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Summary

Synthesizing audio-reactive videos to accompany music is challenging multi-domain task
that requires both a visual synthesis skill set and an understanding of musical information
extraction. In recent years a new flexible class of visual synthesis methods has gained
popularity: generative adversarial networks. These deep neural networks can be trained
to reproduce arbitrary images based on a dataset of about 10000 examples. After training,
they can be harnessed to synthesize audio-reactive videos by constructing sequences of
inputs based on musical information.

Current approaches suffer from a few problems which hamper the quality and usability
of GAN-based audio-reactive video synthesis. Some approaches consider only a few
possible musical inputs and ways of mapping these the GAN’s parameters. This leads to
weak audio-reactivity which has a similar motion characteristic across all musical inputs.
Other approaches do harness the full design space, but are difficult to configure correctly
for effective results.

This thesis aims to address the trade-off between audio-reactive flexibility and ease of
attaining effective results. We introduce multiple algorithms that explore the design space
by using machine learning to generate sequences of inputs for the GAN.

To develop these machine learning algorithms, we first introduce a metric, the audiovi-
sual correlation, that measures the audio-reactivity in a video. We use this metric to train
models based only on a dataset of audio examples, avoiding the need of a large dataset
of example audio-reactive videos. This self-supervised approach can even be extended
to optimize a single audio-reactive video directly, removing the need to even train a model
beforehand.

Our evaluation of the methods shows that our algorithms out-perform prior work in
terms of their audio-reactivity. Our solutions explore a wider range of the audio-reactive
space and do so without the need for manual feature extraction or configuration.
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Introduction

Audio-reactivity has fascinated humans since pre-historic times. First in physical form,
starting with dance, and growing alongside us as our technology has improved. The in-
vention of computers has enabled ever more complex audio-reactive visuals. The seminal
open-source work of Ryan M. Geiss on the WinAmp plugin MilkDrop [1] popularized and
illustrated the great promise of audio-reactive music videos.

The general principle of an audio-reactive music video is to drive elements of the video
with elements in the music. There is a vast range of systems which have been controlled
by music, including 3D renders, fractals, analog video synthesizers, robots, and many
other custom-designed visuals. Whatever the visual system, the process is the same:
find some set of parameters that control the image and vary them over time according to
signals extracted from the audio.

Designing such audio-reactive visual systems requires domain-specific knowledge of
visual synthesis programs (e.g. Blender [2], TouchDesigner [3], or Processing [4]) as well
as an understanding of computational music analysis. Once a given audiovisual synthe-
sizer is created, in theory it can be applied to any number of new music inputs. However,
designing a system that is visually variable enough to remain interesting over time as well
as reacting well to many kinds of audio is challenging. Creating such an extensive visual
system and customizing how signals from the audio control different parameters of it is
an enormous undertaking.

Recently a specific class of visual synthesis methods have shown great potential for
flexible, expressive video generation: generative adversarial networks (GAN). These deep
neural networks are trained to mimic a large dataset of images. Once trained, they can
generate essentially infinite amounts of new images that resemble the dataset. These im-
ages can be strung together to form videos, which, when conditioning on music, seem to
react and dance along with the song. This provides a promising basis for an audiovisual
synthesis system as the network can be trained to generate any style for which a large
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Figure 1.1: Example of an audio-reactive video. The frames are synthesized based on some audio
features extracted from the music.



enough dataset of images can be gathered. This can essentially eliminate the need to
develop the visual system manually, yet still allow for a vast range of visual styles.

While there are some approaches which generate audio-reactive videos with GANs,
so far they are either not particularly flexible in terms of their audio-reactivity (i.e. always
move in a fairly similar way) or require deep understanding of both GANs and music in-
formation retrieval to use effectively. Many approaches rely on only a few methods of
extracting information from the music and only part of the GAN’s full generative capacity.
This leads to videos which only react to a narrow range of possible, perceptually-relevant
aspects in the music. On the other hand, there are so many musical features that can
be used and so many ways to map these to control the GAN that it can be overwhelming
to thoroughly explore the entire space of possibilities. This highlights the need to find a
middle path where these GAN-based audiovisual synthesizers are easy to use yet still
sufficiently expressive. The range of possible outputs should be as varied as possible
in terms of audio features that might drive the video’s reaction, but the decision of which
audio features and how they are mapped to the GAN should be made automatically.

The primary goal of this thesis is to propose methods that automate the translation
of audio features to audio-reactive GAN inputs—making it easier to make expressive
audiovisuals. We propose multiple algorithms that can use a GAN to generate audio-
reactive videos and show that they outperform prior work in terms of their audio-reactivity.
These algorithms use a wider range of audio inputs and GAN parameters which allow
them to react to more possible elements of the music without the need for configuring the
specifics manually.

Research Questions

» Can we design a metric that can capture some notion of the audio-reactive quality of
a video?

— Can the metric distinguish between videos with perceptually different audio-reactive
characteristics?
— Does the metric provide useful supervision for machine learning approaches?

« Can we learn to translate a wide range of audio features to effective audio-reactive
GAN input sequences?

— Is this possible without a large dataset of audiovisual examples? Do we even
need to train at all?

— Can we design methods that have better audio-reactivity than prior work?

— Do the methods outperform randomly mapping a wider range of audio features
to GAN inputs?
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Background

Before covering our algorithms for audiovisual correlation and audio-reactive video syn-
thesis, there is some important prerequisite knowledge. In this chapter we explain the
foundations of the GAN-based audiovisual synthesis process. We specifically focus on
the StyleGAN [5] architecture, which has multiple properties that make it well-suited for
expressive audio-reactive video synthesis.

2.1. Generative Adversarial Networks

Generative adversarial networks [6] learn to synthesize realistic, high-definition images
with only a random vector as input (which is generally drawn from a simple noise distri-
bution like the standard Gaussian). Training entails two competing networks and a large
dataset of images. The first model, the generator, learns to map random vectors to im-
ages and the second model, the discriminator, tries to classify images as real (from the
training dataset) or fake (synthesized by the generator). The generator tries to optimize
for the discriminator misclassifying its creations as real, while the discriminator tries to
optimize for classifying correctly. This dynamic leads both networks to improve together
until the generator can create images close to the true data distribution.

An important dynamic of training GANs is that generally the generator learns a con-
tinuous image manifold [7]—-[9] such that smoothly interpolating the input vector will also
smoothly interpolate the output image. Therefore, continuous videos can be generated by
constructing a smooth interpolation between input vectors. Furthermore, a given random
interpolation can be rendered in different styles by swapping out the generator for another
trained on a different dataset. This means that strategies for generating input sequences
developed for one style can be applied to a vast range of visual styles without needing
to be customized to each one; as would be required if the visual system were crafted
manually using, for example, 3D renders or software like Processing [4].

2.2. Audio-reactive Latent Interpolations

The key to making a latent interpolation audio-reactive is to extract information from the
audio signal and use it to modify the inputs to the generator network over time. Possible
audio features to use range from the volume of the music, to the notes that an instrument
is playing, to the rhythms present in a section, to the timbre of the reverb, or anything in
between. The design space is essentially infinite, so first we discuss the approaches that
have been used so far and analyze their strengths and weaknesses. Then we look at how
StyleGAN's flexible control over image synthesis can increase the space of audio-reactive
possibilities even further.
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2.2.1. Previous Work

Robert Luxemburg [10] uses a moving average of an audio waveform directly to either
adjust movement along a pre-determined smooth interpolation or blend between different
fixed latent vectors. While this does create visual movement in the output that is correlated
to the audio, it is often jittery and does not follow perceptually important aspects of the
music. The audio waveform may be the representation that we actually hear, but it is not
necessarily effective as a source of GAN input modulation as all the musical information
is overlaid at once.

A more useful representation of the audio is its spectrogram, the short-time Fourier
transform of the signal. This representation separates out the different frequencies present
at any time in the signal, which gives information about the volume of different pitches in
the audio. Matt Siegelman [11], [12] and Mikael Alafriz [13] propose systems that make
use of this spectral information. Siegelman uses BigGAN [14] as the visual prior, which
has both a latent vector for sampling output images and a class vector determining which
class from ImageNet [15] to synthesize. The latent vector sequence is generated based
on the mean value at each timestamp in the spectrogram as well as the local difference in
frequencies (similar to onset detection). The class conditioning is generated based on the
chromagram [16] (a remapping of frequencies in the spectrogram to bins corresponding
to the notes in Western musical scales). Alafriz builds on this work by using Style GAN [5]
instead of BigGAN and by separating harmonic and rhythmic content before calculating
the spectrograms.

Employing spectral information to steer GANs significantly improves the audio-reactivity
of these methods, however, they are hampered by the application of these signals to their
visual synthesizers. Both Siegelman’s and Alafriz’s methods only make use of one single
sequence of latent and class vectors each (when possible; some StyleGAN models do
not even have class conditioning). This forces all audio information to affect the output
video in the same way. In practice, when too many audio feature reactions are merged
into the same latent sequence, the output is chaotic, and it becomes hard to link visual
movement to the corresponding element in the music that caused it.

Towards increasing this "audio-reactive bandwidth” (the amount of visual changes that
can be recognized as relating to an aural change), my previous work "Audio-reactive La-
tent Interpolations with StyleGAN” [17] investigated multiple ways of modulating the video
output that could more clearly be distinguished from each other. These techniques allow
for more expressive audio-reactive videos by layering multiple different visual reactions at
once, similar to how multiple musical elements are usually layered within a song. These
techniques rely on some specific features of the StyleGAN architecture.

2.2.2. StyleGAN Specifics

Karras et al. have published multiple iterations of the StyleGAN architecture [5], [18], [19].
For the purposes of audio-reactive video synthesis, StyleGAN 2 offers the most flexibility
and so will be the focus of this section (the "2’ will be left out for brevity). In theory, however,
any architecture can be used as long as there are multiple different mechanisms that affect
the output in visually distinct ways.

There are two major aspects of the StyleGAN architecture that allow for increasing the
audio-reactive bandwidth: the hierarchical decomposition of the generator and the spatial
noise maps. These two features offer ways of spreading musical information to affect only
certain aspects of the generated images, rather than the entire frame all at once.
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Figure 2.1: Simplified schematic representation of the StyleGAN architecture. Only three latent and noise
sequences are shown, but each layer (dark green block) can accept a different pair of sequences. Each
layer in the hierarchy contributes different aspects in the image, varying from large-scale structural
components in the deepest layers to fine details in the shallowest ones.

Hierarchical Generation The first key aspect that makes StyleGAN a good visual prior
for audio-reactive synthesis is its hierarchical generation style. The StyleGAN generator
network consists of a sequence of convolutional blocks where each block upsamples the
input by a factor of two and then applies two latent-modulated convolutions. The output
of each layer is fed to the next layer in the hierarchy, but is also converted to RGB space
by another modulated convolution. The RGB outputs of all layers are summed together
to become the final output image. This strategy helps separate responsibility for different
scales of components in the image to different layers in the network. The deepest layers
influence large scale structures. In these layers the image is small and so each ’pixel
represents a large area in the final output. The middle layers control mid-level structures
or textures, and the shallowest layers contribute fine details and colors.

To control the generation at each layer in the network, the convolutional blocks are
modulated by a latent vector. This means that before applying the learned convolution
operation to the input, the channel weights are first scaled by a learned, affine transforma-
tion of the latent vector. For a fixed input, varying the latent vector will result in a different
"style” of output (hence StyleGAN). This allows for a technique which Karras et al. call
"style mixing”, where multiple differently colored images can be generated with the same
structure (constant deep latents, varying shallow latents) or vice versa.

This is valuable in the context of audio-reactive latent interpolations as separate latent
sequences can be used to change the structure versus the color of the video—more latent
vector sequences, means more audio-reactive bandwidth.

Noise Maps The second important part of the StyleGAN architecture are the noise maps.
After each convolution, random, normally-distributed noise is added to each pixel of the
intermediate features. This helps to avoid the network wasting capacity modeling stochas-
tic variation in the image. For example, given an image of trees, there are many arrange-
ments of the leaves that are equally valid. Rather than have one of the latent dimensions
represent an infinite amount of different configurations, the noise maps directly inject this
randomness into the synthesis process. This hopefully frees the latent vector to model
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semantic aspects like the visual difference between needles, leaves, or blossoms. This
is important as it separates an audio-reactive interpolation into a semantic and stochastic
stream of information. These two can be modulated by different audio features and still
be visually distinct.

This provides another tool to influence the output video which also enjoys the same
hierarchical scale properties as latent vectors (due to noise being inserted after each
layer). Further, as the noise has the same spatial dimensions as the intermediate features,
the effects can be localized to certain parts of the image as well. This allows for different
audio features to affect different parts of the image yet still be recognizable, even within
the same noise scale.

Brouwer [17] covers a few more possible advanced audio-reactive modulation targets
(Network Bending [20] and Model Rewriting [21]), but these are not investigated further
in this thesis. However, the algorithms presented later can support these extra targets as
well. Figure 2.1 shows an overview of how each of these control points come together in
the full model.
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Audiovisual Correlation

At the time of writing, research into synthesizing audio-reactive videos with StyleGAN has
largely been led by qualitative considerations. Before we can teach a machine to auto-
matically generate audio-reactive videos, we need to quantify what makes for effective
audio-reactivity. In this chapter we present a metric for audiovisual correlation based on
the informal "audio-reactive bandwidth” mentioned previously. The motivating assump-
tion is that the perceptual concept of audio-reactivity stems from patterns in the audio
being matched with patterns in the video. In other words, the more separate pairs of
audiovisual changes that can be individually identified, the stronger the audio-reactivity
of the video feels. For the clarity of the audio reactions, it is important that separate au-
diovisual pairs modulate separate parts of StyleGAN’s semantic, stochastic, or spatial
hierarchy—overloading one of these visual control channels muddies the signals carried
over them.

There has been much research into audiovisual correlations for many problems such
as video segmentation, audiovisual alignment, lip-reading, or information retrieval. How-
ever, the task of synthesizing audio-reactive videos to accompany music is unique in its
subjective, creative nature. There is no clearly-defined, universally-accepted success
metric like other tasks. Therefore, we argue that it makes sense to design a correlation
metric which is flexible and can be adapted to different concepts of audio-reactivity.

To this end, we use a feature extraction approach where the correlation metric itself is
generic to the exact set of audio and video features that is used. This way, the correlation
can be adapted to different contexts by selecting different audio and video feature pairings
that are important for the desired audio-reactivity.

In the following sections we introduce and motivate the set of audio and video features
we use. Then, we discuss some candidate correlation metrics that can measure the cor-
respondence between the audio and video features. Finally, we perform experiments to
evaluate the different correlation metrics and choose one to use in the video synthesis
algorithms.
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3.1. Audio Features

The audio features are selected to capture a range of different possible aspects in the
music. We seek to capture four main classes of musical information: rhythmic, note-
based, timbral, and sectional.

Rhythmic The rhythmic features capture transient aspects of the music. Things like
drums or the spacing between notes. There are a few features which deal with this, most
importantly the onset envelope. The onsets measure the spectral flux in the frequency
spectrum over time. They give a high value when there are sudden changes such as
a drum hit. Other features that capture rhythmic information include the RMS and the
predominant local pulse (PLP). The RMS measures the overall energy in the frequency
spectrum (i.e. the volume). The PLP is an envelope that tries to follow the strongest
repeating pulse in music based on the STFT of the onset envelope. This captures the
local tempo of the song.

Note-based The note-based features are the chromagram and the tonnetz. The chro-
magram measures the energy in the frequencies corresponding to each of the 12 different
notes in the Western musical scale. This is a feature which takes different values when-
ever different notes are played. The tonnetz is similar but maps these frequencies into
features corresponding to the perfect fifth, minor third, and major third of the scale. In
music theory, these are important ratios between notes and the root of the scale which
often hold emotional connotations. The tonnetz can capture changes in these emotionally-
linked aspects of the music.

Timbral The timbre of a sound its tonal quality. For example, even when playing the
same note a violin and saxophone have a different sound—they have a different timbre.
This is an especially nebulous aspect of the music which may or may not need to play a
role in the video’s movement. The features which capture timbre are thus also most gen-
eral and closest to the raw spectral representation. These features are the Mel-frequency
cepstral coefficients (MFCC), spectral contrast, and spectral flathess. The MFCCs are a
modified version of the simple spectrogram, re-weighted according to perceptually rele-
vance for the human auditory system. The spectral contrast and flatness characterize the
dynamic range of different frequency bands and the noisiness of the overall spectrum.

Sectional The final features seek to capture longer-range information in the music. The
Laplacian segmentation classifies sections of the song into different groups. This can
recognize, for example, an ABABCDCD structure in a song, where certain phrases are
repeated multiple times. The drop weight is a long-term moving average of the RMS
value which is re-scaled to emphasize soft and loud sections. These sectional features
can allow for a video to have different qualities in different sections of the song.

While the audio features used is not an exhaustive list of possible important features,
they do capture a range of important information that intuitively seem like reasonable
candidates for a video to react to. A full explanation and visualization of each audio feature
can be found in Table 3.1.
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Table 3.1: Descriptions of the audio features considered. Visualizations show the time on the x-axis.
Feature values are represented by the color when features are multidimensional or otherwise plotted on

the y-axis.
Name | Size | Description | Visualization
Mue;nc Fre- A spectral representation of audio in the Mel fre-
qu stryal 20 quency scale (which models human hearing). Rep-
psire resents timbre of the audio signal.
Coefficients
Difference between the highest energy quantile and
Spectral 7 lowest energy quantile in each band of the fre-
Contrast quency spectrum. Represents dynamic range of
each frequency band.
Tonality coefficient. Represents how close to white
Spectral . . .
Flatness 1 noise fche 3|_gnal is. Lower values are <_:Ioser. to a
pure sine, high values closer to pure white noise.
Energy in bands of the frequency spectrum corre-
Chromagram 12 sponding to the 12 notes of the western scale. Rep-
resents which notes are being played.
Tonal centroids. Remapping of the chromagram
into two-dimensional features corresponding to the
perfect fifth, minor third, and major third. Captures
Tonnetz 6 musical mode information, which can be seen as a
weak proxy for emotion; the major mode tends to be
perceived as happy while the minor mode sounds
sad.
Total power in the audio signal over time. Repre-
RMS 1 >
sents the volume of the audio signal.
Long-term moving average of the RMS, soft-clipped L N
: | \ﬁ."“"’ My o N
. to be approximately zero when below average \ | w
Drop Weight 1 . \ W ‘
power and approximately one when above. Loosely Lo g |
segments audio signal into loud and quiet sections. | =~ B
Spectral flux in Mel frequencies of the rhythmic com-
Onsets 1 ponent of the audio. Represents timing of tran-
sients in the audio signal (e.g. drums).
Predominant _Pulse synchronized tc’) the predominant frequency e i
Local Pulse 1 in the onset envelope’s spectrum. Represents the
local musical tempo.
Laplacian Recurrence-based segmentation of the audio sig-
P ; K nal into K sections. Captures repetition and long-
Segmentation

timescale patterns in the audio signal.
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3.2. Video Features

The video features are selected based on an understanding of the type of video interpo-
lations that StyleGAN can generate. Audio-reactive latent interpolations allow for color
control through use of the latent sequence and structural control at different scales in the
image through the noise maps. This motivates us to choose features which can recognize
the changes in colors over time as well as features that can quantify changes in the video
across different spatial scales.

To quantify the color over time, we can analyze the distribution of pixel values directly.
Each frame can be decomposed into a histogram of its pixel values to capture changes
in color over time. On top of the RGB values, we also transform the video to HSV space
(hue, saturation, value) and calculate a similar histogram over time feature.

To capture the structural changes is a little less straightforward. One notion of structure
is the amount of variation in the image. A simple way of calculating this is by taking the
variance of each frame. Another way of looking at this structure is through the lens of the
Fourier transform. This decomposes the image into frequencies and their magnitudes.
This allows us to understand the presence of different scales of structure by looking at
the amplitudes of groups of frequencies in the images. In fact, this allows us to create a
spectrogram of frequencies in the video over time similar to spectrograms of audio. An
analog of the onset envelope can also be calculated for this video spectrogram.

Another important aspect of videos is captured by the optical flow (i.e. how pixels in
the video move over time). This can similarly be converted into a spectrum of different
bands each corresponding to the magnitude of movement in different directions called the
Directogram Davis and Agrawala [22]. Just as with the other spectrograms, the spectral
flux can be taken to get an onset envelope, this one tailored to motion in the video.

Altogether these features capture several important aspects of video: the color, struc-
ture, and movement. Just as with the audio features, this is not an exhaustive list of
possible features, but a decent baseline set. If there are other visual effects are important
for the audiovisual correlation, other features can be added to the set. Table 3.2 contains
a list of all the video features used.
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Table 3.2: Descriptions of the video features used. Visualizations show the time on the x-axis. Feature
values are represented by the color when features are multidimensional or otherwise plotted on the y-axis.

Name | Size | Description | Visualization
RGB % 32-bin histogram of each color channel of each
Histogram video frame. Captures change in color distribution.
32-bin histogram of hue, saturation, and value of
HSV : . o
Hi 96 each video frame. Captures change in color distri-
istogram .
bution.
M, |
Visual  Vari- | Variance of each frame’s pixel values. Captures | v\M P]m,%q Aﬂ.y A
i ; ; MU ‘.NJ\J P e et AN
ance overall noise scale in the frames of the video. ) ! Vool
Fourier transform of each frame, transformed to po-
, lar coordinates, and averaged over theta. Captures
Video . L
32 a spectrum of the strength of spatial frequencies in
Spectrogram . .
the images, ranging from low-frequency, long range - y
components to high-frequency, fine details.
Low The root-mean-square (volume) of the lower third | 14 ¢ M”WWWMMWMN‘*"n, M'N\ .
Frequency 1 of the video spectrogram. Captures the strength of | ' *i/ L \"
RMS large-scale structural components in the image. |
Mid The root-mean-square (volume) of the middle third | | ,J }
Frequency 1 of the video spectrogram. Captures the strength of ’L \a A M i M il M . n‘ ‘ )
. . . YN MV ol ’ W
RMS medium-scale textural components in the image.
High The root-mean-square (volume) of the upper third | || r” l
Frequency 1 of the video spectrogram. Captures the strength of "wh F‘\ﬂ [\ # i M . (M‘\JMW MWA\F{H ul ‘w‘\‘ H‘ Iﬁ
RMS small-scale details in the image. R AUV
. The root-mean-square (volume) of the bands in the | ., W A,
Adaptive video spectrogram with most variance over time. V ’“m AT % g \N
Frequency 1 . §
Captures the strength of components in image that 1
RMS . U
vary most throughout the video.
Absolute 1 The absolute value of the frame-by-frame differ- ’ L“ “ML\
Difference ence. Captures sudden changes in the video. i WMMMW\MMM
A spectrogram based on the optical flow in the
Directoaram 16 video. Each band represents the average strength A ¥
9 of movement in 16 directions spaced equally in 360 / \
degrees.
: Spectral flux onset envelope based on the Video
Video Spectral : .
1 Spectrogram. Captures rhythmic elements in the
Onsets . ” . u
noisiness” of the video. ! l
: Spectral flux onset envelope based on the Direc-
Video Flow )
1 togram. Captures rhythmic elements of movement
Onsets | J‘l

in the video.
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3.3. Matrix Correlations

Now that we have a set of features that can capture a broad range of components of
audio and video, we turn to correlation metrics that can capture the similarity between
these features. In the case of simple, univariate features like the audio or video onset
envelopes, the correlation can be calculated directly. However, for multivariate features
like the chromagram or visual spectrogram, the best method is less clear.

One of the simplest ways of addressing the aforementioned problems is to instead
consider the autocorrelation of each feature. The autocorrelation takes the outer product
of the feature with itself, which results in a square matrix with the length of the sequence
along each side. These autocorrelation matrices can then be compared as long as the
sequence length for all audio and video features is the same. The intuition is that two
features which have a high correlation will be self-similar in the same places and so have
highly correlated autocorrelations.

With this idea as a guide, we survey a number of candidate matrix correlation metrics.
In Section 3.4 we compare their performance and select one based on a preliminary study.
While the approaches do not all directly use the autocorrelation of features, they all allow
for comparisons between multivariate time series that do not necessarily share the same
feature space. Crucially, the following metrics do assume that each feature corresponds
to the same underlying observations seen through different lenses (i.e. that the compared
sequences of audio and video features are aligned and of the same length).

3.3.1. (Adjusted) RV Coefficient

Of the audiovisual correlation metrics we discuss, the RV coefficient [23] is closest to the
intuition that two features which have a high correlation will be self-similar in the same
places and so have highly correlated autocorrelations. The RV coefficient is the multi-
variate generalization of the Pearson correlation. The main difficulty in the multivariate
case is that distances in one feature space may not correspond to distances in the other.
Therefore, we instead consider the distance between the autocorrelations of each matrix
Sx = XXT. To ensure that the global scale is the same regardless of X we normalize by
a factor of \/tr(S%) (tr(-) being the matrix trace, the sum of diagonal values). This ensures
the L2-norm of the normalized autocorrelation, §X, is always 1. Given two matrices A and
B, we can find the distance between their transformed representations

oA 2R )
NCEARRNIED)
d(A, B) = |54 — 93|

d(A, B) = \/11Sal + 1IS5][2 — 25535

d(A, B) = ||

d(A,B) = \/12 +12 — 25755
STSp
tr(S%) tr(S%)

tr(SzSB)
tr(S%) tr(S3)

d(A,B) = [2—2

d(A,B) = ,[2—-2
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Neglecting the square root and the scaling factor, we see that d(A, B) =~ 1—p(A, B). This
correlation-like function p(A, B) is the RV coefficient.

_ tr(ATABBT)
~ Jtr(AAT)2tr(BBT)?

The metric varies between 0 and 1 with values closer to 1 representing matrices with high
correlation and values closer to 0 representing matrices with low correlation.

One issue with the RV coefficient, as investigated by Smilde, Kiers, Bijlsma, et al. [24],
is that the RV coefficient does not actually go to zero when purely random numbers are
used. Thisis undesirable as itimplies correlation between matrices which have none. The
cause becomes clear by analyzing the form of the RV coefficient. The diagonal values of
the Sx matrices will always be positive. This means that the numerator of the correlation
will, on average, be greater than zero for random values due to the small correlation
between the positive diagonals of S4 and Sg. As a solution, Smilde, Kiers, Bijlsma, et al.
[24] propose the adjusted RV coefficient, in which the RV coefficient is defined in terms
of Sx = XX — diag(X X7) instead.

This adjusted RV coefficient (ARV) does have slightly different properties though. It
varies between -1 and 1 instead of 0 and 1. This brings its interpretation even closer
to the Pearson correlation, allowing for measuring anti-correlation. In the audio-reactive
context, it is not important whether something is correlated or anti-correlated, so we take
the absolute value of the ARV as the correlation metric.

tl’(gAgB)
\/trS%trS%,

3.3.2. Canonical Correlation Analysis
Canonical correlation analysis (CCA) is a statistical tool that analyzes two sets of multi-
variate observations. It is conceptually similar to least squares regression, which finds a
linear combination of a set of observations that maximizes the correlation with a given set
of outcomes. CCA, on the other hand, finds linear combinations of both sets of observa-
tions that maximize the correlations between the transformed representations.

More formally, given two matrices A € R"*® and B € R"*?, the task is to find vectors
u and v which maximize the correlation:

Prv

pCLT’U -

(3.1)

B uwlA-v'B
7 WAL ]|
This can be rewritten in terms of the covariances and cross-covariance of the matrices:
B uTszBU
P= \/uTEAu\/UTEBU

With a clever substitution for « and v, the expression can be solved with a singular value

decomposition. Let u = 221/211 andv = 2;1/2@, then the above equation becomes:

D IPREED PWD es

p =
ValavoTo

Which is equivalent to the first singular value of

5,255 ? = UAV
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The full singular value decomposition yields n different (u, p, v) triplets each representing
the maximal correlation under a different orthogonal linear combination of A and B. This is
a rich representation of the similarity between A and B under many projections, however,
it is not immediately obvious how to combine the series of correlation values to a single
score.

Morcos, Raghu, and Bengio [25] investigate series of CCA triplets in the context of
analyzing deep network representations. They find that many of the triplets are not con-
sistent over the course of training (especially early on) and so correspond to spurious,
noisy correlations rather than meaningful ones. Therefore, they propose to re-weight the
n correlations by the proportion of the input matrices they account for, «:

ai =Y (U] A4)A,]
=0

Re-weighting the singular values from above with the « values gives the final projection-
weighted canonical correlation coefficient:

> io il\i
weea — ’L_n— 3.2
Pp Zi:(] o (3.2)
The re-weighting scheme ensures that correlations between linear projections which
retain the most information of the original signals are given the most importance. This
results in a matrix correlation score which adapts the transformations of both matrices
such that they are maximally correlated yet still least altered by the transformation.

3.3.3. Orthogonal Procrustes Correlation
The orthogonal Procrustes problem is a classic approximation task in linear algebra. The
goal is to find an orthogonal matrix, €2, that maps a matrix A as closely as possible to B.
This has applications in many fields where data points need to be remapped to match
through translation, rotation, and scaling.

The correlation between the two matrices after the transformation has been applied
provides a better understanding of the true correlation between the matrices.

Schénemann [26] describe a solution for the orthogonal Procrustes problem, showing
that finding

argmin||QA — B||%
Q

is equivalent to finding a matrix R, such that
min|| R — BAT||p
This can be solved using the singular value decomposition
R=UVT with BAT =UAVT

Plugging R into the distance, we can find an expression that directly gives the distance
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based on A and B:

dop = ||RA - BI[%

dop = ||RA[%: + [|BI[- — 2(RA, B)r

dop = [|AllT + ||BIlE: — 2(UV" A, B)r

dop = [|All7 + || BIIE — 2tr(U" A" BV))

dop = |Al[7 +[|Bl[% —2) _A; (because BAT =UAVT)

dop = [|All% + 11 BIIE - 2||A" B]|.

where || - ||, is the nuclear norm and (-) » the Frobenius inner product. Given that A and
B are normalized, this distance is between 0 and 2 [27]. Therefore, we can define the
orthogonal Procrustes correlation p,, as:

pop = 1= (1AllF + |BI[% — 2I| A" BJ|.) /2 (3.3)

Similar to ppweca, Pop CaN be seen as a two-step process where first the matrices are
transformed to be as similar as possible (in a least-squares sense) and then a correlation
is taken between the transformed representations.

3.3.4. Similarity of Matrices Index

The Similarity of Matrices Index (SMI) [28] is a framework which tries to generalize the
two-step process seen in the p,.,c.. and p,, metrics. SMI first extracts stable subspaces
(e.g. through PCA or CCA) to find some orthonormal bases to compare under. Then,
these canonical representations are compared using orthogonal projection or Procrustes
rotation.

For the purposes of designing our audiovisual correlation metric, we consider extract-
ing subspaces with PCA and comparing representations with orthogonal projection as the
other cases are very similar to the metrics proposed above. In this case, the procedure
for calculating the SMI begins by taking the singular value decomposition of both matrices
A and B:

UAAAVA =A

UpApVp =B

The rank r of the matrices is estimated by counting the singular values larger than a
tolerance value and the corresponding left singular vectors taken as the reduced-rank
basis:

r= min(rA,rB)
UB _ UéO:r)
UA _ U[gO:r)

The SMI py,,; is then calculated by taking the average of the squared singular values S of
the cross-correlation of the reduced-rank bases:

S =UtUg = UsAsVs

r

pmi = _(AG)?/r (3.4)

7
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3.4. Empirical Analysis and Validation

To decide which of the matrix correlations is best for our audiovisual correlation, we per-
formed a preliminary study on synthetic groups of audio-reactive interpolations. Here
we validate whether our feature-based correlation approach can measure the difference
between videos with different levels of audio-reactivity.

First, we explain the setup of the experiment and the groups of audio-reactive videos
that we compare. Then we compare the different metric values to determine which one
has the most desirable properties and then evaluate its ability to distinguish between our
video groups.

3.4.1. Experimental Setup

These groups are designed to have high correlations in some circumstances and low
correlations in others. We select the matrix correlation which most closely matches these
expectations.

We propose two ways of calculating correlations. First, the concatenated correlation,
which concatenates all audio features together, and all video features together before tak-
ing a single correlation between them. This represents the overall audiovisual correlation
of the video. Secondly, we consider individual pairwise correlations between audio and
video features. This gives a more fine-grained understanding of which audio features are
more strongly represented in the video. Ideally the concatenated and pairwise correlation
values should be comparable with each other for easier analysis.

The synthetic groups of audio-reactive interpolations are generated by manually con-
verting audio features to latent interpolations using the methods described in Section 2.2.
Six different interpolation groups are made with 500, 16-second video snippets in each.
The audio for each snippet is chosen randomly from a corpus of about 30 minutes of mu-
sic from the test set (further details in Section 5.2). Two groups are based on random
interpolations and four groups are audio-reactive.

Interpolation Groups

* None: control group that did not interpolate at all. Each frame is generated with a
random Z-space latent vector and random noise maps. This group should have the
lowest correlation with all audio features as it is purely random.

* Random: second control group with random interpolations. The latent vectors and
noise maps are smoothed over time with a Gaussian filter. These random interpola-
tions should also have low correlation as they are not actually reacting to the audio.

* Onsets: onset-weighted interpolations. The latent vectors bounce between two ran-
dom vectors based on the value of the onset strength. Noise maps for this group
are initialized as random smoothed noise interpolations and then multiplied by the
onset strength mapped to vary between 0.5 and 1.5. The effect of this modulation
is that the standard deviation of the noise is higher when an onset occurs and lower
when there is no onset. This group should have high correlation between the on-
set strength and video features (and therefore should also score better than None or
Random on concatenated correlation).

* Chroma: chromagram-weighted interpolations. The latent vectors are the weighted
average of 12 random vectors, each corresponding to one of the bins in the chro-
magram. The noise maps are likewise a weighted average of 12 randomly drawn
noise matrices. This group should have high correlation between the chromagram
and video features.
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* Onset+Chroma: Each latent and noise sequence the average of the Onset and
Chroma group procedures. This group should have high correlation between the
video features and both the onsets and chromagram.

* Manual: hand-tuned audio-reactive interpolations. This group is randomly-sampled
snippets of the videos in the test set (detailed further in Section 5.2). These videos
are custom-made to fit well with the audio through manual iterative refinement (i.e.
audio feature parameters and their mappings to the GAN are guessed and refined
slowly by hand). This group should have high correlation across the board, but espe-
cially with the RMS, drop strength, onsets, and chromagram (as these are generally
the primary driving features for these interpolations).

3.4.2. Selecting A Correlation Metric

Before diving into the full comparison across groups, we first select a matrix correlation
based on the None and Onset+Chroma groups. These two groups should show a stark
difference and so can be used to gauge overall efficacy of the different metrics. Figure 3.1
shows the histograms of the concatenated correlations (3.1a) and all pairwise correlations
(3.1b) for every interpolation in the two groups. The median correlation is denoted with a
vertical dotted line.

None
Onset+Chromagram

1

0.0

Orthogonal Procrustes

0.5 1.0 0.0 0.5 1.0

Projection-weighted CCA

0.0 0.5 1.0
Adjusted RV Coefficient

0.0 0.5

(a) Concatenated

1

0.0

Orthogonal Procrustes

1.0

Similarity of Matrices Index

0.5 1.0 0.0 0.5 1.0

Projection-weighted CCA

0.0 0.5 1.0
Adjusted RV Coefficient

0.0 0.5

(b) Pairwise

Figure 3.1: Histograms of audiovisual correlation values for different matrix correlations. (a) shows the
correlation between the concatenated audio and video features while (b) shows the correlations between
all pairs of audio and video features. The vertical dotted line represents the median of each distribution.

First off, across the board, the median of the correlation distribution is higher for the
Onset+Chroma group than for the None group. This is encouraging as it shows that audiovi-

1.0

Similarity of Matrices Index
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sual correlation can be measured based on this set of features and matrix correlations—at
least in very obvious cases.

Also apparent is that not all matrix correlations have the same characteristics. For
one, PWCCA attributes high correlation to both the None and Onset+Chroma group with
concatenated features. This is undesirable as the None group should have essentially no
correlation, and we expect higher variability in scores in both cases.

Another interesting result are the bimodal distributions in the pairwise PWCCA and
SMI histograms. As PWCCA already has shown undesirable properties, we focus on
SMI. Closer inspection of the pairwise correlations shows that the upper mode consists of
correlations between two univariate features and the lower mode consists of correlations
with at least one multivariate feature. The SMI between two univariate features degener-
ates to the cosine similarity between these two. There are a number of sparse univariate
features which have a disproportionately high cosine similarity.

This leaves only the OP and ARV correlations. It seems that the relative difference in
medians is roughly the same and neither one has a bimodal distribution. The OP metric
spans a larger range of values between 0 and 1 which makes it preferable if only for ease
of inspection of the results. The apparent range of the ARV scores can be increased using
an upper bound on the attainable RV coefficient [29], however, we leave this possibility
for future work as it does not have any obvious benefits over OP correlation.



3.4. Empirical Analysis and Validation 19

3.4.3. Comparing Interpolation Groups

Next we compare the orthogonal Procrustes audiovisual correlation between the full set of
interpolation groups. Figure 3.2 shows the median audiovisual correlation of each group
with different audio feature targets.

(a) Concatenated (b) RMS
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Figure 3.2: Comparison of the median audiovisual correlation on the different sets of interpolations: None
(N), Random (R), Onsets (O), Chroma (C), Onset+Chroma (O+C), and Manual (M). The figures are: (a)
concatenated features, (b) RMS, (c) onsets, and (d) chromagrams.

Figure 3.2a shows the concatenated feature audiovisual correlation, our most general
metric. The None group scores correctly as expected, yet, while the audio-reactive groups
are the highest scorers, the Random group shows a higher correlation than expected. To
get a more comprehensive understanding of these results, we group the pairwise corre-
lations by audio features in Figures 3.2b, 3.2c, and 3.2d.

The correlations between the video features and RMS shown in Figure 3.2b are quite
similar to the concatenated results. Following expectations, the Manual group has the high-
est score. Notable is that the other audio-reactive groups outperform the Random group
(although only slightly) despite not using the RMS feature to generate their interpolations.

The onset strength correlations in Figure 3.2c show strong scores for both the Onsets
and Onset+Chroma group but not for the Manual group, despite onsets being one of the
primary driving features for this group.

Finally, when grouping by chromagram in Figure 3.2d, the metric shows that the Chroma
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group has the highest correlation, as expected. However, the Random interpolation group
performs on par with the Onset+Chroma group and outperforms the Manual group. This
is a surprising result as both the Onset+Chroma and Manual groups explicitly use chroma-
weighted averages in their input sequences while the Random interpolations do not.

One major difference between the chromagram and the previous two univariate fea-
tures is that it is quite smooth over time (due to the feature including a median filter and
generally being dominated by the high-energy bass frequencies which often play slower,
longer notes). This means that, on average, random interpolations will have a higher
correlation with the chromagram than with the sparser, higher-frequency RMS or onset
features.

3.4.4. Smoothness Bias

To investigate the correlation bias towards smoother videos, we perform the same experi-
ment as above (with only 100 snippets rather than 500), but with all groups being random,
smooth interpolations with varying temporal filter widths. The higher the sigma of the
Gaussian filter, the smoother the output video.

Orthogonal Procrustes Projection-weighted Canonical Correlation Analysis
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Figure 3.3: Audiovisual correlation between concatenated features of random interpolation videos
generated with different Gaussian filter sigma values.

Figure 3.3 clearly shows the strong connection between smoother videos and higher
audiovisual correlation scores. Across all matrix correlation metrics, the same trend is
apparent. Multiple different re-weighting schemes are tried to account for smoothness of
audio and video features, but none significantly alleviated this issue (see Appendix B).

Thankfully, looking closely at the scale of the orthogonal Procrustes audiovisual corre-
lation, even the highest sigma interpolations, which are almost completely static, have a
lower median correlation than the audio-reactive groups in Figure 3.2. This means that de-
spite over-valuing smoothness of the output videos, the proposed audiovisual correlation
can give meaningful information on the audio-reactivity of an interpolation video.
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Takeaways:

* The audiovisual correlation is defined as the orthogonal Procrustes correlation be-
tween a set of audio features and a set of video features extracted from an audio-
reactive video.

» This correlation measures important aspects of the audio-reactivity and is able to
characterize the differences between our groups of interpolations.

* The metric is not perfect. It scores our test set below our expectations and seems to
over-estimate the audio-reactivity of smoother videos with less extreme short-term

variation.
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Video Synthesis

Video synthesis can be a memory- and computation-intensive task. We can leverage
StyleGAN’s well-organized, smooth latent space to avoid synthesizing a large, low-information
pixel tensor directly. Rather, we generate the condensed sequence of latent vectors and
noise maps and decode those afterwards with a pre-trained generator. For simplicity, we
disregard the possible spatial correlations in the noise maps and only model their change
over time. This reduces our task to a pure sequence-to-sequence problem—all of our
inputs and outputs are multivariate time series.

To simplify the task, rather than taking the audio waveform as input directly, we extract
a number of relevant audio features and use these as input (see Table 3.1 for a full list
and description of input features). This gives the model a significant head start towards
audio-reactivity as its inputs are already perceptually relevant information from the audio.
This comes at the cost of the model becoming unable to discover its own new features
that might be even more effective. However, due to the complexity and long-range context
length required for learning from an audio waveform directly, this trade-off seems in order.

We introduce four algorithms for audio-reactive video synthesis:

* Randomizer: A random generator that synthesizes latent and noise sequences by
randomly selecting audio features and decoding strategies. This synthesizer is simi-
lar to the prior work described in Section 2.2 but uses an expanded number of input
features and leverages the entirety of StyleGAN’s latent and noise hierarchy.

* Supervised: A learned model that maps arbitrary audio features to StyleGAN latent
and noise sequences. This synthesizer is trained to mimic a collection of hand-made
audio-reactive latent interpolations.

* Self-Supervised: A second learned model that maps audio features to latent and
noise sequences. Unlike Supervised, this synthesizer uses an adaptation of the
audiovisual correlation as a loss. This allows it to train without any hand-made ex-
amples, just a dataset of audio features.

* HiPPO (High-order Polynomial Projection Operator): Another self-supervised synthe-
sizer. Rather than training a sequence-to-sequence model on a dataset, this ap-
proach parameterizes the latent and noise sequences directly and optimizes them
with a self-supervised loss. This means it can optimize a video that corresponds to
a single audio input, rather than requiring a dataset of many examples.

In terms of manual supervision, Randomizer is essentially equivalent to previous manually-
tuned interpolations. The translation from audio to StyleGAN input sequences being ran-
domized shifts the manual supervision from designing this translation to filtering through
the random outputs. Supervised also still requires quite a bit of supervision as there
needs to be a large dataset of good, hand-made interpolations to train on. While this
theoretically only needs to happen once, it is still human supervision.

22
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Table 4.1: Comparison of the characteristics of the four synthesizers.

Synthesizer | Pre-training | Dataset | Inference
Randomizer None None Random patch generation
Supervised Supervised Large set of paired audio, latent, and Forward pass

Self-Supervised

HiPPO

Self-supervised

None

noise sequences
Large set of audio seqeunces

None

Forward pass

Self-supervised optimization

Both Self-Supervised and HiPPO allow for true self-supervised video synthesis. The
human supervision here comes in the form of the audiovisual correlation loss. The choices
of the matrix correlation, audio, and video features does still entail some human design,
but broadly the optimization process is guiding itself without explicitly provided samples—
it scores on its own what is correct and what is not. Despite this possibility of complete
self-supervision, feature weighting with the pairwise feature correlations does still allow
for some extra influence over what the Self-Supervised or HiPPO synthesizers actually
learn.

4.1. Randomizer

The first synthesizer is closest in philosophy to previous approaches by Siegelman [11],
Alafriz [30], or Brouwer [17]. The Randomizer generates 5-15 random latent and noise
sequences each one based on a single audio feature and targeted to a random set of
StyleGAN’s layers. The sequences are then randomly merged together into one final
"weighted average of weighted averages” sequence. We first give an overview of the
algorithm and then discuss the specifics of generating and merging the latent and noise
sequences.

What makes the Randomizer a stronger baseline than previous work stems from three
major points. First the range of audio features it randomly selects from is larger. This in-
cludes performing source separation before extracting an audio feature (e.g. to focus on
rhythmic or harmonic elements). Second, it randomly chooses to synthesize sequences
across the entirety of the StyleGAN latent and noise hierarchy. Third, it generates numer-
ous sequences and combines them in a variety of ways. This allows for generations with
a high audio-reactive bandwidth as many scales of structures in the video are reacting to
a multitude of different musical features. The downside, of course, is that sometimes the
randomly chosen configurations do not work well together.

To help clarify how the Randomizer works, we introduce the notion of a "patch” (ap-
propriating the term from analog modular audio or video synthesizers). A patch is the
specification of each of the random choices that lead to one possible latent or noise se-
quence. These patch parameters are drawn randomly beforehand and, given a fixed
random seed, deterministically map to a certain output sequence. Each patch consists
of a random number of sub-sequences which are combined to form the final output se-
quences.

Every sub-sequence is driven by one audio feature, translated to latent or noise values
using one of three possible strategies. Then, each sub-sequence is combined one-by-one
using two possible strategies for each merge. Each strategy for generating or merging
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sequences may have multiple parameters governing the exact details of the process. All
of these parameters are encompassed by the patch.

While largely similar, generating latent sequences and noise sequences differ in a few
points. First, we discuss the latent sequences.

4.1.1. Latent Patches

Latent patches are generated using a pre-selected "palette” of latent vectors. These can

be completely random or selected carefully beforehand to have a certain overall style.
The process starts by choosing a random number of vectors from the palette and cal-

culating a cubic spline that passes through them spaced equidistantly over the total length

of the video. Then, each sub-sequence is generated and merged into this main sequence

one-by-one.

Generating Sub-sequences
For each sub-sequence, the latent palette is randomly permuted and the first few vectors
drawn (the exact number varies by strategy). Next the patch chooses a random depth
range in StyleGAN. The layers are divided into three sections (deep, middle, and shallow)
and one, two, or all sections are chosen.

The three strategies for generating latent sub-sequences are “segmentation”, "feature”,
and "loop”.

+ Segmentation uses a Laplacian segmentation (see Table 3.1) of a randomly se-
lected audio feature with a randomly chosen number of segments, &, between 2 and
16. The motivation for this sub-sequence type is to allow for changes in visual style
between different sections of the song. Laplacian segmentation assigns a label to
each frame in the sequence according to the predicted membership in one of k differ-
ent sections. For example, if an audio sequence of length 15 follows an ABCBA pat-
tern and k is set to three, the expected outcome is the sequence 111222333222111.
Each section is assigned one latent vector and these are gathered into each of the
corresponding frames. Finally, a Gaussian filter is applied to ensure the transitions
between sections are smooth.

» Feature applies a feature-weighted moving average. Each dimension of the feature
sequence is assigned a latent vector, the feature is normalized to sum to one in each
timestamp, and then the sequence is generated by taking the sum of latent vectors
weighted by the feature over time. This strategy allows latent sequences to change
directly with changes in features such as when an onset occurs, different notes are
played, or there is a change in the frequency distribution.

* Loop taps into the pattern-based structure of music. The tempo of the music is
estimated and a random selection of latents is made to loop every n bars using
spline interpolation (with n chosen randomly from 4, 8, 16, or 32).

Merging Sub-sequences

Once the sub-sequence has been generated, it needs to be added into the main sequence.
This is either done by the "average” strategy, which simply adds the two sequences and
divides by two, or by the "modulate” strategy. The second strategy chooses a random
univariate audio feature, normalizes it to lie between 0 and 1, and uses it to blend back
and forth between the main sequence and the new sub-sequence.
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Figure 4.1: Schematic of the Randomizer synthesizer. Each row represents a sub-sequence. A random
audio feature is drawn (left) and translated via a random strategy into a sequence. These sequences are
then merged into the main sequence one by one (note that the "modulate” merge strategy draws a
random audio feature as well). The final latent and noise sequences are decoded with a pre-trained
StyleGAN generator.
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4.1.2. Noise Patches
Noise patches are generated similarly to latent sequences. One important difference is
that, due to their spatial dimensions, noise sequences must be generated lazily to pre-
serve memory (naively generating these tensors for a 5-minute video requirements on
the order of 300 GB of memory). This means that, rather than generating the full tensor
beforehand and iterating through it when rendering, each noise map is a deterministic
function of the frame index.

The three noise sub-sequence generation strategies are "feature”, "blend”, and "loop”.

* Feature is essentially identical to the latent sub-sequence strategy. Each noise ma-
trix is treated as a flat vector and the feature-weighted average is calculated batch
by batch during StyleGAN decoding.

* Blend is also similar but uses the weighted average of the audio feature to modu-
late between a slowly interpolating noise sequence and a quickly interpolating noise
sequence. This causes a squirming, quickly interpolating visual effect whenever the
audio feature has a high value and more constant movement when it is low.

* Loop is slightly different from for latent sub-sequences due to lazy evaluation. The
same spline interpolation strategy is hard to adopt as the spline coefficients need to
be calculated for a much larger vector (up to 3 million entries even for the shallowest
layers). For this reason, a periodic function is used instead. This function is manually
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designed to have values similar to a smoothed white Gaussian process. It takes three
noise vectors as random seeds, a o parameter which changes the "smoothness” of
the interpolation (similar to o for a Gaussian process), and an L parameter which
determines how many times the function repeats. The exact definition is:

No(t) = sin(cos(2ntL 4+ ng)/(0/50) + n1) * ng
N(t) = No(t)// No(t)?

Where ng,ny,n2 ~ N(0,I), 0 € R, L € N, and ¢ is taken linearly spaced between 0
and 1 for the number of frames. The second step normalizes each frame individually
to have roughly normally distributed values.

White Gaussian Process Proposed Noise Function

Figure 4.2: Comparison between a random white Gaussian process and the proposed noise function for
different sigma values.

Noise sequences are merged in the same way as latent sequences (but done lazily at
decoding time, generating each frame in the sub-sequence just-in-time to be added into
the main sequence frame).

4.2. Supervised and Self-Supervised

The Supervised and Self-Supervised synthesizers are essentially identical except for
the training loss. The model is pre-trained on a large dataset of audio(visual) examples.
Once fully-trained, the model can be run on new audio feature examples to synthesize a
corresponding sequence of StyleGAN inputs. The only difference between the two proce-
dures is the loss used for pre-training: a supervised mean-square-error loss between the
model’s outputs and a training set of examples or a self-supervised audiovisual correla-
tion between the model’s outputs and the audio feature inputs. The design of the model,
which we discuss in the following sections, is the same between both synthesizers.
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4.2.1. Model Architecture
The model architecture consists of two main parts: the envelope generator, which trans-
lates the concatenated audio feature time series to an internal representation of a fixed
dimension, and a decoder, which translates this internal time series to a sequence for
each of the inputs to StyleGAN.

Envelope Generator
A variety of sequence to sequence model candidates are compared for the envelope
generator:

* GRU [31]

* LSTM [32]

» ConvNeXt [33]

* MLP-ASR [34]

* Transformer [35]
» Sashimi [36]

The exact architectural details and hyperparameters can be found in Appendix A.

Decoder

The decoder is responsible for taking the condensed sequence of most audio-reactively-
relevant envelopes from the Envelope Generator and transforming it to each of the input
sequences to StyleGAN. For simplicity, only a subset of all inputs are modelled with the
decoder. For the 1024x1024 pixel pre-trained StyleGAN network that is used, trained by
Gonsalves [37], there are 18 latent vector inputs and 16 noise maps. The latent vector
inputs are segmented into 3 groups (deep, middle, and shallow) where each layer within
a group received the same sequence of latent vectors. Due to computational considera-
tions only the 4x4, 8x8, 16x16, and 32x32 pixel noise maps are used. This means the
decoder outputs multiple multivariate sequences ranging from 16-dimensional (4x4) to
1024-dimensional (32x32) for the noise maps and 512-dimensional for each of the latent
vector groups.

Two designs are considered for the decoder:

1. Learned: a channel-wise multi-layer perceptron, which translates from the internal
representation to the output space.

2. Parameter-free: a fixed-size weighted average based on a pre-specified palette
of output space samples (be they latent vectors or noise). This is essentially the
"feature” sub-sequence generator from the Randomizer but with the weighting deter-
mined by the internal representation from the Envelope Generator (i.e. a learned
non-linear function of the audio features).

Residual Latent Sequences One important consideration in developing this architec-
ture is that there are many possible sequences of latents and noise that correspond to
equally valid audio-reactive videos. This highlights the need for separating the content
(visual style) and motion (change over time) during the generation process.

One simple way to approach this in latent space, is to mean-center sequences so that
they represent deviations instead. These residual sequences can then be re-centered
around any location in latent space to apply a different visual style (by addition of a latent
vector with the residual sequence).
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This can help make the task easier for the model as the exact values of the latent
sequence no longer need to be learned, rather only the relative offset that the incoming
audio features should induce.
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Figure 4.3: A schematic representation of the parameter-free decoder. The input is a multivariate
time series where each envelope in the time series is mapped to one of the latent temporal
weightings or noise mean and standard deviation values.

Parameter-free Decoder The parameter-free decoder takes this idea of content-motion
separation one step further. There are still complex linearly-separated image semantics
embedded in the 512-dimensional latent space, even when only looking at deviations from
a mean. For example, a change in the 34th dimension of the latent vector represents a
different visual change, than the 72nd dimension. This means that a large proportion of
model capacity must still be used to transform the internal representation to match this
output space.

This isn’t necessarily the problem we are interested in solving, we just want to generate
movement within this space. Therefore, the parameter-free decoder uses a weighted
average of a fixed set of latent vectors with the weight of each vector changing over
time. This significantly reduces the total parameter count of the model, leaving only the
envelope generator model with learnable parameters.

This has the added benéefit that the palette of latent vectors can be hand-selected to
have the correct visual style beforehand. While the residual sequence can also be "styled”
by re-centering it to a different area of latent space, it's movements around that point are
harder to adjust and may drift away from the desired style.

The parameter-free decoder takes a fixed number of inputs per latent sequence and
noise sequence it models. First, two envelopes for the mean and standard deviation of
each of the four noise maps. Then an envelope for each latent vector, where groups
are averaged together (e.g. a 6-way weighted average for each of the three latent se-
quences).

4.2.2. Training
With an understanding of the shared architecture of the Supervised and Self-Supervised
synthesizers, now we discuss the difference in their training procedures.

Supervised Loss
The supervised loss is the most straightforward way of training the learned models. A
large dataset with pairs of audio features and the expected output latent and noise se-
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quences are used to train the model. For each batch of examples, the audio features are
sent through the model and a mean squared error between the model’s output and the
expected sequences is minimized via gradient descent.

While in theory, this allows the model to learn to synthesize audio-reactive latent and
noise sequences of similar quality to the dataset, in practice the amount of data required is
intractable. Even with the content-motion decomposition induced by the residual latent se-
quences or the parameter-free decoder, the supervised loss tasks the model with learning
to output a single infinitesimal, knife’s-edge path through a multiple-hundred-dimensional
space. Multiple augmentation strategies were tried to alleviate this, but none made much
of a difference and so are relegated to Appendix B.

During training, input and output sequences are sliced into clips of 8 seconds each
offset by 1 second. This led to a training and validation set size of 3072 samples and 704
samples respectively.

Models are trained for 128000 examples with a batch size of 32. The ADAM opti-
mizer [38] is used with a learning rate of 1e-4. The supervised models are trained with a
mean squared error loss between the model’s output sequences and the true reference
sequences from the dataset.
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Figure 4.4: A schematic of the supervised training process. A large dataset of paired (audio,
latent, noise) tuples is required. The audio features are translated to latent and noise sequences
by the model. These are compared with the reference sequences via a mean-squared-error loss

and the parameters of the model updated via gradient descent (denoted by the red arrows).

Self-supervised Loss

The self-supervised loss is designed with alleviating the need for a large dataset of exam-
ples. Most importantly, it allows multiple different output sequences for the same audio
feature inputs to receive a low loss. This is akin to targeting an aircraft carrier rather
than a knife’s edge. The optimizer’s task is thus significantly easier as good areas of
parameter-space are much more common and diffuse.

While the metric introduced in Chapter 3 is designed to measure the correlation be-
tween audio and video features, to avoid having to render high-definition video during
training, the correlation is rather measured between the audio features and the model’s
output sequences. This makes training significantly more tractable. Intuitively, a high



4.3. HiPPO 30

, Decoder |

Envelopes ! — '

Envelope 5 :
b ' Parameter- | :
Generator i | Learned | or _— ]

el . Latent Vectors

—— - (TR

P r : i Noise Maps
=) Gabd G

Figure 4.5: The self-supervised training process. A dataset of audio features is required. The
audio features are translated to latent and noise sequences by the model. These sequences are
compared to the reference audio features with the self-supervised loss (orthogonal Procrustes
distance) and the model parameters updated via gradient descent.

correlation on the latent and noise sequences should generate high correlation videos as
well, because of the one-to-one correspondence between StyleGAN’s inputs and outputs.

For the self-supervised loss, the model’s output sequences are concatenated and the
correlation to the input audio features is maximized (d,, is minimized, see Equation (3.3)).
When feature weighting is used, rather than concatenating all input and output sequences,
the weighted sum of the pairwise correlations is used.

4.3. HiPPO

The final synthesizer is HiPPO. Rather than gathering a large dataset and training for a
long time to do well in the average case, we instead directly optimize a single example.
Intuitively, the quality can be higher as the interpolation is tailored to the single song at
hand rather than all possible inputs in the dataset.

This is made possible by combining the self-supervised loss and the parameter-free
decoder. In this case, there is no example output needed and there are no parameters in
the decoder that need to be learned. We can directly optimize the inputs to the decoder
and place a loss on the audiovisual correlation of the outputs with the audio features.

One issue here is the performance of the optimization. The subspace of envelopes
that will generate nice audio-reactive videos is a minute fraction of the total space of mul-
tivariate time series. The envelopes should be smooth and continuous to ensure they
generate a nice interpolation, but the optimizer does not know that. To imbue the sys-
tem with a stronger inductive bias, we re-parameterize the envelopes to ensure they are
smooth and continuous yet still expressive enough to enable reaching a high audiovisual
correlation.
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Figure 4.6: HiPPO synthesizer optimization process. The envelopes for the decoder are
parameterized by the HiPPO module directly. These envelopes are the weighted average of the
first N Legendre polynomials where the weights are learned by gradient descent on the
self-supervised loss between the decoded sequences and the audio features.

4.3.1. HiIiPPO Parameterization

Gu, Dao, Ermon, et al. [39] introduce the High-order Polynomial Projection Operator as
a long-term memory unit for a recurrent neural network. The work is fairly complex math-
ematically, but for our purposes only a small part of it, the polynomial approximation, is
important. The idea is similar to a Fourier transform, where, rather than saving the values
of a function directly, a set of coefficients is saved which are decoded to the original signal
by multiplying with a fixed set of basis functions. Here, the basis functions are from the
series of Legendre polynomials [40]. The HiPPO module can be used to parameterize
the full multivariate time series as a weighted sum of these basis polynomials at each
time step. The parameters that are optimized are the weights for a fixed set of orthogonal
polynomials.

This provides a useful inductive bias as the polynomials are relatively smooth, so the
decoded video based on these envelopes will be smooth as well. The number of param-
eters used for optimization also functions as a control for how smooth the output video is.
The more parameters used, the more extreme high frequencies the learned envelopes
can contain.
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Figure 4.7: The internal workings of the HIPPO module. The envelopes are a per-time-step
weighted average of a fixed number of Legendre polynomial basis functions.
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The ADAM optimizer is used for optimization, starting with a learning rate of 1e-3 and
using cosine annealing to lower it to 1e-5 over the course of optimization. The optimization
is run for 2048 steps.

Takeaways: We introduce four algorithms for translating audio features to StyleGAN
input sequences.

1. Randomizer which randomly generates a wide variety of latent and noise sequences
based on our set of audio features.

2. Supervised which is trained to explicitly mimic a dataset of paired audio, latent, and
noise sequences through supervised learning.

3. Self-supervised which uses the audiovisual correlation between its audio feature
inputs and latent and noise sequence outputs to learn the translation task in a self-
supervised manner.

4. HiPPO a model-free approach, which uses the same self-supervised learning strat-
egy as Self-supervised but rather optimizes a single audio-reactive interpolation
directly.
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Experiments

In this chapter we perform experiments to evaluate the performance of our proposed meth-
ods. First we discuss our experimental setup: the frameworks, dataset, evaluation meth-
ods, and baselines. Then we show the results of experiments that compare all methods
against each other and experiments that ablate certain design decisions of the individual
methods.

5.1. Frameworks

All experiments are done using PyTorch [41]. This provided a large assortment of readily
available sequence learning models, data loading pipelines (e.g. FFCV [42] and Decord
[43]), and auto-differentiation for training. Furthermore, there are many state-of-the-art
code repositories online which also use PyTorch and so can be integrated easily.

A number of audio-reactive utility functions, data processing functions, and neural net-
works from Maua [44], a toolkit for creating art with deep learning, are used. Maua pro-
vides wrappers for multiple different implementations of StyleGAN under a unified API
that allows for sampling images at arbitrary resolutions and rendering audio-reactive la-
tent interpolations.

Audio feature extraction is done using implementations from librosa [45] and madmom
[46]. The features in Table 3.1 are reimplemented in PyTorch to make use of the GPU as
well as offer the possibility of using autograd.

Implementations of the matrix correlation metrics are adapted from or reimplemented
based on [47] and [48].

All code used in the experiments is made available in an online repository for trans-
parency and reproducibility: https://github.com/JCBrouwer/self-supervised-audio-reactive

5.2. Dataset

The learned models are all trained on a dataset of mainly electronic music (specifically
drum & bass, dubstep, and UK garage). The main factor behind this choice of data is
the need for examples of audio-reactive interpolations. There are no large sets of these
available online, however, having personally made many audio-reactive interpolations, |
have 3.5 hours of material that is used as a dataset.

This data is split into three groups, a training set, a validation set, and a test set. The
training and validation set are an 80%-20% random split of the hour-long mixes together.
The test set consists of 10-15 shorter videos. Due to their short length, the test set videos
are the most polished in terms of audio-reactivity due to the relative ease of more detailed
refinement during their creation.

The sampling rates of all videos (and so the latent and noise sequences) is fixed at 24
frames per second. For audio feature extraction, the audio is resampled to 24576 samples
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per second and processed with a hop length of 1024 samples to create sequences which
are also exactly 24 frames per second.

While the self-supervised approaches can use any dataset of audio, for comparison’s
sake the same dataset is used for this setting as well.

5.3. Evaluation
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Figure 5.1: Schematic representation of the calculation of the audiovisual correlation. Audio features are
decoded to a video, from which video features are extracted and finally compared with the original audio
features.

We employ a number of metrics to quantify the performance of the video synthesizers.

5.3.1. Audiovisual Correlation

The primary metric is the audiovisual correlation as introduced in Chapter 3. To assess this
metric, we synthesize videos for the audio of the entire test set (this corresponds to about
250 snippets of video relative to the 500 used in the preliminary analysis in Section 3.4).
The audiovisual correlation primarily captures motional aspects of the video.

5.3.2. Fréchet SwAV Distance

To quantify the content of the interpolations, we measure use Fréchet SwAV Distance. The
Fréchet distance [49] is a distance measure between distributions. The Fréchet Inception
Distance [50] is a popular metric for evaluating the similarity between a generative model’s
outputs and its target distribution. It measures the Fréchet distance between a pre-trained
InceptionV3 [51] network’s internal representations of a large set (30000-50000) of gen-
erated images and a second set of real images.

Recently, there has been evidence that using a self-supervised pre-trained image
recognition network (specifically SwAV [52]) instead of InceptionV3 is better suited for
evaluating generative models. Morozov, Voynov, and Babenko [53] suggest that SWAV’s
contrastive training objective, which simultaneously clusters images and enforces consis-
tency between cluster assignments under augmentations, produces internal representa-
tions which better capture perceptual importance of images—especially for non-ImageNet
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data. Given that our StyleGAN generator [37] is trained on abstract art, this seems to be
the better fit.

To evaluate the visual quality of the synthesized audio-reactive interpolations, we mea-
sure the FSD between 30000 randomly generated samples from the generator and 30000
random frames sampled from synthesized videos. This evaluation helps to show whether
the latent and noise sequences which are generated fall within the distribution that Style-
GAN expects, allowing it to generate high-quality samples.

5.3.3. Inference Time

The final metric we evaluate is the inference time. This is the amount of time that it takes
for the set of audio features to be translated to the set of latent and noise sequences. The
time taken to calculate audio features and the time taken to render the actual video are
neglected as these are identical across methods.

5.4. Baselines

To gain an understanding of how our methods compare with other publicly available ap-
proaches, we also run our evaluation on a few baselines. Next to the hand-made test
set, which is created using Maua [44], we test LucidSonicDreams [13], a Python pack-
age which synthesizes audio-reactive latent interpolations (see Section 2.2 for details),
and WZRD.ai [54], a website which generates audio-reactive latent interpolations. While
Maua and LucidSonicDreams are open source, it is not public knowledge how WZRD.ai
synthesizes videos. Nevertheless, we include it as it is one of the few tools which are
available online.

While both LucidSonicDreams and WZRD.ai provide multiple parameters to tweak the
audio-reactivity of their interpolations, for simplicity the default parameters are used with
randomly drawn latent vectors. This means that audio-reactivity and visual quality can
presumably be improved by refining these parameters as has been done with the test
set.

5.5. Results

Example audio-reactive interpolation videos can be found in the supplementary material:
https://jcbrouwer.github.io/thesis/supplement.

5.5.1. Audiovisual Correlation

First we analyze the audio-reactive quality of the different synthesizers. Figure 5.2 shows
the distribution of audiovisual correlation scores (as described in Section 5.3.1) of each
of the different synthesizers that are evaluated. The scores for all models are shown for
the best-performing variants (see Section 5.5.4 and Section 5.5.5).

There is a large difference in performance between the self-supervised methods (HiPPO
and Self-Supervised) and the rest. This confirms that maximizing correlation between
the audio features and StyleGAN'’s input sequences results in videos that are correlated
with the audio features as well. This shows that the input sequence representations are
rich enough that they can serve as proxy for the audio-reactive properties of the output
video.

Continuing left towards the lower correlation methods, we see that the randomizer’s
median correlation is close to that of the supervised model, test set, and LucidSonic-
Dreams baseline. However, there are multiple videos with significantly higher correlation.
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Figure 5.2: The distribution of the concatenated audiovisual correlations on the test set for each of the
synthesis approaches.

This shows that the Randomizer is capable of generating high-quality audio-reactive re-
sults (albeit rarely). It is clear that the focus on increasing audio-reactive bandwidth does
improve the Randomizer’s results over the baselines, even if the difference in averages is
not large.

The supervised model has a slightly higher audiovisual correlation than the test set
on average, however, it also has a number of results which are significantly worse than
any of the test set samples. This can likely be attributed to two factors: (1) the training
set being based on longer audio-reactive interpolations and thus being less audiovisually
correlated than the test set and (2) the model struggling to learn the supervised loss due
to the challenging loss landscape (the knife’s edge problem mentioned in Section 4.2.2).

Finally, we analyze the baseline results. WZRD, LucidSonicDreams, the test set, and
the Randomizer are all essentially following the same strategy to synthesize videos. The
Randomizer has the most diverse set of audio features and so performs best on the over-
all concatenated audiovisual correlation. LucidSonicDreams uses the smallest subset of
features: only the maximum energy frequency band in the spectrogram, although sepa-
rately on the harmonic and rhythmic components of the full audio signal. WZRD performs
worst of all the methods in terms of audiovisual correlation. However, WZRD provides an
interface for fine-grained scheduling of latent vectors over the course of an interpolation
which can greatly increase the artistic control over the video. Spending some time fine-
tuning interpolations via the interface can probably significantly improve the audiovisual
correlation and visual quality at the cost of manual work.

5.5.2. Fréchet SwAV Distance
Next we analyze the visual quality of the synthesized videos. Figure 5.3 shows the FSD
(as described in Section 5.3.2) between generated audio-reactive interpolation videos and
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Figure 5.3: The Fréchet SwAV Distance between random generated images and audio-reactive video
frames. Lower is better.

the regular generator distribution. We are unable to calculate the FSD for WZRD as we
do not have access to a large set of random samples from the generator. Here it becomes
apparent that there is a cost for the higher audiovisual correlation of the self-supervised
models.

The frames in interpolations synthesized by LucidSonicDreams are closest to the na-
tive distribution of the generator. This is an expected result as LucidSonicDreams oper-
ates in the unmapped latent space, Z. Thus, vectors in the latent sequence are always
mapped into a valid section of the mapped latent space, W, because StyleGAN’s map-
ping network normalizes each vector to have unit variance. LucidSonicDreams also does
not use the noise maps, which eliminates another possibility for going out of distribution.

The remaining methods all operate in W-space which allows for targeting audio-reactive
effects to different areas of the StyleGAN latent hierarchy. However, YW-space is a com-
plex, nonlinear re-mapping of Z-space and so it is not as easy to ensure that linear combi-
nations of latent vectors remain within the distribution that StyleGAN'’s synthesis network
expects. On top of this, the mean and standard deviation of the noise maps are also mod-
ulated over time for these methods. The effect on the individual frames will also increase
the distance to the generators natural distribution.

While the difference seems extreme, we note that the test set is the product of a process
of iterative refinement for qualitatively better visual aesthetics and audio-reactivity. The
distribution of these frames differs from the natural distribution of the generator, but this
does not necessarily imply a visually important difference.

The two learned models are another story. Those with experience pushing StyleGAN’s
latent space to its limits will recognize the saturated, flat, colored artifacts that are some-
times present in the videos generated by Supervised and Self-Supervised. Interestingly,
the two seem to be relatively equal in their distortion of latent space. This is despite the
factthat Self-Supervised receives no supervision regarding the real distribution of latents
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while Supervised is trained on hours of examples.

Table 5.1 provides some examples of generated frames. The Supervised samples are
cherry-picked to highlight extreme, out-of-distribution generations. Note that despite the
higher FSD, the randomly selected Randomizer samples are still visually similar to the
random Z-space samples.

Table 5.1: Comparison of images of the Supervised and Randomizer synthesizers with random
generations from the StyleGAN generator. Supervised samples are cherry-picked to highlight extreme,
out-of-distribution generations, the other two rows are not curated.

Synthesizer Example Frames

Supervised

Randomizer

Natural Distribution

5.5.3. Inference Time

Our final point of comparison is the time it takes to perform inference based on audio
features of a given length. Figure 5.4 shows the time taken to output latent and noise
sequences for a variety of different video lengths. The trend lines are the LOWESS (Lo-
cally Weighted Scatterplot Smoothing) [55] fit of the data to help make the scaling trend
clear. The FPS (frames per second) values are the inverse slope of the linear regres-
sion (imperfect for trends with curvature). We do not analyze the test set as these videos
are generated with multiple different scripts that do not all have the same inference time.
Supervised and Self-Supervised only differ in their training procedure and so have the
same inference time, denoted in the figure as GRU. The experiment is performed on a
machine with an RTX 3090 GPU (24 GB of VRAM), a 12-core AMD Threadripper 1920X
CPU, and 64 GB of RAM.

The GRU is fastest of the proposed methods, scaling linearly with sequence length.
This requires training first, though, which requires between 25 and 40 minutes on the afore-
mentioned machine (the training time is longer when the supervised loss and/or learned
decoder are used).

The next fastest method is either the Randomizer or LucidSonicDreams depending on
the length of the interpolation. LucidSonicDreams scales super-linearly with the sequence
length while Randomizer scales linearly.
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Figure 5.4: The time taken to translate audio features to latent and noise sequences for different number
of frames.

Finally, the slowest method is HiPPO. This method requires a one-off optimization for
each video which takes a significant amount of time. Throughout all experiments the num-
ber of optimization steps is fixed at 2048 (based on preliminary convergence experiments).
However, presumably a more aggressive learning rate and/or fewer steps can make this
more competitive.

5.5.4. Supervised vs. Self-Supervised

Next we compare performance of the learned models with different architectural design
and training procedures. Each of the audiovisual correlations are found using the proce-
dure explained in Section 5.3.1.

Table 5.2: The median audiovisual correlation of the Supervised and Self-Supervised
synthesizers with different decoders and residual settings.

Learned Parameter-free
Supervised Self-supervised Supervised Self-supervised
Non-residual 0.2159 0.4610 0.2202 0.3912
Residual 0.2512 0.3494 0.2744 0.5522

Table 5.2 shows a comparison of the audiovisual correlation on the test set of the
Supervised and Self-Supervised models with different combinations of decoder and
residual latent sequences. We see that across the board the Self-Supervised outper-
forms Supervised.

Residual latent sequences do not have a significant effect on the performance of
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Supervised. However, they do influence Self-Supervised. When the learned decoder
is used (top row), residual latent sequences actually hurts the performance, but when the
parameter-free decoder is used (bottom row), residual sequences helps it significantly.

(a) Envelope Generators (b) Network Depth

o o
o ~
o e ot
o ~ o

o

3
o
o

I
~

o
w

Audiovisual Correlation
o o
w =

Audiovisual Correlation

o

N}
o
N}

o
o

=}
S}
o
o

ConvNeXt GRU LST™M MLP-ASR Sashimi  Transformer 1 2 4 6 8 10
Envelope Generator Number of Layers in Envelope Reactor

Figure 5.5: The audiovisual correlation of the Self-Supervised synthesizer with (a) varying
envelope generator and (b) varying depth of the envelope generator.

Next to design of the decoder, the other major component in our learned models is the
Envelope Generator. This part of the design is responsible for the temporal analysis—
translating a sequence of audio features to a sequence of internal representations to drive
the decoder. We compare the audiovisual correlation of several sequence-to-sequence
models in Figure 5.5a. Each model is configured with the same depth and such that the
number of learnable parameters is within 5% of each other (around 15k learnable param-
eters). Each model is trained with the parameter-free decoder, residual latent sequences,
and the self-supervised loss.

There is are two major groups: those sequence models that converged successfully
(GRU, LSTM, and MLP-ASR) and those that failed to learn to synthesize audiovisually
correlated videos (ConvNeXt, Sashimi, and Transformer).

In the group of successful models are two recurrent networks, the GRU and LSTM. The
GRU is a more recent, slightly simpler recurrent design. Apparently in this case Occam’s
razor gives the GRU the edge. MLP-ASR is a speech recognition adaptation of the recent
glut of MLP-Mixer [56] style models. These models revive the power of simple linear layers
by alternating between temporal operations and channel-wise operations with residual
connections. It is interesting to see that such a simple model without recurrence or a
temporal inductive bias can perform so well.

While it might be possible to find better hyperparameter configurations that allow the
failing group of networks to converge, there are some plausible reasons why each of these
does not perform well in our task. ConvNeXt is a network adapted from 2-dimensional
convolutional image recognition to use 1-dimensional, temporal convolutions. It is similar
to the residual structure of MLP-ASR, but replaces the alternating temporal and channel-
wise linear layers with convolutions. Apparently, this naive translation does not immedi-
ately confer the same strengths. Perhaps the architecture is simply not suited for sequence-
to-sequence learning. Sashimi is a state space model which follows upon the work of the
HiPPO module [39]. The main task considered is learning from raw audio waveforms. It
is possible that the inductive biases in the network are specifically suited to these kinds
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of low-information, high-noise tasks and so struggles to accurately model our smoother
audio-reactive task. Finally, the Transformer is well-known to be data hungry. The archi-
tecture especially excels after training for a long time on vast datasets, therefore it seems
to not be well-calibrated for this small scale setting with few learnable parameters.

The final major parameter that we investigated is the depth of the envelope generator
network. Figure 5.5b shows that single layer networks do not have sufficient capacity to
translate audio features successfully. However, more than two layers does not make a
significant difference in the performance.

5.5.5. HiPPO

Figure 5.6 shows the audiovisual correlations on the test set with a different number of
HiPPO coefficients. Directly optimizing the envelope tensor shows significantly worse
performance than using even four HiPPO coefficients. There does not seem to be a huge
correlation between number of coefficients and audiovisual correlation until going above
512. At this point the median starts to deteriorate and the variation increases markedly.
At this point the optimization task has probably grown too complex for the amount of
learning signal the self-supervised loss can provide. While not significantly higher, using
a small amount of coefficients seems to improve performance slightly. This corresponds
to the smoothest results, though, as a smaller series of polynomials to choose from, fewer
coefficients also means less flexibility for more extreme, quick changes. It is possible this
boost in score can be attributed to the smoothness-bias in the audiovisual correlation.
These low number of coefficients also seem to have a high variance in scores. The most
consistent (lowest variance) number of coefficients is 256. Perhaps this is evidence that
this is the sweet spot in terms of representational power and smoothness inductive bias.

0.5
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Audiovisual Correlation

0.1
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None 4 16 64 256 512 724 1024
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Figure 5.6: The audiovisual correlation of the HiPPO synthesizer with different numbers of learned
coefficients. None represents optimizing the envelope tensor directly without using HiPPO.

Finally, we analyze the effect of feature weighting in the self-supervised loss. While
this is also possible with the learned models, for computation reasons we perform this ex-
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periment with the HiPPO synthesizer. Table 5.3 shows the median audiovisual correlation
over the test set with different feature weights. Each row corresponds to training with one
audio feature weighted 10 times stronger than the rest. Each column shows the median
pairwise score for the labeled audio feature.

Within each row, the correlation with the weighted feature is generally strongest (high-
lighted on the diagonal). This shows that weighting certain audio features in among all
pairwise correlations does have an effect on the video feature correlation of the output.
This is encouraging as it gives more fine-grained control over the self-supervised learning
approaches which are otherwise a black-box.

Notably, the videos synthesized with extra onset-weighting do not have the highest
correlation, unlike all other features. This is surprising as it is in fact the lowest onset
correlation of all weightings, despite having the highest score within the row.

Table 5.3: Median audiovisual correlation of HiPPO on the test set with different feature weightings.

Feature Weighting Drop Strength Onsets Chromagram Spectral Flatness
10x Drop Strength Weight 0.526 0.314 0.346 0.227
10x Onsets Weight 0.107 0.152 0.110 0.104
10x Chromagram Weight 0.264 0.181 0.401 0.172

10x Spectral Flatness Weight 0.225 0.181 0.249 0.394
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Conclusion

Our results show that we have succeeded in taking the first steps towards automated
audio-reactive video synthesis. We have been able to develop a metric that is a strong indi-
cator of a video’s audio-reactivity. While the audiovisual correlation is still sometimes mis-
led by spurious correlations and does not always score manually-crafted audio-reactive
interpolations as highly as expected, it clearly captures at least some parts of our intuitive
sense of audio-reactive quality. This has allowed us to design and compare multiple syn-
thesis approaches that can synthesize audio-reactive videos without audiovisual training
data.

Currently, these methods still have notable drawbacks. For some algorithms, the
chance of synthesizing highly audio-reactive results is low, otherwise the visual quality
may be low, and there are not always explicit controls to change the output when it is not
satisfactory. However, in terms of maximum attainable audio-reactive quality and varia-
tion, the methods exceed prior work and illuminate multiple paths forward for even better
results.

6.1. Summary of the Contributions

First, we introduce a metric, the audiovisual correlation, that can measure the notion of
audio-reactivity in videos. The idea is centered around measuring the degree to which
temporal patterns in the video match temporal patterns in the audio. We propose two sets
of features to extract from audio and video and investigate different ways of measuring
their correlation.

Our second contribution is the design of four different algorithms which generate ex-
pressive audio-reactive interpolation videos based on a wider range of audio inputs and
GAN inputs than prior work. The algorithms each have different drawbacks and benefits
ranging from computational efficiency, data efficiency, manual control, and automation.
The core novelty is to use our audiovisual correlation metric for self-supervised learning.
This allows us to learn a model that can synthesize audio-reactive videos without need-
ing a dataset of example videos. We even extend this procedure to synthesize individual
videos to match a single audio input, rather than needing to train a model.

Returning to our research questions, we show that our audiovisual correlation metric
can, in fact, measure the difference between groups of videos with different audio-reactive
characteristics. Our metric is able to characterize intuitive differences between the groups.
For example, groups that have a high response to rhythmic elements in the music also
have high audiovisual correlations for the rhythmic features. We also see that the metric
provides a useful training signal to learn latent sequence models.

We compare our algorithms with other GAN-based audio-reactive video synthesis ap-
proaches and show favorable performance in terms of audio-reactivity and inference
speed. The proposed synthesizers are able to leverage the wide range of audio features

43
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to produce a highly audio-reactive video. Using our self-supervised loss and parameter-
free decoder, we are able to train models without needing video examples and even with
only a single audio input. We also find that our synthesizers consistently have higher
audiovisual correlation than a random baseline with the same expanded audio feature
set.

6.2. Future Work & Recommendations

For the audiovisual correlation, there is one glaring issue apparent in our preliminary study:
a bias towards smoother interpolations. Solving this issue could improve the audiovisual
correlation significantly by re-calibrating the metric toward recognizing truly relevant as-
pects of audio-reactive videos. Furthermore, a more thorough analysis of the effect of
feature choice would also be useful. Perhaps there are other combinations of audio and
video features which capture audio-reactivitity even better. It could be interesting to add
deep feature representations of audio and video as well. These might integrate more
high-level conceptual patterns such as instrumental compositions in music or styles of
motion in video. Another candidate would be to apply more elaborate source separation
of the music such as using Spleeter [57] or Unmix [58] to extract individual instruments.
This kind of source separation could also be used to make univariate features multivariate
which might improve the results of different matrix correlations. Finally, another promis-
ing way of aligning the audiovisual correlation with human intuition is to add some kind
perceptual importance weighting. This could be in the form of focusing on more salient
sounds in the music, integrating sectional analysis into the metric, or investigating what
kind of audiovisual patterns are most likely to be perceived as audio-reactive.

There are also many improvements that could be made to the synthesizers themselves.
Using a longer sequence length at training time might make a large difference in how well
the audiovisual correlation can evaluate the similarity of sequences. Another option would
be to use or include the raw waveform as input for the model rather than taking a feature
extraction approach. This could allow the synthesizers to learn better audio-reactive rep-
resentations within the task context rather than relying on generic features which were
developed for other specific use cases. For computational feasibility and experimental
iteration speed, the self-supervised loss was chosen to evaluate the correlation between
the audio features and the inputs to StyleGAN. However, with some tricks to ensure the
size of videos does not grow to be intractable, it might be significantly more effective to
use video features for self-supervision during training.

It could also be fruitful to find alternative ways of incorporating the audiovisual correla-
tion into synthesizers rather than using it as a loss function for gradient descent. A simple
post-filtering improvement to the Randomizer would be to synthesize multiple videos and
then only return the one with the highest audiovisual correlation. Similarly, the Supervised
model could be trained on an automatically curated set of high-correlation random exam-
ples. This could allow creating an arbitrarily large dataset which might not suffer from the
knife’s-edge problem. Another item on the controllability wishlist is to allow the learned
models to generate multiple different videos for the same audio input. This could be
achieved by adding an extra motion latent seed to the architecture to alleviate the deter-
ministic, black-box nature of the current models.

There is also a large design space to be explored of different decoders. The proposed
parameter-free decoder is only one possibility. The Randomizer consists of multiple more
elaborate strategies for decoding audio features to latent and noise sequences. It might
be possible for instance to use stochastic inference to learn to bias the underlying ran-
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dom distributions of the Randomizer to generate better results. Alternatively, applying
evolutionary algorithms to the patch specifications could also improve the performance.
In fact, the decoder might even be designed to use a completely different visual synthe-
sis system. The decoder might as well control fractal rendering software or a complex
blender scene, as long as there is some intermediate differentiable representation that
the self-supervised loss can be evaluated on.

6.3. Human-in-the-loop Workflow

While there is still much left to improve, the proposed audio-reactive synthesizers are
already practically useful in their own right. A prototype, human-in-the-loop workflow has
been designed that can assist in synthesizing high-quality audio-reactive interpolations for
user-supplied music with little technical knowledge. The workflow centers on the iterative
refinement of interpolations generated by the Randomizer.

First, the song is segmented with Laplacian segmentation or along user-defined times-
tamps. Then for each segment, one-by-one, the user receives a randomly generated
interpolation. Based on the interpolation they received, the user can choose a number
of adjustments to improve it. Because each patch deterministically maps to an interpo-
lation, the same patch can be resynthesized with some parameters changed to be more
to the user’s liking. For example, the sigma values of all noise maps can be increased
for more noisy frames, the amplitude of all envelopes can be decreased for less extreme
audio-reactive motion, or the latent palette can be resampled in the shallow layers for a
different color scheme. Once the user is satisfied with an interpolation for a given section,
they can move on to the next. Finally, after going through the process for each section,
the full video can be stitched together from the individual interpolations and rendered at
high resolution.

While this workflow largely relies on the Randomizer, the other synthesizers can eas-
ily be incorporated as well, simply by adding them as sub-sequence generators. This
can help improve results by ensuring that individual sub-patches are already more audio-
reactive before merging into the main sequence. This synergy offers a great way to fine-
tune the generation quality of the proposed workflow by adding pre-trained models which
are more tailored to the specific music being processed. Multiple sequence models trained
with different feature weightings could be used. This tool offers a glimpse into the future
possibilities for assisting creativity with artificial intelligence.

6.4. Final Thoughts

We have explored many paths towards synthesizing audio-reactive interpolations with
reduced manual supervision. This has led to a metric which can be used to evaluate the
audiovisual correlation in a video. We used this metric to teach multiple different machine
learning systems to generate sequences of inputs for a pre-trained image generation GAN.
The videos generated by these systems excelled over prior art in terms of audio-reactive
quality as well as required amounts of manual tweaking. While at present the synthesizers
sometimes push the pre-trained generator out of its natural distribution of images, given
the abstract nature of the generated videos, this is a worthwhile trade-off.

We note that the proposed audiovisual correlation is quite generic and can capture a
broad range of possible correlations in videos by carefully selecting an appropriate set
of audio and video features. This opens up multiple paths of research towards extract-
ing useful information from videos as well as providing supervision for machine learning
models.
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We introduce a number of methods that span the Pareto frontier of training and infer-
ence time, audio-reactive quality, visual quality, manual supervision, and data requirements—
allowing practitioners to choose the approach which is best tailored to their needs. Our
self-supervised models are easy to train even on single audio examples in as few as two
minutes. This makes the methods accessible even on lower-end consumer hardware, of-
fering stronger audio-reactive interpolation video synthesis options through services like
Google Colaboratory [59].

While this work may seem to be automating the creative process of an audiovisual
artist, we show that it is possible to use these tools to enrich artists’ workflows rather than
replace them. There are many options to explore that can allow for greater control over
these complex, powerful algorithms.

Finally, from the bottom of my heart I'd like to thank Lydia and Cynthia for guiding me
through these last months, Michael for joining my examination committee, and Wiep,
Thore, and Ryan for their feedback and support.
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A

Model Detalls

A.1. Learned Decoder
The learned decoder is a 2-layer MLP. This consists of a linear layer which doubles the
number of channels, then a GELU activation, and finally a linear layer which maps to the
number of channels in the latent vectors (512).

The implementation uses PyTorch’s functional API to apply this operation directly for
multiple latent sequences per batch element (generally there are 3 sequences per inter-
polation).

A.2. Parameter-free Decoder

The parameter-free decoder must receive the correct number of envelopes based on the
number of output sequences that are used. Across all experiments the parameter-free
decoder is configured to output 3 latent sequences (shallow, middle, and deep) with a
3-way average per sequence and 4 noise sequences (4x4, 8x8, 16x16, and 32x32). This
means that 17 envelopes are needed to synthesize all output sequences.

A.3. Envelope Generator

For all envelope generators, unless stated otherwise, a depth of 4 is used. The hidden
size is set to 17 to be compatible with the parameter-free decoder.

* GRU PyTorch’s implementation of the Gated Recurrent Unit [31].

* LSTM PyTorch’s implementation of the Long-Short Term Memory recurrent network
[32].

* ConvNeXt FAIR’s implementation [60] of ConvNeXt [33], adapted to use 1-dimensional
temporal convolutions rather than 2-dimensional spatial convolutions.

* MLP-ASR the MLP-Mixer based architecture introduced by Sakuma, Komatsu, and
Scheibler [34], reimplemented manually. Configured with a channel multiplier of 2 in
the Convolutional Gating Unit.

* Transformer Transformer [35] encoder implementation from lucidrains’s x-transformers
[61]. Configured with 4-headed attention with a dimension of 4 each (to ensure pa-
rameter count is more comparable with other models).

« Sashimi HazyResearch’s standalone implementation [62] of Sashimi [36]. Config-
ured with no channel number expansion in the base model or feedforward layers (to
ensure parameter count is more comparable with other models).

53



A.4. HiPPO 54

A.4. HiPPO

HazyResearch’s standalone implementation [63] of HIPPO [39] is used. Tests are done
to encode audio features like the onsets and RMS using both the scale and translation
invariant versions. The scale invariance is better at reproducing the input envelopes and
so is used in all experiments.

To prevent extreme values near the start and end of envelopes (which are caused by
extreme values near the edges of some Legendre polynomials) the envelope parameter-
izations are padded on both sides with zeros before encoding and cropped back to the
correct shape on the forward pass.



B

Negative / Inconclusive Results

Gromov-Wasserstein Distance The Gromov-Wasserstein distance [64] (and variants
such as the Sliced GWD [65]) is a distance between data in different metric spaces based
on optimal transport theory. This seemed like a natural fit for an audiovisual distance
metric. However, early experiments similar to Section 3.4 seemed to show an inverse
correlation with expectations.

Patch Contrastive Loss The first experiments were run using a patch contrastive loss
as introduced by Park, Efros, Zhang, et al. [66]. The idea is to compare slices of the full
timeseries and learn to optimize internal representations such that patches that overlap
have a high similarity and patches that do not overlap have low similarity. This was side-
lined early on due to the implementation complexity but seems like a very promising loss
to adapt to the final models.

Timeseries GAN (PSAGAN) During supervised training experiments using the Progres-
sive Self-attention GAN (PSAGAN) was investigated as a way to improve performance
[67]. GANSs tend to perform significantly better than simple MSE loss training when their
training can be stabilized correctly. However, GAN training is also much more computa-
tionally expensive and so this path was dropped in favor of a quicker iteration time.

Context FID Evaluation The PSAGAN paper [67] introduces an FID-like metric called
the Context FID to evaluate the quality of timeseries generations. The metric is based
on the unsupervised timeseries training framework introduced by Franceschi, Dieuleveut,
and Jaggi [68] which means that it can be tailored to any timeseries dataset without requir-
ing a pre-trained network like the regular FID (such a pre-trained network is harder to find
for timeseries as the similarity across different types of timeseries is less than between
different image domains). This option was discarded due to requiring a large dataset of
good examples to compare with, which is already a weakness of the supervised methods
in general. The results of the unsupervised network training were also inconclusive and
probably require a better search for correct hyperparameters which is expensive.

Latent Augmentor An idea for alleviating the problem of the small supervised dataset
was to augment the training data with randomly generated audio-reactive interpolations.
The Latent Augmentor was essentially a simple version of the Randomizer synthesizer that
was run during training. This was unsuccessful as the quality of the random interpolations
was not very high and so not a useful training signal for the model.

Latent Channel Permutation Another augmentation method. The channels of the la-
tent sequences were permuted. The idea was that these would be equally valid latent
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sequences just rotated to move in different directions in latent space. Unfortunately, the
different channels of the latent vector do not all have the same range and statistics and
so results generated with permuted latents did not resemble the regular latent distribution
enough to achieve high quality image results.

Re-weighting the Audiovisual Correlation To try to offset the bias towards smoother
audio features observed in Figure 3.3, multiple re-weighting schemes were investigated.
The idea was to penalize the correlation score of features which were smooth and boost
the correlation score of features that were not. One scheme was to multiply the corre-
lation value with the standard deviation of the feature over time. Another scheme was
to multiply by the mean of the absolute difference over time of the audio feature. How-
ever, both of these schemes suffered from large differences in scale between different
features and it was unclear how to normalize the scaling factors to be comparable. A final
re-weighting scheme divided the correlation score by the median value of the normalized
auto-correlation matrix. While this scheme produced correlation weightings that seemed
to properly penalize and boost scores by their smoothness, the results of the experiments
in Section 3.4 did not differ significantly.

Absolute Difference Self-supervised Loss To encourage matching changes in the out-
put video to changes in the audio features, the self-supervised loss was computed on the
absolute difference of the features rather than the features themselves. Models trained
with this loss seemed to function correctly (i.e. not completely broken), but were not pur-
sued further as it was intuitively unclear what would make this formulation of the loss
preferable.

Pyramidal Convolutional Envelope Generator An envelope generator which used a U-
net-like sequence of 1-dimensional temporal convolutions with downsampling operations
until half the depth and upsampling operations in the second half. This network would
be able to incorporate different scales of temporal correlations in its different layer and
hopefully benefit from this hierarchical separation of analysis. This envelope generator
might be especially suited to longer sequence lengths which were not explored in our
experiments.

Convolutional Learned Decoder The learned decoder used in all experiments was a
channelwise multilayer perceptron. This does not incorporate temporal correlations in its
translation of the hidden space timeseries to the output latent space timeseries. Another
learned decoder was investigated that used a two-layer 1-dimensional convolution instead.
This was not pursued extensively in final experiments due to its higher implementation
complexity. Early experiments seemed promising, but not better than the parameter-free
decoder.

Efficient Channel Attention Efficient Channel Attention blocks [69] were added to the
envelope generator and learned decoder to improve channelwise mixing of information.

Convolutional Block Attention Convolutional Block Attention [70] was added to the
envelope generator and learned decoder to improve channelwise mixing of information.
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Rotary Positional Embeddings Rotary positional encoding [71] was used in the Trans-
former encoder layers. This is a positional encoding that that encodes relative positional
information via 2-dimensional rotations of the input sequence. There is some evidence
that suggests it improves Transformer convergence and long-term sequence generations.

Spatial Correlations in Noise The first learned decoders for noise sequences used 3-
dimensional convolutions to also learn spatial correlations in the noise maps. This might
allow the synthesizer to learn to segment different audio-reactive elements to different
spatial locations. However, due to the noisy nature of the noise maps, the training data
did not have much correlation to learn from. Furthermore, these 3D-convolutional models
were very expensive to train.

Softmax Groups in Parameter-free Decoder To try to add an inductive bias to the
parameter-free decoder towards larger changes in style between sections, the latent av-
eraging envelopes were grouped together and the softmax operation applied. This would
ensure that within each group, there was one dominant latent visually without the en-
velopes needing to be as extreme without the softmax operation. The results were not
significantly different from the decoder without softmax operation.

Section Segmentation Loss with Allocation Solver Another self-supervised loss was
designed which worked by comparing section segmentations of the output sequences
and the audio features. The problem with these segementations is that the assigned
label values would not be the same across different feature segementations. There for
the maximum agreement permutations of the labels was found using a Linear Assignment
Problem solver, the auction algorithm. While the loss seemed theoretically promising and
was implemented to be differentiable, the LAP solver had numerical instability issues,
did not always converge to a valid permutation, and was significantly slower than the
audiovisual correlation.

Gradient Normalization Gradient normalization is a technique where the gradients are
normalized by their L1 norm at a certain point in the backwards pass. This can help ensure
that the scale of gradients from multiple different optimization targets are free from scaling
issues. This was used to equalize the gradient contribution of the individual noise and
latent sequences (which had different scales due to the difference in size and value of the
sequence tensors). Unfortunately there was no clear advantage over the non-normalized
loss.

Prediction Similarity Penalty To prevent output sequences from all tending towards
having the same autocorrelation, a penalty was added that enforced each noise and la-
tent sequence to have a different autocorrelation. This penalty was the absolute cosine
correlation between each sequence’s autocorrelation. This did seem to encourage a more
varied reaction within each sequence, however, it did not have an impact on the overall
audio-reactivity.



	Summary
	Introduction
	Background
	Generative Adversarial Networks
	Audio-reactive Latent Interpolations
	Previous Work
	StyleGAN Specifics


	Audiovisual Correlation
	Audio Features
	Video Features
	Matrix Correlations
	(Adjusted) RV Coefficient
	Canonical Correlation Analysis
	Orthogonal Procrustes Correlation
	Similarity of Matrices Index

	Empirical Analysis and Validation
	Experimental Setup
	Selecting A Correlation Metric
	Comparing Interpolation Groups
	Smoothness Bias


	Video Synthesis
	Randomizer
	Latent Patches
	Noise Patches

	Supervised and Self-Supervised
	Model Architecture
	Training

	HiPPO
	HiPPO Parameterization


	Experiments
	Frameworks
	Dataset
	Evaluation
	Audiovisual Correlation
	Fréchet SwAV Distance
	Inference Time

	Baselines
	Results
	Audiovisual Correlation
	Fréchet SwAV Distance
	Inference Time
	Supervised vs. Self-Supervised
	HiPPO


	Conclusion
	Summary of the Contributions
	Future Work & Recommendations
	Human-in-the-loop Workflow
	Final Thoughts

	References
	Model Details
	Learned Decoder
	Parameter-free Decoder
	Envelope Generator
	HiPPO

	Negative / Inconclusive Results

