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a b s t r a c t

Climate and land use changes will affect the hydrological regime, and therefore hydropower. This study
which aims to develop a novel modeling framework, does not only determine the changes in hydro-
power generation and sustainability, but also provide robust operating rules for handling uncertainty
attributed to both climate and land use changes, using Xinanjiang Reservoir in Eastern China as a case
study. Specifically, projections of five bias-corrected and downscaled General Circulation Models (GCMs)
and three modeled land uses representing a range of tradeoffs between ecological protection and urban
development are employed to drive the Soil and Water Assessment Tool (SWAT) and to predict
streamflow under 15 scenarios. We then develop a set of robust rule curves to consider the potential
uncertainty in reservoir inflow and to increase hydropower generation, and a baseline rule is presented
for comparison. Results show that both robust and baseline rules increase hydropower generation with
increasing reservoir inflows in future, but the robust rule yields better hydropower generation, sus-
tainability and efficiency. The streamflow under the rapid urbanization scenarios differs from that under
other scenarios, but there are no significant differences in hydropower among scenarios corresponding to
the non-linear relationship between streamflow and hydropower change. Our findings highlight the
potential to improve water resource utilization in the future, especially based on the robust operating
rule considering optimization and uncertainty, and can provide references for future hydropower
planning to the other existing plants.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Renewable hydropower plays a key role in human lives and
economic development (Teot�onio et al., 2017). According to the
2019 Hydropower Status Report, the world’s hydropower has been
steadily developing with an increased hydropower capacity of
21.8 GW in 2018, and the total installed capacity reached 1,292 GW.
To date, China’s hydropower sector has covered over a quarter of
the world’s installed capacity. It is well known that China has been
planning and implementing a number of hydropower plants with
reservoirs in different regions, such as the Xinanjiang Reservoir
(Vonk et al., 2014) in Qiantangjiang Basin, Three Georges Reservoir
(Qin et al., 2019) and Danjiangkou Reservoir (Zhang et al., 2019) in
Changjiang Basin, and Xiaolangdi Reservoir (Wang et al., 2016) in
Yellow River Basin. These reservoir projects ensure that hydro-
power remains a vital and stable component of the electricity
supply with inherent uncertainty in China.

Hydropower generation can be strongly impacted by hydro-
logical regime, and thus an important issue being discussed
recently is how hydropower changes in the future. Climate and land
use changes are the two widely believed factors profoundly
affecting hydrological processes (Alaoui et al., 2014; Ning et al.,
2016; Abera et al., 2019), and thus hydropower generation. How-
ever, hydropower generation and climate change, or hydropower
generation and land use change both have a coupled relationship,
and they interact with each other. On one hand, climate change
indirectly influences streamflow through variations in
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temperature, precipitation, and evaporation (Ahn and Merwade,
2014; Guo et al., 2019), and land use change alters variables such
as evapotranspiration, groundwater re-charge and overland flow,
resulting in changes in streamflow (Molina-Navarro et al., 2014;
Zhang et al., 2017). Furthermore, the spatiotemporal variations in
streamflow will change the reservoir inflow and thus affect hy-
dropower generation. On the other hand, hydropower is beneficial
to reduction in the dependence on fossil fuels and the emissions of
greenhouse gas (GHG), and reservoir operation may contribute to
mitigating local climate change (De Queiroz et al., 2016); mean-
while, hydropower improves the energy supply security and reli-
ability accelerating economic development and supporting a
growing global population, potentially resulting in land use re-
distribution. Given the significant role of hydropower, to assess
the individual and combined climate and land use changes on hy-
dropower generation is critical for sustainable development.

Numerous studies have investigated how climate change im-
pacts streamflow and hydropower generation, and most of them
have applied General Circulation Model (GCM) projections to
quantify these effects (Schaeffer et al., 2012; Boehlert et al., 2016;
Kim et al., 2017; Mendes et al., 2017; Falchetta et al., 2019; Zhong
et al., 2019). Turner et al. (2017a, 2017b) explored the possible
impacts of climate change on global hydropower by an aggregated
hydrological and hydropower plant operating model depending on
GCMs; the former found that the majority of hydropower plants
experienced reductions in hydropower production under all
emissions scenarios, and the latter highlighted the disagreements
in the direction of changes in hydropower production at the global
scale. Moreover, regional studies conducted in many regions of the
world have noted that hydropower generation was projected to
increase in some areas and decrease in others under climate change
(Chilkoti et al., 2017; Teot�onio et al., 2017; Arango-Aramburo et al.,
2019; De Queiroz et al., 2019). For example, Mendes et al. (2017)
reported that hydropower outputs was reduced with decreasing
streamflow in Iberian area by coupling GCMs and a hydrology-
reservoir model, while Zhong et al. (2019) followed a similar
method to predict future hydropower in the Lancangjiang hydro-
power base, and noted that increased reservoir inflows would
cause increments in hydropower outputs for most GCMs. Addi-
tionally, the effects of land use change on hydrological processes
have been widely discussed (Zhang et al., 2015; Zuo et al., 2016;
Desta et al., 2019). However, to our best knowledge, there has been
very limited efforts to review the impacts of land use change, and
even fewer studies have focused on the combined impacts of
climate and land use changes on hydropower variations.

Accordingly, the most common way to evaluate how future
changes impact hydropower generation is by coupling hydrological
models with climate or land use models to first simulate the
streamflow response and then estimate hydropower generation
based on the relevant operation policies that describe the relation-
ship between streamflowandhydropowergeneration.However, the
earlier mentioned studies mainly focused on the assessment of
potential hydropower changes based on a power output equation
with a constant hydraulic head. They did not consider the use of
optimal reservoir policy as well as the ability of operating policy to
mitigate the impacts attributed to future uncertain climatic and/or
land use changes. The differences in hydropower plant operation
policies considering climate and land use changes remain unclear. A
number of methods to address uncertainty in reservoir operation
have been proposed in recent years (Xu and Tung, 2008, 2009;
Kasprzyk et al., 2009; Matrosov et al., 2013; Culley et al., 2016; Beh
et al., 2017), one of which is robust optimization. Robust optimiza-
tion has shifted from expected utility to exploratory bottom-up
approaches, which can identify and secure vulnerable scenarios in
advance (Giuliani et al., 2014). Managers generally refuse to use the
2

optimization models to directly operate reservoirs, particularly
when they consider realistic uncertainties (Celeste and Billib, 2009).
They prefer some simpler tools instead, such as rule curves, which
are different from the operating solutions informed from the robust
optimization analysis (Kasprzyk et al., 2013). Moreover, the former
studies generally focused on the overall changes in hydropower
production and the resulting economic impacts, whereas the sus-
tainability of the future hydropower systems, including the reli-
ability to maintain base output, and the resiliency and vulnerability
to output failure, which can be used to quantify and identify how
different reservoir policies response to future changes, is still less
investigated.

The Xinanjiang catchment in Eastern China is a good case study
given that its power sector is highly dependent on hydropower. The
Xinanjiang hydropower plant is the first nationally designed and
constructed reservoir in China. Dominated by global warming,
rapid urbanization and land use policies in the Xinanjiang catch-
ment, the inflow and hydropower generation of Xinanjiang Reser-
voir are undergoing dramatic changes. We aim to evaluate the
hydropower changes induced by different operating policies,
climate and land use changes, using Xinanjiang Reservoir as a case
study. The innovations of this study are as follows: (1) The overall
changes in the hydropower potential and outputs as well as the
sustainability of hydropower projects are assessed under the
combined impacts of climate and land use changes; (2) Robust
optimization curve is developed to mitigate the impacts attributed
to the uncertainty, and a baseline curve is presented for compari-
sons. Specifically, the projections of bias-corrected GCMs and
modeled land uses are employed as inputs of the Soil and Water
Assessment Tool (SWAT) to predict streamflow under multiple
scenarios. Then the streamflow changes and corresponding infor-
mation are considered when developing robust reservoir operation
rules, and the hydropower generation and sustainability in the
future are finally assessed based on the baseline and robust rules.

2. Case study description

2.1. Study area

The Xinanjiang catchment is located in the upstream part of
Qiantangjiang Basin, Eastern China. The Xinanjiang River flows
fromwest to east across two provinces in China, namely, Anhui and
Zhejiang, and has a total length of 323 km with a drainage area of
11,503 km2, as shown in Fig. 1. Forest and grassland are the most
widely distributed, and cultivated land is concentrated on the pe-
riphery of urban land. Located in the subtropical monsoon climate
zone, the seasonal temperature and precipitation differences are
distinct. Note that the spring and summer account for the most
precipitation among the four seasons. The wet seasons fromMarch
to July account for approximately 74% of the annual streamflow, and
the dry seasons from August to February take up the remaining 26%
of streamflow.

The Xinanjiang hydropower plant with reservoir located up-
stream of the Qiantangjiang Basin (presented in Fig. 1), is mainly
utilized for electricity supply for the East China Power Grid
including Shanghai city and Jiangsu, Zhejiang and Anhui provinces.
The reservoir characteristic parameters are listed in Table 1. Under
normal conditions, the Xinanjiang Reservoir operates through a
monthly conventional policy (the baseline rule) closely based on
the dynamics of the current releases and flows, including different
guide curves and the corresponding operation zones for hydro-
power generation. The baseline rule is between the minimum
water level and the maximum water level, within a lower basic
guiding curve, an upper basic guiding curve, 1.5-times output and
2-times output curve in detail.



Fig. 1. Geographic location of (a) Qiantangjiang Basin and (b) Xinanjiang catchment.

Table 1
Characteristic parameters of Xinanjiang Reservoir.

Reservoir Normal water level Flood limited water level Dead water level Power output coefficient Installed capacity Firm capacity

m MW

Xinanjiang 108 106.5 86 8.3 810 174
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2.2. Data

The data used in this study are described in Table 2. Specifically,
the observed meteorological data comprise the daily precipitation,
temperature, solar radiation, wind speed, and relative humidity,
which are collected at nine hydrometric stations, namely Ningguo,
Huangshan, Linan, Qimen, Tunxi, Chunan, Jinhua, Yiwu, and Quz-
hou, as presented in Fig. 1. The GCM climate projections include the
daily precipitation and average, maximum and minimum temper-
ature. Five CMIP5 GCMs, CNRM-CM5, GEDL-ESM2M, IPSL-CM5A-
LR, MIORC-ESM-CHEM, and NORESM1-M are used to indicate the
inter-model uncertainties due to their good performance in climate
simulation and projection in China (Wen et al., 2018; Yang et al.,
2019).

3. Methods

We proposed an integrated and systematic framework to assess
the potential changes in hydropower generation, sustainability and
efficiency induced by reservoir policy, climate and land use change
under uncertainty, as presented in Fig. 2. The main methods asso-
ciated with the framework are described as follows.

3.1. Climate and land use change scenarios

To identify how different climate scenarios impact streamflow,
we select three Representative Concentration Pathways (RCP)
Table 2
Research data used in this study.

Data types Research data Period So

Geospatial data Digital elevation model (DEM) 2000 Ge
Land use 1995, 2005, 2015 Re
Soil 2008 Co

Meteorological data Daily observed data 1976e2005 Na
Daily GCM projections Baseline: 1976e2005;

Future: 2021e2050
Ea

Discharge data Monthly inflow of Xinanjiang Reservoir 1976e2005 Zh

3

scenarios, namely RCP2.6, RCP4.5 and RCP8.5, in this study. These
three scenarios represent low, medium and high emissions of GHG,
respectively. The five GCMs projected precipitation and tempera-
ture at daily scale under RCPs will be downscaled and bias-
corrected by the Bias Correction and Spatial Disaggregation daily
(BCSDd) method (Thrasher et al., 2012). The description of the
BCSDd method is reported in the supplemental material.

Additionally, three land use change scenarios that represent a
range of tradeoffs between ecological protection and urban devel-
opment are considered to identify how different land use man-
agement policies affect streamflow, and these scenarios include the
historical trend (HT), ecological protection (EP), and urban devel-
opment (UD) scenarios. The land use demands under the three
scenarios are all based on the historical trend from 2005 to 2015,
but vary with specific conditions. The HT scenario represents the
conditions without any interventional policy for land use changes
in the future; the EP scenario aims to maintain a high vegetation
coverage rate and develop ecological land areas (forest and grass-
land) to other land use types; and the UD scenario not only forbids
the transformation of urban land to other land use types, but also
encourages the conversion to urban land. Overall, the EP scenario
has a lower impermeable area (IA), but the UD scenario has a
greater IA. We used the Cellular Automata - Markov (CA-Markov)
model (Wickramasuriya et al., 2009) to predict the land use change
in 2025. The description of the CA-Markov model is reported in the
supplemental material.

Then, 15 scenarios are assumed to assess the individual and
urces

ospatial Data Cloud of China (http://www.gscloud.cn)
source and Environment Data Cloud Platform of China (http://www.resdc.cn)
ld and Arid Regions Sciences Data Center at Lanzhou (http://westdc.westgis.ac.cn)
tional Meteorological Information Center of China (http://data.cma.cn)
rth System Grid Federation (https://esgf-node.llnl.gov)

ejiang Design Institute of Water Conservancy & Hydro-electric Power

http://www.gscloud.cn
http://www.resdc.cn
http://westdc.westgis.ac.cn
http://data.cma.cn
https://esgf-node.llnl.gov


Fig. 2. Modeling framework of this study.
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combined contributions of climate and land use changes on hy-
dropower generation and sustainability. Scenarios 1e3 evaluate the
future conditions under climate change (RCP2.6, RCP4.5, and
RCP8.5), and Scenarios 4e6 evaluate the conditions under land use
change (HT, EP, and UD). Scenarios 7e15 consider combined con-
ditions, where RCPs are assembled with HT as HTs (i.e., HT2.6,
HT4.5, and HT8.5); EP as EPs (i.e., EP2.6, EP4.5, and EP8.5); UD as
UDs (i.e., UD2.6, UD4.5, and UD8.5).
3.2. SWAT hydrological simulation

The SWAT model has been successfully used in climate and land
use change impact analysis and proved high reliability of short/
long-term streamflow simulation at yearly/monthly scale (Zuo
et al., 2016; Anand et al., 2018; Bhatta et al., 2019). We applied
the SWAT distributed hydrological model to simulate and predict
the long-term monthly inflow for Xinanjiang Reservoir. In the
SWAT model, a catchment will be divided into several sub-basins
and then separated into numerous hydrological response units
(HRUs). The same HRU shares same land use and soil information.
The flow in each HRU is further simulated according to a water
budget equation. See Arnold et al. (1998) for details. To assess the
goodness of SWAT model in the Xinanjiang catchment, the co-
efficients of determination (R2) (Woldesenbet et al., 2017) and
Nash-Sutcliffe efficiency (NSE) (Dile et al., 2016) are adopted in this
study.
3.3. Reservoir robust optimization model formulation

In addition to the baseline operating rule, optimization schemes
4

reasonably utilizing water resources to operate a reservoir for the
sole purpose of hydropower generation are also widely applied in
the field of water resources management (Fang et al., 2018). To
maximize hydropower generation, we first use a reservoir opti-
mization rule model.

f ¼max

 XT
t¼1

NtDt

!
(1)

Nt ¼AHtQ
p
t Dt (2)

where A is the power output coefficient of the hydropower plant,Ht

is the tth hydraulic head (m), Qp
t is the tth reservoir release for

hydropower generation (m3/s), Nt is the tth power output (MW),
and t is the index of time step.

The operation model is subject to the following constraints:

C1Vtþ1 ¼Vt þ
�
Qi
t �Qr

t

�
�Dt � It (3)

C2Zt;min � Zt � Zt;max (4)

C3Qr
t;min�Qr

t � Qr
t;max (5)

C4Qp
t;min�Qp

t � Qp
t;max (6)

C5Nt;min �Nt � Nt;max (7)
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C6dk�1
t � dkt (8)

where C1-6 represent the constraints of water balance, reservoir
storage, total release, turbine release, power output and operation
lines, respectively; Qi

t is the tth reservoir inflow (m3/s), Qr
t is the

total release of reservoir (m3/s), It is the tth water loss (m3), Vt is the
tth reservoir storage t (m3), Zt is the tth water level of reservoir (m),
min and max are the top and bottom limitations, respectively; and
dkt is the tth point of guiding curve line k (m), here the number of
guiding curves is 4.

Climate and land use changes and the corresponding uncer-
tainty may cause reservoir inflow changes, which will disrupt the
consistency of hydrological data time series of the hydropower
plants. To assess the vulnerability of reservoir operations to the
potential uncertainties in streamflow, the objective in Eq. (1) is
instead evaluated over a number of inflows under varying climate
and land use changes. The uncertainties are then mitigated using a
minimax approach formulated in Eq. (9), which minimizes the
objectives in the worst-case realization. This approach identifying
robust operating policies has been adopted in Kasprzyk et al. (2012)
to improve the robustness of the identified solutions under
uncertainty.

J¼maxmin
i

 XT
t¼1

Ni;tDt

!
(9)

where Ni;t is the tth power output under scenario i (MW).
The robust optimization model uses the uncertain inflows as the

inputs under 15 climate and land use change scenarios in the
future. Then the model is run with a monthly time-step and solved
by Genetic Algorithm (GA).
3.4. Performance indicators

We assess the performance of different reservoir policies using
indicators of sustainability and efficiency (Tian et al., 2018). The
sustainability is generally determined by indicators of reliability,
resilience, and vulnerability. The reliability represents the proba-
bility of the hydropower system operating satisfyingly (quantified
by the power assurance rate (PAR)); the resiliency defines the
ability of the hydropower plant recovering from a failure to a suc-
cess status (quantified by the resiliency index (RI)); and the
vulnerability measures the severity of a failure (quantified by the
maximum output gap (MOG)). In this study, a failure occurs when
the power output is below the firm output. The efficiency is the
ability to effectively use water for electricity production and is
quantified by the amount of spilled water (SW) and the water use
rate (WUA). These metrics can be calculated based on equations
10e14.

PAR¼nN�Nbase

T
� 100% (10)

RI¼
PT�1

t¼1 ðNt <NbaseÞ1ðNtþ1 � NbaseÞ
nN<Nbase

� 100% (11)

MOG¼maxðNbase � NtÞ (12)

SW¼
XT

t¼1
max

�
0;Qr �Qp�� 2:63

�
100 (13)
5

WUA¼Qp

Qr � 100% (14)

where Nbase is the firm power output (MW), nN <Nbase
is the number

of failure states while nN�Nbase
is on the contrary, and1 is a function

that returns 1 when the condition is satisfied and returns 0 other-
wise. Note that the larger the PAR, RI, and WUA values are, the
better the results, whereas lowMOG and SW values are preferable.

4. Results

4.1. Climate and land use change projections

The mean annual temperature in 1976e2005 in the Xinanjiang
catchment is 16.83 �C. In 2021e2050, the multi-model ensemble
means all projects warming under RCPs, and the mean annual
temperature increases by 0.25e0.69 �C with increasing radiation
intensity. In addition, there is an agreement on the direction of
precipitation change. Themulti-model ensemblemeans anticipates
a positive increase in the mean annual precipitation by
44.07e45.08 mm under RCPs. Fig. 3 (a) and (b) show the projected
changes in the monthly temperature and precipitation in
2021e2050, respectively. The Xinanjiang catchment has four
distinct seasons in both the baseline and future periods. Addi-
tionally, there is a non-uniform distribution of mean monthly
precipitation in the target region, and the precipitation in spring
and summer accounts for 72.93% of the total precipitation in
1976e2005.

Seen from Fig. 3 (c), forest and grassland are the two dominant
land-use types in both 1995 and 2025. The areas of forest, culti-
vated land and water body all decrease from 1995 to 2025 under
the three land use change scenarios, and the areas of the other land
use types all increase to varying degrees. Overall, the areas of forest
and grassland are the largest under EP, and urban land has the
lowest occupancy. In contrast, the area of urban land under UD is
the largest. The land use under HT has undergone less urbanization
than that under UD.

4.2. Streamflow simulation and prediction

The SWAT hydrological model was calibrated and validated in
1976e1995 and 1996e2005 on a monthly scale, respectively. The
model shows very good performancewith values of NSE¼ 0.93 and
R2 ¼ 0.92 for the calibration period and NSE ¼ 0.92 and R2 ¼ 0.90
for the validation period, as shown in Fig. 4. The model captures the
low flows and most peaks, especially the highest flow peak.

We then estimated the reservoir inflow variation in 2021e2050
induced by climate change, land use change, and their combination
using the calibrated SWAT model and 15 scenarios. In 2021e2050,
the mean annual inflow is 339.58e354.33 m3/s, with a variation of
1.41e5.99% compared with that in 1976e2005. The mean annual
inflow does not increase positively with the increasing radiation
intensity under RCPs. However, the mean annual streamflow in-
creases positively with increasing IA. In addition, we find that the
mean annual inflow under the combined climate and land use
change is higher than that under climate change alone but lower
than that under land use alone.

Fig. 5 shows that there is an uneven distribution of mean
monthly inflow in 2021e2050 along with the observations in
1976e2005. However, the uneven distribution is improved in the
future. In particular, in the flood periods from April to July, the
inflow accounts for 63.59% of the total inflow in 1976e2005,
whereas that in 2021e2050 ranges from 59.27 to 61.44%. There are
no obvious changes in monthly streamflow among the three RCPs.



Fig. 3. Projected changes in (a) monthly precipitation, (b) monthly temperature, and (c) land use areas in the future relative to that in the baseline. The solid markers indicate the
monthly precipitation and temperature, and land use areas in the baseline.

Fig. 4. Simulated and observed inflow of Xinanjiang Reservoir over the period 1976e2005.

Fig. 5. Projected changes in monthly inflow under (a) climate change, (b) land use change, and (c) combined climate and land use change in 2021e2050 relative to that in
1976e2005. The solid markers indicate the monthly inflow in the baseline.
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However, the monthly streamflow under UD differs from that un-
der HT or EP. The monthly streamflow under UD from January to
June is larger than that under both EP and HT, but that from August
to October is smaller. And, we find that the projected changes in
monthly inflow under EPs and HTs are consistent with those under
RCPs alone, and that those under UDs are similar to those for UD
alone. These results emphasize the complex and non-additive
6

interactions between streamflow and climate change and land use
change, and the IA greatly contributes to recharging the streamflow
in the Xinanjiang catchment.

4.3. Robust rule curves with changed streamflow

The robust optimization model takes the future uncertain
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inflows as the inputs under 15 scenarios operated based on the
monthly guiding curves within the boundary, and the results are
presented in Fig. 6. Note that the region between the minimum
boundary and lower curve is defined as the 0.5-times power output
(0.5Nbase) region, between the lower and upper curves is defined as
the base power output (Nbase) zone, between the upper and 1.5-
times increased curves is defined as the 1.5-times power output
region (1.5Nbase), between the 1.5-times and 2.0-times increased
curves is defined as the 2.0Nbase, and between the 2.0-times
increased and maximum boundary curves is defined as the full-
output (Nfull) region. A baseline rule for Xinanjiang Reservoir that
closely reproduces the dynamics of the current releases and flows is
presented for comparison with the new rule. The robust curve rule
differs with the baseline curve rule. Compared with that under the
baseline operation rule, the lower guiding operation curve of the
robust operating rulemoves up in the flood seasons from January to
September, and moves down in the early non-flood seasons from
October to December, leading to 14.10 � 108 m3 more useable
storage in the 0.5Nbase region. The upper guiding operation curve
shifts upward slightly over the course of a year, and thus, the
changed lower and upper guiding curves contribute to a bigger
Nbase zone. However, the 1.5-times increased output curve drops off
apart from the main flood seasons from April to June, resulting in a
narrower 1.5Nbase region in the non-flood periods and a larger
power output region in the flood periods. We find that the 2-times
increased output curve declines resulting in 10.27 � 108 m3 more
useable storage in the Nfull region from July to December due to the
projected increase in inflow in the future.
4.4. Hydropower generation under changes

We simulated the historical hydropower generation with the
baseline rule, and then the inflow in the future period was regu-
lated by the baseline and robust rules, respectively. Table 3 lists the
overall changes in annual hydropower generation between the
periods of 2021e2050 and 1976e2005. The increase in the overall
inflows reflects a continuous increase in the hydropower potential.
However, the two operating rules have different effects on hydro-
power. The mean annual hydropower generation is
18.16 � 108 kW h/a in 1976e2005, and that in 2021e2050 shows a
Fig. 6. Comparison between the rob
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variation of 1.85e9.72% and 10.32e14.04% operated by the baseline
and robust rules, respectively. Although the inflow varies in
different land use scenarios, there are no obvious gaps among the
three land use scenarios for both rules.

Fig. 7 shows the intra-annual characteristics of hydropower
generation. The seasonal hydropower generation obtained with the
baseline rule is sensitive to streamflow. Due to the decreased inflow
from March to July, the baseline rule causes a significant decline in
hydropower during the flood seasons, except under land use
change alone; and an increase occurs in the non-flood seasons
under all scenarios due to the increased inflow. We find an
exception in February. There is a decline in reservoir inflow in
February, but an increase in hydropower generation. This result is
because the increased inflow from August to January contributes a
high pre-water level in February; consequently, hydropower
operation easily falls into the full-output region. However, the
robust rule performs better than the baseline rule for hydropower
outputs, and the results are less affected by streamflow with lower
decreases in hydropower generation during the flood seasons from
April to May and larger increments in the non-flood seasons.
Additionally, the maximum increase in hydropower generation is
detected in February with the baseline rule, but in August with the
robust rule. The reason for this difference is that the significant
inflow increase in July promotes water impoundment and a high
reservoir level, thereby contributing to a larger power output. Be-
sides, the highest power generation occurs in the flood seasons
under all scenarios with the robust rule, but with the baseline rule,
this is only the case for the scenarios considering rapid urbaniza-
tion. These findings demonstrate that the baseline rule may not be
suitable for potential future states and that a new rule is urgently
needed.
4.5. Hydropower sustainability and efficiency under changes

The future overall changes in the sustainability and efficiency
indicators are shown in Table 4. The reservoir system performs
better in the future relative to that in the baseline period. No sig-
nificant differences can be observed between the two rules
regarding potential system sustainability. The PAR in 1976e2005 is
92.81%, and that in 2021e2050 generally increases and even
ust and baseline operating rule.



Table 3
Overall changes in hydropower generation between 2021-2050 and 1976e2005.

Scenario Policy Scenario Policy Scenario Policy

Baseline Robust Baseline Robust Baseline Robust

RCP2.6 0.34 1.98 ED 1.62 2.27 EP4.5 1.09 2.37
RCP4.5 0.75 2.28 HT2.6 0.54 1.87 UD4.5 1.77 2.55
RCP8.5 0.76 2.29 EP2.6 0.49 2.11 HT8.5 0.86 1.98
HT 1.04 2.35 UD2.6 1.23 2.38 EP8.5 0.78 2.20
EP 1.13 2.32 HT4.5 1.33 2.17 UD8.5 0.94 2.45

Fig. 7. Monthly changes in hydropower generation attributed to the (a) baseline and (b) robust operating rules in 2021e2050 relative to that in 1976e2005. The color of markers
indicates the monthly changes in hydropower generation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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reaches 100%, reflecting a higher reliability to maintain the firm
output attributed to both baseline and robust operating rules. The
decreased MOG also indicates the lower vulnerability to output
failure in the future. The RI shows relatively less obvious changes,
but the trends are generally consistent with those of the AR and
MOG. Especially for the robust operating rule, the reservoir system
only fails to obtain the base output under land use change alone but
quickly returns to a satisfactory state, with the RI equal to 1.

The increase in reservoir inflows over the whole year does not
lead to an increase in SW due to the decreases in reservoir inflows
Table 4
Overall changes in sustainability and efficiency indicators between 2021-2050 and 1976

Scenario Sustainability

PAR (%) RI MOG

Baseline Robust Baseline Robust Baseli

RCP2.6 7.18 7.18 e e �8.61
RCP4.5 5.75 7.18 0.16 e 0.00
RCP8.5 7.18 7.18 e e �8.61
HT 5.46 6.90 0.23 0.56 0.00
EP 6.61 6.90 0.56 0.56 0.00
UD 6.61 5.46 0.56 0.06 0.00
HT2.6 7.18 7.18 e e �8.61
EP2.6 7.18 7.18 e e �8.61
UD2.6 7.18 7.18 e e �8.61
HT4.5 7.18 7.18 e e �8.61
EP4.5 7.18 7.18 e e �8.61
UD4.5 7.18 7.18 e e �8.61
HT8.5 7.18 7.18 e e �8.61
EP8.5 7.18 7.18 e e �8.61
UD8.5 7.18 7.18 e e �8.61

Note: The symbol “-” indicates that no failure occurs during the entire operation period
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during the flood seasons. However, we note that there is a signifi-
cant difference on system efficiency between the two rules. It is
evident that the robust rule notably improves the ability to use
water for electricity production compared to the baseline rule. For
the robust rule, the reservoir system performs worse under land
use change alone than that under climate change alone and com-
bination. This is because the robust optimization considers a worst-
case optimization. The maximum inflow under land use change
alone rarely results in a minimum hydropower generation; thus, no
worst-case conditions are likely to occur. If we only consider the
e2005.

Efficiency

(MW) SW (108 m3/a) WUA (%)

ne Robust Baseline Robust Baseline Robust

�8.61 �0.22 �7.17 1.08 17.27
�8.61 �3.63 �8.00 9.03 19.03
�8.61 �2.09 �8.00 5.67 19.03
�0.10 �1.30 �5.40 4.54 11.97
�0.10 �2.00 �5.40 6.07 11.96
�0.10 �1.76 �5.05 5.19 11.70
�8.61 �1.29 �6.37 2.97 15.55
�8.61 �1.35 �7.17 3.99 17.28
�8.61 �2.19 �7.12 5.98 17.26
�8.61 �4.41 �7.22 10.80 17.33
�8.61 �3.04 �8.00 7.55 19.03
�8.61 �4.22 �7.00 10.78 17.17
�8.61 �2.25 �6.39 5.88 15.58
�8.61 �2.29 �7.12 5.91 17.24
�8.61 �1.38 �6.85 5.34 17.04

.
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optimization in an individual scenario, the system efficiency could
be potentially maximized (SW ¼ 0 m3/a and WUA ¼ 100%).

Fig. 8 shows the monthly variations in the sustainability in-
dicators. The RI is not shown at a monthly scale because it requires
a continuous sequence. Note that themonthly system sustainability
is not sensitive to the operating rules. For both rules, the PAR rea-
ches 100% and MOG reaches 0 with increasing inflow under almost
all scenarios. We find that insufficient hydropower outputs mainly
occur from July to November in the baseline. An abundant inflow
supply in the future overcomes these shortages, and thus, the
reliability and vulnerability largely improve during this period.
There are some power output failures from June to September
under land use change alone for both policies. This result might be
caused by some lower monthly pre-water levels. For example, an
insufficient output can be observed in August 2026 with a pre-
water level of 94.94 m, and thereby resulting in a 0.5Nbase zone.

Fig. 9 illustrates the intra-annual variation patterns of the effi-
ciency indicators. The efficiency results are contrary to those of
sustainability in the baseline hydropower simulation. There is
almost no SW, indicating the full utilization of water resources for
electricity production from July to December. However, easily
meeting the larger power output demand (normally equal to Nfull)
results in a larger SW and a lower WUA in February and March. In
addition, the WUA in June is lower than 50%, demonstrating that
the baseline operation without optimization fails to effectively
utilize water resources in the flood seasons. This potentially bad
situation can be mitigated in the future, except those for only land
Fig. 8. Monthly changes in the PAR attributed to the (a) baseline and (b) robust operating ru
relative to that in 1976e2005. The color of markers indicates the monthly changes in the sus
the reader is referred to the Web version of this article.)
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use change under both policies. The reason for this exception is the
same as described above and related to the output failure under
land use change alone.
5. Discussion

5.1. Response analysis

Results showed that hydropower generation would increase
with increasing reservoir inflows in the future. Similar results have
been obtained by Wang et al. (2019b) and Zhong et al. (2020), who
evaluated the hydropower generation variation induced by climate
change under RCPs on the Nanliujiang River basin and the upper
Yangtze River basin, China, respectively. Moreover, we found that
hydropower generation was sensitive to climate change as the in-
crease trend under RCP8.5 was the largest and more obvious than
that under RCP2.6, which was also reported by Zhong et al. (2020).
However, Wang et al. (2019b) demonstrated a different conclusion
that RCP4.5 would generate more hydropower than other two
scenarios in future. Accordingly, the extent to which hydropower
generation responds to climate change varies between catchments
and between scenarios. To better manage water resources and in-
crease hydropower generation, it is essential to accurately assess
future changes within a specific catchment under diverse
conditions.

Fig. 10 shows the responses of annual and monthly hydropower
generation to streamflow. Notably, the annual hydropower change
les, and the MOG attributed to (c) baseline and (d) robust operating rules in 2021e2050
tainability indicators. (For interpretation of the references to color in this figure legend,



Fig. 9. Monthly changes in the SW attributed to the (a) baseline and (b) robust operating rule, and the WUA attributed to the (c) baseline and (d) robust operating rules in
2021e2050 relative to that in 1976e2005. The color of markers indicates the monthly changes in the efficiency indicators. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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associated with the annual inflow change plots near the 1:1 line
under the baseline operating rule, whereas that under the robust
operating rule the plot is generally higher than the 1:1 line. This
result demonstrates that the robust rule performs better in water
resource utilization. To strengthen the above analysis, we find that
when the monthly inflow is 20% higher in 2021e2050 to that in
1976e2005, hydropower generation is lower than the 1:1 line
attributed to the baseline rule. However, hydropower generation
still exists above the 1:1 line for the robust rule. In addition, for the
baseline rule, at both the annual and monthly sales, the hydro-
power change associated with the inflow change under land use
change alone is more concentrated at 0 point that under the other
scenarios. This result suggests that the baseline rule would un-
derestimate the power generation in thewet periods. However, this
pattern will be broken by considering the robust optimization un-
der uncertainty, and the mean power generation will improve by
3.72e6.83%.

Considering the complexity of hydropower computation, a
narrow focus has been kept on the river discharge modelling but
simplify the calculation of hydropower generationwhen projecting
hydropower generation. For example, many previous studies
assumed a linear relationship between hydropower generation and
streamflow (Bartos and Chester, 2015; Kao et al., 2015; Turner et al.,
2017a). These studies calculated the hydropower production based
on a power output equation with a constant hydraulic head, and
their hydropower generation is often referred to as the hydropower
potential in the future. However, the hydropower potential was
10
often smaller than practical hydropower generation and a
comprehensive method of considering various factors should be
proposed to assess the hydropower generation in the future (Wang
et al., 2019b). Unlike previous studies, we not only assessed the
potential changes in hydropower generation and sustainability but
also provided robust operating rules for handling uncertainty
attributed to both climate and land use changes. The comprehen-
sive comparisons between the baseline and the robust rules indi-
cated that the policy determined according to the historical
hydrology condition might be no longer applicable in the future.
New reservoir policy considering optimization and uncertainty is
urgently needed to adapt to future potential changes, and thus to
improve water resource utilization and hydropower generation. In
our study, the responses of hydropower generation to streamflow
were expected to be non-linear according to the above analysis.
This was because we used real operating rules to regulate the
inflow. A non-linear relationship could also be found in Qin et al.
(2019), who considered the objective of flood control in the oper-
ation of Three George Reservoirs. Overall, our study provides a
valuable reference for further hydropower assessments.
5.2. Relative change analysis

However, to directly separate the impacts of climate and land
use change on hydrological regime or hydropower is almost
impossible (Wang et al., 2019a). The relative change rate (RCA)
(Wen et al., 2018) is defined as the ratio of changes in the output



Fig. 10. Response of (a) annual and (c) monthly change in hydropower generation to inflow change attributed to baseline operating rule in 2021e2050 relative to that in
1976e2005. Response of (b) annual and (d) monthly change attributed to robust operating rule.
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variable before and after considering influence factors to the
standard deviation of the natural output variable, which is able to
quantify the individual and combined effects of climate change and
land use change on streamflow and hydropower generation in this
study. See more derails for RCA in the supplemental material.

We first implemented RCA to the identify the impacts of climate
and land use change on inflow. The RCA of inflow is referred to the
changes in monthly inflow between 2021-2050 and 1976e2005 to
the standard deviation of inflow in 1976e2005, as shown in Fig. 11
(a). The streamflow is mainly concentrated from May to July, and it
is less affected by climate change relative to that in the non-flood
seasons from September to October, and thus has a lower RCA,
generally <0.3. This result was also noted by Wang et al. (2019c)
and Wen et al. (2018), who evaluated the streamflow variation
induced by climate change under RCPs in Southeast China. We find
that streamflow induced by HT and EP has greater variability than
UD because the strong demand for urban land under UD. In this
case, the UD scenario has undergoing similar urbanization changes
along with changes from 1995 to 2025. Additionally, the combined
influences of climate and land use change on monthly streamflow
are sensitive to the IA, climate change is the dominant factor when
IA is lower under HT and EP, and the land use change is more
dominant when IA is larger under UD.

Thenwe analyzed the individual and combined contributions of
climate and land use change to hydropower generation. The RCA of
11
hydropower is the ratio of the changes in monthly hydropower
generation between 2021-2050 and 1976e2005 to the standard
deviation of hydropower generation in 1976e2005. The results
obtained for the baseline and robust rules are shown in Fig. 11 (b)
and (c), respectively. A comparison of the certain pattern of RCA on
streamflow between scenarios shows that there is no significant
difference on hydropower corresponding to the non-linear rela-
tionship between streamflow and hydropower. Although the
inflow in the wet periods from March to July accounts for the total
inflow declines, we detect no greater difference on hydropower. For
the baseline rule, the non-flood seasons from October to February
have the larger RCA with increasing hydropower in the future. For
the robust rule, the maximum RCA in September and November is
positively affected by the increase in inflow. The above analysis of
hydropower demonstrates increase in the effectiveness of water
resource utilization in the future, especially for the robust operating
rule associated with optimization and uncertainty.

6. Conclusions

In this study, we proposed an integrated and systematic
framework to assess the potential changes in hydropower genera-
tion, sustainability and efficiency induced by reservoir policy,
climate and land use change under uncertainty, using Xinanjiang
Reservoir in China a case study. The framework combined climate



Fig. 11. Monthly RCA of (a) inflow, and hydropower generation attributed to the (b) baseline and (c) robust rules in 2021e2050 under climate and land use change relative to that in
1976e2005. The size and color of markers indicate the monthly RCA. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)
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and land use change projections, streamflow simulation and pre-
diction, reservoir robust optimization, and hydropower generation
and sustainability evaluation.

Five bias-corrected and downscaled GCMs and three modeled
land uses were used as inputs of the calibrated SWAT model and
then to predict streamflow under 15 scenarios. The mean annual
inflow in 2021e2050 was 339.58e354.33 m3/s with a variation of
1.41e5.99% in compared with that in 1976e2005. The interactions
between streamflow and climate and land use changes are non-
additive, and the IA greatly contributes to recharging the stream-
flow. Then, the varying inflows were used as inputs to the robust
optimization model for the new operating rule.

The inflow in the future was regulated by the baseline and
robust rules. We found the seasonal hydropower generation ob-
tained with the baseline rule is sensitive to streamflow. However,
the robust rule performs better than the baseline rule for hydro-
power generation, and the results are less affected by streamflow.
According to the overall increases in reservoir inflows and hydro-
power output, the sustainability of Xinanjiang plant was generally
improved with higher PAR, higher RI, and lower MOG, in particular
with the robust rule. Correspondingly, the SW did not increase in
the flood seasons, resulting in an improved WUA. These results
indicated that the robust rule considering optimization and un-
certainty yielded better results than the baseline rule.

The response of hydropower generation to streamflow was ex-
pected to be non-linear. For the baseline rule, at both annual and
monthly sales, the hydropower change associated with the inflow
change under scenarios of land use change alone was more
concentrated near 0 point than that under the other scenarios.
However, this pattern would be broken by considering the robust
optimization under uncertainty, and the mean power generation
could be improved by 3.72e6.83%. In addition to the RCA, the
streamflow under the rapid urbanization scenarios differs from
that under other scenarios, but there was no significant difference
in hydropower among all scenarios corresponding to the non-linear
relationship between streamflow and hydropower change. Our
findings highlight the potential for improved water resource utili-
zation in the future, in particular with the robust operating rule
considering optimization and uncertainty, and can provide refer-
ences for future hydropower planning.

There are still some limitations in this study, which need to be
improved in the future study. The use of multiple GCMs can avoid
the potential accidental error of a single model in projecting future
precipitation and temperature. We have chosen five GCM models
according to their wide applications in China’s climate prediction
(Wen et al., 2018; Yang et al., 2019). Results have proved that their
12
performance in this study was also good. Nevertheless, adding
more applicable GCMs models may further improve the reliability
and stability of predictions (Zhong et al., 2020). In addition, the
long-term uncertainties under future climatic, land use and/or
socio-economic changes lacking a consensus on their likelihoods
and distributional forms, are termed “deep” uncertainties (Lempert
et al., 2006). Different scenarios have been developed to describe
the uncertainty in our study, which are far from deep uncertainty.
One direction of the future study will explore scenario discovery
and strategy identify under deep uncertainty (Giuliani and
Castelletti, 2016; Quinn et al., 2017).
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