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Abstract

In this thesis, we propose a novel semi-supervised clean-noisy datasets adaptation al-
gorithm. We transfer the knowledge learned on clean images to unlabeled noise-distorted
ones. This modification on standard deep networks produce stable classification perform-
ance on all distortion levels, which brings benefit to real-world cases. Specifically, we
propose a strategy to jointly learn a shared feature encoder on the network, i.e., i) discrim-
ination capability of network is learned by supervised training on labeled source (clean)
dataset, ii) knowledge transferring is achieved by unsupervised domain adaptation to map
features extracted from both domains (clean and noisy) to a common space. Our proposed
network is optimized by a two-step backpropagation strategy, similar to that of Generative
Adversarial Networks (GANs).

We evaluate our proposed network on two popular datasets, where both show clear im-
provement of classification performance compared to preprocessing noisy images using the
state-of-the-art denoising algorithm BM3D (up to ∼19% in average accuracy over all noise
levels). Interestingly, we also observe that the proposed approach efficiently improves the
feature transferability on very deep architectures, which is challenging for previous do-
main adaptation methods. In the future, we can also explore more challenging domain
adversarial tasks like distorted image segmentation with the proposed algorithm.
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Chapter 1

Introduction

Scene categorization or scene classification is a well defined topic [44], which is predicting
the general semantic categories of a scene, such as Highway or Casino. Such semantic
information of the observed scene provides an accurate description and benefits further
applications, like high-level localization or system control. It is very useful in real-world
applications like self-driving cars [7] and intelligent surveillance [27]. Recent progress in
deep learning ensures the high performance of scene classification and understanding. But
real-world cases are more complicated than that in the lab, i.e., the collected images suffer
from noise distortion and other imperfections. In this chapter, we will briefly review the
process of scene classification. Then we will discuss the problems for real-world cases. At
last, the contributions of our work in this thesis will be introduced.

1.1 Scene Classification

Scene classification includes perceiving scenes and understanding their content, which is
different from object classification. A scene contains background and objects, the concepts
of which have no explicit definition in various tasks. Usually, background means the wide
still surfaces or frameworks, such as mountain, sky, walls etc.. Objects are usually discon-
tinuous and relatively small in a scene.

Saliency of a scene was widely leveraged before CNN for scene classification. Itti et al. [22]
developed a computer model that simulates the human brain’s mechanisms involved in the
deployment of visual attention. When humans are facing scene images, only part of the
scene captures most of the attention, even if it is unconsciously. A good saliency model
can improve the performance of image analysis, as well as save computational resources,
for only part of the data are being processed. Saliency feature extraction is widely utilized
in many areas of computer vision, including segmentation [1] and object recognition [35].

Different from the aforementioned saliency model, spectral residual approach proposed by
Hou et al. [21] analyzes the log-spectrum of an input image, and thus the spectral residual
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CHAPTER 1. INTRODUCTION

of an image is extracted. It is a fast method to construct the saliency map in spatial
domain. Based on this, the sparse coding method was a predominant approach in machine
learning area until the renaissance of deep learning [53, 17, 16, 42].

After the incredible success of deep learning in computer vision domain, better perform-
ances are achieved by various standard networks, and furthermore, large scale scene classi-
fication dataset [57] ensures the probability of utilizing deep learning methods on various
tasks. And through the comparison experiment done by Sunderhauf et al. [45] on state-
of-the-art ConvNets, pre-trained deep learning networks have performance advantages for
semantic place categorization.

1.2 Restrictions in Real-world Case

(a) good illumination (b) poor illumination

Figure 1.1: Scene collected by a Bosch camera (DINION IP 4000 HD indoor box IP camera)
under different illumination conditions, we can see obvious distortion (noise) on images or
the illumination conditions are poor.

Consider a company that specializes in manufacturing security cameras, integrating scene
understanding functionalities can help to improve video quality and save installation cost.
These cameras are used in many types of user scenarios, like Indoor, Outdoor, etc. To
provide better results for specific user scenarios, cameras have several fixed modes with
corresponding hardware settings. For example, surveillance of indoor versus outdoor scenes
has corresponding models since many image pipeline settings and algorithms behave differ-
ently in each case. Parameters of automatic white balance algorithm, sharpness/contrast
improvement and noise reduction would be adjusted based on the detected scene type.
Therefore, supporting engineers need to set specific scene mode manually every time when
installing cameras. To save expensive human cost and to get a robust surveillance quality,
the ability to recognize and interpret the environment is essential.

Due to dynamic changing of weather and illumination, frames collected in real-world are
usually of poor quality compared to standard dataset such as ImageNet [10] and Places [58].

2 Domain adaptation networks for noisy image classification



CHAPTER 1. INTRODUCTION

Figure 1.1 shows the contrast of images collected by a Bosch security camera (DINION
IP 4000 HD indoor box IP camer) under different illumination condition. We can see the
obvious noise under poor illumination. To get a stable performance of scene classification,
we need to make our network invariant of noise. Two strategies are available: i) first remove
noise then operate the normal scene classification algorithm, or ii) modify existing scene
classification architectures to make it capable of ignoring noise as well as categorization.
Learning invariance to noisy data can be achieved by using domain adaptation techniques.
And we will propose our modification with this methodology.

1.3 Contributions

The goal of this thesis is to explore the possibilities to build a noise invariant and compu-
tationally efficient network for scene classification. To be specific, this network is required
to be accurate enough on classification task not only for clean image, but also noisy images
at different levels without adding any complexity. Figure 1.2 is the proposed network.
It consists of a shared encoder and a classifier. Both clean and noisy samples will pass
through shared encoder and they are mapped to a noise-invariant feature space. Classifier
will finally give a predicted label based on the feature extracted from encoder.

Figure 1.2: The proposed architecture for noisy-clean domain adaptation, includes a shared
encoder, and a label classifier. Two-step training is processed: trying to minimize domain
loss (Ldomian) and classification loss (Lclass), respectively. Shared encoder is constituted
of the convolutional layers of pre-trained ResNet-50. It ensures the feature distribution
over both domains are similar, resulting in domain-invariant features.

This thesis makes the following contributions:

• We use domain adaptation methods to solve the scene recognition in presence of
noise. Based on the principle of noise-invariant feature mapping, we get an end-to-
end network robust to noise.
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CHAPTER 1. INTRODUCTION

• We integrate the MMD (Maximum Mean Discreapancy) distance in the network
architecture, and the two-steps training performs better than previous domain ad-
aptation networks. This can also be applied to other low-level semantic tasks in the
future.

• Robustness of classification performance has been proved on two datasets with the
presence of increasing noise. The proposed network substantially improves on the
noisy images classification accuracy of the deep network without adding any com-
plexity. It outperforms conventional denoiser.

4 Domain adaptation networks for noisy image classification



Chapter 2

Related Work

Recent techniques based on deep neural networks (DNN) have achieved state-of-the-art
results in various computer vision tasks [41]. It is of particular interest to deep learning
networks is that deep networks trained on large scale datasets also work well in other tasks
with certain modification.

Despite the impressive performance on semantic tasks from low level to high level, it is con-
firmed that deep networks are susceptible to adversarial samples [18]. Adversarial datasets
are generated by adding worst case noise to original images. Even though these adversarial
noise is imperceptible to human eyes, it can still confuse the network and give wrong pre-
dictions with a high confidence. On the other hand, the noise is carefully designed via
adversarial methods like the optimization algorithm in [49]. Adversarial noise is a very
interesting task, however, it is unlikely to see this kind of deliberately designed noise in
real-world application. Many of the cases are i.i.d. Gaussian like noise distortion. In the
following chapters we will further explore this case and give solution to make the network’s
performance invariant of noise influence.

In this chapter, we will give a brief overview of noise removal methods, especially the one
that would be used in this thesis. Then we will introduce the common practices in deep
networks, including the noise ignoring adversarial training methods and transfer learning.
The latter based on fine tuning is also a key step implemented in this thesis. At last, we
will overview the networks that are used in this thesis.

2.1 Removing noise directly from the image

Image restoration methods is a common way of dealing with noise distorted images. Nu-
merous and diverse denoising approaches exist, which take a noisy image as input and
produce a noise-reduced output.

One approach for denoising is to transfer the image from spatial domain to an alternative
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domain where the noise signal is easier to be separated from the true information[52, 38, 30].
For example, Portilla et al [38] propose the Bayes Least Squares with a Gaussian Scale-
Mixture (BLS-GSM) method, based on the wavelet transformation.

Another strategy is to capture image statistics directly in the image domain. Following
this methodology, a number of models exploiting the (linear) sparse coding technique has
gained much attention [36, 24, 14, 28, 34, 33]. Sparse dictionary learning methods recon-
struct images from a sparse linear combination of an over-complete dictionary. In recent
research, the dictionary is learned from data instead of hand crafted as before. This learn-
ing step improves the performance of sparse coding significantly. One example of these
methods is the KSVD sparse coding algorithm proposed in [14].

Block-matching and 3D filtering (BM3D)[8] is different from the aforementioned wavelet
shrinkage methods and non-local methods (NLM). It combines advantages both. That
is, it not only utilizes inter-patch-correlation information in wavelet shrinkage, but also
the intra-patch correlation used in NLM. BM3D algorithm first finds similarities on the
image, and then transforms the generated image patches to spectral domain. This well
engineered method represent the current state-of-the-art computer vision algorithm for
natural image denoising. We will also use BM3D approach as our baseline to evaluate our
proposed methods for noisy scene classification. Bm3D noise removal requires noise level
as a precondition before operating. It is still very challenging when denoising the images
from its noisy version without any knowledge of the noise. While our goal in this thesis is
to solve this unsupervised task.

2.2 Learning Noise-invariant Features

Despite the fact that these decisioning methods perform well in practice, they all share a
shallow linear structure. However, recent research suggests that deep, non-linear models
have superior performance image restoration. Jain et al [23] proposed a method based on
convolutional neural networks(CNN) to denoise images. Burger et al. [4] even show plain
multi-layer perceptron (MLP) networks trained on large scale of images can compete with
state-of-the-art denoising algorithms.

2.2.1 Restoration via deep networks

The common practice of restoration using deep networks is to extract noise-invariant fea-
tures and then reconstruct the images. Dong et al [13] proposed a deep networks for image
super-resolution and demonstrated a significant performance improvement compared with
other traditional methods. To better extract image features from its noisy version, one
strategy [12] is to design a multi-scale feature extraction layer, using regional correlation
in the image to compensate the lack of information due to noise.

6 Domain adaptation networks for noisy image classification
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On the other hand, Xie et al [51] not only built an encode-decoder architecture for Image
Denoising and Inpainting, but also examined their novel methods in the high-level tasks.
They found that it is more effective and can improve the performance of unsupervised
image classification. Similarly, in [50], they also found that denoising can also recover the
classification accuracy.

2.2.2 High-level tasks

As mentioned above, the denoising processing can help improve the high-level tasks. How-
ever, as [54] claimed, most of those deep learning techniques aim at minimizing mean-
squared-error (MSE) between a denoised image and the ground truth, which results in
losing important structural details due to over-smoothing, although the PSNR based per-
formance measure looks great. Therefore, they introduced a perceptual loss, intending
to keep the critical structural information for diagnostic confidence. By comparing the
performance of denoised results evaluated via peak signal-to-noise ratio (PSNR) and those
really help much for classification task [11], a key fact is revealed. That is, low-level image
processing like image denoising which intended to improve the high-level computer vision
tasks like classification, is very different from producing visually pleasant images valued
via PSNR. In this thesis, our task is to get the noise invariant classification network. Con-
sequently we are not going to output visually satisfying images, but to adapt the extracted
features to the source domain (extracted from clean images).

2.3 Domain Adaptation methods

Transfer learning is a commonly accepted unsupervised learning practice in real-world
applications. The features of a deep neural network learned from source domain data
is transferable [29, 41] to target domain data in a novel scenario. The ability of transfer
learning depends on the correlation between multiple tasks, and the transferable knowledge
is thus based on this correlation. Yosinki et al. [55] found that as the network goes
deeper, features must eventually transition from general to specific, and the transferability
of features drops significantly. If the new model works well on both tasks, we assume that
the generalization of our model is better than the original network. Domain adaptation
which pertains to transfer learning, is the process of adapting source domain for the means
of transferring information to improve the performance of a target learner.

2.3.1 Problem Formulation

The following section lists the notation and definitions of domain adaptation that are also
used in this thesis. The notation and definitions in this section match those from the
survey paper by Pan and Yang [37].

Domain adaptation networks for noisy image classification 7



CHAPTER 2. RELATED WORK

The domain adaptation process tries to alter a source domain in an attempt to bring the
distribution of the source closer to that of the target. A domain D is defined by two parts,
a feature space X, where X = {x1, ..., xn} ∈ X, and a marginal probability distribution
P(X). For a given domain D, a task T is defined by two parts, a label space Y, and a
predictive function f(·), which is learned from the feature vector and label pairs {xi,yi}
where xi ∈ X and yi ∈ Y. From the definitions above, we have a domain D = {X,P(X)}
and a task T = {Y, f(·)}. Therefore, DS is defined as the source domain data where
DS = {(xS1,yS1)..., (xSn,ySn)}, where xSi ∈ XS is the ith data of DS and ySi ∈ YS is the
corresponding class label for xSi. In the same way, DT is the target domain data where
DT = {(xT1,yT1)..., (xTn,yTn)}, xTi ∈ XT is the ith data of DT and yTi ∈ YT is the cor-
responding class label for xTi. Further, the source task is detonated as TS, the target task
as TT , the source predictive function as fS(·), and the target predictive function as fT (·).

Given a source domain DS with a corresponding task TS and a target domain DT with
a corresponding task TT , domain adaptation is the process of improving the target pre-
dictive function fT (·) by using the related information from DS and TS, where DS 6= DT .
Since DS = {XS,P(XS)} and DT = {XT ,P(XT )}, the condition where DS 6= DT means that
XS 6= XT and/or P(XS) 6= P(XT ).

Daume et al. [9] and Chattopadhyay et al. [5] define supervised transfer learning as the
case of having abundant labeled source data and limited labeled target data, and semi-
supervised transfer learning as the case of abundant labeled source data and no labeled
target data. In this thesis, abundant labeled source data and no labeled target data are
available. The proposed method is thus semi-supervised transductive transfer learning.

2.3.2 Domain Adaptation Methods

In recent years, implementing domain adaptation via training deep networks has been
explored. Ganin et al. [15] proposed a Domain-Adversarial Neural Networ (DANN), in
which the mismatch of extracted feature distribution between source and target domains
are reduced using reversing the gradient of the domain classification loss. By maximizing
such “confusion”, domain classifier cannot reliably predict the domain of the encoded
representation and thus domain invariant features can be extracted. Similarly, Long et
al. [29] leveraged the multiple kernel variant of Maximum Mean Discrepancy (MMD)
objective as the similarity metric among feature spaces between source and target domain.
By regularized training of deep networks, knowledge learned on the labeled source samples
can be transferred to those unlabeled target samples prediction. These methods aim at
finding a common feature space that is domain invariant, which is similar to the task in
this thesis, that is to find a noise invariant feature space.

8 Domain adaptation networks for noisy image classification



CHAPTER 2. RELATED WORK

2.4 Relevant Architectures

Deep learning remained controversial until 2012, the proposed AlexNet [26] had a remark-
able performance on ImageNet classification. They also won the well-known ImageNet
Challenge in 2012. The CNN became widely accepted. Inspired by AlexNet, several vari-
ants have been proposed in the following years. The most popular ones are VGGNets [43],
googLeNets [47], and ResNet [20]. The comparison of different architecture in detail is
listed in Table 2.1. In the following we will explain why we select residual networks in the
proposed architecture.

2.4.1 Residual Networks

AlexNet VGG GoogLeNet ResNet
First Released Year 2012 2014 2014 2015

Top-5 Error 16.4% 7.3% 6.7% 3.57%
Data Augmentation + + + +

Number of Conv-layer 5 16 21 151
Size of Conv-kernel 11,5,3 3 7,1,3,5 7,1,3,5
Number of FC-layer 3 3 1 1

Size of FC-layer
4096
4096
1000

4096
4096
1000

1000 1000

Batch Normalization - - - +

Table 2.1: Comparison of AlexNet, VGG, GoogLeNet, ResNet on ImageNet competition.

The latest residual networks proposed by He et al. [20] got a large success winning Im-
ageNet and COCO 2015 competition. It also has achieved several state-of-the-art bench-
marks, including object classification on ImageNet and CIFAR, object detection and seg-
mentation on PASCAL VOC and MS COCO. Compared to inception networks [46], Res-
Nets have better generalization, since its features can be utilized in transfer learning with
higher efficiency [56]. In addition, ResNets can be scaled up to thousands of layers and
still improve the performance. Residual block with identity mapping can be represented
by the following formula:

Xl+1 = Xl + F(Xl,Wl) (2.1)

where Xl and Xl+1 are input and output, respectively, of the l-th unit in the network, F
is a residual function and Wl are parameters of the block. Residual function refers to two
or three connected convolutional layers, and the parameters are the corresponding kernel
weights. Residual network consists of sequentially stacked residual blocks. The block is
shown in Fig 2.1. The order of the batch normalization, activation and convolution layers

Domain adaptation networks for noisy image classification 9
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Figure 2.1: Residual blocks used in ResNet, left: basic, right: bottleneck. The simplified
ResNets tested in this thesis utilized the basic blocks. In the proposed architecture, the
encoder based on ResNet-50 leveraged the latter.

in a residual block is BN-ReLU-conv. When training CIFAR-10 dataset from scratch, we
used the simplified ResNet, in which the first layer is 3 × 3 convolutions. Then we use
a stack of 6n layers with 3 × 3 convolutions on the feature maps of sizes {32, 16, 8} re-
spectively, with 2n layers for each feature map size. The numbers of filters are {16, 32, 64}
respectively. We also build our proposed architecture using fine-tuned ResNet-50 as shared
feature extractor.

We select ResNet as the base of our proposed domain adaptation network because of its
outstanding performance as well as its scaling capabilities for different datasets. And
ResNet with various depth helps us to understand how these domain-invariant features are
influenced as the network goes deeper.

10 Domain adaptation networks for noisy image classification
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Method

We are given a source domain DS = {(xS1,yS1)..., (xSn,ySn)}, where xSi ∈ XS is the
ith data of DS and ySi ∈ YS is the corresponding class label for xSi. Target domain is
DT = {xT1..., xTm}, where xTi ∈ XT is the ith data of DT , but corresponding labels YT is
unknown. Test samples are located in the target domain. We intend to achieve a deep
adaptation network (DAN) to transfer classification capability learned on source data to
target domain. A feature extractor G(·) which is capable to overcome dataset bias between
two domains is the goal.

The methodology to solve the problem is based on the assumption of shared-encoder:
there exists a shared space for cross-domain feature representation and can

be extracted by a shared encoder, then classifiers embedded with this encoder
can work well both on source and target domain.

Our task is to extract noise invariant features, that is, we want to make the feature dis-
tribution S(hs) = {Gf(xs)} and T(ht) = {Gf(xT )} as similar as possible. Measuring the
similarity between S(hs) and T(ht) is non-trivial, for the extracted feature (hs and ht) are
high dimensional and constantly changing during the training process. In this chapter, we
discuss about the two strategies that are based on different similarity representations for
feature spaces, for the semi-supervised task on non-labeled noisy images.

3.1 Baseline domain adaptation model for noisy im-

ages

The deep network architecture utilized is shown in Figure 3.1, where a shared encoder
maps input from source and target domains to feature space, Hs and Ht respectively, with
parameter θg. hs ∈ Hs and ht ∈ Ht represents every single features encoded from each
input sample. The classifier is a normal multi-layer perception network with parameter
θy and only takes hs with corresponding category label ys. The adaptor has hs, ht as
input which are relabeled as {0, 1} respectively, to mark which domain they are from. The

Domain adaptation networks for noisy image classification 11
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adaptor works the same as the domain classifier except for an additional Gradient Reversal
Layer (GRL). GRL reverses the domain loss gradient from the subsequent layer and passes
it to the preceding layer, aiming at confusing the shared encoder of the origin each feature
belongs to.

Figure 3.1: DANN architecture for noisy-clean domain adaptation,includes a feature ex-
tractor (the shared encoder), label classifier(blue), and domain adaptor (green). The do-
main adaptor is connected with the encoder via gradient reversal layer, which multiplies
the gradient by a certain negative constant during back propagation process. Training
process consists in minimizing the sum of label prediction loss and domain classification
loss (Lclass + Ldomain). Gradient reversal ensures that the feature distribution over both
domains are similar, resulting in domain-invariant features.

3.1.1 Model

Based on our idea, we are seeking parameters θ̂g, θ̂y, θ̂d by optimizing both of the func-
tionals below:

(θ̂g, θ̂y) = arg min
θg,θy

Ly(θg, θy, θ̂d) (3.1)

θ̂d = arg max
θd

Ld(θ̂g, θ̂y, θd) (3.2)

where Ly(·), Ld(·) represent the loss functionals for the classifier and adaptor respectively.

Therefore, take the whole network with all parameters (θg, θd, θy) into account, we are
seeking a saddle point. To make the gradient decent based training process feasible we
define a new training loss:

L = Lclassifier − λLdomain (3.3)

where
Lclassifier =

∑
i=1,··· ,N
di=0

Liy(θg, θy) (3.4)

12 Domain adaptation networks for noisy image classification
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Ldomain =
∑

i=1,··· ,N

Lid(θg, θd) (3.5)

Where N is batch size. The hyper-parameter λ controls the trade-off between two tasks
(label classification and feature domain adaption) that jointly work when encoding the
features during training.

3.1.2 Optimization

Different from the common practice in Generative Adversarial Networks (GANs) [19],
whose parameters in one of the trainings (on generative or discriminative part) must be
fixed when training another one, we do the update for all parameters simultaneously at
each iteration.

In order to make the network update in the forward propagation, a gradient reversal
layer(GRL) is defined. During the forward propagation, GRL acts as an identity trans-
form, which is Qλ(h) = h, while during the back-propagation update, GRL takes the
gradient from the subsequent level, multiplies it by −λ and passes it to the preceding
layer, that is dQλ(h)

dh
= −λI. where I is identity operator, λ is the hyper-parameter for the

trade-off between tasks. The corresponding loss function is therefore represented as:

L(θg, θy, θd) =
∑

i=1,··· ,N
di=0

Ly(Gy(Gg(xi; θg); θy),yi)+

∑
i=1,··· ,N

Ld(Gd(Qλ(Gg(xi; θg)); θd),di) (3.6)

where di means the domain label; Gg means the feature generation processing of the
shared encoder; and Gy and Gd are the category and domain label mapping functionals
respectively. Training consists in minimizing the loss function using Stochastic Gradient
Descent (SGD) update [2]. After the learning process, connected networks of shared-
encoder and classifier can be used to categorize the test samples in the target domain.

3.1.3 Domain Adaptability in deeper networks

Inspired by the DANN network proposed by Ganin and Lempitsky [15], we build a relat-
ively shallow network similar to theirs. To further test the domain adaptability in deeper
networks, we compare the results on deeper networks with the same domain adaptation
approach.

3.2 Domain adaptation with MMD loss

Like previous efforts, the proposed network is trained to find similar feature spaces of images
from source and target domains. The resulting novel domain adaptation network model is
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depicted in Figure 1.2. The shared encoder is a fine-tuned deep network with parameter
θg without fully-connected (FC) layers whose , and the classifier is the remaining FC
layers with parameter θy. No explicit domain adaptors are utilized. Task learning is based
on the same idea of generating noise-invariant and discriminant features simultaneously
by minimizing domain loss Ldomain and the classifier loss Lclassifier. And Lclassifier is
defined as follows:

Lclassifier(θg, θy) =
∑

i=1,··· ,N
di=0

Ly(Gy(Gg(xi; θg); θy),yi) (3.7)

We will introduce a different domain loss based on Mean Square Discrepancy (MMD),
LMMDdomain, which will be explained in next subsection.

The training consists in minimizing the loss functionn using SGD update. In contrast with
all the shared-space component analysis available in the literature [3, 15, 29], we explicitly
model the domain adaptation and classification tasks in separate steps, instead of jointing
the two losses together to achieve both noise-invariant and discriminant network. Two-
step training is utilized on the fine-tuned encoder. In each iteration, we train the shared
encoder by backpropagating the domain loss gradient first, then we train the whole network
by backpropagating the classifier loss gradient.

3.2.1 Optimization

Maximum Mean Discrepancy (MMD) loss [40] is another similarity metric to measure
how close the feature space Hs and Ht are. It is computed with respect to a particular
representation, φ(·). In our case, we use a biased statistic, the linear combination of
multiple kernel functions in the form of κ(·, ·) with various parameters, for the squared
population MMD between extracted source and target features within the shared encoders:

LMMDdomain =
1

N2
s

Ns∑
i,j=0

κ(hsi,hsj) −
2

NsNt

Ns,Nt∑
i,j=0

κ(hsi,htj) +
1

N2
t

Nt∑
i,j=0

κ(hti,htj) (3.8)

where hsi and hti are the ith features of source samples and target samples respectively
generated from the shared encoder, Ns and Nt are the source and target batch size.
Classification loss Lclassifier is cross entropy loss calculated on the predicted result of
source samples. κ(·, ·) is a PSD kernel function. κ(xi, xj) =

∑
n exp{−

1
2σn
‖xi − xj‖2},

where σn is the standard deviation for our nth RBF kernel. Therefore the domain loss is

LMMDdomain(θg) =
1

N2
s

Ns∑
i,j=0

κ(Gg(xsi; θg),Gg(xsj; θg))−

2

NsNt

Ns,Nt∑
i,j=0

κ(Gg(xsi; θg),Gg(xtj; θg)) +
1

N2
t

Nt∑
i,j=0

κ(Gg(xti; θg),Gg(xtj; θg)) (3.9)
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CHAPTER 3. METHOD

In summary, the training process of our proposed architecture is shown as follows, source
dataset DS = {(xS1,yS1)..., (xSn,ySn)}; target dataset DT = {xT1..., xTm} without label
information; and the classifier learning rate αy, domain adapted rate αd:

Algorithm 1 The training process of our proposed architecture

Input: DS = {(xS1,yS1)..., (xSn,ySn)}, DT = {xT1..., xTm}, αd, αy
1: Initialize parameters θg, θy with fine-tuned weights
2: while not stop do
3: for each source-target mixed batch of size md do

4:
Update θg by backpropageting gradient of Ldomain :

θg ← θg − αd∇θgLMMDdomain(θg)
5: end for
6: for each source batch of size my do

7:
Update θ = θg ∪ θy by backpropageting gradient of Lclassifier :

θ← θ− αy∇θLclassifier(θ)
8: end for
9: end while

Output: Learnt prameters: θ̂ = θ̂g ∪ θ̂y

Training consists in alternately minimizing Ldomain and Lclassifer using SGD update.
After the learning, connected networks of shared-encoder and classifier can be used to
categorize the test samples in target domain.
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Chapter 4

Experiments and Results

In this chapter, we will show all the steps and settings of the experiments we have conduc-
ted. The results are also listed.

4.1 Datasets Preparation

We use two popular image classification datasets in the experiments, i.e., CIFAR-10 [25] and
MIT Indoor Scene Recognition Dataset [39]. Not only the original datasets are used, but
also the noisy version achieved by additive white Gaussian noise (AWGN) with different
levels. To further evaluate the performance of our domain adaption networks, we also
generate the correspondingly denoised version at each noise level using BM3D algorithm [8].
Noise level must be set as a pre-condition before implementing BM3D.

4.1.1 CIFAR-10 Dataset

The CIFAR-10 dataset consists of 60000 32× 32 RGB images in 10 classes, with 6000 im-
ages per class. There are 50000 training images and 10000 test (validation) images. Test
batch contains exactly 1000 randomly-selected images from each class. Training batches
contain the remaining samples in random order.

The train-from-scratch accuracy for CIFAR-10 is 92.5% using ResNet-32 according tor [20].
For the input size requirement of our proposed network based on ResNet-50, we resize each
image to size 224× 224 by bilinear interpolation.

4.1.2 Indoor Scene Recognition Dataset

The database contains 67 Indoor categories and a total of 15620 images. The number of
images varies across categories, but there are at least 100 images per category. We followed
the official splitting to organize the training/validation set as [39]. All images are resized
into 224 × 224. And for training dataset, there are around 80 images in each category.
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Figure 4.1: Image samples of Indoor Scene Recognition Dataset

The test dataset has about 20 images in each class. The accuracy of Indoor-67 fine-tuning
ResNet-50 pre-trained on ImageNet is 71.1% [32]. Samples of Indoor-67 is shown in Fig 4.1.
We can see that these scene images are complicated with various fine objects.

Figure 4.2: Noisy ICIFAR-10 image samples, the images from 1st row to 5th row represent
the images under the distortion of noise level 16, 25, 50, 90, 130 respectively.
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4.1.3 Noisy Datasets

We add additive white Gaussian noise (AWGN) over 5 levels of distortion severity to
both datasets. AWGN adds high frequency information to images and usually requires a
smoothening filter to eliminate noise. We use a noise standard deviation σn ∈ {16, 25, 50, 90, 130}
to represent the distortion level. Comparison of the distorted images are shown in Fig 4.2.
We can get a direct visual feeling that as the noise level increases, it becomes harder to
recognize the details.

4.1.4 Denoised dataset via CBM3D

We also iapplied the denoised method CBM3D [8] to the noisy images. This algorithm
get noisy image and the noise level as input and output the denoised version ofthe image.
It can be summarized as four steps: a) find the image patches similar to a given image
patch and group them in a 3D block b) operate a 3D linear transform of the 3D block.
c) shrinkage of the transform spectrum coefficients. d) inverse 3D transformation. We can

Figure 4.3: The denoised image samples using CBM3D methods, from 1st row to 5th row
represent the reconstructed images from the distortion of noise level 16, 25, 50, 90, 130
respectively.
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see from Fig 4.3 that this algorithm reconstructs the distorted images very well. However,
if we look into the results very carefully, we can see that when the noise level is very high,
the denoised images suffer from blur and lose details. Take the last row for instance, the
fine textures disappeared. We can hardly recognize the dog without the previous reference.
This problem would be serious in scene classification task, where many of the objects in a
scene are fine yet discriminant.

4.1.5 Data Split while Training

During training, images batches both from source and target domain are sent into the
networks in fixed batch size. Half of the batch are the clean images with a random index
set. The remaining half are consisted by those from noisy dataset. To mimic the real world
case where noise level is unknown, we randomly selected noisy images among with random
noise level and image index.

4.2 Experiments

We conducted three experiments on the investigation of Domain Adaption (DA) networks.
First, we validated the domain adaptation can work in our case with a clean-noisy dataset
adaptation. Second, we further explore this approach by comparing its performance on
networks with different depth. At last, based on validation and restriction found in previous
experiments, we design a DA network with high depth. Domain adversarial similarity loss
achieved via Gradient Reversal Layer (GRL) is utilized in first two experiments, while
Maximum Mean Discrepancy (MMD) loss is used in the last experiment.

4.2.1 Experiment 1: Validation with Shallow Network

We build a shallow domain adaptation network similar to Ganin and Lempitsky [15],
intending to validate our hypothesis that domain adaptation networks can extract noise-
invariant features and improve categorization performance on noisy images.

Figure 4.4: The DANN architecture for noisy-clean domain adaptation.
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Training

A shallow domain adaptation network is composed of a 5-layer convolutional layers. De-
tails of each layer are shown in Figure 4.4. As domain adaptor we add three fully connected
layers (x → 256 → 64 → 2) after the reversal layer. Classification loss Ly and domain
loss Ld are both set as cross entropy loss. The source dataset is the original clean image
samples and the target dataset is the noisy version at different levels.

Model is trained on 128-sized batches. All input samples are preprocessed by mean sub-
traction. Half of the batch is constituted by original CIFAR-10 dataset (with corresponding
labels known) while the remaining are noisy CIFAR-10 (with random changed order and
unknown labels). Only the feature maps of source dataset output from the fifth convolu-
tional layer are sent to the classifier, while both feature maps (labeled as 0,1, respectively)
are sent to the adaptor. Standard Generative Adversarial Networks (GANs) have multiple
iterative steps in each main iteration, and follows the discrimination-generation order. In-
stead, we let our network focus more on learning discriminant features for classification
task at early stage by gradually increasing the share domain loss out of the total loss. This
is achieved by changing the adaptation factor λ from 0 to 1, as follows:

λ =
2

1 − exp(−γ · 10)
− 1

Where γ is set to 10 in all and the number of iterations is 80,000 (around 205 epochs).
In general, we observe a good correspondence between adaptation and errors. That is,
adaptation is well learned when the source domain classification error is low as well as
when the domain classifier error is around 50% (random prediction). The hyper parameter
tuning is also non-trivial for domain adaptation network. If λ is set large at early stage,
the learning of domain classifier will be dominant. While a very small λ could consequently
suppress the learning of domain adaptation.

Results

The results are shown in Fig 4.5, the blue curve is the performance of this shallow network
train from scratch on CIFAR-10 without domain adaptation. We can see that the classific-
ation accuracy drops rapidly for an increasing noise level. At noise level 130, it can almost
predict nothing, with performance close to random prediction (10%). The red curve is
the performance of the test dataset denoised by BM3D methods. Classification accuracy
improves at all noise levels, which means that the denoising approach can to some extent
reduce the noise influence. After implementing domain adaptation, the performance shown
in black curve, has further improved compared to the BM3D predenoise method. Yet these
results are not obvious when noise level is low, where denoising approach has nearly an
equivalent performance.
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Figure 4.5: The Classification performance of Shallow DANN Network.

In a nutshell, domain adaptation on shallow CNN leads to an obvious improvement in
classification performance in general when compared to preprocessing the noisy data using
traditional denosing algorithms. However, there advantage is less clear at low noise level.

4.2.2 Experiment 2: Further explore DANN on deep networks

To compare the performance on various depth selection, we conducted DANN approach
on ResNet-18 and ResNet-34. The number 18 or 34 refers to the actual number of layers
in one network. In ResNet-18, each residual block consists of 2 convolutional layers, while
ResNet-34 has 4 convolutional layers in every block.

Training

We use fully-connected layers (x→ 128→ 10) after the feature extractor. For domain clas-
sifier we add simpler fully-connect layers (x→ 64→ 2). The number of filters of the first
convolutional layer is 16. And for the residual blocks, number of filters are {16, 16, 32, 64}.
Filter size is fixed 3× 3.

The model is trained on 128-sized batches. Datasets are preprocessed by standardization.
Data augmentation (random crop and flip) is also utilized during training. For test samples,
only data standardization are processed. Half of the batch is constituted of the original
CIFAR-10 dataset (with corresponding labels) while the remaining of the batch are noisy
CIFAR-10 (randomly changed order and without labels). The learning rate for the label
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classifier is 0.1 during the first 40k iterations, 0.01 between 40k to 60k iterations, and 0.001
after 60k iterations. Similarly, hyper parameter λ is set as λ = 0.4

1−exp(−γ·10) − 1 , where γ

is set to 10 in all and the number of iterations is 80,000 (around 205 epochs).

Results

(a) Performance of ResNet-18 DANN (b) Performance of ResNet-34 DANN

Figure 4.6: Classification accuracy of ResNet DANN. The influence of noise is similar to
previous case. Prediction accuracy drops accordingly with noise level. BM3D methods can
improve the performance. While as the network goes deeper, advantage of DANN vanishes.

Results are shown in Fig 4.6. Classification accuracy on deeper ResNet drops rapidly
according to noise distortion level. When noise level is above 50, the classification network is
not better than random guess. Our baseline, the denoised test dataset by BM3D methods,
also contribute to performance improvements as expected at all noise levels. However,
the DANN networks has vanishing advantages compared to BM3D, especially at low noise
levels. In conclusion, as the network goes deeper, less strength left for DANN networks.

4.2.3 Experiment 3: Design deep DA network with MMD loss

In this section, we will train another domain adaptation architecture using Maximum Mean
Discrepancy (MMD) similarity loss.

Fine-tuning

We started with the pre-trained ResNet-50 on ImageNet. The fully-connected layers are
removed after trained weights have been loaded to the network. Then we add our task
specific fully-connected layers on the top. We fine-tune this model on CIFAR-10 and
Indoor-67, respectively. Similar to the procedure followed in [20], we resize the input
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images into size 224 × 224. All input samples are standardized in the same as they have
done for original network. Due to the limit of memory size, we set the batch size 24 and all
the input samples are clean datasets with known labels to the network. Initial learning rate
is set as 0.001, which is the minimum value of the original network. Stochastic Gradient
Descent (SGD) optimizer is used with momentum. Learning rate is dropped by a factor
of 10 every time the validation set accuracy is seen to plateau, until the training is finally
terminated after 100 epochs. Data augmentation processing used during training is the
same as that in [20]. We generated two variants of fine-tuned models for our two datasets,
a) the fine-tuned model for CIFAR-10 with accuracy 94.5%, and b) the fine-tuned model
for Indoor-67 dataset with accuracy 71.1%, same as the result in [32].

Training

The fine-tuned ResNet-50 without fully-connect layers is set as the shared encoder for
samples from both domains. Due to the limit of memory size, we set batch size as 48.
Datasets are preprocessed by standardization. Data augmentation (randomly cropped and
flipped) is also utilized for training images. For test samples, only standardization are
processed. Half of the input in each mini-batch are randomly chosen from source dataset
and the remaining half is the noisy training samples distorted with a random distortion
level (randomly selected from {16, 25, 50, 90, 130}). We choose the Adam optimizer
[6], with learning rate 1e − 4 for CIFAR-10 and 1e − 5 for Indoor-67. Because for both
CIFAR-10 and Indoor-67, the training samples are not enough compared with ImageNet,
early stopping is utilized while training to avoid the over-fitting problem. If the average
validation accuracy does not increase more than 0.5% within 4 epochs, the training will
stop. Eventually the number of training epochs for CIFAR-10 is 20 and for Indoor-67 is 16.

The training process for each iteration is described below:

1) activate the encoder for both source dataset and target dataset, calculate the MMD
similarity loss Ldomain and update the shared encoder.

2) deactivate the target parts, calculate the classification loss Lclass and update the
whole network.

Results

Fig 4.7 shows the results of evaluating the MMD approaches on CIFAR-10 and Indoor-67.
The performance of a pre-trained network on distorted images is shown by the blue curves,
the red curve show the prediction accuracy on BM3D denoised test samples. The noise
influence is similar to previous networks. The preprocessing denoising approach improves
the average classification rate of the network from 48.93% to 55.75% on CIFAR-10, and
from 24.81% to 49.31% on Indoor-67. The proposed model further improves it to 78.22%
on CIFAR-10 and 64.31% on Indoor-67. It has an obvious advantage over preprocessing
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(a) Performance on CIFAR-10. (b) Performance on Indoor-67.

Figure 4.7: Classification accuracy on the proposed MMDA networks. The classification
robustness is greatly increased compared to previous domain adaptation networks. The
performance is acceptable even for high noise levels, i.e., both networks has more than 40%
accuracy on noise level 130, which is rare in real practice. The classification error decrease
around 2% on clean dataset because some discriminant features are domain-sensitive. Or in
other words, trying to extract domain-invariant features would make these features ignored
from learning.

using BM3D.

Moreover, the denoising processing with BM3D takes more than one week using a MacBook
Pro with 8 GB 1867 MHz DDR3, and the noise-level of corresponding distorted images
must be set as input before restoration. Thus, in real-world applications a good estimate
of noise level is necessary. While the MMD similarity based domain adaptation network on
pre-trained networks only takes around 2 hours and can achieve quite well performance on
12.0 GB TITAN X (Pascal) GPU without any knowledge about noise level. The domain-
adapted network has a much more robust performance at various noise levels. This is our
expectation for real engineering. However, one thing must be noticed that classification
accuracy on clean images decreases about 2% during training in both cases. Some domain-
sensitive features are ignored during domain-invariant features extracting.
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Discussion

(a) σ = 0 no domain
adaptation

(b) σ = 25 no domain
adaptation

(c) σ = 0 after MMD
domain adaptation

(d) σ = 25 after MMD
domain adaptation

Figure 5.1: Visualization of extracted feature distribution using t-SNE [31] of clean CIFAR-
10 and noisy CIFAR-10 (with noise level 25) (a)The feature distribution of CIFAR-10
given by pre-trained ResNet-50 on ImageNet;(b)The feature distribution of noisy(σ =
25) CIFAR-10 given by pre-trained ResNet-50 on ImageNet;(c)The feature distribution of
CIFAR-10 after MMD loss based domain adapted ResNet-50;(d)The feature distribution
of noisy(σ = 25) CIFAR-10 after MMD loss based domain adapted ResNet-50

t-SNE [31] is a visualization technique that visualizes high-dimensional data by giving
each datapoint a location in a two or three-dimensional map. It is better than existing
techniques at creating a single map that reveals structure at many different scales. We
respectively visualize in Figure 5.1(a)-(d) the t-SNE embeddings of the features extracted
by shared encoder of our proposed architecture. We can make the following observations:
1) The feature distributions extracted on original ResNet-50 shown in Figure 5.1(a)-(b)
show that the target feature are not well discriminated by the source encoder. Hence
different feature distribution will be generated even when the source and target dataset
are identically distributed. 2) The encodings distribution shown in Figure 5.1(c)-(d) is
trained by the proposed MMD loss basedb approach. It shows that the target features
are discriminated better(larger class-to-class distances), which suggests that the proposed
domain adaptation network is reasonable in noisy image classification task.
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From last chapter, we see that as the network goes deeper, feature adaptability of DANN
drops significantly. It is a commonly accepted truth that features extracted from deep
neural networks have a transition from general to specific along the network. As confirmed
in the work by Yosinskiet al.[55], the feature transferability drops significantly in higher
layers. However, the features in deeper layers are more discriminant. Task-specific features
are hard to be transferred to new tasks on higher layers of a DANN network. Instead of
training two tasks (domain adaptation, classification) simultaneously with single update
at each iteration, we use a two-step strategy, each step for one task. Result comparison
between DANN network and MMD loss based domain adaptation shows the advantage of
the proposed approach in the clean-noisy adaptation task. Moreover, with a pre-trained
network, it is very time efficient to do domain adaptation with the two steps training. In
our experiment, training on both datasets takes no more than 20 epochs. Therefore, our
proposed approach can efficiently be extended to deeper networks, solving more complic-
ated tasks.

However, the classification performance on clean images slightly decrease after domain
adaptation. This is some discriminant features are highly domain-sensitive and will be
ignored during domain-invariant features extracting. Another interesting phenomenon is
that our proposed algorithm works particularly well on very deep networks yet not good
on simple networks. A stable transferability is highly determined by network learning
capability intrinsically. We also conduct our adaptation strategy on Inception-v3 [48],
Inception-v4 [46], both show improved classification performance at all distorted levels.
While during the domain adaptation training on simple networks (like simplified ResNet-
18 and ResNet-34 for CIFAR-10), the performance on clean images drops rapidly when the
categorization accuracy on noisy samples increase, which is not acceptable.
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Chapter 6

Conclusion

This thesis compared the performances of DANN networks on the clean-noisy dataset ad-
aptation and proposed a novel approach to semi-supervised domain adaptation in deep
networks. Through this work, a robust network is achieved without adding extra paramet-
ers. The two-step MMD similarity based domain adaptation can improve the prediction
accuracy of noisy images even under serious distortion. It has a good robustness com-
pared with previous domain adaptation approaches, especially when implemented in very
deep networks. It reflects the generalization capability of convolutional neural networks.
This proposed network greatly overcomes the difficulty of deeper feature transfer between
clean and distorted datasets. In the future, more semantic tasks on distorted images can
be explored, especially the low level tasks like image segmentation and colorization. Fur-
thermore, more types of distortion can be taken into account. A good model to mimic
realistic distortion will be more task specific, especially for the scene images collected by
surveillance cameras with dynamic working environments.
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