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Abstract—To protect sensitive information on smartphones,
state-of-the-art (SoA) studies exploit the built-in camera to
capture PPG signals from fingertips as a hard-to-forge biometric.
However, those studies do not provide a comprehensive analysis
to optimize the camera parameters and finger pressure, leading
to distorted and unstable PPG signals that degrade the authen-
tication performance. To overcome these limitations, we propose
the CamPressID framework. First, we analyze various camera
parameters and optimize their configuration to obtain PPG
signals with a high signal-to-noise ratio. Second, we investigate
different finger pressures to identify the best pressure for every
subject, in order to avoid signal distortion. To evaluate the
performance of CamPressID, we collect a diverse dataset with
58 subjects. Our evaluation results show that CamPressID can
improve the average balanced accuracy (BAC) by 10%. Moreover,
the BAC reaches 90%, which is similar to the accuracy reported
in the SoA using a dedicated PPG sensor for authentication.

I. INTRODUCTION

To protect user privacy, current smartphone authentica-

tion systems leverage external biometric features such as

fingerprints and facial structures. These external biometrics,

however, can be forged. For example, fingerprints can be

recreated in latex from touched objects [1]; and pictures from

the Internet can be used to fool face recognition systems [2].

To address the fundamental drawback of external features,

researchers are investigating internal biometric features con-

cealed under our skin, which are harder to forge. An internal

biometric feature that is attracting interest is the cardiac

pattern because they are uniquely defined by the heart, lung

and vein structures of an individual. Cardiac signals can be

captured with a photoplethysmogram (PPG) sensor, which

measures the changes in the blood volume via the absorption

of light. PPG sensors rely on two key factors: 1) the use of

LEDs and photodiodes in the near infrared spectrum, and

2) a steady pressure guaranteed by a finger clip, as shown

in Figure 1(a). These two properties allow capturing stable

cardiac signals, as illustrated in Figure 1(b).

The flashlight and camera on smartphones can also be used

to capture PPG signals, as shown in Figure 1(c). However,

the signal quality degrades significantly, as depicted in Fig-

ure 1(d), because the required spectrum and finger clip are

no longer present. Some SoA studies using PPG signals from

the camera report unsatisfying performances, with an equal

error rate of around 20% [3]). Although some studies have

optimized part of the camera parameters, such as in [4], they

still need to collect PPG signals in a controlled manner to

Figure 1: Cardiac signal obtained with a PPG sensor and a smartphone.

achieve a good performance. None of these studies have con-

ducted a comprehensive analysis over the camera parameter

configuration or the pressure control on the camera.

In this work, we analyze the effect of PPG signals captured

with cameras for authentication. Our contributions are:

Contribution 1: Camera Configuration [Section III]. Cam-

eras are designed for taking pictures and recording videos.

Using cameras to capture PPG signals leads to poor signal

quality as shown in Figure 1(d). We investigate and configure

all camera parameters to render a PPG signal that is as similar

as possible to the one captured with a dedicated sensor.

Contribution 2: Pressure Control [Section IV]. Pressure

plays an important role in signal distortion. Without a finger

clip, SoA systems using cameras have no control on pressure.

We investigate the optimal pressure and provide feedback to

the user to maintain such pressure. By doing so, we achieve

stable PPG signals for every subject without any add-ons.

Contribution 3: Thorough Evaluation [Sections VI & VII].

We collect a dataset with 58 subjects. This dataset is bigger and

more balanced than other datasets used in SoA [4], [5]. Our

results show that the average balanced accuracy is above 90%,

matching the performance of SoA studies using PPG sensors,

which is 10% superior to SoA systems using cameras.

II. SYSTEM OVERVIEW

To improve the quality of the signals captured from cameras,

we propose two methods that can be easily added to existing

authentication solutions: camera configuration and pressure

control. First, we analyze the effect of all camera parameters

to configure the camera for PPG signal collection (as opposed

to optimizing it for pictures and videos). Second, the system

asks the subject to use different pressure levels. Based on

these levels, the system identifies the optimal pressure and

provides feedback to the subject to maintain such level. After
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Table I: Camera configurations in the SoA [3]–[5]. The table shows the default camera values for light and dark skin, and our optimized configuration. The
parameters in red means it is studied and controlled. (DC: default configuration; γ: gamma correction; DPS: dynamic pixel selection; −: hardware-limited;
×: not evaluated; �: evaluated but the value is not reported.)

Configuration Smartphone Frame rate
Frame

resolution
Flashlight Aperture ISO

Shutter
speed

White
balance

γ ROI

[3] Iphone X 240 fps 1280*720 × − � � � × ×

[5] Iphone 7 60 fps × × − 20 200 × × selected pixels

[4] Iphone 7 60 fps 1280*720 � − � × × × DPS

DC for light skin Moto G7 plus 30 fps 320*240 − − 100 1/729 4474 K × All pixels

DC for dark skin Moto G7 plus 30 fps 320*240 − − 100 1/611 4858 K × All pixels

Our configuration Moto G7 plus 30 fps 320*240 − − 100 1/400 6600 K 1 Central 1/4
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Table II: PPG amplitude (in pixel intensity)
under different camera settings.

Shutter Speed

ISO 1/200 1/400 1/800 1/2000

100 10.032 11.1327 5.594 2.3122

200 4.7356 6.0337 10.659 3.2671

400 2.0377 4.2761 9.5248 8.1455

800 0.0102 2.7351 7.3982 7.4224

these steps, our system processes the PPG signals and uses

the authentication methods reported in the SoA.

The accuracy of authentication systems depends on two

factors: i) the shape of PPG periods from the same subject

should be similar (short intra-class distance), and ii) the

morphology of different subjects should be distinct (long inter-

class distance). In this work, we refer to the shape of PPG

periods as morphology. If the morphology of each subject

diverges, morphologies from different subject will overlap with

others, which will lead to a huge decline in the authentication

performance. Therefore, a stable morphology for each subject

is essential to PPG authentication.

To check the morphology convergence, we need a high

signal-to-noise ratio (SNR) to detect the PPG signal. Conse-

quently, we introduce two indicators to assess the improvement

of our two methods: PPG amplitude and cross-track-error

(CTE). PPG amplitude can map to SNR. Within the duration of

a PPG signal, the PPG amplitude captures the average peak-to-

peak values of all periods. For CTE, it calculates the shortest

Euclidean distance from points on one signal (points on a

period in a given subject) to a reference signal (the average

morphology in a given subject like the red lines in Figure 5).

That can be used to measure the similarity between periods

in one subject (morphology convergence). Note that CTE is a

better metric to measure similarity than the variance, because

the variance can penalize heavily small misalignments between

periods, as depicted in Figure 2.

III. OPTIMIZING THE CAMERA CONFIGURATION

A comprehensive study of camera configuration for biomet-

rics application is still missing. In Table I, we summarize the

camera configurations in the SoA. Without a thorough study,

it is hard to achieve optimal signal quality for authentication.

A. Camera Parameters Optimization

Two camera parameters have been analyzed in the SoA:

the frame rate and resolution. The frame rate represents the

sampling frequency of a PPG signal. According to [7], a frame

rate between [30 Hz, 60 Hz] leads to comparable PPG signals

as using frame rates above 60 Hz. To reduce the computation

load in our system, we use a frame rate of 30 frames per

second (fps). Regarding the resolution, selecting the lowest

value allows real-time processing without affecting the signal

quality much (given the millions of pixels present).

There are, however, two camera configurations that have not

been analyzed much but affect the quality of cardiac signals:

light exposure and image processing.

1) Light exposure: Four important parameters are related to

light exposure: flashlight intensity, aperture, ISO, and shutter

speed. They affect the pixel intensity in cameras. Whereas,

in most smartphones, flashlight intensity and aperture (impact

the amount of incoming light) are fixed.

We can only configure ISO and shutter speed. ISO controls

the pixel’s sensitivity to light. Shutter speed controls the

shutter open interval, during which cameras integrate the light

energy in each pixel to calculate its value. We should assess all

ISO and shutter speed combinations and select the best one for

our system. Taking the smartphone Moto G7 Plus for example,

there are four values for both ISO (100, 200, 400, 800) and

shutter speed ( 1

200
, 1

400
, 1

800
, 1

2000
). For each combination, we

use 10 subjects to collect 120 seconds of PPG signals. To

determine the best combination, we adopt PPG amplitude

(SNR) as the metric. The experiment results are shown in

Table II. In high light exposure (ISO: 800, shutter speed:
1

200
), PPG signals saturate most of the time, which renders

an almost zero PPG amplitude (0.0102). In low light exposure

(ISO: 100, shutter speed: 1

2000
), pixels are insensitive to light

change, which renders a low PPG amplitude (2.3122). Among

all combinations, ISO 100 and shutter speed 1

400
provide the

highest PPG amplitude. Therefore, on Moto G7 Plus, these

values are optimal. The proper configurations of ISO and

shutter speed on other smartphones can be identified similarly.

2) Image processing: Due to the differences between cam-

eras and human eyes, a camera-captured raw picture is distinct

from the perception of human eyes. To mimic human eyes’

perception, engineers introduce the parameters white balance

and gamma correction to modify the raw RGB values in a

picture, which leads to the distortion in camera PPG signals.

White balance adjusts color intensity to render “correct”

colors to human eyes. It depends on the color temperature.
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Figure 5: Comparison of overlapping periods. The red lines represent the average of all overlapping periods.
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change along with pressure levels.

Figure 3 shows modified RGB values for the white color in

different color temperatures [6]. We can see that except for

color temperatures in [6500K, 6600K], the intensity of two

colors will be attenuated under white light. This will clip the

signal and lose all information. To gain the raw RGB values,

we set the white balance to 6600K.

Gamma correction is a non-linear mapping that maps the

light intensities in cameras to those in human eyes. A camera’s

response to light changes is linear, while human eyes are

sensitive to light changes in a dark environment but resilient

in bright scenarios, as shown in Figure 4. To approximate

human eyes, smartphones apply gamma encoding. Its equation

is Y = 255 (X/255)
γ

, where X is the raw pixel intensity, γ is

a constant and Y is the pixel intensity in human eyes. In most

cases, our cameras use γ = 0.45 [8]. From the equation, we

can observe that the non-linear mapping for human eyes am-

plifies the light change by different factors at different intensity

levels. The fluctuation of the pixel intensity level is inevitable

during the data collection due to the fingertip movements or

pressure changes. Therefore, the PPG morphology from the

same subject will suffer a considerable distortion. To restore

the linear mapping, we set γ to 1.

B. Region of Interest Selection

Among all pixels in camera, only a fraction can capture the

changes caused by cardiac signals. Some studies select the best

areas by analyzing each pixel [4], but such a process is too

demanding to attain a real-time response on the smartphone.

In this work, we use only the central 1

4
region of each frame

as our region of interest (ROI). This can avoid the influence of

the ambient light change on the outer regions in each frame.

Furthermore, to exclude noisy pixels in the RoI, we use α-

trimmed mean filtering [9], with α = 0.1 to consider only the

mean of pixel values between the 10th and 90th percentile.

C. Preliminary Evaluation

We use the camera of Moto G7 Plus and optimize the con-

figuration in the last row of Table I. To showcase the improve-

ment of our camera configuration, we perform measurements

with a dedicated PPG sensor (SDPPG from APMKorea) as a

baseline, the default camera configuration (optimized for pho-

tography like [10]), and our optimized camera configuration.

The metrics for the improvement evaluation are PPG am-

plitude and CTE. Given that the PPG amplitude is sensitive

to the spectrum (infrared/visible) and system circuit (PPG

sensor/camera), the comparison between the PPG sensor and

Table III: Notations of our used pressure levels.

Notations L1 L2 L3 L4 L5 L6 L7 L8

Pressure (newton) 0 3 6 9 12 15 18 21

a camera would be unfair. Accordingly, we only compare

the PPG amplitude between different camera configurations.

The default configuration (ISO 100 and shutter speed 1

721
for

light skin; ISO 100 and shutter speed 1

611
for dark skin) has

a pixel intensity of around 5.6. Our camera configuration,

instead, reaches a pixel intensity of about 11. Thus, we can

conclude that with our optimized camera configurations, the

improvement in the PPG amplitude is notable.

The CTE measures the similarity between periods. As an

example, we demonstrate the CTE comparison for one subject,

as shown in Figure 5. The overlapping process consists of two

steps. First, we normalize the duration and amplitude of each

period to 100. Second, we set the starting point of all periods

to (0,0) to align them. We can see that the CTE under the

default configuration is higher and the periods are diverging,

making it hard for a system to learn the morphologies of the

signals. The CTE under our camera configuration is reduced

by 27% and the periods are converging, leading to more stable

morphologies. In the end, compared to the CTE obtained under

our optimized camera configurations, the CTE in the PPG

sensor is slightly higher and the periods are slightly looser.

This demonstrates that our configuration can compensate for

the camera disadvantages to obtain a close resemblance to the

PPG sensor. More evaluations of our camera configuration will

be presented in Section VII-A.

IV. OPTIMIZING THE PRESSURE ON CAMERA

PPG signals are generated by the blood flow. The contacting

pressure on sensors can change the blood flow through altering

the cross-section area of the fingertip’s blood vessels. In this

section, we study its impact on PPG morphologies.

A. Pressure Influence

We study the influence of pressure through experiments.

We put the smartphone on a scale with the rear camera facing

up and ask a subject to put his fingertip on the camera. At

the starting state, no active pressure is applied to the camera.

After every 45 seconds, we add a 3 Newton (i.e., 3 kg ·m/s2)

pressure to the subject’s fingertip until the pressure reaches 21

N. The notation of each pressure level is shown in Table III.

This pressure range can simulate situations from no pressure to

over-pressure. Figure 7 illustrates the pressure’s impact on the

amplitude and morphology of PPG signals. The corresponding

CTE and amplitude values are shown in Figure 6.
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Figure 7: In our experiment, we apply 8 pressure levels on the fingertip of a subject in an increasing order from contact
without active pressure to 21 N (2.1 kg). The increased pressure step is 3 N (300 g). Each pressure level lasts for 45
seconds. Red dots on the PPG signal indicates the end of a pressure level.

Figure 8: The online feedback inter-
face during signal collection of our
smartphone APP.

Under pressure level L1 (before the first red dot in Figure 7),

without active pressure, parts of the fingertip surface detach

from the camera. When a subtle movement happens, the

detaching surface notably affects the light intensity on the

camera. Thus, we can see that, within level L1, the PPG

amplitude is low and CTE is high (divergent periods). This

PPG signal prohibits our system to learn its morphology.

Under pressure levels L2 and L3 (from the first red dot to

the third red dot), the added pressure on camera facilitates the

PPG amplitude and CTE. Especially under pressure L3, the

resulted PPG amplitude is close to the highest value and the

CTE is the lowest. These convergent periods with high SNR

will help the system to abstract the PPG morphologies.

Under pressure level L4, the PPG amplitude reaches the

maximum value, but the CTE increases visibly. Compared with

morphologies obtained under pressure L2 and L3, the mor-

phology under L4 is distorted. The right part of these periods

are lifted, making the morphology distinct from previous ones.

The fingertip under L4 is slightly over-pressed because we will

see later that the morphologies from over-pressed scenarios are

similar to the morphology obtained under L4.

After pressure level L4, larger pressure changes the blood

flow by suppressing the vessels. The camera cannot sense

the visible fluctuation of pixel intensity as before. The PPG

amplitude swiftly decreases to around 2 in the end. The low

PPG amplitude makes periods vulnerable to noise, amplifying

the discrepancy between periods. Thus, there is an increasing

CTE trend in the last four pressure levels. Along with the

increasing pressure, although the general PPG morphologies

are consistent, their shapes become more and more “square”.

These distorted morphologies are far away from reflecting the

real situation of blood flow and cardiac system.

B. Pressure Control

From the analysis of pressure influence, we see that a sub-

ject generates multiple morphologies under various pressures.

Without pressure control, those morphologies from the legiti-

mate subject can increase the chances for attackers to breach

the authentication system. Thus, controlling the pressure at the

best level is essential for camera-based authentication systems.

First, we need to determine the best pressure for each sub-

ject. Given the situation in Figure 7, pressure levels generate

two groups of morphologies: the triangle shape and trapezoid

shape morphology. Within one group of morphologies, the

best pressure level is the one with the highest amplitude and

lowest CTE. Whereas, between morphology groups, we must

compare the authentication performances for best pressures in

each group. Accordingly, we form a dataset with 10 subjects’

pressure processes as Figure 7. For each subject, we select the

pressure providing the highest amplitude and lowest CTE as

the best one in triangle (L3 in Figure 7) and trapezoid group

(L4 in Figure 7). The first 80% of the best pressure durations

are for the training and the rest are for testing. Exploiting

the authentication method in [5], we obtain the BAC result of

triangle shape reaches 93.47%, while that of trapezoid shape

only reaches 85.89%. Consequently, we choose the triangle

morphology with the highest amplitude and lowest CTE as

the best pressure level (L3 in Figure 7) for each subject.

Second, we must stabilize the pressure at that level during

the data collection. To avoid the unconscious fingertip move-

ment or pressure change, we design an Android APP as shown

in Figure 8 to assist users during the data collection. After

obtaining the best pressure level, a subject can know their
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(b) Our CamConf dataset.
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(c) Our CamPress dataset.

Figure 9: The period numbers of morphologies in our datasets. h′′

1
, h′′

2
and h′′

3
are three dominant morphologies in our datasets; others are discarded.

PPG amplitude and morphology through the APP’s real-time

feedback in Figure 8. Then in both the training and the testing

phases, a subject can stabilize the pressure to achieve similar

PPG amplitude and morphology assisted by the APP. When

there is abrupt fingertip movement or pressure change, the

subject can easily adjust the PPG signal back.

V. AUTHENTICATION METHOD

We present our feature collection and authentication method

briefly. More details can be found in our previous work [5].

In feature collection, let s(t) denote the collected PPG

signal. To stabilize s(t), we only preserve the spectrum of

s(t) within [2f, 5.5f ] (f is the heartbeat frequency) to obtain

h(t). To accentuate subtle fiducial points on h(t), we obtain

its second derivative h′′(t), which has three dominant mor-

phologies h′′

1
, h′′

2
, and h′′

3
, as shown in Figure 7 in [5]. In our

three evaluation datasets (cf. Section VI), those morphologies

contribute more than 95% periods in each dataset, as shown

in Figure 9. In our system, we only exploit h′′

1
, h′′

2
, and h′′

3
.

There are two other observations from Figure 9. First, from

the CamDefault dataset to the CamPress dataset, we observe

a clear increase in period number, which reflects the im-

provement in signal quality. More periods with a better signal

quality help authentication considerably. Second, two subjects

(#36 and #58) have no periods detected in the CamDefault

dataset. This is because signal from those subjects saturated

constantly without camera configuration and pressure control.

More analysis on our datasets are introduced in Section VII-A.

We extract features from both h(t) and h′′(t). The details

of feature collection are illustrated in Section 4.2 in [5]. In

authentication, we refine our features by PCA to gain new

informative ones. After transferring samples on new features,

we find that sometimes data points from one subject can have a

few clusters. Thus, we apply wavelet clustering [11] to identify

all clusters. At last, we select Mahalanobis distance [12]

to measure the distance from new coming samples to all

clusters. According to the distance, our system can verdict

if the samples belong to the legitimate subject.

VI. BUILDING THE DATASET

To evaluate the performance of our methods, we first need

suitable datasets. Existing ones such as in [4], [5] have a

small population of subjects and narrow age range, which are

not enough for thorough evaluation. In this work, the subject

details are listed in Table IV. Compared with others such as

[4], [5], we have more and better diverse subjects: our subject

population (58) is the largest; the gender distribution is more

Table IV: Subject details for different PPG authentication systems.

Studies Sensor # Users # Females
Age range

(mean/STD)

[10] PPG sensor 12 4 22–51 (-/-)

[13] PPG sensor 42/32 - - (-/-)

[4] camera 25 6 25–33 (-/-)

[5] camera 43 16 12–79 (36.7/14.9)

CamPressID camera 58 22 15–80 (40.2/14.6)

balanced (22 females); our age range is wide enough to cover

most smartphone users, while the mean (40.2) and standard

deviation (14.6) can guarantee the subject age spreading wide

enough to prevent overfitting on a narrow range of users. With

these subjects, we build three datasets1:

• CamDefault dataset: The data collection runs under the

default camera parameters and without pressure control.

This dataset can represent the data collection of most SoA

authentication systems like [10].

• CamConf dataset: The data collection runs under our

optimized camera configuration.

• CamPress dataset: The data collection runs under our op-

timized camera configuration and with pressure control.

In our data collection, we use a smartphone Moto G7 plus

to extract PPG signals from all the subjects while they are sit-

ting. Each dataset contains a 4-minute PPG recording for all

subjects. 80% of each recording is used for the training while

the rest 20% of each recording is used for the testing.

VII. EVALUATION

In this section, we evaluate our datasets and authentication

methods. Among SoA camera-based authentication systems,

we select CardioID [5] and CardioCam [4] for comparison.

• CardioID [5]: It adopts two types of sensors: camera and

PPG sensor. The sufficient number of subjects (43) and

wide age distribution (average: 36.7, standard deviation:

14.9, and range: 12–79) guarantees that the result gener-

alizes well. The camera-based result (CardioID-Camera)

helps us to evaluate the improvement of our camera

configuration and pressure control. The PPG sensor-based

result (CardioID-PPG) enables us evaluate how close our

CamPressID approaches the result of PPG sensors.

• CardioCam [4]: The number of subjects in this work is

25, which is only about 45% of ours. Thus, it is unfair

to generalize their results in our evaluation directly. For

comparison, we re-implement its signal processing chain

(filters, features and PCA) and apply them to our datasets.

1The data collection activities related to these datasets have been approved
by the Human Research Ethnic Community (HREC) in our University.
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Table V: Performance comparison between multi- and single-morphology systems. NDS is the number of detectable subjects.

Method/System Dataset Acquisition speed Acquisition rate NDS PPG amplitude CTE

Multi-morphology1
CamDefault 0.73 (10167/13920) 95.15% (10167/10685) 55 4.03 4.82
CamConf 1.06 (14774/13920) 98.73% (14774/14964) 57 9.41 3.74
CamPress 1.13 (15755/13920) 99.17% (15755/15886) 58 9.41 2.32

Single-morphology2
CamDefault 0.25 (3468/13920) 32.61% (3468/10634) 40 4.98 4.73
CamConf 0.62 (8695/13920) 62.62% (8695/13885) 48 9.44 3.34
CamPress 0.79 (10977/13920) 69.61% (10977/15769) 48 9.42 2.32

1: Studies exploit multiple morphologies in PPG authentication, such as CardioID [5] and CamPressID in this paper.
2: Studies exploit only one morphology in PPG authentication, such as Seeing Red [3] and CardioCam [4].

A. Dataset Evaluation

We employ five metrics to evaluate our datasets: acquisition

speed, acquisition rate, NDS (number of detectable subjects),

PPG amplitude and CTE. PPG amplitude and CTE have been

introduced in Section II. Let S′ denote the useful periods

with morphologies h′′

1
, h′′

2
, h′′

3
and S denote all detectable

periods. The acquisition speed is S′ collected per second; the

acquisition rate is S′/S. The acquisition speed and acquisition

rate can reflect the system’s robustness for data collection,

which is the basis of a real-time system (less authentication

delay). NDS shows how many subjects with S′ > 20 can

be detected by a system (subjects with less S′ provide little

information to learn). It shows the user inclusion of a system.

In an ideal real-time system, the acquisition rate should be

1; the acquisition speed, NDS and PPG amplitude should be

high, and the CTE should be low. There are two ways of

data collection: single-morphology and multi-morphology. The

single-morphology system is commonly used in SoA; in this

work, we re-implement the data collection in CardioCam as the

representative of single-morphology systems. Our CamPressID

is representative of multi-morphology systems. The details of

the comparison are given in Tables V.

First, we compare the multi-morphology (CamPressID) and

the single-morphology (CardioCam) systems under all setups.

Here, we fully focus on the same rows in different systems.

From single-morphology to multi-morphology, our metrics

behave in three ways: 1) increasing remarkably on acquisition

speed, acquisition rate, NDS; 2) increasing slightly on CTE; 3)

staying almost the same on PPG amplitude. This is because the

stringent requirements on the PPG morphology in CardioCam

(the morphology in Figure 8 in [4]) filter out periods with

non-conforming morphologies. Therefore, its datasets have

fewer periods, which results in lower first three metrics, and

more unified morphology, which results in a lower CTE. For

PPG amplitude, the advantages of CardioCam are visible in

CamDefault datasets and negligible in CamConf and CamPress

datasets. This is because only some good periods in noisy

(CamDefault) datasets meet the requirements of CardioCam,

while most periods in CamConf and CamPress datasets do.

Given the higher CTE and more periods in our CamPressID

system, it is more challenging for our system to perform well.

Second, we analyze the difference between datasets in each

system. This analysis fully focuses on the different rows in

one system. It is clear to see the significant improvement on

all metrics from CamDefault datasets to CamConf datasets

in each system. This reflects the contribution of our camera

configuration on the signal quality. From CamConf datasets

to CamPress datasets, except for CTE, the improvements

on other metrics are limited. This is because our pressure

control aims at obtaining stable morphology, which leads to a

significant decline in CTE. The morphology, at which periods

stabilize, is easy for most systems to detect. Therefore, the first

three metrics also increase slightly. Since the pressure control

prioritizes CTE over PPG amplitude, our systems obtain better

CTE at the cost of PPG amplitude decline. In general, from

CamDefault datasets to CamPress datasets, the improvements

are comprehensive and significant, showing the contribution

of our camera configuration and pressure control.

B. Providing the Right Context for Final Evaluation

In PPG authentication, the small intra-distance (low CTE)

and large inter-distance (small subject number) allow authen-

tication systems performs well. Compared with CardioID-

Camera, CamDefault dataset is 19% lower in CTE (5.97 vs.

4.8) and 35% more in subject number (43 vs. 58). Com-

pared with CardioID-PPG, CamPress dataset is 46% lower

in CTE (4.29 vs. 2.32) and 66% more in subject number (35

vs. 58). Considering the percentage gain in subject number

overwhelms that in CTE, our datasets are more challenging.

We cannot fully reproduce the datasets and results in Car-

dioCam, since we do not have their same smartphone and can-

not find their detailed camera configuration. In our evaluation,

we re-implement the signal processing chain of CardioCam

and then evaluate its performance with our datasets. Our goal

is to get as close as possible to CardioID-PPG (93.7%) with

our CamPress dataset. In authentication, an improvement in the

order of 5%, or above, is already considered significant.

C. Authentication Evaluation

From the results given in Tables V, we can see that except

for the CamPress datasets under both setups, NDS cannot reach

58. In the evaluation, if we only average the BACs on de-

tectable subjects, it is unfair for our system because we detect

more subjects. Therefore, we also include the undetectable

subjects into the calculation to make a fair comparison among

all systems. In this case, we assign every undetectable subject

with 0.5 BAC, that is obtained under two assumptions: 1)

systems will reject all testing periods for undetectable subjects,

which is reasonable for a system lacking the information of

these subjects; 2) the data from undetectable subjects will not

confuse authentication systems to degrade the results of other

detectable subjects, which is the ideal scenario. Therefore, the

true positive rate is 0, and true negative rate is 1, which renders

BACs of these subjects are 0.5. Consequently, for every dataset

we present both results with detectable/all subjects.

Figure 10a shows the performance of the camera and

PPG sensor datasets in our baseline [5] and the datasets in
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Figure 10: Comparison among our method, [5] and [4]. CamPressID.D/A
stand for results with detectable/all subjects in CamPressID. CardioCam.D/A
stand for results with with detectable/all subjects in [4].

our system. In the CamDefault dataset, our system has the

lowest performance among all datasets. Even with a partial

camera configuration, CardioID-Camera can perform better

than it. With the CamConf dataset, the BAC obtained in our

system surges to above 0.9, which is 10% higher than the

previous one. Our camera configuration boosts the perform

remarkably through enhancing the signal quality. With the

CamPress dataset, our system performs similarly as one with

the CamConf dataset and is inferior (about 3%) to CardioID-

PPG. There are two reasons for the similar performance of

our system in the CamConf and CamPress datasets. First,

the performance limit of our system on our datasets is just

above 0.9. This is because our CamPress dataset is harder

than CardioID-PPG (discussed in Section VII-B), and the

performance gap between CardioID-PPG and our system in

the CamPress dataset is relatively small. Second, the majority

pressure in the CamConf dataset is the best pressure. During

the data collection in the CamConf dataset, 62.1% (36/58)

subjects apply their best pressures in most of time.

In general, the improvement of the CamPress dataset over

the CamDefault dataset is significant. Moreover, based on

our optimized camera configuration and pressure control, our

CamPressID system is superior to the system with a partial and

simple camera configuration (CardioID-Camera) and close to

the system with a dedicated PPG sensor (CardioID-PPG).

Figure 10b shows the performances of our system and

CardioCam [4] on our datasets. There are two points to notice.

First, the performance gain of our system over CardioCam is

noticeable. The gain with detectable subjects is about 10%,

while the gain with all subjects is about 15%. The reasons

are explained in [5]. Second, both our system and CardioCam

have a significant improvement (more than 10%) from the

CamDefault to CamPress dataset. This shows the potential of

CamPressID to facilitate different authentication methods.

VIII. RELATED WORK

Camera-based PPG authentication systems. CardioCam [4]

is the first work in this area. To obtain reliable cardiac

patterns, the authors develop a gradient-based method to adjust

flashlight and ISO and select sensitive pixels in each frame.

CardioCam achieves a BAC of 95.8% based on single-period

testing. We implement its signal processing chain as our

baseline. CardioID [5], as our other baseline, considers a

PPG sensor and a camera for authentication. They adopt fixed

camera configuration without optimization. CardioID achieves

a BAC of 93% with the PPG sensor and 82% with the

camera. In CamPressID, we optimize the camera configuration

and pressure for improving the system performance. Besides,

Seeing Red [3] also aims at PPG authentication based on

smartphone camera. They adopt fiducial and spectral features

and achieve 20% EER with 15 subjects. Due to the low subject

number, we do not use them as our baselines.

Pressure control for better PPG signals. There is no paper

studying the pressure influence on camera-based PPG authen-

tication. We only find two papers for healthcare considering

pressure during PPG measurement. Chandrasekhar et al. [14]

study the influence of contact pressure on a PPG sensor for

blood pressure measurement. They use the pulse arrival time

to estimate the blood pressure. PhO2 [15] uses a smartphone

mounted by an add-on to measure blood oxygen level. To

mitigate the contact pressure impact, they design a light-based

pressure detection algorithm by monitoring the PPG signal

amplitude. In these papers, instead of morphology, they only

focus on a part of the PPG signal. Moreover, their devices are

tailored for the infrared spectrum. Thus, we cannot use their

studies for authentication on normal smartphone cameras.

IX. CONCLUSIONS

The lack of optimizing camera configuration and pressure

control is preventing current camera-based PPG authentication

systems to achieve high accuracy. In CamPressID, we studied

the impact of camera configuration and pressure control, and

optimize them. In the end, CamPressID reached 90.6% BAC,

approximating the performance of a dedicated PPG sensor,

with a diverse 58 subjects dataset.
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