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Ensemble-Based Multiobjective
Optimization of On/Off Control Devices

Under Geological Uncertainty
R.-M. Fonseca, Delft University of Technology; O. Leeuwenburgh, TNO; E. Della Rossa, Eni;

P. M. J. Van den Hof, Eindhoven University of Technology, and J.-D. Jansen, Delft University of Technology

Summary

We consider robust ensemble-based (EnOpt) multiobjective pro-
duction optimization of on/off inflow-control devices (ICDs) for a
sector model inspired by a real-field case. The use of on/off valves
as optimization variables leads to a discrete control problem. We
propose a reparameterization of such discrete controls in terms of
switching times (i.e., we optimize the time at which a particular
valve is either open or closed). This transforms the discrete con-
trol problem into a continuous control problem that can be effi-
ciently handled with the EnOpt method. In addition, this leads to
a significant reduction in the number of controls that is expected
to be beneficial for gradient quality when using approximate gra-
dients. We consider an ensemble of sector models where the
uncertainty is described by different permeability, porosity, net/
gross ratios, and initial water-saturation fields. The controls are
the ICD settings over time in the three horizontal injection wells,
with approximately 15 ICDs per well. Different optimized strat-
egies resulting from different initial strategies were compared.
We achieved a mean 4.2% increase in expected net present value
(NPV) at a 10% discount rate compared with a traditional pres-
sure-maintenance strategy. Next, we performed a sequential bio-
bjective optimization and achieved an increase of 9.2% in the
secondary objective (25% discounted NPV to emphasize short-
term production gains) for a minimal decrease of 1% in the pri-
mary objective (0% discounted NPV to emphasize long-term re-
covery gains), as averaged over the 100 geological realizations.
The work flow was repeated for alternative numbers of ICDs,
showing that having fewer control options lowers the expected
value for this particular case. The results demonstrate that ensem-
ble-based optimization work flows are able to produce improved
robust recovery strategies for realistic field-sector models against
acceptable computational cost.

Introduction

Recently, there has been an increased focus on the application of
different model-based optimization techniques for optimal control
to achieve improved reservoir-management strategies. Most of
these studies have used relatively simple models, whereas a lim-
ited number of studies such as Bailey et al. (2005), Sarma et al.
(2008), Alhuthali et al. (2009), Chaudhri et al. (2009), Forouzan-
far et al. (2013), van Essen et al. (2010), and Raniolo et al. (2013)
have used realistic field-scale or sector models. Most of the stud-
ies that use realistic real field models concerned single-objective
optimization on a single geological realization, with the exception
of Alhuthali et al. (2009) and Raniolo et al. (2013), who per-
formed single-objective optimization by use of an ensemble of ge-
ological realizations. In the present study we use a sector model
inspired from a real field case.

There are two reasons for suboptimality of strategies resulting
from the use of a single-objective, single-model optimization.

First, the geomodeling process used to create the dynamic models
is fraught with uncertainties in data and interpretations. Because
the true geological description of a reservoir is never known with
certainty, it is imperative to include geological uncertainty within
the optimization framework. Second, strategies resulting from a
single (long-term) objective are often in conflict with short-term
objectives. The short-term objectives (on a time scale of days to
months) are driven by operational criteria, facility constraints,
production-sharing contracts, and so forth. Thus, including the
short-term goals within the optimized operational strategy is also
important to correct for compromises made during the single-
objective (long-term) optimization. Finding strategies that account
for multiple objectives may achieve solutions that are more ac-
ceptable to a decision maker.

Jansen et al. (2009), among others, have shown that signifi-
cantly different operational strategies can lead to very-similar
objective-function values, which was reasoned to be the result of
the ill-posedness of the problem resulting in nonuniqueness of the
solution. A similar nonuniqueness in minimizing the mismatch
between measured and simulated data during computer-assisted
history matching was demonstrated by Oliver et al. (2008). van
Essen et al. (2011) proposed a hierarchical framework to exploit
these redundant degrees of freedom in the control space to solve a
multiobjective optimization problem. One of the approaches they
introduced uses a switching function to optimize multiple objec-
tives, which will be used in this study.

Yeten et al. (2003) described an approach to account for geo-
logical uncertainty during well-location optimization with the aid
of multiple models. van Essen et al. (2009, 2011) used the adjoint
formulation for gradient-based optimization while incorporating
geological uncertainty into the optimization framework; Jansen
(2011) provides an overview of the adjoint formulation and fur-
ther references. The adjoint approach is computationally very effi-
cient, because it requires only one forward and one adjoint
simulation to compute the gradient, irrespective of the number of
controls. However, implementation of the adjoint formulation is
tedious and requires access to the simulation source code, which
is the method’s biggest drawback because this is not possible
when working with commercial simulators. To overcome this dif-
ficulty, there has been an increase in the application of stochastic
gradient-based techniques. One such stochastic technique, ensem-
ble-based optimization (EnOpt), introduced by Chen et al. (2009),
has proved to be a good practical alternative to the adjoint
because it is relatively easy to implement and is independent of
the reservoir simulator, albeit computationally inferior. Chen
(2008) and Chen and Oliver (2010), starting from certain theoreti-
cal assumptions, proposed a framework for robust optimization
with EnOpt that is computationally attractive. Chen et al. (2009)
reported a successful application of this approach to the SPE
Brugge benchmark case, whereas Raniolo et al. (2013) and Li
et al. (2012) have investigated the applicability of approximate
gradient techniques for life-cycle robust waterflooding optimiza-
tion. Recently, Fonseca et al. (2014) suggested a modified robust
gradient formulation and also investigated the applicability of
EnOpt for robust multiobjective optimization on a synthetic test
case. They showed that EnOpt is a computationally competitive
alternative when the adjoint is unavailable, especially for robust
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optimization. In Appendix A we give an overview of the essential
theory of EnOpt as used in our study.

In this study we optimize the settings of on/off inflow-control
devices—sometimes also referred to as inflow-control valves—
which have discrete open or closed settings, as represented by the
numerical values of 1 and 0, respectively. However, EnOpt, like
other gradient-based techniques, cannot efficiently handle discrete
control problems. Thus, we use a reparameterization of the con-
trols into switching times, which will be discussed in detail in this
study. By use of this technique, we investigate the applicability of
an ensemble-based robust hierarchical multiobjective optimiza-
tion framework to optimize an ensemble of sector models inspired
from a real field case. The uncertainty in the ensemble of sector
models is characterized by differing permeability, porosity, net/
gross ratios, and initial water saturation fields.

Theory

In this work we have chosen to use an approximate gradient
method, ensemble-based optimization (EnOpt), for the optimiza-
tion instead of a derivative-free technique because the computa-
tional costs for derivative-free methods are usually higher. For
our example, which incorporates geological uncertainty in the
form of 100 realistic reservoir models, a derivative-free tech-
nique would be computationally extremely challenging. In addi-
tion, in our limited experience, approximate gradient techniques
usually have fewer tuning parameters compared with derivative-
free methods.

Objective Function. The objective function is the usual expres-
sion for (simple) net present value as used in life-cycle optimiza-
tion studies. It is defined as

J ¼
XK

k¼1

½ðqo;kÞ � ro � ðqwp;kÞ � rwp� � ½ðqwi;kÞ � rwi�
� �

� Dtk

ð1þ bÞ
tk=st

0
@

1
A;

� � � � � � � � � � � � � � � � � � � ð1Þ

where qo,k is the oil-production rate in bbl/day, qwp,k is the water-
production rate in bbl/day, qwi,k is the water-injection rate in
bbl/day, ro is the price of oil produced in USD/bbl, rwp is the cost of
water produced in USD/bbl, rwi is the cost of water injected in USD/
bbl, Dtk is the difference between consecutive timesteps in days, b is
the discount rate expressed as a fraction per year, tk is the cumula-
tive time in days corresponding to timestep k, and st is the reference
time period for discounting, typically 1 year (365.24 days), which is
in line with common oil-industry project-economics practices.

Update Rules. The EnOpt methodology results in an approxi-
mate gradient g of the objective function J with respect to a vector
of controls u. This approximate gradient, as computed from Eq.
A-11, can be used in any gradient-based optimization algorithm.
In our study we used a simple steepest ascent scheme:

u‘þ1 ¼ u‘ þ a‘g‘; ð2Þ

where the superscript ‘ is the iteration counter, and a‘ is a step
length in the direction of the gradient. Note that if u and g both con-
tain elements with different dimensions (e.g., when the elements of
u are pressures and rates), an additional scaling of the gradient ele-
ments may be required. We scaled the gradient by its infinity norm
and then for each iteration used an initial step size a¼ 1. There-
after, we allowed for a maximum of three back-tracking steps, each
time reducing the step size with a factor of one-half.

Robust Ensemble Optimization. Geological modeling and inter-
pretation is an inherently uncertain process. Incorporating these
uncertainties into the optimization framework reduces the uncer-
tainty involved with the optimization (Yeten et al. 2003). van
Essen et al. (2009) provide a list of references of nonpetroleum
engineering applications that incorporated uncertainty within the
modeling-and-control framework. From these, they imported the

terminology “robust optimization” into the petroleum literature
(i.e., optimization over an ensemble of geological realizations that
represents the geological uncertainty). In an example they showed
that this technique increased the expected value and reduced the
variance of the optimized strategy applied to the different geologi-
cal realizations in comparison with a reactive strategy. van Essen
et al. (2009) reported significant improvements in the expected
objective-function values by use of adjoint-based optimization.
Thereafter, Chen et al. (2012) performed robust optimization by
use of the adjoint formulation to solve a multiobjective optimiza-
tion problem. A robust version of EnOpt was introduced by Chen
(2008) and Chen and Oliver (2010), wherein they use two ensem-
bles, one of controls and another of geological models, which
consist of M members each. Intuitively in such a scenario we
would require M2 function evaluations for a gradient estimate,
which is computationally not attractive. Thus, to make the method
computationally more efficient, Chen (2008) provided an argu-
mentation for the possibility of evaluating only M samples to ap-
proximate the robust EnOpt gradient. Thus, to estimate a “robust
gradient,” Chen (2008) coupled one member from the control en-
semble with one member of the geological ensemble in a 1:1 ra-
tio, which will be referred to as the “original formulation” in this
study. Recently, there has been an increase in the application and
understanding of the ensemble-based robust gradient estimate,
which is briefly discussed in Appendix A.

Multiobjective Optimization. Most real-world problems have
multiple objectives that need to be satisfied. Usually these objec-
tives are in conflict with each other, and one must accept
decreases in one objective to achieve increases in another objec-
tive. In theory, there exist many methods to solve a multiobjective
problem and recently there has been an increased focus on finding
methods to solve multiobjective problems in the reservoir-simula-
tion community. These objectives are usually defined as long-
term (life-cycle) objectives from a reservoir-engineering view-
point and short-term objectives from a production-engineering/
operational-constraints viewpoint. van Essen et al. (2009) showed
that these two objectives are in conflict with each other and sug-
gested the use of a hierarchical framework for multiobjective opti-
mization. In this study we use the hierarchical-switching method
with EnOpt for the optimization. Details of the implementation
are given in Fonseca et al. (2014). This switching method opti-
mizes the objectives alternatingly and stays within a maximum-
allowed very-small decrease e in the primary objective. An alter-
native to hierarchical biobjective optimization (in which the pri-
mary objective is considered much more important than the
secondary objective) is regular biobjective optimization, in which
there is no predefined preference for one of the objectives. Isebor
and Durlofsky (2014) and Liu and Reynolds (2014) have intro-
duced methodologies to plot the “Pareto front” for a regular
biobjective reservoir-optimization problem (i.e., a set of objec-
tive-function pairs corresponding to optimal controls for many
possible weighted combinations of the two objective functions,
which gives the decision maker a range of possible solutions).

Control Parameterization. Recent advances in technology and
the need for improved controllability of the oil-recovery process
have led to the use of inflow-control devices (ICDs), also known
as inflow-control valve. Although many variants of such devices
exist, in our study we have used ICDs that can be individually
activated by use of electric line or coiled tubing through relatively
simple rigless intervention techniques. This type of ICD is cur-
rently commercially available with up to 16 ICDs per well, and is
used in field applications. In the present study we optimize the
settings of these ICDs over the producing life of a field. ICDs can
have settings that vary continuously between 0 and 1 or could be
restricted to settings of either 0 or 1; that is, either fully open or
fully closed. In our study the ICDs belong to the latter class, and
have settings of either 0 or 1. Thus the optimization problem is
now discrete in nature. To solve such discrete problems, integer-
programming techniques are usually used (Isebor et al. 2014).

. . . . . . . . . . . . . . . . . . . . . . . . . .
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Gradient-based methods like EnOpt, which have been success-
fully applied to problems with continuous variables, are not suita-
ble for discrete control problems. To use EnOpt to solve this
particular optimization problem, a parameterization of the con-
trols into continuous variables is necessary. Sudaryanto and Yort-
sos (2000) suggested the use of switching times as control
variables for a production-optimization exercise to study the
behavior of bang-bang (i.e., on/off) controls. Zandvliet et al.
(2007) investigated the theoretical aspects of bang-bang control
problems and provided a list of references from different engi-
neering applications where switching times have been used as
controls. However, they did not use switching times as the con-
trols; instead, they used continuous control variables in combina-
tion with a cutoff criterion to mimic the discrete controls. We
have also investigated this approach; however, we did not achieve
solutions that were better than a switching-times approach. Hasan
and Foss (2013) recently used switching times as controls for
adjoint-based waterflooding optimization with the halving-time-
interval method to update the controls, and Namdar Zanganeh
et al. (2014) used a switching approach to optimize a surfactant
(foam)-injection application. In this study we use the switching-
time-interval-based parameterization of the controls, modeled af-
ter the switching-time-optimization method provided by Sudar-
yanto and Yortsos (2000). Whereas Sudaryanto and Yortsos
(2000) use explicit times to define a switch, we use time intervals
as controls. There are two distinct advantages for the use of such
a parameterization:

• It transforms a discrete control problem into a continuous
control problem that can be efficiently handled by EnOpt.

• It leads to a possibly significant reduction in the number of
control variables. This could be particularly important when
using stochastic approximate gradient-based techniques
such as EnOpt because the gradient quality may deteriorate
for increasing numbers of optimization variables.

For example, in this case, if we choose fixed control timesteps
of 1 year and use 48 ICD settings to be optimized at each control
timestep, the use of amplitude-based controls for a 20-year period
would result in a control vector u containing 48� 20¼ 960 ele-
ments. In the switching-times approach, the user must predefine
the number of allowable switches during the simulation time for
each ICD. In our case, we use five switching times for each ICD
over the producing life of the reservoir, thus leading to
48� 5¼ 240 controls (i.e., a factor-of-four reduction in the num-
ber of controls). Note that we work with time intervals to define
the times at which a particular ICD must be either switched on or
off depending on its previous setting. We do not explicitly find
the time a control is switched; rather, we find the interval after
which a control setting should be changed. Also note that five
switching times is a maximum limit and it is possible to achieve
an optimized strategy with fewer switches. In case the final
switching-time interval exceeds the end of the producing time, the
interval is simulated only until the end time.

Numerical Example

Reservoir Model. The reservoir model used in this study is a
sector model inspired by a real field case. The reservoir formation

is unconsolidated sandstone at a depth of approximately 4,000 ft,
with a net thickness ranging from 30 to 45 ft, and is not signifi-
cantly faulted. 50,000 active gridblocks are used in this sector
model. Model dimensions cannot be disclosed for confidentiality
reasons. The reservoir rock is of good quality with porosities
ranging from 20 to 35% and net/gross ratios of approximately
50–90%. The permeability distribution is not very heterogeneous
with values ranging from 100 to 700 md, usually approximately
350 md. Permeability modeling has been performed following
industry standard practices, modeled after facies and petrophysi-
cal modeling. In addition, an integration of core data coming from
some of the wells with computer-processed interpretation logs has
been incorporated. A porosity/permeability correlation has been
identified and grids have been populated by use of a standard geo-
statistical algorithm. After this, well-test data have been inte-
grated and the initial ensemble of permeabilities have been
conditioned to historical data to obtain an updated ensemble,
which is used in this study. The reservoir is operated by use of a
line-drive strategy with horizontal wells with lengths of
4,000–10,000 ft, with inflow-control devices (ICDs) installed in
some of the injectors. The field has unconventional reservoir and
fluid properties compared with other fields in the vicinity. In par-
ticular, the field temperature is lower and the oil is heavier and
more viscous, compared with neighboring fields.

Fig. 1 is an illustration of the permeability field of Layer 14
from Realization 65 out of an ensemble of 100 realizations. The
sector model shown is produced by use of a line-drive strategy
with three injectors and three producers. The injectors are
equipped with ICDs that can be mechanically operated by use of a
coiled-tubing unit and can only be either “open” or “closed,” with
values of either 0 or 1. Injector 1 has 15 ICDs along its length,
whereas Injectors 2 and 3 have 16 and 17 ICDs, respectively. The
settings of these ICDs are the control variables for this optimiza-
tion study. The wells are modeled as multisegment wells in a com-
mercial fully implicit finite-difference black-oil simulator (Eclipse
2011). Because the ICDs cannot be modeled to be fully closed—
i.e., 0—because of numerical limitations, in this exercise the valve
settings have a minimum value of 10�4. To effectively capture the
effect of geological uncertainty within the optimization frame-
work, we use a set of 100 different geological (sector) models. The
realizations vary in terms of their permeability fields, porosity
fields, varying net/gross ratios, and initial water saturations.

The relative homogeneity in the permeability fields, coupled
with the specific properties of the oil, suggest that for this model
the scope for optimization lies in the reduction of the volumes of
water injected and produced. Fig. 2 illustrates the oil saturation of
Layer 14 from Realization 65 after 20 years of production. The
field water cut for a 20-year horizon is approximately 89%, and
this increase in the volumes of water produced and injected makes
the problem interesting for optimization. Hence, we have chosen
an optimization time horizon of 20 years.

Life-Cycle Optimization. In this model, the injectors and pro-
ducers are operated on bottomhole-pressure constraints, whereas
the ICD settings are allowed to vary over the producing life (20

Permeability (md)
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Fig. 1—Permeability field for Layer 14 of Realization 65.
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Fig. 2—Oil saturation of Layer 14 for Realization 65 after a time
of 20 years, indicating a high water production.
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years) of the reservoir. On the basis of the engineering judgment,
we allow for only five switching times per ICD throughout the 20
years, and because we have 48 ICDs per control time, the control
vector u has N¼ 5� 48¼ 240 elements. An optimal life-cycle
strategy of ICD settings in the injection wells is obtained by opti-
mizing net present value (NPV), as described in Eq. 1 with
ro¼ 90 USD/bbl, rwp¼ 8 USD/bbl, and rwi¼ 5 USD/bbl. The dis-
count rate b is chosen to be either 0 or 10%. The initial strategy
(starting point) of the life-cycle optimization is a control vector
with all switching-time intervals equal to 0; i.e., there are no
switches allowed, which implies that all the ICDs are fully open
at all control times. Fig. 3 illustrates the optimization process,
where the blue lines represent the evolution of the objective func-
tion values for the 100 different geological realizations during the
iterations, whereas the red line is the expected value of the ensem-
ble. The optimized expected objective-function value is approxi-
mately USD 695 million. Because of a lack of significant further
change in the objective-function value, the optimization process
was terminated after 30 iterations.

We observe, for an undiscounted NPV, an approximately 12%
increase in mean objective-function value at the end of the opti-
mization compared with the starting point of the optimization
(that is, compared with a “do-nothing” strategy). Although this
result is encouraging, an analysis of the cumulative oil and water
rates shows an approximately 10% mean decrease in cumulative
oil production for a corresponding 47.5% mean decrease in cu-

mulative water injected and 70% mean decrease in cumulative
water produced. Although the volumes of water injected and pro-
duced have reduced significantly, this corresponds to a large
decrease in cumulative oil production, which may not be the
most-attractive strategy.

Effect of Discount Factor. In reality, a discounted economic
objective is traditionally used in the analysis of any project. Thus
we also use discounted NPV as the objective function with a 10%
discount factor. First, as in Fig. 3, we start the optimization from
the “do-nothing” strategy, which is a strategy where all the ICDs
are open throughout the life of the field. A comparison of this
result with a simulator-handled pressure-maintenance strategy
shows a 2.8% mean increase in NPV (Fig. 4). The mean cumula-
tive oil volumes obtained with this strategy are higher than with
the pressure-maintenance strategy. However, the volumes of
water injected and produced are also higher. Because the starting
point of the optimization is rather aggressive (in terms of water-
injection volumes), we find an optimized strategy that reflects the
same behavior. This strategy is hereafter referred to as Optimiza-
tion Strategy 1.

Following this result, we perform an optimization experiment
from a different initial strategy, or a different point in the control
space. The initial strategy is the optimized strategy from the
undiscounted life-cycle result, shown in Fig. 3. We observe that
starting from a different initial strategy has led us to a solution
with a higher NPV compared with Fig. 4. In addition, compared
with the pressure-maintenance strategy, this optimized strategy
(Fig. 5), hereafter referred to as Optimization Strategy 2, achieves
a mean increase of 4.2%. Thus the optimization is fairly sensitive
to the initial starting point of the optimization. Optimization Strat-
egy 2 starts from a significantly less-aggressive strategy (in terms
of volumes of water injected) compared with Optimization Strat-
egy 1 and thus achieves a lower mean cumulative oil production
but also injects much-lower volumes of water. However, irrespec-
tive of the starting point, the optimized strategy always achieves
better solutions in terms of NPV compared with the simulator-
handled pressure-maintenance strategy.

If we perform an optimization exercise while requiring the
simulator to enforce pressure maintenance, we observe that the
optimization is not successful, because of interference of the sim-
ulator-handled control with the optimization (Fig. 6).

Table 1 highlights the key differences between the two differ-
ent optimized strategies when using a discounted objective func-
tion. We observe that although Optimization Strategy 2 achieves
a higher NPV compared with Optimization Strategy 1, the amount
of cumulative oil produced is marginally lower than with the sim-
ulator-handled pressure maintenance. However, there is a signifi-
cant reduction in cumulative volumes of water needed for
injection as well as water produced. On the other hand,
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Fig. 3—Mean objective (undiscounted NPV) -function value for
the 20-year-simulation time period. The red line is the mean
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Fig. 4—10% discounted NPV, optimization started from “do-
nothing” strategy.
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Fig. 5—10% discounted NPV, optimization started from end of
Fig. 3 (i.e., the optimized strategy).
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Optimization Strategy 1 achieves not only a higher NPV but also
a 3% mean increase in cumulative oil produced at the cost of a
higher cumulative water-injection volume, and thus a higher vol-
ume of water produced. The difference for the two strategies
stems from the different initial starting points. Although it is diffi-
cult to conclude in favor of either strategy, decision makers now
have a choice depending on their objectives.

Reactive Control. The economic water cut derived from the eco-
nomic parameters used to calculate the objective function is 91%.
However, after 20 years of production the average water cut is

89%, whereas none of the wells has yet reached the 91% value.
Thus we have not yet reached a true reactive control strategy, and
the reactive control strategy corresponds to the “do-nothing” strat-
egy, the NPV of which was the starting point of the optimization.

Optimized Control Strategy. Fig. 7 is an illustration of the com-
parison between an optimized strategy (red) of 16 ICDs installed
in Injector 2 with the reactive strategy. Recall that we defined a
maximum of five allowable switches for each ICD throughout the
20-year optimization horizon. We observe that for the optimized
strategy, for most cases, the ICDs do not need five switches;
instead, the optimized strategy consists of mainly one or two
switches per ICD. Many life-cycle optimization studies have
obtained optimal control sets that are nonsmooth in nature; that is,
they display frequent adjustments to the control settings, which is
practically undesirable and probably not feasible to implement.
However, an optimized strategy as illustrated in Fig. 7 would be
more appealing to implement as an operational strategy because of
its smooth behavior. The settings for the ICDs in Injectors 1 and 3
also showed very similar behavior to that observed in Fig. 7.

Comparison of Different Gradient Formulations. Many alter-
native formulations to the standard robust ensemble-gradient esti-
mate have been proposed. Because of the computational complexity
of the model, on the basis of the findings of Fonseca et al. (2014,
2015), we investigate the application of the three robust gradient
formulations discussed in the theory section. Fig. 8 depicts the opti-
mization process obtained by applying the different formulations.
We observe that the original formulation (1:1 ratio) achieves a solu-
tion superior to the traditional pressure maintenance, “do-nothing”
strategy; however, the “selected-model formulation” (blue curve)
leads to a solution that achieves an expected value 5% higher than
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Fig. 6—10% discounted NPV with pressure maintenance
handled by the simulator.
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Cumulative water produced (STB) 3.2245e5 3.3985e5 (+5.4%) 2.8454e5 (–13%)
Cumulative water injected (STB) 4.6053e5 4.8332e5 (+5.0%) 4.2054e5 (–9.5%)

Table 1—Comparison of different optimization strategies.
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the original formulation (green curve). It should be noted that there
is always ambiguity with respect to how the models used in this
approach are chosen and what impact a different set of chosen mod-
els would have on the optimization. The modified robust gradient
formulation (red curve) achieves the highest-expected objective-
function value, which is approximately 5.5% higher than the value
for the original formulation and 0.5% higher compared with the
selected-model formulation. The modified-gradient formulation,
like the original formulation, uses the entire ensemble of geological
realizations; i.e., it accounts for all the uncertainty available to esti-
mate the robust gradient, unlike the selected-model approach.

Reduction in Number of ICDs. Because ICDs are expensive to
install and operate, reducing the number of ICDs could be econom-
ically beneficial. However, the impact of having fewer ICDs could
result in a reduction in controllability. The grouping of the ICDs is
primarily dependent on the geological perspective and well-path
design. van Essen et al. (2010) showed that a grouping of ICDs de-
pendent on dynamic results instead of a geology-based grouping
may lead to better results in terms of the objective-function value.
The well-path design used in the present study is undulating. Com-
pared with the example in van Essen et al. (2010), in which the hor-
izontal wells are completely horizontal, we expect that dynamic
grouping will not lead to improved results. The dynamic grouping
methodology proposed in van Essen et al. (2010) is modeled after a
visualization of the optimized control strategy. Visual inspection
of the optimal control set illustrated Fig. 7 does not suggest any
apparent dynamic grouping possibilities. Fig. 9 is a comparison of
the optimization procedure with a significant (approximately a fac-
tor of four) reduction (blue curve) in the number of ICDs dependent
on geological insight compared with the base case (red curve). We
observe that having fewer ICDs results in a loss of controllability
and thus an optimized strategy with a lower NPV. The difference in
the objective-function values between the two cases is approxi-
mately 3%, where the cost reduction caused by a reduced number
of ICDs has not been taken into account. We do not have data about
the actual costs (installation) of a single ICD. On the basis of dis-
cussions with field specialists, the total costs saved as a result of in-
stallation of fewer ICDs used for this case is estimated, on the
higher side, to be two orders of magnitude lower than the values of
NPV shown in Fig. 9. Thus, for this example, the costs saved by the
installation of fewer ICDs does not offset the gain in NPV achieved
by use of a higher number of ICDs.

Hierarchical-Switching Optimization. The hierarchical (bio-
bjective) switching-optimization method is used to achieve multi-
objective optimization under uncertainty, as illustrated in Fig. 10.
Following van Essen et al. (2011), the primary objective is undis-
counted NPV, as shown in Fig. 3, whereas the secondary objec-
tive is a highly (25%) discounted NPV to account for the short-
term gains. We observe a mean increase of approximately 9.2%
in the secondary objective function compared with a maximum-

allowed mean decrease e of 1% in the primary objective function.
The switching optimization begins from the optimized solution
achieved by the modified robust gradient formulation for life-
cycle optimization. The same modified formulation is also used
for this hierarchical optimization. In addition, the mean increase
in cumulative oil produced over 20 years is marginally (2%)
higher because of a higher (4.5%) increase in cumulative water
injected compared with the solution achieved for life-cycle opti-
mization. This confirms the general trend observed for this sector
model (i.e., higher volumes of water injected will result in higher
volumes of oil produced). The results illustrate the capacity of en-
semble-based multiobjective optimization under geological uncer-
tainty to achieve results of practical importance.

Note that we have terminated the optimization for the second-
ary objective function after 15 iterations, which translates to
1,500 reservoir simulations for the gradient estimate and 2,100
simulations for evaluation of the updated control set (i.e., a total
of 3,600 reservoir simulations). Although the total number of sim-
ulations is not high, because of the complex nature of the models,
a forward simulation lasts approximately 15 minutes. Thus, to
obtain these results in a sequential manner would take roughly 37
days. An inherent advantage of ensemble-based optimization is
that the gradient can be estimated by use of distributed comput-
ing, as has been performed for the present study. The speedup
achieved in this case, by use of 25 cores, is roughly a factor of
nine (i.e., the robust hierarchical optimization was performed in
approximately 4 days).

Fig. 11 depicts a comparison of the mean cumulative cash
flow over time for the optimized solutions achieved by the switch-
ing algorithm (blue), life-cycle optimization (green), and the “do-
nothing” strategy (red). It is observed that after 2,000 days, the cu-
mulative cash flow of the multiobjective optimization (blue curve)
is approximately 12% higher compared with the life-cycle optimi-
zation (green curve), which will enable the project to achieve the
break-even point faster, whereas the ultimate NPV of the two
strategies is nearly equal. Similar to the results obtained in Fon-
seca et al. (2014), the “do-nothing”/reactive control strategy gives
the best short-term performance at a price of the worst long-term
performance. Note that in the “do-nothing” scenario, none of the
production wells has reached the economic water-cut limit of
91%, and the drop in NPV after approximately 6,500 days is
caused by water-injection costs.

Discussion

We have not considered the commonly used weighted-sum
method in this work because it is impossible to know a priori
which weight combination will give the desired results. The
advantage of the hierarchical approach is that the user decides the
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maximum-allowable decrease in the primary objective. This fea-
ture is not known a priori when using the weighted-sum method.
We would need to perform a trial-and-error set of experiments,
which would be computationally demanding.

Also, we did not use a full Pareto-curve approach, in which a
large number of weighted-sum simulations is performed with dif-
ferent weight combinations. Generating such a full Pareto curve
would provide a decision maker a range of possible solutions
from which to choose. However, computing the full Pareto curve
is computationally much-more intensive and is outside the com-
putational limits of our study. The choice of e¼ 1% in our hier-
archical-switching approach is simply a choice; a user is free to
decide his own choice depending on how much a user values the
long-term targets. We do not claim that this is the correct choice,
because, as with any multiobjective approach, especially those
that aim to generate a Pareto front, the idea is to obtain a range of
possible solutions from which to choose. No single solution is
necessarily the correct one. van Essen et al. (2011), who first
introduced the hierarchical-switching method, have included an
illustration of the principle and execution of this hierarchical-
switching method.

By request of one of the reviewers, we repeated the optimiza-
tion for a much-lower oil price of USD 50/bbl while keeping the
water costs the same. Fig. 12 depicts the results. Compared with

Fig. 3, we now increase the objective-function value much more
(approximately 35% against approximately 12% in Fig. 3), which
illustrates that at lower oil prices the effect of reducing water pro-
duction and injection becomes more important.

Conclusions

1. An ensemble-based robust multiobjective optimization work
flow tested on a sector model inspired from a real field case
shows results of practical value against acceptable computa-
tional cost.

2. Parameterization of on/off-type controls by use of a switching-
time-interval method is efficient when working with stochastic
gradient techniques, such as ensemble-based optimization.

3. The hierarchical-switching algorithm leads to an approxi-
mately 9% mean increase in the secondary objective function
(short-term targets) against a mean decrease of 1% in the pri-
mary objective function (life-cycle targets).

4. The main scope of optimization for this example lies in the
reduction of the volumes of water injected and produced.

5. The modified robust gradient formulation performs better than
other formulations described in the literature.

6. A reduction in the number of inflow-control devices (ICDs)
results in a loss of controllability and thus lower objective-
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function values. However, it may still be a better strategy if the
cost of the ICDs is incorporated into the objective function.

7. The optimization is sensitive to the initial starting point. Two
different optimized strategies have been provided for the deci-
sion maker to choose from.

Nomenclature

a ¼ step size
b ¼ discount rate

cuJ ¼ ensemble cross-covariance vector
C ¼ distribution-covariance matrix

Cuu ¼ ensemble-covariance matrix
g ¼ gradient vector
j ¼ vector of mean-shifted objective-function values
J ¼ objective-function value
J ¼ mean objective-function value
k ¼ timestep counter
K ¼ total number of timesteps
‘ ¼ iteration counter

M ¼ number of ensemble members
N ¼ number of control variables
q ¼ flow rates
r ¼ price per unit volume
t ¼ time
u ¼ control variable
u ¼ vector of control variables
u ¼ ensemble mean
U ¼ matrix of ensemble-mean-shifted control vectors
e ¼ maximum allowed decrease in primary-objective-func-

tion value
s ¼ reference time for discounting

Subscripts

o ¼ oil
w ¼ water

wi ¼ injected water
wp ¼ produced water
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Appendix A—Ensemble-Based-Optimization
(EnOpt) Theory

Deterministic Formulation. Chen (2008) and Chen et al. (2009)
gave systematic descriptions of the EnOpt method as it is cur-
rently used. Predecessors to EnOpt, modeled after the ensemble
Kalman filter, were introduced by Lorentzen et al. (2006) and
Nwaozo (2006). The following is a short overview of the method,
largely following the description in Fonseca et al. (2015). A single
control vector is defined as

u ¼ ½u1; u2…uN �T ; ðA-1Þ

where N is the total number of control variables (e.g., bottomhole
pressures, well rates, or valve settings over time). Thus u is a vec-
tor with N elements, where N usually equals the number of control
timesteps multiplied by the number of control variables per time-
step. In EnOpt, a multivariate, Gaussian-distributed ensemble [u1,
u2, …, uM] of size M is generated with a distribution mean u and
a predefined distribution-covariance matrix C, which is kept con-
stant throughout the optimization process, whereas u is updated
until convergence. To estimate the gradient, a mean-shifted en-
semble matrix is defined as

U ¼ ½u1 � u ;u2 � u; � � � uM � u�; ðA-2Þ

where

u ¼ 1

M

XM

i¼1

ui; ðA-3Þ

is the ensemble mean (i.e., the sample mean that is an estimator of
the distribution mean u). [Note that in earlier publications we
used the transposed version of U. We modified our notation to
bring it in line with that of publications such as Conn et al.
(2009)]. Similarly, a mean-shifted objective-function vector is
defined as

j ¼ ½ J1 � J ; J2 � J ; � � � JM � J ; �T ; ðA-4Þ

where values of Ji correspond to the simulated response to control
vectors ui , and where

J ¼ 1

M

XM

i¼1

Ji: ðA-5Þ

The approximate gradient as proposed by Chen (2008) and
Chen et al. (2009) is given by

g ¼ C�1
uu cuJ ; ðA-6Þ

where

Cuu ¼
1

M � 1
ðUUTÞ; ðA-7Þ

and

cuJ ¼
1

M � 1
ðUjÞ; ðA-8Þ

are ensemble (sample)-covariance and cross-covariance matrices,
respectively. (Note that cuJ is a 1D matrix; i.e., a vector.) For the
usual case where M<N, matrix Cuu is rank-deficient, and Chen
(2008) and Chen et al. (2009) therefore propose not to use Eq. A-6
but to instead use

g0 ¼ cuJ ; ðA-9Þ

or

g
00 ¼ CuucuJ; ðA-10Þ

and both can be interpreted as “smoothed” gradients. In the pres-
ent study, we use a straight gradient—Eq. A-6—computed as the
underdetermined least-squares solution,

g ¼ ðUUTÞ�1
Uj ¼ U

†

j; ðA-11Þ

where the superscript † indicates the Moore-Penrose pseudoinverse
(Golub and van Loan 1989). which is conveniently computed by
use of a singular-value decomposition (Strang 2006). This formu-
lation was also described by Dehdari and Oliver (2012), whereas
Do and Reynolds (2013) recently demonstrated that it is akin to
what is known as a “simplex gradient” (Conn et al. 2009).

Robust Formulation. Original Robust Formulation. Chen
(2008) and Chen and Oliver (2010) introduced a technique to
include the concept of robust optimization within the EnOpt frame-
work. They suggested the use of two ensemble sets: one ensemble
of controls and another ensemble of geological models. Intuitively,
if the two ensembles consist of M members each, then the use of
Eq. A-11 would require M2 function evaluations (i.e., reservoir
simulations) for a gradient estimate, which is computationally not
attractive. Chen (2008) provided an argumentation for the possibil-
ity of evaluating only M samples (by coupling one geological-en-
semble member with one control-ensemble member) to
approximate the robust EnOpt gradient. Note that the size of the
two ensembles must be the same. The use of such a 1:1 ratio makes
EnOpt computationally very attractive for robust optimization.
Thus, the original formulation will be similar to Eqs. A-2, A-4, and
(A-11) when using the 1:1 ratio. In Stordal et al. (2014), it is shown
that this implementation converges to the correct gradient when the
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ensemble size becomes very large. However, the original formula-
tion with the 1:1 ensemble ratio described previously has not
always lead to satisfactory results (Raniolo et al. 2013; Fonseca
et al. 2014). Various studies have suggested variations to the origi-
nal formulation to improve the robust gradient estimate. In Fonseca
et al. (2014, 2015), descriptions of the different variations are pro-
vided and their results compared, and only a few methods of which
are compared in this study.

Selected-Model Robust Formulation. Raniolo et al. (2013)
observed that for a field-case-based study, the original formula-
tion did not achieve results of any significant value, which they
concluded to be the result of an inaccurate robust gradient esti-
mate with the 1:1 ratio. They proposed to instead use a 1:20 ratio;
that is, to couple each geological realization with 20 control sam-
ples to estimate individual gradients, the summation of which
results in a single robust gradient. If an ensemble size of 100 was
used, this would mean 2,000 reservoir simulations to approximate
a single gradient. Because this is computationally not very effi-
cient, they proposed the use of a subset of five models that would
approximately capture the geological uncertainty. With this
approach, they achieved better results than with the original for-
mulation, which suggests that better gradient estimates can be
obtained by changing the ratio. Note that the set of selected mod-
els remained fixed throughout the optimization and that a different
subset of model realizations could have lead to different results.

Modified Robust Formulation. A modified formulation for
EnOpt for deterministic optimization was proposed by Do and
Reynolds (2013). The modification lays in the control perturba-
tions and the resulting objective-function anomalies, which are
computed with respect to their current distribution means (i.e., the
control vector and its corresponding objective-function value used
for the most-recent optimization iteration, rather than with respect
to the sample means, as is the case in the original formulation).
Fonseca et al. (2014, 2015) proposed a further modification to this
formulation, wherein the objective-function anomalies are com-
puted with respect to the individual objective-function values cor-
responding to the current control for each individual-model
realization (and not with respect to the mean). This modification
leads to a different weighting scheme for the gradient estimate
wherein each realization has a weighting depending on the rela-
tive increase or decrease of its objective-function value. The 1:1
ratio still holds for this gradient formulation. Thus, the control
and objective-function anomalies for the modified formulation as
proposed by Fonseca et al. (2014, 2015) are given by

U ¼ ½ u1 � u‘; u2 � u‘; � � � uM � u‘; �; ðA-12Þ

j ¼ ½ J1 � J‘1; J2 � J‘2; … JM � J‘M; �
T ; ðA-13Þ

where the superscript ‘ is the optimization iteration counter.
(Thus, the “current control” u‘ corresponds to iteration ‘, whereas
the perturbations ui; i ¼ 1; 2;…;M are used to compute the gradi-
ent for the “next control” u‘þ1) This modified formulation has
three distinct differences compared with the original formulation.
First, as described previously, the subtractions in the objective-
function values in Eq. A-13 are with respect to the individual
objective-function values J‘i , instead of the mean objective-func-
tion value J‘, as proposed by Do and Reynolds (2013). Second,
for bound-control problems, u‘ and u may be shifted with respect
to each other. Third, because we use a least-squares approach to
estimate the gradient, the effect of outliers, which may strongly
influence the mean value, is reduced in the modified formulation.
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