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Abstract. Strongly coupled partitioned fluid-structure interaction problems require mul-
tiple coupling iterations per time step. The fluid domain and the structure domain are
solved multiple times in each time step such that the kinematic and dynamic interface
conditions on the fluid-structure interface are satisfied. Quasi-Newton methods have been
successfully applied in case the fluid and structure solvers are considered as black boxes,
i.e. only input and output information of the solvers are used by the coupling techniques.

In this contribution a computationally inexpensive low-fidelity model is combined with
a high-fidelity model in order to accelerate the convergence of the high-fidelity model. This
is achieved by applying the manifold mapping algorithm on the fluid-structure interaction
problem in order to minimize the fluid-structure interface residual. Originating from
multi-fidelity optimization, the manifold mapping algorithm is applied for the first time
in a simulation context, instead of an optimization context.

The manifold mapping algorithm is applied on a standard fluid-structure interaction
benchmark, namely the cylinder flap FSI3 case. A reduction of 48% in terms of high
fidelity iterations is achieved compared with the inverse least squares Quasi-Newton al-
gorithm, resulting in a 42% decrease in computational costs.

1 INTRODUCTION

Fluid-structure interaction solvers are multi-physics solvers which allow to simulate
dynamic responses and instabilities of complex problems. Examples of its application
are aero-elasticity, arterial flow and airbag deployment [2, 9]. Also, the deployment
of parachute systems can be modelled with strongly coupled fluid-structure interaction
solvers. Concluding, fluid-structure interaction plays a crucial role in many engineering
fields where efficient and accurate simulations are highly important.
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The focus of this contribution is the numerical simulation of strongly coupled fluid-
structure interaction problems, where the fluid solver and the structure solver are consid-
ered as black boxes. An implication of using only input and output information of the
fluid and structural solver is that a large number of sub-iterations are necessary to obtain
a strongly coupled solution. This means that both the fluid and structure solver are called
multiple times per time step. One idea is to perform a large amount of the sub-iterations
with a low fidelity model, instead of the current high fidelity flow and structure models
[8]. The questions remains how to efficiently couple the multi-fidelity models.

Originating from multi-fidelity optimization, the aggressive space mapping algorithm
has been used in [8] to efficiently couple a high fidelity model with a low fidelity model
for a fluid-structure interaction problem. Scholcz et al. [8] consider the fluid-structure
interaction interface problem as an optimization problem. A computationally inexpen-
sive low-fidelity model is combined with a high-fidelity model in order to accelerate the
convergence of the high-fidelity model.

In this contribution, manifold mapping is applied for the first time to a fluid-structure
interaction problem in order to decrease the number of sub-iterations of the high-fidelity
fluid-structure interaction model. One advantage of manifold mapping over space map-
ping, is that the algorithm has provable convergence to the correct solution [5]. This proof
has not been shown for space mapping.

The paper is structured as follows: first, the fluid-structure interaction problem is
described in section 2. Section 3 introduces the manifold mapping algorithm, and the
application of the technique is shown in section 5 for a standard fluid-structure interaction
benchmark, namely the cylinder with an attached flap test case [10]. The paper is finalized
with the conclusions in section 6.

2 FLUID-STRUCTURE INTERACTION

The fluid-structure interaction problem is partitioned into a fluid domain Ωf and a
structural domain Ωs. The separate domains are coupled on the fluid-structure interface
Γf s through the interface conditions consisting of the kinematic and dynamic boundary
conditions. The governing equations for the flow and the structure are introduced in this
section, and the used boundary conditions are shortly discussed.

2.1 Fluid domain

The fluid is considered to be incompressible. Hence, the governing equations for the
fluid are given by the balance of momentum

�f
∂vf

∂t
+ �f

(
∇vf

)
vf = ∇ · σf , (1)

and the balance of mass, which reduces to a divergence free constraint on the velocity
field due to incompressibility:

∇ · vf = 0 in Ωf , (2)
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where the velocity field is denoted by vf , the pressure field is denoted by pf , and �f

represents the density. A Newtonian fluid is considered, which leads to the constitutive
equation for the stress tensor σf

σf = −pfI + �fνf
(
∇vf +∇vf T

)
, (3)

for a given kinematic viscosity νf .

2.2 Structure domain

The configuration of the structure domain is described by the displacement us. An
elastic and incompressible structure is assumed, and the governing equation is given by
the balance of momentum

�s
∂vs

∂t
+ �s (∇vs)vs = ∇ · σs + �sg in Ωs. (4)

Equation (4) is modified to use the Lagrangian description, i.e. with respect to the initial
reference state Γs, resulting in

�s
∂2us

∂t2
= ∇ ·

(
JσsF−T

)
+ �sg in Ωs, (5)

where the deformation gradient tensor F is defined as F = I +∇us, and the Jacobian J
is the determinant of the deformation gradient tensor F . By applying the constitutive law
for the St. Venant-Kirchhoff material, the Cauchy stress tensor σs is found by applying

σs =
1

J
F (λs (trE) I + 2µsE)F T , (6)

with E = 1
2

(
F TF − I

)
, and the shear modulus is denoted by µs.

2.3 Interface conditions

At the fluid-structure interface Γf s, the balance of stresses is enforced through

σfn = σsn on Γf s, (7)

with the unit vector n normal to the fluid-structure interface Γf s. Also, the no-slip
condition is imposed so that velocities must be equal at the fluid-structure interface:

vf = vs on Γf s. (8)
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2.4 Partitioned coupling as interface optimization

The fluid solver and structure solver are considered as black boxes. In other words,
only the input and output information is accessible. Therefore, the response of the fluid
solver F is defined as

y = F (x) , (9)

where x denotes the velocity of the fluid-structure interface, i.e. x = vf = vs, and y
denotes the force acting on the fluid-structure interface defined as y = σfn. The response
of the structure solver S is consequently defined as

x = S (y) . (10)

Typically, at every time step the fixed point equation

x = S ◦ F (x) (11)

must be satisfied, which can also be written as the interface residual R (x)

R (x) = S ◦ F (x)− x, (12)

which is solved with a minimization or optimization procedure aimed to find the optimal
solution x� such that

x� = argmin
x

||R (x)||2 . (13)

Standard approaches used to solve the strongly coupled fluid-structure interaction prob-
lem are the Gauss-Seidel method, fixed under-relaxation, Aitken under-relaxation, and the
IQN-ILS method [2]. These minimization procedures require the evaluation of S ◦ F (x)
multiple times per time step.

Algorithms originally developed for multi-fidelity optimization, such as aggressive space
mapping and output space mapping [1], can also be used to minimize the interface residual
R (x) [8]. Where Scholcz et al. [8] apply a space mapping algorithm to the interface
residual problem R (x) = S ◦F (x)−x, this contribution investigates the use of manifold
mapping [5] in order to solve this optimization problem.

3 MANIFOLD MAPPING

Manifold mapping is a surrogate-based optimization technique, which means that the
quality of the initial solution or approximation is iteratively improved. The main aim of
a surrogate-based optimization technique, is to decrease the computational times of high
fidelity models by combining the high fidelity model with a less accurate and computa-
tionally less expensive coarse model.

The main advantage of the manifold mapping algorithm is that it has provable con-
vergence to the correct solution contrary to aggressive space mapping or output space
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mapping [5]. This makes the algorithm more robust for use in a fluid-structure interac-
tion simulation.

The basic terminology is introduced, and the manifold mapping algorithm is shown.
For convergence theorems for the different manifold mapping algorithms available, the
reader is referred to [5].

3.1 Manifold mapping terminology

Two types of models are distinguished: a fine model and a coarse model. The fine
model response is denoted by f : X ⊂ Rn → Rm, where x ∈ X represents the control
variable of the optimization problem. It is assumed that the fine model is accurate, but
requires high computational costs to evaluate.

3.1.1 Fine model

The fine model cost function is defined as F (x) = ||f (x)− q||, which represents the
discrepancy between the design specification q and a particular response of the model
f (x). Thus, the following minimization problem should be solved:

xf
� = argmin

x∈X
||f (x)− q|| . (14)

When the manifold mapping technique is applied to the fluid-structure interaction prob-
lem, the fine model response is defined as the interface residual:

f (x) = R (x) = S ◦ F (x)− x. (15)

The design specification q is the zero vector. For consistency, q is not dropped from the
formulation, since the design specification of the coarse model is not zero, but iteratively
updated. This is discussed next.

3.1.2 Coarse model

The coarse model response is denoted by c : Z ⊂ Rn → Rm, where z ∈ Z represents
the control variable of the coarse model. In the general case, an additional mapping
p : X → Z is introduced, such that the space mapping function

p (x) = argmin
z∈Z

||c (z)− f (x)|| (16)

is minimized in order to minimize the misalignment between the coarse model and the
fine model [4]. The coarse model response is defined as c (z) = S̃ ◦ F̃ (z)− z.

In this work, it is assumed that the space mapping function is close to identity which
is a common assumption also applied in [4]. The optimization procedure is performed on
the so-called coupling grid, as proposed in [3]. The coarse model response c is interpolated
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with radial basis functions to the coupling grid at every coarse model iteration, and the
control variable z is also interpolated with radial basis functions from the coupling grid
to the coarse model.

The coarse model cost function is defined as

z� = argmin
z∈Z

||c (z)− q|| . (17)

The Euclidean norm or L2 norm is used in the minimization process.

3.2 Manifold mapping algorithm

The manifold mapping S : c (Z) → f (X) is introduced with the goal to correct for
the misalignment between the fine and coarse model. S is defined as the affine mapping

S c (x) = f (xf
�) + S (c (x)− c (xf

�)) , (18)

for an unknown solution xf
� and with S specified as

S = Jf (xf
�) Jc

† (xf
�) , (19)

and the pseudoinverse is indicated with the symbol †. The Jacobian of the fine model
evaluated at xf

� is denoted with Jf (xf
�), and the Jacobian of the coarse model evaluated

at xf
� is denoted with Jc (xf

�).
In [5] it is shown that

xf
� = argmin

x∈X
||S c (x)− q|| = argmin

x∈X

∣∣∣
∣∣∣c (x)− c (xf

�) + S
†
(f (xf

�)− q)
∣∣∣
∣∣∣ , (20)

which is the basis of the manifold mapping algorithm. The mapping S is not known at
forehand, and is therefore iteratively approximated.

Thus, the manifold mapping algorithm generates a sequence of mappings Sk, k ≥ 0,
and consists of the following steps:

1. Set k = 0 and initialize the manifold mapping algorithm with an initial guess x0.
Here, the initial guess at time level u+1 is determined by extrapolating the solutions
of the previous time steps: x0

u+1 = 5
2
xu−2xu−1+ 1

2
xu−2. This is different from the

original manifold mapping algorithm, which determines x0 with the coarse model
optimum x0 = argminz∈Z ||c (z)||.

2. Initialize the mapping matrix Sk of size m×m as the identity matrix.

3. Evaluate f (xk) and c (xk), and go to the next time step in case the convergence
criteria are met, i.e. when the fixed point equation xk = S ◦ F (xk) is satisfied for
the fine model.
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x0
u+1 = 5

2
xu − 2xu−1 + 1

2
xu−2

S0 = Im×m

for k = 0 → kmax do

qk = c (xk)− Sk (f (xk)− q)

xk+1 = argminx∈X ||c (x)− qk||
∆F =

[
f (xk+1)− f (xk) , · · · , f (xk+1)− f

(
xmax(k+1−n,0)

)]

∆C =
[
c (xk+1)− c (xk) , · · · , c (xk+1)− c

(
xmax(k+1−n,0)

)]

(Uf ,Σf , Vf ) = SV D (∆F )

(Uc,Σc, Vc) = SV D (∆C)

∆F † = Vf Σf
† Uf

T

Sk+1 = ∆C∆F † + Im×m − Uc Uc
T

end for

Figure 1: The manifold mapping (MM) algorithm

4. For k > 0, define ∆F =
[
f (xk+1)− f (xk) , · · · , f (xk+1)− f

(
xmax(k+1−n,0)

)]
and

∆C =
[
c (xk+1)− c (xk) , · · · , c (xk+1)− c

(
xmax(k+1−n,0)

)]
. Their singular value

decompositions are determined as ∆C = Uc Σc Vc
T and ∆F = Uf Σf Vf

T . The
pseudoinverse of ∆F is evaluated as ∆F † = UfΣf

†Vf
T .

5. Update the mapping Sk with Sk+1 = ∆C∆F † + Im×m − Uc Uc
T .

6. The solution xk is updated with xk = argminx∈X ||c (x)− c (xk) + Sk (f (xk)− q)||.

7. Set k := k + 1 and go to step 3.

The algorithm is also shown in figure 1.

3.3 Convergence criteria

For the fine model a relative convergence criteria is used, i.e. the iteration is assumed
to be converged if the relative residual εf is smaller than a certain specified tolerance
TOLf :

εf =
||S ◦ F (x)− x ||

||x||
≤ TOLf . (21)

For the coarse model the following criteria is used:

εc =
|| S̃ ◦ F̃ (z)− z − q ||

||z − q||
≤ TOLc. (22)
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Figure 2: Overview of the lid-driven cavity tests. The boundary conditions and the geometry
is shown. The dimensions are shown in meters. The figure has been taken from [6].

4 RESULTS FOR THE LID-DRIVEN CAVITY CASE WITH A FLEXIBLE
BOTTOM

As a first test case, a lid-driven cavity with a flexible bottom is considered. The
benchmark consists of a two-dimensional laminar flow in a square cavity with a flexible
bottom membrane. The case has been used in [6] to validate a strongly coupled fluid-
structure interaction solver. Here, the benchmark is used to compare the performance
of the manifold mapping algorithm with the standard IQN-ILS algorithm, and with two
space mapping techniques, namely aggressive space mapping (ASM) and output space
mapping (OSM).

At the top wall and at the inlet an oscillating boundary condition is applied given by

ux(t) = 1− cos

(
2π

5
t

)
. (23)

At the inlet the horizontal velocity depends linearly on the vertical coordinate, as shown
in figure 2. For further details regarding this case, the reader is referred to [6]. The
test case is simulated until t = 5 s with time step ∆t = 0.01 s. The structure elasticity
parameter has the value �f/�s = 1/50.

The mesh of the fine model consist of 65 536 cells for the fluid domain and 2 048
cells for the structure domain. The fluid mesh of the fine model is coarsened twice in
x and y direction, resulting in 4 096 cells for the fluid domain. The structure mesh
of the coarse model consists of 2 048 cells. The fine model uses a matching mesh at
the fluid-structure interface, whereas the coarse model uses a non-matching mesh at the
fluid-structure interface. The coupling iterations are assumed to be converged in case
εf ≤ 10−4. For the coarse model, the tolerance setting TOLc = 10−4 is used.
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Table 1: Average number of fine and coarse iterations per time step for the lid-driven cavity
case with a flexible bottom. The iteration numbers are averaged over the complete
simulation. The iteration numbers are shown for the manifold mapping technique,
aggressive space mapping, output space mapping, and the standard interface quasi-
Newton inverse least squares method only operating on the fine mesh.

# fine eval. # coarse eval. duration [min]

MM 4.3 11.1 3.5

ASM-ILS 52.3 63.9 34.8

OSM 4.9 11.7 6.1

IQN-ILS 7.0 0.0 6.0

Table 1 shows the number of fine model and coarse model evaluations for the complete
simulation. The manifold mapping algorithm is compared with aggressive space mapping
(ASM-ILS), output space mapping (OSM), and the current state-of-the-art coupling al-
gorithm IQN-ILS. As shown in the table, the manifold mapping uses the least amount of
fine and coarse evaluations compared to the other coupling algorithms, and requires 1.6
times less fine model evaluations compared to IQN-ILS.

The aggressive space mapping algorithm shows a large number of iterations per time
step. This is due to the fact that convergence of the space mapping algorithm is not
guaranteed, and for some time steps the coupling algorithm does not converge and stalls.
The manifold mapping approach does not have this problem.

5 RESULTS FOR THE CYLINDERWITH AN ATTACHED FLAP BENCH-
MARK

The fluid-structure interaction benchmark introduced in [10] describes a two-dimensional
incompressible laminar flow around a fixed cylinder with an attached flexible cantilever.
The geometry of the test case is shown in figure 3. A parabolic inlet boundary condition
is prescribed, and a free outflow boundary condition is applied at the right boundary.

In [10] three different test cases are considered which differ in the material and flow
parameters. This contribution only considers the FSI3 case, where the structure elasticity
parameter is set to �F/�S = 1 resulting in a strong coupling between the fluid and the
structure.

The mesh of the fine model consist of 95 696 cells for the fluid domain and 1 312 cells for
the structure domain. The mesh of the fine model is coarsened twice in x and y direction,
resulting in 5 981 cells for the fluid domain and 82 cells for the structure domain. Thus the
ratio of the number of cells between the fine model and the coarse model is 16. Both the
fine model and the coarse model apply a matching mesh at the fluid-structure interface.

Table 2 shows the results for the cylinder with an attached flap benchmark comparing
the manifold mapping with aggressive space mapping, output space mapping, and the
standard interface quasi-Newton inverse least-squares method. The manifold mapping
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Figure 3: Geometry of the cylinder with an attached flap benchmark originally proposed in
[10]. The figure shows a channel flow with a fixed cylinder and a flexible flap attached
to the cylinder. Point A located at the back of the flap is used as a reference point
for the measurements of the displacement. The figure has been taken from [7].

methods needs the least amount of fine model and coarse model evaluations, and requires
1.8 times less fine model evaluations compared to IQN-ILS.

Aggressive space mapping requires the largest amount of fine model and coarse model
evaluations. The large number of coarse model evaluations can be explained by the fact
that the aggressive space mapping algorithm requires the optimization of the coarse model
to find z�, whereas this is not required for output space mapping and manifold mapping.
The simulations show that the prediction step used by the MM and OSM techniques
results in a smaller initial residual compared to ASM-ILS, which results in an increase
of fine model evaluations. Also, convergence of the space mapping algorithm has not
been proven, and for some time steps the aggressive space mapping algorithm does not
converge.

6 CONCLUSIONS

A new coupling algorithm for the efficient simulation of fluid-structure interaction is
developed by using the manifold mapping (MM) technique. A computationally inexpen-
sive low-fidelity model is combined with a high-fidelity model in order to accelerate the
convergence of the coupling procedure of the high-fidelity model.

A reduction of a factor two in terms of high fidelity iterations is achieved compared with
the inverse least squares Quasi-Newton algorithm, resulting in a speedup of 1.7. Future
research will cover (1) a study on reuse of input/output information from previous time
steps in order to further accelerate the convergence of the manifold mapping algorithm,
and (2) a parallel coupling procedure such that the displacement of the fluid-structure
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Table 2: Average number of fine and coarse iterations per time step for the cylinder with an at-
tached flexible flap benchmark. The iteration numbers are averaged over the complete
simulation. The iteration numbers are shown for the manifold mapping technique,
aggressive space mapping, output space mapping, and the standard interface quasi-
Newton inverse least squares method only operating on the fine mesh.

# fine eval. # coarse eval. duration [min]

MM 6.1 29.5 12.4

ASM-ILS 21.7 65.5 32.0

OSM 7.2 31.3 13.2

IQN-ILS 11.8 0.0 21.3

interface and the forces acting on the interface are both used by the coupling algorithm.
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