
Technische Universiteit Delft
Faculteit Elektrotechniek, Wiskunde en Informatica

Delft Institute of Applied Mathematics

Resource-constrained Machine Scheduling

Verslag ten behoeve van het
Delft Institute of Applied Mathematics

als onderdeel ter verkrijging

van de graad van

BACHELOR OF SCIENCE
in

TECHNISCHE WISKUNDE

door

NOORTJE BONENKAMP

Delft, Nederland
April, 2017

Copyright c© 2017 door Noortje Bonenkamp. Alle rechten voorbehouden.

Summary

Background Scheduling is a form of decision-making that plays a very important role in manu-
facturing industries. It is the method by which work gets assigned to resources that compute it.
In this thesis we want to assign jobs (cycles of a lithography process) to different machines in such
a way that the machines are running for as little time as possible. The difficulty lies in the fact
that some jobs require the same resource, and thus cannot be processed simultaneously.

Results It appears that the following scheduling problems are NP-hard:

• P2‖Cmax and R2‖Cmax

• P3|res · 11, pj = 1|Cmax and R3|res · 11, pj = 1|Cmax

• P3|res · 11, pj = 1|
∑
Cj and R3|res · 11, pj = 1|

∑
Cj

We try to approximate an optimal solution for the scheduling problem Rm|res · 11|
∑
Cj by

calculating a ratio with a lower bound, where we ignore resource constraints, and an upper
bound, that is found by a Greedy algorithm (w.r.t. resource constraints).

Conclusions It appears that Greedy is not a very good approximation algorithm for this prob-
lem, since the ratio in which the optimal Total Completion Time should lie is about 8,33% of
the average calculated Total Completion Time.

1

Contents

1 Introduction 3

2 Preliminaries 7
2.1 Notation and framework . 7
2.2 Complexity . 9

3 Scheduling without resources 10
3.1 Single Machine Models . 10
3.2 Machines in parallel . 11
3.3 Unrelated machines . 14

4 Scheduling with resources 16
4.1 Machines in parallel . 16
4.2 Unrelated machines . 19

5 Greedy approximations 20

6 Conclusion and remarks 26

Appendix A Reductions

Appendix B Greedy Approximations

Appendix C MATLAB codes

2

Chapter 1

Introduction

Machine scheduling

Scheduling is a form of decision-making that plays a very important role in manufacturing
industries. Nowadays, companies have to meet shipping dates committed to customers and they
have to schedule activities in such a way that resources available are used in an efficient manner.
Scheduling deals with the allocation of resources to tasks over given time periods. The goal is
to optimize one or more objectives. In this thesis, the resources are ASML machines on which
different jobs get processed: these are cycles of a lithographic manufacturing process.

Lithography

NXP Semiconductors B.V. is a Dutch global semiconductor manufacturer. NXP manufactures
a wide range of integrated circuits (IC) for different applications. Contact-less payments, con-
nected cars, wearable devices are a few applications of the technologies in which these ICs can
be used.

An integrated circuit is a set of electronic circuits on one small flat piece ("chip") of semiconductor
material, interconnected by a network of metal wiring in different layers. The best-known
semiconductor material is silicon. The silicon gets cut into thin slices (wafers) that undergo
different chemical treatments (see figure 1).

One of the techniques that can process silicon is chemical etching, in a process called lithography
(which is ancient Greek for writing on stone). The lithographic manufacturing process of an IC
consists of approximately 30 cycles, where each cycle represents a layer. Most of the layers are
used for the interconnecting metal wiring that have to connect the functional parts, defined in
the first layers, without interfering with any of the wiring in the other layers. The composition
of the first layers of the device requires an extreme level of accuracy in the positioning of the

3

layers.

Figure 1.1: IC production

These steps can be executed by a so-called wafer scanner (see figure 1.3). The scanner deter-
mines the details and position of the pattern structures. In figure 1.2, this scanning principle is
explained. The original pattern of a specific layer of the IC is defined in a chromium layer on a
reticle, a six-inch square that is made unique for every layer.

Figure 1.2: Scanning principle of a wafer scanner. Light creates a pattern on the reticle. The
pattern is imaged on the wafer by a lens. A movement of the reticle and wafer together results
in an image of the pattern on the wafer.

The reticles are the primary input of the product engineers to chip manufacturing. Making one
reticle costs about 5000$- 10000$, and that does not include making the lay-out!

4

The research

We want to create schedules for the cycles of the lithographic manufacturing process in such
a way that the machines are running for as little time as possible. It is interesting to make
these schedules as effective as possible, because the whole process and the machines are both
very expensive. There are certain jobs that share the same reticle. Since the reticles are too
expensive to make more for these jobs, we want to create schedules where jobs that share the
same reticle (from now on referred to as ’resource’) do not get processed simultaneously.

Firstly, we will go more into different scheduling problems without resources in depth. Which of
these problems can be solved by an algorithm in polynomial time? After that, we will consider
different objectives for scheduling with resources and ask ourselves the same question. In the last
chapter we will try to approximate solutions for the problem of the lithographic manufacturing
process, based on different instances with the data from NXP.

5

Figure 1.3: Wafer scanner from ASML with the main modules for exposing a wafer. The
illuminator (1) directs the exposure light to the reticle on the reticle stage (2). The pattern of
the reticle, defined in a chromium layer on a quartz plate, is imaged by the projection lens (3)
onto the wafer (4) located on the wafer stage (5). The wafer handler (6) exchanges the wafer
after each exposure while the reticle handler (7) exchanges the reticle for each different layer
that is required for a functioning IC. (Courtesy of ASML.)

6

Chapter 2

Preliminaries

2.1 Notation and framework

Before we can consider scheduling problems, it is necessary to introduce some notation. What
do they look like?

Every scheduling problem is described by a triplet α|β |γ. Parameter α specifies the machine
environment, parameter β the details of processing characteristics and constraints and parame-
ter γ specifies the function that has to be minimized.

The number of jobs will be denoted by n and the number of machines by m. We assume
that both n and m are both always finite. Furthermore, the subscript j refers to a job and
subscript i refers to a machine. So (i, j) means the operation of job j on machine i.

The following data can apply to j:

notation meaning
pij processing time of job j on machine i
wj weight of job j (how important this job is, compared to other jobs in the system)

Parameter α, the machine environment, always consists of one variable. It is possible to have
the following environments:

- Single machine (1) This is the simplest possibility: there is only one machine on which
all the jobs are processed.

- Identical machines in parallel (Pm) There are m identical parallel machines, i.e. pj =
pij , ∀i ∈ 1, . . .m.

- Machines in parallel with different speeds (Qm) In this case ("uniform machines"), we
have m machines in parallel with different speeds.

7

- Unrelated machines in parallel (Rm) We have m totally unrelated machines in parallel;
the processing time of job i on machine j is totally random. This is the machine environment
for the problem that is discussed in the introduction.

For processing characteristics and constraints, β in the triplet, it is possible to have more vari-
ables at the same time. Variables that can occur in the β field are (amongst others):

- Preemptions (prmp) In this case, it is not necessary to keep a job on the machine until it
is processed. Preemptions indicate that a job can be removed when it is not finished yet, and
replaced by another job. When the removed job is put back, the time that it already spent
before it got removed is not lost. When preemptions are allowed, prmp occurs in the β field. In
our case this does not occur in the field, which means that preemptions are not allowed: jobs
cannot be interrupted on our machines.

- Resources It is possible that the jobs require specific resources to be processed on the ma-
chines. This is also the case for our problem; the reticles are these specific resources. Assume
there are l resources: R1, · · ·Rl. Every resource Rh has a size sh; this is the total amount of
Rh on a certain moment. For every resource Rh and job Jj a certain amount of Rh is required:
requirement, rhj . A schedule is feasible when every t satisfies the following resource constraints
(for the index set St of jobs that get performed on t):∑

j∈St

rhj ≤ sh

In the β field we describe the presence of resources as follows:

resλσρ

- When λ is a positive integer, the amount of resources, l, is constant and equal to λ. When
λ = ·, we find that l is a part of the input.
- When σ is a positive integer, we find that the size of all the resources, sh, is constant and equal
to σ. When σ = ·, all the sh are a part of the input.
- When ρ is a positive integer, all the resource requirements, rhj(rhij) have a constant upper
limit, equal to ρ. When ρ = ·, nothing is known about such an upper limit.

The object that has to be minimized is always a function of the completion times of the jobs.
The completion time of the operation on job j on machine i is denoted by Cij . The time job
j leaves the system is denoted by Cj ; this is equal to the completion time on the last machine
that operates on job j.

Objective functions that can be minimized are:

- the Total weighted completion time (
∑
wjCj) The total weighted completion (TCT) time

is the sum of all the weighted completion times of the jobs. The weight wj of job j is basically
an importance factor. A user can influence the completion time of his job by assigning a higher
weight to it. Minimizing the TCT is related to the inventory costs.

- the Makespan (Cmax) This is equal to the completion time of the last job (= maxj∈J Cj).
Minimizing the makespan is related to the overall use of a multiprocesser, and individual job
weights are ignored.

8

We want to minimize both the makespan and the TCT, since they are both are interesting for
the manufacturer. We will do this by making schedules. A schedule refers to an allocation of
jobs within a more complicated setting of machines. Our goal is finding a feasible schedule which
minimizes the objective function.

It is possible that we cannot find an algorithm to optimize (one of) these objective functions. In
that case, there are ways we can approximate an optimal solution. We will explain more about
this in the next section.

2.2 Complexity

Sometimes algorithms for certain problems can be used for other problems as well. A reduction
is an algorithm for transforming one problem into another problem and can be used to show
that the second problem is at least as difficult as the first. It can even be possible to create a
whole chain of reductions.

Reductions can be used to determine complexity classes. We consider two different complexity
classes: P and NP. P is a class of decision problems that can be solved by a polynomial algo-
rithm.1 NP is a class of decision problems whose solutions can be verified within polynomial
time.2 These are called the NP-complete problems. Furthermore, a problem is called NP-hard
when an NP-complete problem can be reduced to it in polynomial time. So very informal, we
say that NP-hard problems are at least as hard as the NP-complete problems (but they do not
have to be in NP). Not all is lost when a problem is NP-hard: by using so-called approximation
algorithms we can approximate solutions to problems.

This is of course a very interesting topic, but why should it bother us in Scheduling? Imagine
having a complicated scheduling problem. Once you can prove that it is NP-hard, you can
devote your efforts to finding good approximation algorithms, which could save you a lot of time
(and headache).

Apparently, reductions can be made in some of our cases. For instance, 1‖
∑
Cj is a special

case of 1‖
∑
wjCj , which means that an algorithm for 1‖

∑
wjCj can also be used for 1‖

∑
Cj .

Reductions makes it interesting to look at the impact of changing a single element in an objective
function on the complexity of the function. When we examine the presence of resources on the
complexity of objective function later in this thesis, we will have a closer look at this.

1An algorithm is called polynomial if its output can be computed in at most O(p(|x|) step where p is a
polynomial and |x| is the length of the input x.

2P ⊆ NP, but whether or not P=NP is a major unsolved problem in computer science and one of the seven
Millennium Prize Problems.

9

Chapter 3

Scheduling without resources

Before we get to the more complicated scheduling problems in this thesis, we first take a look
at scheduling problems without resource constraints. It is interesting to address them to find
out just how complicated scheduling problems get after adding resource constraints. We will
consider three different machine environments in this chapter: single machine models, (identical)
machines in parallel and unrelated machines in parallel.

3.1 Single Machine Models

The single machine environment models often have properties that models with machines in
parallel do not have. Results for problems in the single machine environment are usually quite
easy to find and they can often provide insights into the more complicated machine environments.
It is therefore that single machine models are very important in scheduling.

Minimizing the Makespan

There is not much to minimizing the makespan in case of a single machine environment: it
is clear that the completion of the last job occurs at the makespan Cmax =

∑
pj , which is

independent of the schedule.

Minimizing the Total Weighted Completion Time

Let us discuss the following problem: 1‖
∑
wjCj .

The following Theorem about the Weighted Shortest Processing Time first (WSPT) rule makes
it easy to solve this problem. This rule states that the jobs should be ordered on the machine

10

in time such that wj

pj
decreases.

Theorem 3.1.1 (Pinedo). The WSPT rule is optimal for 1‖
∑
wjCj .

Proof. We will prove this by contradiction. Assume that we have an optimal schedule S, that
is not ordered by its smallest wj

pj
first. Then we find that there are at least two adjacent jobs,

say job j followed by job k, such that
wj

pj
<
wk

pk

Assume that the processing time of job j starts at time t. Now, switch j and k. Call the new
schedule S′. In the original schedule S, we have that j starts its processing time on t, but in S′
we have that job k starts its processing time on t and is followed by j. All the other jobs in S′
remain in their original position from S. That means that the total weighted completion time
of the jobs that are processed before job j en k do not change due to this interchange. This is
also the case for the jobs that are processed after job j and k. The difference in the values of
the objectives under schedules S and S′ is only due to job j and k. Figure 3.1 clarifies this. In
schedule S, we find that the total weighted completion time of jobs j and k is equal to

(t+ pj)wj + (t+ pj + pk)wk,

and in schedule S′, we find that the total weighted completion time of jobs j and k is equal to

(t+ pk)wk + (t+ pk + pj)wj .

If we would still have wj

pj
< wk

pk
, the sum of the two weighted completion times under S′ is less

than under S and S is not optimal: we find a contradiction.

Figure 3.1: An interchange between jobs j and k. (Source: Pinedo)

The computation time to order the jobs according to the WSPT rule is equal to O(nlog(n)) (as
any other sorting). [9]

3.2 Machines in parallel

In this section we work with identical machines in parallel. Again, we will take a look at
minimizing the makespan and the TCT.

11

Minimizing the Makespan

One of the most basic scheduling problems is

Pm‖Cmax.

The variable m represents the number of identical machines. The input consists of n jobs with
processing times p1, . . . pn. We want to assign the jobs to the m machines in such a way that
the last job to be finished completes as early as possible (and this completion time is equal to
the makespan).

We can say the following about P2‖Cmax:

Theorem 3.2.1. P2‖Cmax is NP hard

Proof. We will show that P2‖Cmax is NP hard by reducing the NP-hard problem PARTITION.

PARTITION is the following problem:

Given positive integers a1, . . . at and

b = 1
2

t∑
j=1

aj

do there exist two disjoint subsets S1 and S2 such that∑
j∈Si

aj = b

for i = 1, 2?

For the reduction of PARTITION into P2‖Cmax, take

n = t,

pj = aj ,

z = 1
2

t∑
j=1

aj = b,

where z is the optimum.

To confirm that this is a reduction, we need to show that the answer is "yes" for the instance
of PARTITION if and only if the answer is "yes" for the instance of P2‖Cmax. Let I ′ be the
instance of PARTITION and I be the instance of P2‖Cmax. Say that we have an I ′ where the
answer is "yes": two disjoint subsets S1 and S2 exist. By the definition of Si we find:∑

j∈Si

pj = b

for i = 1, 2. Similarly, if we are given a schedule that solves P2‖Cmax, we can construct the
partition S1, S2 as well.

12

It is possible to approximate an optimal schedule for the problem Pm‖Cmax, by using the
following rule:

De Longest Processing Time first rule

The LPT rule divides the jobs over the machines in the following way: On t = 0 the m jobs
with the longest processing time get assigned to the m machines. As soon as one of the jobs is
finished, the next job with the longest processing time (that is not yet assigned to a machine)
will get assigned to that machine. So the idea is that all the short jobs are dividing the load
over the machines in the end of the schedule.

Theorem 3.2.2 (Pinedo[9]). For Pm |Cmax we have:

Cmax(LPT)
Cmax(OPT) ≤

4
3 −

1
3m

Minimizing the Total Completion Time

In Theorem 3.1.1 we proved that for a single machine the Shortest Processing Time first rule is
optimal for the Total Completion Time (if we assume that w1 = w2 = · · · = wn = 1, the WSPT
rule becomes the SPT rule, which is still optimal). We proved this by contradiction. But there
is an alternative way of proving this (which is useful for us):

If we let p(j) imply the processing time of the job in the jth position, we find that the total
completion time can be expressed as∑

Cj = np(1) + (n− 1)p(2) + · · ·+ 2p(n−1) + p(n)

We find n coefficients n, n− 1 , ..., 1 that have to be assigned to n different processing times in
such a way that the sum of the products is minimized. Obviously , for this we choose to assign
the highest coefficient, n, to the smallest processing time, pn, the second highest coefficient,
n − 1, to the second smallest processing time, p(n−1), and so it goes on. [4] So again we find
that SPT is optimal.

The nice thing about proving the theorem with this method, is that we can now extend the
proof to a parallel machine setting. We find the following:

Theorem 3.2.3 (Pinedo). The SPT rule is optimal for Pm‖
∑
Cj

Proof. In this case, when we optimize the TCT, there are nm coefficients that the processing
times can be assigned to: mn’s, m(n−1)’s , ..., m ones. The processing times should be assigned
in such a way that we minimize the sum of the products. Say that n/m is an integer. If it is
not an integer, we are allowed to add ’dummy jobs’, with a processing time equal to zero. The
set of the m longest processing times have to be assigned to the m ones, the set of the m second
longest processing times have to be assigned to the m twos, and so it goes on. By this method,

13

the m longest jobs will be processed on different machine. This goes according to an SPT
schedule: the smallest job has to go first, on machine 1, the second smallest one on machine 2,
etc. Also, the (m+1)th smallest job follows the smallest job on machine 1, the (m+2)th smallest
job follows the second smallest on machine 2, and so it goes on. We find that the SPT schedule
is an optimal schedule for this objective function.

Remember, in the first chapter we have shown that the more general WSPT rule was optimal
for the single machine environment (Theorem3.1.1). But this theorem can not be extended to
parallel machines. This can be shown by a simple example.

Example 3.2.1.

Say we have the following problem (three jobs that have to be scheduled on two machines).

jobs 1 2 3
pj 1 1 3
wj 1 1 3

The WSPT Rule would make us schedule job 1 and 2 at t = 0 and job 3 at t = 1. We find that∑
wjCj = 14. But if we schedule job 3 at t = 0 on one of the machines and jobs 1 and 2 on

the other machine, we find that
∑
wjCj = 12. So this is an example where WSPT does not

work.

However, WSPT is a good heuristic for parallel machines with an approximation factor [5]∑
wjCj(WSPT)∑
wjCj(OPT) <

1
2(1 +

√
2).

3.3 Unrelated machines

Now that we have considered single machine environments and machines in parallel, it is time to
focus on the machine environment that we introduced in the beginning of this thesis: unrelated
machines. We can use some of the results that we found for parallel machines: for instance when
we want to minimize the makespan.

Minimizing the Makespan

From Theorem 3.2.1, it follows that Rm‖Cmax (with a fixed number of unrelated machines)
is NP-hard, since Pm‖Cmax reduces to Rm‖Cmax. Lenstra, Shmoys and Tardos proposed a
2-approximation algorithm for Rm‖Cmax. [6]

14

Minimizing the Total Completion Time

Consider the function Rm‖
∑
Cj ; machines in parallel that are completely unrelated.

Theorem 3.3.1. Rm‖
∑
Cj is solvable within polynomial time.

Proof. We will show this by formulating this problem as an Linear Problem with n jobs and nm
positions. If a job j is scheduled on machine i and k− 1 jobs follow on this machine, then job j
contributes kpij to the objective value. (Since the ’weight’ is job-dependent, we cannot simply
sort the ’weights’.)

Let

xikj =
{

1, when job j is scheduled as kth until last job on machine i
0, otherwise

We can formulate our problem as the following ILP.

min
m∑

i=1

n∑
j=1

n∑
k=1

kpijxikj

s.t.

m∑
i=1

n∑
k=1

xikj = 1, j = 1, . . . , n

n∑
j=1

xikj ≤ 1, i = 1, . . .m, k = 1, . . . , n

xikj ∈ {0, 1} i = 1, . . .m, k = 1, . . . , n j = 1, . . . , n.

Now every job is scheduled once and every position on the machines has one job at most. When
job j is assigned to position k on machine i, the corresponding cost value is kpij .

Because of the total unimodularity property1, the constraints do not have to require that the
variables are either 0 or 1, thus we can replace xikj ∈ {0, 1} with xikj ≥ 0. Since an LP can be
solved in polynomial time, our problem can be solved in polynomial time.

1A matrix has the total unimodularity property if the determinant of every square submatrix within the matrix
has value -1, 0 or 1. It is not difficult to verify that this is the case with the matrix we find when solving Rm‖

∑
Cj

.

15

Chapter 4

Scheduling with resources

In the first chapter, we only considered objective functions where there were zero restrictions
or constraints. In this chapter, we will go back to the problem stated in the introduction
of the thesis, and have a look at the complexity of different objective functions under resource
constraints. We assume that every operation on a job requires a unique resource. Every machine
can process one job at the same time and every job can be processed on one machine at the
same time. The goal is finding an optimal schedule, under these resource constraints.

4.1 Machines in parallel

Complexity

We consider the scheduling problem Pm|res · 11, pj = 1|Cmax, machines in parallel with pro-
cessing times that are all equal to 1, subject to resource constraints that state that every job
requires a unique resource. We can say the following about P3|res · 11, pj = 1|Cmax:

Theorem 4.1.1 (Blazewich & Lenstra). P3|res · 11, pj = 1|Cmax is NP-hard.

Proof. We will show that the NP-complete problem PARTITION INTO TRIANGLES can
be reduced to P3|res · 11, pj = 1|Cmax.

PARTITION INTO TRIANGLES is the following problem:

Given: A graph G = (V,E), with |V | = 3q for an integer q.

Question: Can the vertices of G be divided in q disjoint sets with each three vertices, V1, V2, . . . , Vq,
in such a way that every Vi contains the three vertices of a triangle in G ?

For every graph G with vertices V and edges E we find that functions and constraints of the

16

type res · 11 can be constructed as follows:
- for every vertex j ∈ V introduce a job Jj ;
- for every pair of vertices j, k /∈ E, introduce a resource R{j,k} of size s{j,k} = 1, with
r{j,k}j = r{j,k}k = 1, and r{j,k}i = 0 for i ∈ E\{j, k}.

This means that two jobs can be processed simultaneously if and only if the corresponding
vertices are adjacent.

For every instance of our problem we can construct an instance of
P3|res · 11, pj = 1|Cmax like illustrated above.

PARTITION INTO TRIANGLES has a solution if and only if there is a feasible sched-
ule with Cmax ≤ q.

(A similar reduction can be done for Q2|res · 11, pj = 1|Cmax: two machines in parallel with
different speeds. We refer to appendix A for this reduction.)

If we now assume that there is one resource per job, we find that the reduction of PARTI-
TION INTO TRIANGLES does not work anymore. This is because we initially introduced
a resource for every pair or vertices. But if we assume one resource per job, every vertex (since
we defined the vertices as jobs) can only adjoin one edge. It even appears that when we assume
one resource per job, the following problem is solvable within polynomial time.

Theorem 4.1.2. Pn|res · 11, pj = 1, one per job|
∑
Cj is solvable within polynomial time.

Proof. We will prove this by showing that Pn|res·11, pj = 1, one per job|
∑
Cj can be formulated

as a min cost flow problem. We create a directed graph G = (V,C).

V denotes a set of

• vertices corresponding to the jobs

• the resources and positions

• the machines and positions.

This set also contains two additional vertices: a source and a sink. We will call the source s and
the sink t.

C is a set of arcs that connects

• ’dummy’ vertex s to every job

17

• every job to possible positions of its corresponding resource

• all the positions of different resources to possible machine positions

• all the machine positions to ’dummy’ vertex t.

The values of the arcs are as follows: All the arcs except the ones connecting machine positions
with t have a value equal to 0. The arcs connecting machine position to t have a value that is
equal to their position (because we assumed that pj = 1,∀j ∈ J). So the arc connecting M11
with t has a value of 1, the arc connecting M12 with t has a value of 2, etc. The arc connecting
M21 with t has a value of 1 again, and so it goes on. See figure 2.1. The maximum flow on all
arcs is equal to 1.

Minimizing the flow in this network is equal to minimizing the TCT: when a job gets processed
on a machine on position k, its completion time adds up with 1 + 2 + 3 + · · · + k. This is in
correspondence with the values on the arcs leading from machine+ position to vertex t.

Thus, Pn|res · 11, pj = 1, one per job|
∑
Cj can be solved in polynomial time, since min cost

flow can be solved in polynomial time. [7]

Figure 4.1: Graph for finding a schedule for Pn|res · 11, pj = 1, one per job|
∑
Cj

Now, what can we state about Pn|res · 11, one per job|
∑
Cj? At the moment we think that

this problem is also NP-hard. But this is only a presumption, since we have not been able to
prove anything about its complexity.

18

4.2 Unrelated machines

In the previous section we proved that P3|res · 11, pj = 1|Cmax is NP-hard. Clearly, it follows
that R3|res · 11, pj = 1|Cmax is also NP-hard.

When we do not want to minimize Cmax, but
∑
Cj , we use the fact that the machines are

saturated in the transformation. The NP-hardness of Theorem 4.1.1 also applies to
∑
Cj . For

theorem 3.1 we find that Cmax ≤ t if and only if
∑
Cj ≤ 3

2 t(t+ 1). [1]

Corollary 4.2.1. P3|res · 11, pj = 1|
∑
Cj is NP-hard.

From Corollary 4.2.1 it follows that R3|res · 11, pj = 1|
∑
Cj is also NP-hard.

Like in the case of parallel machines, we cannot show that Rm|res ·11, pj = 1, one per job|
∑
Cj

is NP-complete. Unfortunately we cannot solve this problem with the flow network of Theorem
4.1.2, because in this case the machines are completely unrelated. So the complexity of this
problem remains an open question for now.

19

Chapter 5

Greedy approximations

After all these proofs, let us go back to the original problem as stated in the introduction:
we have totally unrelated machines and jobs with different processing times, that all require
a unique resource. How can we approximate an optimal solution for the objective functions
Rm|res · 11|

∑
Cj and Rm|res · 11|Cmax ?

We will try to approximate a minimal TCT by using a so-called Greedy algorithm.

Greedy works (very general) as follows: in every iteration you choose the local optimum. For
our problem this means that every iteration we calculate what the completion times of all the
jobs are that we can schedule (by scanning all the jobs and all the machines). When a job
shares a resource with other jobs, it is possible that in certain iterations a job has to ’wait’ for
its resource. The time it has to wait gets added to its completion time in that iteration. At the
end of every iteration we schedule the job with the smallest completion time and delete that job
from the list of remaining jobs.

We did this by implementing a code in MATLAB (Appendix C), which works as follows. Like we
said, every iteration we consider which job has the smallest completion time on which machine
(by also considering the time it possibly has to ’wait’ for its resource to be available). We
created a loop that scans the matrix ("machinetijdenmatrix": the machinetime of different
machines and the processing times of the jobs are added in this matrix) with the completion
times for remaining jobs in that iteration. When a job gets scheduled on a machine, the job gets
added to the schedule and deleted from the list of remaining jobs. The machine time of that
machine gets updated with the processing time of this job.

We let 90 different instances run trough this code. Every one of these 90 instances represents
8h of historical production in the NXP production plant. The results can be found in column
’TCT with res. GREEDY’ in table B.1 in Appendix B.

We were wondering how many resource conflicts actually appear when we do not take the re-
source constraints into consideration. That is why we have also implemented a Greedy algorithm
that calculated the TCT, but without considering these constraints. Besides ignoring resource

20

constraints, it works the same as the first code. These results can be found in column ’TCT
without res. GREEDY’ in table B.1. We also added a column in which the number of
resource conflicts for that iteration can be found (’number of res. conflicts’).

With these two algorithms we also calculated what the makespan would be after running these
codes. We also added these values to the table: it is interesting to see the difference between
the value of the makespan with and without resource constraints. For many problems it appears
that the makespan values do not differ that much from each other, even though sometimes a lot
of resource conflicts appear when we do not take these constraints in consideration.

Lastly, we added a column to the table with a lower bound for the TCT (’TCT without res.
LOWER BOUND’). These values are also calculated with a MATLAB code, created by Teun
Janssen, who wrote a code that optimized the TCT without considering resource constraints.
This code used the result of Theorem 4.1.2.

Let us look at one of the instances for more clarity. In instance_1.xls, there are 358 jobs
with 2073 eligible machine-job combinations for the 29 machines we have. The jobs use, all
together, 301 different recourses.

When we find the Greedy solution for the objective function without considering the resources,
we find the following schedule:

Figure 5.1: Schedule for instance 1 without resource constraints

21

The x-axis represents time and the y-axis represents the 29 different machines. Each rectangle
represents a job. When two rectangles have the same number (colors are used to make it more
clear), they share the same reticle.

The schedule in figure 5.1 has a makespan of 1280, 8401 seconds and a total completion time of
169949, 9265 seconds. In this schedule there are 43 resource conflicts - which means that 43 jobs
are scheduled simultaneously with other jobs that require the same resource (see figure 5).

Figure 5.2: Schedule with resource constraints, denoted by black streaks

When we approximate an optimal solution for the objective function with respect to resource
constraints with this Greedy algorithm, we find the following schedule:

22

Figure 5.3: Schedule for instance 1, w.r.t. resource constraints

The schedule in figure 5.2 has a makespan of 1280, 8401 seconds and a total completion time of
170200, 7562 seconds. In this schedule, there are no resource conflicts. Furthermore, the optimal
TCT (calculated without resource constraints), is equal to 163050.

We find a ratio for the optimal TCT, with the optimal TCT (without constraints) as lower bound
and the TCT found in the second schedule (with resource constraints) as upper bound:

TCToptimal, no res constr ≤ TCTOP T ≤ TCTgreedy, with res constr.

So, for the first instance of our data we find 163050 ≤ TCTOP T ≤ 170200.

It appears that, overall, this is quite a large ratio, as can be seen in table 5.1: the ratio is 8,33%
of the TCT.

23

Table 5.1: Avarage lower and upper bound of the 90 instances, compared to TCT size
average
lower bound
without res

average
with res

average
ratio size

average
overall

% difference of
overall average

TCT 118806 125965 7159 122386 8,33%

We would like to consider a few special instances. Firstly, let us have a look at the instance with
the smallest TCT optimum-ratio, instance 30. For this instance it is quite a small ratio, as can
be seen in table 5.2.

Table 5.2: Instance 30: lower and upper bound, compared to TCT size
average
lower bound
without res

average
with res

average
ratio size

average
overall

% difference of
overall average

TCT 119730 122320 2590 121025 2,14%

The instance with the largest ratio is instance 12. See table 5.3. Figure 5.4 and 5.5 make it
clear why this is the case. The instance consists of 5 jobs that all share the same resource.
Apparently, for cases like this, our method of creating this ratio is very unuseful (at least when
considering the TCT).

Table 5.3: Instance 12: lower and upper bound, compared to TCT size
average
lower bound
without res

average
with res

average
ratio size

average
overall

% difference of
overall average

TCT 285 840 2590 562,5 98,67%

24

Figure 5.4: Schedule for instance 12 without resource constraints

Figure 5.5: Schedule for instance 12 with respect to resource constraints

25

Chapter 6

Conclusion and remarks

A Greedy algorithm for our schedule problem Rn|res · 11|
∑
Cj , in combination with the lower

bound for the TCT, returns quite a large ratio in which the optimal solution can be found. It is
therefore probably not the best approximation algorithm, but nonetheless it was interesting to
compare objective functions of problems with resource constraints to problems without resource
constraints.

Of course there are some shortcomings with the way we approached our scheduling problems in
the first place:

• We did not take into consideration that it takes time to move reticles in between machines

• In the whole thesis we ignored priority constraints. We did not take any into account
when approximating solutions, but this is not very realistic: some jobs should always be
finished before others. Also the SPT rule, which was optimal for 1‖

∑
Cj does not take

any priority constraints into account. So when priority constraints do get considered, this
does not guarantee an optimal solution.

• We did not take into account how long the machines can work non-stop. After what
amount of time are they switched off? We sort of assumed that they would always be
working, without breaks.

For future studies, it can be interesting to take the following questions into consideration:

• What is the actual optimal value for the TCT and the makespan when we do take reticles
into account?

• What will happen with our approximations and the complexity when we fix reticles on to
machines (so the reticles cannot be moved)?

• With the Greedy approximations, we focussed on minimizing the TCT, and found that

26

the ratio for an optimal solution was quite large. But how large is the ratio in which an
optimal makespan should lie, when working with this Greedy algorithm?

• How much money would you actually save when you use the schedules that optimize the
TCT or makespan?

• The complexity of the problemsRm|res ·11, pj = 1, one per job|
∑
Cj and Pm|res ·11, pj =

1, one per job|
∑
Cj remains an open question for us. It could be interesting to go more

into depth in these problems.

27

Appendix A

Reductions

Machines in parallel with different speeds

We find the following for two machines in parallel with different speeds:

Theorem A.0.1 (Blazewich & Lenstra, theorem 3). Q2|res · 11, pj = 1|Cmax is NP-hard.

Proof. We will show that the NP-complete problem PARTITION INTO PATHS OF LENGTH
2 can be transformed to Q2|res · 11, pj = 1|Cmax.

PARTITION INTO PATHS OF LENGTH 2 is the following problem:

Given: A graph G = (V,E) with |V | = 3t, for an integer t.

Question: Can V be divided in t disjoint subsets, each with three vertices and with a maximum
of two vertices that are not adjacent?

Like in the previous proof: for every graph G with vertices V and edges E we find that functions
and constraints of the type res · 11 can be constructed as follows:
- for every vertex j ∈ V introduce a job Jj ;
- for every pair of vertices j, k /∈ E, introduce a resource R{j,k} of size s{j,k} = 1, with r{j,k}j =
r{j,k}k = 1, and r{j,k}i = 0 for i ∈ E.

Two jobs can be executed simultaneously if and only if the corresponding vertices are adjacent.

For every instance of the problem we can construct an instance of
Q2|res · 11, pj = 1|Cmax, with machinespeeds q1 = 2, q2 = 1.

PARTITION INTO PATHS OF LENGTH 2 has a solution if and only if there is a feasible
schedule with Cmax ≤ t.

Appendix B

Greedy Approximations

Table B.1: A ratio for optimal makespan and TCT for all instances

instance
number

number of
res. conflicts

makespan
without res.
GREEDY

makespan
with res.
GREEDY

TCT
without res.
GREEDY

TCT
without res.
LOWER
BOUND

TCT
with res.
GREEDY

1 43 1281 1281 169950 163050 170200
2 25 1443 1443 143610 134370 143610
3 55 1159 1278 161760 156580 163630
4 25 1295 1295 122040 114240 122980
5 22 1256 1256 129320 122020 130470
6 40 1160 1212 126980 123100 128280
7 36 886 948 99873 95666 101380
8 1 128 128 304 304 357
12 4 60 285 285 285 840
13 19 269 663 7038 6509 9776
14 26 1185 1185 84887 75535 84815
15 38 1091 1093 135750 131560 136440
16 16 1448 1515 116910 105900 117800
17 40 1283 1280 133170 122760 134150
18 38 1335 1370 165250 153280 165310
19 19 1151 1149 103060 94989 103560
20 18 1287 1294 94334 84989 95500
21 40 1336 1321 141830 130000 142680
22 43 1425 1425 156140 144990 156830
23 36 1422 1422 169960 160580 170830
24 39 1149 1147 152960 146700 153300

instance
number

number of
res. conflicts

makespan
without res.
GREEDY

makespan
with res.
GREEDY

TCT
without res.
GREEDY

TCT
without res.
LOWER
BOUND

TCT
with res.
GREEDY

25 52 1291 1351 168380 160100 168460
26 35 1207 1270 153000 147920 153900
27 32 1292 1290 134930 128390 135690
28 44 1291 1295 156260 147580 156340
29 29 1209 1227 115340 108770 115610
30 33 1091 1023 122380 119730 122320
31 19 916 970 63641 59551 64198
32 29 1423 1359 140180 133450 140170
33 31 1150 1139 123050 116290 122860
34 29 1309 1374 126480 119750 127270
35 15 870 810 33182 29606 33261
36 0 510 510 4458 3859 4458
37 9 427 419 17102 15800 17392
38 58 1101 1220 131790 126890 133780
39 41 1438 1495 177210 169010 179020
40 28 889 899 77992 74696 79695
41 52 1250 1353 137940 129960 140840
42 32 1153 1147 144390 137710 145150
43 37 1146 1146 126150 120480 126290
44 35 1139 1139 146270 142450 146720
45 49 999 1063 141930 138790 142340
46 35 1383 1323 145420 138730 146320
47 45 1144 1144 168200 163180 169060
48 47 1236 1236 140260 131820 141470
49 35 1233 1222 131740 125580 132700
50 30 1171 1161 131630 124720 131680
51 29 1045 1097 116430 111590 117450
52 26 1521 1521 123720 115080 124560
53 32 1654 1653 144130 135260 145130
54 31 1444 1444 156950 148090 157800
55 32 1545 1552 150590 143060 151520
56 25 1294 1291 150220 142810 150450
57 49 1056 1124 129990 125010 131880
58 33 1336 1307 149790 139410 149980
59 39 1408 1342 127210 120110 127940
60 37 1151 1151 121230 116800 122440
61 23 1330 1349 151580 142440 151920

instance
number

number of
res. conflicts

makespan
without res.
GREEDY

makespan
with res.
GREEDY

TCT
without res.
GREEDY

TCT
without res.
LOWER
BOUND

TCT
with res.
GREEDY

62 35 1279 1279 158060 150850 158010
63 23 1285 1349 123480 116630 123700
64 32 1371 1371 132690 127150 132720
65 32 1405 1405 171380 164690 171610
66 32 1326 1336 150320 143440 151000
67 31 1326 1322 130880 122580 131460
68 28 1274 1275 126900 117740 126310
69 31 1336 1336 152590 144890 153560
70 23 1241 1241 110060 103350 109970
71 24 1564 1564 135980 130080 136580
72 28 1407 1407 142110 136260 142710
73 36 1053 1153 114450 107950 116320
74 35 1134 1170 124500 119450 126020
75 27 1205 1216 149950 143720 150100
76 32 1235 1235 129510 122680 129790
77 44 1285 1346 123960 119990 125560
78 40 1302 1364 144340 137980 145220
79 13 1191 1191 102080 98006 101940
80 27 1272 1296 139150 128870 139680
81 30 1366 1371 145710 136800 146390
82 28 1360 1425 134560 123550 135570
83 35 1281 1281 125900 118580 127880
84 40 1171 1218 137300 129140 138220
85 17 1295 1293 140500 129220 140240
86 32 1247 1237 144990 137790 145750
87 22 1032 1032 82386 77277 82820
88 27 1219 1279 151000 143190 151880
89 31 1470 1470 122680 117190 123550
90 39 1111 1113 129700 125040 130010
91 59 1361 1404 122900 113840 123870
92 42 1196 1200 134490 125690 135760
93 32 966 1026 90046 85665 90950

Appendix C

MATLAB codes

close a l l
clear a l l

%Input in format ion
% pathadd i s the p l ace where the . x l s f i l e i s l o c a t e d
name=’ instance_12 ’ ;
pathadd=’NXP_Data/DIA_RUN_STATS_LM_SVG_201610_alternative_times/ ’ ;
[~ ,~ , Data]= x l s r ead ([pathadd , name , ’ . x l s ’]) ;

%Create Matlab input
[n ,m]= s ize (Data) ;

[JT , l o t s , reticleNumb , ret ic leName , r e t i c l eUsage , Or ig ina lS , MachineNames]
= Data2JobInput (Data) ;

P=JT ;
[n ,m]= s ize (P) ;
n o n e l i g i b l e =0;
for i =1:n

for j =1:m
i f P(i , j)<=0

P(i , j)=0;
n o n e l i g i b l e=n on e l i g i b l e +1;

end
end

end

machineTime=zeros (1 ,m) ;
P_temp=P(1 : n , :) ;
s chedu le=zeros (n , 2) ;
machine_location=ones (1 ,m) ;
r e t i c l e s=zeros (n , 1) ;

complet iont ime=zeros (m, 2 0) ;
schedule_time=zeros (1 , n) ;
machinet i jdenmatr ix=zeros (n ,m) ;
e i n d t i j d j o b=zeros (m, 2 5) ;
machineTime_temp=zeros (1 ,m) ;
r e s ou r c e s_e i nd t i j d=zeros (1 , n) ;

%met re source s
for i =1:n

[antwoord , j obs]=min(machinet i jdenmatr ix+P_temp+(P_temp==0)∗10^6) ;
%neem de job met de minimale e i n d t i j d en f i l t e r de nu l l en
e r u i t

[~ , machine]=min(antwoord) ;
%de machine waar deze job v e r vo l g en s opgaat i s degene waar h i j
he t s n e l s t k l a a r i s

job=jobs (machine) ; %benoem deze job

%[~ , machine]=min(machineTime+(sum(P_temp)==0)∗10^6) ;

P_temp(job , :)=zeros (1 ,m) ;
%verw i j d e r de ge schedu l ede job

% update s chedu l e
schedu le (job , :) =[machine , machine_location (machine)] ;
schedule_time (job)=machinet i jdenmatr ix (job , machine) ;

%update machineTime
machineTime (machine)=machinet i jdenmatr ix (job , machine)+P(job ,

machine) ;

r e s ou r c e=retic leNumb (job) ;
index_rec=find (r e s ou r c e==retic leNumb) ;
machinet i jdenmatr ix (: , machine)=max(machinet i jdenmatr ix (: , machine)

, ones (n , 1) ∗machineTime (machine)) ;
for j =1: length (index_rec)

machinet i jdenmatr ix (index_rec (j) , :)=max(machinet i jdenmatr ix (
index_rec (j) , :) , ones (1 ,m) ∗(machineTime (machine))) ;

end

% schedu l ematr i x (machine , machine_location (machine))=job_leng th ;
machine_location (machine)=machine_location (machine)+1;
e i n d t i j d j o b (machine , machine_location (machine))=machineTime (

machine) ;
end

Fig1=schedu l eP lo t (schedule , schedule_time ,P, reticleNumb ,
r e t i c l eUsage , MachineNames , 1) ;

print (Fig1 , ’−dpng ’ , ’−r400 ’ , [pathadd , ’ P i c tu r e s \ ’ ,name , ’
_Schedule_Original ’])

%ui t rekenen t i j d e n met res
makespan1=max(max(e i n d t i j d j o b)) ;
TCT1=sum(sum(e i n d t i j d j o b)) ;

d i sp l ay ([’The␣TCT␣ f o r ␣a␣Greedy␣ schedu le ␣ s . t . ␣ r e s ou r c e ␣ c on s t r a i n t s ␣ i s ␣
equal ␣ to ␣ ’ ,num2str(TCT1) , ’ . ’])

d i sp l ay ([’The␣Makespan␣ f o r ␣a␣Greedy␣ schedu le ␣ s . t . ␣ r e s ou r c e ␣
c on s t r a i n t s ␣ i s ␣ equal ␣ to ␣ ’ ,num2str(makespan1) , ’ . ’])

%zonder re source s
machineTime=zeros (1 ,m) ;
P_temp=P(1 : n , :) ;
s chedu le=zeros (n , 2) ;
machine_location=ones (1 ,m) ;
r e t i c l e s=zeros (n , 1) ;
schedule_time=zeros (1 , n) ;
machinet i jdenmatr ix=zeros (n ,m) ;
e i n d t i j d j o b=zeros (m, 2 5) ;

for i =1:n
[antwoord , j obs]=min(machinet i jdenmatr ix+P_temp+(P_temp==0)∗10^6) ;

%neem de job met de minimale e i n d t i j d en f i l t e r de nu l l en
e r u i t

[~ , machine]=min(antwoord) ;
%de machine waar deze job v e r vo l g en s opgaat i s degene waar h i j
he t s n e l s t k l a a r i s

job=jobs (machine) ;%benoem deze job
%[~ , machine]=min(machineTime+(sum(P_temp)==0)∗10^6) ;

P_temp(job , :)=zeros (1 ,m) ;
%verw i j d e r de ge schedu l ede job

% update s chedu l e
schedu le (job , :) =[machine , machine_location (machine)] ;
schedule_time (job)=machineTime (machine) ;
%update machineTime
machineTime (machine)=machineTime (machine)+P(job , machine) ;
%schedu l ematr i x (machine , machine_location (machine))=job_leng th ;
%machine t i jdenmatr ix (: , machine)=ones (n , 1) ∗machineTime (machine) ;

%update de e i n d t i j d e n van de machines door de kolom te
updaten

machinet i jdenmatr ix (: , machine)=max(machinet i jdenmatr ix (: , machine)
, ones (n , 1) ∗machineTime (machine)) ;

e i n d t i j d j o b (machine , machine_location (machine))=machineTime (
machine) ;

machine_location (machine)=machine_location (machine)+1;
end

Fig2=schedu l eP lo t (schedule , schedule_time ,P, reticleNumb ,
r e t i c l eUsage , MachineNames , 2) ;

print (Fig2 , ’−dpng ’ , ’−r400 ’ , [pathadd , ’ P i c tu r e s \ ’ ,name , ’
_Schedule_Original_2 ’])

%ui t rekenen r i j d en zonder res
makespan2=max(max(e i n d t i j d j o b)) ;
TCT2=sum(sum(e i n d t i j d j o b)) ;

d i sp l ay ([’The␣TCT␣ f o r ␣a␣Greedy␣ schedu le ␣without ␣ r e sou r c e ␣ c on s t r a i n t s ␣
i s ␣ equal ␣ to ␣ ’ ,num2str(TCT2) , ’ . ’])

d i sp l ay ([’The␣Makespan␣ f o r ␣a␣Greedy␣ schedu le ␣without ␣ r e sou r c e ␣
c on s t r a i n t s ␣ i s ␣ equal ␣ to ␣ ’ ,num2str(makespan2) , ’ . ’])

%ra t i o voor optimum
d i sp l ay ([’The␣TCT␣ f o r ␣ the ␣ optimal ␣ schedu le ␣ s . t . ␣ r e s ou r c e ␣ c on s t r a i n t s ␣

l i e s ␣ in ␣between␣ ’ ,num2str(TCT2) , ’ ␣and␣ ’ ,num2str(TCT1) , ’ . ’])
d i sp l ay ([’The␣makespan␣ f o r ␣ the ␣ optimal ␣ schedu le ␣ s . t . ␣ r e s ou r c e ␣

c on s t r a i n t s ␣ l i e s ␣ in ␣between␣ ’ ,num2str(makespan2) , ’ ␣and␣ ’ ,num2str(
makespan1) , ’ . ’])

[n ,m]= s ize (P) ;
maxPos=max(schedu le (: , 2)) ;
ScheduleTime=zeros (m,maxPos) ;
zeroJobs=0;
for i =1:n

i f (schedu le (i , 1) >0) && (schedu le (i , 1)<(m+1)) && (schedu le (i , 2)
>0)
ScheduleTime (schedu le (i , 1) , s chedu le (i , 2))=P(i , s chedu le (i , 1)) ;
i f P(i , s chedu le (i , 1))==0;

zeroJobs=zeroJobs+1;
end

end
end

[makespan_2 ,TCT_2, machineTime_2 , r e t i c l eCon f l i c t s_2 , zeroJobs_2] =
schedulePerformance (schedule ,P, reticleNumb , r e t i c l eU s a g e) ;

d i sp l ay ([’The␣number␣ o f ␣ r e t i c l e ␣ c o n f l i c t s ␣ i s ␣ equal ␣ to ␣ ’ ,num2str(
length (r e t i c l eC on f l i c t s_2)) , ’ . ’])

T = { length (r e t i c l eC on f l i c t s_2) ,makespan2 , makespan1 ,TCT2,TCT1}

x l sw r i t e (’ impl . x l s ’ ,T) ;

References

[1] Jacek Blazewicz, Jan Karel Lenstra, and AHG Rinnooy Kan. “Scheduling subject to re-
source constraints: classification and complexity”. In: Discrete Applied Mathematics 5.1
(1983), pp. 11–24.

[2] CW Duin and E Van Der Sluis. “On the complexity of adjacent resource scheduling”. In:
Journal of Scheduling 9.1 (2006), pp. 49–62.

[3] Michael R Garey and David S Johnson. Computers and intractability. Vol. 29. wh freeman
New York, 2002.

[4] Godfrey Harold Hardy, John Edensor Littlewood, and George Pólya. Inequalities. Cam-
bridge university press, 1952.

[5] Tsuyoshi Kawaguchi and Seiki Kyan. “Worst case bound of an LRF schedule for the mean
weighted flow-time problem”. In: SIAM Journal on Computing 15.4 (1986), pp. 1119–1129.

[6] Jan Karel Lenstra, David B Shmoys, and Éva Tardos. “Approximation algorithms for
scheduling unrelated parallel machines”. In:Mathematical programming 46.1 (1990), pp. 259–
271.

[7] James B Orlin. “A polynomial time primal network simplex algorithm for minimum cost
flows”. In: Mathematical Programming 78.2 (1997), pp. 109–129.

[8] James H Patterson et al. “Computational experience with a backtracking algorithm for
solving a general class of precedence and resource-constrained scheduling problems”. In:
European Journal of Operational Research 49.1 (1990), pp. 68–79.

[9] Michael Pinedo. Scheduling. Springer, 2015.
[10] Robert-H Munnig Schmidt. “Ultra-precision engineering in lithographic exposure equip-

ment for the semiconductor industry”. In: Philosophical Transactions of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences 370.1973 (2012), pp. 3950–
3972.

[11] Douglas Brent West et al. Introduction to graph theory. Vol. 2. Prentice hall Upper Saddle
River, 2001.

	Introduction
	Preliminaries
	Notation and framework
	Complexity

	Scheduling without resources
	Single Machine Models
	Machines in parallel
	Unrelated machines

	Scheduling with resources
	Machines in parallel
	Unrelated machines

	Greedy approximations
	Conclusion and remarks
	Appendix Reductions
	Appendix Greedy Approximations
	Appendix MATLAB codes

