

. Seekhao, P., Tungpimolrut, K., Parnichkun, M.: Development and control of a bicycle robot based on

steering and pendulum balancing. Mechatronics 69 (2020). https://doi.org/10.1016/j.mechatronics.2020.
102386

Persson, N., Ekstrom, M.C., Ekstrom, M., Papadopoulos, A.V.: Trajectory tracking and stabilisation of
a riderless bicycle. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC),
pp. 1859-1866 (2021). https://doi.org/10.1109/ITSC48978.2021.9564958

He, K., Deng, Y., Wang, G., Sun, X., Sun, Y., Chen, Z.: Learning-based trajectory tracking and balance
control for bicycle robots with a pendulum: a Gaussian process approach. IEEE/ASME Trans. Mecha-
tron. 27(2), 634-644 (2022). https://doi.org/10.1109/TMECH.2022.3140885

Randlov, J., Alstrgm, P.: Learning to drive a bicycle using reinforcement learning and shaping. In: Pro-
ceedings of the Fifteenth International Conference on Machine Learning. ICML’98, pp. 463—471. Asso-
ciation for Computing Machinery (1998)

Le, T.P,, Chung, T.: Controlling bicycle using deep deterministic policy gradient algorithm. In: 2017 14th
International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 413-417 (2017).
https://doi.org/10.1109/URAIL2017.7992765

. Le, T.P, Choi, S., Nguyen, Q.D., Layek, M.A., Lee, S., Chung, T.: Toward self-driving bicycles using

state-of-the-art deep reinforcement learning algorithms. Symmetry 11(2) (2019). https://doi.org/10.3390/
sym11020290

Cook, M.: It takes two neurons to ride a bicycle. In: Advances in Neural Information Processing Systems
17 (NIPS 2014) (demo) (2004). https://paradise.caltech.edu/cook/papers/TwoNeurons.pdf

Zhu, X., Zheng, X., Zhang, Q., Chen, Z., Liu, Y., Liang, B.: Natural residual reinforcement learning
for bicycle robot control. In: 2021 IEEE International Conference on Mechatronics and Automation
(ICMA), pp. 1201-1206 (2021). https://doi.org/10.1109/ICMA52036.2021.9512587

Zhu, X., Deng, Y., Zheng, X., Zheng, Q., Chen, Z., Liang, B., Liu, Y.: Online series-parallel
reinforcement-learning-based balancing control for reaction wheel bicycle robots on a curved pavement.
IEEE Access 11, 66756-66766 (2023). https://doi.org/10.1109/ACCESS.2023.3268524

Huo, B., Yu, L., Liu, Y., Chen, Z.: Hierarchical residual reinforcement learning based path tracking
control method for unmanned bicycle. Robot. Auton. Syst. 190, 104996 (2025). https://doi.org/10.1016/
j.robot.2025.104996

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny,
M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C.,
Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., Niekerk, J., Jensen, E., Alessandrini, P., Bradski,
G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: the robot that won the DARPA
grand challenge. J. Field Robot. 23(9), 661-692 (2006). https://doi.org/10.1002/rob.20147

Whipple, F.J.: The stability of the motion of a bicycle. Q. J. Pure Appl. Math. 30(120), 312-348 (1899)
Xiong, J., Wang, N., Liu, C.: Stability analysis for the Whipple bicycle dynamics. Multibody Syst. Dyn.
48, 311-335 (2020). https://doi.org/10.1007/s11044-019-09707-y

Schwab, A.L., Kooijman, J.D.G., Meijaard, J.P.: Some recent developments in bicycle dynamics and
control. In: Fourth European Conference on Structural Control (4ECSC) (2008). http://bicycle.tudelft.nl/
schwab/Publications/SchwabKooijmanMeijaard2008.pdf

@ Springer

https://doi.org/10.1109/37.126844
https://doi.org/10.1098/rspa.2007.1857
https://doi.org/10.1126/science.1201959
https://doi.org/10.1126/science.1201959
https://doi.org/10.1080/00423114.2013.793365
https://doi.org/10.1109/SICE.2016.7749208
https://doi.org/10.1109/IECON.2018.8591382
https://doi.org/10.1080/21642583.2018.1555062
https://doi.org/10.1080/21642583.2018.1555062
https://doi.org/10.1016/j.mechatronics.2020.102386
https://doi.org/10.1016/j.mechatronics.2020.102386
https://doi.org/10.1109/ITSC48978.2021.9564958
https://doi.org/10.1109/TMECH.2022.3140885
https://doi.org/10.1109/URAI.2017.7992765
https://doi.org/10.3390/sym11020290
https://doi.org/10.3390/sym11020290
https://paradise.caltech.edu/cook/papers/TwoNeurons.pdf
https://doi.org/10.1109/ICMA52036.2021.9512587
https://doi.org/10.1109/ACCESS.2023.3268524
https://doi.org/10.1016/j.robot.2025.104996
https://doi.org/10.1016/j.robot.2025.104996
https://doi.org/10.1002/rob.20147
https://doi.org/10.1007/s11044-019-09707-y
http://bicycle.tudelft.nl/schwab/Publications/SchwabKooijmanMeijaard2008.pdf
http://bicycle.tudelft.nl/schwab/Publications/SchwabKooijmanMeijaard2008.pdf

S. Weyrer et al.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Zwolfer, A., Gerstmayr, J.: A concise nodal-based derivation of the floating frame of reference formula-
tion for displacement-based solid finite elements. Multibody Syst. Dyn. 49, 291-313 (2020). https://doi.
org/10.1007/s11044-019-09716-x

Bauchau, O.A., Rodriguez, J.: Modeling of joints with clearance in flexible multibody systems. Int. J.
Solids Struct. 39(1), 41-63 (2002). https://doi.org/10.1016/S0020-7683(01)00186-X

Achiam, J.: Spinning up in Deep Reinforcement Learning (2018)

Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor (2018). arXiv preprint. https://doi.org/10.48550/arXiv.
1801.01290

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-Baselines3: reliable
reinforcement learning implementations. J. Mach. Learn. Res. 22(268), 1-8 (2021)

Gerstmayr, J.: Exudyn — a C++ based Python package for flexible multibody systems. Multibody Syst.
Dyn. 60, 533-561 (2023). https://doi.org/10.1007/s11044-023-09937-1

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: OpenAl
Gym (2016). arXiv preprint. https://doi.org/10.48550/arXiv.1606.01540

Astrom, K.J., Klein, R.E., Lennartsson, A.: Bicycle dynamics and control: adapted bicycles for edu-
cation and research. IEEE Control Syst. Mag. 25(4), 26—47 (2005). https://doi.org/10.1109/MCS.2005.
1499389

Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th
Annual International Conference on Machine Learning. ICML’09, pp. 4148 (2009). https://doi.org/10.
1145/1553374.1553380

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K.: Asyn-
chronous methods for deep reinforcement learning. In: Proceedings of the 33rd International Conference
on Machine Learning, pp. 1928-1937 (2016). https://doi.org/10.48550/arXiv.1602.01783

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy Optimization Algo-
rithms (2017). arXiv preprint. https://doi.org/10.48550/arXiv.1707.06347

Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Infor-
mation Processing Systems 30 (NIPS 2017), vol. 30 (2017). https://papers.nips.cc/paper/7062-a-unified-
approach-to-interpreting-model-predictions

Zhao, W., Queralta, J.P., Westerlund, T.: Sim-to-real transfer in deep reinforcement learning for robotics:
a survey. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 737-744 (2020).
https://doi.org/10.1109/SSCI47803.2020.9308468

Henderson, D.M.: Euler angles, quaternions, and transformation matrices for space shuttle analysis.
Techreport, NASA (1977). https://ntrs.nasa.gov/citations/19770019231

Psiaki, M.L.: Bicycle Stability: a Mathematical and Numerical Analysis. Bachelor thesis, Princeton Uni-
versity (1979). http://ruina.tam.cornell.edu/research/topics/bicycle_mechanics/Psiaki_Princeton_thesis.
pdf

Peterson, D., Hubbard, M.: Analysis of the holonomic constraint in the Whipple bicycle model. In:
Estivalet, M., Brisson, P. (eds.) The Engineering of Sport 7, vol. 2 (2008). https://doi.org/10.1007/978-
2-287-99056-4_75

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1007/s11044-019-09716-x
https://doi.org/10.1007/s11044-019-09716-x
https://doi.org/10.1016/S0020-7683(01)00186-X
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.1007/s11044-023-09937-1
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.1109/MCS.2005.1499389
https://doi.org/10.1109/MCS.2005.1499389
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.48550/arXiv.1602.01783
https://doi.org/10.48550/arXiv.1707.06347
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
https://doi.org/10.1109/SSCI47803.2020.9308468
https://ntrs.nasa.gov/citations/19770019231
http://ruina.tam.cornell.edu/research/topics/bicycle_mechanics/Psiaki_Princeton_thesis.pdf
http://ruina.tam.cornell.edu/research/topics/bicycle_mechanics/Psiaki_Princeton_thesis.pdf
https://doi.org/10.1007/978-2-287-99056-4_75
https://doi.org/10.1007/978-2-287-99056-4_75

	Path following and stabilization of a bicycle model using a reinforcement learning approach
	Abstract
	Introduction
	Bicycle model and associated preparatory work
	Characteristics
	Minimal coordinates
	Coordinates mappings
	Model of the steering drive

	Reinforcement learning framework
	Environment
	Observation
	Reward
	Action

	Learning process with curriculum learning
	Resetting the environment
	Validation during the learning process
	Curriculum learning

	Results
	Investigated settings for the RL framework
	Learning process
	Performance of the learned controllers
	Controller selection and performance measure
	Performance along randomly generated paths
	Performance along the benchmark path
	Performance under extreme curvature

	Bicycle ride along the benchmark path in detail
	Explanation for the output of the learned controller

	Discussion
	Conclusion
	Appendix A: Coordinates mappings for the whipple bicycle
	Mapping of redundant to minimal coordinates using sensors
	Mapping of minimal to redundant coordinates

	Appendix B: Threshold value for the steering angle of the whipple bicycle and step re- sponse of the steering angle
	Appendix C: Pitch angle and pitch angular velocity of the whipple bicycle with rotation matrices
	References

