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Stellingen behorende bij het proefschrift: 

ROUTING CHANNELS IN VLSI LAYOUT 
door 

H.Cai 

1. Gegeven een floor-plan-graaf kan een conflict-vrije kanaalstructuur 
gevonden worden in polynomiale tijd, waarvan de gerealiseerde bonus 
van kanaalsplitsingen optimaal is. 

2. De methode, voorgesteld door W.M. Dai e.a. in "Routing Region 
Definition and Ordering Scheme for Building-Block Layout" (IEEE 
Transactions on Computer-Aided Design CAD-4(3) pp. 189-197, Juli 
1985), om empty rooms in floor-plan-grafen te elimineren is niet correct. 

3. De beperkingen van de slicing topologie worden ruimschoots gecompen­
seerd door de voordelen ervan. 

4. Voor de productie van bruikbare CAD software is het essentieel dat 
ontwikkelaars werken in een omgeving van IC ontwerpers. 

5. De betrouwbaarste en uiteindelijk ook meest kosten-besparende 
methode om universiteits-software te gebruiken in een industriële 
omgeving is het volledig herschrijven ervan. 

6. Daar de oosterse- en westerse geneeswijzen elkaar goed aan kunnen 
vullen is de Nederlandse benaming 'alternatieve geneeskunde' voor de 
eerste misleidend. 

7. Gezien de hoge connectiviteit tussen de centrale bibliotheek van de TU 
en de medewerkers van de universiteit verdient het aanbeveling de cen­
trale bibliotheek in het centrum van de universiteit te plaatsen. 
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8. Onderzoekers van Kunstmatige Intelligentie kunnen uit de studie van 
het "go"-spel een beter begrip van menselijke denkprocessen verkrijgen 
dan uit onderzoek van het schaakspel omdat "go" meer gebaseerd is op 
feature-recognition en pattern-directed-reasoning dan op tree-search en 
look-ahead methodes. 

9. Voor het vervaardigen van goede artikelen is het beschikken over typo-
graphische en esthetische kennis minstens zo belangrijk als de beschik­
baarheid van een goede en gebruikersvriendelijke textverwerkingsfacili-
teit. 

10. Weten het niet-weten, dat is hoog. 
Niet weten het weten, dat is een ziekte. 
Wie ziek is van die ziekte is niet ziek. 

Lao-tse in Tao-Te-Tjing * 

Uitgever: Ankh-Hermes, Devender, 1986,11e dr. 
Vertaling: Ir. J.A. Blok. 
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SUMMARY 

In this dissertation we present a number of algorithms for the automatic 
routing of interconnections in VLSI building-block layout. 

The layout of this type of integrated circuits consists of a set of rectangu­
larly shaped cells (the building blocks), which compose the design and which 
are placed in a two dimensional finite space, and of the interconnections 
between the terminals on the periphery of these cells in accordance with the 
schematic of the circuit to be implemented. The goal of the layout design is to 
achieve as small as possible a chip area that will satisfy a set of constraints. 

Layout optimization is a very complex combinatorial problem. A divide 
and conquer strategy is used to solve the layout problem by dividing it into a 
sequence of subproblems. The layout problem is traditionally divided into 
several steps: floorplanning, placement, the definition of routing channels, 
global routing and detailed routing. In this dissertation algorithms for the 
topological definition of channels, the global routing and the geometrical 
definition of channels are presented. 

The topological definition of channels determines the decomposition of the 
routing area into routing channels and the order in which the channels are 
routed. In contrast to traditional approaches we define and order the chan­
nels after the global routing. This approach possesses the advantage that glo­
bal routing information can be taken into account to select the optimal chan­
nel structure. We present a polynomial algorithm for the channel definition 
and ordering problem. The existence of a conflict-free channel structure is 
guaranteed by enforcing a sliceable placement. 

In the global routing step a decision on the path taken by each of the 
interconnection nets is made. Algorithms for finding the shortest connection 
path are described. A separate algorithm is developed for the power net 
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routing, because the two power nets must be planarly routed with variable 
wire width. 

Before a channel can be physically routed by a channel router, the 
geometrical channel envelope must be determined. In order to minimize the 
channel density the relative position of the blocks adjacent to the channel is 
first optimized. Moreover, an ordering of the terminals on the channel ends is 
determined to minimize the number of wire crossings in the channel intersec­
tion areas. 

In the last chapter an integrated placement and routing system for gen­
erating building-block layout is briefly described. Most of the algorithms 
presented have been implemented into this system. Some experimental 
results and design experiences in using the system are also presented. Very 
good results have been obtained. 
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SAMENVATTING 

In dit proefschrift wordt een aantal algoritmen gepresenteerd voor het 
automatisch bedraden van interconnecties in VLSI schakelingen. 

Een geïntegreerde schakeling bestaat uit een aantal functionele bouws­
tenen (blokken) waaruit het ontwerp is samengesteld en de bedrading tussen 
deze bouwstenen. Het uiteindelijke doel van het layout ontwerp proces is om 
een zo klein mogelijk chip oppervlakte te realiseren, waarbij tevens voldaan 
moet worden aan een aantal electrische specificaties en proces voorschriften. 

Het bovengenomende layout ontwerp proces is een zeer complex combina­
torisch optimalisatie probleem. Daarom wordt een "verdeel-en-heers" prin­
cipe gebruikt waarbij het probleem in een aantal deelproblemen opgedeeld 
wordt. Het plaatsings- en bedradingsgedeelte van het layout probleem wordt 
opgedeeld in een plaatsings stap waarin de blokken geplaatst worden op de 
chip, een bedradingskanaal definitie stap waarin de bedradingdsiiiimte in 
zogenaamde "kanalen" opgedeeld wordt, een globale bedradings stap die 
bepaalt hoe de netten verbonden worden in de bedradingsruimte en tenslotte 
een gedetailleerde bedradings stap waarin de uiteindelijke fysieke bedrading 
gegenereerd wordt. In dit proefschrift worden algoritmen gepresenteerd voor 
de kanaal definitie en de globale bedradings stap. 

Tijdens de topologische kanaal definitie worden zowel het opdelen van de 
bedradingsruimte in bedradingskanalen als de bedradingsvolgorde van de 
kanalen bepaald. In tegenstelling tot de gebruikelijke benadering defineren 
wij de kanalen en de kanaalvolgorde pas na de globale bedradings stap. Dit 
heeft als voordeel dat de globale bedradings informatie gebruikt kan worden 
bij het selecteren van de optimale kanaalstructuur. Een efficient algoritme 
voor het kanaal definitie en ordenings probleem wordt gepresenteerd. 
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Bij de globale bedradings stap wordt een beslissing genomen over de 
paden die door de interconnectie netten gevolgd zullen worden. Verscheidene 
algoritmen voor het vinden van het kortste pad worden behandeld. Een spe­
cial algoritme is ontwikkeld voor het bedraden van de voedings netten. Deze 
netten moeten planair bedraad worden met een variabele draadbreedte. 

Voordat een kanaal fysiek bedraad kan worden door een kanaalbedrader 
moet eerst de contour van het kanaal bepaald worden. Om de hoeveelheid 
bedrading binnen een kanaal te minimaliseren wordt de relatieve positie van 
de blokken aangepast. Verder wordt een volgorde van de terminals op de 
uiteinden van de kanalen bepaald om het aantal kruisingen te minimaliseren 
in de kanaalovergangsgebieden. 

In het laatste hoofdstuk wordt een krachtig plaatsings- en bedradingssys­
teem gepresenteerd. De meeste van de gepresenteerde algoritmen zijn geïm­
plementeerd in dit systeem. Met dit systeem zijn zeer veel belovende resulta­
ten behaald. 
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1. INTRODUCTION 

1.1 Layout and layout styles 

The mask patterns with which an integrated circuit (IC) is realized on sili­
con is called the layout of the IC. The layout of integrated circuits consists of 
the placement of devices (cells) composing the design in a two-dimensional 
finite space, and of the interconnections of the pins of these devices according 
to the schematic of the circuit to be implemented [Souk81]. 

IC design is divided into several design stages. Commonly used design 
stages are the functional, the logic, the circuit or schematic and the physical 
or layout design stage. Layout design is a crucial phase of the IC design pro­
cess, because the area usage, the speed and the power consumption of the cir­
cuit depend for a great deal on the quality of the layout. Layout design is 
also one of the most time-consuming steps in the IC design cycle, because full 
geometrical details of each individual transistor and wire segment must be 
drawn correctly. According to actual measurements it takes about 45% of the 
total design time [Sout83]. The goal of the layout design is to complete the 
placement and interconnections of the design in the smallest possible area 
that will satisfying a set of constraints. There is a variety of constraints, for 
example: design constraints based on the layout style, technological con­
straints due to design rules and the number of layers that can be used for 
routing, and performance constraints, e.g. the timing of the logic to be imple­
mented. 

An IC can be implemented in different ways. Although the classification 
in the literature is not standardized, we make use of that which classifies 
implementations into two categories, namely, semi-custom and full-custom. 
In the semi-custom style most masks of the layout image are prefabricated, 
only the interconnection layers can be customized by the designer. In full-
custom ICs all mask layers must be processed as specified by the designer. 
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Semi-custom ICs are cheap to process and provide a fast design-to-
realization-turnaround time. However, the area usage and performance of a 
semi-custom IC is usually poorer than a comparable well-designed full-
custom IC. Layout styles can also be distinguished by the cell sizes and cell 
arrangement. Both gate-array and standard-cells use a regular layout for the 
cells. Cells are arranged in rows and routing channels are denned between 
the cell rows. Automatic layout systems were introduced first for these lay­
out styles, because of their regular structure which is amenable to layout 
automation. In gate-arrays the channel widths are fixed. Wirability therefore 
is an issue of paramount importance in gate-array designs. In contrast, the 
macro-cell or building-block layout style which uses cells of arbitrary shape 
and size is much less regular and more difficult to automate. Cells can 
occupy any positions on the chip and routing areas are not predefined. This 
design style is most flexible and provides the designer with full control over 
the quality of the layout. Note that standard-cells and macro-cells can be 
mixed to implement the layout of the same circuit. 

The recent development of a gate-array technology known as sea-of-gates, 
where the entire area of the chip is covered by devices densely packed, has 
created new excitement in the IC community. This technology promises 
excellent area utilization and does not have the routing-area restriction that 
standard gate-array architectures have, while allowing the prefabricated 
benefits of standard gate-array technology. 

In this thesis we will further concentrate on the macro-cell or the 
building-block layout (BBL) style. Not many companies have a production 
automation system for building-block layout design, mainly because of the 
immaturity of the design tools. As an increasing number of full-custom ICs 
are being produced, there is an increasing demand for well-developed auto­
mation techniques for building-block layout to cope with the growing com­
plexity of the integrated circuits and to shorten the design-turnaround time 
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[Sang87]. 

1.2 Layout design methodology 

The integration density on silicon is ascending rapidly. VLSI chips con­
taining a million devices are already a reality and there is no indication that 
this growth in complexity will reach its limit in the near future. Therefore, 
hierarchy becomes an essential ingredient in layout design. It provides a way 
to manage the complexity of the design and to coordinate the team work 
between the designers. In mapping the logic decomposition of the circuit into 
geometric layout two methodologies are commonly used, top-down and 
bottom-up. 

Top-down layout design starts at an early stage of the design process by 
partitioning the chip surface into a number of functional blocks. Each block 
can in turn be partitioned into smaller subblocks. The size and shape of the 
functional blocks are estimated only. When more detailed design data 
becomes available, the layout is gradually refined. For instance, the shape 
and size of the functional blocks are determined more and more precisely and 
the I/O pin positions on these blocks are chosen to optimize quality in terms 
of overall area of the chip, wire density, delays on the critical paths, etc.. 
Also, the wiring areas are taken into account. Full geometrical design of the 
individual blocks is postponed until late design stages. This design process is 
also called the stepwise-refinement [Ginn84] of the layout. The method can be 
applied if flexibility in the cell shapes and pin positions is available, which is 
the case, for example, when standard cells are used to construct the building 
blocks, or software module generators with some flexibility are available. 

The bottom-up design method uses a set of fixed cells to build the circuit. 
These cells are often predesigned library cells or blocks with very little flexi­
bility in changing shapes and pin positions. As a chip is usually designed 
hierarchically, top-down and bottom-up design methodologies can also be 
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seen as the two ways the hierarchy (or the decomposition) tree of the circuit 
is traversed, either from top to bottom or from bottom to top. In practice, 
during the evolution of a design, the hierarchy tree is continuously traversed 
in both directions. Hence none of these two methods can be strictly followed. 
A combination is usually used [Colb82]. 

1.3 D i v i d e - a n d - C o n q u e r 

Layout optimization is a very complex combinatorial optimization prob­
lem. Even the simpliest versions of the layout optimization problem are NP-
complete or NP-hard [Sahn80] which implies that we cannot expect to find 
exact solutions in a time polynomial in the size of the problem. As a conse­
quence most of the algorithms proposed for the optimal layout problem are 
heuristic. 

Heuristic algorithms explore the solution space quickly but cannot 
guarantee to produce the optimum solution. In general, they restrict the size 
of the solution space to be examined. Solutions found are usually locally 
optimal solutions. In spite of the fact that a good heuristic algorithm may 
produce excellent solutions for a wide variety of problems, one does not have 
the comfort of the theorists in justifying the quality of the solutions claimed. 
Aside from questions arising from the computer implementation of the 
heuristic algorithms, where considerations involving data structure, space-
time trade-off, portability, flexibility, modularity, etc. can justify the way of 
doing things, the soundness of~thë7^rocëdure canronly~be^demonstrated 
through extensive experimentation on sample instances [Lin75]. 

An important universal principle for constructing heuristics to solve com­
plex problems is the principle of divide-and-conquer. This principle may be 
applied in two ways, by dividing complex problems into a sequence of prob­
lems of a simpler nature for which efficient heuristics or even exact algo­
rithms are available, or by dividing a large problem into problems of a 
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smaller size and then combining the solutions to the subproblems to provide 
the solution to the original problem. 

Layout design is traditionally divided into the placement of the cells and 
the routing of the interconnections. As we will see, these two problems are 
further subdivided into more specialized and better understood subproblems. 
Most systems for building-block layout decompose the placement and routing 
problem in the following flow of subproblems. At first, a floorplan of the chip 
components is derived at the floorplanning step. In this step, the components 
of the chip may or may not be completely characterized in terms of area, 
power or speed. Next, the components of the layout are placed on the area 
that is assigned to the chip, possibly with some information about the area 
needed to complete the routing of the interconnections. The interconnections 
are routed in the area called the routing area that is not taken by the com­
ponents. A global decision on the path in the routing area taken by each of 
the nets connecting the components is then made in the global routing step. 
To complete the detailed routing of the connections the routing area is subdi­
vided into smaller routing regions in order to reduce the problem's size and 
complexity. These routing regions are physically routed one after another by 
a detailed router. The resulting pieces of the layout are then put together to 
constitute the total layout of the chip. If not all the nets can be routed in the 
available routing area, the placement of the components must be modified to 
make more room for the routing. These steps could be iterated several times 
to improve the resulting layout. For example, the routing of the chip can be 
used to evaluate the quality of the placement of the components and hence 
improvement on the placement could be made after a routing iteration. 

1.4 Channel definition in building-block layout 

The main contribution of this thesis is in the area of channel definition in 
the building-block layout-design process. We interpret channel definition in a 
broad context here. We consider it to be all the design steps between the 
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placement of the blocks and the detailed routing of the interconnections, for 
example, the global routing, the construction and ordering of channels. In 
building-block layout the cells differ in size and may be located in any posi­
tion. Hence, in contrast to gate-array and standard-cell layout, the decompo­
sition of the routing area into smaller routing regions, called channels, is 
often not unique. How the routing area can be decomposed depends, of 
course, also on the available detailed routing tools. Channel definition plays 
an important role in achieving a good final layout, because global decisions in 
planning the wiring flows on the chip are made at this stage. After this 
phase the routing problem is decomposed into problems of a smaller size 
which will be geometrically routed by the detailed router. 

In our approach the channel definition phase consists of a number of 
steps. First, the routing area is divided into smaller rectangular routing 
regions. A global router decides through which regions the path of the inter­
connection nets will run, taking into account the total wire length, the chip 
area, the wiring congestion, etc.. Out of the small routing regions routing 
channels are defined. First, the topological relationships are established 
between the channels, and between the channels and the building blocks. 
Also an ordering of the channels is determined in which the channels will be 
physically routed. After this step the routing problem is more or less broken 
down into smaller routing problems in the channels. The interfaces between 
the channels are then defined and the exact shape of the channel boundary 
(which is usually not rectangular) is determined before a channêri8~8ënrtö 
the detailed router. 

Algorithms will be presented, both heuristic and exact, for various steps 
in the channel definition phase. A shortest path and a Steiner tree heuristic 
algorithm are proposed for the global routing of the nets. Special attention is 
paid to the power nets which have to be planarly routed. A polynomial algo­
rithm is developed for the topological channel definition and ordering 
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problem. A novel idea is to define and order the channels after the global 
routing step. This idea is based on the philosophy of taking as many channel 
topologies as possible into consideration and of postponing the selection as 
long as possible. Furthermore, detailed placement optimization, channel 
density minimization and optimal net ordering techniques are presented. 

1.5 An overview of the thesis 

Since placement and routing are related problems, we first give some prel­
iminaries on the floorplanning and placement problem in chapter II before 
the routing-related algorithms are presented. A special layout structure, the 
slicing structure and sliceable placements, which is a very important concept 
for the rest of the thesis, is outlined. 

In chapter III a graph model is defined to represent the routing regions 
and methods to construct such a graph are described. Then, an algorithm is 
presented which defines and orders a set of routing channels constituted from 
the smaller routing regions. This algorithm takes the global routing data 
into account in order to optimize the wiring flow and to minimize the dead 
area. The complexity of the algorithm will be proved to be polynomial 
bounded. 

Chapter IV is devoted to the global routing-related issues. Efficient algo­
rithms on finding the shortest connection path of the nets are presented. 
Over- and through-the-cell routing capabilities are outlined. A separate algo­
rithm is developed for the planar power-net routing. This algorithm guaran­
tees a planar routing of the two power nets if one exists. 

In chapter V the problem of the geometrical channel definition is studied. 
In this step the exact shape of the channel boundary is determined. The rela­
tive positions of the blocks adjacent to the channel to be routed are optimized 
in order to minimize the channel density. Although the channels are routed 
one at a time, the nets passing the channel intersections are synchronized by 
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indicating a preferred terminal ordering on the channel ends to prevent 
unnecessary wire crossovers. 

Finally, in chapter VI a powerful placement and routing system for the 
building-block layout is highlighted. Many of the ideas presented in the 
thesis have been implemented in this system. Some design experiences with 
this system and the obtained results will also be presented. 

1.6 References 

Colb82. B. W. Colbry and J. Soukup, "Layout Aspects of the VLSI Micropro­
cessor Design," Proc. ISCAS, pp. 1214-1228 (1982). 

Ginn84. L.P.P.P. van Ginneken and R.H.J.M. Otten, "Stepwise Layout 
Refinement," Proc. ICCAD, pp. 30-36 (Oct. 1984). 

Lin75. S. Lin, "Heuristic Programming as an Aid to Network Design," Net­
works 5 pp. 33-43 (1975). 

Sahn80. S. Sahni and A. Bhatt, "The Complexity of Design Automation 
Problems," Proc. 17th Design Automation Conference, pp. 402-441 
(1980). 

Sang87. A. Sangiovanni-Vincentelli, "Automatic Layout of Integrated Cir-
cuits," pp. 113-193 in Design Systems for VLSI Circuits, Logic Synthesis 
and Silicon Compilation, ed. G. De Micheli, A. Sangiovanni-Vincentelli, 
P. Autognetti, Martinus Nyhoff Publishers (1987). 

Souk81. J. Soukup, "Circuit Layout," Proceedings of The IEEE 69(10) pp. 
1281-1304 (October 1981). 

Sout83. J. R. Southard, "MacPitts: An Approach to Silicon Compilation," 
Computer, pp. 74-82 (December 1983). 



13 

2. FLOORPLANNING AND PLACEMENT 

2.1 The floorplanning and placement problem 

Floorplanning and placement are related problems, both deal with the 
arrangement of the circuit components on the chip surface. Floorplanning is 
often considered as a generalization of the placement problem. 

Placement is defined to be the task of assigning precise locations and 
orientations on the chip surface to the components of the design so that a 
number of goals are achieved, such as minimizing the chip area, minimizing 
the total wire length and minimizing the signal delays while sufficient rout­
ing area is allocated for the wiring. Layout of the components is assumed to 
be rectangular in shape. The positions on a block at which the component 
can be connected to the other parts of the circuitry, called terminals, are 
located on the periphery of the block. A net list specifying which terminals 
have to be interconnected is also given. 

The simplest version of the placement problem, the two dimensional pin-
packing problem, in which the connectivity between the rectangular blocks is 
ignored is already a NP-hard problem [Gare79]. Allowing non-rectangular 
blocks would make the problem even more complicated. The different goals 
of the placement are difficult to cast into a single objective function that can 
be handled by an algorithm. Usually a more restricted objective is used by 
placement algorithms. When a placement procedure derives a good place­
ment as measured by the restricted objective, it is hoped that the placement 
is also good as measured against the actual goals. 

With the same goals in mind floorplanning is one of the first stages in the 
design of the circuit. In this step, a designer partitions a large design into 
macro-modules and selects optimal relative positions, sizes, aspect rations 
and terminal positions of the modules. As pointed out in the previous 
chapter, information about the exact size, shape and terminal positions of the 
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building blocks may be unknown at the initial phase of floorplanning. For 
example, if a functional module is implemented with standard-cells, then the 
number of rows used for the module is not necessarily fixed. The use of many 
rows will produce a block that is tall and skinny; using a few rows will pro­
duce a block that is short and fat. If the module is implemented with a PLA, 
topological operations such as folding and partitioning can be used to vary 
the aspect ratio and terminal positions of the block. These flexibilities can be 
exploited at the floorplanning stage in order to obtain a better area utilization 
and circuit performance. 

Thus, floorplanning is more general and less structured than the place­
ment problem and is more difficult to solve. Although both aim at an optimal 
geometrical layout, floorplanning is more concerned with the topological than 
with the geometrical structure of the layout. As a consequence the aspects of 
floorplanning that have been investigated most are related to the determina­
tion of the relative positions of the blocks. 

2.2 Slicing structure and sliceable placement 

Placement algorithms generate a geometrical placement of the blocks in 
terms of absolute coordinates while floorplanning algorithms usually only 
derive a topological relative positions of the blocks, a floorplan. A floorplan 
can be represented by a rectangular dissection which is a geometrical 
configuration consisting of a finite number of non-overlapping rectangles that 
together completely cover an enveloping rectangle. Given a geometrical 
placement it is possible to construct an associated floorplan in the form of a 
rectangular dissection such that each of the rectangles contains one and only 
one of the blocks. A placement and an associated relative rectangular dissec­
tion is shown in Fig. 2-1. 

A special case of a rectangular dissection is the slicing structure [Otte82] 
which is obtained by recursively dividing rectangles into smaller ones by 



2.2. Slicing structure and sliceable placement 15 

a 

b c 

d e f 

g 

i 

Figure 2-1. A placement and an associated rectangular dissection. 

parallel lines, called slice lines. The floorplan of the placement in Fig. 2-1 is a 
slicing structure. A slice is either an undissected rectangle or a rectangle 
dissected into smaller rectangles by slice lines. The slices obtained by 
dissecting a slice over all its parallel slice lines are called the child slices or 
subslices of the dissected slice which is called the parent slice of the subslices. 

Slicing structures are particularly interesting in building-block layout 
design, because as we will see, routing of these structures can be performed 
by the most effective tools available today for this task: the channel routers. 
This is due to the fact that conflict-free channel orders can be defined for a 
slicing structure. This issue will be fully explained in the next chapter. For 
now, a channel router is a tool which can route a region called a channel with 
fixed terminals on the upper and lower boundaries and floating terminals 
along the left and right sides. 

Beside the possibility of using channel routers a slicing structure has a 
number of other interesting features. It can be represented by simpler data 
structures than more general topologies. The topology of a slicing structure 
can be represented by a tree, the slicing tree, with each slice represented by a 
node, and arcs from each node representing a parent to each node 
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representing one of its child slices, leaving the parent's node in accordance 
with the ordering of the child slices. Many optimization problems for slicing 
structures can be solved efficiently, whereas the corresponding problems for 
arbitrary rectangular dissections are NP-hard. Not only computationally is a 
slicing structure an attractive topology, it also offers more flexibility in 
achieving area efficient layouts. For instance, before a channel is routed, the 
channel densities can be minimized by lateral block shifting along the sides of 
the channel, because the absolute positions of the blocks can be adjusted dur­
ing the detailed routing without destroying the slicing topology. Further­
more, it is also very suited for hierarchical layout design. 

A placement can be derived in various ways, by a floorplanner, a placer or 
manually. To construct a routing system which is independent of the place­
ment method we decided to use a geometrical placement of the blocks as the 
starting point of the routing process. For the reasons mentioned above, we 
restrict ourselves to the class of sliceable placements, placements which can 
be recursively bisected by straight lines. An associated slicing structure 
floorplan can be obtained for a sliceable placement. Note that in general 
there is no unique slicing structure for a given sliceable placement because 
the existence of crossing slice lines. For example, for the placement in Fig. 
2-1 two slicing topologies exist, one uses the maximal horizontal line segment 
as the first slice line, the other uses the vertical one as the first slice line. 
Hence, a sliceable placement contains more information than a slicing struc­
ture. Beside the presence of multiple floorplan topologies in a placement 
expected wiring space can also be extracted from the placement. 

2.3 Automatic floorplanning and placement 

To achieve high quality layouts floorplanning and placement is a key prob­
lem. It is also regarded as one of the most difficult problem in automatic lay­
out of integrated circuits. Due to the nonuniform size and shape of the build­
ing blocks row-oriented placement techniques for gate-array and standard-
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cell layout are not applicable. In this section we will give a brief review of 
frequently used floorplanning and placement algorithms for building-block 
layout design. Some of them produce slicing structures or sliceable place­
ments and some of them generate a general topology. 

Min-cut algorithm. A well-known method is the min-cut algorithm. The 
basic procedure is based on the recursive application of a bi-partitioning algo­
rithm [Fidu82, Kern70]. Lauther applied it first to the macro-cell placement 
problem [Laut79]. Basically, the min-cut algorithm partitions the set of 
blocks into two subsets by either a vertical or a horizontal line so that the 
interconnections between the two subsets is minimized and a predetermined 
area balance criterion is satisfied. This procedure is recursively applied to 
the two subsets until each subset contains one and only one block. Obvi­
ously, this method always produces a slicing topology. 

An example of a recent application of the min-cut algorithm for floorplan­
ning is the Mason system [LaPo86]. In this system a topological floorplan is 
obtained by a modified min-cut algorithm. The floorplan is then converted 
into a geometrical placement by determining the block shape and coordinates 
using an algorithm proposed by Otten [Otte83] which is based on the shape 
constraint relations. Routing area is also taken into account in this system. 

Constructive method. This method is sequential in nature. A seed block 
(usually a large macro with heavy connection to others) is selected first. 
Recursively, a new block is chosen based on high connectivity to the already-
selected blocks; it is then placed adjacent to the ensemble by applying some 
heuristic scheme of best fit. There are many variations to this method, in the 
selection of the seed and the selection of the new block [Prea79, Horn81, 
Prea78]. 

Force-directed method [Quin75]. The basic idea of this class of methods is 
to represent the interconnections between the blocks with a set of forces. 
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Attractive forces are denned between strongly connected blocks and repulsive 
forces between weakly connected blocks. The blocks are then moved to their 
equilibrium position to minimize the sum of forces acting on the blocks. Vari­
ous heuristics can be used to remove/prevent overlaps in the resulting floor-
plan. Many layout systems employ a force-directed algorithm, e.g. [W0086, 
Ueda85]. 

Simulated annealing. Simulated annealing has received much attention, 
mainly because of its ability to escape from local minima. It is a general 
optimization technique. When applied to combinatorial optimization it gen­
erates moves randomly. Moves that reduce the cost are called downhill, and 
those that increase the cost are called uphill. All downhill moves are 

accepted, uphill moves are accepted with a probability of exp (——), where 

AE is the increase in cost and T is the temperature. The temperature is 
decreased by T := ocT for some constant a, 0<a<l, until the stop criterion is 
reached. A certain number of moves are generated and checked before a 
decrease in temperature is allowed. The initial temperature, the number of 
moves generated at each temperature and the rate of decrease of temperature 
are all important parameters that affect the speed of the algorithm and the 
quality of the final result. This variety of parameters makes also that the 
behavior of the method is difficult to control. 

Simulated annealing was introduced into layout by Kirkpatrick et al. 
[Rirk83]. The first application of simulated annealing to macro-cell place­
ment was presented in [Jeps83]. The noorplanning problem has also been 
attempted using this method [Otte84, Wong86, Sech88]. 

Recently, Dai and Kuh proposed a combined floorplanning and global 
routing method [Dai87]. In this approach, modules are hierarchically 
clustered according to their size and connectivity in a first bottom-up phase. 
The number of components at each level of the hierarchy is fixed to a 
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maximum of five. In the second phase a top-down approach is followed, where 
the blocks in the cluster are placed and globally routed. 

Many other methods have been experimented to tackle the floorplanning 
and placement problem, e.g. analytical methods [Sha85], dual graph algo­
rithms [Hell82], etc. Several review papers are available that cover a large 
part of published results, e.g. [Souk81, Prea86, Sang87]. Some experimental 
results of comparisons of several algorithms can be found in [Cai88]. 

2.4 Manual floorplanning and placement 

In spite of many efforts to find automatic floorplanning and placement 
techniques, the automatically produced floorplans and placements often have 
to face defeat against the manually produced ones. If the number of blocks is 
not large, which is usually the case in hierarchical designs, manual 
floorplanning/placement often produces superior results. A human being is 
able to consider different aspects of the two dimensional problem at the same 
time, for example the shape fitting of the blocks and the connectivity among 
the blocks. A human being is also fast in learning the mistakes and the 
floorplan/placement can be iteratively improved using feedback from the rout­
ing process. 

For these reasons the floorplan and placement of a design is often derived 
manually or semi-automatically using a graphical editor, e.g. [W0086, 
Anwa85]. In such systems an initial floorplan/placement is usually automati­
cally generated which is then interactively improved by the designer. Com­
puter assistance can be used in improving the layout. This includes functions 
such as total wire length estimation, routing area estimation, indication of 
move directions of the blocks and various display and manipulation com­
mands. 
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2.5 Wiring space 

The area used by a particular layout depends on the area of the modules 
to be placed and the area needed to complete the interconnections. If the 
routing area is not considered, then the area used depends on how well the 
modules can be packed together. However, an optimal packing of the 
modules may result in an inferior layout after the routing area is added to 
make the interconnections of all nets possible, because in modern chips wir­
ing may occupy 50% of the total chip area. Hence, it is very important to esti­
mate the amount of routing area needed accurately and to determine where 
the routing area should be added. Failure to allocate the correct amount 
invariably force substantial placement alteration by the router and result in 
substantial total wire length increases as well as chip area increases. An 
accurate placement is one that closely matches with the placement of the 
blocks in the final layout after the routing. 

As most floorplanning/placement algorithms do not have accurate routing 
area estimation procedures, the space allocated for the wiring prior to the 
routing itself usually differs from the wiring space actually required. The 
accuracy of the placement has great influence on the global routing accuracy, 
and what is more, on the routing channel definition process, because the 
channels are defined based to the geometrical placement of the building 
blocks. However, after one global routing iteration the global routing data 
can be usëd~to~estimate~the routing area more accurately.—If-it isin-thefloor-
planning phase one can still adjust the block shape and positions in conjunc­
tion with the required routing space [LaPo86]. Here, we propose an algo­
rithm to adjust the wiring space in the placement phase, i.e. all blocks have 
fixed shape. The algorithm does not require a sliceable placement as input 
and does not guarantee a sliceable placement as output either. 

Inspired by the constraint graph method in the layout compaction field 
[Cho85] we construct two channel-position graphs, one in each direction, to 
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represent the adjacencies of the wiring regions and the blocks. In the vertical 
channel-position graph each vertex represents the top side edge or the bottom 
side edge of a block and an edge represents a dimension, either a block or a 
wiring region between two blocks. Two additional vertices, s and d, are 
added to the graph as the source and destination vertices. The horizontal 
channel-position graph is defined similarly. An example of a pair of channel-
position graphs is shown in Fig 2-2. Note that this is a more refined 
definition of the channel-position graphs compared to the one in [Prea78]. 

A 

B C 

Figure 2-2. Channel-position graphs. 

The algorithm repositions the blocks such that proper wiring space is pro­
vided. The blocks are moved in one direction at a time. Let us consider the 
vertical direction. First, the channel-position graph is derived from the block 
placement. All paths from the source vertex s to the destination vertex d in 
the channel-position graph are searched and sorted in the order of decreasing 
path length. The length of a path is the sum of the length of its edges which 
represent the size of the blocks and the size of the wiring regions. The size of 
the blocks is known. However, the size of the wiring regions needs be calcu­
lated. For this purpose the global routing routine is invoked to estimate the 
needed wiring space. How the global routing is carried out is explained in a 
later chapter. 
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The length of the longest path (also called the critical path) from 's' to 'd' is 
an estimate of the chip height H. If the blocks are repositioned such that the 
estimated chip height is realized, the routing regions on the paths shorter 
than H will contain some empty space or dead space. The algorithm uses an 
"average slack" method to distribute the total dead space uniformly among 
the wiring regions. To each wiring region a fraction of the total dead space is 
assigned, with a percentage proportional to its width. Consequently some 
channel segments will become wider than the minimum required width. As a 
wiring region can be a part of more than one path, the paths are processed in 
the order of decreasing path length. This ordering implies that more critical 
paths are processed first. After a wiring region is assigned a width it is 
"locked" against further change. If, in a path, some channel segments are 
locked, the remaining dead space on the path is assigned to the unlocked wir­
ing regions. Finally, using the new wiring region size the blocks are moved to 
their longest distance positions from the destination vertex. 

Compared to the case in which the blocks are moved directly to the long­
est path distance using the minimum wiring-region size an advantage of this 
method is that the dead space is distributed among the wiring regions evenly 
over the chip area instead of being concentrated in the upper and right chip 
boundaries. This results in a more balanced layout and provides the detailed 
router the best chance to utilize the routing area optimally. The procedure 
may be iterated in order to achieve a more accurate placement. The horizon­
tal and vertical directions are processed in an alternative order. 

Another application of the procedure is to evaluate the placement. At this 
stage of the design if one discovers that the placement is not optimal and can 
be improved one can directly go back to the placement phase without spend­
ing time in the detailed routing steps. 



2.5. Wiring space 23 

2.6 Transforming a placement to a sliceable placement 

Since not every placement program is guaranteed to deliver a sliceable 
placement, we present a heuristic algorithm to transform a given placement 
to a sliceable one. The capability to adjust placements for sliceability enables 
design systems to use the best placement tools available, and still profit from 
the advantages that the slicing restraint entails. Of course, the adjustments 
should not defeat the virtues of the result of the placement algorithms. 

A placement can be constructed either automatically or manually. Many 
placements are derived in a top-down manner by a floorplanning system. 
Some floorplanning and placement algorithms construct a slicing structure 
automatically, for example, the min-cut algorithm [Laut79], and some imple­
mentations of the simulated annealing method [Otte84, Wong86]. If the 
placement is derived manually, the designer usually does not keep the slicea­
bility in mind while optimizing the placement. In this section we present a 
procedure which modifies a given placement into a sliceable placement with 
minor placement modifications. 

The procedure can also be used to modify a placement, either sliceable or 
not, into a sliceable placement containing more slicing topologies by creating 
crossing slice lines. This is motivated by the following observation. Often, a 
placement can coincidentally exclude some slicing topologies. For example, 
Fig. 2-3(a) shows a placement with only one possible slicing topology. With a 
slight re-positioning of the top-left block crossing slice lines are created as 
shown in Fig 2-3(b). With this placement two slicing topologies are possible 
depending on the slicing direction. 
In general it is advantageous to consider as many routing channel structures 
as possible in order to optimize the chip surface. The choice is left for the 
channel definition algorithm after the global routing. Note that if the origi­
nal placement is a sliceable placement all original solutions are still present 
in the modified placement. 
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(a) (b) 

Figure 2-3. Creating slice line crossings. 

To generate a sliceable placement from a given placement we adopted the 
shrink factor method originally proposed by Otten [Otte82a] to derive a slic­
ing structure from a point configuration. This method was later modified by 
van Ginneken [Ginn87] to derive a slicing structure from a placement of 
blocks. The selection of slice lines is determined by shrink factors. Let (Xi,yO 
be the coordinates of the center of block i, with width «;,• and height hi. The 
shrink factors in the x direction sx and in the y direction sy of a pair of blocks 
n and m are defined as: 

2 I xm-*n I 2 I ym-yn I 
Sx{m'n)~ wm+wn

 S^m'n)- hm+hn 

A slice line that subdivides a slice into two sets of blocks M and N has a 
shrink value: 

_Sx(M,N)j=_inin sx(m,n) Sy(M,N)= min sy(m,n) 
meM;neN— meM,neN__ 

If the slice can be subdivided by a slice line without intersecting any block, 
one of the slice lines has to possess a shrink value greater than or equal to 1, 
otherwise all slice lines will have a shrink value less than 1. The slice line 
with the largest shrink value should be selected for the next slicing opera­
tion. Van Ginneken [Ginn87] has proposed a procedure to calculate the 
shrink values of all slice lines in 0(n 2 ) time where n is the number of blocks 
in the slice. 
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Our method differs from the original one in that instead of selecting one 
slice line at a time we select multiple slice lines in both directions. The 
amount of placement distortion, and hence the number of slice line crossings 
is controlled by the minimum shrink value. The minimum shrink value is 
the minimum shrink value a slice line must have in order to be selected. Of 
course, at each slicing level at least one of the slice lines must be selected. 
This is the one with the largest shrink value, even if it has a shrink value 
less than the minimum shrink value. The minimum shrink value, S^n, can 
be denned by the user, for example, Smjn=0.95. At each slicing level all slice 
lines in both directions with a shrink value not less than Smjn are selected. 
In this way a number of crossings of slice lines are created and the slice is 
subdivided into more than two subsets, see for example Pig. 2-4. After the 
slice lines have been selected the process is repeated in all subsets containing 
more than three blocks. 

0.98 

1.2 0.97 

Figure 2-4. Selected slice lines and their shrink values. 

After the slicing operation the blocks are bottom-up geometrically re-
positioned. This is done in such a way that the selected slice lines become 
free which means they do not intersect any blocks. Notice that if the original 
placement is a sliceable placement and Smjn is set to 1, the resulting place­
ment is equal to the original placement. 
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3. TOPOLOGICAL CHANNEL DEFINITION 

3.1 Channel and channel order 

Given a placement routing of the interconnections can be roughly divided 
into two steps, global routing and detailed routing. The global routing step 
determines the "topological" path of each interconnection net in the routing 
area and the detailed routing step generates the physical wiring. The pri­
mary objective of the routing is to achieve a 100% routing completion (i.e. all 
nets completely routed) in as small as possible an area. To achieve a 100% 
routing completion the detailed routing scheme should be capable of adjust­
ing the block positions to provide the correct wiring space for the wiring 
regions, because the exactly required wiring space of a wiring region is 
unknown until it is routed. As we will show, using a channel router to do the 
detailed routing for a sliceable placement this placement adjustment during 
the detailed routing is feasible. In order to use a channel router the routing 
area must be partitioned into channels prior to the detailed routing. The pro­
cess of partitioning the wiring regions into channels is called the topological 
channel definition or just the channel definition. The sequence in which the 
channels are routed is determined by a channel ordering procedure. The 
result of channel definition and ordering is a channel structure of the place­
ment. 

Channels are horizontal or vertical space strips between the building 
blocks. Three types of channel incidence, called channel junctions, can occur: 
the four 1Ï type channel junctions at the corners of the layout, T type chan­
nel junctions and V type channel junctions (also called crossings for short). 
An example of each is shown in Fig. 3-1. 

The channels will be sequentially routed . They must be ordered in such a 
way that of the two channels meeting at a T junction the channel 
represented by the stem of the V is routed before the channel represented by 
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Figure 3-1. Types of channel junctions. 

the bar of the T is, for a channel router works with fixed terminal positions 
along its sides and floating terminal positions on its ends. After the stem 
channel of the 'T' is routed the terminals at the ends of the stem channel, 
which are also on the sides of the bar channel, will have fixed positions. Due 
to their inherent symmetry the other two types of channel junctions do not 
allow such a general statement about local sequence preferences. In the case 
of Ti' type channel junctions the choice hardly has an impact on the final 
routing result, and can therefore be based completely on more global sequenc­
ing criteria. The choice can be seen as converting the 1! type junction into a 
T* type, reflecting the sequence selected. The case of a '+' type junction, how­

ever, is more intricate. Channel^röïïters alöne~cannot~handle—such—a 
configuration. Switch box routers and other two-dimensional routers have 
been resorted to. However if we split one of the two channels into two parts 
that form the stems of two T type junctions the problem is transformed to 
channel routing problems. The unsplit channel is the bar for both new junc­
tions. There are obviously two ways of converting a crossing into two T' type 
channel junctions. If the vertical channel is unsplit it is called a vertical 
conversion of the crossing, otherwise if the horizontal channel is unsplit it is 
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called a horizontal conversion, see Fig. 3-2. 

vertical horizontal 
conversion conversion 

Figure 3-2. '+' type channel crossing conversion. 

Once all junctions have been converted into V type junctions their local 
sequence preferences can be collected in a directed graph, the channel 
digraph. If this digraph does not have any cycles a simple topological order­
ing routine yields a feasible routing order for the channels. We speak of a 
conflict-free channel structure in that case. Whether cycles do occur may also 
depend, of course, on how crossings have been converted into pairs of T' type 
junctions. It is fairly obvious that each conflict-free channel structure 
corresponds to a slicing structure of the placement and the channels 
correspond to the slice lines. Hence, for a sliceable placement there always 
exists a set of crossing conversions for the placement that results in a 
conflict-free channel structure. 

Beside sliceability, there are more criteria to be taken into account when 
the channels are denned, e.g. the avoidance of bends in bundles of wires by 
keeping the main wiring flow as straight as possible, and the enhancement of 
the flexibility in adapting the relative positions of the building blocks. Cri­
teria as these can be translated into local preferences for converting cross­
ings, provided some information about the wiring flow, and the congestion to 
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be expected, is available. Such information can be generated by doing the 
global routing before the channel definition. This can be realized because the 
data structure on which the global router is run does not depend on the chan­
nel definition. On the basis of the information available after the global rout­
ing every crossing can get a preferred way of conversion. This preference can 
be weighted by assigning a number expressing the relative benefit or bonus of 
one way of converting the crossing over the other. Compared to other sys­
tems, doing the topological channel definition after the global routing is a 
unique feature of the approach proposed in this thesis. 

Before the channel definition and ordering algorithm is presented a graph 
representation of the wiring regions is first introduced in section 3.2. In sec­
tion 3.3 an algorithm is presented that selects the optimal slicing structure 
consistent with a given sliceable placement. Optimal means that the max­
imum sum of bonuses of crossing conversions is realized. 

3.2 Graph representation of the wiring regions 

3.2.1 The floorplan graph 

The wiring regions must be represented by a model used as the data 
structure for the subsequent routing steps. An often used graph model to 
capture the incidences of the wiring regions in channel routing based systems 
is an undirected graph, the floorplan graph. Since in our approach the floor-
plan graph-is-derived-fromgeometricaLd^te,^iamely, the placement of the 
blocks, we need first introduce some geometrical concepts, the tile planes and 
the walls [Dai85]. The whole layout area is divided into rectangles referred to 
as tiles. Tiles which represent blocks are called solid tiles and tiles which 
represent routing space are called space tiles. We define two tile planes: the 
horizontal tile plane and the vertical tile plane. 

Definition 3-1: The horizontal tile plane is a set of space tiles where all 
tiles are non-overlapping maximal horizontal strips. This means that no 
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space tile has other space tiles immediately to its right or left. The vertical 
tile plane is defined in a similar way. D 

The horizontal and vertical tile plane is unique [Oust84]: there is one and 
only one decomposition of the space for each arrangement of solid tiles. 

Definition 3-2: A space tile is called dominant if the interval of the tile 
includes the intervals of all its adjacent space tiles. Corresponding to each 
horizontal or vertical dominant tile a line segment can be drawn along the 
hart line of the tile, this line segment is called a wall. D 

An example of a set of horizontal and vertical dominant tiles for a place­
ment is shown in Fig. 3-3 (a) and (b) indicated by the shaded area. The 
corresponding walls are shown in (c). Note that the width of a dominant tile 
can be zero. 

\/>/j/j'jrjrfrfrsrsrsrsr\ 
(a) (O 

Figure 3-3. (a) horizontal dominant tiles (b) vertical dominant tiles, (c) walls. 

A floorplan graph can be directly derived from the set of walls. Let us call 
a portion of a wall between two adjacent junction points of the set of horizon­
tal and vertical walls a wall segment or a channel segment. The floorplan 
graph is denned as follows. 

Definition 3-3: A floorplan graph is an undirected graph G = (V, E), 
where V represents junctions of channel segments and there is an edge (Vi,Vj) 
in E if the junction corresponding to u,- and the junction corresponding to Vj 
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are connected by a channel segment. Channel segments are thus 
represented by the edges in E. D 
An example of a floorplan graph is shown in Fig. 3-4. 
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Figure 3-4. A floorplan graph. 

A region bounded by channel segments but containing no channel seg­
ments is called a room. A room which does not contain a block is called an 
empty room. A floorplan graph may sometimes contain empty rooms, an 
example is shown in Fig. 3-5. 
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Figure 3-5. A floorplan graph containing an empty room. 

For the purpose of channel definition we must derive an empty-room-free 
floorplan graph which is consistent with a slicing structure. Obviously, such 
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a floorplan graph exists only for sliceable placements. 

3.2.2 Construction of a floorplan graph 

3.2.2.1 Existing approaches 
To construct a floorplan graph from a placement two different approaches 

have been reported. The first one is the hierarchical approach [Laut85], in 
which the set of blocks is recursively partitioned ("sliced") by straight slice 
lines until each subset consists of only a single block. The selection of the 
slice lines is on the basis of block deformation prediction. Such a procedure 
automatically yields a slicing structure. The set of slice lines together with 
the placement boundary lines constitute an empty-room-free floorplan graph 
by construction. The slice lines can be used as routing channels in the 
detailed routing phase, in which the inverse order of their generation is 
already a valid channel order. The second approach is the flat approach 
[Kimu83, Dai85]. In this approach the blocks are treated all at the same 
time. Line segments are extented from the boundaries of the blocks until 
they hit a block or the chip boundary. Then the number of line segments is 
reduced by merging overlapping line segments. The remaining horizontal 
and vertical line segments form the walls of the placement from which a 
floorplan graph can be derived. 

The hierarchical approach is generally faster than the flat approach, and 
it yields a slicing structure with all the advantages of that topology. How­
ever, since it treats the two subsets divided by a slice line independently, it 
looses the flexibility that can be represented by crossings. On lyT type chan­
nel junctions are produced in this approach. Also wiring flow considerations 
are not taken into account in constructing the channel structure. In contrast 
to the hierarchical approach, the floorplan graph constructed by the flat 
approach offers more flexibility in the channel definition process, but may 
contain empty rooms. The problem of eliminating empty rooms from the 
floorplan graph has been first pointed out by Dai et al. [Dai85]. However, the 
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method to eliminate empty rooms proposed in their paper does not always 
yield a correct solution [Cai89]. 

3.2.2.2 Floorplan graph construction algorithm 
To construct an empty-room-free floorplan graph from a sliceable place­

ment, an algorithm is proposed [Cai88] which combines the flat and the 
hierarchical approaches. First, a floorplan graph is generated using the flat 
approach according to [Kimu83]. Then possible empty rooms in the graph are 
eliminated by deleting edges adjacent to the empty rooms. For this purpose 
the placement is recursively bisected along the walls. This means that at 
each recursion level the blocks and the channel segments are partitioned into 
two subsets such that each contains at least one block. This process is con­
tinued until each subset contains exactly one block. Simultaneously, a parti­
tioning tree is constructed. At each node of the tree the blocks and the chan­
nel segments inside the corresponding subset are recorded. 
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Figure 3-6. A partitioning tree. 

An example of such a partitioning tree is shown in Fig. 3-6. The dashed lines 
represent the boundary of each subset. Note that the channel segments on 
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the boundary of a subset are not stored at the corresponding node, only those 
inside the subset are stored. After the tree is constructed the remaining 
channel segments in all leaf nodes are removed. The result is an empty-
room-free floorplan graph. The floorplan graph construction algorithm based 
on the idea described is shown in Algorithm 3-1. 

Algorithm 3-1: Floorplan graph construction 

INPUT: a sliceable placement 

OUTPUT: a floorplan graph. 

METHOD: 

/* derive the initial floorplan graph with the flat approach */ 
Step 1): Draw horizontal and vertical lines extending the edges of 

each block. If such a line intersects an edge of another 
block, then cut it at the intersection. 

Step 2): If, for any two line segments thus drawn, the interval of 
one is wholly covered by that of another and there is no 
block between them, then merge them. 

Step 3): Determine the intersection points of the two set of lines; 
keep only the line segments between two intersections. 

/* remove empty rooms with the hierarchical approach */ 
Step 4): Initialize the root of the partitioning tree with 

all blocks and line segments. 

Step 5): Partition (root). 

Step 6): Generate the floorplan graph by assigning a vertex to each 
line intersection and edges between the adjacent vertices. 
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Procedure Partition (S) 

if the number of blocks in S = 1 
{ 
Remove all remaining line segments in S. 
} 

else 
{ 
Choose a slice line which partitions S [see 3.2.3.3]. 

Divide the blocks and line segments in S into S' and S". 
(the line segments on the slice line are not taken) 

Partition (S')( Partition (S"). 
} 

3.2.2.3 Heuristic to choose a slice line 
"Choose a slice line which partitions S" in the procedure "Partition" is cru­

cial for the quality of the resulting floorplan graph. Generally, in the pres­
ence of empty rooms, different partitioning sequences result in different floor-
plan graphs. For instance, for the placement in Fig. 3-7 (a) two empty-room-
free floorplan graphs are possible, Fig. 3-7 (b) and (c). Intuitively, the hor­
izontal slice line should be chosen in the example which results in the floor-
plan graph shown in Fig. 3-7 (b), because of the large wiring flow on that slice 
line (represented by the dashed lines); otherwise it will result in wiring 
detours, Fig. 3-7 (c). 

The following heuristic has been resorted to choose a slice line. AsTshown 
in the example the choice should depend on the wiring flows (traffic) in the 
channel segments. Therefore, the global router is called to derive the number 
of wires in each channel segment in the initial floorplan graph. A slice line 
usually consists of several channel segments. To each possible slice line a 
weight is assigned which is equal to the sum of the number of wires in its 
channel segments that are adjacent to an empty room. Channel segments 
that are not adjacent to an empty room do not contribute to the weight of the 
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Figure 3-7. Empty-room-free floorplan graphs. 

slice line. Moreover, wire segments which pass a channel segment get a 
higher weight than those which start or end in it, because passing wires 
imply that the channel segment is on the shortest path of those wires. There­
fore deleting this channel segment would cause routing detours. The slice 
line with the highest weight is chosen. 

Notice that bisection guarantees the existence of a conflict-free channel 
structure later on when the V channel crossings are converted. The channel 
order, however, is not yet determined. 

3.2.3 Channel digraph 

After the '+' channel crossings in the floorplan graph are converted into 
pairs of T' type junctions a channel structure is denned. The channel order­
ing can be captured in a so-called channel digraph [Flem78]. A channel 
digraph is a directed graph G=(V,E) where each vertex corresponds to a chan­
nel and there is an arc (vi,Vj) for each T type channel junction of which ut is 
the stem channel and vj is the bar channel. Figure 3-8 shows a channel 
structure and the corresponding channel digraph. From the definition of the 
channel digraph it follows that a cyclic channel order in the channel struc­
ture corresponds with a cycle in the channel digraph. Hence a conflict-free 
channel structure, which necessarily is a slicing structure, corresponds to a 
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acyclic channel digraph. 

4 
(a) (b) 

Figure 3-8. (a) a channel structure, (b) the corresponding channel digraph. 

3.3 Selecting the optimal channel structure 

3.3.1 Criteria for channel crossing conversions 

Given a floorplan graph of a sliceable placement more than one channel 
structure may exist due to the presence of'+' type channel junctions. The 
final channel structure is determined by how the '+' type junctions are con­
verted into T' type junctions. Unfortunately, not all combinations of crossing 
conversions yield a conflict-free channel structure, although the existence of 
at least one is guaranteed by the sliceability of the placement (see Fig. 3-9). 

Beside the cyclic ordering constraint any local preference criteria can be 
specified to influence the direction in which a crossing will be converted. Two 
criteria are used in this thesis. 

One is that the channels on the critical (i.e. the longest) paths in the 
channel-position graphs should be made as short as possible. In this way 
flexibility in adjusting the blocks and channels on the critical path is 
obtained. For example, a congested channel segment not on the critical path 
will in that case not widen its neighboring channel segment on the critical 
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Figure 3-9. For the channel crossing in the figure the conversion in (a) is 
not allowed, because it results in a cyclic channel ordering. 

path. We call this the critical path isolation criterion (see also Fig. 3-10). 
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Figure 3-10. Critical path isolation criterion. The crossing in the figure 
prefers a vertical conversion, channel 'a' on the critical path is 
then separated from channel V by the vertical channel V. 

To calculate the length of the critical path of the chip the size of both the 
blocks and the channel segments must be known. Since the global routing is 
already performed we have an estimate of the width of the channel segments. 
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Another criterion is that the decision should depend on the wiring flow 
across the '+' channel crossing area. It is preferable to use the direction with 
the largest wiring flow for the bar channels in order to minimize the number 
of wiring jogs and to avoid congestions in the channel crossing area. We call 
this the major flow criterion (see also Fig. 3-11). 

Figure 3-11. The major flow criterion. An example of the wiring flow in a V 
type channel crossing area. Width of the dotted area represents 
the wiring flow. In this example the crossing should be con­
verted vertically, since there is a larger wiring flow between 'a' 
and Ta' (the major flow) than between 'c' and 'd'. 

We assign a bonus which is a positive real number, to each of the two 
directions in which a '+' type crossing can be converted, indicating the prefer­
ence of converting the crossing in this direction. It is called the conversion 
bonus ofacrossing-in-thatcUrection.-Ea<^-mterion_contributes3^o^uisjiii^o^ 
the conversion bonus of the crossings. For a V type crossing adjacent to a 
channel segment on a critical path, a bonus is assigned to the conversion in 
the direction of the critical path (the critical path criterion). Furthermore, for 
each'+' type crossing a bonus, is added to the conversion in the largest wiring 
flow direction (the major flow criterion). To all other ways of crossing conver­
sions a bonus 0 is assigned. We define the one with the highest total sum of 
crossing conversion bonuses realized among the conflict-free channel 
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structures to be the optimal channel structure. 

3.3.2 A polynomial algorithm for channel crossing conversions 

In this subsection we will present an algorithm that finds an optimal 
channel structure for a placement given a floorplan graph. In [Cai88] a 
straightforward algorithm was proposed in which all conflict-free combina­
tions of channel crossing conversions are enumerated and then the best one 
is selected. Since each crossing can be split in two ways, the number of chan­
nel structures is 2" where n is the number of'+' type channel crossings. 
Hence the worst case time complexity of that algorithm is O (2"). The algo­
rithm presented in this subsection (see also [Cai89a]) has a polynomial 
bounded time and space complexity. 

The channel definition problem can be naturally decomposed into a 
sequence of individual stage optimization problems. The problem is to bisect 
(i.e. slice) a placement recursively such that the total bonus of crossing 
conversions is maximized. At each stage a slice line must be selected. As a 
slice line divides a slice into two subslices, it partitions the original problem 
into two independent problems. The optimal solution of the problem for a 
slice can be obtained by searching for a slice line whose own contribution to 
the quality added to the optima of the two subslices is maximum. 

Let w(l) be the bonus of a slice line / which is denned as the sum of the 
bonuses of the crossing conversions obtained using this slice line. 
Corresponding to each slicing of a slice a bonus of the slice is defined which is 
equal to the sum of the bonuses of the slice lines on all levels of the slicing. 
We define ƒ*(«) as the maximal bonus of a slice s at slicing level k from the 
root slice. Thus y*(s) is the quality of the optimal slicing of the slice s. Based 
on these definitions we can write the slicing-transformation equation for the 
system as: 

yk(s) = n&x\w(lt)+ykn(subsi(sjs))+yk+i(subs2(s,ls))\ (3.1) 
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where subSl(s,la) and subs2(s,ls) represent the two subslices of* partitioned 
by the slice line /.. This equation means that the maximal bonus of a slice is 
equal to the maximum of the sum of the following three items: the bonus of 
the slice line and the maximal bonus of the two subslices divided by the slice 
line For each slice . yk(s) is to be evaluated for all possible candidate slice 
lines /. of s. Notice that this approach is similar to the dynamic program­
ming strategy [Bell57] in solving staged optimization problems, however, the 
stages (i.e. the slicing levels) are not serial in our case. 

The algorithm can be implemented on a graph data structure, called a 
slicing graph. In a slicing graph each slice is represented by a vertex and all 
candidate slice lines of a slice are also represented by vertices; there is an arc 
from a slice vertex to each of its candidate slice-line vertices and there is an 
arc from each slice-line vertex to each of the two vertices representing the 
two subslices divided by the slice line. A simple example of such a slicing 
graph for a three block floorplan is shown in Fig. 3-12. To calculate the max­
imum bonus of each slice the algorithm will visit all arcs once and only once 
in a depth first order, starting from the root-slice vertex. After this step the 
channels can be obtained by, starting at the root slice, recursively collecting 
the slice line from which the maximum bonus of the slice is obtained and the 
slice lines of the two subslices. 

Summarizing, the optimal channel structure selection algorithm is shown 

iiTAlgörithar3;2r 

To derive the complexity of the algorithm we need first introduce two lem-

mas. 
Lemma 3-1: Given n blocks the total number of possible rectangular 

slices is bounded by O (n ). 

Proof: Since a floorplan graph GHV.E) is a planar graph, it possesses the 
following properties: I V I - \E I + » - l (i.e. the Eulei"s formula) and 
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Figure 3-12. The slicing graph of a sample placement. Slices are represented 
by elliptic shaped vertices and slice lines are represented by 
cyclic shaped vertices. 

Algorithm 3-2: Optimal channel structure selection 

INPUT: a floorplan graph. 

OUTPUT: a conflict-free channel structure. 

METHOD: 

Step 1): Assign conversion bonus to the channel crossings. 

Step 2): Construct the slicing graph. 

Step 3): Calculate the maximal bonus of the slice vertices according 
to equation (3.1) in a depth first order. 

Step 4): Generate the channels by traversing the slicing graph from the root 
slice to recursively collect the slice line from which the maximum 
bonus of the slice is obtained and the slice lines of the two subslices. 

I E I S 3 I V I -6 where I V I is the number of vertices, I E I is the 
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number of edges and n is the number of blocks in the floorplan. This gives 
I V I > (n+5)/2. Furthermore, we have I V I < In, because each of the n 

rooms in the floorplan has four corners and the minimum degree of a vertex 
in a floorplan graph is 2. Therefore, the number of vertices I V I in a floor-
plan graph for n blocks is in the order of O (n). 

As a rectangle is completely determined by two diagonal corner points, a 
possible rectangular slice in a floorplan graph is determined by two vertices. 
Hence, the upper bound of the total number of possible rectangular slices in a 

floorplan graph with I V I vertices is — I V I ( I V I -1) which is in the order 

of O (n 2) where n is the number of blocks in the floorplan. □ 

Lemma 3-2: Given n blocks the total number of possible slice lines in all 
possible slices is bounded by O (n 3). 

Proof: Since in a floorplan of n blocks the number of slice Unes in a slice 
cannot exceed n - 1 and the total number of possible slices is bounded by 
0(n2) (see lemma 3-1), the total number of possible slice lines in all possible 
slices is therefore bounded by 0(n3). O 

Theorem 3-1: The time and space complexity of the optimal channel 
structure selection algorithm is bounded by 0(n3) where n is the number of 
building blocks. 

Proof:—The number^of—vertices^in^the_slicjng graph is the sum of the 
number of all possible slices and the number of all possible slice lines in the 
slices which is bounded by 0(n2) and 0(n3) respectively according to lemma 
3-1 and lemma 3-2. The number of arcs is three times the number of slice-
line vertices. Hence the space complexity is bounded by 0(n3). 

The time complexity consists of two parts, one consumed by the procedure 
to construct the slicing graph, the other spend by the algorithm to calculate 
the maximal bonus of each slice vertex. To construct the slicing graph one 
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needs to find all possible slice lines for each slice. Given a slice all possible 
slice lines bisecting the slice can be found by a linear search on the floorplan 
graph which has a size of Oin). For all possible slices which is botuided by 
0(n2) the total number of operations is then bounded by 0(ra3). Further­
more, a slice-line vertex must be connected to the vertices of the two subslices 
divided by the slice line. Each slice is represented only once in the slicing 
graph. The question whether the two subslice vertices are already present in 
the graph can be answered in a constant time by storing the slice vertices in 
a hash table using the coordinates of the slice as hashing parameters. The 
algorithm will visit all arcs once and only once, hence the time spend by the 
algorithm to calculate the maximal bonuses is bounded by O (n 3) according to 
lemma 3-2. Consequently, the time complexity of the algorithm is bounded 
byO(n3).D 

3.3.3 A locality property of the problem 

Let us call the conversion direction of a crossing with the largest bonus 
the preferred direction of the crossing. If the bonuses in both directions are 
equal both directions are preferred. Suppose there exists a slice line which 
converts all crossings on the slice line in their preferred direction, then we 
claim that if we choose this slice line and optimally solve the channel 
definition problem in the two subslices independently we will obtain an 
optimal solution to the original problem. Such a slice line is called an 
optimal slice line. 

This is supported by the following reasoning. Suppose we have an optimal 
channel structure which does not contain this optimal slice line. If we modify 
the channel structure such that the optimal slice line is used which implies 
that all crossings on this slice line will be converted in their preferred direc­
tion, we can show that the new channel structure is not worse than the origi­
nal one. Firstly, a slice line corresponds to a vertex in the channel digraph 
with only incoming edges. Using the optimal slice line could never create a 
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cycle, because a vertex in a cycle must have both incoming and outgoing 
edges in the channel digraph. Secondly, because the crossings on the' optimal 
slice line are converted in the preferred direction, the total bonus obtained 
could never be worse than the original channel structure. Hence, the new 
channel structure could never be worse than the original one. 

Although this property does not reduce the worst case complexity of the 
algorithm, using it will greatly speed up the algorithm in most cases. At each 
stage of the algorithm whenever there is an optimal slice line at that stage, 
this slice line can be selected directly regardless of other slice lines. 

3.3.4 An example 

We will illustrate the algorithm by a simple example shown in Fig. 3-13. 
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Figure 3-13. A channel definition and ordering example. 

In the example the 9 building blocks are denoted by the letters A to I. The fol­
lowing bonuses of the three crossings ci , c2 andc 3 are given: 
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w(cV = 0 u/(c£) = 2 
w{c2) = l u>(c£) = 0 
w(c§) = l w(c3

l) = 0 

in which c{ denotes the vertical conversion of Cj; and c\ denotes the horizon­
tal conversion of c \. The crossings are initially converted in their preferred 
direction, as shown in Fig. 3-13. 

Let us denote a slice by the set of blocks in the slice, for example, ABCDEF-
GHI denotes the root level slice. At the root level the slice line v 4 is an 
optimal slice line. 
Hence, 

y xiABCDEFGHl) = w (u 4) + y 2(ABCDEFG) + y 2(HI). 
If a slice does not contain any '+' type channel crossing its maximal bonus is 
0. Hence, 

y2(HI) = 0 
On the left side of v 4 there is no optimal slice line, thus the two non-optimal 
slice lines u juu 2 and Ai3*j/i4 must be considered. Hence, 

fw (u iUi/2) +y 3 (AS) +y3(BCDFGn 
y^ABCDEFG) = msx\w(h3uh4) + y3(EFG) + ys(ABCD)j 

where 
y3(AE)=y3(EFG) = y3(ABCD) = 0. 

Since h 1 is an optimal slice line in BCDFG 
y3(BCDFG) = w(hl) + y4(B)+y4(CDFG) 

in which 

y4(B) = 0. 
And finally using the optimal slice line v 3 in CDFG 

yi(.CDFG) = w(.vz) + y6(FC) + y6(,DG) = w(.v3). 
Evaluating the equations numerically we obtain the following results. First 
the bonuses of the slice lines are 
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w(.v4) = w(c§)= 1, 

w (v 1KM2) = u> (cï) = 0, 
w (A3UA4) = w (p\) + w (c§) = 2, 
u;(Ai) = 0 a n d 
W(V3) = W(.C§)=1. 

Hence, 
y4(CZ>FG) = l 

y3(BCDFG) = 0 + 0 + 1 = 1 

in which 
Finally, 

Thus, in 
following 
shown in 

y2(ABCDEFG) = max<n . n . „^=2 

the slice line A3UA4 is the chosen slice line for the slice ABCDEFG. 

y xiABCDEFGHI) = 1 + 2 + 0 = 3 
the resulting channel structure the crossings are converted in the 
way, c\, c\ and cjj. The resulting optimal channel structure is 

Fig. 3-14. 

c\ C2 

C3 

Figure 3-14. Resulting channel structure of the example. 
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3.3.5 Concluding remarks 

Experiments have shown that the quality of the final routing result is 
strongly dependent on the choice of the channel structure. The channel 
structure derived with our approach tends to ease the wiring at the detailed 
routing stage, because wiring information is used to guide the decision in 
which direction a channel crossing should be converted. Preliminary results 
on several test chips have shown that using our algorithm an average 
improvement of 2.5% on the chip size and the net length has been achieved 
compared to a randomly selected conflict-free channel structure. 
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Figure 3-15. Run-time statistics of the algorithm. The dashed curve is the 
run time when the locality property of the problem is used. The 
solid curve is the run time when this property is not used. 

Although we have shown that the worst case complexity of the algorithm is' 
bounded by O (n3), in practice, the average complexity is only slightly more 
than linear. Figure 3-15 shows the run-time statistics of the algorithm for 35 
different placements with the number of blocks ranging from 10 to 280. A 
placement is obtained by first generating a row and column based arrange­
ment of square shaped blocks including some additional ones and then 
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randomly merging some neighboring blocks into larger blocks. Experiments 
have shown that by applying the locality property 50% saving of the run time 
can be achieved in most cases. 
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4. GLOBAL ROUTING 

A global route of a net is a "topological" path in the routing regions and, if 
allowed, over and through the blocks connecting all terminals of the net. A 
topological path of a net specifies only the relative positions of the path with 
respect to other objects in the layout, not the detailed geometrical layout of 
the net. Global routing is the process of finding a global route for each net of 
the circuit such that a number of objectives are achieved. Commonly used 
objectives are the minimization of the chip area and the total net length. 
However, for the two power nets a special topology is required, because usu­
ally they must be routed in a single metal layer, these nets may therefore not 
cross each other. 

In this chapter subsequent steps in global routing will be discussed. First, 
the data structure on which the global router is run will be presented. Then, 
algorithms are outlined in section 4.2 in finding a global route for a net. In 
section 4.3, a scheme in which the nets are routed is described. In section 
4.4, routing over and through the blocks is handled. Finally, in section 4.5 an 
algorithm will be presented for the planar power-net routing. 

4.1 Implementation of the floorplan graph 

A variation of the floorplan graph defined in the previous chapter is imple­
mented for the purpose of global routing. Each edge in the original floorplan 
graph-is-replaced-by-two-edges-and_a_vertex between them representing a 
channel segment. An example of such a graph is given in Fig. 4-1. 

This modification is done for several practical reasons: (1) usually, to 
route a net globally on the original floorplan graph temporary vertices must 
be added to the graph to represent the terminals of the net; with this imple­
mentation the graph modification is not needed; (2) the data structure 
representing the channel segment vertices can be shared by the channel-
position graphs; this leads to a fast calculation of the critical Congest) path in 
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Figure 4-1. A floorplan graph for the global routing. 

the channel-position graphs; (3) as we will show in a later section, this graph 
can easily be extented to incorporate the ability of routing through and over 
the cells. 

4.2 Shortest connection algorithms 

The problem of finding a global route for a net is reduced to finding the 
shortest connection path or the minimum cost connection path on the floor-
plan graph. Two cases are distinguished, namely, finding the shortest path 
between two terminals and finding the shortest connection tree connecting 
more than two terminals. 

4.2.1 Background 

The best known algorithm for searching a shortest connection path con­
necting two points in a plane with obstacles is due to Moore [Moor59] and 
Lee [Lee61]. This algorithm finds a path on a maze by expanding a search 
wave from one point to be connected until the other point to be connected is 
reached. Many variations and generalizations of the Lee-Moore algorithm 
have been proposed [Hoel76, Rubi74, Souk81, Xion81]. It has found wide 
application in PCB and IC routing systems, e.g. [Cies82, Roth83, Pers84]. 
Hightower [High69] proposed another algorithm using line segments as the 
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basic unit instead of a grid cell. This algorithm is much faster than the Lee-
Moore algorithm, however, it cannot guarantee a solution even if one exists. 
In general graphs with non-negative edge lengths the Dijkstra's algorithm 
[Dijk59] is widely used to search the shortest path between two vertices on 
the graph, e.g. [Hass82, Rive82, Syed82, Wisn84, Prea85]. 

The problem of finding the minimum connection tree for more than two 
points in a plane is commonly referred to as the Steiner problem and the 
minimum connection tree is called the Steiner tree in graph theory. The 
Steiner problem in general graphs is denned as follows: 

Definition 4-1: Steiner problem in graphs: Given a weighted connected 
graph G(V,E) and a set of vertices P, P c V, find, among all subgraphs in 
G(V,E), the subgraph g with the least total weight so that P is connected in 

The Steiner problem in graphs is a generalization of the minimum span­
ning tree problem which is the case where P = V. Although the minimum 
spanning tree problem can be solved in polynomial time, the Steiner problem 
in graphs is a NP-complete problem [Even79]. Dreyfus and Wagner have 
given an exact algorithm [Drey72] which has a complexity exponential in 
IPI (O ( I V I 3 ' p ' + I V I 2 2 ' p ' ) ) . Hence, we must rely on heuristic algo­
rithms to tackle the problem in a realistic way. 

4:2;2-Two terminal-nets 

Suppose we have a source terminal, ts, to be connected to a destination 
terminal, t&- In general, we wish to find a minimum cost path, where we will 
assume cost to be the length of the path. Given a floorplan graph, we assign 
a cost to the vertices. Vertices corresponding to a channel segment are 
assigned the length of the channel segments, other vertices are assigned a 
zero cost. The cost of a path is simply the sum of the cost of the vertices 
along the path. Later, we will show how other factors can be considered 
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when calculating the cost of a path, but for now, we will assume that we are 
trying to minimize the wire length. Terminals are positioned on the boun­
dary of the blocks. A terminal is linked to the vertex corresponding to the 
channel segment to which it faces. In order to calculate the accurate length 
of the path the distances from this vertex to the neighboring vertices are 
adjusted according to the position of the linked terminal. 

Our shortest path algorithm [Cai85, Cai86] is based on the Dijkstra's algo­
rithm. However, akin to many implementations of the Lee-Moore algorithm 
a hst, F, is used containing all vertices which are on the frontier of the search 
wave. They are the only vertices from which the search can expand. Further­
more, a list, P, is used containing all vertices for which the minimum cost 
path to t„ is already found, these vertices are called the permanent vertices. 

Initially, the vertex linked to terminal t„ is placed in F. A search proceeds 
by taking a vertex, uc off the F list, finding its successors, adding the succes­
sors to the F list, and then place uc on the P list. uc is chosen to be the vertex 
in F with the minimum cost. Successors of uc are all its neighboring vertices 
in (V-P) which can be quickly found, because an incidence list data structure 
is used for the floorplan graph. The cost of the successors will be recalcu­
lated. If the old cost of a successor is larger than the new cost expanded from 
uc, the new cost will be assigned to the successor. The search process ter­
minates if the selected vertex U; is the vertex linked to the destination termi­
nal, td. In the implementation it is important to keep pointers from each suc­
cessor back to its parent vertex. These pointers provide the means for follow­
ing back the path to the source vertex once the search has terminated by 
finding the destination vertex. The procedure form of the algorithm is given 
in Algorithm 4-1. 

The time complexity of the original Dijkstra's algorithms is 0( I V I 2) 
where I V I is the size of V, if it is applied to a completely connected graph. 
Since the floorplan graph is sparse, (maximum degree of a vertex is four), 
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Algorithm 4-1: Shortest path algorithm 

INPUT: GCV.E), t„ and td 

OUTPUT: a path connecting ts and td 

METHOD: 

Let l(u;) be the cost from u; to tB. 
Let c(«f) be the cost of vertices «;. 
Let F be the list of frontier vertices. 
Let P be the list of permanent vertices. 
Let vSti) be the vertex linked to terminal £;. 

Step 1): Ku(O) = 0. f° r aH other vertices u;, 1(«;) = °°. 
F = mB)). 

Step 2): For all u,- in F find uc for which l(uc) = min[l(u,)]. 
F = F-{uc},P = P + {uc}. 
IHuc=u(td)) 

Trace path, stop. 

Step. 3): For all neighbors u,- of uc in (V - P) 
l(Uj) = minO(Uj), Kuc) + c(u,)). 
F = F u { u , } . 

Goto step 2. 

I F I is much smaller than I V I . As the operations in step 2 are only car­
ried out for vertices in F and the operations in step 3 are only done for maxi­
mally three neighboring ̂ ertices^of u 0 the time complexity of our implemen­
tation is much smaller. Experimental results on test circuits indicate that 
the average complexity is actually around 0( I V I ). 

4.2.3 Multi-terminal nets 

For nets connecting more than two terminals a connection tree must be 
constructed. We propose the following Steiner tree heuristic. First, the 
center of gravity point of the terminals to be connected is determined whose 
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coordinates are the average x and y coordinates among the terminals. A seed 
terminal is selected which is the terminal with the shortest Manhattan dis­
tance to the center of gravity point. Initially, the partial connection tree is 
set to the seed terminal and the coordinates of the center of gravity point are 
also set to the coordinates of the seed terminal. The other terminals are then 
ordered in increasing Manhattan distance to the center of gravity point and 
are connected one after another to the partial tree using the shortest path 
algorithm. The procedure form of the Steiner tree heuristic to connect a 
multi-terminal net, n, is shown in Algorithm 4-2. 

Algorithm 4-2: Steiner tree algorithm 

INPUT: G(V,E) and a set of terminals Tn to be connected. 

OUTPUT: a connection tree R connecting the terminals 

METHOD: 

Let Cn be the center of gravity point ofTn. 
Let d(ti) be the Manhattan distance between terminal ti and C„ 
Let R be the partial connection tree. 

Step 1): Determine C„. 

Step 2): For all h in Tn find tc for which d(tc) = min[d(^)]. 
R = {*„}. 
Tn = Tn ■ [tcl 
Set the coordinates of C„ to the coordinates of tc. 

Step 3): For all tt in Tn find tj for which ditj) = min[d(f,)] 
Connect tj to R using the shortest path algorithm. 
R = R {j {the path found) 
Tn = Tn - {tj). 

Step 4): if Tn is not empty 
goto step 3. 
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Note that the shortest path algorithm that finds the shortest path 
between two terminals is used to connect a terminal to a partial connection 
tree. The only modification to the algorithm is to terminate the search if any 
vertex belonging to the partial tree is taken off the F list. We have experi­
mentally compared our terminal ordering scheme to other alternative termi­
nal ordering schemes. The ordering schemes compared are: 

scheme 1: Algorithm 4-2. 

scheme 2: Randomly select a seed terminal; the next terminal is the one 
which is nearest to the partial connection tree [Prim57]. 

scheme 3: First, two terminals with the shortest Manhattan distance are 
connected; then, the terminal which is nearest to the partial con­
nection tree is selected for connection [Kimu83, Roth83]. 

scheme 4: Similar to scheme 3, however, the two terminals with the longest 
Manhattan distance are connected first [Kurt85]. 

scheme 5: The terminals are sorted from left to right in increasing value of 
the x coordinate and are connected in this order [Hana65, Fowl85]. 

We have tested on 234 multi-terminal nets in 4 different circuits. The experi­
mental results are shown in Table 4-1. In most cases our method has pro­
duced the best results. 

4.2;4~Remarks-

Further optimization of the algorithms described are still possible. For 
speed optimization, the size of the search tree can be pruned by giving the 
vertices in the direction towards the destination terminal a higher priority to 
expand. For example, in Clow's algorithm [Clow84] the expanded corners are 
given a cost value based on the summation of the distance from the source 
terminal and the Manhattan distance to the destination terminal. It is 
proved that by doing so, many unnecessary searches can be eliminated. 
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method 

scheme 1 

scheme 2 

scheme 3 

scheme 4 

scheme 5 

total net length 

chipl 
no. nets: 134 

11532 

11735 

11685 

12640 

11942 

chip2 

no. nets: 27 

3304 

3307 

3271 

3373 

3491 

chip3 
no. nets: 40 

3980 

4025 

3987 

4162 

4320 

chip4 
no. nets: 33 

2378 

2399 

2448 

2684 

2447 

Table 4-1. Experimental results with different terminal ordering schemes. 

Xiong [Xion86] added the idea of wave propagation and diffraction to the 
search algorithm allowing the search tree to be further pruned by lowering 
the priorities of the corners whose wave fronts are diffracted by some blocks. 
In constructing Steiner trees, instead of treating the terminals indepen­
dently, Hsu [Hsu87] has shown that better results can be achieved by model­
ing the yet unconnected terminals as small magnets. These magnets exert 
small attractive forces on the vertices in expansion by means of modifying the 
cost function. In this way the search process is biased towards these uncon­
nected terminals. 

4.3 Multi-net routing scheme 

A moderate VLSI circuit contains hundreds of nets. It is obvious that con­
necting each net with the shortest path does not necessarily imply that the 
global result will be optimal. This is because that some wiring regions may 
become congested due to the limited number of available wiring layers result­
ing in chip area increases. To obtain a good global result the individual nets 
must somehow be correlated with each other during the sequential routing 
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process. Obviously, this correlation can only be based on estimations at the 
global routing phase, because the detailed routing is not carried out yet. In 
general, wiring congestions should be avoided in critical parts of the circuits. 
It is desirable to distribute the wiring smoothly throughout the layout. This 
can be achieved by incorporating penalties in the critical regions of the circuit 
into the global routing cost function. However, by doing so the order in which 
the nets are routed becomes important, because a routed net will influence 
the costs of the remaining nets in passing through certain routing regions. 

4.3.1 Net ordering scheme 

The nets are routed one at a time according to a certain order. Among 
many net ordering schemes, the "simplest net first" scheme has been proven 
to be effective in the practical environments. This ordering is defined as fol­
lows. Let Ni be the number of terminals in the net i, and T,- be the total 
number of terminals positioned inside the smallest rectangle which covers all 
terminals in net i. Then, the net to be routed is selected in the increasing 
order of aNi + bTi where a and b are parameters. The idea behind this order­
ing scheme is that nets with many terminals and which interfere most with 
other nets are put off until the end, because they have more alternative short 
connections compared to the other nets. 

4.3.2 Cost function and re-routing scheme 

Acost function for^using_a_charmel^gnientJJnjorp^rating penalties and 
minimum length constraints is set up as follows: 

d = di + apt 
where d,- is the length of the channel segment, a is a constant and pi is the 
penalty function for using this channel segment. To avoid wiring congestion 
the penalty function must depend on the degree of the occupation of the chan­
nel segment. Therefore we must know the capacity of the channel segment 
which describes the effective number of available wiring tracks of the channel 
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segment. The following penalty function is used in our system: 
J O if Ci Zgi 

P' ~ 1 (gt /c,)n otherwise 

where C; is the capacity of channel segment i, gi is the congestion value of 
channel segment i and n is a constant not less than 1. The congestion value 
of a channel segment is initialized at 0 and increased by 1 each time a net is 
routed through this channel segment. The penalty function can be inter-
pretered as the following. In channel segments where the usage does not 
exceed the capacity wires are routed based on the shortest distance. How­
ever, when the usage of a channel segment exceeds the capacity of that chan­
nel segment, the channel segment will exert a resistance to the coming nets 
forcing them to choose alternative routes. 

The above "one-run" routing scheme works well if the placement is rea­
sonably accurate, which means that the routing space (channel capacity) allo­
cated matches closely to the actually required routing space. If this is not the 
case the iterative re-routing strategy [Kurt85, Fuku87, Lins84] might work 
better. In this scheme each net may be tried several times. In the first pass 
all nets are routed based on the shortest connection which provides a reason­
able background of the congestion in the routing area. After this pass the 
critical channel segments are discovered which are the channel segments on 
the longest (critical) path in the channel-position graphs. Increasing the 
width of these channel segments will usually increase the chip size. Penal­
ties are used in these critical channel segments, for example by adding an 
extra cost to the critical channel segments. Some or all nets in the critical 
regions are then selected for re-routing. After each iteration the critical 
regions and their penalties are updated again. 

The first scheme is fast and is suitable for accurate placements. The 
iterative scheme is more general and compensates the drawback of the 
sequential routing of the nets. 
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4.4 Routing over and through the cells 

Saving of the wiring space is achieved when, instead of going around the 
cells (blocks) some nets are routed through or over the cells, see for an exam­
ple Fig. 4-2. 

Figure 4-2. Routing through the cells 

Since in the channel based routing systems the cell area is actually prohi­
bited for routing, only limited capability of over- and through-the-cell routing 
can be provided. In our approach it is assumed that the connections over or 
through the cells are pre-specified in terms of internal connections in the 
cells. Two types of internal connections are distinguished. In the first case, a 
particular net can often be connected to a block at more than one location. 
Thus, there could be many terminals on a block which are internally con­
nected and hence electrically common. It would be advantageous to let the 
router decide which terminal it prefers to connect. Wiring one of these termi-
nals would wire all, and the net could continue out the other terminals, if 
necessary. Notice that a set of internally connected terminals of this type 
belongs to a particular net. In the second case the internally connected ter­
minals do not belong to a particular net and can be freely used by any net. 
These internal connections are not connected to a gate in the cell. This is the 
case when some blocks have wiring paths available over the cells, e.g., in 
multi-metal layer technology where a designer may put some wires of an 
unused metal layer on top of the cells. The global router will decide if it is 
advantageous to use this type of internal connections during the routing of 
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the nets in order to shorten the wiring length. The first type internal connec­
tions are called feedthroughs and the second type internal connections are 
called wirethroughs[E\m&84:]. The shortest path algorithm described in sec­
tion 4.2 has been extended to handle feedthroughs and wirethroughs. 

4.4.1 Feedthroughs 

The shortest path algorithm that finds a shortest path between two termi­
nals is modified to find a path between two groups of internally connected 
terminals. The path will connect one terminal from each group. The frontier 
vertex list F is initialized to the vertices linked to the internally connected 
source terminals. The search process will terminate when one of the inter­
nally connected destination terminal vertices is taken off the F list. During 
the path tracing, beside the two vertices connected by the path all the other 
vertices which are internally connected to these vertices by a feedthrough are 
taken into the (partial) tree. In this way the net may continue out the other 
terminals during the routing of the remaining unconnected terminals of the 
net. 

4.4.2 Wirethroughs 

Routing with wirethroughs is more complicated, because a free 
wirethrough is available to all the nets while a feedthrough belongs to a par­
ticular net. For the purpose of routing efficiency the floorplan graph is 
modified accordingly to model the wirethroughs. We restrict ourselves to 
wirethroughs with two terminals on the block. 

Normally each channel segment and channel intersection is represented 
by a vertex in the floorplan graph. If wirethroughs are used the graph is 
enhanced with wirethrough vertices connected to the channel-segment ver­
tices that are linked to the terminals of the wirethroughs. To each 
wirethrough vertex a routing capacity is assigned according to the number of 
wirethroughs it represents. Each time a wirethrough is used, the capacity of 
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its corresponding vertex is decreased by one. When the capacity of a 
wirethrough vertex becomes zero, the vertex is closed for further usage. Fig. 
4-3 shows an example of a modified floorplan graph, cl is a wirethrough ver­
tex with a capacity 3. Dashed lines in the figure represent the wirethroughs. 

O 

Q-

O-

-O-
cl 

-O- -Ó-

- O 

- O 

Figure 4-3. Enhanced floorplan graph 

In the shortest path algorithm, the frontier vertices will expand to the 
wirethrough vertices in the way similar to the other vertices. The cost for 
using a wirethrough vertex is a function of the length of the wirethrough. If 
a wirethrough vertex has a capacity larger than one, the wirethrough result­
ing in the shortest path is selected and is locked for other nets. 

4.5 Power net routing 

Integrated circuits are fed by at least two power nets, a ground (GND) net 
and a power supply~(VDD)TiëtT_The"pöwer~nets mustbe routed-in-metal-
layer, since neither poly-silicon nor diffusion are suitable for the heavy 
currents on these nets. Even in double metal process it is often preferable to 
route the power nets in a single metal layer, leaving the other metal layer 
free for the routing of the other nets. As a consequence the power nets may 
not cross each other. This constraint restricts the topology of the paths of 
these nets. We call it the planar routability constraint of the power nets, 
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Another observation about power nets is that the more current they have 
to carry, the wider they must be. Metal wires that are required to carry too 
much current suffer metal migration. If this happens, the atoms move within 
the wire leaving a break in the conductor. Typical process rules specify the 
minimum wire width as a function of the maximum current density. A secon­
dary criterion in power net routing is thus to minimize the layout area occu­
pied by the power wires. 

Algorithms to route the power nets given one pad for each of the two 
power nets are reported in [Syed82a, Roth81, Lie82, Moul83, Xion86a]. Some 
of them impose restrictions on the pad or terminal positions [Roth81, Lie82]. 
Two interdigitated connection trees, one for each net, with the root at the pad 
and leaves at the terminals are usually constructed. To guarantee the planar 
routability of the power nets, it has been proven [Syed82a] that given one 
power supply pad and one ground pad the planar routability can always be 
guaranteed if for every block there exists a cut (a line that intersects a block 
boundary at exactly two points) separating the power supply terminals and 
ground terminals. In this section we propose a more general algorithm for 
the planar power net routing (see also [Cai88]) where the number of pads for 
each net is not restricted to one. 

More than one pad per power net is needed in the cases, (1) where the 
number of pads per power net on an integrated circuit is not restricted to one, 
so that the restriction on the power terminal ordering on the blocks men­
tioned above can be relaxed allowing for more flexible power net routing; (2) 
to ease the current load of each pad; (3) to shorten the wiring length, espe­
cially in the case of hierarchical layout construction. For example, in Fig. 4-4 
(a) three pads are placed on the boundary of the hierarchical module 
(bounded by the dashed line) to avoid parallel running power wires which is 
the case if only one pad was used, see Fig. 4-4 (b). 
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*r 

(b) 

j Figure 4-4. Hierarchical layout structure. 

In the following subsection some basic definitions are given. In subsection 
4.5.2 conditions to guarantee a planar power-net routing are established by 
deriving a formula to calculate the minimum number of pads needed for a 
given placement. In subsection 4.5.3 an algorithm is presented for a planar 
power-net routing given a number of pads not less than the minimum. In 
subsection 4.5.5 the algorithm is illustrated by an example. 

4.5.1 Definitions and problem formulation 

In building-block layouts, a circuit (or a hierarchical module) consists of a 
number of rectangular blocks of arbitrary size. The blocks may have any 
number of power terminals on the block boundaries. Let us call the power 
terminals on the periphery of the circuit, pads and the power terminals on 
the blocks, terminals. Obviously, terminals will become pads when we go 
down in the hierarchy. Some terminals on a block are internally connected. 
by afeedthroughr—It isassumed-that only-one-terminal-ofa group-internally 
connected terminals needs to be connected externally. 

Definition 4-2: Equivalent block (EB): the equivalent block of a block is 
obtained by (1) removing all but one terminal of each group of consecutive 
power terminals belonging to the same net, and (2) removing all but one ter­
minal of each group of internally connected terminals, in an order such that 
the number of remaining terminals on the block is minimal. 

Of-— 

* 

*& 

-Pad 

(a) 
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Definition 4-3: Equivalent terminal (ET): the equivalent terminals on a 
block are the remaining terminals on the equivalent block of the block. 

An example of an equivalent block is shown in Fig. 4-5. The dashed line is 
a feedthrough. 

Figure 4-5. (a) a block (b) its equivalent block. 

Definition 4-4: Minimum number of pads (MNP) of a net: The minimum 
number of pads (MNP) of a power net is the minimum number of pads 
required to guarantee a planar power net routing. 

The planar power net routing problem can be seen as follows: the pads 
and the terminals on the blocks must be divided into a number of clusters 
each of which contains a single pad and some terminals of the same net. A 
tour of a cluster is a closed path of the terminals and the pad. It is known 
that an optimal tour of points in the plane never crosses itself. If we can 
ensure that the tours of the clusters do not cross each other, a planar routing 
can be achieved. In this case, for each cluster, a metal wire can then be 
placed inside the tour to connect all terminals to the pad enclosed by the tour 
without crossing other power wires. An example of such a clustering is 
shown in Pig. 4-6. In the example two VDD and one GND pads are specified. 
All terminals are connected. The tours are indicated by the dotted lines. 
VDD terminals are indicated by a V and GND terminals are indicated by a 
'G'. 
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VDD 

GND 

VDD 

Figure 4-6. Planar routing of the power nets. 

4.5.2 Conditions to guarantee a planar routing 

In this subsection we consider the problem of finding the minimum 
number of pads, MNP, required for each net to guarantee a planar routing for 
the two power nets. It is assumed that the relative order of the pads in dif­
ferent nets is not fixed. 

Lemma-4-l:.Eor^a.singLeJblock,^planar routing exists if and only if the 
minimum number of pads (MNP) for each net is equal to the number of ETs 
of the net. 

Proof: Sufficiency: since there is one pad for each ET and the order of the 
pads is not fixed, it is obvious that a planar routing exists. Note that if an ET 
can be connected to a pad the original terminals merged into the ET can also 
be connected to the pad. 
To prove the necessity part of the lemma let us assume that a planar routing 
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exists while two ETs share a common pad. From the definition we know that 
no two ETs of the same net can be adjacent to each other. The two possible 
ways to obtain a connection for these two ETs are shown in Fig. 4-7 (a) and 
Fig. 4-7 (b). In both cases there are other ETs isolated from their pads, hence 
no planar routing exists for either case. This contradicts our assumption and 
the lemma has been proved. D 

V V 
(a) (b) 

Figure 4-7. No planar routing exists for a block that has two ETs connecting 
to the same pad. 

Lemma 4-2: For two blocks a planar routing exists for the two power nets 
if and only if the minimum number of pads (MNP) for each net is equal to the 
total number of ETs of the same net on the two blocks minus one. 

Proof: Since the VDD ETs and the GND ETs of a block always interleave, 
we can always construct a composite block from the two blocks such that one 
pair of VDD ETs shares a common VDD pad and one pair of GND ETs shares 
a common GND pad. Figure 4-8 shows such a composite block. Then, using 
lemma 1, it is clear that if the number of pads for a net is equal to the total 
number of ETs of the net minus one, a planar routing can be achieved. 
To prove the necessity part of the lemma let us assume that a planar routing 
exists while the number of pads of a net is less than the total number of ETs 
of the net minus one. From lemma 1 we know that no two ETs on the same 
block can share a common pad. Suppose that two pairs of ETs of the same net 
but on different blocks share two different pads, it is not hard to see that the 
closed circle formed by the two connections will always isolate some ETs of 
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the other net from the outside due to the fact that the ETs of the two nets 
interleave. Hence no planar routing exists. Contradiction. D 

Note that the MNPs for the two power nets are equal, because the number 
of VDD ETs is equal to the number of GND ETs on each block. Therefore we 
can speak of the MNP of the circuit. For example, the MNP of the circuit in 
Fig. 4-8 is (5 - 1) = 4. 

V G 

Figure 4-8. Planar routing for two blocks. 

The following theorem presents the MNP condition to ensure a planar rout­
ing of re blocks in two power net routing. 

Theorem 4-1: A planar routing for two power nets with each net connect­
ing to each of the re blocks exists (re^l), if and only if the minimum number of 
pads (MNP) of each net is equal to the total number of ETs of the net minus 
(n-1). 

Proof: We prove the theorem by induction. For one block and two blocks 
the proofs are given by Lemma 4-1 and Lemma 4-2 respectively. Suppose the 
theorem is correct for n blocks. Thus the following expression is true: 

MNPn = Tn-(n-l) 
where MNPn is the minimum number of pads for n blocks and Tn is the total 
number of ETs of one net on the n blocks. 
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The case of n+1 blocks can be considered as a composite block of a basic 
block, j , and a composite block öf n blocks. Suppose the number of ETs of the 
net on block j is Tj. The total number of ETs of the net on n+1 blocks, Tn+x, 
is then Tn+i = Tn + Tj. Because the minimum number of pads on the compo­
site block of n blocks MNPn is actually the number of ETs on the composite 
block, according to Lemma 4-2 the minimum number of pads for n+1 blocks 
is: 

MNPn+i = MNPn + Tj-1 
= T„-(n-l) + T , - l 
= Tn + Tj - n 
= r B + 1 - ( (»+l) - l ) 

Hence the theorem is also correct for n+1 blocks, and the theorem has been 
proved. D 

Notice that if each block has only one VDD ET and one GND ET, accord­
ing to Theorem 1, the minimum number of pads per net is one. This special 
case has already been proved in [Syed82a]. 

4.5.3 A planar power net routing algorithm 

We propose an algorithm for the planar topological routing of two power 
nets which does not restrict the number of pads per net to one. The algo­
rithm consists of three parts. In the first phase, a terminal clustering algo­
rithm is performed which divides the set of terminals and pads into clusters 
each of which contains exactly one pad and some terminals. In the second 
phase a topological routing path is found for each cluster. Finally, in the 
third phase wire widths are calculated. Instead of using a "flat" approach by 
connecting one terminal at a time or one tree at a time [Russ85, Haru87], we 
follow a hierarchical approach by a top-down terminal clustering and then a 
bottom-up path routing. This approach considers all terminals at the same 
time at each hierarchical level and guarantees a solution if one exists. 
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4.5.3.1 Top-down terminal clustering. 
By terminal clustering we mean.that a cluster of terminals of the same 

net is determined for each pad (a terminal in the cluster is said to be 
assigned to the pad). The task of the terminal clustering algorithm is to 
assign each terminal to a pad while the planar routability is guaranteed. 
Notice that this clustering is not required if there is only one pad for each of 
the nets. After the clustering the clusters belonging to the same power net 
can be considered as different nets and their trees will not be connected to 
each other. 

To guarantee a planar routing not only the number of pads is crucial but 
also the order of the pads on the circuit boundary. A planar routing can be 
achieved if the pads are ordered in such a way that if we replace the circuit 
by its EB, the number of resulting ETs of each net is not less than the MNP 
of the circuit. Let us call this the MNP constraint. Assume a number of pads 
not less than the MNP is given for each power net and a position or a desired 
side is provided for each pad. First, we do a virtual placement of the floating 
pads on their desired side in such an order that the MNP constraint is 
satisfied. The blocks are replaced by their EBs, however, without removing 
the consecutive terminals. 

The underlying idea of the clustering algorithm is the following. The clus­
tering algorithm partitions the placement recursively according to the given 
channel-routing-order.—This means-that,-starting_at_the_rootJ_eiel,_ajtnodule 
is recursively partitioned into two submodules by a horizontal or a vertical 
channel. Notice here that the power-net routing must be done after the chan­
nel definition. For each of the two submodules, first the MNP is calculated, 
then pads on the module are assigned to the submodules. They are placed on 
the boundary of each of the submodules so that two conditions are satisfied: 
(1) in the submodules a planar routing is guaranteed; (2) a planar routing is 
guaranteed between the module and the two submodules. 
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Basically, depending on the MNPs and the relative sizes of the two sub-
modules the pads on the module are divided into two groups and assigned to 
each of the submodules. To guarantee the planar routing in the submodules 
the number and order of the pads assigned to the submodules must satisfy 
the MNP constraint in the submodules. Due to this constraint some pads of 
the parent module may need to be assigned to both submodules. On the 
other hand, referring to the proof of Lemma 4-2, to guarantee a planar rout­
ing between the parent module and the submodules, the number of pads 
assigned to both submodules may not be more than two, one for each net, and 
in such an order that the "reverse cyclic order" [Syed82a] is satisfied. This 
order implies that if there are two pads assigned to both submodules, then 
starting from the pads on the two submodules assigned from the same parent 
pad, and moving along the corresponding boundaries in opposite directions, it 
should be possible to reach the pads assigned from the other parent pad 
without encountering any other pads (e.g. Fig. 4-8). Theorem 4-1 ensures 
that this pad assignment can always be realized. Furthermore, the wiring 
length is taken into consideration by placing the pads on the submodules as 
close as possible to the corresponding parent pads. In Fig. 4-9 an example of 
such a pad assignment is given. The numbers inside the (sub)modules are 
the MNPs of the (sub)modules. The VDD pad i>2 (Pig- 4-9(a)) on the module 
is assigned to both submodules (Fig. 4-9(b)) to guarantee the planar routing 
in the submodules. 

i>! - -

8\ 82 8\ 82 

- - i>2 Vi 

83 
(b) 

Figure 4-9. (a) a module (b) partitioning in submodules. 



76 GLOBAL ROUTING 

If there is only one pad left for each net on a module, no further partition­
ing is needed. All terminals of the net inside the module are assigned to the 
pad. If the number of blocks inside the module becomes one, the terminals on 
the block are assigned to the nearest pads while maintaining the planar rou-
tability to the pads. 

The pseudo code of the terminal clustering algorithm is given in Algo­
rithm 4-3. 

Algorithm 4-3: Terminal clustering algorithm 

INPUT: A placement and a number of pads 

OUTPUT: An assignment of each terminal to a pad. 

METHOD: 

Calculate the MNP of the circuit. 

If the circuit is planar routable (checking the MNP) 
{ 
Assign virtual positions to the pads on the circuit boundary. 

Assign_pad (circuit) 
} 
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Procedure Assign_pad(module) 
I 
If (the number of pads per net = 1 
or the number of blocks inside the module = 1) 

{ 
Assign the terminals inside the module to the pads 
} 

else 
{ 
Partition the module into two submodules. 

Calculate the MNPs for the two submodules. 

Assign pads on the boundaries of the submodules 
(keeping the planar routability). 

As8ign_pad(submodulel), Assign_pad(submodule2). 
} 

_J 
4.5.3.2 Bottom-up path routing. 

After the terminals are assigned to the pads the routing becomes rather 
simple. The clusters of the same power net are considered as different nets. 
The topological path routing of the power nets is also performed hierarchi­
cally, however, bottom-up, in the opposite direction as the terminal cluster­
ing. Channels with lower routing orders are considered first. The two neigh­
boring modules of a channel will form a composite module after the channel 
is processed. The path is locally optimized in wiring distance while keeping 
the planar routability constraint satisfied. 

Basically, terminals facing the boundary of the composite module are con­
nected directly to the boundary; a terminal inside the channel is routed to the 
end of the channel in the direction of the pad it is assigned to. The pad order 
on each hierarchical level determined in the terminal clustering phase must 
be maintained. Therefore, the terminals assigned to the same pad must be 
routed to the consecutive positions on the boundary of the composite module 
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and the order of the terminals assigned to different pads must obey the 
assigned order of the pads. To satisfy these conditions terminals outside the 
channel must sometimes be routed through the channel. For instance, in 
Fig. 4-10 if one VDD pad is placed on the bottom side and one GND pad is 
placed at the top side, one solution is to route the VDD terminal on the left 
module through the channel to the bottom side of the composite module. 
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Figure 4-10. Local power net routing. 

4.5.3.3 Wire width calculation. 
After the topological routing is done a tree is formed for each pad of which 

the root is at the pad and the leaves are at the terminals connected to the 
pad. Given the current demand of each power terminal, the width of the 
power wire segments corresponding to each branch of the tree can be calcu­
lated. Although any accurate methods, for example [Chow87], can be adopted 
here to calculate the wire width we used a simple scheme by accumulating 
the current demand from the leaf terminals to the root and converting the 

current demand on each tree branch into wire width. The relationship 
between the metal wire width and the current density is usually provided in 
the design rules. 

4.5.4 An example 

To illustrate the algorithm the following example is worked out stepwise. 
In Fig. 4-11 a placement of three blocks is shown. VDD terminals are indi­
cated by a V and GND terminals by a 'g\ Two VDD pads, v i and v 2 , and two 
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GND pads, g\ and gi, are placed on the circuit boundary, one on each side. 
The two routing channels are also shown in the figure. 
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Figure 4-11. A power net routing example. 

4.5.4.1 Terminal clustering. 
Since the MNP of the circuit is 2 and there are two VDD and two GND 

pads this example is planar routable. In the first step pads are assigned to 
the first level of the hierarchy, see Fig. 4-12. V^ and g% are assigned to both 
submodules, because the MNP of module mi is 2. 
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Figure 4-12. Terminal clustering at the first hierarchical level. 
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Since the number of blocks in m i is one and the number of pads per net 
on m 2 is one, all terminals can be assigned to the pads in the second step and 
the terminal clustering is finished, see Fig. 4-13. 
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Figure 4-13. Terminals are assigned to the pads. 

4.5.4.2 Path routing. 
The path routing is carried out starting from the lowest level. In the first 

step the second level of the hierarchy is routed, see Fig. 4-14. 
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Figure 4-14. Path routing at the second hierarchical level. 
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In the second step the first level of the hierarchy is routed using the result 
of the first step, see Fig. 4-15. 

ëi ë2 §2 

Figure 4-15. Path routing at the first hierarchical level. 

After these steps the routing from the boundary to the pads can be simply 
done. The final result is shown in Fig. 4-16. 

v2 

Figure 4-16. The result of the power net routing. 
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4.5.5 Conclusions 

A novel algorithm is presented in this section to solve the planar routing 
problem for two power nets. More than one pad per power net is allowed 
which results in a forest of multiple trees. The conditions to guarantee a 
planar routing are outlined by deriving the minimum number of pads (MNP) 
requirement. The algorithm guarantees a solution if these conditions are 
satisfied. The algorithm is efficient because of its hierarchical nature. The 
nets are processed all at the same time which prevents net or terminal order­
ing. Further, it provides a good starting point to tackle the planar routing 
problem for more than two power nets or critical nets. 
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5. GEOMETRICAL CHANNEL DEFINITION 

5.1 Introduction 

Detailed routing is realized by routing the channels by a channel router in 
the sequence according to the channel order determined. The channel router 
takes as input a channel envelope which is a description of the geometrical 
channel boundary and the terminal information on the boundary. The task 
of the channel router is to connect the terminals physically using a given 
number of routing layers such that the channel width is minimized. 

The topological channel definition has determined the relative positions of 
the blocks and the channels. Prior to sending a channel to the channel router 
the geometrical envelope of the channel must be determined. The process of 
denning the envelope of a channel is called the geometrical channel 
definition. 

Channel routers are very well developed tools to perform the physical wir­
ing. However, while the wiring within each individual channel might be done 
near to optimal by the channel router, the global result may be far from 
optimum, because a channel router optimizes only a small part of the layout 
each time. To cope with this locality problem global information about the 
channels and the net paths should be taken into account when the channel 
envelopes are defined so that a good global routing result can be achieved. 
Despite the importance of this problem it has escaped the attention of most 
researches in the past. In this chapter we consider the different steps of the 
geometrical channel definition problem keeping the "global" aspects in mind. 

One of the steps is the detailed placement of the building blocks. An 
advantage of using slicing structures is that the positions of the blocks can be 
adjusted during the detailed routing. Therefore, in addition to conflict-free 
channel orders, routing in the channels can be optimized by adjusting the 
placement of the blocks. This can be realized by shifting the blocks along the 



88 GEOMETRICAL CHANNEL DEFINITION 

channel sides to find optimal positions. This freedom of placement adjust­
ment will be exploited by the geometrical channel definition algorithm to 
optimize the wiring in the channels. 

Another interesting problem is the optimization of wiring in the channel 
intersection areas. Wiring congestion often occurs in the channel intersec­
tion areas because of many wire crossovers in those areas, for channels are 
routed separately, and the only dependency between the channels is the ord­
ering constraint. To obtain a good global result one should know where the 
wires exiting the ends of a channel are going to in the neighboring channels. 
For example, a bundle of wires (e.g. a signal bus) which passes through 
several channels should be kept as straight and parallel as possible. As 
channel routers do not have the knowledge of the world outside the channel 
envelope an ordering preference for the nets exiting the channels should be 
indicated to avoid unnecessary wire twisting in the channel intersection area. 

This chapter is organized as follows. Section 5.2 is devoted to a more pre­
cise definition of the channel envelope. Section 5.3 outlines how a channel is 
geometrically created. In section 5.4 an algorithm is described to optimize 
the relative positions of the blocks. In section 5.5 an algorithm is proposed to 
determine a terminal ordering at the channel ends in order to avoid unneces­
sary wire twisting. Finally, in the last section a brief description of a channel 
router will be given. 

5.2 Channel envelope 

There are two types of channels, vertical and horizontal. Let us consider 
the horizontal channels. The channel envelope of a horizontal channel is 
defined by the following elements. 

(1) A horizontal channel is a closed rectilinear simple polygon with the 
boundary consisting of four distinctive portions: left and right sides; upper 
and lower sides (or boundaries). 
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(2) A left or a right side is a single vertical line segment and is called an 
open side or an end of the channel. They are fixed in location while their 
lengths may be changed to complete the routing in the channel. The upper 
and lower boundaries are horizontally monotone, i.e., when we traverse them 
from left to right, the x-coordinates are non-decreasing. The line segments 
constituting a boundary are called edges of the boundary. Furthermore, if it 
is required to guarantee the routability of the channel, the location of the 
channel ends may also be changed by adding extra wiring columns in the 
channel. 

(3) Terminals on the upper and lower boundaries have fixed positions and 
may not be located on the vertical edges. Terminals on the channel ends have 
floating positions and are called floating terminals. The exact positions of 
these terminals are determined by the channel router. However, some chan­
nel routers accept an ordering preference of the floating terminals on the 
channel ends. 

(4) The length of a channel is the distance between the channel ends. The 
width of a channel is the distance between the lowest horizontal edge of the 
lower boundary and the highest horizontal edge of the upper boundary. 

Figure 5-1 shows an example of a horizontal channel. The terminals with 
the same net name must be connected to each other in the channel. The 
channel ends are indicated by the dotted lines. 

Figure 5-1. A horizontal channel. 
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5.3 Composing a channel 

A layout is composed by fitting the building blocks and the routing chan­
nels together. A channel can be routed if the terminals on both channel 
boundaries have fixed positions. The channel ordering scheme outlined in 
chapter III guarantees a feasible ordering of the channels. Each time a chan­
nel is routed the width of the channel is returned by the channel router. The 
two blocks adjacent to the channel are shifted into a distance which is just 
enough to fit the routed channel. Together with the channel the two blocks 
are then merged into a composite block as shown in Fig. 5-2. 
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Figure 5-2. A composite block. 

This procedure continues until all channels are routed. The last composite 
block is the layout of the total circuit. Note that although the building blocks 
are rectangularly shaped, a composite block is usually rectilinear in shape, 
because the two adjacent (composite) blocks along the two sides of a channel 
usually differ in shape and size. Each composite block has an east, a west, a 
south and a north side, each of which may consists of several consecutive hor­
izontal and vertical edges. A horizontal channel always ends at the east and 
west side of the resulting composite block while a vertical channel always 
ends at the south and north side of the composite block. In the detailed rout­
ing system no distinction is made between a building block and a composite 
block. Hence, we may relax the restriction of strict rectangular shapes of the 
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building blocks. The blocks could have rectilinear shapes, with the restric­
tion that terminals must be established at the east, west, north and south 
side of the block as in a composed block, see Fig. 5-3 for an example. 
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Figure 5-3. (a) a correct rectilinear shaped building block, (b) an incorrect 
one. 

The shape of a channel is determined by the neighboring boundaries of 
the adjacent blocks. As the adjacent blocks are often rectilinear in shape the 
routing channels obtained are also rectilinear in shape, see for an example 
Fig. 5-4. 
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1 

Figure 5-4. A rectilinear shaped channel. 

For a horizontal channel the initial position of the left open side is 
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determined by the minimum of the position of the leftmost terminal on either 
the upper or the lower adjacent block and the position of the corner of the 
shorter block whichever gives the leftmost value (see Fig 5-4). The initial 
position of the right open side is determined in a similar way. Normally the 
channel length is fixed, however, it can be enlarged by the channel router to 
guarantee the routability of the channel. A vertical channel is treated identi­
cally to a horizontal channel except for a rotation over 90 degrees. After the 
envelope of a channel is determined and a connection list is obtained from the 
global routing data, the channel data can be sent to the channel router. 

5.4 Relative positioning of building blocks 

5.4.1 Relative positions of blocks 

As explained in the previous section each time a channel is routed a com­
posite block is constructed containing the channel and its two adjacent (com­
posite) blocks. The width of the channel which is the distance between the 
two blocks is determined by the channel router. The lateral relative position 
of the two blocks, on the other hand, can be determined before the channel 
routing. This relative position is called the offset of one block with respect to 
the other, as is illustrated in Fig. 5-5. 
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Figure 5-5. The offset of two blocks. 
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Although not crucial for the routing completion, the lateral relative position 
of the blocks can have great impact on the routing result, because the chan­
nel envelope, hence, the resulting channel width depends on the offset. An 
example of a channel routed at different offsets is shown in Fig. 5-6. 
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Figure 5-6. A channel routed at different offsets. 

In this section an algorithm is presented to calculate the optimal offset of 
the blocks. We define the optimal offset of two blocks to be the offset at 
which the width of the current channel is minimized without enlarging the 
chip dimension in the channel direction. The channel direction of a channel 
is defined to be the direction parallel to the upper and lower boundaries of 
the channel. Hence the channel direction of a horizontal channel is the hor­
izontal direction. 

An algorithm to determine the optimal offset for rectangular channels is 
proposed by LaPaugh et. al [LaPa83] in which the optimal offset is defined as 
the offset which results in the minimum channel density regardless of other 
channels. Algorithms to determine the optimal offset for non-rectangular 
channels are proposed in [Kimu83, Cai86]. The algorithm proposed in 
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[Cai86] takes also the wiring congestion in the adjacent channels of the 
current channel into consideration. Based on the global routing 'data an 
approach is proposed in [Fuku87] which modifies the placement before the 
detailed routing phase. To achieve a good result we believe that both local 
and global aspects should be considered. This is done by the algorithm 
presented in this section. 

The algorithm is divided into two phases, a global phase and a local phase. 
The global phase determines a range of allowed offsets between the two adja­
cent blocks of a channel. It ensures that if an offset is chosen within the 
range, the chip dimension in the channel direction will not be enlarged. In 
the local phase the optimal offset is determined which is the offset within the 
allowed offset range that results in the minimum channel width. We first 
discuss the local phase. 

5.4.2 Determining the optimal offset given an offset range 

In this subsection an algorithm will be described to determine the optimal 
offset of two blocks given the allowed offset range which is specified by the 
minimum offset dm jn and the maximum offset dmax where dmax>d„an. If we 
shift one block from the minimum offset dmjn to the maximum offset dmax 

with respect to the other block the offset yielding the smallest channel width 
is the optimal offset. Instead of actually routing the channel at each offset 
which would be very time consuming channel width is estimated by calculat­
ing the channel density at each offset. 

5.4.2.1 Channel density of rectangular channels. 
Let li(d) be the leftmost terminal of net i at a given offset d, r,(d) be the 

rightmost such terminal, wi be the width of net i (including the wire spacing). 
Let ti(x,d) be the contribution of net i to the density at position x when the 
offset is d which is defined as: 
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f u>i if kid) <x<, r,(d) and lt(.d) * r,(d) 
* i (* ,d )= | 0 otherwise 

Then the channel density Tj for a rectangular horizontal channel containing 
n nets is defined as: 

n 

Td = max £ *,•(*,<*) 

For example, the density of the channel in Fig. 5-7 is 4 if«/; is 1 for each net. 
1 

1 
2 

4 3 1 4 

Figure 5-7. A channel with a density 4. 

Several types of terminals can be distinguished. We define the leftmost 
terminal of a net to be the begin terminal of the net and the rightmost termi­
nal of the net to be the end terminal of the net. Other terminals of the nets 
are called dummy terminals, since they do not affect the channel density. 
However, the type of the terminals can change when the offset is changed. 

The channel density is a good estimate of the expected channel width, 
because most channel routers route a channel within its density. The density 
of a rectangular channel can be easily calculated by scanning the channel 
from left to right and counting the contribution of the begin and end termi­
nals. A begin terminal increases the channel density by u»,- while an end ter­
minal decreases the channel density by Wi. 

2 
3 
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5.4.2.2 Channel density of non-rectangular channels. 
In rectilinear shaped channels the rugged channel boundaries also 

influence the channel density, because "bay" areas can be used effectively to 
minimize the channel width. To calculate the density of a rectilinear shaped 
channel the shape of the boundaries must be taken into account which 
implies that a change in the channel boundary must be reflected in the chan­
nel density calculation. In routing examples we observed that the influence 
of a change, also called an indentation, in the channel boundary not only 
takes place at the position where the change occurred but spreads out to a 
distance before or after the position, because usually only one wire can be 
bended at a given position in the channel in order to follow the channel boun­
dary. Therefore, the modeling in [Kimu83] which updates the density 
changes caused by the indentations only at the indentation positions is not 
adequate. The modeling proposed in [Cai86] is adopted here in which an 
indentation is modeled by placing an array of pseudo terminals on the boun­
dary directly before or after the indentation position. These pseudo terminals 
act like begin or end terminals in influencing the channel density depending 
on the change direction of the boundary. The pseudo terminals are placed on 
the outer edge adjacent to the indentation position. We say that a shadow 
edge of the vertical edge is (virtually) created on the channel boundary which 
is the interval spanned by the pseudo terminals. This idea is illustrated in 
Fig. 5-8 (a). 

If-the-boundary-change-increases- (or— decreases)-the -channel -density-the 
corresponding pseudo terminals will also increase (or decrease) the density 
by the same amount, one minimum wire width per terminal. Consequently 
the length of a shadow edge is equal to the corresponding vertical edge. How­
ever, if there are net terminals located on a shadow edge the length of the 
shadow edge is increased or decreased accordingly (see Fig. 5-8 (b) and (c)). 
Hence the length of a shadow edge is not constant over different offsets, as 
net terminals may change type over different offsets. This gives some 
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(a) (b) 

Figure 5-8. Shadow edges. 

pseudo terminal 
shadow edge 

(0 

complications in the computation. Another problem is the overlapping sha­
dow edges. If two shadow edges overlap they are replaced by two non-
overlapping equivalent shadow edges, see for example Fig. 5-9. 

shadow edges 
< *"— 
-*-« equivalent shadow edges 

Figure 5-9. Equivalent shadow edges. 

This process is repeated until the channel does not contain any overlapping 
shadow edges. Now we can forget about the rugged boundary of the channel 
and consider the rectilinear channel as a rectangular channel with some 
additional pseudo terminals reflecting the boundary changes. After this 
translation the channel density of the rectilinear channel can be calculated as 
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it was of a rectangular channel. One can also see this modeling of rectilinear 
shaped channels as a modeling that cuts off all sharp corners of the channel, 
see the shaded area in Fig. 5-10. 

Figure 5-10. Sharp corners of a rectilinear channel are cut off. 

5.4.2.3 The number of relevant offsets. 
Given the minimum offset dmin» an^ the maximum offset dmax, we only 

need to calculate the channel density at the offsets within this range where a 
density change might occur. We observed that if one of the blocks is shifted 
laterally from d„,jn to dmax with respect to the other block the channel den­
sity can only change at positions where two terminals on opposite sides of the 
channel become aligned. Dummy terminals do not affect the channel density. 
Since a net may consist of many terminals and most of them are dummy 
many aligned positions need not be considered. As a consequence the 
number of offsets that need to be considered can be further reduced. The 
relevant offsets where a density change may occur are the positions, where 
an alignment of non-dummy terminals occurs and whereji terminaLchanges-

"typéT'These^ffsets are sorted in a list, the offset list. 

5.4.2.4 The algorithm and its complexity. 
The optimal offset is the one which results in the minimum channel den­

sity. This position is found by calculating the channel density at each 
relevant offset from the offset list. The channel density at each offset is cal­
culated by scanning the channel from left to right and examing the contribu­
tion to the density of all begin, end and pseudo terminals (Algorithm 5-1). 
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Algorithm 5-1: Optimal offset algorithm 

INPUT: top and bottom blocks, the offset range: dmjn and dmax. 

OUTPUT: the optimal offset: dopt. 

METHOD: 

Add pseudo terminals. 

Determine all relevant offsets and sort them in the offset list. 

For (all offsets i in the offset list) 
{ 
Calculate the channel density: 71,-. 
If (Ti < minimum density found so far) 

dopt = i. 
) 

The time complexity of the algorithm is determined by the sorting procedure 
of the Cartesian difference of the top and bottom terminals to derive the 
offset list and by the for loop. The sorting of the Cartesian difference of two 
sets takes 0(n2logn) where n is the number of relevant terminals. The 
number of relevant offsets is bounded by 0(n2) . The calculation of the chan­
nel density at a given offset takes 0(n) time. Hence the time the for loop 
takes is bounded by 0(n3). As a consequence the time complexity of the algo­
rithm is of the order O (n 3). 

Experiments have shown that the modeling of the non-rectangular chan­
nels is fairly accurate [Knij88]. The comparison between the estimated chan­
nel width at the optimal offset and the channel width produced by the chan­
nel router [Groe87] based on the testing of 51 channels is depicted in Fig. 5-
11. The estimated channel widths are set on the horizontal axis, and the real 
channel widths produced by the channel router are set on the vertical axis. 
The deviation from the optimal line, the 45 degree line (y=x), is small, about 
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80% of the test cases are within 5% from this line. 

250-

200-

Channel width by 150 -
the channel router 

100-1 

5 0 -
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50 100 150 200 250 

Locally estimated 
channel width 

Figure 5-11. Comparing the estimated channel width to the real channel 
width. 

5.4.3 Determining the offset range 

The offset range between the two blocks adjacent to the current channel is 
determined with the help of the two channel-position graphs (see chapter II). 
Let-us-callthe estimated-width andheight of thechip^at the time prior to the 
routing of channel i W; and Hi. If a block is not on the longest path of the 
channel-position graph in the channel direction of the current channel it still 
has some freedom to move in this direction without enlarging the longest 
path. The range of positions a block can take in a given direction without 
harming the longest path is also called the slack of the block in this direction. 
Consider the horizontal direction, the slack of a block, expressed in the 
minimum position, /min , and the maximum position, lmBX, is determined as 
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follows. Assume, that the length of the longest path from the left side of the 
block to 'd' in the horizontal channel-position graph is Id, and, the length of 
the longest path from the left side of the block to 's' is ls. Then 

'min = ^d 

I =W-l 
'max " » '». 

Prior to the routing of a channel, say a horizontal channel, the slacks of 
the two adjacent blocks in the horizontal direction are calculated. Assume, 
they are lmini and lmax\ for block 1 and /m,„2 and lmax2 f°r block 2, the offset 
range of block 2 with respect to blocks 1, dmin and rfmax. is then 

"min = •■mini ~ 'ma i l 

and 
"max = 'mo*2 — 'mini. 

The channel-position graphs are updated with the actual routing data after 
the routing of each channel. The two adjacent blocks together with the chan­
nel are replaced by a composite block. In case of a horizontal channel the 
chain of the three edges representing the two adjacent blocks and the chan­
nel in the vertical channel-position graph are replaced by a single edge 
representing the composite block and the two parallel edges representing the 
two adjacent blocks in the horizontal channel-position graph are contracted 
to a single edge representing the composite block, see Fig. 5-12. After this 
operation possible parallel edges between two vertices are merged into one to 
which the largest weight among the parallel edges (channel segments) is 
assigned. Since a composite block is modeled as a rectangle in the graphs it 
will usually contain some empty space. To compensate this inaccuracy the 
widths of the channel segments adjacent to the composite block are adjusted. 
This implies that the width of a channel segment is decreased with the same 
amount as the width of the empty space in the composite block adjacent to it, 
see for example the numbers in Fig. 5-12. Note that the updating of the 
width of the channel segments is only done in the channel direction. 
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Figure5-12. Updating the channel position graphs, block a , channel hi 
-—- andblock a"^feTêplacëd by the composite block a. Weights on 

the edges represent the channel segment widths. 

5.4.4 Concluding remarks 

The optimization of the detailed placement of building blocks is an impor­
tant factor in achieving near to optimal layouts. A new algorithm has been 
presented which adjusts the relative positions of the building blocks during 
the detailed routing phase. Experimental results have shown that in many 
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cases the algorithm improves the routing result at an expense of about 25% 
more CPU time. It attempts to maximize the abutments of terminal arrays 
(busses) and to maximize the utilization of "bay" areas in the rectilinear 
shaped channels. Figure 5-13 shows the same part of a chip; on the left side 
the optimal relative block positioning algorithm was used; on the right side 
the algorithm was not used. The difference is very clear. 

Figure 5-13. A chip example, left side: the algorithm was used; right side: 
the algorithm was not used. 

5.5 Floating terminal ordering at channel ends 

5.5.1 The floating terminal ordering problem 

Routing congestion often occurs at the channel intersection area, which is 
often caused by an arbitrary ordering of the floating terminals at the channel 
ends. This is because the terminal ordering at the ends of a channel is deter­
mined by the channel router regardless of the global topology of the nets. 
This problem is illustrated in Fig. 5-14 where congestion occurs in the hor­
izontal channel caused by the inconsistent orderings of the floating terminals 
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at the ends of the two vertical channels. 

Figure 5-14. Wiring congestion in the horizontal channel caused by the 
inconsistent ordering of the floating terminals of the two verti­
cal channels. 

Given a channel structure the global routing specifies through which 
channels a net is connected. The actual geometrical realization of these con­
nections are performed by the channel router which has only a limited view 
of the total layout. Obviously, there exist many different geometrical realiza­
tions for a giving global routing. To minimize the number of wire crossovers 
and unnecessary wire bends the nets should be routed as "planar" as possi­
ble. As the channels are routed one at a time the channel router has only 

-informationofconnections within" the^urrenf channel. Therefore we should 
synchronize the routing in the individual channels by enforcing a preferred 
ordering of the floating terminals on the channel ends from a global point of 
view. 

A heuristic algorithm applied by the 'PI' system [Rive82] to obtain a wir­
ing with as few wire crossovers as possible is the so-called "crossing place­
ment" technique which places the floating terminals on fixed positions on the 
channel ends. If this approach is used two dimensional routers (e.g. switch 
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box router) are needed to performed the detailed routing. In the channel 
based routing systems the detailed routing is done by a channel router only, 
no fixed positions can be specified for the terminals at the channel ends. 
Therefore we propose a different approach which only specifies a relative ord­
ering of the floating terminals at the channel ends. Guided by these order-
ing8 the channel router still can complete the wiring of the channel in a con­
ventional way of channel routing. 

We tackle the problem in two steps, a local step and a global step. In the 
local step a terminal ordering on each channel end is determined based on 
the connection information in the bar channel of the channel intersection. In 
the global step a terminal ordering propagation process attempts to keep a 
consistent ordering of wire bundles in the channels they pass. 

5.5.2 Local terminal ordering 

A channel envelope consists of two types of edges, edges adjacent to a 
block are called block edges or hard edges, and edges adjacent to a neighbor­
ing channel are called channel intersection edges or soft edges. On a hard 
edge the terminal positions are fixed while on the soft edges the terminal 
positions are not determined prior to the detailed routing. 

In the local step a terminal ordering on each soft edge is determined so 
that the nets can be routed as planar as possible. Since the terminals on a 
soft edge do not have a fixed position yet, it is assumed that they are placed 
at the middle of the edge. We divide the terminals on a soft edge into three 
groups, a R group, a L group and a T group. The R group consists of termi­
nals at the leftmost position of the nets they belong to. The L group consists 
of terminals at the rightmost position of their nets, and the T group consists 
of the other terminals on the edge which are terminals in a net between the 
two outmost terminals of the net. In the special case that the only two termi­
nals of a net are located at opposite positions of the channel we assign them 
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to either the R or the L group but not to the T group. An example of such a 
division is shown in Fig. 5-15. 

1 2 3 4 5 6 7 

Figure 5-15. Terminal grouping on a soft edge of a channel. On the horizon­
tal soft edge (dashed line) the L group consisting of the termi­
nals 1, 2 and 3, the R group consisting of the terminals 6 and 7 
and the T group consisting of the terminals 4 and 5. 

The ordering assigned to the terminal groups on a horizontal edge is L, T and 
R from left to right denoted by L -> T -> R. Similar ordering assignments are 
applied to the soft edges of the vertical channels. Terminals in the T group 
are not further ordered, however terminals in the R and L group are further 
ordered. Multiple terminal nets are first reduced to two terminal nets by 
temporarily removing all terminals of a net except the leftmost and the right­
most. To find an order of the terminals on the soft edge the channel boun­
dary is scanned to find the terminals which are connected to one of these ter­
minals. If the channel boundary is scanned from one side of the edge to the 

other side andjthe_direction is chosencon8istently-(e;g. clockwise);--the order 
of the terminals encounted during the scan is the order assigned to the termi­
nals on the soft edge. If two terminals are located on the same position (i.e. 
terminals on other soft edges) no mutual ordering is assigned to their 
corresponding terminals on the soft edge. For the example shown in Fig. 
5-15 the terminal ordering on the horizontal soft edge is 1 -> (2,3) -> (4,5) -> 6 
-> 7 from left to right. The order of terminals in a pair of parentheses is not 
constrained. Notice that terminals 2 and 3 are not mutually ordered because 
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they are connected to terminals on another soft edge. Only soft edges on the 
upper and lower channel boundaries are processed, but not on the channel 
ends. In this way the local terminal ordering on a channel intersection edge 
is determined by the wiring pattern in the bar channel of the T ' channel 
intersection. In the next subsection we will see how the ordering preference 
of the stem channel can be taken into account. 

After the local step there may still be some terminals in the R and L 
groups on a channel end with no mutual ordering constraint. These termi­
nals are usually terminals of nets that only pass the channel. To keep a bun­
dle of wires to run parallel and straight without unnecessary crossovers the 
terminal ordering of these nets on the channel intersection edges they pass 
should be kept consistently. This is the task of the terminal ordering propa­
gation procedure in the global step. 

5.5.3 Terminal ordering propagation 

In this subsection a procedure is proposed to perform the terminal order­
ing propagation. With this procedure a consistent wire ordering of a bundle 
of wires can be obtained over the channels it passes. 

The basic idea is to split a large bundle of wires into smaller bundles and to 
assign a consistent order to these smaller bundles over the whole length of 
the bundle. This procedure is applied recursively until a wire-to-wire order­
ing is obtained in each bundle. A bundle is defined to be a set of unordered 
wires in the channels. The locations where a bundle passes can be identified 
by finding a set of unordered terminals in the R or L group of the channel 
intersection edges. 

The terminal ordering propagation algorithm processes the bundles from 
large to small. The largest bundle on the chip is found by searching for the 
largest set of unordered terminals in the R or L group on the channel 
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intersection edges. From the channel intersection edge where this set is 
found adjacent channel intersection edges are searched whose L or R group 
also contains the same unordered set. When the search terminates a chain of 
channel intersection edges are found. This chain of channel intersections is 
called the path of the bundle. 

The two channel intersection edges where the path terminates are called 
the termination intersections of the path. A path terminates at a channel 
intersection where the bundle splits into smaller bundles or the bundle 
branches from another bundle of the same nets. The first type of termination 
is called a splitting termination while the second type of termination is called 
a branching termination. The termination of a bundle can be identified as 
follows. If the path of the bundle comes from the stem channel of a channel 
intersection, then it is a splitting termination if the unordered set splits into 
smaller sets on the channel intersection edge. The ordering of the smaller 
sets is called the termination ordering of the bundle at that end. Otherwise it 
is a branching termination if the unordered set appears in the T group of the 
channel intersection edge. If the path of the bundle comes from the bar chan­
nel of a channel intersection and no further channel intersections can be 
traced which contain this unordered set, then a local search in the stem chan­
nel must take place to determine the type of termination. If the type is a 
splitting termination the termination ordering is also derived by the local 
search. 

Based on the termination information of the bundle a bundle ordering is 
determined and assigned to all channel intersection edges on the path of the 
bundle. Three types of combinations of the two path terminations can occur: 
first, the two termination intersections are both splitting termination inter­
sections; second, one is a splitting termination and the other is a branching 
termination; and third, both terminations are branching terminations. In the 
first case, the bundle ordering is set to the termination ordering of one of the 
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termination intersections. In the second case, the bundle ordering is set to 
the termination ordering of the splitting termination intersections. Finally, 
in the third case, an arbitrary order is chosen for the wires in the bundle. 
This bundle splitting procedure is repeated until all terminals in the R and L 
groups of the channel intersections are assigned an order. The procedure 
form of this algorithm is shown in Algorithm 5-2. 

Algorithm 5-2: Terminal ordering propagation algorithm 

While (there are unordered terminals in the ROTL groups) 
{ 
Find the largest bundle. 

Trace the path of the bundle. 

Determine the bundle ordering. 

Propagate the ordering to the channel intersection edges on the path. 

_J 
For the example shown in Fig. 5-14 the result of the terminal ordering 

propagation is shown in Fig 5-16. 

Figure 5-16. A terminal ordering propagation example. 
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In this example the local ordering on the channel intersection edge of the 
lower vertical channel and the horizontal channel is 3 -> (1,2) while the local 
ordering on the channel intersection edge of the upper vertical channel and 
the horizontal channel is (1,2). Hence the largest bundle is (1,2) and the path 
of the bundle consists of the two channel intersection edges. Both termina­
tions are splitting terminations. Suppose we choose the termination ordering 
of the upper intersection edge as the bundle ordering which is 1 '-> 2. This 
ordering is propagated to the lower channel intersection edge, so the ordering 
on this edge becomes 3 -> 1 -> 2. This gives the resulting layout in Fig. 5-16. 

5.5.4 Correctness and complexity 

An important property of the terminal ordering propagation algorithm is 
that it never introduces unnecessary wire crossovers. This can be justified 
easily. When a bundle is split into smaller bundles the algorithm always 
keeps the smaller bundles planar at least at one end of the bundle, because it 
always uses the termination ordering of a splitting termination as the bundle 
ordering whenever there is one. This can be symbolically illustrated. In the 
case that the two terminations are splitting terminations and both have the 
same termination ordering, then the smaller bundles are ordered planarly, 
see Fig. 5-17. 

Figure 5-17. Planar bundle splitting. 

In the case that the two terminations are splitting terminations and they 
have different termination orderings, since one of the termination ordering is 
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used as the bundle ordering the corresponding end of the bundle is kept 
planar. This implies that the wire crossings are pushed to the other end of 
the bundle, see Fig. 5-18. Hence, the bundle splitting operation only moves 
the unavoidable wire crossings in a certain direction. The case that one of 
the termination is a branching termination can be explained in a similar way. 

Figure 5-18. Non-planar bundle splitting, the wire crossings are pushed to 
one end of the bundle. 

The complexity of the algorithm is in the order of 0(mlog(n)) where n is 
the number of nets and m is the number of blocks, because in the worst case 
each bundle is split into only two smaller bundles, so the while statement can 
maximally have 0(log(n)) iterations. Furthermore, each bundle can be pro­
cessed in 0(m) time because the number of channel intersection edges is in 
the order of O(m). 

Notice that if a conflicting ordering occurs at the two terminations in the 
case that both terminations are splitting terminations a choice must be made 
to decide which of the two termination orderings will be used as the bundle 
ordering. This decision effects the locations where the wire crossovers are 
placed. A simple heuristic is to estimate wiring congestions in the two ends 
of the bundle and use the ordering of the most congested end as the ordering 
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of the bundle. This will push the wire crossings to the less congested end. 

The floating terminal ordering procedure is most effective if it is used in 
conjunction with the relative block positioning procedure proposed in the pre­
vious section. This is especially so when there are many V type channel 
crossings in the floorplan graph, because the block positioning procedure can 
keep the two T' type channel junctions converted from a V crossing close to 
each other. 

To achieve the desired goal, the local ordering on the channel intersec­
tions should be accurate. The accuracy of the local orderings depends on the 
accuracy of the width of the channels which in turn depends on the accuracy 
of the placement. This indicates once more that an accurate initial place­
ment is important. 

5.6 Channel routing 

Channel routing is the problem of finding a physical wiring in a as small 
as possible channel using two or more interconnection layers given the 
envelope of the channel and a connection list. Since the length of a channel 
is usually fixed, the channel router will attempt to minimize the channel 
width. A good channel router is essential for a routing system, because it is 
the only part of the routing system where physical layout is generated. An 
example of a section of a routing channel is shown in Fig. 5-19. 

Although we will not consider the channel routing problem in detail in 
this thesis, we will give a brief review of what is going on in this area, for the 
sake of completeness. The channel routing problem has been proven to be a 
NP-hard problem [Szym85]. Traditionally, a channel is a rectangular area in 
which two connection layers are used for wiring, one in each direction. Wires 
are placed on grids, i.e. on rows (or tracks) and columns. The first channel 
routing algorithm was proposed by Hashimoto and Stevens [Hash71]. Fol­
lowing them many channel routing algorithms have been proposed, see e.g. 
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Figure 5-19. A channel routing example 

[Deut76, Yosh82, Rive82a, Burs83, Reed85]. 

Recently, several gridless channel routers were reported, [Deut85, 
Chen86, Royl87, Ginn87] and the one we have developed in our system 
[Groe87]. These channel routers offer the designer much more flexibility 
compared to the grid-based routers, usually at cost of more computation time. 
A gridless channel router does not require terminals to be located on grid 
points. No columns and rows are used, only the wire width, spacing and via 
size are considered. In contrast to grid-based channel routers where the 
pitch of the grid has to be set to the "worst case" spacing design rules of all 
connection layers, the wires can usually be placed much closer to each other 
in gridless channel routers. Consequently, in processes where the via size is 
larger than the wire width, gridless channel routers usually need less area. 
Wires with variable width can be easily handled by gridless channel routers. 
This is especially useful for power and clock nets. Furthermore, channels are 
not restricted to rectangular shapes. Rectilinear shaped channels can be 
handled naturely. 

The channel router in our system [Groe87] runs in two stages, contour 
routing and wire straightening. During contour routing a set of contours 
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along the two boundaries of the channel are maintained to protect the 
already routed wires. A new wire is bended as close as possible along the 
contour. This achieves minimum design rule spacing between routing 
geometries and provides good usage of the channel area. Once the contour 
router has fitted all nets into the channel the wire straightening procedure 
removes redundant jogs and makes the wires as straight as possible without 
widening the channel. This reduces the net length and the number of wire 
bends and helps improving chip yields. An important feature of this channel 
router is that the layer which is allocated to a preferred direction, can also be 
used in the other direction. This allows the channel router to solve most of 
the "cyclic vertical constraints" [Yosh82] without introducing doglegs and to 
minimize the number of vias. 

This channel router can be easily extented to accept a preferred terminal 
ordering on the channel ends enforced from the outside. This can be realized, 
because the nets are routed sequentially during the contour routing, so the 
ordering of the nets can be adjusted to accommodate the preferred terminal 
ordering at the channel ends. 

To reduce the terminal density at the channel intersection area another 
powerful extension to the channel router is to allow terminals to be located 
on the vertical edges of the channel boundaries (assuming the channel a hor­
izontal). This feature is effective because when a channel is composed the 
two -blocks adjaeent-to thechannel usuaUy havendiffèTe^hTsiz^s.̂ which results 
in an empty edge on the channel boundary near the channel end. If we can 
move some floating terminals on the channel end to this empty edge the "bay" 
area in the higher-order neighboring channel can be utilized more effectively. 
An example of such a situation is shown in Fig. 5-20. 
This feature creates terminals on vertical edges of the top horizontal channel 
which must be handled by the channel router. A simple way to route this 
channel is to use a preprocessor which transfers this channel into a 
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Figure 5-20. Terminals on the vertical edges of a channel 

conventional channel by extenting the terminals on the vertical edge in the 
horizontal direction so that they can be separately reached in the vertical 
direction. The number of terminals one may place on a vertical edge depends 
on the routability of the neighboring channel. 
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6. A PLACEMENT AND ROUTING SYSTEM 

Most algorithms presented in this thesis have been implemented into a 
placement and routing system for VLSI building-block layout at the Delft 
University of Technology. It is called the Delft placement and routing system 
[Cai88]. In this chapter an overview of the structure of the system will be 
given. Some design experiences with the system and experimental data will 
also be presented. Finally, the author will attempt to give some directions of 
future developments in this area. 

6.1 The Delft placement and routing system 

6.1.1 The system components 

The system has been written in the C programming language under the 
Unix operating system. The graphical part of the system is implemented on X 
window version 11. These choices have ensured high portability of the sys­
tem. All major workstation vendors provide such a programming environ­
ment. 

The system consists of both interactive and fully automated programs. 
Four modules constitute the system: 

• IPP: an interactive placement program. 

• GLROUTE: an^utomati^mteractive glpbalrouter 

• SEQU: a detailed routing scheduler. 

• GCR: a gridless channel router. 

IPP is the front-end tool of the chip designer at the placement/floorplan 
level. I t operates on a graphic terminal or a workstation and is menu-driven. 
It provides the designer facilities to view existing placements, channel struc­
tures and the connectivity between the blocks in order to judge the quality of 
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the placement. Commands are provided to create a new placement and to 
optimize an existing one. An example of a placement and the connectivity of 
a chip displayed by IPP is shown in Fig. 6-1 where the connectivity is 
represented by the spanning tree of each net. 

Figure 6-1. A chip floorplan displayed by IPP. 

The global router GLROUTE performs the following tasks. Optionally it 
can perform the wiring space assignment according to the longest path algo­
rithm to obtain a more accurate placement. Subsequently, it constructs an 
empty-room-free floorplan graph from the placement, performs the global 
routing on it and defines a conflict-free channel structure. As the last step, it 
planarly routes the two power nets and calculates the width of these nets in 
each channel. Furthermore, it provides a limited capability to control the dif­
ferent steps interactively. 
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The program SEQU takes care of the geometrical channel definition and 
the layout composition. Before a channel is routed SEQU first determines the 
optimal relative position of the two adjacent blocks. It then determines a pre­
ferred ordering of the floating terminals on the channel ends. When the chan­
nel envelope is defined it calls the channel router to perform the physical 
routing. The channels are processed in the channel order determined by 
GLROUTE. After a channel is routed the resulting channel width and termi­
nal positions at the channel ends are returned by the channel router. Using 
this data SEQU generates a composite block which replaces the routed chan­
nel and its two adjacent blocks. 

The channel router GCR is a powerful contour-based gridless channel 
router which can handle rectilinear shaped channels. Due to the gridless-
ness it puts very few constraints on the building block designers. Terminals 
on the blocks are not restricted to locate on grid positions. Terminals in the 
same layer can be placed at the minimum spacing distance of the layer. Ter­
minals on non-interacting layers are allowed to overlap. Terminals and nets 
can have a specified width larger than the design rule required minimum. 
The current version of the channel router can handle up to four routing 
layers. 

6.1.2 Supporting hierarchical designs 

VLSI circuits are^often^ designed hierarchically -to^masterthe complexity-
On the top level of the layout hierarchy the chip core is connected to the 
bonding pads in order to communicate with the outside world. These pads 
have fixed positions on the chip boundary. In the routing system the wiring 
to the pads is handled in the same way as the wiring between the blocks. 
Four temporary blocks are created on the boundary of the chip, one at each 
side, containing the bonding pads. The bonding pads are modeled as termi­
nals on these blocks. Figure 6-2 shows an example of the bonding pad blocks 
and the four outmost channels of the chip (the dashed lines). Note that the 
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four outmost channels are routed with a fixed channel width. 
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Figure 6-2. Bonding pad routing of a chip. 

If the module to be routed is not on the top level of the layout hierarchy 
then it is not desirable to place the terminals of the module on fixed positions. 
In that case the length of the four outer blocks can be adjusted according to 
the size of the module core and the positions of the module terminals can also 
be adjusted to abut to the terminals connected to them on the module core in 
order to shorten the wire length, see Fig. 6-3. In this way when the routed 
module is used as a submodule on a higher level in the hierarchy, generally 
no zigzag long wires will be introduced despite the presence of adjacent chan­
nels running parallel to each other on different levels of the hierarchy. 

6.1.3 Design rule independency 

The system is fully design rule and technology independent. A design rule 
file which can be customized by the user is read by the system. The design 
rule file specifies the necessary fabrication rules for the wiring layers, for 
example, the minimum wire width, minimum wire spacing, the via sizes and 
the relationship between the current and the minimum wire width required 
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Figure 6-3. Terminal routing of a hierarchical module. 

in order to prevent metal migration. Moreover, rules can be provided to 
influence the behavior of the system, for instance, the maximum length of 
high resistance layers (e.g. poly) the router is allowed to use. An example of 
a design rule file is given in Fig. 6-4. 

6.1.4 Data management 

The management of the large amount of data involved in the design of a 
VLSI chip becomes an increasingly important issue. Large number of tools 
operating at various design stages must be able to communicate with_each_ 
other_in^anConvenient way without using cumbersome translators. The 
power of a design system is the true integration of the design tools in the 
sense that the data is controlled by a unified method to keep the data con­
sistency, to reduce the data redundancy and to maximize the data sharing. 
Without this integration individual tools are often useless to the designers. 
The placement and routing modules are integrated into the Nelsis IC design 
system which provides such an environment [Dewi86]. In this system the 
tools operate on a common repository of design data, the data base, while a 



6.1. The Delft placement and routing system 123 

/* 
* Design rule file for a single metal NMOS process 
*/ 

mask[poly] = np; 
mask[metall] = run; 

contactmaskfpoly] = nc; 

spacingfdifrjtdiff] = 2; 
spacing[poly][poly] = 2; 

width[difF] = 2; 
width[metall] = 3; 

contact[difFJ[poly] = 2; 
contact[poly][metall] = 2; 

overlap[poly][metall] = 1; 
overlap[difi][metall] = 1; 
overlaptpoly][diff] = 1; 

length[difFJ = 8; 
minlengthfpoly] = 30; 

currentfmetall] = w / 0.8; 
- — . — ■ 

mask[diffj = nd; 

contactmask[diffl = nc; 

spacing[diff][poly] = 1; 
spacing[metall][metall] = 2; 

widthfpoly] = 2; 

contact[difFJ[metall] = 2; 

overlap[metall][poly] = 1; 
overlap[metall][difïl = 1; 
overlap[diö][poly] = 1; 

length[poly] = 50; 
minchanwidth = 0; 

power_line[metall] = 0.8 * i; 

Figure 6-4. An example of a design rule file. 

data management system (DMS) stores and maintains the data [Wolf88]. 

The data management system stores the design data at different levels of 
abstraction into different views and maintains the consistency between 
design objects in these views. Currently, a circuit view, a floorplan view and 
a layout view have been implemented. The placement and routing tools 
operate mainly on the floorplan view. However, they obtain the netlist data 
from the circuit view and store the wiring output in the layout view. The 
transactions between the tools and the data base are handled via a data 
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management interface (DMI) which relieves the tool developers of the burden 
of a detailed understanding of the storage formats used by the DMS. This 
extra layer also decouples the tools and the DMS such that the tools will not 
be affected by any changes to the internal structure of the DMS. 

6.2 Experimental and design results 

6.2.1 Test chips 

Throughout the development of the system a large number of sample 
chips have been tested over and over again. Many of them were originally 
obtained from the industry. In this subsection we will show the layout and 
statistics of three test chips of different sizes. 

The statistics of a module in an image processing chip (chipl) and two test 
chips (chip2 and chip3) is shown in Table 6-1. Lengths are measured in 
micro meters. 

STATISTICS OF THE TEST CHIPS 

No. of cells 
No. of nets 
No. of terminals 
Chip area W x H 
Wiring area / total area 
Total net length 
TotaLno._of-vias 

chipl 
12 
83 
352 
1672 x1480 
62.63% 
52671 

—199 

chip2 
17 
168 
541 
3815 x 3140 
27.62% 
262906 
-886 

chip3 
21 
275 
1067 
3470 x 3976 
33.33% 
474096 
1813 

Table 6-1: Statistics of the test chips. 

The routing time ranges from 2 to 5 minutes on an Apollo DN-3000 worksta­
tion for these chips. Figure 6-5, Fig. 6-6 and Fig. 6-7 depict the layout of 
these three test chips. 
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Figure 6-5. Chipl, a module in an image processing chip. 
i i i -

Figure 6-6. Chip2, a test chip. 
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Figure 6-7. Chip3, a test chip. 

6.2.2 Real chips have been designed 

Two large VLSI chips have been designed a t the Delft University of Tech­
nology of which the placement and routing has been produced by this system. 
One is a signal processing chip, the CORDIC processor (Coordinate Rotation 
Digital Computer) which is currently being tested. The chip has a pipeline 
architecture and contains more than 70,000 transistors. A photograph of the 
chip layout is given in Fig. 6-8. 

The other one is a pixel processing chip, called CLP (Cellular Logic Pro­
cessor) containing about 30,000 transistors. This chip is currently being pro­
cessed. Extensive simulation and design rule checking have verified the 
correctness of the layout generated by the routing system. The feedback from 
the designers has provided valuable suggestions in improving the quality and 
the functionality of the software. 



6.2. Experimental and design results 127 

Figure 6-8. Layout of the CORDIC chip. 

6.2.3 The benchmark chips 

To compare the Delft placement and routing system with other building-
block layout systems we participated in an international benchmark competi­
tion at the International Workshop on Placement and Routing held in MCNC 
(Microelectronic Center of North Carolina), Research Triangle Park, North 
Carolina, USA in May 1988. 

Two building-block chips were compared, a 10 block, 203 net chip named 
Xerox and a 33 block, 123 net chip named Ami33. They were distributed to 
the participants prior to the workshop. The results of the competition are 
shown in table 6-2. 

Prom the table we can conclude that the Delft system has achieved the best 
results for both chips. We should point out that the total wire length is not 
trivial to measure and may contains some inaccuracy. The competitors were 
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1988 MCNC BENCHMARK COMPETITION RESULTS 

system 
DELFT P&R 
SEATTLE 
MCNC MG 
MOSAICO 
BEAR 

area 
2.60 
2.94 
3.12 
3.16 
3.05 

Ami33 
wire length 

151656 
125000 
134599 
151824 
131244 

# vias 
967 
862 
763 
885 
1092 

area 
26.57 
28.63 
31.71 
29.01 
28.47 

Xerox 
wire length 

615104 
762000 
865712 
650009 
633494 

# vias 
925 
1235 
1029 
1173 
1101 

Table 6-2. 1988 MCNC benchmark competition results. 

the BEAR [Dai87] and MOSAICO [Bear88] system from the University of 
California at Berkeley, the MCNC_MG system from MCNC, and an indus­
trial system from Seattle Silicon. The layout of the two chips produced by thé 
Delft placement and routing system are shown in Fig. 6-9 and Fig. 6-10. 

Figure 6-9. Layout of the benchmark chip, Ami33. 

6.3 New Challenges 

With the continuous advancing of the IC technology design methods and 
tools must also be continuously improved. To conclude the thesis, in this 
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Figure 6-10. Layout of the benchmark chip, Xerox. 

section we look at a number of topics which are expected to attract more 
attention of the researchers in the near future. 

6.3.1 Multi-metal technology 

With the availability of multi-metal processes more sophisticated over-
the-cell routing strategies are required. Since the layout of most cells is real­
ized using only one metal layer, interconnection wires in the other metal 
layers are allowed to cross over the cells. Hence, a region on each cell can be 
denned for each metal layer in which interconnection wiring in the layer is 
allowed. The router should be able to exploit these regions efficiently to 
minimize the channel area and the net length. 

If only one metal layer can be used for the over-the-cell routing, the choice 
of the direction of the wires over the blocks is important, because once the 
direction of a wire is chosen it prohibits other wires in the same layer to cross 
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over the block in the perpendicular direction. The channel based routing 
approaches can still be used but must be enhanced to incorporate the routing 
regions on the blocks. Beside the need for multi-layer channel routers, the 
task of the global routing becomes more complicated. Furthermore, a dif­
ferent power net routing strategy is also required. Although the planarity is 
not the primary criterion in multi-metal chips an efficient layer assignment 
of the power wires is still important to achieve an optimal routing result. 

6.3.2 Timing considerations 

In building block based circuits the delay time for each signal path incor­
porates both the cell and the interconnect delays. With increasing chip area 
and decreasing active device sizes, the delay on the interconnections has an 
increasing effect on the circuit performance. In fact, in modern VLSI circuit 
the dominant delay time is the time to send the signals down the connection 
wires, not in the active components. As a consequence, the effect of intercon­
nect delay on the circuit performance becomes an increasingly important 
design consideration. 

Most of the work done on layout has been concentrated on optimizing 
area. Coupling timing analysis with placement and routing will become a 
necessity for the future layout systems. Advanced layout systems must take 
timing considerations into account during each layout synthesis stage 
[Teig86]. This implies that beside the geometrical considerations each layout 

~tool shoüldalsö'üs^the_timlng~criticality in making decisions. Early and fre­
quent feedback from the analysis of how the layout is progressing towards 
meeting the timing requirements allows the designer to maintain close con­
trol over the performance of the design and to make small adjustment where 
necessary. 
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6.3.3 Expert systems 

The unstructured nature of some of the layout problems makes them 
difficult to tackle by algorithmic approaches. In fact, human design experts 
often produce superior layout compared to the automatically synthesized lay­
out. Human beings are particularly strong in solving two dimensional prob­
lems. They rely on experience, intuition and understanding of geometrical 
relationships to complete the task. They are able to consider different aspects 
of the problem at the time. With the advance of the Artificial Intelligence 
technology, especially in the area of knowledge based expert systems, it 
becomes feasible to code human expertise into a computer. Such systems 
attempt to capture the style and expertise of the human designers and pro­
vide flexibility to deal with a wide range of design applications. It is gen­
erally expected that expert systems will make a significant contribution 
towards solving various difficult CAD problems. 

A knowledge based system in the form of an expert system consists of 
three major components: a knowledge base, composed of a set of production 
rules encoding the human expertise, a working memory presenting the 
current state of the system and an interpreter (also called an inference 
engine) which controls the system's activity. The rule-based approach has 
the advantages that it is modular, so that rules containing the domain 
knowledge can be added, deleted or modified without directly affecting other 
rules, and it is uniform in structure with all knowledge being encoded in the 
same constrained syntax [Wins84, Myer86, Haye84]. 

Progress has already been reported in using expert systems to solve lay­
out problems, for example, in the module area estimation [How86], in floor-
planning [Wata86, Yu87, Birm85], in global routing [Cai87] and in detailed 
routing [Joob85]. Many more exciting applications of expert systems are 
expected to come. 
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