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Abstract

Single-cell sequencing allows measuring individual cells’ molecular features and their responses to per-
turbations. Understanding which cells respond to a particular perturbation and how these responses
vary across populations can be used to, for example, improve vaccine immunogenicity. However,
an exhaustive exploration of single-cell perturbation responses in every population is usually experi-
mentally unfeasible. Several machine learning models have been developed to predict perturbation
responses, but they are limited to single-modality data. Single-modality data alone, such as only tran-
scriptomics, is not suited to capture all cell responses accurately. For example, the identification of
immune responses requires transcriptomic and proteomic measurements. Here, we introduce cellP-
MVI, a method built to predict perturbation responses from multi-modality data. MMVI combines the
single-cell data modeling from scVI [21] with a mixture-of-experts posterior integration [31], to allow for
multi-modality input data. In this work, we validate cellPMVI for immune response prediction of adju-
vants across populations. The model is trained on two-modality CITE-seq data containing gene and
protein measurements from three different populations. We show that cellPMVI can model both modal-
ities of the CITE-seq data without information loss in either modality and predict immune responses with
a high correlation to the observed responses across different populations. Hence, cellPMVI is the first
model to capture and predict immune response for multi-modality data with the potential to be applied
for other perturbations, such as drugs.






Introduction

A central means of studying cellular networks is to observe cell state changes after perturbations. Per-
turbations describe a functional alteration to a biological system through an external event such as
gene knockdowns or other stimuli, e.g., drugs [12]. Understanding the single-cell responses to pertur-
bations can be helpful in various contexts. For example, gene knockouts can identify cellular pathways
that provide the basis for many biological processes, such as tissue repair. Furthermore, recording cell
responses to stimuli, e.g., drugs, can help develop combination therapy treatments [18] or give insight
into the gene expression variability. Recording gene expression changes under perturbations can help
identify cell subsets that get activated from e.g., vaccinations.

An interesting observation in single-cell perturbation experiments is that different population groups
do not necessarily show similar cellular responses to vaccinations [13]. Here, the term population group
defines a group of people living in an environment with the same urban setting, i.e., (i) urban-dutch, (ii)
urban-Senegalese, (iii) rural Senegalese. Research suggests that adjuvants might be responsible for
the variation in vaccine efficiency across population groups [13]. Adjuvants are vaccination components
that enhance the immune response to the antigen by activating specific cell subsets. For example, we
observed that cell type responses to the vaccine adjuvant Monophosphoryl Lipid A (MPL) are distinct
across populations (Figure 1.1). The distinct immune activation pattern suggests that vaccine compo-
nents, including adjuvant, can be further modified to ensure comparable efficacy across populations
[29].

MPL

Rural Senegalese

Urban Dutch

Urban Senegalese

tSNE2

tSNE1

Figure 1.1: Cell subset activation response to MPL A across populations. Response to Monophosphoryl Lipid A (MPL)
stimulation across population groups (rural Senegalese, urban Senegalese and urban dutch). Cytokine-producing cells were
selected and then embedded using tSNE dimensionality reduction. The color indicates the density of the data points, with lighter
green indicating a higher density of cells.

A common challenge for perturbation experiments is their need for large-scale evidence. For in-
stance, finding the optimal adjuvant for a population group requires recording the responses of many
individuals in a specific population group to draw a valid conclusion. Due to the mainly observational
nature and cost intensity of single-cell studies, large-scale experiments are usually infeasible. There-
fore, instead of basing the adjuvant selection on purely experimental measurements, one could em-
ploy computational methods, such as perturbation modeling to generalize single-cell responses across
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4 1. Introduction

population groups. Computational models would overcome the need for large-scale perturbation ex-
periments, reducing the number of experimental screenings needed.

A successful perturbation model must be able to address different prediction scenarios, such as
out-of-distribution (OOD) prediction. OOD prediction describes situations where the predicted pertur-
bation is unknown and different from the training data. In this work we distinguish between two OOD
prediction scenarios: extrapolation to other adjuvants (Figure 1.2a) and extrapolation to novel popu-
lation groups (Figure 1.2b). Figure 1.2 illustrates the two scenarios for three population groups and
two adjuvants (unperturbed (A) and perturbed (B)). For the first scenario (Figure 1.2a), the perturbed
data from the orange population group is left out during training. The aim is to predict cell responses
of the orange population group under perturbation, so for the red adjuvant. This requires extrapolation
from unperturbed to perturbed cell responses given the responses from the observed, green and blue,
population groups. Figure 1.2b shows the second scenario in which the orange population group is left
out entirely during training. The goal is to predict novel population group responses by extrapolation
from known population group responses. Both scenarios describe variations of OOD prediction that
can be used to preselect several promising adjuvants, which could then be validated experimentally.
OOD prediction can potentially reduce the required number of experimental screens drastically [22].

Populations Adjuvants Populations Adjuvants

(a) Extrapolation to other adjuvants (b) Extrapolation to novel population groups

Figure 1.2: Two scenarios for out-of-distribution prediction that are addressed in this work. In this thesis OOD prediction
will be performed over three population groups and two adjuvants representing the unperturbed and perturbed condition. The
task is to predict the response of the unseen population group depicted with a question mark. Subfigure (a) shows the task of
predicting the perturbed cell activity given the unperturbed cell response and knowing the perturbed activation of the green and
blue population groups and (b) illustrates the prediction of cell activity for a unknown population group.

Currently, only a handful of the more than 1 000 available tools for single-cell data analysis (scrna-
tools.org) can be used for perturbation prediction [37]. Three examples of perturbation prediction mod-
els are scGen [22], trVAE [24] and CPA [23]. scGen [22] is one of the earliest methods to predict
single-cell perturbation responses using a variational autoencoder (VAE) architecture. A major limi-
tation of scGen is that it is restricted to one-to-one prediction. That means scGen is only suited to
predict one kind of perturbations. Predicting new perturbations requires retraining the model and cal-
clating a new difference vector without profiting from the information of the previous perturbation. trVAE
(transformer VAE) [24] overcomes the problem of one-to-one predictions by using a conditional VAE
to integrate information of multiple perturbations into one latent space, allowing for n-to-n predictions.
A problem with trVAE is that the model is entirely black-boxed, limiting its interpretability. That means
interpretation of the latent space for further research (e.g., differential expression or visualization) or
manipulation is impossible. A new VAE-based method, CPA (Compositional Perturbation Autoencoder)
[23], achieves interpretability by decomposing the latent space through adversarial training, allowing
it flexible recombination in the latent area. However, CPA does not support novel predictions (e.g.,
predicting new drugs) because of the necessity to learn embeddings for the latent space recombina-
tion. Finally, a common limitation of all three models (scGen, trVAE and CPA) is that they only support
single-modality data input, ignoring important information accessible through multi-modality data.

Multi-modality, such as CITE-seq, data can often characterize a cell’s identity better, especially
in immune responses. For example, protein data is necessary to distinguish functionally distinct cate-
gories of immune cells that are similar on a transcriptomic level. Furthermore, immune cells are studied
using cytometry which analyzes the expression of proteins on the surface of the cells. Hence, protein
data is beneficial, or even essential, to leverage knowledge about immune responses such as infec-
tions and vaccinations [5]. On the other hand, protein data alone is insufficient because proteome-wide
measurements require a preselection of proteins and a monoclonal antibody to target the epitope of
the proteins. The preselection would bias the analysis toward a specific collection of proteins, miss
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heterogeneity, and bias towards preexisting knowledge. For example, specific cell populations such
as CD8+and CD4+T cells can only be detected through a combination of protein and transcriptome
data measurements [9]. Thus, it is necessary to account for both transcriptome and proteome data to
understand immune cell responses best.

Currenlty, totalVI [7] and scMM [28] are the currently most promising single-cell multi-modality mod-
els based on a VAE architecture. TotalVI [7] is designed for integration of multi-modalities but suffers
from a ‘black-box’ nature making the prediction of new perturbations difficult. On the other hand, scMM
[28] models modalities separately before joining them to learn common features which improves its
interpretability and enables cross-modality prediction. Nevertheless, neither of these two models were
designed for perturbation modelling and prediction.

Thus, at the moment there are no single-cell models that combine perturbation modelling with multi-
modality data integration. In this work we introduce cellPMVI, a single-cell Perturbation prediction
model on Multi-modal data with variational Inference. cellPMVI is based on scVI [21] and MMVAE
[31] for integration and prediction of multi-modality data. We will use cellPMVI to answer the research
questions introduced in the following section.

1.1. Research questions
The main research question is defined as:

How well can we model immune responses across populations with CITE-seq data?
This is further divided into the following sub-question:

RQ 1: How does multi-modality information impact the modelling and prediction performance?

RQ 2: To what extend can we predict responses for unseen perturbations across populations?

First, we compare the performance of three models that are either based on single- or multi-modality
information to understand whether the additional proteins data increases the performance of a model.
After that, the second question aims to explore if a model can generalize as far as to generate new
data or make prediction of unseen responses. This is related to the two scenarios shown in Figure 1.2
and answer the following two counterfactual questions:

» What would have happened if population 1 had received adjuvant B, instead of adjuvant A?
(Figure 1.2a)

* Given the response from population 1 and 2 to adjuvant A, how would population 3 respond to
adjuvant B? (Figure 1.2b)






Preliminaries

This thesis focuses on employing techniques from generative modelling and deep learning to the prob-
lem domain of modelling and predicting immune responses using single-cell data. In this chapter, we
will first motivate why generative modelling and specifically, deep generative modelling with variational
autoencoder is suited for single-cell perturbation modelling. Then, we provide an overview about the
most relevant techniques of deep generative modelling with focus on VAEs. The theory in this chapter
is necessary to understand the modelling choices in the next chapter.

2.1. Single-cell generative modelling

Single-cell generative modelling is inspired by the success of Deep Generative Models (DGMs) in
classical computer vision applications. As the name suggest, DGMs combine generative modelling with
deep learning. The generative modelling part is responsible for capturing the underlying distribution of
the data points which is useful for OOD prediction. However, without extending generative models to
the DL domain they would not be suited to capture distributions of large data quantities, like it is the
case for single-cell data. Therefore, do DGMs extend generative models with neural networks (NNs).
The two DGM architectures that have proven most successful in the computer vision (CV) domain are:
Generative Adversarial Networks (GAN) and Variational Autoencoders (VAE). Despite the success of
GANs in CV [19] their adaption to the single-cell biology domain is more challenging than expected.
The first challenge is that GANs are usually less interpretable than VAEs, because the latent vector
in GANs is is not learned but usually represents noise from a Gaussian [2]. Therefore, there is no
immediate way of tracing back the representation of each observation in the latent (input noise) space.
Compared to that, VAEs have a better interpretability because the latent space is forced to resemble a
prior distribution (often isotropic Gaussian distribution) that enables disentanglement [27]. The second
challenge is the incooperation of prior knowledge into the latent space. Again, this is easier for VAEs
because of their latent space learning instead of the noise structure in GANs. Finally, it is more difficult
to provide a metrics of how “realistic” a generated data point is. Therefore, it might be harder to justify
the use of GANs in many other biological applications. Hence, VAEs are the most suitable DGM for
single-cell modelling.

2.2. Deep Generative models

Generative modelling is a unsupervised learning approach that explicitly models the underlying joint
distribution p(x, y) between observed x and unobserved data points y. Learning the true distribution of
the data points x requires maximizing the marginal likelihood

maxlogp(x) = maxlogfp(x, z)do = maxlogf p(x | 2)p(z)dz (2.1)
Equation 2.1 shows that computing the maximum marginal of data distribution x requires integrating

over the likelihood p(x | z) and prior p(z). This is problematic because calculating the concrete interval
is often intractable. Another technique, Variational Inference (VI) [1] avoids the computation of the
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8 2. Preliminaries

intractable posterior by introducing a variational posterior g that resembles the true posterior p as closely
as possible. Thus, instead of relying on an analytical evaluation VI turns the computation of integrals
into an optimisation problem.

Variational Autoencoder

A remaining problem is that VI in generative models is not efficient enough to high-dimensional data
distributions. Therefore, Kingma and Welling proposed the Variational Autoencoder (VAE) as a way of
performing inference in a efficient way. The VAE overcomes the problem of estimating the log-likelihood
and posterior distribution by using neural networks (NNs) and stochastic gradient descent (SGD) [14].
More specifically, a VAE consists of two NNs: an Encoder and a Decoder. The encoder is denoted
by qo(z | x). qo(z | x) is also referred to as variational posterior. The variational posterior is used
as an approximation of the true posterior when calculating true posterior is intractable. As shown in
Figure 2.1, the encoder receives data x and outputs parameters u, and g, that estimate the latent
space z. The latent space z is learned to resemble a prior distribution p(z). The prior distribution is
chosen depending on the modelling purpose but a common choice is a isotropic Gaussian N (0,7)
because it can best learn a representation such that features are independent of each other. In case of
a gaussian variational approximationg the encoder learns the mean p, to be close to zero and variance
o, to a diagonal one-variance matrix. The second NN component is the decoder pg(x® | 2). Its input
is a sampled latent representation z and its output is a reconstruction of the input data x’. The goal of
the decoder is to effectively reconstruct the input x using the log-likelihood p4 (x | z) of the data given
a sample from the variational posterior.

@ Uz (%), 0,(x) @ - ’ — Ux(2),05(2)

Encoder g4 (z|x) Decoder pg(x|2)

Figure 2.1: Computational Schematics of Variational Autoencoder (VAE). Grey colored nodes represent observed inputs.
The encoder receives a input x to compute the mean p,(x) and variance o,(x) describing the variational posterior distribution
qdo(z | x). Then, the decoder computes the mean pu,(z) and variance o, (z) for the likelihood distribution pg (x | z) given some
sampled latent space z. Inspired from Figure 3 in [35].

Loss function

The maximization of the log-likehood (Equation 2.1) can be rewritten into a combination of the varia-
tional lower bound on the marginal likelihood of the data x and the Kullback Leibler (KL) Divergence
[16] between the approximate and true posterior.

logpe (xW) = L(0, ®;xD) + Dy, (qa(z | xD) 1l pe(x? | 2)) (2.2)

The first term in the equation is the variational lower bound and the second term the KL divergence.
Because the KL divergence is non-negative the goal is to maximize the lower bound w.r.t. to the
log-likelihood. Moreover, the variational lower bound from Equation 2.3 can be rewritten w.r.t to the
variational ® and generative parameters 0:

L0, D;x0) = lEqd)(zlx) [log q¢(z | x) +logpe(x, Z)]

i ; (2.3)
= ~Dx1(qa(z 1 xD) 1l pe(2)) + Iqu>(z|x(i)) [10gpg(x() | Z)]

Note that when phrasing Equation 2.3 as a loss function for VAE training the aim is to minimize the
negative lower bound:

— L0, ®;xD) = Dg;(qo(z | xD) 1l pe(2)) — Eqg(z1x®) [logpe (x@ | 2)] (2.4)

The first term of the loss functions, the KL Divergence, encourages robustness to small perturba-
tions along the latent manifold by matching a learned approximation from the encoder qq(z | x® to
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some chosen prior pg(z). Choosing a conjugate prior over z makes the integration of the loss func-
tion tractable. A common choice for the prior is the Isotropic Gaussian distribution ' (0,7) with zero
mean and a diagonal one-variance matrix. The advantage of this is that it forces independence across
features in the latent space [27].

The second term of Equation 2.4 is the reconstruction loss (RL) and describes how accurately the
output replicates the input. A common metric for this in the single-cell domain is the distribution (Zero
Inflated) Negative Binomial ((ZI)NB) or Poisson distribution [33].

Conditional Variational Autoencoder

The main contribution of the VAE is to learn a meaningful representation of the low-dimensional space.
Although this latent representation can be used to generate feasible samples, the classic VAE frame-
work does not provide control on the output to be generated [3]. The Conditional Variational Autoen-
coder (CVAE) [32] modifies the VAE to address this limitation. Figure 2.2 shows that the CVAE model
receives information about the inputs data condition ¢ in addition to the input data x. Adding extra
conditional information to the encoder and decoder forces the modelled distributions to be conditioned.
This provides the model the capability to learn one-to-many mappings.

@ ’ Hz(x]c), o5 (x]c) @—’ — px(z]c), 0x(z]c)
© ©

Encoder g4 (2|, ¢) Decoder pg(x|z, c)

Figure 2.2: Computational Schematics of Conditional Variational Autoencoder (CVAE). Grey colored nodes represent ob-
served inputs. The encoder receives a input x and covariate ¢ to compute the mean u,(x | ¢) and variance o,(x | ¢) describing
the variational posterior distribution g4 (z | x, ¢). Then, the decoder computes the mean p,.(z | ¢) and variance o, (z | ¢) for the
likelihood distribution pg (x | z, ¢) given some sampled latent space z and covariate c. Inspired from Figure 3 in [35].

The objective function of the CVAE is the same as VAEs objective function (Equation 2.4) with
additional conditional information c:

Di1(qo(z 1 x9,cO) 11 po (2 | ¢ D)) = Eq, (z1x0y [log pg (x® 1 2,¢®)] (2.5)

Multi-modal VAEs

The classical VAE frameworks are limited to reconstruction of one data modality x from the latent space
z, as shown in Figure 2.3a. Extending the VAE to infer a joint latent space representation of all input
modalities would allow the model to reconstruct i data modalities x,, ...x; (Figure 2.3b) [35].

(b) Multi-modality VAE

(a) Variational Autoencoder

Figure 2.3: Latent variable model representation of single- and multi-modality VAE. Latent variable model of a (a) single-
modality VAE showing the relation between the observed variable, x, and the unobserved, latent variable, z and b) multi-modality
VAE where the latent space z contains information about multiple i data outputs x4, ..., x;.

Figure 2.4 shows two different approaches that can be used for multi-modality modelling in VAEs.
The architecture in Figure 2.4a is called joint multi-modal VAE. In this model the encoder gets the
multi-modality information as a concatenation. This approach is for example employed in totalVI [7].
A common limitation of representing the different modalities with a single posterior is that it might lead
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to unwilling masking of information from one modality due to the dominance of another modality [28].
To overcome this problem Shi et al. propose a Mixture-of-Experts Variational Autoencoder (MMVAE) in
which each modality is modelled by a seperate VAE pair. Each encoder estimates the modality specific
parameters for the MoE posterior distribution independently and then mixes them using mixture-of-
experts (MoE). Figure 2.4b shows the basic architecture of the MMVAE model which is also used by
scMM [28].

Decoder py, (x1|2)

01 |— Hx, (2), Ox, (2)

~
@ #z(xlf xz): O-z(xler) @
~

0y | U, (2), Ox, (2)
Encoder g4 (z]x, x2)

Decoder pg, (x;|2)

(a) Joint multi-modal VAE

Decoder pg, (x1|2)

@ Uz, (1), 07, (%1) P — Uy, (2), 0%, (2)
7 (%1, %2), 07 (%1, X2) @
~

@ s, (520,32, 2) @), 05,2)

Encoder qg,(z]x1, x2) Decoder py, (x;12)

(b) MoE multi-modal VAE

Figure 2.4: Computational Schematics of two multi-modality VAE (MMVAE) frameworks. Grey colored nodes represent
observed inputs. Both MMVAE frameworks are illustrated for two-modality data but can be extended to more than two modalities.
Both inspired from Figure 3 in [35]. a) Joint multi-modal VAE, this framework is used by totalVI [7]; The encoder receives
the concatinated two-modality input x,, x, to compute the mean u,(x,,x,) and variance o,(x4,x,) describing the variational
posterior distribution g (z | x1,x2). Then, each modalities decoder computes the mean ., (z) and variance oy, (z) for the
modality i likelihood distribution pg (x; | z) given some sampled latent space z. b) MoE multi-modal VAE, framework introduced
by [31] and used by scMM [28]. The difference to a) is that the input x; and x, is not concatinated because each modality has
a seperate VAE pair. Each modality encoder learns the modality specific mean u, (x;) and variance o, (x;) before joining the
posterior with MoE. The generative process is equivalent to (a).

Mixture-of-experts multimodal VAE
The MoE multimodal VAE (MMVAE) by Shi et al. aims to learn a multi-modal generative model

M
pox1a) = p@) | [Po, Gim 1 2 (26)

with m = 1,.., M modalities, p(z) prior and pg_(xn, | z) likelihood of each mth modality. Figure
2.4b shows an example of a MMVAE for M = 2 with a encoder-decoder pairs for each modality. The
encoder parameterizes the variational posterior g4, (z | xp,) and the decoder the likelihood pg,, (X, | 2)
of the m-th modality. To jointly learn the variational posterior across modalities the variational posterior

is factorized with a MoE
M

Po | X1x) = ) &y () 27

m
. 1
with a,,, = e

Equivalently as to the VAE, the training objective of the MMVAE is to maximize the marginal likeli-
hood p(x;.,) through optimization of the ELBO
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M
1 p@(Z, X1:M) ]
£LBo (X1:m) M ya Zm~ Aoy (Z1%Xm) gqq,(z | X1:m) 29
M
1
M Z {IEZqud)m(Zle) [108 Pas(xypgiz )] = KL [P (2 | Xy | p(Z)]} (2.9)
m=1

Like in the VAE loss function (Equation 2.4) the first term refers to the reconstruction loss and the
second term enforces the regularization of the variation posterior through the prior. Differently to VAE,
the prior p(z) is defined as a Laplacian distribution because it has a heavier tail and thus, can fit outliers
better than the isotropic Gaussian prior [27]. The mean of the Laplacian prior is set to zero and the
scaling constrained that is learn from the data through SGD. Note that the authors Shi et al. of the
MMVAE are proposing more advanced loss functions, such as the doubly reparameterized gradient
estimator [34], but in this report we are focusing on Equation 2.8 as has been used in the scMM model.

The main advantage of MMVAE is that the MoE variational posterior learns a multi-modal generative
model that satisfies the following four criteria:

1. Latent Factorization: Latent space captures shared and private modality information.

2. Coherent Joint Generation: Generation of different modalities is possible such that they are co-
herent in shared information.

3. Coherent Cross Generation: Generation of data for modalities different to the input.

4. Synergy: Quality of the generative model improves when trained over multiple modalities rather
than just a single modality.

These four criteria, especially latent factorization and synergy, are helpful for the perturbation pre-
diction tasks for this work.






Models

The previous chapter summarized the relevant background information to understand the models em-
ployed in this work. More specifically, we use scVI [21], as a single-modality model and totalVI and
cellPMVI for multi-modality modeling. Both scVI and totalVI, are initially designed for integration rather
than the prediction of perturbation effects. Therefore, we adapted them to accommodate perturba-
tion prediction. After that, we present our model cellPMVI. cellPMVI is a multi-modality model using
variational inference designed explicitly to predict perturbation effects for single-cell data.

3.1. Common modelling features

All models follow the CVAE framework (see Section 2.2). First, every model infers the variational pos-
terior p(z | D, c) and then learns the likelihood distribution p(D | z, ¢) where z represents the sampled
latent space. The input data D = {x,4, y,,.} contains the count data for RNA x and protein y modality for
each cell n across all genes g or proteins t. Furthermore, the model receives the categorical covariate
information c¢,, = {cp1, ., cy;} for i different covariates. The categorical covariates provide information
about the cell being used as input, i.e., cell type, population group, or perturbation. All models esti-
mate the likelihood distribution of the RNA data p(x, | z,, c,, 1,,) with a negative binomial distribution
NB(u, 6) where 6 defines the probability of success or failure and u decides whether 6 is a success or
failure. Previous research showed that the negative binomial distribution could model over-dispersion
and handle the limited sensitivity of gene expression data the best [33]. Note that the RNA likelihood
data in each model is influenced by an RNA size modeling factor ¢,,, also called library size. The library
size represents the sum of amplified mRNA molecules per cell. Initially, the RNA library size in scVI
and totalVl was modeled as a latent factor that is sampled from a LogNormal distribution V' (u, 62).
However, in the most recent implementation, the library size is treated as observed and set to the total
Unique Molecular Identifier (UMI) count of RNA. The following sections introduce the technical details
of the single- and multi-modality model.

3.2. Single-Modality Model

The single-modality model only receives information from one modality, the gene expression x.

Single-cell Variational Inference (scVI) model

scVI [21] defines a fully probabilistic approach developed for the normalization and analysis of scCRNA-
seq data. The model takes as input raw count data x,, with n cells and g genes and categorical
covariates c,,.

Figure 3.1 shows the neural network architecture of scVI and Equation 3.1 a simplified version of
the inference process. scVI uses a VAE framework by first learning the variational posterior p(z,,log! |
Xn, €n) and then generative model of the scRNA-seq data p(x, | z,, ¢y, l,,). During the inference pro-
cess, the variational posterior is approximated by two modeling components: 1) RNA size factor [ and
2) latent space z. Both modeling components consist of an encoder network that receives the gene
expression counts x,, and categorical covariates c,. First, the RNA size factor [, also referred to as
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Figure 3.1: Schematic of neural network architecture of scVI [21]. scVI learns the parameters for the RNA likelihood mod-
elling. The encoder learns a cell specific latent space representation z,, for the gene expression data x;, and categorical covari-
ates c,,. After that the sampled latent space z,, together with the RNA size modelling factor and categorical covariates, are fit
to the decoder D,, to learn the parameters p,, to model the RNA likelihood distribution.

the nuisance factor, is modeled as an observed factor depending on the RNA data x,, and categorical
covariates c,,. Next, the encoder network E, learns a lower-dimensional latent space z, for each cell
n. The inference process can be summarized by:

Uz, 07 = fEZ (xng' Cn)
Zn ~ N(uz, 07) (3.1)
€~ q(fn [ xn, Cn)

Both the prior and posterior distributions follow a logistic normal distribution (0, 1) with zero mean
and standard deviation 1. Next, the generative process uses the RNA size factor and latent space to
approximate the parameters of the likelihood distribution p(x, | z,,c,, 1,). As mentioned previously,
we use a negative binomial distribution for the likelihood modeling instead of the zero-inflated negative
binomial (ZINB) used in the original work [21] because current research shows that the ZINB distribution
over-represents zero counts [33]. The generative process is summarized in Equation 3.2. First two
decoder networks, the first network (D,,) approximates the expected frequency p,, and the second
network (Dy,) models the dropout r,, in each cell separately. The second network D;, is not necessary
for the NB likelihood modeling. Therefore, D;, is colored in grey in Figure 3.1 and not included in
equation 3.2. The generative process can be summarized as follows:

Pn = po (Zn, €n)

R 3.2
Xn ~ NB({)npn' Hg) ( )

with 6 denoting a gene-specific inverse dispersion factor.

3.3. Multi-Modality Models

The multi-modality models we use for predicting immune responses on CITE-seq data are cellPMVI
and totalVI. TotalVI [7] is an extension of the scVI model to analyze and integrate CITE-seq data.
This work uses an adaption of totalVl to benchmark cellPMVI. cellPMVI extends scVI to the multi-
modality domain by mixture-of-experts posterior integration. The main difference between the totalVi
and cellPMVI is their technique of representing the modalities in the posterior. TotalVI uses a single-
encoder for both modalities and jointly models them in the posterior space. On the other hand, cellPMVI
encodes each modality with a separate encoder-decoder pair. In that way, cellPMVI first represents
the modalities separately in the latent space and then performs MoE posterior integration for a joint
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posterior representation [31]. In summary, both models consider that RNA and protein measurements
are generated from the same latent space of cells. However, totalVlI assumes that RNA and protein
measurements have the same latent space characteristics while cellPMVI models shared and individual
latent space features for RNA and protein measurements.

TotalVI

TotalVI uses a probabilistic approach to learn a joint representation of paired transcriptome and protein
measurements in single cells. Figure 3.2 shows the neural network architecture of totalVI.

RNAssize modelling q(£n|xp, Yocp) ——————— i 777777777777
i [ ] RNAlikelihood
E P(xnlzn, £n, cn) E
| | Dg |pn |
| Xn | :
: L - :
! ~En| . -
] Exy | :
i Z !
L In ! E 0y |
- [Cn Dp | i
! Latent space modelling q(Zn|%n, Yn, ¢n) | 7. | Protein likelihood
PWnlzn, B cr)
Protein background modelling

q(Bnlzn, cn)

Figure 3.2: Schematic of neural network architecture of totalVl [7] totalVI learns the parameters for the RNA and protein
likelihood modelling. The encoder learns a cell specific joint latent space representation z,, over the gene x;, and protein expres-
sion data y, and categorical covariates c,,. After that the gene decoder learns the RNA likelihood distribution and the protein
decoder the protein likelihood distribution. Each decoder receives the latent space z,, and categorical covariates cy as input.
However, the gene decoder models the RNA likehood together with the RNA size modelling factor £,, and the protein decoder
in combination with the protein background £.

The input to totalVI is a concatenation of RNA x,,, protein unique molecular identifies (UMI) counts
v, matrices and categorical covariates c,. First TotalVI infers a low-dimensional cell representation
q(zy | Xu, Y, cn) and the RNA size factor q(L,, | x,, yn, ¢») (Equation 3.3).

Uz, 07 = fEZ (Xn, Yn €n)
Zn ~ N(Uz, 07) (3.3)
t~q(n | xn, )
The generative process of TotalVI consists of learning the protein background distribution q (8, |
Yn, €n) and likelinood distribution (Equation 3.4). TotalVI learns separate likelihood distributions for

each gene g (p(x, | z,, 1y, cy,) and each protein t (p(¥y, | 2y, Bn, ¢n)), modelled by a negative binomial
and negative binomial mixture respectively.

Bn ~ q(Bn | Yn,cn)
Ap, Ty = th (Zn, Cn)
v, ~ Bernoulli(m,)
Xn ~ NB({n0n, Hg)
In ~ NB(Un' Bn+ (- Un)ﬁnan’ d)t)

(3.4)
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Figure 3.3: Schematic of neural network architecture of cellPMVI. celPMVI learns the parameters for the RNA and protein
likelihood modelling with separate encoder-decoder pairs and a mixture-of-experts latent space joining. The RNA encoder-
decoder pair (Ex and Dy) is colored in green and models the RNA likelihood together with the RNA library size factor . The
protein encoder-decoder pair (Ey and Dy) is colored in blue learning the protein likelihood distribution together with the protein
size factor p.

cellPMVI

cellPMVlis developed for predicting perturbations using multi-modality data, specifically CITE-seq data.
The underlying idea for cellPMVI is to allow accurate representation of shared and private features
of the paired transcriptome and protein measurements. That means cellPMVI should overcome the
assumption of totalVI that both modalities can be reduced to a common latent feature space.

A generative modeling approach to learning shared and private information is the MMVAE (see
Section 2.2). The principle of MMVAE in the single-cell domain has been proven successful for the
cross-modality prediction of CITE-seq data in scMM [28]. In this work, we use the MoE integration from
MMVAE with the probabilistic modeling of CITE-seq data.

Figure 3.3 shows the architecture of cellPMVI. cellPMVI consists of two VAE pairs, one for each
modality. Each VAE pair is equivalent to a scVI component (Figure 3.1) without the dropout deocer
Dy. As explained in section 3.2 the scVI component consists of an encoder-decoder pair modeling
the latent space z and a scaling factor ¢, also called library size. cellPMVI uses a scaling factor for
both RNA and protein modality because Lopez et al. showed that the library size had a significant
contribution to the superior performance of scVI. For the RNA expression, the scaling factor again
represents the scaling of the RNA expression ¢ while the scaling factor for the protein represents the
protein scaling p. During the model development, we also considered modeling the protein background
(with the totalVI decoder), but the results showed that protein scaling performed better. To summarize,
the VAE pair for the RNA expression (E; and D;) is connected with an RNA size modeling component,
equivalent to the component in scVI. The protein expression VAE pair (E;, and D,,) is connected to a
protein size modeling component inspired by the scVI RNA size modeling component instead of the
protein background modeling component in totalVI.

The encoder of each modality component learns a latent space approximation of the given modality.
That means, the RNA encoder E, approximates the posterior for the RNA q(z,, | x,, ¢,;,) and the protein
encoder E,, for the protein expression q(z, | yn, c,). Then the MoE integration is used to approximate
a common latent space integrating the shared and single characteristics, by
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1
d¢ (Zn | Xp, Y, Cn) = E(Q(zx | Xn, cn) + Q(Zy | Yn, €n)) (3-5)

In cellPMVI both the Laplace and isotropic normal gaussian have been tried for the prior and pos-
terior distribution. Laplace has a heavier tail and is hence expected to fit outliers better. However, our
results showed that a isotropic normal gaussian prior slightly outperformed the Laplace prior. There-
fore, cellPMVI is used with a isotropic Gaussian for the experiment in this work. Besides that, the RNA
q(€ | xp, c,;) and protein size modelling factors q(p | x,, c;,) are learned during the inference process.

Hx, Ox = fEx (Xn, €n)
Uy, Oy = ny O €n)
0 = MoE(q(zx | Xn,n),q(Zy | Yn, Cy))
zy ~ N(u,0)
~q(€n | xn,n)
P~ q®n | Yn )

(3.6)

Lastly, during the inference process the MoE approximated latent space is used to learn both the
RNA and protein decoder for reconstruction. cellPMVI uses a negative binomial distribution for both
the RNA and protein likelihood distribution.

pXp = fDX(Zn' Cn)
PYn = ny(an Cn)
J%n ~ NB(¢npn, Qg)
In ~ NB(£npn, 6¢)
with 6 denoting a gene- g or protein t specific inverse dispersion factor. Note that, the MoE inte-

gration makes it possible to optimize a common ELBO value (Equation 2.8) for cellPMVI instead of an
ELBO value per modality.

(3.7)






The

Experimental setup

previous chapter explained the architecture of the single- and multi-modalities models we use for

perturbation prediction. In this chapter, we first introduce the general pipeline for our approach, after
which we go into more detail about each of the four steps that make up the pipeline.

4.1. General Structure
Figure 4.1 illustrates the general structure for immune response prediction. We execute the following

steps:

1. Data: First, we preprocess the data.

2. Training: Then the preprocessed data is subsetted according to one of the three training scenar-
ios. After data subsetting, one of the models (see Section 3) is trained for 400 epochs.

3. Reconstruction: The trained model is used to sample reconstructions of the gene expression
X' and for multi-modality models of the protein expression count Y'. There are three different
sampling strategies that we are using: a) posterior, b) prior and c) transfer predictive sampling.
Each sample ns,mp;. represents the reconstructed expression of one cell.

4. Evaluation: Lastly, we evaluate the sampled gene or protein expressions of the models. The
evaluation mainly focuses on i) the ability of the model to fit CITE-seq data, ii) how well the models
can reconstruct and predict gene expressions , i.e. evaluating if there is an added benefit of
multi-modality information instead of single-modality information, and iii) comparing multi-modality
models on their performance for protein reconstruction.

1) DATA 2) TRAINING 3) RECONSTRUCTION 4) EVALUATION
b Traini i Model: 1::;2? Z:viztrerior
S raining scenario scvl, «  transfer X « Correlation
RNAX | o or otalVl, = —»p — n _ .
?< vaors CtE”tP’\\/l/{” ‘°:|I|a:)'"’v'm predictive sampling (xlz) Msampte | Y e

Figure 4.1: Schematic of the immune response modelling process. First, the data is pre-processed and then split into
training and test set according one of the training scenarios. Then one of the three models, scVI, totalVI or cellPMVI, is trained.
Next, a predictive sampling scenario is used to learn the RNA or protein likelihood to retrieve n samples for RNA x,, or protein
expressions y,, . Lastly, the expressions are evaluated using correlation and highly variable gene count measurements.
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4.2. Dataset and preprocessing

This work requires a multi-modality dataset measuring immune responses for different adjuvant con-
ditions across populations. Therefore, this work uses CITE-seq data containing measurements for
transcriptomics and protein across each cell. The CITE-seq dataset is unpublished at the moment of
writing. In total the czi dataset consists of 26 616 cells, 143 proteins and 11700 genes and label anno-
tations about the e.i. cell type or population origin of the cell. The supplementary methods A.1 provide
a more detailed description of the single-cell sequencing analysis and annotation process of the czi
data. Every cell is annotated for:

* Population groups:

1. DK: Dakar (urban Senegal)
2. RT: Richard-Toll (rural Senegal)
3. LD: Leiden (urban European)

* Perturbation:

A) unperturbed: medium
B) perturbed: PMA/lonomycin (abbreviation: PI)

Individuals: each population group has two indiduals (DK = DK06,DK68; LD = LD254, LD276;
RT = RT55, RT162)

Cell type: B, CD4T, CD8T, DC, Monocyte, NK, non-conventional T cells (abbreviation: OtherT),
Platelet

See Supplementary Table B.2 for the exact number of cells available for each category of annotation.
Each annotation category can be used as a covariate ¢ during training. However, in this work, we focus
on exploring the conditioning of the model using the population groups, perturbation, and cell types as
covariates. We do not condition on individuals because of the limited amount of data.

Preprocessing
Before training the model, the data is preprocessed (Figure 4.1). The preprocessing ensures the re-
moval of lowly expressed genes and other outliers. This preprocessing step helps the model identify
important features without basing its prediction ability on outliers. the functions used for preprocessing
are from the scanpy package.

The preprocessing consists of three steps:

1. First, all low count genes are filtered out (all genes with a count lower than 3) with the £fi1-
ter genes function.

2. All top 5000 highly variable genes are selected with the highly variable genes function.
Selecting highly variable genes allows finding the genes that contribute the most to cell-to-cell
variation. Highly-variable gene selection is essential for the model to more easily capture variation
and define the features that will be the most variable between the perturbation conditions.

3. Lastly, in case any gene markers that belong to a protein marker were removed are added back
into the data.

4.3. Training

The model training proceeds according to one of the three different training scenarios in Figure 4.2.
A training scenario defines the subset of the data used for training and relates to a prediction task.
The first training scenario excludes no data subset (Figure 4.2a). That means, the model has seen
samples of each covariate condition information during training. Training scenario 1 can evaluate the
model’s capacity to learn the data’s underlying structure. In this work, we also use training scenario 1 to
explore under which training conditions a models performance might improve. For example, how does
the combination of covariates influence the model performance? For the second training scenario, the
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cells of one perturbed population group are withheld (Figure 4.2b). Training scenario 2 provides the
basis for OOD scenario 1 (Figure 1.2a), extrapolation to perturbed conditions. More specifically, training
scenario 2 investigates the model’'s ability to generalize perturbation responses across populations.
Lastly, the third training scenario is used for OOD scenario 2 (Figure 1.2b), exploring extrapolation to
new population groups (Figure 4.2c). For this scenario 3, the data points of one entire population group
are left out during training. Hence, during reconstruction, the model must generalize to an unknown
population group given the responses from other population groups.

YA J O 7

(a) Training Scenario 1 (b) Training Scenario 2 (c) Training scenario 3

Figure 4.2: Three different training scenarios used for the experiments. The dataset consists of three population groups
with each two individuals and two perturbation adjuvants (grey and red). Each training scenario includes a selection of the data
set. (a) Training scenario 1 includes responses from all individuals to every adjuvant. (b) In training scenario 2 the individual
responses of one population group (in this case population group 3 to the perturbed adjuvant B) are excluded. (c) In training
scenario 3 all individuals of one population group are excluded.

As mentioned previously, because of the limited amount of data, we use population groups rather
than individuals for the covariate conditioning of the models. By that, we assume that variation across
population groups is higher than variation across individuals.

Single-Cell Variational Inference Toolbox

The single-cell variational inference toolbox (scvi-tools) is a package for probabilistic modelling of
single-cell omics data Gayoso et al. scvi-tools provide a collection of models (e.g. scVI [21] and to-
talVI [7]) with the same interface and base component structure for probabilistic model development.
The standard interface across models allows for reuse of model components, and further development
of downstream tasks is possible. In this work, we modified the scVI and totalVI model implementation
and built the cellPMVI model using the scvi-tools framework.

MODEL MODULE BASE
COMPONENTS

scVI VAE ‘ Encoder ‘

Posterior pred. sampling Inference
Prior pred.samplng Generate | DecoderScvi |

main —

+ Train totalVI TOTALVAE ‘ EncoderTOTALVI ‘

0 (el Posterior pred. sampling Inference
o pred e Generative | DecoderTOTALVI |

Pre-coded

cellPMVI cellPMVAE ‘ EncoderCellPMVI ‘

;:’:;2?:;’;“3 or Posterior pred. sampling Inference
s e | DecoderCellPMVI |

Figure 4.3: Abstract structure of scvi-tools used in this work. The implementation follows the scvi-tools structure with models,
modules and base components. The boxes represent classes and the items in the boxes’ functionalities. The green components
or functions are extensions implemented in the context of this work, and the others are reused from scvi-tools. The illustration is
inspired by Figure 4 in [6].

Figure 4.3 shows the scvi-tools components used in this work, where the green-colored parts refer to
new implementation components. The three elements from scvi-tools used for our implementations are
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the i) model, ii) module and base components. The base components are the lowest level struc-
tures, defining the neural network elements, including their forward passes e.i. encoder and decoder
networks. Next, the module component implements the variational inference, defining the inference
(encoder) and generative process (decoder). The highest-level elements are the mode1 classes, defin-
ing actions on the lower-level components such as training, subsequent analysis, and evaluation steps
on the trained model. In this work, we define three different models:

1. scVI: The scVI model uses the VAE module (scvi.module.vae) with the Encoder and De-
coderSCVI from the base components class. In the model class we implement the prior and
transfer predictive sampling procedure and reuse the already existing posterior predictive sam-
pling procedure.

2. TotalVI: Similarly, to scVI, totalVI implements the TOTALVAE module which integrates the En-
coderTotalVI and DecoderTotalVI. Again, the posterior predictive sampling procedure for
TotalVl is already defined, but the prior and transfer predictive sampling are newly implemented.

3. cellPMVI: The cellPMVI model is a new component that uses the uses the ce 11 PMVIVAE module.
In the ce11PMVIVAE module the joint posterior integration with the 1oss function.

Lastly, all models can be trained using the multiple pre-coded lower level components such as
TrainingPlan, AnnDataManager and Mixins. These predefined components allow for flexible training
and adjustment of the model. Please refer to the paper from Gayoso et al. for more details about the
scvi-tools package.

Training and model parameters
We used the following training parameters:

* Nr. epochs: 400
+ Training set size: 80%
+ Validation set size: 20%

* Nr. epochs between validation check: 20
Additionally we used the following model parameters:

* Nr. latent dimensions: 20

* Nr. hidden layers: 2

* Nr. nodes hidden layer: 128
» Dropout: 0.1

+ Batch size: 128

4.4. Sampling reconstructions

The model aims to predict gene expression and protein counts of population groups to a given per-
turbation, more specifically adjuvant. One way to predict responses is by sampling a reconstruction
x' from the likelihood pg(x | z). This section, we will introduce three different techniques to sample
reconstructions from the model: posterior, prior and transfer predictive sampling. After that, section
4.5 provides an overview of matrices used to evaluate the quality of the predicted responses.

Posterior predictive sampling

Posterior predictive sampling aims to reconstruct the input data x as closely as possible. Figure 4.4
shows the posterior predictive sampling procedure:

1. First, the input data x and corresponding conditions ¢ are passed to the encoder.



4.4. Sampling reconstructions 23

2. The encoder returns the u and o of the input data specific posterior distribution g4 (z | x).

3. A sample from the latent space specific distribution is obtained: z ~ N(y, o).

4. The encoder receives the latent space sample z and conditions ¢ to model the likelihood pg (x | 2).
5. n samples are obtained from the likelihood representing the reconstructed data X'.

Posterior predictive sampling is used to perform posterior predictive checks (PPCs). PPCs are used
to validate the fit of a Bayesian model by comparing the sampled reconstruction to observed data [8]
Note that PPCs do not provide insight into how much the model has learned to generalize population
group responses because they have information from all the available data.

Decoder
>

c

Figure 4.4: Posterior predictive sampling. Based on the data X and categorical covariate c specific latent space z, the decoder
learns the likelihood distribution to reconstruct data X'.

Transfer predictive sampling

Ideally, the model should answer counterfactual questions like those introduced in Section 1.1. For
example, we want to predict the perturbed response from a population given the unperturbed response.
In that case, posterior predictive sampling is not applicable because it requires data input of the to be
predicted response, which is not available. Instead a reconstruction can be sampled using transfer
predictive sampling or prior predictive sampling (Section 4.4).

Figure 4.5 illustrates the flow for transfer predictive sampling. Note that the difference to posterior
predictive sampling is that the condition labels ¢ are adjusted when passed to the decoder. In Figure
4.5 this is illustrated through the color difference. Note that not all covariates in the condition need
to be changed. In this work, the conditions are usually adjusted for the perturbation covariate: from
unperturbed to perturbed. For example, given the unperturbed gene expression of a population 1, the
model will predict the perturbed gene expression of the population 1.

Summarizing the transfer predictive sampling proceeds as follows:

1. First, the input data x and corresponding conditions ¢ are passed to the encoder.

2. The encoder returns the u and o of the input data specific posterior distribution g4 (z | x).

3. A sample from the latent space specific distribution is obtained: z ~ N(y, o).

4. The covariates of interest, e.g. perturbations, are adjusted in the conditions c resulting in c'.
5

. The encoder receives the latent space sample z and adjusted categorical covariates ¢’ to model
the likelihood pg (x | 2).

6. n samples are obtained from the likelihood representing the reconstructed data X'.

Note that the transfer predictive sampling only differs from the posterior predictive sampling in the
additional step 4, where the conditions are adjusted.

Prior predictive sampling

As mentioned in the previous section, the prior predictive sampling offers another possibility to re-
construct gene expressions of previously unseen conditions. Besides that, sampling from the prior
evaluates how suitable the prior is to represent the data set. As shown in Figure 4.6 this sampling
procedure only requires the decoder network. That means, z is sampled from the prior distribution p(z)
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Decoder
>~

c

Figure 4.5: Transfer predictive sampling. The latent space is sampled given the data X and categorical covariate c. Then the
categorical covariate gets adjusted ¢’ to reproduce data x’ which is different to the input data x.

instead of the variational posterior g4 (z | x). In the case of scVI and totalVI the prior distribution would
be the isotropic normal Gaussian distribution and for MMVAE the Laplace distribution.
The steps for the prior predictive distribution are:

1. Sample from the prior distribution: z ~ p(z) and set the RNA size factor [, to a constant

2. The encoder receives the latent space sample z and categorical covariates c of interest to recon-
struct to model the likelihood pg (x | 2).

3. n samples are obtained from the likelihood representing the reconstructed data X'.

XI

Decoder

p(2)~z
|

Figure 4.6: Prior predictive sampling. The decoder predicts data x from the latent space, sampled from the prior distribution
p(z), and categorical covariate information c.

4.5. Evaluation metrics

To understand how reliable the models predictions are, the models are evaluated on their loss values
and quality of sampled reconstruction through correlation and highly variable gene count prediction.

Loss and KL divergence

The training and validation losses of the i) ELBO, ii) Reconstruction loss (RL) and iii) KL divergence
(KLD). The validation loss is calculated on 20% of the data not included during training. We expect the
ELBO and RL to decrease during model training showing that the model learns to represent the data
better. For the KL divergence, is it common to first rise as the model can substantially improve its loss
by reducing the ELBO and RL. Then, only after some epochs the model brings the posterior distribution
closer to the prior distribution to reduce the KL divergence. Note that these values do not necessarily
provide insight into the quality of the model’s performance but are used to validate that the model is
training without overfitting.

Correlation

To evaluate how well the predicted data fits the features of the original data we calculate the correlation.
More specifically, the Spearman’s rho correlation is calculated. The Spearman’s rho is suitable because
it accounts for non-linear relationships in the expression values. If the correlation is non-zero then that
means that the genes are co-regulated. In case, the correlation is 1.0 the predicted data fits the original
data most accurately.

Given the true x,t[g“e and predicted xﬁge‘i gene or protein expression profile with n number of cells
and g number of genes or p number of proteins. We want to compare the gene and protein expression
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for each gene or protein instead of cells because cell measurements are unpaired while genes are
paired. Therefore, the mean and variance are calculated across all cells, resulting in two g long mean
and variance arrays. After that we calculate the pairwise correlation between the true and predicted
mean or variance arrays:

corr, (xtTe, xPred) = corr (meann(x,%“e),meann(xﬁgm) 4.1)
corry (xtT¥e, xPred) = corr (varn(xffgue), varn(xﬁzed) (4.2)

For the protein correlation Equations 4.1 and 4.2 would be calculated for the proteins t instead of
genes g.

Common highly variable gene count

Comparing the selection of highly variable genes (hvg) from the true and predicted gene expression
counts provides insight about whether the model learns which cells have the most influence. The
higher the number of common hvg the better the model captures which genes contribute most to the
gene expression profile. For the comparison the 1000 most highly variable genes are selected from
the true and predicted count matrix and the number of common hvg calculated, ignoring the hvg rank.

4.6. Implementation

The model was implemented using Python 3.9 with PyTorch and the scvi-tools package [6]. For data
preparation and preprocessing the annotated dataset format [36] and scanpy package was used.






Results

The evaluation focuses on comparing the performance between single- and multi-modality models (RQ
1) as well as the complexity of generalization that is possible (RQ 2). To answer the second question
(RQ 2) we perform experiments according to the three training scenarios (see Section 4.3), each evalu-
ating the models for a different generalization complexity. We consider that training scenario 1 requires
a minor generalization, and training scenario 3 requires the highest generalization. Furthermore, model
performances between i) single- and multi-modality models and ii) multi-modality models (totalVI and
cellPMVI) are compared. All experiments with scVI only include the gene data, while experiments with
totalVI and cellPMVI fit the gene and protein counts. The evaluation metrices from Section 4.5 are used
for experiments evaluation.

5.1. cellPMVI best fits the CITE-seq data
(Training scenario 1)

Training scenario 1 does not evaluate the models’ ability to generalize to unseen covariates because
all covariate combinations are included in the training data set (Figure 4.2a). As no generalization
is required, training scenario 1 checks how well the models fit the data set and how certain training
conditions influence the model performance.

The performance of probabilistic models, such as scVI, totalVI and cellPMVI, depends on how well
they fit the underlying data distribution. Validation of the model performance in training scenario 1 uses
the loss values and posterior predictive sampling. First of all, the final training and validation losses are
much lower than the initial values meaning that the model learned a compression of the underlying data
distribution (Supplementary Figures C.3, C.4 and C.5). Additionally, the training and validation values
did not start to spread apart again, suggesting that no overfitting occurred. Note that, the final ELBO
(Supplementary Figure C.2a), RL (Supplementary Figure C.2b) and KL-divergence (Supplementary
Figure C.2c) of the three model is lowest for our model (cell PMVI). Thus, the results indicate that all
models learned to fit (part of) the data.

After verifying that the models have learned something, the following sections will use the posterior
predictive sampling to analyze the quality of fit more in detail.

Posterior predictive sampling performs best when conditioning on two covari-
ates

The correlation between the posterior predictive sampled and actual gene and protein expression in-
dicates how well each model fits the data (Figure 5.1). For Training scenario 1 we calculate the corre-
lation for four different run settings: In the first run setting, the models use three different categorical
covariates and, for the other three, a combination of two categorical covariates. Figure 5.1a shows the
correlation mean values for the true and sample gene and protein values for each run setting in Table
B.3. Together with the correlation variance (Supplementary Figures C.6a and C.6b) this indicates of
how well the mean-variance relationship across genes is preserved.

27
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Figure 5.1 shows correlation mean between the predicted and true gene expression under posterior
predictive sampling. The correlation mean is calculated for all cells with the same population group,
adjuvant and cell-type annotation (see Supplementary Table B.4 for values). Figure 5.1 shows that the
average correlation mean is approximately equivalent (0.93 —0.99), but not the spread of the correlation
mean values. The correlation mean spread is the highest for three categorical covariates and the
least when training with population group and adjuvant as covariates. The correlation variance has
approximately the same average of 0.9 — 0.98 and a similar spread of 0.01 — 0.11. We can conclude
from the high correlation values that all models can replicate gene expression data with their maintained
properties. Still, the covariate combination of population group and adjuvant outperforms the other
combinations.
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Figure 5.1: Boxplot showing the correlation mean for posterior predictive sampling for each model across four run
setting (training scenario 1). The correlation mean is calculated across all cells with the same population group, cell type and
adjuvants combination (47 correlation means). The correlation means are clustered per run settings. Each run settings differs
from each other in the number of covariates the model is conditioned on (Table B.3). Subfigure (a) shows the correlation mean
for the RNA expression sampling and (b) for protein expression sampling.

Figure 5.1b shows the correlation mean between the predicted and true protein measurements un-
der posterior predictive sampling. The correlation mean difference of protein expression reconstruction
is much higher than for the RNA (see Supplementary Table B.5 for values). For cellPMVI the average
correlation mean for protein reconstruction is slightly higher (~ 0.95 to 1.0) than for RNA reconstruction.
On the other hand, the average correlation mean for totalVI is much lower (0.3 to 0.35). Likewise, the
average correlation variance of totalVl is worse (—0.4 to —0.35) than for cellPMVI (~ 0.96) (Supple-
mentary Figure C.6). In contrast, the spread of the correlation mean values is equivalent to the RNA
expression reconstruction spread (0.01 to 0.11) for both cellPMVI and totalVI. Overall, the results show
that cellPMVI clearly outperforms totalVI in the reconstruction of protein measurements.

The quality of fit and the number of cells for training available are positively
correlated.

The dataset contains cell measurements from various conditions, i.e. population groups, cell types
and adjuvant perturbations. Due to potential variation of expression values across cells, specifically
regarding the conditions, it can be that the model fits some parts of the data better than others. Hence,
here we are interested in differentiating between less and more favorable conditions for model learning.
More specifically, we addressed the questions: 1) Is the modeling process of some sub-conditions
easier than for others? And 2) how does the number of categorical covariate conditions impact the
modeling process? This information will optimize the modeling process for training scenarios 2 and 3
to increase the prediction accuracy.

In Section 5.1 we showed that the correlation mean for RNA reconstruction using PPS has overall
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good performance. At the same time, Figure 5.1a showed a large spread with outliers. To identify
whether these outliers have the same origin we plotted the correlation mean from cellPMVI trained
with conditioning on all covariates (run setting one) for all covariates in Figure 5.2. Figures 5.2a and
5.2b show the population group’s influence and adjuvant influence on the correlation mean is minimal.
However, Figure 5.2c shows that the correlation mean for the seperate cell types is lower for Platelet
(around 0.7) and the other cell types (all higher than 0.9). A possible reason for this could be that Platelet
are underrepresented in the dataset making up only approximately 0.5% (295 cells) of the data (Table
??). The trend of less represented conditions having a lower correlation mean can also be observed
for the other conditions but to a lower extent. For example, RT has a slightly lower correlation mean
than DK and LD. When comparing that with the amount of data points available, RT is less represented
in the data (about 20% - 5698 nr. of cells) than LD and DK (about 40% (LD: 10848 and DK: 10848
nr. of cells) . The same relation between the number of cells and correlation mean holds for scVI and
totalVI (Supplementary Table B.6)
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Figure 5.2: The number of available cells per categorical condition impact the correlation mean. Posterior predictive
sampling results from cellPMVI under run setting one in training scenario one. For each condition the correlation mean is
cacluated across all cells (22k) averaged across the conditions of the categorical covariates of interest ((a) Population group, (b)
Adjuvant or (c) Cell type).

Additionally, the previous section demonstrates that the PPS also varies for the number of categor-
ical covariates the model is trained on. We summarized that the correlation mean and variance are
overall better for training with two covariates instead of three. From the previous and this section, we
can see that the correlation mean and variance is highest the more cells are available for the training
condition. Hence, the model’s quality of fit improves when more cells are available for a training con-
dition. The same relation between the number of cells and correlation mean holds for scVI and totalVI
(Supplementary Table B.6)

5.2. cellPMVI is suited for predicting protein measurements and

transcriptome data

(Training scenario 2 and 3)

The previous section shows that all models fit the CITE-seq data but that cellPMVI models the gene and
protein expression the best. Moreover, the results show that the amount of available data influences
the fit. For example, we showed that the model fits cell types with fewer data measurements (i.e.
Platelet cells) less well and that conditioning on more covariates ¢ decreases the model’s fit to the
data. Therefore, the models in training scenarios 2 and 3 are only conditioned on the population group
and adjuvant because there is not enough data to include more covariates. By limiting the number of
categorical covariate conditions, we hope to increase the data availability per condition and overcome
inaccurate generalization and uncertainty emerging from little data availability.

This section aims to answer the research questions posed in the beginning: To what extent can we
predict responses for unseen perturbations across populations? (RQ 1) and How does multi-modality
information impact the modelling and prediction performance? (RQ 2). For question RQ 1 we focus on
the difference in prediction performance between training scenarios 2 and 3. Furthermore, for the sec-
ond research question, we will analyze the prediction of single-vs multi-modality models and between
the multi-modality models. Because we are interested in the prediction performance, we will use prior
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and transfer predictive sampling instead of posterior predictive in the previous section.

Library size is an important component for modelling the data

The library size factor is a nuisance factor that influences the likelihood distribution of the RNA q(x;, |
Zn, €, ¢) and protein q(y, | z,, pn, ¢n) data. For posterior and transfer predictive sampling, the library
size is estimated from the data passed to the encoder. No such estimation can be made for prior
predictive sampling because no data is passed to the encoder. Therefore, the library size is manually
set to a constant value (see Section 4.4). The size of the library factor influences how well the likelihood
distribution describes the actual underlying distribution of the data.

Figure 5.3 illustrates the effect of the RNA or protein library size on the average and standard
deviation of the respective predictions. The correlation mean of the predictions for library sizes of 0, 1,
4,7 and 10 are shown. Figure 5.3a shows how the RNA size factor ¢ effects the correlation mean. First,
note that the correlation mean of scVI and cellPMVI is higher than for totalVI. That means, scVI and
cellPMVI are superior at modeling the RNA likelihood distribution. Furthermore, Figure 5.3a illustrates
that increasing library size to 10 increases the correlation mean and decreases the correlation variance
for all models (Supplementary Table B.7). The average correlation value for scVI and cellPMVI shows
a steeper increase than for totalVI, meaning scVI and cellPMVI RNA likelihood distribution are more
strongly influenced by the library size factor. Additionally, Figure 5.3b shows the influence of the protein
size factor for the protein likelihood modelling of cellPMVI. First, the starting correlation mean value
is higher for proteins (~ 0.71) than for RNA (~ 0.26). At the same time, the standard deviation of
the correlation mean is almost double as high compared to RNA, about ~ 0.21 for protein and RNA
(~ 0.11). The higher standard deviation of the correlation mean might imply that protein features are
more distinct from each other even though the underlying distribution of some protein measurements is
easier to capture. Potentially due to the less available number of UMI proteins or because protein data is
less sparse than RNA. Moreover, the best performance according to the correlation value is at a library
size of 7 and 10. Hence, to avoid overfitting, the library size for the RNA and protein reconstruction is
set to 7 for prior predictive sampling.
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Figure 5.3: Influence of the library size of RNA ¢ and protein p on the average correlation mean and variance of the
prior predictive sampling performance. Models: scVI (yellow), cellPMVI (green) and totalVI (red). The average (cross) and
variance (line at cross) of the correlation mean for the library size values of 0,1, 4,7,10. The results are calculated for all data
points for (a) gene expression and (b) protein expression reconstruction.

Transfer predictive sampling enables OOD prediction of perturbed gene expres-
sion
We use training scenario 2 to answer the second research question about how well the models can
extrapolate to new adjuvants, in this case the perturbed condition (adjuvant PI). Table B.8 shows the
training conditions for training scenario 2. The model covariates are the population group and adjuvant.
As shown in Table B.8 the perturbed data of each population group was once left out, representing the
OOD condition. The models ability to extrapolate to new conditions is measured by the prediction
performance of the left-out perturbed gene and protein expression.

Figure 5.4 shows the boxplots of the correlation mean calculated between the true and prior or
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transfer predictive sampled gene expression for the excluded data subset, perturbed condition (PI) of
each population group. Subfigure 5.4a) shows the correlation mean for the prior predictive samples and
b) for the transfer predictive samples. The correlation mean is higher for transfer predictive sampling
(~ 0.7 — 0.75) than prior predictive sampling (~ 0.05 — 0). Compared to that, when predicting for
the unperturbed condition that was included in the data during training, the prior predictive sampling
(~ 0.8 — 0.99) outperforms the predictive transfer sampling (~ 0.7 — 0.8), see Table B.9. Thus, only
transfer predictive sampling is suitable for predicting the gene expression responses for new adjuvants.

Figure 5.4 shows no remarkable difference across populations or models when performing OOD
prediction. More specifically, the difference between correlation means for each population group is at
most 0.04 for prior and transfer predictive sampling. From the results, we can not conclude whether the
generalization across African population groups (DK and RT) is better than the European population
group (LD).

Lastly, Figure 5.4 shows that while scVI slightly outperforms totalVI and cellPMVI for transfer predic-
tive sampling, it performs equivalent for the prior predictive sampling. That means that single-modality
data is sufficient for predicting gene expression values.
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Figure 5.4. Boxplot showing the correlation mean between the true and prior and transfer predictive sampled gene
expression for the OOD perturbed population groups (training scenario 2). The correlation mean is calculated across
all cells with the same population group, either DK, LD or RT, and adjuvant, Pl (8 data points per model). For each left out
population group the correlation mean of every model (scVI: left, totalVI: middle, celPMVI: right) is shown. Subfigure (a) shows
the correlation mean for the prior predictive sampling and (b) for transfer predictive sampling.

cellPMVI outperforms totalVI for protein measurement prediction

The multi-modality models, totalVl and cellPVMI, are additionally compared on their protein expression
prediction performance using training scenario 2. Figure 5.5 shows the average correlation mean
values for the reconstruction of protein measurements for the prior and transfer predictive distribution
(see Supplementary Table B.10 for exact values).

Figure 5.5 shows that cellPMVI clearly predicts the protein measurements better than totalVI for
both, prior and transfer predictive sampling. The correlation mean average for cellPMVI (~ 0.9) is
almost four times as much as for TotalVI (~ 0.25). Compared to the gene expression prediction (Section
5.2), there is no significant difference between the prediction quality of prior and transfer predictive
sampling. Additionally, the correlation mean difference between the non-OOD (medium) and OOD
prediction (PI) scenario is not as large as for the gene expression. Most interestingly, the correlation
mean for the OOD is slightly larger than for the non-OOD prediction. Lastly, there is no noticeable
difference in the reconstruction quality across populations, equivalent to what has been observed for
the gene expression prediction (Figure 5.4). Again a similar trend can be observed for the correlation
variance.

Predicting expression ranks is better than count prediction

In this section we are interested in investigating the gene-to-gene correlation between the predicted
and original expression instead of comparing the correlation mean of conditions. We are predicting
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Figure 5.5: Boxplot showing the correlation mean between the true and prior and transfer predictive sampled protein
expression for the OOD perturbed population groups (training scenario 2). The correlation mean is calculated across all
cells with the same population group, either DK, LD or RT, and adjuvant, PI (8 data points). For each left out population group
the correlation mean of every model (scVI: left, totalVIl: middle, cellPMVI: right) is shown. Subfigure (a) shows the correlation
mean for the prior predictive sampling and (b) for transfer predictive sampling.

the perturbed gene expression values with cellPMVI using transfer predictive sampling and the training
scenario with population group LD excluded because this has performed best for extrapolation of new
adjuvants.

When plotting the correlation values of original and reconstructed against each other we observed
that there is one outlier with almost three times as high expression value compared to the other genes.
The genes that are sampled too highly are either MALAT1 or FTH1. Because the genes have a higher
count than the other genes cellPMVI seems to overrepresent them as well in the modelling process. In
Figure 5.6b the genes MALAT1 or FTH1 to provide a better overview of the other genes.

Figure 5.6a shows that the higher the original count value is the more the value of the predicted
gene expression gets overestimated. While the prediction of the exact value seems to get harder with
higher expressed genes, Figure 5.6b shows that the rank gets equally well predicted across all gene
expression sizes. Thus, cellPMVI estimates the gene expression ranks better than the actuall gene
expression values.
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Figure 5.6: Correlation between predicted and original gene expression values and ranks (Training scenario 2). The
predicted perturbed values are either transfer predictive sampled from the training population group with LD excluded. The left
plot shows the correlation of the gene expression values (a) and the right the gene expression ranks (b).
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Table 5.1: Common highly variable gene (from 1 000) for transfer predictive sampling with left out LD population group.

Adjuvant | DK | LD | RT
medium | 618 | 606 | 620
PI 614 | 576 | 616

OOD prediction of RNA expression does not work for novel population groups

The evaluation of the models for extrapolation to adjuvants shows that transfer predictive sampling
is best suited for OOD prediction and that cellPMVI outperforms the other models. In addition to the
extrapolation to adjuvants the OOD prediction performance is evaluated on the ability to extrapolate to
novel population groups. For the OOD prediction evaluation for novel population groups we trained the
models with the training set excluding one population group at a time. To be able to perform prediction
for new population groups the population groups are not included as categorical covariates. Instead
the models are trained with categorical covariates: 1) adjuvant and cell type and 2) only adjuvant. The
Figures in this report show the results for the second conditioning, only on adjuvants, to be able to
compare it to the previous results that have also not been conditioned on the cell type. After training
the correlation mean and variance for the prediction of the perturbed gene and protein expression of the
withheld population group are calculated. Here we show the correlation values from prior and transfer
predictive sampling for cellPMVI.

Figure 5.7 shows the correlation mean of the perturbed RNA expression for each excluded pop-
ulation group (see Supplementary Table B.11 for the average correlation mean values of all models).
Figure 5.7 shows that the prediction using prior predictive sampling is higher than for transfer predic-
tive sampling and that the correlation mean for LD is highest and for DK the lowest for both sampling
scenarios. Note that the correlation values for medium and PI condition are approximately equivalent
(see Table B.11). That means the model does not seem to learn a difference when only conditioning
on adjuvants. As mentioned before we also trained the models using two conditioning factors, cell type
and adjuvant. When conditioning on adjuvant and cell type the correlation mean is higher for larger
cell types such as B cells (~ 0.08), CD4T(~ 0.065) and CD8T (~ 0.075) cells. However, overall the
correlation mean for this OOD prediction is much smaller than for the extrapolation to new adjuvants.
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Figure 5.7: Correlation mean of cellPMVI for gene expression (training scenario 3). Comparison of the correlation mean
for each excluded population group given a) prior predictive sampling and b) transfer predictive sampling.

Next, Figure 5.8 illustrates whether extrapolation to a population group can is better than to another
and if prior or transfer predictive sampling is better suited for this OOD prediction. Figure 5.8 shows
higher correlation mean values are achieved with prior predictive sampling (~ 0.94). Besides that the
correlation means differ at most 0.01 across population groups. Furthermore, cellPMVI achieves a
higher correlation mean for the prediction of protein expressions compared to totalVl 0.2 — 0.3. Note
that there is again no performance difference between the prediction of perturbed and unperturbed
expressions. Thus, the extrapolation of novel population groups protein expressions is possible with
cellPMVI using prior predictive sampling.
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Figure 5.8: Correlation mean of cellPMVI for protein expression (training scenario 3). Comparison of the correlation mean
for each excluded population group given a) prior predictive sampling and b) transfer predictive sampling.



Discussion

Currently, no computational method can predict perturbations for multi-modal single-cell data. There-
fore, we designed cellPMVI to model and predict immune responses across populations given multi-
modal single-cell data. More specifically, the goal was to evaluate the prediction performance of cellP-
MVI to answer counterfactual questions and whether multi-modality information improves the modeling
compared to single-modality. cellPMVI was evaluated on CITE-seq data to predict immune responses
across populations. The results show that cellPMVI can model and predict perturbed gene and pro-
tein counts. Nevertheless, analysis indicates that information about a population-specific response
improves prediction performance. In this section, we will discuss some of the results in more detail and
compare our results to related research.

6.1. Out-of-distribution prediction

The first focus of this work was to investigate whether the models can perform OOD prediction (Q1).
More specifically, we consider two OOD prediction scenarios, each representing a different degree of
generalization: 1) extrapolation to adjuvants and 2) extrapolation to novel population groups.

The OOD prediction for the first scenario is less complex than for the second scenario because the
training data set included at least the unperturbed conditions of the population groups. For the first OOD
prediction scenario, cellPMVI could accurately predict both the gene expression and protein expression
with transfer predictive sampling. However, cellPMVI failed to predict the measurements with prior
predictive sampling. That means, prediction is impossible without any latent space information about
the to-be-predicted measurement.

We can make a similar observation when looking at the results for the second situation, extrapolation
to novel population groups. In the second OOD scenario, gene expression prediction was impossible
for either prior or transfer predictive sampling. This confirms our previous statement that latent space
information is necessary for prediction. Generally, itis a known problem that OOD prediction for entirely
new data distribution is difficult. Therefore, many models, such as CPA [23], focus on OOD prediction
for the first and not the second scenario. For example, CPA predicts drug responses for new dosages
but not new drugs. However, there is no comparison between the success of OOD prediction for genes
compared to proteins. By looking into the reasons for this difference, one might be able to identify the
problem point and potentially improve the gene expression OOD prediction.

Interestingly, while OOD prediction was unsuccessful for gene expression prediction, it was possible
to predict proteins. The successful prediction of proteins could be due to various reasons. For example,
it might be that protein expression responses require less complex distributions because there are
fewer proteins (164) compared to genes (5 000) in the training data. Furthermore, protein data is more
expressive (less sparse), which could improve the modeling of the data as the many zero counts in RNA
data provide one of the main difficulties in single-cell modeling. Lastly, population groups might have
more similar protein expressions than gene expressions and, therefore, easier to model. However,
a more detailed investigation of the OOD prediction for genes compared to proteins is required. By
looking into the reasons for this difference, one might be able to identify the problem point and potentially
improve the gene expression OOD prediction.
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6.2. Single- vs multi-modality information

The second research question (RQ 2) addresses the impact of multi-modality information on immune
response modeling. To evaluate the influence of multi-modality information, we compare the modeling
quality of the gene expression data as this can be modeled by both the single-modality (scVI) and multi-
modality (totalVI and cellPMVI) models. We hypothesize that immune response modeling is better for
multi-modality models than single-modality models (H1) because the proteomics data adds information
unavailable from transcriptomic measurements alone.

The results indicate that scVI, totalVIl and cellPMVI model the gene expression responses equally
well, given posterior predictive sampling (Figure 5.1, C.6). This is in line with results reported in [7]
where the posterior predictive sampling results in a relative log-likelihood for RNA data for both totalVI
and scVI. Because of the already high prediction performance for gene expression measurements, it
is unclear whether the prediction benefits from additional modality information, such as protein data.
Therefore, we currently do not have enough evidence to reject or accept our hypothesis about the
added value of multi-modal data (H1). Further experiments could help to understand the influence of
multi-modal data on the model prediction. For example, one could introduce noise to the RNA dataset,
i.e., by removing a gene from the RNA data and shuffling the data, and then predict the expression with
and without the information of protein data. If the protein data supports RNA expression prediction,
then the prediction quality should be higher with the protein data.

Although we can not provide clear evidence that multi-modal data benefits the prediction of gene
expression (H1), the ability of cellPMVI to predict protein counts in conjunction with gene expression is
highly valuable. For example, considering that protein measurements are relevant for annotation of cell
types, which information is used to train all models, the multi-modality models provide the advantage
of reconstructing these protein counts for gene expression across populations compared to single-
modality models.

6.3. Protein measurements

Our results illustrate that cellPMVI predicts protein counts more accurately than gene expressions. This
observation is not surprising because proteins are pre-selected by their representation of the immune
effects. Therefore, it is easier for the model to summarize the features in a low-dimensional space.

Interestingly, our results show that totalVI performs less well at protein modeling than gene mod-
elling. When comparing our results with the original results from [7] we see the same observation,
namely that genes have a higher posterior predictive mean than proteins (Extended Data Fig. 2a,b,d
in [7]). The inferior performance of totalVI for protein modeling compared to gene modeling suggest
that totalVIl can not capture the protein features as well in the latent space as the gene expression
features. This might imply that totalVI can fails to capture the distinct range values of gene and protein
expression.

On the other hand, the cross-modal prediction from protein-protein or transcriptome-protein in [28]
shows a similar high correlation (Figure 2g in [28]) as in our results for cellPMVI. Hence, the results
suggest that the MoE integration from MMVAE [31] has a better latent space integration for multi-
modalities than the joint posterior modeling approach in totalVI.

6.4. Library size

The library size approximates the relative size of a cell because the number of RNA transcripts and
protein molecules scales with the size of a cell [26]. Both scVI and totalVI, use the library size for
scRNA-seq data modeling as a nuisance factor reflecting a combination of sequencing depth and cell
size. However, [7] have decided against taking protein library sizes into account because they believe
that the biased sampling procedures for proteins do not approximate the relative size of a cell. In
cellPMVI we decided to model the library size for proteins because of the significant consequence it
had on the quality of RNA modeling reported in [21] and can be observed in Figure 5.3a. Considering
the results from [7] (Supplementary Figure 10 in [7]) show that the impact of the protein size library
differs per cell type, meaning that the protein library size value has more impact on some cell types
than others. Investigating which cell types are most accurately represented for the protein library size
could further improve the prediction of protein expression in cellPMVI.
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6.5. Interpretability

Currently, cellPMVI is mainly evaluated on the quality of the decoder output. To increase the confidence
about cellPMVIs performance, i.e., in answering counterfactual questions, it is necessary to consider
which underlying features the model learns. However, a common problem with VAE-based models
is their black-box behavior, limiting the interpretation of the latent space. The limited interpretation of
the latent space makes it hard to observe represented features in the latent space. Consequently,
the ability to use a method’s parameters or apply them in further downstream analysis is restricted.
Increasing the interpretability of the latent space is essential to enhance the confidence in a model’s
performance and use it to directly or indirectly answer questions like: ‘Which cell type responds the
most to perturbation?’ or ‘Which cell type responses vary across population groups?’ Thus, analyzing
the interpretability of the latent space would increase confidence in the performance of cellPMVI.

Disentanglement is one common way to improve the latent space’s interpretability. In a disentan-
gled latent space, a single dimension is linked to a single generative feature [25]. cellPMVI disentangles
latent features by approximating an isotropic Gaussian or Laplace prior. Both priors are invariant to
rotation and therefore encourage the latent variables to take on a meaningful representation [27]. From
the low KL divergence of cellPMVI (Supplementary Figure C.2c) we can assume that the prior is ap-
proximated sufficiently close in the latent space suggesting disentangled features. Nevertheless, the
problem remains that we do not know what features a latent dimension represents. Understanding
which sources of variation are disentangled in the latent space would not only improve the trust in
cellPMVI but also make it easier to perform prediction tasks. Additionally, it could help us learn more
about the underlying biology by comparing shared and private features between the domains.

6.6. Benchmarking

At the moment, there are no models that perform perturbation prediction on multi-modality data. There
are, however, models that either integrate multi-modalities (e.g. totalVI [7]), cross-predict modalities
(e.g. scMM [28]) or predict perturbations on single-modality data (e.g. CPA [23], chemCPA [10]).
Hence, any model requires an adjustment to be adequate as benchmarking model.

We decided to benchmark cellPMVI against the CVAE versions of scVI and totalVl with new im-
plementations for the prior and transfer predictive sampling to predict unseen cell responses. Note
that neither of these models are originally made for predicting unseen perturbations, which could be a
potential reason for e.i. totalVls inferior performance for protein prediction. Nevertheless, our results
show that cellPMVI also outperformed totalVI for the posterior predictive sampling, a task totalVl was
designed for.

We also considered benchmarking cellPMVI against the other models mentioned above. CPA
seemed most promising, but it can predict responses to unseen drug dosages rather than new drugs.
This restriction is due to the embeddings that CPA uses. If a drug combination was not present dur-
ing training, the model did not create an embedding for the combination; hence, it cannot predict this
combination later on. Consequently, adjusting CPA for benchmarking would require multi-modality inte-
gration and changing the embeddings to allow for unseen perturbation predicition. Next, we considered
chemCPA, which builds on top of CPA. chemCPA aims to predict unseen compounds. However, chem-
CPA does not integrate multi-modality data, and its purpose of encoding a drug’s molecular structure is
not required for the goal of this work. Furthermore, scMM is an extension of MMVAE without being able
to model the specific biological factors of RNA and protein. Considering the library size’s advantage
on the modeling process as described in [21] and shown in Figure 5.3 we decided that benchmarking
against models including this factor is more valuable. Nevertheless, it would be interesting to support
the hypothesis of the library size by benchmarking cellPMVI against scMM.

6.7. Limitations

The generalizability of the results is limited because all experiments are conducted with the same
dataset (see Section 4.2). This dataset has some pitfalls. First, the dataset is relatively small in that
it only includes two individuals for each population group. Our results suggest that the modeling and
prediction performance would improve with more data points per population group. Secondly, the data
set includes only one perturbed condition. Training with a dataset that includes more perturbation
measurements is required to analyze the OOD prediction performance better. Lastly, all data was
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measured in one lab. That means the model learns from homogenous data, likely not containing batch
effects. Testing how well the model can generalize perturbations from a heterogenous dataset would be
interesting for further validation. If this is successful, then this provides an opportunity for the model to
train with more data, e.i. more individuals per population group. Although training cellPMVI on a larger
dataset or a combination of different datasets would increase the confidence in the model’s prediction
performance, the current results do not suggest that the model can not do that.

We predict all OOD prediction scenarios for population group, ignoring individuals in the data set.
That means, we implicitly assume that individual differences within one population group are more
diminutive than across population groups. Ideally, one should account for individual differences as
well. However, in this work, we decided against modeling individual differences due to the lack of in-
dividual data points per population group. While this assumption might impact the modeling, which
would impact the generalization, research suggests that immune responses vary more across popula-
tions than within.

Lastly, all models use the same hyperparameters for all training scenarios (see Section 4.3). These
parameter values are based on the suggestions in [21] and [7]. Although we show that cellPMVI fits
the data with these parameter values, we believe that the model performance can be further improved
with a specific hyperparameter selection. Especially, the optimization of latent dimensions size can be
critial when training VAE based frameworks ([21], [7], [4]).



Future work

The experimental results and discussion in this work suggest various opportunities for future research
in different directions. In this section, we will pick up some of these directions and propose specific
adjustments that could lead to improvements or additions to cellPMVI.

7.1. Loss function of cellPMVI

As described in the methods (Section ??), cellPMVIwas implemented with the basic ELBO loss function
(Equation 2.8). However, [31] show that a more accurate joint posterior can be learned using the doubly
reparameterized gradient (DReG) estimator. The DReG estimator [34] offers a tighter lower bound
(with a lower variance gradient estimator) compared to the ELBO loss used in this work. An improved
lower bound estimate might make it possible to represent the different underlying distributions of the
population groups better.

7.2. Cross generation for OOD prediction

Currently, cellPMVluses an expert for each modality to perform multi-modality prediction. That means
the joint latent posterior space captures shared and individual features from RNA and protein measure-
ments. Instead of modeling the features of the RNA and protein measurements, it would be interesting
to consider modeling the population group-specific responses. To model population, group-specific re-
sponses cellPMVI would use an encoder-decoder pair per population group instead of data modality.
An expert per populaiton group would allow considering individual differences as we could fit the individ-
uals as covariates. The single-cell input data could either be concatenated (following totalVI approach)
or restricted to one data modality, such as RNA measurements. When predicting gene expression
responses, the latter would be sufficient as we have shown that reconstruction of gene expressions
does seem to perform equally well without protein information. In both situations, the goal would be
to model the shared and individual features of the population groups rather than the RNA and protein
modalities. Following this approach, cross-generation could be used for OOD prediction of population
group responses.

7.3. Disentanglement

Disentanglement is essential to increase the trust and prediction performance of cellPMVI. Here we
suggest two approaches to increase disentanglement in the latent space.

beta-VAE

A common way to give the learning of disentangled representations more weight can be achieved
by changing the VAE components of the cellPMVI model to a g-VAE [11]. B-VAE [11] uses the 8
hyperparameter in its loss function to restrict the encoding capacity of the latent space. In that way, S
encourages the factorization of the bottleneck, hence, controlling the latent overlap between each data
point.

39



40 7. Future work

Adversarial learning

Another way to improve disentanglement is to follow an adversarial approach [17], as has been done
in CPA [23]. Adversarial learning methods involve two networks: the generative network tries to learn a
feature map from the input data in such a way that the discriminative network cannot predict the domain
type given the output of the generative network. In that way, the generative network learns to align
domain gaps in the feature level. We suggest adding a discriminative network for each categorical
covariate to enhance the disentanglement of features across the categorical covariates in the latent
space. Besides the increase in disentanglement, the adversarial loss of each discriminative network
would provide insight into the latent space disentanglement and hence, increase the trust in cellPMVI.

7.4. Biological relevance

cellPMViwas designed to extrapolate immune responses from population groups to novel adjuvants or
population groups to reduce the need for large-scale single-cell perturbation experiments. The results
show that the prediction of perturbed gene and protein measurements can be inferred from other popu-
lation groups, given the unperturbed measurements. Here we want to discuss some real-life scenarios
in which the model could be used.

Annotation of data

cellPMVlis based on the MMVAE model, which allows for a cross-modal generation. Given the data
from one modality, the model can generate data from a different modality. A cross-modal generation
has not been in the scope of this research but could be used to annotate data by predicting protein
expression from gene measurements. For example, to predict protein expressions of cell populations
that require the combination of protein and transcriptome data (e.i. CD4+ and CD4+T) for annotation.

Speed up adjuvant development

Testing adjuvants in clinical trials for approval can take up to years. Current suggestions to speed
up the development pipeline is to proceed in small trials such that unsuccessful adjuvants can be
eliminated early on [30]. Models, such as cellPMVI, that can predict the response of adjuvants can be
used to set up a hypothesis about the adjuvant responses in a new population group and hence, offer
a preselection of potentially more effective adjuvants. Preselection increase the development speed of
vaccine adjuvants

Other application fields

It should also be investigated whether cellPMVI can predict other perturbation responses. For example,
can cellPMVIpredict responses to drugs or even drug combinations? Besides that, cellPMVI should
be tested on multi-modality that are not CITE-seq measurements. For example, another two modality
data combination would be multiome data containing the single-cell ATAC-seq (scATAC-seq) and gene
expression measurements. Moreover, prediction for more than two-modality data would be interesting.
One could combine RNA, protein, and ATAC measurements or integrate spatial information. The latter
could improve the understanding of perturbations as tissue functions that are spatially close to each
other might be impacted [20].



Conclusion

This research aimed to investigate how well immune responses across populations can be modelled
with CITE-seq data. At the moment there are no single-cell models that can capture perturbations from
multi-modality data. Therefore, we proposed cellPMVI which combines scVI with mixture-of-experts
integration of the posterior to model immune responses across populations. We showed that cellPMVI
fits the CITE-seq the best without any information loss for either modality, gene or proteins, and that
it can be used to extrapolate to adjuvant responses across population groups with transfer predictive

sampling. To better understand the potentials of cellPMVI it is important to validate cellPMVI with more
data and evaluate the latent space distribution.
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Supplementary methods

A.1. Single-cell RNA analysis

Preprocessing

The gene expression data was mapped with cellranger 5.0.0 to GRCh38 human genome reference
(10X-distributed 2020-A version). Feature reference was also included in the cellranger to process
Feature Barcode data. Droplet containing cells were called using emptyDrops from DropletUtils R
package. Low-quality cells were filtered out using adaptive thresholds of 3 median absolute deviation
(MAD) for the number of UMI, number of genes, and proportion of mitochondrial genes. Cell hashes
were then demultiplexed using hashedDrops.

Data annotation

Data normalization and preprocessing were performed using the Seurat V4 workflow. Gene expres-
sion and ADT data were normalised using sctransform v1 and dsh, respectively. Top 3,000 highly
variable genes and all ADT features were used in dimensionality reduction using PCA. 30 principal
components from each modality was used as input for multi-modal nearest neighbor analysis using
FindMultiModalNeighbors. The resulting multi-modal graph was then used for Louvain clustering and
UMAP dimensionality reduction. To annotate cell populations, we performed marker gene analysis
using the Wilcoxon test and also visualised the expression of marker gene and ADT from Azimuth’s
Human PBMC reference data. Cells were then annotated in different level of details following both the
L1 and L2 cell type annotation as shown in Azimuth
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Supplementary tables

B.1. Dataset

Table B.1: Overview of differentially expressed genes present in czi data before and after preprocessing step.

Cell type Differentially expressed genes
Before preprocessing | After preprocessing

B 4545 1852

CDAT 7777 3113

CD8T 6867 2794

DC 1782 974

Monocyte | 4186 1904

NK 4751 2012

OtherT 3629 1466

Platelet 195 77

Table B.2: Number of cells per condition.

Cell type _ DK _ LD _ RT _Total
medium | PI medium | PI medium | PI medium | PI
B 404 297 228 340 367 167 999 804
CD4T 1844 1350 1942 2344 1338 804 5124 4498
CD8T 1333 1068 1103 984 482 291 2918 2462
DC 133 69 86 81 68 29 287 179
Monocyte 972 358 958 380 444 73 2374 811
NK 515 354 615 549 700 659 1830 1562
OtherT 1327 730 251 158 159 67 1737 955
Platelet 68 26 25 26 39 11 132 63
6596 4252 5183 4862 3597 2101 15401 15654
10848 10045 5698 31055
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B. Supplementary tables

B.2. Training scenario 1

Table B.3: Overview of the categorical covariate selection for each run in training scenario 1. Each row indicates which categorical
covariates the run was conditioned on, by X.

Run Categorical covariates
Population group | Adjuvant | Cell type

1 X X X

2 X X

3 X X

4 X X

Table B.4: RNA expression posterior predictive sampling

scVI TotalVI MMVI
Corrmean | Corrvar | Corr mean | Corr var | Corr mean | Corr var
. Average 0.93 0.91 0.93 0.91 0.93 0.92
3: PG, ADJ, CT Std 0.1 0.1 0.1 0.1 0.1 0.1
2: PG. CT Average 0.96 0.93 0.96 0.94 0.96 0.94
) ’ Std 0.07 0.09 0.07 0.08 0.07 0.08
. Average 0.99 0.95 0.99 0.95 0.99 0.95
2: PG, ADJ Std 0 0.01 0 0.01 0 0.01
. Average 0.97 0.95 0.07 0.95 0.98 0.96
2: CT, ADJ Std 0.05 0.07 0.05 0.07 0.04 0.06
Table B.5: Protein expression
TotalVI MMVI
Corr mean | Corr var | Corr mean | Corr var
. Average 0.33 -0.37 0.99 0.96
3: PG, ADJ, CT Std 0.09 0.1 0.01 0.03
. Average 0.31 -0.41 1 0.96
2: PG, CT Std 0.09 0.09 0 0.01
. Average 0.31 -0.41 1 0.96
2: PG, ADJ Std 0.09 0.09 0 0
. Average 0.33 -0.41 1 0.96
2: CT, ADJ Std 0.09 0.09 0 0.01

Table B.6: Correlation mean for each condition from the categorical covariates (Population group, Adjuvant, Cell type). Posterior
predictive sampling has been used for the analysis. Values supporting Figure ?2?.

Condition: CT | scVI | TotalVl | MMVI
B .96 .96 .96
cDAaT .99 .99 .99
CcD8T .98 .98 .98
DC .93 .93 .93
Monocyte 97 97 .97
NK .98 .98 .98
OtherT .94 .94 .94
Platelet .69 .69 .70

Condition: Adjuvant | scVI | TotalVl | MMVI
medium .94 .94 .95
Pl .92 .92 .92
gg;g;:t‘i’gr'l group | SEVI | TotalVl | MMVI
european .95 .95 .95
african-urban .93 .93 .93
african-rural 91 91 91
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Table B.7: Library size values.

Library size scVI Total\/lI ibr MMyI MMVI
Mean | Var | Mean | [Var éan || Waeah | Var
0| 025 0.1 NaN NaN 0.260(||0071 0.21
1 0.36 | 0.14 | 0.26 | |0.11 0.361||0a82 | 0.17
4 | 0.72 | 0.18 0.4 0.15 | 0.724(|0A87 | 0.05
7| 0.91 0.11 | 0.447 | |0.17 | 0.927|| 00198 | 0.02
10 | 0.94 | 0.08 | 0.52 |[0.17 | 0.930||00Bg | 0.02

B.3. Training scenario 2

Table B.8: All runs for training scenario 2 with run setting 1 from Table B.3. Every time the perturbed dataset of a population
group is excluded.

Excluded data subset

Run Population group | Adjuvant | Cell type
LD Pl

1 DK Pl
RT Pl

Table B.9: Averaged correlation mean for the left out population group

scVI TotalVI MMVI

Medium Pl Medium Pl Medium Pl
Posterior 0.98 NaN 0.98 NaN 0.98 NaN

RT Prior 0.98 0.04 0.79 0.04 0.981 0.04
Transfer 0.72 0.73 0.71 0.7 0.71 0.71
Posterior 0.98 NaN 0.98 NaN 0.98 NaN
DK Prior 0.98 0.003 0.84 0.0 0.98 0.002
Transfer 0.83 0.73 0.72 0.71 0.7 0.7
Posterior 0.98 NaN 0.98 NaN 0.98 NaN

LD Prior 0.97 0 0.81 0 0.97 0
Transfer 0.76 0.76 0.97 0.73 0.75 0.75

Table B.10: Average correlation mean of protein reconstruction for training scenario 2. The model was trained with categorical

covariates population group and adjuvant with data excluding the perturbed individuals of one population group at a time.

TotalVI MMVI

Medium Pl Medium Pl

RT PI Prior 0.2 0.28 0.9 0.98
’ Transfer 0.21 0.21 0.87 0.87
DK. PI Prior 0.21 0.26 0.92 0.97
’ Transfer 0.21 0.21 0.87 0.87
LD. PI Prior 0.25 0.3 0.91 0.97
’ Transfer 0.25 0.25 0.9 0.9

B.4. Training scenario 3
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Table B.11: Correlation mean for each excluded population group for RNA expression

scVi TotalVI MMVI
Medium Pl Medium ] Medium Pl
RT Prior 0.05 0.05 0.05 0.05 0.05 0.05
Transfer 0.03 0.03 0.03 0.03 0.04 0.03
DK Prior 0.07 0.06 0.04 0.03 0.07 0.06
Transfer 0.04 0.04 0.01 0.01 0.04 0.04
LD Prior 0.03 0.02 0.06 0.05 0.04 0.03
Transfer 0.02 0.02 0.04 0.04 0.003 0.003

Table B.12: Correlation mean for each excluded population group for protein expression

TotalVI MMVI
Medium Pl Medium Pl
RT Prior 0.22 0.27 0.91 0.98
Transfer 0.22 0.22 0.87 0.87
DK Prior 0.19 0.26 0.91 0.98
Transfer 0.19 0.19 0.87 0.87
LD Prior 0.21 0.28 0.91 0.98
Transfer 0.21 0.21 0.87 0.87
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C.1. Dataset
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Figure C.1: UMAP of czi data for five different coloring conditions.
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C.2. Training scenario 1
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Figure C.2: Final training and validation losses for scVI, totalVl and MMVI. Losses from training scenario one,
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(Table B.3). The losses visualized are: a) ELBO loss, b) Reconstruction loss and c¢) KL divergence.
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Figure C.3: Comparison of train and validation ELBO for all three models. All models have been trained under Training scenario
1 with three categorical covariates: population group, cell type and adjuvant.
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Figure C.4: Comparison of train and validation RL for all three models. All models have been trained under Training scenario 1
with three categorical covariates: population group, cell type and adjuvant.
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Figure C.5: Comparison of train and validation KL divergence for all three models. All models have been trained under Training
scenario 1 with three categorical covariates: population group, cell type and adjuvant.
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Figure C.6: Boxplot showing the correlation variance for posterior predictive sampling for each model across four run
setting (training scenario 1). The correlation variance is calculated across all cells with the same population group, cell type
and adjuvants (47 data points). The correlation means are clustered per run settings. Each run settings differs from each other
in the number of covariates the model is conditioned on (Table B.3). Subfigure (a) shows the correlation mean for the RNA
expression sampling and (b) for protein expression sampling.
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