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Copes and partial endplates influence the resistance to lateral buckling of a steel beam. In order to 

quantify this influence, numerical research has been carried out with validated models. Full-scale 

laboratory tests carried out for the validation of the numerical models are described in the Annex to 

this paper. 

The research resulted in proposed reduction factors for the critical elastic buckling load of beams with 

various end connections. With the reduced elastic buckling load and the existing buckling curves the 

resistance of steel beams with copes and partial end plates can be determined. 
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1 Introduction to lateral-torsional buckling 

Beams loaded about the strong axis may buckle, which is called lateral-torsional buckling or 

flexural torsional buckling. The well-known, analytically derived equation for the critical elastic 

buckling load (Mcr) of a simply supported beam, loaded by a moment which is constant along the 

span (equation 1) was published by Timoshenko and Gere in 1960 (16). (Symbols used are listed at 

the end of this paper). 
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Equation 1 shows that the moment of inertia about the weak axis, the torsional constant and the 

warping constant are parameters that determine the resistance to buckling, together with the span. 

I-sections are often used as beams because of the favourable ratio between resistance and weight. A 

disadvantage of I-sections, however, is that they have a relatively low critical elastic buckling load 

because of the relatively low torsional constant, the low warping constant and the small ratio 

between Iy and Iz. 
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In figure 1, the relation between the critical elastic buckling load and the resistance of a beam is 

illustrated. The horizontal axis in this figure represents the lateral deflection of the cross-section at 

mid-span of a simply supported beam loaded by a concentrated load applied at mid-span. The 

beam load is shown on the vertical axis and the graphs show results of finite element calculations. 

The solid black line represents the (post) buckling behaviour of an initially perfect I section loaded 

by a concentrated load at mid span. No lateral deflection occurs for loads smaller than the critical 

elastic buckling load Mcr. For a load equal to the critical elastic buckling load, lateral deflections 

occur and the magnitude of the lateral deflection is undetermined (instability). For a beam with 

(small) initial geometric imperfections (dashed line), lateral deflection occurs from the beginning of 

loading. The lateral deflection becomes significant for a load approaching the critical elastic 

buckling load, and is greater than in case of the perfect beam for every load. When the plastic 

capacities are determined of laterally restrained beams with various values for the initial geometric 

imperfection, it turns out that the maximum load decreases as the initial geometric imperfection 

increases (dotted line, each dot represents a beam with specific initial imperfection). As a result, the 

load displacement diagram of a laterally unsupported beam with a certain yield stress, initial 

geometric imperfections and residual stresses (solid grey line) shows a maximum load, which is the 

beam resistance. Residual stresses reduce the resistance in case of lateral-torsional buckling. For the 

considered beam, the resistance is lower than both the plastic capacity and the critical elastic 

buckling load.  
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Figure 1: Relation between resistance, critical elastic buckling load and plastic capacity 
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In this example, the critical elastic buckling load was slightly lower than the plastic capacity. For 

beams with a much higher critical elastic buckling load, buckling does not significantly influence 

the beam resistance. The resistance of such beams is dominated by the plastic capacity, whereas for 

beams with a much lower critical elastic buckling load, the beam resistance is dominated by 

buckling. In codes such as prEN 1993-1-1 (19) the influence of the critical elastic buckling load on 

the beam resistance is expressed as a function of the relative slenderness λLT, see equation (2). 
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Figure 2 shows the ratio between the beam resistance and the plastic capacity (χLT) as a function of 

the relative slenderness (λLT). For a beam with large slenderness, the critical elastic buckling load 

(solid black line) dominates the resistance, while the plastic capacity (grey line) dominates the 

resistance for stocky beams. The influence of initial imperfections is taken into account by the use of 

a buckling curve. In prEN 1993-1-1 (19), buckling curve ‘a’ (dashed line) is used for the design 

resistance of rolled sections. This buckling curve is based on the results of many tests. As shown, 

the influence of initial geometric imperfections and residual stresses on the resistance is largest 

when the critical elastic buckling load is equal to the plastic capacity (at a relative slenderness equal 

to 1). 
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Figure 2: Buckling curve ‘a’ according to prEN 1993-1-1 

2 Influence of support conditions on lateral-torsional buckling 

Equation (1) is derived for a beam with simple supports, i.e. the rotation about the longitudinal axis 

and lateral and the vertical deflections are completely restrained, while the rotation about the strong 

and weak axes is free. In addition, the beam ends are assumed free to warp, but no other distortion 
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of the beam ends is present. These theoretical support conditions are not fulfilled in most real 

connections with e.g. endplates, fin plates or angles. Trahair and others [Trahair, 1993 (17), Pi and 

Trahair, 2000 (15) and Vacharajittiphan and Trahair, 1974 (18)] studied the effect of partial restraints 

at the supports on the critical elastic buckling load. They determined the increase of Mcr caused by 

partial restraints to rotations about the weak axis and the strong axis and by restrained warping 

(e.g. in case of thick, full endplates). They also determined the reduction of Mcr caused by partial 

restraint to rotation about the longitudinal axis. Based on these and on other studies, modification 

factors for the critical elastic buckling load are given in prEN 1993-1-1 to take into account the 

influence of partial restraints at the supports. 

In practice, secondary beams are sometimes coped at the connection with main beams, see figure 3. 

The reason for coping beams is to allow the upper flanges of both beams to be levelled, so that it is 

possible to attach roof or floor plates without having to make additional modifications. The 

connection between main beam and secondary beam is made with endplates, fin plates or angles. 

Applying these connections may influence the lateral buckling resistance of the beam. 

Local web buckling in the coped region or lateral-torsional buckling of the coped region may occur. 

This may reduce the critical elastic buckling load. 

Web buckling may also occur in uncoped (‘normal’) beams when partial endplates are used, so that 

the upper flange and / or lower flange are not supported. Figure 4 illustrates that the buckling 

mode is a combination of local web buckling or buckling of the coped region and lateral-torsional 

buckling (only half of the beam is shown). 
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Figure 3: Coped connection between two beams 
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Figure 4: Buckling of a beam with short endplates (left) and a coped beam (right) 

 

Figure 5 shows the results of finite element calculations of beams with the same span, load, initial 

imperfections and yield stress but with different support conditions. It is shown that both the 

resistance and the post critical deformation decrease as the beam end is less supported. 
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Figure 5: Difference in resistance and post critical behaviour due to end conditions 

 

Numerical research into the influence of copes on the critical elastic buckling load has been carried 

out by Cheng, Yura and Johnson, 1988 (4), Lam, Yam, Iu and Cheng, 2000 (5) and Abspoel and 
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Stark, 1999 (1, 2). The research projects concentrated on I-section beams loaded by a concentrated 

load at mid-span. The results showed that for slender coped beams, buckling of the beam is 

dominated by lateral-torsional buckling, while buckling of a stocky coped beam is dominated by 

buckling of the coped region. For stocky beams with large cope length to web depth ratios, 

instability of the cope occurs by lateral-torsional buckling of the coped region, while in case of 

stocky beams with small cope length to web depth ratios, instability of the cope occurs by local web 

buckling in the coped region. 

The research projects resulted in various equations for the critical elastic buckling load of coped 

beams. 

Physical tests were carried out by Du Plessis, 1977 (14), Cheng and Yura, 1988 (3), Lindner, 1982 

(10), Lindner, 1985 (12), Lindner and Gietzelt, 1985 (7), Lindner, 1987 (11), Lindner, 1988 (9) and 

Lindner, 1996 (8). The (coped) beams in these research projects were supported by main beams or 

frames. As a result, the beam ends of the tested beams were partially restrained to rotations about 

the weak and strong axes. The tests showed a reduction in resistance due to copes. Lindner, 1988 (9) 

presented graphs for the reduction in resistance due to partial endplates and copes, based on test 

results. 

The tests could not directly be used to validate the numerical models because of the following 

reasons: 

 

• The models developed so far were used to determine the critical elastic buckling load, while 

in tests the resistance is determined; 

• The actual dimensions of the cross-section and the size of the geometric imperfections of the 

tested beams were not measured. These parameters influence the beam resistance; 

• The numerical models were simply supported while partial restraints were applied in the 

laboratory tests; 

 

Besides, the relatively large contribution of the roots at flange-web junctions to the rotation stiffness 

of the beam was not included in the numerical models developed so far. 

The following general criteria apply for studying the reduction in beam resistance due to copes or 

partial endplates. 

 

1. In the numerical models, the contribution to the rotation stiffness provided by the roots at 

flange-web junctions should be taken into account; 

2. Numerical models should not only provide the critical elastic buckling load, but also the 

beam resistance including the influence of plasticity, residual stresses, large displacements 

and initial geometric imperfections; 

3. Numerical models should be validated by tests; 
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4. The influence of real end connections by (partial) endplates, fin plates and angles on buckling 

of coped beams should be taken into account; 

5. Partial restraints of the beam ends, provided by the main beam or frame to which the coped 

beam is connected should be taken into account; 

6. Other load conditions than a concentrated load, applied at mid-span should be considered. 

 

In the current research project, numerical models of simply supported (coped) beams with 

endplates loaded by a concentrated load or a uniformly distributed load were developed. The end 

connections according to figure 6 were modelled. 

 

Type 1 Standard conditions of restraint or fork supports. These conditions do not represent a real 

connection, but are used as the reference case. These end conditions are as applied for the 

derivation of equation 1; 

Type 2 Connections with endplates that support the bottom flange and at least a part of the web. 

The upper flange is not supported; 

Type 3 Connections with partial endplates that support only a part of the web and leave both 

flanges unsupported.  

Type 4 Connections with full endplates in combination with copes at the beam ends. The 

endplate is welded to the total web and the bottom flange and therefore supports the 

entire beam end. 

Type 5 Connections with partial endplates in combination with copes at the beam ends. The 

endplate is welded to a part of the web only and leaves the bottom flange unsupported. 

 

 
 Type 1 Type 2 Type 3 Type 4 Type 5 

Figure 6: End conditions considered 

 

Euler stability analyses and geometrically and physically non-linear calculations were carried out 

with the numerical models, so that it was possible to determine the relation between the reduction 

of the critical elastic buckling load and the reduction of the resistance due to the end condition. 

Also, laboratory tests were carried out on (coped) beams with (partial) endplates. The test set-up 

was designed in such a way that rotations about the strong and weak axes and the translation in 

horizontal direction were free. 

All six general criteria given above were not fully covered in this research. 
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• The combination of copes and fin plates or angles was not covered; 

• The influence of partial restraints in real connections on buckling of coped beams was not 

taken into account; 

• The research was limited to a uniformly distributed load and a concentrated load at mid-

span; 

• Because of problems with the load introduction in the test set-up, an accurate quantitative 

validation of the numerical models by these tests was not possible (see the Annex). 

3 Description of the numerical models 

The beams were modelled in the Finite Element Programme DIANA. Eight noded, curved shell 

elements were applied to model web and flanges. It was determined that four elements were 

needed to model each flange and also four elements to model the web. A problem with these 

elements is that they do not have a volume. Consequently, some differences exist between the 

geometric properties of the model and the geometric properties of the real cross-section. These 

differences remain small, except for the torsional constant It, as illustrated in table 1 by the example 

of an IPE 160 section. The relatively large difference in It is caused by the fact that the contribution 

of round-going stresses in the roots at the flange-web junctions are not simulated correctly in a 

model consisting of solely shell elements, as illustrated in figure 7. 

 

Table 1: Geometric properties of a standard European IPE 160 section 

Property Model consisting of shells Real section Difference 

A   1977 [mm2]  2009 [mm2]  1,62 % 

Iy    8551391 [mm4]  8692929 [mm4]  1,63 % 

Iz   681610 [mm4]  681748 [mm4]  0,02 % 

Iwa  3959x106 [mm6]  3959x106 [mm6]  0,00 % 

It   28511 [mm4]  35406 [mm4]  19,48 % 

 

Model consisting of shell elements Real section 

= taken into
account twice   

Figure 7: Difference in resistance to torsion between real section and model consisting of shell elements 
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Because the torsional constant is an important parameter for lateral-torsional buckling (see equation 

1), a model consisting of solely shell elements gives a too low critical elastic buckling load. To obtain 

more accurate results, extra elements were added to the model. Beam elements were added at the 

flange-web junctions with a cross-section such that the total area of the model equals the area of the 

real beam. Torsional springs were added in the same points with a stiffness such that the total 

resistance against torsion of the model equals the torsional constant of the real section, see table 2 

and figure 8. Equation (3) was used to determine the stiffness of the rotation spring element. As 

shown, the spring stiffness depends on the element length. 
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Table 2: Geometric properties of a modified model of an IPE 160 section 

Property Model 

(only shells) 

Extra element 

(property per el.) 

Model 

(shells and extra el.) 

Real section Difference 

A  1977 [mm2]  16 [mm2]  2009 [mm2]  2009 [mm2]  0,00 % 

Iy 8551391 [mm4]  0 [mm4]  8740776 [mm4]  8692929 [mm4]  0,55 % 

Iz  681610 [mm4]  68,8 [mm4]  681748 [mm4]  681748 [mm4]  0,00 % 

Iwa 3959x106 [mm6]  0 [mm6]  3959x106 [mm6]  3959x106 [mm6]  0,00 % 

It  28511 [mm4]  r = 278,5 x 106/l 

[Nmm2/mm rad] 

 35406 [mm4]  35406 [mm4]  0,00 % 

  

 

= elastic beam elements 

and 

   rotation spring elements 

 

Figure 8: Model consisting of shell elements and beam elements and rotation springs in the roots 

 

The elastic geometric properties of the model consisting of shells, beams and springs are almost 

equal to the properties of a real section. However, this does not apply for the plastic properties, as 

the extra elements only have elastic properties. To determine the influence of this, beam resistances 
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were also determined with models consisting of shells and extra elements that include a certain 

plastic limit. These models resulted in equal resistances as for models with extra elements without 

plasticity. The conclusion is that plasticity does not occur in the extra elements at loads equal to or 

lower than the buckling resistance. Therefore, in the numerical research, only elastic properties 

were applied for the extra elements. 

To save computation time, only half the beam was modelled, with symmetry supports at mid-span. 

The symmetry supports consist of restraint against translation in longitudinal direction and 

restraints against rotations about the strong and weak axes. 

In this case, it is permissible to model only one half of the beam to determine the resistance, as the 

first buckling mode is symmetric about mid-span and higher order buckling does not significantly 

influence the resistance. 

The end conditions of figure 6 were modelled as follows: 

 

• Fork supports (type 1) were modelled with stiff beam elements connected to the web and to 

the flanges of the beam end, preventing the distortion of the beam ends. The connections 

between these stiff beam elements were pinned, so that warping is free, see figure 9. As the 

translation in longitudinal direction is already restrained at mid-span, this translation is free 

at the end of the beam. Constraints are applied to translations in direction of the strong and 

weak axes and to rotation about the longitudinal axis at the end of the beam (simple 

supports). 

• Endplate (type 2 and type 3) connections were modelled with beam elements with such 

stiffness that the elastic properties of the beam elements are equal to the elastic properties of 

the real endplate. The connections between the beam elements were rigid, contrary to type 1 

connections. A beam element in longitudinal direction was applied to model the endplate 

thickness. For the part of the web not supported by the endplate, mesh refinement was 

applied in order to allow for local web buckling see figure 10. In this region, 7 integration 

points through thickness were applied instead of three. 

• For coped connections (type 4 and type 5), mesh refinement was used for that part of the web 

where local buckling is to be expected, see figure 11. In these regions, seven integration points 

through thickness were applied. 
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Black lines represent 
beam elements  

 

Simple supports 

 

 

Figure 9: Model of a beam with type 1 connection 

 

Full endplate

  

Partial endplate

 

 

 Simple supports 

 

Figure 10: Models of beams with type 2 and type 3 connections 
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Cope with full endplate  
 

 

Cope with partial endplate 
 

 

Endplate thickness and hinge 

 

 

 

Figure 11: Models of beams with type 4 and type 5 connections 

 

The Von Mises yield criterion was used to describe plasticity. The stress-strain relation according to 

the Dutch code NEN 6770 (20) was applied (see figure 12). Work hardening was included. Initial 

stresses as given in prEN 1993-1-1 (19) were applied in the models (see figure 13).  

εεy 7 x εy εt = 8%
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Figure 12: Stress-to-strain relation according to NEN 6770 

Simple supports 
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Figure 13: Residual normal stresses in I-sections according to prEN 1993-1-1 

4 Validation of numerical models 

The numerical models were validated in four steps. 

4.1 First validation step 

The first validation step consisted of a comparison between analytically derived values for 

deformations, stresses and critical elastic buckling loads and values determined with the numerical 

models. For this purpose, two structures were considered. 

The first structure is the simply supported, laterally unrestrained beam loaded in bending about the 

strong axis, for which equation (1) has been derived. Three models were made: one of a relatively 

stocky beam for which restrained warping gives the highest contribution to the resistance against 

lateral-torsional buckling, one of a relatively slender beam for which torsion gives the highest 

contribution to the resistance against buckling and one of a beam for which the contributions of 

torsion and restrained warping are almost equal. 

Linear elastic displacements and normal stresses determined with the models were equal to 

analytical solutions. The numerical models resulted in critical elastic buckling loads approximately 

2 % lower than the analytical solution. The difference between the analytical solution and the 

numerically determined value is possibly caused by the influence of local deformations in the 

compressed upper flange and the web, which is taken into account in the DIANA calculation, but 

not in the analytical model for the critical elastic lateral-torsional buckling load. 

The second structure is the coped part (T-part) of a beam, loaded in torsion. Rotation about the 

longitudinal axis was restrained at the support, while warping and transverse contraction were not 

restrained at the support, see figure 14. The analytical equation for the linear elastic relation 

between load and deformation is given in equation (3). The numerically determined rotation was 

0,8% lower than the analytical value.  

From results of the first validation step it was concluded that warping and torsion is sufficiently 

accurately described by the models. Also, simple supports and standard conditions of restraint 

were modelled properly. 
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Figure 14: Second structure of first validation step: torsion on coped section 

4.2 Second validation step 

In the first validation step, only results of linear elastic and Euler buckling analyses could be 

checked. In the second validation step, non-linear analyses were checked. The second validation 

step consisted of a comparison between numerically determined beam resistances and buckling 

curve ‘a’ of prEN 1993-1-1 (19). This curve is based on extensive research with tests and some 

numerical models and is therefore considered as rather accurate. As the curve is used for all 

European sections, it should be an upper bound for a specific section. 
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Figure 15: 2nd validation step: comparison of numerical buckling resistance with prEN 1993-1-1 

 

Only one dimension is shown 
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For this validation step, models were made of IPE 160 and IPE 500 beams with various values for 

the slenderness (various spans). The applied initial geometric imperfection had the same shape as 

the first critical elastic buckling mode. The maximum amplitude of this initial imperfection was 

taken as 0,001 times the span. The value of the yield stress was taken as 235 N/mm2. 

The dots in figure 15 show the results of the numerical simulations. The numerically determined 

relation between relative slenderness and buckling resistance of the considered beams follow the 

buckling curve ‘a’ of prEN 1993-1-1 quite well. Only the numerically determined buckling 

resistances of stocky IPE 500 beams are slightly lower than indicated by buckling curve ‘a’, but 

differences remain small.  

4.3 Third validation step 

The third validation step consisted of a comparison with other numerical models. For a proper 

comparison, these other models should also include the section roots. 

Results were compared with two other numerical models representing a simply supported uniform 

beam with type 1 connections. 

The first model was developed and described by Greiner, Salzgeber and Offner, 2000 (6) and 

consisted of 100 open-section beam elements, including warping and torsion with 17 integration 

points for the web and 17 integration points for each flange. The used Finite Element Programme 

was ABAQUS. 

The geometric imperfection in the model of Greiner et al., 2000 (6) was defined by an initial bow 

imperfection of parabolic shape in the lateral direction with amplitude L/1000, while in the current 

research, the first elastic buckling mode was scaled so that the amplitude in lateral direction was 

equal to L/1000. The amplitude was therefore equal, but the mode was slightly different. 

Instead of the linear distribution of the residual stresses (figure 13), Greiner et al., 2000 (6) used a 

parabolic distribution.  

Both the critical elastic buckling load and the beam resistance were compared for a relatively 

slender and a relatively stocky beam. The considered load cases were a constant moment, a 

uniformly distributed load and a concentrated load at mid-span. In all six cases, the elastic critical 

buckling loads obtained by the models were equal. In case of constant moment loading, the beam 

resistance was equal as well. However, in case of loading by a concentrated load or a uniformly 

distributed load, the model used in the current research resulted in resistances respectively up to 

10% and up to 6% lower than predicted by the model of Greiner et al., 2000 (6). 

Loading by a uniformly distributed load or a concentrated load results in shear stresses and shear 

deformations. Local (web) deformations can be larger than in case of a constant moment loading. 

These effects are taken into account in the models used in the current research, but possibly not in 

the elements used in the models developed by Greiner et. al. A coped beam has no uniform cross-
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section along its span and it is therefore not possible to accurately model a coped beam with the 

elements used by Greiner et al., 2000 (6). 

The second model is a model consisting of solid elements, see figure 16. The model was also 

developed in the current research in the Finite Element Programme DIANA. Initial imperfections, 

load conditions and support conditions were the same as in case of the model consisting of shell 

elements. Both the critical elastic buckling load and the beam resistance resulting from the different 

models were compared for a relatively slender and a relatively stocky beam loaded by a constant 

moment, a uniformly distributed load and a concentrated load applied at mid-span. The model 

consisting of solid elements resulted in a critical elastic buckling load that was up to 0,5% higher 

and a resistance that was up to 2,2% higher than in case of the model consisting of shell elements.  

 

 

Figure 16: Model consisting of solid elements  

 

The third validation step shows that the differences in buckling resistance between the model 

consisting of shell elements and the model consisting of solid elements are small. The maximum 

differences in buckling resistance between the model consisting of shell elements and the model 

consisting of beam elements developed by Greiner et al., 2000 (6) are larger, but the differences 

remain small for most beams considered. A possible explanation is given for the differences. The 

critical elastic buckling loads of the three models were almost equal. 

In order to save computation time, the model consisting of shell elements is used in this study 

instead of the model consisting of solid elements. 

4.4 Fourth validation step 

The fourth validation step was planned for a further validation of the numerical models for beams 

with the five connections considered. For this validation step a series of tests was carried out. 

However, because of problems with the load introduction, the tested beams could not exactly be 

simulated with numerical models. Only a global comparison between buckling resistances was 
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possible. This comparison showed that the numerically determined resistances were comparable 

with the resistances determined with the tests. The tests and the comparison are briefly described in 

the Annex to this paper. For a complete description, see Maljaars, 2001 (13) and Maljaars et al., 

2002a (21). 

Although this fourth validation step was not fully successfully completed, the results of the three 

first validation steps were considered to give sufficient confidence in the models. On that basis it 

was decided to use these models for a parameter study. 

 

 
Reference: standard restraint conditions 

section:
IPE 160, IPE 330
and IPE 500

Span over depth ratios:
1/7 ≤  h/L ≤  1/40

cope lengths:
40 ≤  c ≤  230 mm

cope depths:
(tfl+r) ≤  dc and
dc ≤  min (1/3 h, 65 mm)

steel grade: S235

end plate height:
1/2 h < h e < hc

load: equally distributed
•   section centroid
•   centre of upper flange

c 

dc

he hc 

 

Figure 17: Parameter field of the parameter study 

5 Parameter study to the influence of type 2 to type 5 connections on buckling 
of beams 

A parameter study was carried out with the numerical models, in order to quantify the influence of 

endplates and copes on the beam resistance. In this research, the critical elastic buckling load and 

the resistance of a beam with type 2 to type 5 connections was compared with the critical elastic 

buckling load and the resistance of a reference beam with the same physical and geometrical 

properties, but with type 1 connections, for which most codes for steel structures give verification 

rules. Calculations were carried out for standard European IPE beams with various spans and 
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various dimensions of endplates and copes. All beams were simply supported. The parameter field 

is described in figure 17. 

The results of the calculations are shortly discussed in this paper.  A more extensive discussion of 

results is given in Maljaars, 2001 (13) and Maljaars et al., 2002b (22).  

In this paper, the influence of the connection type on the critical elastic buckling load is discussed 

first. Following, the relation with the beam resistance is presented. 

5.1 Reduction of the critical elastic buckling load for type 2 and type 3 connections 

In figure 18, results are plotted of some calculations for IPE160 beams loaded in the centre of the 

upper flange. The vertical axis gives the critical elastic buckling load of the beam with end plates 

(type 2 or type 3) as a percentage of the critical elastic buckling load of the reference beam (type 1). 

The reduction in critical load due to the endplate is significant for very short beams, but the 

influence of the endplate decreases for increasing spans. For spans most applied in practice (L/h > 

25), the reduction in critical load is 12% maximum, in case of very short endplates. 
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Figure 18:  Endplate influence on critical load as a function of span on IPE160 beams 

 

In figure 19, results are plotted of calculations with short IPE 500 beams with a span of 3500 mm 

(L/h = 7) and with type 2 and type 3 connections. The unsupported web height above the endplate 

(eu) is shown on the horizontal axis, while the different lines refer to endplates with different values 

of the unsupported web height under the end plate (eb). 
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Figure 19: Critical load as a function of unsupported web height from top flange 

 

The different lines are closely together, indicating that for beams with uniform cross-section, 

leaving the bottom flange unsupported results in just a small reduction of the critical load. In 

contrary, the influence of eu is significant. The relation between the reduction in critical load and eu 

is approximately linear. 
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Figure 20: Critical load as a function of unsupported web height from bottom flange 
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In figure 20, the same data is plotted as in figure 19. In figure 20 however, eb is plotted on the 

horizontal axis and eu is indicated by different lines. The relation between the critical load reduction 

and eb is approximately linear, however the reduction with increasing eb is limited. 

In total, 155 beams with type 2 and type 3 connections were analysed. The reduction of the critical 

load due to the endplate can be determined with equation (4). This equation is based on curve 

fitting of the numerical results. The symbols are explained in figure 21. 
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For loads applied in the centre of the upper flange, the constants A1 –A4 are: 

A1 = 22,7 A3 = 0,875 

A2 = 1,44 A4 = 0,450 

For loads applied in the section centroid, the constants A1 –A4 are: 

A1 = 9,93 A3 = 1,28 

A2 = 1,10 A4 = 0,860 
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Figure 21: Symbols used in equation (4) 

5.2 Reduction of the critical elastic buckling load for type 4 connections 

In figure 22, the results are plotted for some IPE 160 beams with type 4 connections. The span is 

shown on the horizontal axis and different lines indicate various cope lengths (c). The cope depth 

(dc) was 40 mm. The influence of copes is greater for smaller spans. This is the case for cope lengths 

as well as for cope depths. The maximum reduction of the critical load is 75% for short spans to 20% 

for commonly applied span over depth ratios (L/h = 25). 
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Figure 22: Reduction in critical load due to cope length for beams with type 4 connections with various spans 

 

In figure 23, results are plotted for short IPE 160 beams with a span of 1500 mm (L/h = 9) and type 4 

connections. Parameter c is shown on the horizontal axis and different lines indicate values for dc. 

The influence of dc is greater for smaller cope lengths. The relation between cope length and 

reduction in critical elastic buckling load is non-linear. 
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Figure 23: Reduction in critical load as a function of cope length for type 4 connections 
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In figure 24, the same data is plotted as in figure 23 but this time, the cope depth (dc) is plotted on 

the horizontal axis, while the different lines indicate various cope lengths (c). The relation between 

reduction in critical load and cope depth (dc) is approximately linear. 
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Figure 24: Reduction in critical load as a function of cope depth 

 

In total, 131 beams with type 4 connections were analysed. The reduction of the critical load due to 

the cope can be determined with equation (5). Again, the equation is based on curve fitting of the 

numerical results. The symbols are explained in figure 25. 
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In case the load is applied in the centre of the upper flange: 

B1 = 22,8 B4 = 0,344 B6 = 4457 

B2 = 1,89 B5 = 1,44 B7 = 0,229 

In case the load is applied in the section centroid: 

B1 = 23,3 B4 = 0,361 B6 = 7671 

B2 = 1,97 B5 = 1,58 B7 = 0,236 
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Figure 25: Symbols used in equation (5) 

5.3 Reduction of the critical elastic buckling load for type 5 connections 

In figure 26, results are plotted of some IPE 160 beams with type 5 connections. The span is shown 

on the horizontal axis and different lines indicate various cope lengths. All beams have a very short 

end plate, which leaves 40 mm of the web unsupported. The figure shows that the influence of 

copes is greater for smaller spans, as was the case for type 4 connections. The maximum reduction 

of the critical load is 85% for short spans to 40% for commonly applied span to depth ratios (L/h = 

25). 
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Figure 26: Reduction in critical load due to cope length for beams with type 5 connections and various spans 

 

In figure 27, results are plotted for IPE160 sections with type 5 connections with cope dimensions c 

= 230 mm and dc = 40 mm. The different lines represent different endplate heights. As in figure 26, 

the span is shown on the horizontal axis. The beams have a large cope length of 230 mm. Contrary 

to type 2 connections, the influence of eb is significant for type 5 connections. 
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Figure 27: Reduction in critical load due to endplate height for beams with type 4 connections with various 

spans 

 

In figure 28, results are plotted for short IPE 160 beams with a span of 1500 mm (L/h = 9) and with 

type 5 connections. Different values for c are shown on the horizontal axis and different lines 

indicate various values for eb. The relation between cope length and reduction in critical elastic 

buckling load is non-linear. 
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Figure 28: Reduction in critical load as a function of cope length for type 5 connections (IPE160, span 1500 

mm) 
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In figure 29, the same data is plotted as in figure 28, but now eb is plotted on the horizontal axis and 

the different lines represent different values of c. The relation between the critical load reduction 

and eb is approximately linear, except for the case that the endplate covers (almost) the total web 

but not the bottom flange (eb=0). In this case, the web supplies sufficient support to the bottom 

flange to prevent it from buckling, although the bottom flange is not welded to the endplate. 
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Figure 29: Reduction in critical load as a function of endplate height for type 5 connections (IPE 160, span 

1500 mm) 

 

Type 5 connections with eb = 0 can be calculated as type 4 connections. The critical load of other 

type 5 connections can be determined with equation (6). This equation is based on 300 FEM 

calculations of beams with type 5 connections. Symbols are explained in figure 30. 
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In case of a distributed load applied in the centre of the upper flange: 

D1 = 21,5 D4 = 0,288 D6 = 1149 D8 = 1,01 

D2 = 1,81 D5 = 1,04 D7 = 0,239 D9 = 0,479 

In case of a distributed load applied in the section centroid: 

D1 = 21,6 D4 = 0,322 D6 = 1883 D8 = 0,709 

D2 = 1,83 D5 = 1,21 D7 = 0,244 D9 = 0,419 
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Figure 30: Symbols used in equation (6) 

 

The mean values and the standard deviations of the ratio between the critical elastic buckling load 

according to equations (4) to (6) and the numerically determined critical elastic buckling load is 

given in table 3. The mean values are just below one, which is on the safe side. 

 

Table 3: Mean value and standard deviation of quotient (Mcr, equation/Mcr, numerical) 

Connection Load application Mean value (µ) Standard deviation (σ) 

Upper flange 0,96 0,029 Types 2 and 3 

Centroid 0,92 0,032 

Upper flange 0,89 0,061 Type 4 

Centroid 0,89 0,064 

Upper flange 0,87 0,085 Type 5 

Centroid 0,83 0,096 

5.4 Reduction of the beam resistance 

In the previous paragraph, the reduction in critical elastic buckling load was quantified. In this 

paragraph, a method is presented for determining the beam resistance . 

The beam resistance relative to the plastic capacity and the critical elastic buckling loads are plotted 

in figure 31. Each dot represents a specific beam with type 2, 3, 4 or 5 connections. The relative 

slenderness and the relative resistance was determined using the critical elastic buckling load and 

the buckling resistance according to the finite element simulations of each beam. Buckling curve ‘a’, 

which provides correct resistances in case of type 1 connections, is not always safe for the other 

connections. This is caused by the fact that yielding occurs in the coped region or in the 

unsupported part of the web. 
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Figure 31: Critical elastic buckling loads and beam resistances for beams with type 2 to type 5 connections 

 

A better fit can be obtained by the use of alternative buckling curves. The choice of the buckling 

curves depends on the type of connection and on the reduction of the critical elastic buckling load. 

This reduction is given by factor α, determined with equation 4, 5 or 6. 

 

• For type 2 and type 3 connections, the following buckling curve should be used 

- Buckling curve ‘b’ when 0,85 ≤ α < 1,0 

- Buckling curve ‘c’ when α < 0,85 

• For type 4 connections, buckling curve ‘b’ should be used, independent of α. 

• For type 5 connections the following buckling curve should be used. 

- Buckling curve ‘b’ when 0,70 ≤ α < 1,0 

- Buckling curve ‘c’ when 0,50 ≤ α < 0,70 

- Buckling curve ‘d’ when α < 0,50 

 

The proposed verification method for buckling of beams with copes and / or partial endplates thus 

consists of the following steps: 

 

• Factor α may be determined using equations 4 to 6 

• The relative slenderness may be determined using Mcr = α . Mcr;type 1 

• The appropriate buckling curve may be chosen based on the type of connection and the value 

for α. 

• The buckling resistance relative to the plastic capacity, χLT, may be determined with the 

relative slenderness and the appropriate buckling curve. 
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The accuracy of this proposed verification method is shown in figure 32 for type 2 and type 3 

connections, in figure 33 for type 4 connections and in figure 34 for type 5 connections. In these 

figures, the buckling factor determined with the verification method described above, χLT,vm, on the 

vertical axis is compared with the numerically determined buckling factor χLT,num on the horizontal 

axis. The buckling factor χLT,num is defined as the numerically determined resistance divided by the 

plastic capacity. 

The figures also give the mean value and the standard deviation of the ratio between κLT,vm and 

κLT,num. The mean values of this ratio are below one, which means that the procedure proposed is on 

the safe side. 
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Figure 32: Comparison of beam resistances between numerical model and proposed verification method for 

type 2 and type 3 connections 
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Figure 33: Comparison of beam resistances between numerical model and proposed verification method for 

type 4 connections 
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Figure 34: Comparison of beam resistances between numerical model and proposed verification method for 

type 5 connections 
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6 Conclusions and recommendations 

Conclusions: 

• Lateral-torsional buckling and local web buckling of I-sections can be modelled with the 

Finite Element Method; 

• Copes and partial end plates reduce the elastic critical buckling load. The influence of copes 

and end plates is particularly significant for beams with relatively small span to depth ratios;  

• A combination of a cope and a partial endplate that leaves the bottom flange unsupported 

leads to the greatest reduction in the critical elastic buckling load and in the beam resistance; 

• For beams with copes and / or partial endplates with a certain relative slenderness, the 

reduction of the plastic capacity is larger than for beams with the same relative slenderness 

but supported by forks and having uniform cross-section, so the use of the same buckling 

curve for these beams is not applicable. 

• The post buckling behaviour of beams with copes and partial endplates is worse than of 

beams with fork supports. 

 

Recommendations: 

• The equations proposed for the critical elastic buckling load of beams with copes and / or 

endplates are derived with a curve fitting method. Strictly speaking these equations are only 

applicable within the range of parameters used in the parameter study. It is recommended to 

develop an analytical method for buckling of coped beams. 

• The proposed use of alternative buckling curves to determine the resistance does not always 

satisfactory correspond to the numerically determined resistance. For a better determination 

of the buckling resistance, it is recommended that yielding of the web be studied analytically 

for beams with copes and / or endplates; 

• The critical elastic buckling load and the beam resistance of coped beams loaded by other 

loads than a uniformly distributed load should be determined; 

• The critical elastic buckling load and the beam resistance of coped beams in combination with 

angles and fin plates should be determined. 

• The application of beams with copes in combination with partial endplates is not 

recommended because these beams show the largest reduction in beam resistance and post 

buckling behaviour. 

• The test set-up described in the Annex should be further improved so that the tests planned 

for the fourth validation step can reliably be carried out. 
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Symbols used 

α = Reduction factor for the critical elastic buckling load due to the cope and / or the  

 endplate 

ϕ = Rotation angle between first node and second node of a spring element 

χLT = Buckling factor (reduction factor for the beam resistance due to lateral-torsional  

 buckling) 

κLT,num = Numerically determined buckling factor 

κLT,vm = Buckling factor according to the proposed verification method 

λLT = Non-dimensional (relative) slenderness for lateral-torsional buckling 

µ = Mean value of the ratio between κLT,vm and κLT,num 

σ = Standard deviation of the ratio between κLT,vm and κLT,num 

σini = Initial (residual) stress 

 

A = Cross-sectional area 

A1-A4 = Constants in the equation for the critical elastic buckling load of type 2/3 connections 

B1-B7 = Constants in the equation for the critical elastic buckling load of type 4 connections 

D1-D9 = Constants in the equation for the critical elastic buckling load of type 5 connections 

E = Young’s modulus (Modulus of elasticity) 

G = Shear modulus 

F = Concentrated load 

It = Torsional constant 

It,tot = Torsional constant of a model consisting of shells and extra elements (beams and  

 springs) 
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It,shell = Torsional constant of a model consisting of shells 

It,spring = Converted ‘torsional constant’ of a spring element 

Iwa = Warping constant 

Iy = Second moment of inertia about the strong axis 

Iz = Second moment of inertia about the weak axis 

L = Beam span 

M = Bending moment 

Mcr = Critical elastic buckling load 

Mpl = Plastic capacity 

MRd = Buckling resistance 

T = Torsional moment 

Tpl = Plastic capacity for torsion 

 

c = Cope length 

dc = Cope depth 

eb = Unsupported web height above the endplate (distance between bottom flange and  

 lower side of the endplate) 

eu = Unsupported web height under the endplate (distance between upper flange and upper 

  side of the endplate) 

fy = Yield stress 

h = Section height 

hc = Height of the section in the coped region (=h-dc) 

he = Height of the endplate 

kspring = Rotational spring stiffness 

l = Element length 

uy = Displacement in direction of the weak axis 
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Annex: Test program 

For a further validation of the numerical models, tests were carried out. This Annex gives an 

overview of these tests. The test set-up developed in this research project is shown in figure 35. 

 

   
 

Figure 35: Test set-up 

 

Cardan supports were developed to model simple supports, i.e. rotations about the weak and 

strong axes and translation in longitudinal direction are free and rotation about the longitudinal 

axis and translations in vertical and lateral direction are restrained at the supports, see figure 36. 

As soon as load is applied on the specimen, the specimen is stabilised in longitudinal direction. The 

static system is thus according to the left picture in figure 37. This corresponds to the right picture 

in figure 37. 

 

   

Figure 36: Cardan supports 
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load adjuster 
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Figure 37: Static system (left: static system in the set-up, right: comparable static system) 

 

A load adjuster and a spherical bearing were used to introduce the load. The spherical bearing 

consisted of a bowl and a sphere with grease in between. The radius of the sphere determines the 

load application point, see figure 38. For the tests, two spheres were developed, one for load 

application in the centre of the upper flange and one for load application in the centroid of the 

section. Figure 39 shows the functioning of the spherical bearing. 

 

   

load application in center
of the upper flange

load application in the 
centroid of the cross  

Figure 38: Spherical bearing 

 

  

Figure 39: Functioning of the spherical bearing (left before testing, right during testing) 

 

Ten IPE 120 beams with a span of 2,0 m and with type 1 to type 5 connections were tested. For these 

stocky beams with a relatively slender web, influence of the cope on the resistance of the beams is to 

be expected. During the test, lateral and vertical displacements of five cross-sections were 

measured, together with the load. The measured resistances of the tested beams are given in table 4. 
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Three tests failed because dents in the bowl of the spherical bearing prevented the rotation of the 

beam at the load introduction point. These tests are not included in table 4. 

 

Table 4: Resistances for the tested beams 

beam number connection load application Fb [kN] 

A1 

(type 1 connection) 

 

Upper flange 34.3 

A2 

(type 1 connection) 

 

Upper flange 35.7 

A3 

(type 2 connection) 

 

Upper flange 34.1 

A4 

(type 3 connection) 

 

Upper flange 36.2 

B1 

(type 4 connection) 

 

Upper flange 31.2 

B2 

(type 4 connection) 

 

Centroid 28.4 

B4 

(type 5 connection) 

 

Upper flange 25.1 

 

The rotation of the cross-section at five locations of tests A3 (type 2 connection) and B1 (type 4 

connection) are shown in figure 39. Large rotations occur in the coped regions. Extreme rotations in 

the coped regions were found for type five connections (see figure 40). 



 269 

0

0.03

0.06

0 500 1000 1500 2000
L (mm)

φ 
(r

ad
)

  

0

0.03

0.06

0 500 1000 1500 2000
L (mm)

φ 
(r

ad
)

  

Figure 40: Rotation of five measured cross-sections of tests A3 (type 2) and B1 (type 4) 

 

 

 

Figure 41: Rotation in the coped region of test B5 (type 5 connection) – top view 

 

For a proper comparison between the numerical models and the tests, all relevant parameters of the 

tested beams should be known. The following parameters were considered. 

 

• Span, cope dimensions and the dimensions of the cross-section are important parameters for 

both the critical elastic buckling load and the ultimate resistance. These properties were 

measured for each beam, before testing; 

Type 2 

Type 4 

A3 

B1 
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• In a numerical sensitivity analysis, it was determined that the size of the initial geometric 

imperfection (non-straightness of the beam) has a significant influence on the beam resistance. 

The initial imperfections were measured for each beam, before testing. 

• The yield stress, ultimate tensile strength and Young’s modulus were determined for the 

flanges and the web of each beam, after the beams were tested. 

• In a numerical sensitivity analysis, it was determined that the magnitude of the residual stress 

has no significant influence on the beam resistance for the tested beams (a variation in the 

residual stresses of 10% resulted in a variation in resistance of 0,05% to 0,35%). Therefore, the 

residual stresses were not measured. The pattern according to figure 13 was applied. 

 

Numerical models were made with these measured geometrical and physical properties. The initial 

geometric imperfection of beam A1 was not measured correctly. Therefore, it was not possible to 

simulate this beam. 

The numerically determined resistances were 12% up to 25% lower than the tested resistances. In 

order to give an explanation for this significant difference, the friction between the bowl and the 

sphere was measured. For this purpose, a bowl was placed in between two identical spheres. The 

spheres were pressed with a load approximately equal to the maximum load in the experiments. 

The resistance against rotation of the bowl was then measured, see figure 41. The measured 

coefficient of friction was only 0,4 to 0,7 %, depending on the load and the side of rotation of the 

bowl. The friction in the cardan supports was so low, that it was not possible to measure it. 

 

 

Figure 42: Set-up to determine friction in the spherical bearing 

  

In order to determine the relation between friction in the load application and resistance, a 

sensitivity analysis was carried out numerically. For this purpose, a rotation spring with high elastic 

stiffness and a variable plastic limit was added in longitudinal direction at the point of load 

application to the numerical model of beam A4. Results are shown in figure 42. 
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Figure 43: Influence of friction in load application on the beam resistance 

 

Figure 43 shows that a very low friction in the load application causes an important increase in 

resistance. The difference between the numerically determined resistances and the tested resistances 

for the different beams was 12% to 25%. The coefficient of friction in the load application that causes 

this increase is 0,35% to 0,6% according to the figure. This corresponds reasonably with the 

measured coefficient of friction. 

Although differences between numerically determined and tested resistances can be explained, a 

satisfactory validation with good agreement between tests and numerical models was not obtained. 

In an additional research, the load application should be changed such, that the coefficient of 

friction is lower and that the load application also functions at high loads. 

Conclusions from the laboratory tests are: 

 

• Small differences in geometry are as important as the presence of partial endplates for the 

resistance, see Maljaars, 2001 (13); 

• A relatively small friction in the load application improves the resistance to buckling 

significantly, causing a large increase in resistance. Such restraint is normally always present 

in practice. 
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