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Abstract 
Background 
Fractures of the radius and ulna are common injuries in children, with improper healing potentially leading 
to limitations in forearm rotation a>ecting function and quality of life. Understanding the normal three-
dimensional, age-related morphological variation and spatial relationship of the radius and ulna is essential 
to support clinical decision-making regarding surgical correction. Previous statistical shape models (SSMs) 
analyzed the radius and ulna separately, without considering their combined morphological and positional 
interaction during growth. This study aimed to develop a multi-object SSM of the pediatric forearm to 
capture combined age-related morphological and spatial variation and to compare its performance with 
single-object SSMs. 

Methods 
A cross-sectional dataset of 3D models of healthy pediatric forearms (n = 155; ages 3.8–18.8 years), 
reconstructed from computed tomography scans, was used to develop a multi-object SSM based on 
principal component analysis (PCA) and partial least squares regression (PLSR). The model captured the 
combined shape and position of both bones and enabled prediction of individual forearm geometry across 
ages during growth. Predictions were validated against follow-up scans of six participants. Morphological 
accuracy was assessed by root mean squared error (RMSE) and bone length error. Inter-bone spatial 
relationships were evaluated by comparing normalized distances and bounding box ratios between 
predicted and original meshes. 

Results 
The multi-object model captured age-related diaphyseal scaling and epiphyseal development. Absolute 
distance between the radius and ulna decreased with age, while their relative separation increased due to 
positional shifts. The PCA-based model achieved superior prediction accuracy (mean RMSE: 2.0 mm) 
compared to PLSR (3.5 mm). Morphological prediction accuracy was lower than that of single-object SSMs 
(mean RMSE: 2.4 and 1.7 mm vs. 0.9 and 1.0 mm). However, the multi-object model preserved inter-bone 
spatial relationships with good agreement longitudinally and reasonable consistency in transverse and 
sagittal dimensions. 

Conclusion 
While the multi-object SSM of the forearm does not outperform single-object models in predicting bone 
morphology, it enables combined modeling of morphology and spatial alignment. This approach provides 
additional insights into coordinated forearm development and may support future clinical applications in 
growth assessment and surgical planning. 
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1. Introduction 
Fractures of the radius and/or ulna are among the most prevalent skeletal injuries in children [1-3]. Although 
pediatric bones have a natural ability to remodel deformities over time [4, 5], improperly or unbalanced 
healed fractures, referred to as malunions, can result in rotational limitations of the forearm. These 
limitations can impair daily functioning and quality of life [6-8]. If spontaneous correction does not occur, a 
corrective osteotomy may be required later in life to restore both the anatomical alignment and forearm 
function [9]. 
 
As it is currently not possible to predict the outcome of spontaneous correction, a thorough understanding 
of the normal three-dimensional (3D) growth patterns of the pediatric forearm is essential to support future 
clinical decision-making regarding surgical correction. This underscores the need for advanced 3D 
modeling techniques capable of accurately capturing and predicting both normal development and 
pathological deviations, such as those resulting from malunions. 
 
Statistical shape modeling (SSM) has emerged as a promising technique for analyzing population-level 
anatomical variation. Prior studies have demonstrated that SSM can e>ectively describe age-related 
geometric variation and predict future bone morphology in single anatomical structures [10-12]. However, 
these so-called single-object SSMs are inherently limited, as they analyze bones in isolation and disregard 
the spatial and morphological interdependence between adjacent bones. For instance, although separate 
SSMs of the radius and ulna have been developed [13], they do not account for the coordinated 
development and positional relationship between these bones. This is a notable limitation, given that the 
functional anatomy of the forearm, especially its ability to rotate, critically depends on the interaction 
between the radius and ulna. 
 
Functionally, the radius and ulna are unique bones, as their coordinated configuration enables rotational 
movement of the forearm, a rotational component not found elsewhere in the body. This rotation occurs at 
the proximal and distal radioulnar joints (PRUJ and DRUJ), where the bones articulate and move relative to 
one another. While single-object SSMs model each bone independently, they cannot capture the spatial 
relationship between the radius and ulna, especially at these joint interfaces. In this context, multi-object 
SSMs – which incorporate multiple anatomical structures simultaneously – o>er a valuable alternative, as 
they explicitly represent inter-bone geometry and alignment. 
 
This study aims to develop and evaluate a multi-object SSM of the pediatric forearm, based on computed 
tomography (CT) scans of healthy children, to characterize the combined morphological development of 
the radius and ulna during growth. By constructing a point distribution model (PDM) of both bones 
simultaneously, the model will capture shared patterns of age-related variation and represents the forearm 
as a single, integrated anatomical structure within a shared shape space. Whereas previous studies have 
modeled the radius and ulna separately, this study explores their coordinated geometric variation using 
conventional and widely adopted shape modeling techniques.  
 
The research question guiding this study is:  

- Does a multi-object SSM predict age-related variation in bone morphology more accurately than 
two single-object SSMs, and o>er additional insight into the spatial relationship between the radius 
and ulna? 

In this context, morphology refers to the shape characteristics of each bone individually. The spatial 
relationship refers to how the radius and ulna are positioned relative to each other. 
 
2. Methods 

2.1. Study Design 
This study presents a descriptive analysis of age-related combined morphological and spatial variation of 
the radius and ulna during child development. Building upon prior single-object SSMs of the individual 
forearm bones, we aimed to develop a multi-object SSM that preserves and represents the anatomical 
relationship between the radius and ulna. 
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2.2. Data Acquisition and Study Population 
We used a retrospectively compiled, cross-sectional dataset obtained from the research database of the 
Department of Orthopaedics at the Erasmus University Medical Center. The training dataset used to 
develop the multi-object SSM comprised 3D models of both radius and ulna from 155 participants, aged 
3.8 to 18.8 years (mean: 13.3 years, SD: 3.3). These were reconstructed from segmented CT scans acquired 
between January 2017 and February 2025. 
 
Only healthy forearms were included, originally scanned for comparison with the a>ected side in patients 
with various forearm pathologies. Scans with incomplete data were excluded. Demographic data, including 
sex and age at the time of scanning, were retrieved from the electronic health record. All data were fully 
anonymized and collected with participants’ informed consent. 
 
CT scans were acquired according to a standardized protocol using a fixation device to position the forearm 
in a functional neutral orientation, corresponding approximately to 0 degrees of pronation/supination. 
However, due to functional limitations associated with the underlying pathology (e.g., malunion), some 
patients were unable to achieve this position, resulting in varying degrees of pronation or supination. 
 
The final cohort consisted of 86 males and 69 females, with 89 scans (57.4%) representing the right forearm. 
One-year follow-up (FU) scans were available for a subset of six participants from the training dataset (mean 
age: 13.9 years, SD: 3.1). These FU scans were used to validate the model’s predictive performance and to 
enable comparison with the results of prior single-object SSMs of the forearm. Figure 1 illustrates the age 
and sex distribution of the study population, demonstrating a relatively balanced spread across the 
pediatric age range. 
 

 
Figure 1. Age and sex distribution of the study population. 
 

2.3. Data Preprocessing 
All 3D models were checked to ensure they represented a single-body mesh. Multi-body meshes, typically 
due to unossified growth plates, were manually edited to produce unified geometries (Appendix A). Mesh 
quality was assessed using a Python script, which checked for the number of bodies, volume, 
watertightness, winding consistency, number of vertices and faces, and maximum edge length. To ensure 
consistent resolution across samples, all meshes were uniformly remeshed with a maximum edge length 
of 1.0 millimeter (mm). 
 

2.4. Statistical Shape Model Development 
The multi-object SSM was developed using Python (v3.9.13), ShapeWorks (v6.6.0-dev), and R (v4.5.0). 
 
Unscaled data were used for modeling, following the previous study on single-object SSMs of the forearm, 
which demonstrated that age-related morphological variation is primarily driven by diaphyseal scaling and 
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epiphyseal development [13]. Although scaling can be applied to eliminate inter-individual size di>erences 
and highlight more subtle shape variation, this approach has limited value in this pediatric cross-sectional 
dataset. In this context, growth-related variation in bone size explains such a large proportion of the total 
variance that more subtle morphological di>erences become negligible. Therefore, unscaled meshes were 
used in the present study. 
 

2.4.1. Point Distribution Model 
A PDM was constructed for both radius and ulna using a ShapeWorks-based Python script. Preprocessing 
included mirroring all left-sided 3D models to simulate uniform right-sided modeling. Laplacian smoothing 
(1 iteration, relaxation factor = 1.0) was applied to reduce surface noise while preserving morphological 
integrity. The FillHoles function was used to fill any mesh holes. All models were rigidly aligned to the ulna 
of an automatically selected reference model (i.e., the model closest to the population mean) using iterative 
closest point (ICP) registration (100 iterations), thereby eliminating translational discrepancies that could 
confound shape analysis. 
 
PDM optimization was performed through iterative trial-and-error tuning of particle distribution parameters, 
aiming to achieve anatomically consistent point correspondences. Entropy-based particle splitting was 
employed to incrementally refine surface coverage [14]. The process began with a reduced particle count 
and dataset subset, which were gradually expanded to balance anatomical detail and computational 
e>iciency. The final particle count was determined based on visual assessment of anatomical 
correspondence and diminishing improvements in geometric accuracy while maintaining computational 
feasibility. 
 
The geometric accuracy of the final PDMs was evaluated via the average Euclidean distance between each 
particle and its nearest corresponding vertex on the original mesh, averaged across all samples. This metric 
reflects the reliability of particle-based shape representation. 
 

2.4.2. Average Growth Model 
To analyze the average geometric development of the radius and ulna over time, custom scripts were 
developed in R. Principal component analysis (PCA) and partial least squares regression (PLSR) were used 
to extract longitudinal growth trends from the cross-sectional dataset. 
 
The mean shape PDM and corresponding mean meshes of the radius and ulna were exported from 
ShapeWorks Studio to enable reconstruction of age-specific 3D models. 
 

2.4.3. Principal Component Analysis 
PCA components were derived by decomposing the PDM into orthogonal modes that explain the greatest 
proportion of the combined shape variance. Since PCA components are not inherently time-dependent, 
linear regression was used to identify which components significantly correlated with age (significance 
threshold: P ≤ 0.05).  
 
The contribution of each principal component (PC) to the overall shape variation was quantified using the 
eigenvalues of the PCA, which represent the amount of variance explained by each component 
(compactness). The number of components retained for analysis was determined by a cumulative variance 
threshold of 97.5%, representing the point at which additional components contributed minimally to the 
overall explained variance. Two additional metrics were computed to evaluate model quality: 

- Generalization, using a leave-one-out approach to quantify the model’s capacity to represent 
unseen samples. This metric assesses how well the model generalizes to new data that were not 
included in the training set. 

- Specificity, computed as the mean distance between synthetic samples generated by the model 
and their nearest sample in the training set. This metric assesses the realism of the generated 
samples by comparing them to the training set. 

 
For each age, average shapes were predicted by linearly extrapolating age-correlated PCs. Non-significant 
PCs were fixed at their mean scores, thereby preserving interindividual structural variation without 
impacting age-related trends. 
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2.4.4. Partial Least Squares Regression 
Unlike PCA, PLSR directly models the covariation between age and shape. Components were tested for 
correlation with age, and significant components were linearly regressed against age to generate growth 
predictions. Non-significant components were retained at their mean score. 
 

2.4.5. Multi-Level Component Analysis 
To distinguish shape variation within the bones from positional variation between them, multi-level 
component analysis (MLCA) was applied using the built-in functionality of ShapeWorks Studio. MLCA 
decomposes the total PCA variance into two orthogonal subspaces: one capturing intra-object 
morphological variation (shape), and the other capturing inter-object alignment variation (relative pose). 
The resulting shape and pose modes were visually explored within ±2 standard deviations (SD) to interpret 
their contributions to age-related variation. 
 

2.4.6. Prediction Model 
Model predictions based on PCA and PLSR were validated using the FU scans. All FU scans, both the original 
and the predicted meshes, were rigidly aligned to the ulna of the reference mesh using ICP registration. Only 
scans with comparable forearm rotation (i.e., pronation/supination) to their respective baseline scan were 
included, meaning that the FU scan was acquired with approximately the same degree of rotation, since 
the model does not correct for rotational variation. 
 
Predictions were generated by projecting baseline PDMs onto the PCA or PLSR components to obtain 
individual scores. Age-correlated components were extrapolated using linear regression models, while 
non-age-correlated components retained their baseline scores. The final PDMs were reconstructed by 
multiplying component loadings with the updated scores and converting the resulting shape vectors back 
into 3D meshes. 
 
To evaluate model performance, several outcome measures were defined. The primary outcome was 
the root mean squared error (RMSE) of per-vertex distances between predicted and original FU meshes. 
RMSE quantifies the average deviation across the bone surface and primarily reflects morphological 
prediction accuracy. Per-vertex error distributions were visualized by color-mapping onto the original FU 
meshes to identify regions with higher local error. 
 

 
Figure 2. Visualization of bone length and inter-bone spatial measurements. The black lines indicate the bounding boxes used for length 
estimation. The left panel shows the absolute bone length of the predicted mesh (red line) and the original mesh (green line) for the radius. The 
middle panel displays the proximal (green line) and distal (red line) distances between the radius and ulna along the longitudinal axis. The right 
panel shows the widths of the bounding boxes in the Y direction: the total width including the articulating space between the bones (blue line) 
and the widths of the individual bounding boxes of the radius (red line) and ulna (green line). 
 
Secondary outcomes included (Figure 2): 

- The absolute di>erence in bone length for the radius and ulna individually, calculated by comparing 
the length of each predicted bone to the corresponding ground-truth mesh. Bone length was 
measured along the longitudinal (Z) axis as the longest dimension of the oriented bounding box. 

- The ratio of the radial length to the ulnar length in each prediction compared to the original FU 
mesh. This measure indicates whether the relative proportion between the lengths of the radius 
and ulna is preserved. 
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- The relative spatial distance between the radius and ulna. To assess this, the distance between the 
bones along the longitudinal (Z) axis was measured at both the proximal and distal ends. These 
distances were then normalized to the length of the longer bone (ulna) within each configuration. 
This normalized metric enabled comparison of inter-bone positioning between predicted and 
original FU models and reflects the degree to which the spatial orientation of the radius relative to 
the ulna was preserved. 

- Since an articulating space exists between the radius and ulna, the width of the axis-aligned 
bounding box (AABB) enclosing the combined radius-ulna complex (including this space) was 
measured. Separately, the widths of the individual AABBs of the radius and ulna were calculated. 
The ratio between the total width of the combined AABB and the sum of the individual widths was 
then compared between predicted and original configurations as a measure of preservation of the 
inter-bone spatial relationship. This approach enabled approximate quantification of the relative 
articulating space and assessment of whether the predicted models maintained the original 
spatial alignment of the radius and ulna along the X and Y axes. 

 
Together, these measures allowed a quantitative assessment of morphological accuracy and an 
approximate evaluation of spatial fidelity. The same evaluation procedure was applied to the previously 
developed single-object SSMs to enable direct comparison of morphological performance, while the 
spatial measures provided an overall indication of whether the relative positioning between radius and ulna 
was preserved in the predictions of the multi-object model. 
 
3. Results 

3.1. Point Distribution Model 
The constructed PDMs of the radius and ulna, each consisting of 2048 points, demonstrated dense point 
correspondence across all samples (Figure 3). Optimization parameters are summarized in Appendix B.  
 
The mean geometric accuracy of the multi-object model was 0.37 mm (SD: 0.004), comparable to the 
single-object SSM, which achieved a mean accuracy of 0.35 mm (SD: 0.01). 
 

 
Figure 3. Visualization of point distribution models (PDMs) of the radius and ulna of diFerent samples from the training set. Four particles are 
highlighted to illustrate the dense correspondence of the PDMs. 
 

3.2. Average Growth Model 
PCA- and PLSR-based average growth models were constructed from the PDMs for ages 4 to 18 years. 
Based on the cumulative variance threshold of 97.5%, the first five components of the PCA model 
accounted for 97.8% of the total shape variance, while the first six components of the PLSR model captured 
97.5% (Figures 4 and 5). Generalization error decreased from 3.5 mm (1 PC) to <0.2 mm (154 PCs), and 
specificity reached a maximum of 2.7 mm (Figure 4).  
 

 
Figure 4. Model performance metrics for the principal component analysis (PCA) model. The dashed line indicates the cumulative variance 
threshold. PCs = principal components, RMSE = root mean squared error, mm = millimeter. 



 12 

 
Figure 5. Model performance metric for the partial least square regression (PLSR) model. The dashed line indicates the cumulative variance 
threshold. PCs = principal components. 
 
Correlation analysis showed that only the first principal component (PC1) in both models was significantly 
associated with age (P ≤ 0.05) (Table 1) and was therefore used for age-related shape prediction. The 
remaining components, while explaining considerable shape variation, were fixed at their mean scores to 
preserve inter-individual variation without influencing the growth trend. Figure 6 shows the linear regression 
of PC1 against age. 
 
Table 1. Significance (P-values) of the correlations between principal component analysis (PCA)/partial least square regression (PLSR) 
components and age. Significant P-values (P ≤ 0.05) are highlighted in bold. 

Principal Components PCA - P-value PLSR – P-value 
PC1 0.00 0.00 
PC2 0.14 0.14 
PC3 0.19 0.16 
PC4 0.88 0.17 
PC5 0.80 0.07 
PC6 - 0.10 

 

 
Figure 6. Linear regression of the first principal component (PC1) scores versus age. 
 
To explore whether the growth trajectory across age could be more accurately described using a non-linear 
model, a second-order polynomial regression was also applied to age-correlated components. However, 
this approach did not improve prediction accuracy. Therefore, linear regression was retained as the primary 
method. Full results of the non-linear models are presented in Appendix C. 
 
PC2, PC3, and PC5 showed significant correlation with scan orientation (i.e., pronation/supination) and 
were therefore excluded from interpretation as independent anatomical components (Table 2 and Appendix 
D). 
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Table 2. Significance (P-values) of the correlations between principal component analysis (PCA)/partial least square regression (PLSR) 
components and scan orientation. Significant P-values (P ≤ 0.05) are highlighted in bold. 

Principal Components PCA – P-value PLSR – P-value 
PC1 0.92 0.88 
PC2 0.00 0.00 
PC3 0.00 0.00 
PC4 0.43 0.35 
PC5 0.00 0.03 
PC6 - 0.26 

 
Reconstructed average shapes for ages 4 through 18 years are shown in Figure 7. The observed age-related 
shape variation primarily involved diaphyseal scaling and epiphyseal development, consistent with 
previous findings in single-object SSMs [13]. A new observation from this multi-object model was the 
reduction in absolute distance between the radius and ulna with increasing age, particularly at the PRUJ 
and DRUJ. This was visually observed as narrowing of the articulating space at these joint regions. 
 

 
Figure 7. Predicted 3D forearm mean shapes at ages 4, 7, 10, 12, 15, and 18 years (y), based on the principal component analysis (PCA) model. 
 
MLCA revealed that age-related variation in the pediatric forearm comprises both intra-bone shape 
variation and inter-bone positional shifts. The shape variation was dominated by diaphyseal scaling and 
epiphyseal development, while the pose variation captured spatial alignment di>erences between the 
radius and ulna. As the bones increase in size, they shift relative to one another in 3D space, leading to an 
increase in their relative distance, despite a decrease in absolute inter-bone spacing with age. Detailed 
MCLA visualizations are shown in Appendix E.  
 

3.3. Prediction Model 
The PCA-based prediction model achieved a mean RMSE of 2.0 mm (SD: 0.4), compared to 3.5 mm (SD: 
1.6) for the PLSR model. For comparison with the single-object SSMs, the best-performing models for each 
method based on RMSE are presented in Table 3. 
 
Table 3. Root mean squared errors (RMSE) for best-performing models. SSM = statistical shape model, mm = millimeter, SD = standard 
deviation. 

 RMSE [mm] – radius RMSE [mm] – ulna RMSE [mm] – radius + ulna 
Multi-object SSM 2.4 (SD: 0.6) 1.7 (SD: 0.4) 2.0 (SD: 0.4) 
Single-object SSM 0.9 (SD: 0.2) 1.0 (SD: 0.3) - 

 
The mean absolute error in predicted bone length using PCA was 9.3 mm (SD: 7.7) for the radius and 9.3 
mm (SD: 9.1) for the ulna, versus 7.9 mm (SD: 6.4) and 5.8 mm (SD: 5.3) respectively for PLSR (Appendix F). 
Despite slightly lower length errors in the PLSR model, PCA overall produced more anatomically plausible 
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predictions. For reference, the single-object SSMs achieved substantially lower length errors: 2.8 mm (SD: 
2.1) for the radius and 3.3 mm (SD: 2.8) for the ulna. 
 
Figure 8 illustrates the worst-performing predictions based on RMSE for the multi-object models. In PCA 
predictions, errors primarily reflected di>erences in bone length, whereas PLSR predictions showed 
implausible deviations in the anatomical relationship between radius and ulna. Vertex-wise prediction 
errors for two of the best-performing validation samples are visualized as color maps in Figure 9, based on 
the PCA model. 
 

Figure 8. 3D visualization of predicted versus original follow-up shapes (grey) for worst-performing cases, based on the principal component 
analysis (PCA) model (left) and partial least square regression (PLSR) model (right). 
 

 
Figure 9. Vertex-wise distance error maps for best-performing prediction samples of the principal component analysis (PCA) model. A 
histogram with color legend is plotted on the left with the per-vertex distances in millimeter (mm). 
 
Table 4 summarizes the di>erences in preserving the relative geometry of the radius and ulna for the best-
performing models of each method. For the multi-object SSM, di>erences are reported for the ratio of radial 
to ulnar length, the normalized proximal and distal distances between radius and ulna, and the width ratios 
along the X and Y axes (reflecting relative articulating space). Since the single-object SSM does not capture 
inter-bone spatial relationships, only the bone length ratio is included for comparison. 
 
Table 4. DiFerences in predicted ratios compared to follow-up (FU) meshes for the best-performing models. Δ = absolute diFerence between 
predicted and FU ratios, width ratio = ratio of the combined axis-aligned bounding box (AABB) width to the sum of the individual AABB widths, 
X and Y = axis direction. 

 Ratio 
radial/ulnar 
length 

Δ Normalized 
proximal 
distance ratio 

Δ Normalized 
distal 
distance ratio 

Δ Width ratio 
(X) 

Δ Width ratio 
(Y) 

Multi-object 
SSM 

0.006 (SD: 
0.003) 

0.004 (SD: 
0.005) 

0.005 (SD: 
0.004) 

0.016 (SD: 
0.011) 

0.034 (SD: 
0.021) 

Single-object 
SSM 

0.003 (SD: 
0.001) 

- - - - 
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4. Discussion 
4.1. Interpretation of the Results 

This study presents 3D statistical shape models of the healthy pediatric forearm using multi-object SSM 
techniques based on PCA and PLSR. The resulting PDM achieved a mean correspondence accuracy of 0.37 
mm, comparable to prior single-object models. Although corresponding particles did not always represent 
identical anatomical locations, this accuracy was sufficient to capture reliable age-related shape variation. 
 
Age-related shape variation was primarily captured by PC1, the only component significantly associated 
with age. This component reflected diaphyseal scaling and epiphyseal development, which occur 
concurrently as part of coordinated bone growth. Smaller shape variations, such as internal rotations or 
subtle curvatures, may be clinically relevant at the individual level but were less prominent in this cross-
sectional analysis, consistent with findings from single-object SSMs of the radius and ulna [13]. 
 
MLCA revealed that growth involves both intra-bone shape variation and inter-bone spatial realignment. 
Although the absolute distance between the radius and ulna decreased with age, their relative 
displacement increased at the level of the PRUJ and DRUJ, suggesting complex spatial interactions in 
coordinated development. The reduction in articulating space may reflect ossification of the interosseous 
cartilage during age-related development. 
 
MLCA was used for anatomical interpretation only, not for prediction. It proved valuable in decomposing 
PC1 into distinct shape and pose components, illustrating relative displacement between the radius and 
ulna at the level of the PRUJ and DRUJ during growth. However, MLCA is not suited for growth prediction, 
since shape and posture need to be modeled simultaneously to preserve anatomical relationships. PCA-
based multi-object models fulfill this by capturing coordinated shape and alignment variation. 
 
The dataset included both meaningful (growth-related) and extrinsic (scan-induced) pose variation. 
Components PC2, PC3, and PC5 were retrospectively identified as representing scan position. MLCA’s 
decomposition of these into shape and pose modes risked misinterpreting scan variability as anatomical 
change. 
 
In comparing the multi-object methods, PCA produced more robust predictions, as reflected by a lower 
mean RMSE. While PLSR aims to identify components that jointly explain shape variation and age 
dependence, it may inadvertently capture irrelevant pose variation, leading to less accurate predictions. In 
contrast, PCA first models total shape variation and subsequently isolates age-related trends. 
 
Validation with FU scans showed that PCA-based predictions, representing our best-performing multi-
object model, were reasonably accurate, with a mean surface RMSE of 2.0 mm. Prediction errors were 
largest at the bone ends, especially around ages 12 - 14 years during the pubertal growth spurt, a phase 
marked by individual variation in growth rate and timing (Appendix F). 
 
Only six FU scans were available, all acquired under standardized conditions using the fixation device. 
Despite this small number, they provided a reasonable estimate of model accuracy. Minor orientation 
mismatches remained between predicted and FU shapes, suggesting that the true RMSE values may be 
slightly lower than reported. This is visible in Figure 9, where Patient 012 shows consistently o>set along 
one side of the radius. 
 
Compared to single-object SSMs, which showed lower RMSEs and smaller absolute bone length errors for 
the radius and ulna individually, the multi-object model did not improve morphological prediction 
accuracy. However, it enabled assessment of inter-bone spatial relationships, which were well preserved 
longitudinally and showed reasonable agreement in the transverse and sagittal planes. All comparisons 
were performed using the same six FU scans. 
 
Prediction errors in inter-bone spacing may result from length prediction inaccuracies. When predicted 
bone length more closely matches an older or younger age than the original scan, the predicted spatial 
configuration shifts accordingly. This aligns with observed trends showing a reduction in absolute spacing 
with age. Improvements in bone length prediction could thus improve spatial accuracy. 
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4.2. Strengths and Limitations 
For the first time, statistical modeling was applied to the full pediatric forearm. A strength of this study is 
the relatively large dataset, which exceeds the sample sizes of most prior multi-object SSM studies. 
Generalization and specificity were comparable to prior multi-object SSMs [15, 16]. Prediction accuracy 
was lower than in single-object models. 
 
Fugit et al. [15] suggest that multi-object models can approach the accuracy of single-object models by 
retaining more components. However, our compactness analysis indicated diminishing returns in 
prediction accuracy with additional modes, highlighting the trade-o> between generalization and 
specificity. While including additional modes could have further reduced generalization error and improved 
the model’s ability to fit unseen samples, this would come at the cost of increased specificity error, 
indicating that generated shapes could deviate more from anatomically plausible forms. 
 
One major methodological challenge was variation in forearm pose due to inconsistent scan positioning. 
The absence of, or inability to use, the fixation device during CT acquisition, often because of restricted 
forearm function due to malunion, resulted in di>erences in rotational alignment, such as pronation and 
supination. PCA showed that this pose variation was not isolated to a single component but was dispersed 
across multiple components (PC2, PC3, PC5). These components were correlated with each other, 
contradicting PCA’s orthogonality principle. Although not age-dependent and thus excluded from the 
growth predictions, their presence complicates interpretation of shape variation. 
 
Several approaches were explored to reduce pose-related variation and enable validation with randomly 
oriented scans. However, rigid alignment to the mean shape (scaled and unscaled models) using 
Procrustes analysis proved unsuccessful. This was particularly evident in older children, where alignment 
to the population mean shape (corresponding to approximately 12 years of age) resulted in anatomically 
implausible overlap between radius and ulna. Such alignment methods failed to account for the age-related 
increase in bone size and the associated separation of the forearm bones, as demonstrated by MLCA. This 
limitation of current alignment techniques in multi-object models is consistent with prior literature [15-22]. 
 
The current model provides valuable insights into average age-related variation but is not yet clinically 
applicable for tasks requiring high-precision predictions, such as corrective osteotomy planning. While 
small errors in overall bone length are unlikely to impair function if spatial alignment is maintained, the inter-
bone spatial measurements used here, based on oriented bounding boxes, only approximate clinically 
relevant parameters. Because these boxes are not necessarily aligned identically for each bone, their 
dimensions do not precisely capture anatomical distances such as ulnar variance. In this analysis, the 
consistent orientation of predicted and original meshes allowed bounding box ratios to serve as a 
reasonable approximation. Additionally, predicting epiphyseal development remains particularly 
challenging, and small inaccuracies in this region can distort bone length estimation, as even minor shape 
deviations at the bone ends can lead to significant measurement errors when using bounding box-based 
length. Future studies should adopt more robust anatomical measures, for example by assessing ulnar 
variance or calculating minimal inter-bone distances at the PRUJ and DRUJ. Using anatomically defined 
landmarks would make these measurements more robust and clinically interpretable. 
 
Prediction accuracy was lowest during the pubertal growth spurt. Although linear regression may 
oversimplify these non-linear growth trajectories, non-linear regression did not improve performance 
(Appendix C), suggesting that limitations may stem from PCA’s reduced flexibility in capturing age-related 
variation within a multi-object space. 
 

4.3. Future Prospects 
Future improvements could include sex-specific modeling, reflecting known di>erences in skeletal growth 
patterns between boys and girls, which may also enhance non-linear growth predictions. Additionally, 
replacing chronological with skeletal age may increase predictive accuracy. In the long term, integrating 
longitudinal data, such as 3D reconstructions from low-dose biplanar EOS imaging, could enable 
personalized growth trajectories using mixed-e>ects modeling. Compared to CT, EOS allows for substantial 
radiation dose reduction, making it a more accessible and safer option for repeated imaging in children. 
This would facilitate the collection of longitudinal datasets needed for patient-specific forearm growth 
prediction. 



 17 

 
More advanced methods, such as canonical powered partial least squares (CPPLS), may improve individual 
prediction by integrating multiple covariates, including age, sex, bone length, and scan position. Additional 
outcome measures aligned with radiological standards, such as ulnar variance or articular surface spacing, 
could further increase clinical relevance. While CPPLS has shown promise in single-object models, its 
performance in multi-object SSMs, where spatial relationships must be preserved, remains to be 
demonstrated. 
 
A multi-object model holds potential for cases involving bilateral deformities, where no healthy 
contralateral reference is available. In such cases, the normal morphology of an a>ected bone (e.g., the 
radius) could potentially be inferred based on the geometry of its paired structure (e.g., the ulna). For such 
clinical applications, accurate modeling spatial relationships is essential, given their direct impact on 
forearm rotation.  
 
An alternative approach to improve model performance would be to include only CT scans acquired with 
the fixation device. This would reduce the contribution of scan-position-related components and might 
reveal additional age-related modes currently masked by pose variability, ultimately leading to more 
accurate predictions. For example, one of the higher-order components (PC10) showed a non-linear 
correlation with age in the non-linear based PCA model and appeared to reflect variation in ulnar variance 
across the pediatric age range. This might relate to the asymmetric growth contribution of the distal radius 
and ulna, where approximately 75% of radial length growth occurs at the distal physis, compared to only 
20% in the distal ulna [23]. However, this e>ect accounted for only a minor fraction of the total variance, 
likely because non-relevant variability from scan positioning explained a much larger proportion of the 
observed variation. 
 
A promising direction is to correct for scan position retrospectively. Since rotation-related components 
(PC2, PC3, and PC5) significantly correlate with scan position, it may be possible to regress out or normalize 
their scores based on this correlation. This would enable more flexible model validation, even with 
randomly positioned scans. 
 
Modeling of non-mature growth plates is a promising yet complex extension. In this study, non-ossified 
epiphyseal regions were synthetically attached to the bone, which may have limited the model’s ability to 
capture ossification processes. Addressing this requires models that support a variable number of objects 
per sample, a technical frontier in multi-object SSM. 
 
Although more powerful techniques exist, such as deep learning or non-linear manifold learning, this study 
deliberately employed conventional SSM methods (PCA and PLSR) due to their interpretability and 
methodological transparency. These methods are also consistent with prior multi-object SSM studies [15, 
17-19, 21]. The more powerful approaches can model complex, non-linear relationships between age and 
shape variation that traditional linear methods may fail to capture. For example, deep learning can 
automatically learn hierarchical features from large datasets, while non-linear manifold learning methods 
such as kernel PCA better preserve local geometric relationships. In principle, these techniques could 
improve prediction accuracy. However, we considered it essential first to understand the anatomical and 
methodological challenges using established, transparent methods before exploring more complex 
alternatives. 
 

4.4. Conclusion 
In this study, we developed a 3D multi-object SSM of the healthy pediatric forearm, covering ages 4–18 
years. While the model e>ectively captured age-related morphological variation within a shared shape 
space, its prediction accuracy was lower than that of single-object SSMs. However, the multi-object 
approach enabled assessment of spatial configuration, which was generally well preserved, particularly in 
the longitudinal direction. Although further refinement is required, this method provides added value for 
modeling coordinated forearm development and holds potential for future clinical applications.  
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6. Appendices 
A: Growth Plate Attachment 
Samples without an ossified growth plate, thus virtually identified as consisting of more than one body, were 
adjusted in Materialise 3-Matic and MeshLab (version 2023.12) to obtain one part.  
 
We synthetically attached the proximal ulnar growth plate to the olecranon using the following process 
(Figure A1): (1) cutting the bone at metaphyseal height, (2) performing dilation followed by erosion on the 
epiphyseal part using uniform mesh resampling with a precision of 1 and an o>set of ±7 mm, (3) merging 
the processed part and the original epiphyseal part, (4) merging the new one-bodied part with the original 
diaphyseal bone part. 
 

 
Figure A1. Visualization of the preprocessing steps to attach the growth plate to the ulna. 
 
B: Optimization Parameters 
Table B1. Parameters used for the point distribution model (PDM) optimization in ShapeWorks. 

Initial Relative Weighting 0.1 
Relative Weighting 20 
Starting Regularization 1000 
Ending Regularization 10 
Iterations per Split 3000 
Optimization Iterations 3000 
Multiscale Start 32 

 
C: Non-Linear Regression Model 

 
Figure C1. Non-linear regression of the first principal component (PC1) scores versus age. 
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Table E1. Extended results showing length di1erences of the radius and ulna for each follow-up participant, for both the non-linear 
principal component analysis (PCA) and partial least squares regression (PLSR) models. RMSE = root mean squared error, mm = 
millimeter. 

Patient Age 
[years] 

Sex PCA - 
RMSE 
[mm] 

PLSR - 
RMSE 
[mm] 

Length 
dikerence 
radius PCA 
[mm]   

Length 
dikerence 
ulna PCA 
[mm] 

Length 
dikerence 
radius 
PLSR [mm] 

Length 
dikerence 
ulna PLSR 
[mm]   

012 14.6 Female 1.9 2.3 -5.1 -3.0 -5.6 -3.8 
013 18.3 Male 1.8 5.5 -13.8 -14.1 13.2 8.9 
018 13.6 Female 2.1 3.2 -17.7 -20.3 2.8 -3.5 
019 14.6 Female 3.1 2.2 17.3 16.3 5.2 3.0 
022 8.5 Male 1.3 2.1 -2.7 -0.7 5.9 6.3 
025 13.9 Female 2.7 5.0 11.2 13.6 11.0 7.8 

 
Table E2. Extended results showing proximal and distal inter-bone distance between the radius and ulna for both predicted and 
original meshes of each follow-up participant, based on the non-linear principal component analysis (PCA) model. mm = millimeter. 

Patient Proximal distance – 
predicted [mm] 

Distal distance – 
predicted [mm] 

Proximal distance – 
original [mm] 

Distal distance – 
original [mm] 

012 28.9 11.2 27.7 13.6 
013 31.6 6.4 32.4 6.7 
018 28.3 5.9 30.8 7.0 
019 30.1 8.9 28.5 5.6 
022 22.0 4.9 19.5 6.0 
025 28.4 9.1 27.1 9.1 

 
Table E3. DiFerences in predicted ratios compared to follow-up (FU) meshes for the non-linear principal component analysis (PCA) model. Δ = 
absolute diFerence between predicted and FU ratios, width ratio = ratio of the combined axis-aligned bounding box (AABB) width to the sum of 
the individual AABB widths, X and Y = axis direction. 

Ratio radial/ulnar 
length 

Δ Normalized proximal 
distance ratio 

Δ Normalized distal 
distance ratio 

Δ Width ratio 
(X) 

Δ Width ratio 
(Y) 

0.007 (SD: 0.003) 0.004 (SD: 0.005) 0.005 (SD: 0.004) 0.016 (SD: 
0.010) 

0.033 (SD: 
0.023) 

 
D: Scatterplots of Scan Orientation-Correlated Components 

 
Figure D1. Scatterplot of the second and third principal components (PC2 and PC3) from the PCA model, illustrating the distribution 
of shape variation across the dataset. 
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E: Multi-Level Component Analysis Result 

 
Figure E1. Visualization of variations along the first principal component from the multi-level component analysis (MLCA), shown 
within ±2 standard deviations (σ) from the mean shape. 
 
F: Additional Results of Prediction Model 
Table F1. Extended results showing length di1erences of the radius and ulna for each follow-up participant, for both the principal 
component analysis (PCA) and partial least squares regression (PLSR) models. RMSE = root mean squared error, mm = millimeter. 

Patient Age 
[years] 

Sex PCA - 
RMSE 
[mm] 

PLSR - 
RMSE 
[mm] 

Length 
dikerence 
radius PCA 
[mm]   

Length 
dikerence 
ulna PCA 
[mm]   

Length 
dikerence 
radius 
PLSR [mm] 

Length 
dikerence 
ulna PLSR 
[mm]   

012 14.6 Female 1.9 2.3 -7.8 -5.9 -4.1 -1.7 
013 18.3 Male 2.0 5.9 -1.8 -1.4 18.6 14.4 
018 13.6 Female 2.2 3.2 -22.3 -25.2 3.7 -2.4 
019 14.6 Female 2.6 2.4 14.1 13.3 7.1 5.2 
022 8.5 Male 1.3 2.1 -2.7 -0.7 1.5 1.3 
025 13.9 Female 2.2 5.1 7.4 9.1 12.2 9.2 

 
Table F2. Extended results showing proximal and distal inter-bone distance between the radius and ulna for both predicted and 
original meshes of each follow-up participant, based on the best-performing model. mm = millimeter. 

Patient Proximal distance – 
predicted [mm] 

Distal distance – 
predicted [mm] 

Proximal distance – 
original [mm] 

Distal distance – 
original [mm] 

012 28.5 11.1 27.7 13.6 
013 33.1 7.1 32.4 6.7 
018 27.9 5.4 30.8 7.0 
019 29.9 8.7 28.5 5.6 
022 22.0 4.9 19.5 6.0 
025 27.7 8.8 27.1 9.1 

 




