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Abstract

The Internet-of-Things is a promising vision which enables trillions of sensor
devices to be connected. A common bottleneck for such devices is the energy
supply. Using batteries is expensive, it reduces the device life time and has a
negative impact on the environment. Energy harvesting (EH) provides a more
sustainable solution. Unfortunately, environmental energy may not always be
available, causing devices to be intermittently-powered. Due to the random and
volatile nature of environmental energy, it is hard to conduct repeatable tests
for such devices.

Therefore, this thesis proposes a generic EH emulation testbed which can
emulate a complete EH power supply chain in realistic and repeatable fash-
ion. It builds on previous work [De Mil, EURASIP JWCN (2010)], increasing
the accuracy by orders of magnitude allowing emulation comparable with actual
execution. The emulation is evaluated for a RF harvesting and solar energy har-
vesting setup, operating under various input power and load conditions. Both
setups show a error margin of less than 10% under most testing conditions.
The key features of the design are: highly generic setup, software configur-
able storage capacitor, native energy aware debugging and simulation support.
The emulation model is integrated in a state-of-the-art testbed called Shepherd
[Geissdorfer, SenSys (2019)] to benefit form its features and make this work
available for the scientific community.
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Chapter 1

Introduction

1.1 Motivation

The Internet-of-Things (IoT) is a promising vision which enables trillions of
sensor devices to be connected [24]. A common bottleneck for such devices is
the energy supply. Batteries are large, expensive, heavy and wear out after
several years. This requires batteries to be recharged or replaced which can
be very expensive, especially when sensor devices are placed in hard to reach
places [52].

A sustainable solution is to replace batteries with energy harvesters. Here-
with a device collects its energy from the environment. Possible energy sources
are: solar, radio frequency (RF), thermal or kinetic energy. Unfortunately, en-
vironmental energy can be scarce and varying over time. The power provided
by the energy harvester can be smaller than the required power for the sensor
device to operate.

This lack of power causes erratic execution. A common use-case for sensor
devices is to do a measurement and send this measurement to a base station
wirelessly. If there is enough environmental energy available, the device will
start up and do its measurement. Then it starts sending a packet. However,
transmission fails because sending a radio packet is power hungry and the en-
vironmental energy is not sufficient. As a result the input power collapses and
the device shuts down. When the input voltage is restored the device will start
up and try again, but will never be able to send a full packet.

To mitigate this issue, energy is stored in a storage capacitor. At some point
the capacitor has harvested enough energy for the device to perform a single
task. The capacitor has reached the upper threshold voltage. Now the output is
turned on and the capacitor voltage is applied to the target device. The device
will run until the capacitor reaches its lower threshold voltage, after which the
output is shut down and the capacitor charges until it reaches its upper threshold
voltage again. This mechanism of turning on and off is shown in Figure 1.1.

The frequent power failing causes new challenges in developing software for
such devices. It contrasts with the standard assumption that programs run
continuously throughout execution. The programmer has to take care of this
intermittent behavior by for instance storing data to non-volatile memory at
certain intervals. It is difficult to predict how long a program can execute
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Figure 1.1: Cycle of a energy harvesting capacitor voltage. First it
charges until is has enough energy harvested, then it outputs its
voltage to a target device discharging until it reaches brown-out
voltage [7].

before the next power failure. Therefore extensive testing is required to validate
program execution.

However, it is hard to conduct repeatable tests due to the random nature of
the energy source. While comparing two algorithms, it is impossible to con-
clude that one algorithm outperforms the other without knowing how much the
difference in available energy contributed to the result.

One way to tackle this is to re-create energy harvesting (EH) conditions, do
measurements over a long period of time and average the result. This is a
tedious process and can be inaccurate, which leads us to our research goal.

1.2 Research Goal

Our research goal is to accelerate development for batteryless intermittently-
powered devices, by building a testbed which can repeatably and realistically
emulate energy harvesting conditions.

1.3 Contributions

The main contributions of this thesis are:

• A survey on existing intermittently-powered EH platforms.

• Improvements on an existing EH model to emulate the behavior of a com-
plete EH power supply chain.

• A computer simulation which implements our model, written in both Mat-
lab and C/C++.

• Hardware platform which allows us to not only simulate, but also emulate
our model.

• Accuracy evaluation of our model by emulating two EH setups: RF har-
vester by the Powerharvester [32] and solar energy harvesting with a
bq25570 [49].

• Integration of our model in state-of-the-art testbed Shepherd, to make this
work available to the scientific community.

2



1.4 Thesis outline

The outline of the thesis is as follows: Chapter 2 provides a summary of related
work. Chapter 3 describes the emulation model. Chapter 4 shows the imple-
mentation of the model in a custom develop hardware and the integration in a
state-of-the-art testbed. Chapter 5 shows the evaluation of our model with real
hardware. Finally Chapter 6 discusses future work and Chapter 7 presents the
conclusion.
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Chapter 2

Related Work

In this chapter we will look at related work to place our thesis in context.
In Section 2.1 we present background information required to understand the
related work. Section 2.2 describes wireless sensor network (WSN) testbeds. In
Section 2.3 we will survey existing energy harvesting platforms to investigate
what a EH WSN device node could look like. A discussion of various emulation
solutions is stated in Section 2.4, concluded with a comparsion in Section 2.5.

2.1 Background

For this thesis it is important to know the components of an energy harvesting
architecture. We will refer to this in the discussion of related work and later on
in the thesis.

2.1.1 Energy Harvesting components

A typical energy harvesting setup consists of several components:

• Energy Source: Environmental energy source, i.e. solar, RF or kinetic
energy.

• Harvester: This device converts the environmental energy into electri-
city, i.e. a solar panel or RF-to-DC-converter.

• Capacitor/Storage Device: Different types of devices can be used to
store the harvested energy, i.e. regular capacitor, super-capacitor or a
rechargeable battery.

• Converter (optional): Boosts the voltage of the harvester output to get
in operation range of the target load.

• Output Switch: A switch controlling the output, based on the capacitor
voltage. Without such control the capacitor would be instantly depleted
when energy is available.

5



(a) Converter-less (b) Converter-based

Figure 2.1: Two kind of energy harvesting architectures [21]. (a) dir-
ectly outputs the capacitor voltage to the load. This output voltage
might not reach the minimum voltage of the load. (b) overcomes this
by adding a converter.

2.1.2 Energy Harvesting Architecture

There are the two main energy harvesting architectures: converter-less and
converter-based architectures. These are shown in Figure 2.1.

2.2 Existing Wireless Sensor Networks

For batteryless, intermittently-powered devices there are no publicly available
testbeds. Work of [1] enlists properties and features that such a testbed should
have, as well as presenting a minimal implementation. The authors call for a
more coordinated action in this domain research.

On the other hand there are dozens of existing testbeds for battery-based
WSN. There have been many surveys published in the past years that compare
each of them in detail (see for instance [50], [22]). Our goal here is to revise
these comparative studies expanding it with the recent developments in testbed
deployments. As we show there are currently three active WSN testbeds.

2.2.1 Flocklab

Flocklab [26] is developed and run by the Computer Engineering and Networks
Laboratory at the Swiss Federal Institute of Technology Zurich. It exists of
27 nodes, distributed over one level of the ETZ-building at ETH Zurich. It
support various sensor nodes (MSP430 [42], CC2538 [43], STM32 [41]) and
different wireless chips (868 MHz SX1211 [37] and 2.4 GHz CC2420 [44]). The
key feature of Flocklab is that it can do time accurate pin tracing and actuation.
Besides pin tracing it can emulate battery depletion by controlling the supply
voltage.

2.2.2 FIT IoT-Lab

FIT IoT-LAB [2] is a large scale infrastructure for WSNs developed by a con-
sortium of five French institutions of higher education and research with 1786
nodes, split over six different sites in France. It supports various sensor nodes
(MSP430 [17], ARM Cortex M3 [19] and Cortex-A8 [18]) and different wireless
chips (802.15.4 PHY @ 800 MHz or 2.4 GHz [28, 44]). The key feature of the
IoT-LAB is that it supports mobile robots.
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Company Description Energy Source

EnOcean [15] Various batteryless solutions for i.e. Build-
ing Automation and Smart Home.

Solar, thermal, kin-
etic

Powercast [31] Provides wireless power solutions, RFID
tags, RF power transmitter, RF power har-
vester.

RF

Williot [53] Makes a batteryless bluetooth beacon device
based on RF harvesting.

RF

Everactive [16] Provides batteryless monitoring solutions to
mainly the industry. Related to the univer-
sity of Virginia and Michigan.

Solar, thermal

BelluTech [6] BelluTechs patented batteryless wireless
miniature sensors continuously track and re-
cord exposure to environmental and operat-
ing conditions.

RF

Matrix Industries [27] Makes a batteryless thermoelectric powered
smartwatch.

Solar, thermal

Nowi Energy [29] Company provides a Energy Harvesting
Power Management chip.

Solar, RF, thermal

Table 2.1: Commercial Energy Harvesting Related Companies.

2.2.3 Indriya2

Indriya2 [4] is a three-dimensional WSN deployed across three floors of the
School of Computing, at the National University of Singapore. Currently,
Indriya2 can support a mixture of TelosB [11], SensorTag CC2650 [45] and
SensorTag CC1350 [46]. Indriya2 is an upgrade of indriya [14], new features
are: supporting heterogeneous sensor devices, multiple users to schedule jobs
over non-overlapping set of heterogeneous nodes at the same time and a real-
time publish/subscribe architecture to send/receive data to/from the testbed
nodes.

2.3 Existing Intermittently-Powered Platforms

The field of intermittently-powered energy harvesting devices is promising, but
still immature and only a few companies provide such devices commercially.
Table 2.1 shows several companies which are commercially active in the field of
energy harvesting devices. Table 2.2 shows some popular and recent developed
intermittently-powered platforms in scientific research.

2.4 Existing Energy Harvesting Emulators

In this section three existing energy harvesting emulators are discussed: Ekho,
Shepherd and Environment Emulator.
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Platform Description MCU Radio Energy Harvester Energy
Source

Capacitor
Size

Year Citations

WISP [36] Family of sensors that are
powered and read by UHF RFID
readers

MSP430 Backscat-
tering

Transducer and recti-
fiers

RF 10-50 µF 2008 705

E-WEHP
[51]

A Batteryless Embedded Sensor-
Platform Wireless Powered From
Ambient Digital-TV Signals

PIC24F NA Transducer and recti-
fiers

RF 100 µF 2013 136

AD PZT
Energy
Harvester
[25]

Self-Powered Wireless Sensor
Node Enabled by an Aerosol-
Deposited PZT Flexible Energy
Harvester

MSP430 CS2500 Flexible piezoelectric
energy harvester

Kinetic 1000 µF 2016 86

Umich
Moo [54]

Improvement on design of WISP MSP430 Backscat-
tering

Transducer and recti-
fiers

RF NA 2011 76

Monjolo
[13]

Energy-Harvesting AC Power
metering which draws zero power
under zero load conditions

MSP430 CC2420 CR2550, LTC3588 Electric 500 µF 2013 48

SPWTS
[39]

A novel self-powered wireless
temperature sensor based on
thermoelectric generators

nRF24L nRF24L TEC12706 Thermal NA 2014 41

Flicker [24] Configurable development board
for batteryless IoT

MSP430 Various Various Solar, RF,
Kinetic

47 µF 2017 25

Step
Counter
[35]

Intermittently-Powered Energy
Harvesting Step Counter for
Fitness Tracking

MSP430 NA Ferroelectret insole Kinetic 4.7-16 µF 2017 10

Capybara
[9]

Co-designed hardware/software
power system with dynamically
reconfigurable energy storage ca-
pacity

MSP430,
CC2650

CC2650 Solar panels Solar,
energy
source
emulation

770 µF-
67.5 mF

2018 32

Pible [20] BLE batteryless platform CC2650 CC2650 Solar panels Solar 220 mF-1 F 2018 4

TPC
Bike[38]

A Transiently-Powered Wireless
Cycle Computer

MSP430 nRF24L01 Coil Magnetic 50-235 µF 2017 1

Table 2.2: Research based intermittently-powered platforms. Citations are taken from scholar.google.com on 28 October
2019.
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2.4.1 Ekho

Ekho emulates energy harvesters based on their I-V (current-voltage) curve
[23]. This curve describes current drawn from the harvester with respect to the
load voltage. By rapidly sweeping the load from a very small, to a very large
resistance, this curve can be recorded.

As environmental energy changes over time, the I-V curve changes as well.
For example: a solar panel produces less power when a cloud moves before the
sun. These changes are captured by creating a trace of I-V curves.

Unfortunately, the software of Ekho has its shortcomings. It uses no hardware
timers, which is one of the least requirements to do accurate time based meas-
urements. Moreover, no set of pre-recorded traces is made available to work
with. Recording I-V curves generate a lot of data points, restricting the length
of a recording to 2–3 minutes on a 4 GB SD card. The Ekho setup would still
require a fixed capacitor and has no converter. Therefore it could only support
converter-less architectures.

2.4.2 Shepherd

Shepherd1 [21] is portable testbed for batteryless IoT. It can both record and
emulate EH conditions. The testbed is based on TI’s bq25504 boost converter
[47]. During recording, an energy harvester is attached to the converter (i.e. a
solar panel), and the input current and voltage are measured. During emulation,
a variable current source outputs the pre-recorded input current at the input
of the converter. By exploiting the Maximum Power Point Tracking (MPPT)
of the bq25504, the input voltage can be fixed to a reference voltage. This
reference is set to the pre-recorded input voltage. Now, both input current
and voltage are the same as during recording, therefore successfully emulating
a pre-recorded trace.

The downside of using this method, is that it is focuses on a single converter.
This excludes emulating converter-less applications, or applications that require
other converters. Also the bq25504 is at end-of-life, forcing the testbed to use
the substitute bq25505 [48]. This new converter does not allow the user to
disable MPPT. Therefore every 16 seconds, the converter will shut down for
256 ms, causing inaccuracy to the emulation. Another downside of this long
16 second MPPT period is that it does not respond to quick changes in input
energy, which might not be viable for intermittent applications. The testbed
uses a fixed size capacitor. If one wants to perform a test on different capacitor
values, it is required to replace these capacitors by hand every time.

2.4.3 Environment Emulator

The work of [12] presents an environment emulator (EE). This emulates a ca-
pacitor based on its current-voltage relation

V (t) =
1

C

∫ t

t0

I(τ)dτ + V (t0),

1Please note that at the start of this thesis, Shepherd was not yet published. When we were
confronted with Shepherd, we decided to re-focus the thesis. Our initial setup is discussed in
Appendix A.
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Low Converter- Converter- Realistic Dynamic
latency less based input capacitor

Ekho 7 3 7 3 7
Shepherd 3 7 3 3 7

EE 7 3 7 7 3
This work 3 3 3 3 3

Table 2.3: Comparison with existing energy harvesting emulators. Low
latency indicates that the emulation responds fast enough to a chan-
ging load; Converter-less and converter-based refer to the supported
architectures; Realistic input tells whether the input can reflect real
harvesting conditions; Dynamic capacitance is whether the system
storage capacitance can be changed without replacing a fixed capa-
citor by hand.

where V (t) is the capacitor voltage, C is the capacitance and I(τ) is the dif-
ference in current flowing in the capacitor. The emulator uses a fixed input
current to emulate an energy harvester. By measuring the output current, the
difference in current flowing in the capacitor can be determined and thus the
capacitor voltage can be calculated. A DAC is used to output this virtual ca-
pacitor voltage to a target device.

Here the environmental energy is emulated by a fixed input current. This
is a very simplistic model and does not take the changing of environment into
account. Also this is a converter-less setup, in which converter-based applica-
tions cannot run. The capacitor voltage is updated every 12.5 ms. Especially
for emulating smaller capacitors, this is too slow, since the voltage can change
rapidly while transmitting radio packets.

However, this work will form the basis of the solution proposed in this thesis.

2.5 Comparison Emulators

Table 2.3 shows the existing energy harvesting emulators compared against the
the work presented in this thesis. The comparison is based on important charac-
teristics of emulation which determine the accuracy and flexibility. It is shown
that related work leaves room for improvement and supports the relevance of
this thesis’ work.
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Chapter 3

Design

In this chapter we describe the model of our energy harvesting emulation. In
our model we emulate the behavior of the aforementioned storage capacitor and
converter. The basics of the model are based on the work of [12]. The model is
extended by introducing a converter and adding other improvements.

3.1 Capacitor Voltage Model

We start from the current-voltage relation of a capacitor

Vcap(t) =
1

C

∫ t

t0

I(τ)dτ + Vcap(t0), (3.1)

where Vcap(t) is the capacitor voltage, C is the capacitance, I(τ) is the sum of
in- and outgoing current over a period of dτ and Vcap(t0) is the initial capacitor
voltage at t = 0.

By taking the derivative of (3.1), we get

∆Vcap =
∆I∆t

C
. (3.2)

We now define Vcap(n) as a discrete function, implementing the integral of
(3.1) as {

Vcap(0) = Vlt,

Vcap(n) = Vcap(n− 1) + ∆Vcap,
(3.3)

where n is an integer indicating the iteration of the function and Vlt the lower
threshold capacitor voltage at which the output turns off.

We define ∆I as

∆I = Icin − Icout − Ileakage, (3.4)

where Icin is input current charging the capacitor, Icout is current flowing out
of the capacitor based on the load and Ileakage is the static leakage current of
the capacitor. Icin is derived as

Icin = Iin
Vin
Vcap

ηin(Iin, Vin), (3.5)
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where Vcap is the voltage on the capacitor and ηin(Iin, Vin) is the input efficiency
of the converter as function of input current Iin and input voltage Vin. Note
that a converter can be composed of two stages. The first stage converts the
input voltage to the capacitor voltage. The second stage converts the capacitor
voltage to the desired output voltage. ηin and ηout define the efficiency of the
first and second stage. Some converters only have the first stage and directly
output the capacitor voltage to the load.
Icout is defined as

Icout = Iout
Vout

Vcapηout(Iout, Vout)
, (3.6)

where Iout is the measured output current flowing into the load, Vout is the
measured output voltage applied to the load and ηout(Iout, Vout) is the output
efficiency as function of output current Iout and output voltage Vout. Vout gets
determined by

Vout = Vonb(n, Vcap), (3.7)

where Von is the voltage when the output is on, b(n, Vcap) is a boolean determ-
ining the output state as function of the capacitor voltage defined as

b(0)(Vcap) = false,

b(n)(Vcap) =


true, if not(b(n− 1)) and (Vcap > Vut),

false, if b(n− 1) and (Vcap, < Vlt),

bn−1, otherwise,

(3.8)

where Vut is the upper threshold capacitor voltage and Vlt the lower threshold
capacitor voltage at which, respectively, the output turns on and off.

3.2 Output Capacitor Compensation

Converters can have a small output capacitor. When the output turns on, the
bigger storage capacitor instantly charges the output capacitor. This causes
the storage capacitor voltage to drop as shown in Figure 3.1. To increase the
accuracy of our emulation we model this voltage drop by calculating Vnew.

As the output turns on, energy will transfer between the capacitors, defined
as

Enew = Eold − Eoutput, (3.9)

where Enew and Eold is the energy level in the storage capacitor before and after
the output turns on respectively; Eoutput is the energy stored in the output
capacitor. We are interested in the capacitor voltage. The relation between
capacitor voltage and energy is defined as

E =
CV 2

2
, (3.10)

where E is the energy in the capacitor, C is the capacitance and V the capacitor
voltage. We combine (3.10) and (3.9)

CstorageV
2
new

2
=
CstorageV

2
old

2
− CoutputV

2
new

2
. (3.11)
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Figure 3.1: Scope image of storage capacitor voltage (in blue) and
output voltage (in yellow) from a solar-powered bq25570 converter
with a 94 µF storage capacitor, 22 µF output capacitor and 1 kΩ load.
While the output is off, the capacitor voltage charges until it reaches
its upper threshold voltage. When the output voltage turns on, the
capacitor voltage drops 0.1 V.

Rewriting (3.11) we get

Vnew =

√
Cstorage

Cstorage + Coutput
Vold. (3.12)
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Chapter 4

Implementation

In this chapter we define the implementation of the model presented in Chapter 3.
In Section 4.1 we describe our own implementation of the model on a custom
developed hardware. Section 4.2 describes how input values are chosen for the
emulation. In Section 4.3 is explained how the efficiency of the converter is
implemented. Finally, Section 4.4 describes the integration of our model into
the existing Shepherd platform.

4.1 Emulation Testbed Implementation

In this section we describe our custom implementation of the energy harvesting
emulation testbed. We first take a look at the used hardware, and then we
describe how we implemented the model in software. The model is implemented
for emulating two different actual EH setups: RF harvesting using a P2110
Powerharvester [32] and solar energy harvesting using a bq25570 [49].

4.1.1 Hardware

The emulator runs on a Teensy 3.5 [30] 120 MHz ARM Cortex-M4 micro con-
troller with Floating Point Unit. It incorporates two ADCs and a DAC for,
respectively, current sense, voltage sense and voltage output.

The accuracy of the emulator greatly depends on the sampling period. The
current consumption of a target device can change rapidly. Sending a radio
packet, creating a peak in power demand, can be as short as hundreds of mi-
croseconds. These transients need to be captured by our emulator. Therefore
the sampling speed is set to 100 kHz.

We have chosen for a Teensy since it is easy available, can handle measure-
ments at this sampling speed, provides a SD card slot which can be used to
store recording traces and an USB port for connection with a PC to output
measurements. On top of that Teensy comes with software libraries which ease
development. A custom PCB is developed to provide a power supply and an
analog front-end for the Teensy, as shown in Figure 4.1.
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Figure 4.1: A picture of the custom developed hardware on which the
energy harvesting emulator is run. Board dimensions are 7 × 8 cm

.

4.1.2 Software

Directly implementing the model as described in Chapter 3 is impossible, since
the voltage and current values are not in real units, but represented in 10-bit
integer values

V ′ = V
210 − 1

3.3
, (4.1)

I ′ = I
210 − 1

0.033
. (4.2)

An easy solution would be to convert these logic values to floating point,
execute the algorithm, and then convert them back to logic values. This however
adds instructions to the algorithm. And we need our software as fast as possible,
because of the high sampling speed.

The emulation algorithm runs at 100 kHz, leaving theoretically 10 µs of com-
putation time for a single iteration. Because reading from a SD card also takes
time, this is reduced to ~6 µs. The emulator software flow is shown in Figure 4.2.

If the model is converted from real to logic values, run-time conversions are
not needed and thus the algorithm runs faster. Combining (3.2), (4.1) and (4.2),
it follows that:

∆V ′cap
3.3

210 − 1
=

∆I ′ 0.033210−1∆t

C
. (4.3)

We can rewrite (4.3):

∆V ′cap =
∆I ′∆t

100C
. (4.4)
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Figure 4.2: Software flow of the emulator. The main loop continuously
fills a ring buffer with power data from a SD card. An Interrupt
Service Routine (ISR) runs every 10 µs to sample output voltage and
current, and read new power data to update the capacitor voltage.
The purple lines show the flow of data.

We convert (3.4) into using logic values:

∆I ′ = I ′cin − I ′cout − I ′leakage. (4.5)

Combining (3.5), (4.1) and (4.2), it follows:

I ′cin = I ′in
V ′in
V ′cap

ηin. (4.6)

Finally we can combine (3.6), (4.1) and (4.2) in a similar way and it follows
that:

I ′cout = I ′out
V ′out

V ′capηout
. (4.7)

4.2 Emulation Input Power

The emulation model requires an input voltage Vin and input current Iin. These
input values are not only dependent on the EH source, but are also dependent
on the input impedance of the converter. EH Converters like the bq25570 [49]
set their input impedance to match the maximum power point of the EH source.
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At this the point the input impedance is optimal such that power drawn from
the EH source is maximized.
Vin and Iin could in theory be modelled, however, this would be complex be-

cause the interaction between the EH source and converter should be modeled
as well. And be re-done for every energy source and converter. Another ap-
proach is to record these values from an actual converter connected to a EH
source. This method has two advantages over the modelling approach:

• Generic. Any combination of EH source and converter can be recorded
in this way.

• High accuracy. Both behavior of EH source and converter are captured,
as well as how the converter input impedance changes the EH source.

Therefore our implementation of this model uses these recorded values. Record-
ing is supported by the same hardware as described in Section 4.1.1.

4.3 Modelling Converter Efficiency

The efficiency of a converter is dependent on the input voltage, input current,
output voltage and output current. The input values change with the available
amount of environmental energy. The output values change when for example a
sensor node starting to send a radio packet. To cover this behavior in emulation,
the converter efficiency should change as well. For the RF energy harvesting
setup and solar energy harvesting setup, two different methods are used.

4.3.1 RF Harvesting Efficiency Modelling

The P2110 RF Powerharvester [32] contains both the energy harvester and con-
verter in an integrated chip. Therefor it is not possible to tap into the converter
input current/voltage signal. However the Powerharvester does provide a Re-
ceived Signal Strength Indicator (RSSI), output VRSSI, representing the actual
RSSI. This signal is a voltage ranging between 10 mV and ~1 V. The mapping
between VRSSI and the actual RSSI is shown in Figure 4.3. Note that to get the
actual input power flowing into the capacitor, we should take the efficiency of
the harvester into account. The efficiency is shown in Figure 4.4. Both graphs
are re-plotted in Matlab, by visually extracting the data points. Using a cubic
interpolation function, two functions are obtained from the graph: f(VRSSI) and
η(P ). f(VRSSI) is the input power as function of the VRSSI signal, and η(P ) is
the harvester efficiency as function of input power P . Using both functions, the
actual input power Pin can be extracted from the VRSSI signal

Pin = f(VRSSI)η(f(VRSSI)). (4.8)

4.3.2 Solar Energy Harvesting Efficiency Modelling

The input and output efficiency of the bq25570 are shown in Figure 4.5 and
Figure 4.6. These graphs are captured in lookup tables. These lookup tables
are 2D-arrays which hold the convert efficiency and can be indexed using the
input/output current. The graphs are defined on a logarithmic scale so the
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Figure 4.3: Mapping of VRSSI to ac-
tual input power [32].

Figure 4.4: Efficiency of Powerhar-
vester based on input power [32].

Figure 4.5: Input efficiency of
bq25570 for Vin = 2 [49].

Figure 4.6: Output efficiency of
bq25570 for Vout = 1.8 [49].

current cannot be used to linearly lookup the efficiency. This is solved by
splitting up the lookup tables, in to four separate lookup tables which have a
linear x axis. Before doing the lookup operation, it is determined in which range
the current is: 0–0.1 mA, 0.1–1 mA, 1–10 mA or 10–100 mA. Based on this, the
appropriate lookup table is selected. Next the table index is calculated as

itable =
Ilookup
Imax

nentries, (4.9)

where itable is the table index, Ilookup is the input current, Imax is the maximum
current for that table and nentries is the amount of table entries.

Note that the efficiencies are not just dependent on current, but also on
voltage. These are not taken into account in this implementation because they
hardly contribute to an improvement in accuracy given the test parameters used
during evaluation.
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4.4 Shepherd Integration

In this section we describe how we integrated our emulation model in the Shep-
herd platform. Biggest challenge was to port our implementation written for a
ARM Cortex-M4 micro controller with floating point unit and hardware divi-
sion support, to a Programmable Real-Time Unit (PRU) core of the BeagleBone
which does not have these features. Note that the emulation runs at a sampling
rate of 100 kHz, leaving 10 µs of execution time for the entire event loop. In this
event loop the PRU also has to sample its ADCs and communicate or exchange
buffers with the main BeagleBone processor. This leaves in the worst case only
~2–3 µs for the emulation algorithm to execute.

4.4.1 Conversion To Non-Floating-Point

When working with floating points, the programmer usually does not have to
worry about the size of variables. However, when working with integers, different
issues come up, i.e. fractions cannot be stored, the result of a computation
could be too large for the target variable and the remainder of every division is
discarded. Especially the last problem is an issue, since our algorithm calculates
the difference in capacitor voltage over a period of 10 µs, which can be in the
order of nV.

Dynamically Updating Voltage Range

The Shepherd ADC defines the logic representation of voltage as

Vlogic = Vreal
218 − 1

2 · 4.092
. (4.10)

From (4.10) it follows that the smallest value that can be represented in logic
is 31.25 µV. As we said, this is not accurate enough. Therefore we increase the
granularity of our logic representation by using the maximum amount of bits.
Since we work with signed 32-bit numbers, we have 31 bits at our disposal. Our
new logic voltage representation becomes:

Vlogic = Vreal
231 − 1

2 · 4.092
. (4.11)

With this new representation our smallest value becomes ~3.815 nV which is
accurate enough for the applications we tested during evaluation.

Now that we have tackled our remainder discard problem, the other problem
concerning floating point to integer conversion pops up. If we multiply our new
voltage value, it will quickly overflow. If we divide something with this new
voltage, the result will quickly become zero.

Therefore we come up with a hybrid solution. When we want to store our new
capacitor voltage, we use the accurate 31-bit representation. When we want to
do an arithmetic operation, we bit shift the voltage back to the original 18-bit
representation.

Representation of Fractions

Since our efficiency η is defined as a real number ranging from 0.0 to 1.0 it
cannot be directly represented as an integer. We mitigate this issue by first
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multiplying our efficiency by a factor of 213. We use this new number as input
for the multiplication where the efficiency is required. After the multiplication,
we divide the result by the same 213 to get the correct value. We can do this
division efficiently by right bit shifting the number with 13 bits. We have chosen
this 13 bits as a trade-off between getting maximum accuracy, but still being
able to multiply with a 18-bit voltage value without overflowing.

4.4.2 Reducing Divisions

As said before, in the worst case there is only ~2–3 µs execution time for the
algorithm to run. Although the processor runs at 200 MHz, it does not have
hardware division support. We have experimentally discovered that divisions
can take up to ~2 µs. This leaves room for only one division in our algorithm.
However, in the emulator code we identified four divisions in our algorithm and
we decided to optimize the code as follows:

• In (3.2) and (4.9) the division is replaced by a multiplication with the
multiplicative inverse of the divisor. This inverse would become a fraction
and is handled in the same way as discussed in Section 4.4.1.

• In (3.6) the divisor, Vcap, is not a constant. Therefore we cannot pre-
compute the multiplicative inverse. We solve this by replacing Vcap with
the constant Vcavg, the average cap voltage. This is calculated by taking
the mean of the upper and lower threshold voltage.

4.4.3 Integer Square Root

In Section 4.1.2 we calculate the capacitor voltage drop at the moment the
output turns on. This calculation uses a square root. There is no native support
for integer square root. Therefore we use an implementation of a digit-by-digit
square root algorithm. Here we still face the problem that the result of the
square root will be smaller then 1. We solve this by first multiplying the input
with 1024 · 1024. This ensures the result is larger than one, and the remaining
fraction can be discarded while maintaining accuracy. That number is used to
multiply with the capacitor voltage. To undo the multiplication in the previous
stage, the output is divided by 1024. Because this is a factor of 2, the division
can be replaced by a bit shift. In this way no unwanted divisions are used.
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Chapter 5

Evaluation

In this chapter we evaluate the model described in Section 4.1. The evaluation
is done by comparing emulation with the actual operation of two different EH
setups. The test setup is shown in Section 5.1. The emulation of RF harvesting
and solar energy harvesting is evaluated in Section 5.2 and Section 5.3. Finally
Section 5.4 tells something about the repeatability of the emulation.

5.1 Experimental Setup

We evaluate our model by first recording the input and output of an actual en-
ergy harvester, given a certain input, storage capacitor and load. The recording
is used as input for the emulation. Then we estimate our model parameters,
run a computer simulation based on the measured input values and compare the
results with the recorded output. Based on these results we optimize our model
parameters. After the optimal model parameters for the computer simulation
are found, the actual emulation is run on our emulator hardware described in
Section 4.1.1. Final optimizations are done to cover the differences in computer
simulation and hardware emulation.

5.1.1 Evaluation Metric

The emulation is evaluated by comparing the average output on/off times of
the emulation and actual EH setup taken over a period of 10 seconds for RF
emulation, and 40 seconds for solar emulation. This evaluation metric is chosen
because it defines the behavior of an EH setup compared to a continuously
powered setup. To use this as a fair metric, the load should be equal for both
the emulation and EH setup.

Another metric we considered is the average amount of energy delivered over
a period of time. However, this does not include off times, which is important
information for intermittently-powered systems. Also, due to hardware con-
straints, it is not possible to record both input and output power at the same
time with the custom developed hardware used during evaluation.

5.1.2 Hardware Setup

There are two similar hardware setups during recording.
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Figure 5.1: Hardware setup during
RF harvesting.

Figure 5.2: Hardware setup during
solar energy harvesting.

RF Harvesting Setup

Figure 5.1 shows the setup during the recording of RF harvesting. The TX91501
Powercaster Transmitter [10] is used as energy source. We use the P2110 Power-
harvester Evaluation Board [32] as energy harvester and converter. Our emu-
lator hardware is re-used to record the input power and output on/off times.
The emulator outputs these recordings over a serial USB connection to a laptop.
A schematic setup is shown in Figure 5.3.

The Powerharvester Evaluation Board comes with two storage capacitor sizes:
1000 µF and 10 mF. We envision our emulation to be used in intermittently-
powered applications. The more storage capacity a sensor node has, the less
it will run intermittently-powered. Therefore the 1000 µF capacitor is chosen.
We have also experimented with smaller capacitor sizes but these caused the
harvester to become unstable.

At first, a constant load is chosen to evaluate with, because a constant load
can be easily simulated. Computer simulations are used to find the initial model
parameters. We have chosen our load 377 Ω. This is small enough such that
the system is never continuously powered, and large enough to mimic the power
consumption of a sensor node while sending a radio packet. Finally we verify
our model with a MSP430FR5969 development board as realistic target load.

Solar Energy Harvesting Setup

Figure 5.2 shows the setup during the recording of solar energy harvesting. A
dimmable led strip is used as environmental energy, a SLMD121H04L solar
cell as energy harvester and a bq25570 as converter. Three capacitor values
are used: 94 µF, 470 µF, 1000 µF. These values are chosen to test a range of
on/off times, where 94 µF is the minimum required for the bq25570 to operate
correctly. For each capacitor a constant load is selected: 3333 Ω, 1000 Ω and
480 Ω. These values are selected such that the capacitor is not instantly depleted
and the output is never continuously on. As dynamic load a MSP430FR5969
development board is used, with and without a low-power radio. A schematic
setup is shown in Figure 5.4.

The bq25570 efficiency is well specified in the datasheet for various input
voltage and currents. The efficiency specifications of the P2110 Powerharvester
Evaluation Board is however very limited. Therefore we have chosen to evaluate
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Voltage
Sense

Converter
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Energy
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Energy
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on-time off-time
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Figure 5.3: Schematic setup during recording of RF harvesting. Re-
cording happens in two stages. In the first stage the input power is
recorded by measuring the VRSSI, a voltage representing the actual
Received Signal Strength Indicator (RSSI). In the second stage the
output on/off times are recorded by connecting the EH output to the
input Vin of the PCC210 boost converter [33]. Note that these two
stages cannot happen simultaneously. The Environmental energy is
changed at every recording by varying the distance between the RF
transmitter and RF receiver.

the bq25570 setup more extensively compared to the RF harvesting setup.

5.1.3 Software Setup

During recording, the emulator hardware measures input current/voltage and
output state at a sampling rate of 100 kHz. These measurements are send to a
laptop for running simulations and evaluation. Outputting the values as text
would take too much time for the Teensy to process. Therefore a small binary
protocol is written to efficiently output the data as shown in Figure 5.5. To
optimize sending, these 8 byte messages are buffered into a 64 byte package, to
match the maximum packet size of full-speed USB. On the laptop runs a python
script, which stores the recordings in a csv-file.

This csv-file is later read by a Matlab script which converts these readings
into a binary file containing both input current and voltage. A Matlab and
C/C++ simulation uses these readings as input. The simulation is used to find
optimal model parameters. When optimal parameters are found, the binary
input recordings file is stored on a SD card. The emulator hardware uses the
SD card to get input power values.
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Figure 5.4: Schematic setup during recording of solar energy harvest-
ing. Input current/voltage and output on/off time is recorded. The
light intensity, capacitor and load are varied over different recordings.

8 bits 8 bits 8 bits 8 bits 16 bits 16 bits
start byte counter reserved output

state
current voltage

Figure 5.5: Representation of measured data to maximize data transfer
on USB port (see Section 5.1.2). Start byte identifies the message.
Counter is incremented every message and checked at the receiver to
see if any packets are lost.

5.2 RF Harvesting

In this section we evaluate the emulation of a P2110 Powerharvester. We evalu-
ate the performance at five different input power levels by changing the distance
between the RF transmitter and the Powerharvester. As described in Figure 5.3,
we first measure the RSSI and then we do another measurement of the output
on/off times.

Average output on/off times over a period of 10 seconds are used as a metric
to evaluate emulation of the Powerharvester. The results of the evaluation are
shown in Figure 5.6. The results show that for all test runs, the maximum
error is less than 10%. Test runs with a constant load show a negligible error
deviation. Test runs with a dynamic load show a maximum of 1.5% on time
error deviation.

5.3 Solar Energy Harvesting

In this section we evaluate solar energy harvesting emulation with the bq25570,
a nano power boost charger and buck converter for energy harvester powered
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applications. It has two stages: the first stage boost the solar output voltage
to a capacitor voltage ranging from 3.2 V to 3.5 V; the second stage is a buck-
converter stepping the capacitor voltage down to a constant output of 2.23 V.

Note that the threshold voltages are only checked every ~50 ms. Therefore
the output on/off times will always be a multiple of this number. We have
implemented this behavior in our model. The converter evaluates the maximum
power point every 16 seconds for a duration of ~256 ms. During this period the
open circuit voltage of the solar panel is measured, and no energy is harvested.
These mechanism can effect the accuracy of our evaluation. To counter this, we
have increased the measurement period from 10 s to 40 s.

There are three main parameters in the system, which determine the converter
output: input power, storage capacitor and the system load. Assume one wants
to test x data points for each of those parameters, one would end up with a
total of 3x tests to execute. This would quickly explode the amount of tests to
run. Each test would require a change in hardware setup, 40 seconds to record
and 40 seconds to emulate. Therefore we have come up with a limited set of
test runs which is practical to test, but still explores a wide range of converter
execution. Table 5.2 shows the set of test parameters and Figure 5.7 shows the
result of the evaluation.

From the results it follows that with a constant load, the maximum error is
less than 10% and maximum deviation is less than 1.5%. With a dynamic load
we see similar results, except for test run 14, which shows an outlier. This can be
explained as an quantization error. The bq25570 checks the capacitor threshold
voltages every ~50 ms. Now the actual EH setup for test run 14 has an on time
of ~100 ms. Assume the emulation measures the output current smaller than it
actually is. This causes the virtual capacitor voltage at 100 ms to be still above
the threshold voltage. Now the on time is increased to 150 ms. Because the
capacitor is discharged for a longer period of time, the off time of the capacitor
increases as well. Now we see a off time error of more than 30%. While as the
bq25570 were to check the capacitor voltage continuously, the error would be
smaller than 10%.

5.4 Repeatability

Key feature of our emulation is repeatability. This is a main advantage over
using an actual energy harvester. The repeatability can be achieved by using
the same input values for various emulations. This is hardly possible for an
actual energy harvester, since environmental tends to change over time.

Given an equal input power trace and target load, the only variation between
emulations is caused by noise on the ADC voltage and current sense. The
on/off time error consistency is evaluated for all constant load measurements
presented in Figure 5.6 and Figure 5.7. We have chosen to only evaluate for
constant load situations, because dynamic loads introduce more deviation in
on/off time which are not caused by the emulation, but by deviations in the
load itself. After running seven consecutive emulations under the same input
power and load conditions, we have shown that the deviation in output on/off
time error is less than 1.5% for all constant load measurements.
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Test run Mean input Storage Load
power (µW) capacitor (µF)

1 3279.4 1000 377 Ω
2 3019.5 1000 377 Ω
3 2144.7 1000 377 Ω
4 1299.6 1000 377 Ω
5 768.0 1000 377 Ω
6 567.2 1000 377 Ω
7 3453.6 1000 MSP430
8 2670.8 1000 MSP430
9 2369.7 1000 MSP430
10 1669.4 1000 MSP430
11 1224.4 1000 MSP430
12 878.5 1000 MSP430

Table 5.1: Set of input parameters used for evaluating the RF energy
harvesting. The MSP430 load runs an infinite loop while toggling a
LED.

Figure 5.6: RF energy harvesting emulation output on time error ton

and output off time error toff measured over a period of 10 seconds.
The emulations are repeated seven times to determine deviation. The
error bars show the maximum and minimum deviation. Test run
parameters are defined in Table 5.1.
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Test run Mean input Storage Load
power (µW) capacitor (µF)

1 867.5 1000 480 Ω
2 1537.1 1000 480 Ω
3 2254.5 1000 480 Ω
4 889.5 470 1000 Ω
5 1596.7 470 1000 Ω
6 2279.1 470 1000 Ω
7 416.8 94 3333 Ω
8 887.2 94 3333 Ω
9 1568.7 94 3333 Ω
10 838.0 470 MSP430
11 1497.6 470 MSP430
12 2150.2 470 MSP430
13 852.8 94 MSP430 + Low-power Radio
14 1462.8 94 MSP430 + Low-power Radio
15 2096.2 94 MSP430 + Low-power Radio
16 701.5 470 MSP430 + Low-power Radio
17 1411.0 470 MSP430 + Low-power Radio
18 2044.0 470 MSP430 + Low-power Radio

Table 5.2: Set of input parameters used for evaluating the solar energy
harvesting. The single MSP430 load runs an infinite loop while tog-
gling a LED. The MSP430 with low-power radio sends a packet and
then listens for incoming packets until power outage.

Figure 5.7: Solar energy harvesting emulation output on time error ton

and output off time error toff measured over a period of 40 seconds.
The emulations are repeated seven times to determine the deviation.
The error bars show the maximum and minimum deviation. Test run
parameters are defined in Table 5.2.
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Chapter 6

Future Work

In this chapter we discuss possible future work divided over three topics: dy-
namic capacitance, energy-aware debugging and simulation/emulation synergy.

6.1 Dynamic Capacitance

The energy harvesting emulation model used in this thesis comes with one main
advantage compared to the state of the art: it has a virtual capacitor. By
means of software configuration, any capacitor value and threshold voltage can
be emulated. Future work could exploit this feature to:

• find an optimal capacitor value for a wireless sensor network. The question
one might ask: what is the impact of using a bigger or smaller capacitor
on network stability or throughput?

• find an optimal capacitor value to perform some intermittent task. One
way to do it, is to do a test sweep over various capacitor sizes and see
what results in an optimal output.

6.2 Energy-Aware Debugging

Debugging is an essential process in developing embedded software. However
debugging in a intermittently-powered, energy-constrained context implicates
new problems. Work of [8] provides a solution to this problem with analog
circuity to maintain a constant capacitor voltage while executing debugging
tasks. This analog circuity introduces inaccuracy and complexity. Because in
our work we virtualize the capacitor, we can maintain capacitor voltage purely in
software. Therefore we can apply energy aware debugging with less complexity
and with more accuracy.

6.3 Simulation/Emulation Synergy

Assume one wants to test a network with 1000 nodes. This is impractical
with real hardware devices, but simulation could be an outcome. The model
we presented works both in emulation and simulation. Energy consumption
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of a WSN node is extensively modeled, for example in [55, 40, 3]. Combining
these existing energy consumption models with our energy harvesting emulation
model enables simulation of a large (WSN) network. Depending on the accuracy
of the energy consumption model, one can have a simulation which can be as
accurate as the emulation because they use the same code base.
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Chapter 7

Conclusions

In this thesis we have designed, implemented and evaluated a generic energy
harvesting emulation model used for intermittently-powered batteryless IoT
devices. The model is based on the work of [12]. While [12] fails to accur-
ately emulate a real world situation, our model implementation can repeatably
emulate the entire input power chain of an energy harvesting device, including
the energy harvester, converter(s) and storage capacitor. We evaluated our emu-
lation with two different setups: a Powercast RF harvester [32] and an industry
standard bq25570 energy harvesting boost-converter [49] with solar power input.

We have shown for RF harvesting emulation that the mean output on/off time
error is less than 8%, measured with a 1000 µF storage capacitor over various
input power signal strengths using both a constant and dynamic load. For the
bq25570 solar energy harvesting emulation we have measured the emulation
accuracy more extensive using different storage capacitors with both constant
loads and dynamic loads. This emulation has shown a similar error margin of
less than 10%. However, there are some outliers caused by quantization of the
bq25570. Under constant load conditions, the on/off time error deviation is less
than 1.5% for both RF and solar. Thereby we conclude that the emulation is
realistic and repeatable.

We envision our emulation to be used in the context of a testbed for bat-
teryless systems powered by harvested energy. Therefore we have integrated
our emulator in Shepherd [21], a state-of-the-art testbed for batteryless IoT
devices.
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Appendix A

Initial Testbed Setup and
Interface

In this appendix we envision our initial setup of the testbed and compare it
with Shepherd. At the start of this thesis, Shepherd was not yet published.
Six months after the start of this thesis, we were confronted with the Shepherd
paper. At that point it was decided to re-focus the thesis towards the emulation
part and integrate our work into the Shepherd platform.

A.1 Our Proposal

The initial vision on our testbed was to have a central server which users can
access remotely via a web interface and upload their firmware. This central
server would connect to testbed nodes, schedule tests to run and present the
results to the users via the same web interface. This is a similar setup as the
WSN testbeds discussed in Section 2.2.

Since the setup would be similar, we contacted all actively maintained WSN
testbeds if it was possible to share their source code so we could re-use it. Only
Flocklab was willing to do this. However, since Flocklab exists for over 10 years,
their source code is out-dated, hard to change and not future proof. Therefore
a new web interface is developed to provide a proof-of-concept for the testbed
setup, shown in Figure A.1.

Now the interface is defined, the testbed nodes are left to be defined. Main
features are the ability to emulate energy harvesting conditions, program a
target device, record the power consumption and GPIO state changes, and
communicate with the central server.

Networking is one of the most interesting topics when it comes down to
intermittently-powered energy harvesting devices. Therefore we envision our
testbed to support up to four target devices. Our proposed testbed node archi-
tecture is shown in Figure A.2. Judging by the survey on intermittently-powered
platforms in Table 2.2, we see that the MSP430 is the most used MCU. There-
fore we support the programming of MSP430 target devices.
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Figure A.1: Screenshot of the web interface in proof-of-concept testbed.
Users can upload firmware, run a test and download test results (logic
analyzer trace and serial output log). While test is running, terminal
outputs state of the test.

A.2 Shepherd

Besides the emulation Shepherd offers interesting testbed features. The testbed
consist of a BeagleBone [5] with a hardware extension cape on top of it. The
BeagleBone is a small embedded computer comparable to the more popular
Raspberry Pi [34]. Due to its small size the testbed is portable. A bi-directional
level converter is provided such that the target device, which could operate
at another voltage level, can output debug messages over UART or output
information by toggling GPIO pins. These debug messages and GPIO state
changes are recorded with their time information. Shepherd also allows time-
synchronized emulation over various nodes, such that multiple devices can be
tested at the same time, using time-synchronized input recordings.

The user interface of the testbed is a simple command-line utility, which can
be executed via ssh. There is no central server which handles all the tests. In-
stead, to run a test on multiple nodes, another command-line utility is available.
This provides similar functionality, but takes a list of Shepherd nodes as input
argument.

A.3 Comparison and Further Direction

Looking at our proposed setup and the Shepherd’s implementation, we see that
Shepherd lacks the central server and user interface. On the other hand, we see
that the testbed node architecture is practically the same as our proposed setup.
Therefore we envision Shepherd could work as a testbed node in our proposed
WSN testbed.
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Figure A.2: Proposed testbed node architecture. Up to four energy
emulator channels are supported, controlled by a Raspberry Pi, also
managing internet connection, device programming and GPIO ana-
lysis.
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