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Abstract

The Competitive Investor Game from Bell & Cover (1980) [3] and the 𝑘-Player Ranking Game
from Alpern & Howard (2017) [1] are analysed in thesis. Optimal strategies have been de-
rived and the related proofs have been given a new look. The Symmetric Multiplayer Ranking
Game is considered as the general interpretation of financial competition among hedge funds.
This study focused on the hedge funds that manage a Long/Short U.S. Equity strategy. Some
minor evidence has been found to support the hypothesis that the studied hedge funds man-
age a strategy that has the objective to beat the competition in terms of annual performance
in order to achieve the highest ranking.

Keywords: Hedge Fund, Long/Short U.S. Equity, Competition, Ranking, Optimal Strategy,
Equilibrium
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1
Introduction

1.1 Thesis Structure
Themain topic of this thesis is game theory and ranking games in particular. The primary study
is done on the 𝑘-Player Ranking Game from Alpern & Howard (2017) [1] and the symmet-
ric form of that game is considered the general interpretation of financial competition among
hedge funds.

Themotivation behind asset management is explained and the hedge funds are introduced
in this chapter. Also two historical hedge fund related events and specific strategies are high-
lighted. Chapter 2 will cover the hedge fund from a client’s perspective and the motivation
for ranking them. Further, the influence of the independent research institute Morningstar is
shown and together with manager selection form the reasoning for ranking hedge funds based
on performance. The necessary mathematical definitions with respect to probability and game
theory are introduced in Chapter 3. The analysis of the Competitive Investor game is shown
in Chapter 4 and gets expanded in Chapter 5 to the 2-player and multiplayer ranking game.
Chapter 6 then aims to translate the theory of ranking games to the hedge fund landscape
(and vice versa) for the data analysis.

1.2 The Investment World

A euro today is worth more than a euro next year,

is a rather complex and often true statement. The decrease in the value of the euro does not
mean a negative change in the currency value compared to all other currencies, but reflects a
general rise in the price level of the economy. This mechanism is known as inflation. Inflation
means that one can buy less goods compared to last year with the same amount of money.
Inflation is country specific, not currency in particular and is determined per year (if not stated
otherwise). The average inflation rate of the Netherlands from 1961 till 2020 was 3.35%1.
This means that nowadays one needs almost €700 to buy the same goods that costed €100
in 1961. See Figure 1.1a on how the index has developed since 1961. So to maintain a so
called spending power, one needs his capital to keep up with inflation. Since 1961, there only
have been 2 years in which the inflation rate in the Netherlands was negative. Keeping up
with inflation is particularly important regarding pensions. Suppose that one opened a bank
account in the early seventies for a pension that starts in 2020. The value of that account
1Source Inflation Data: https://www.inflationtool.com/

1
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2 1. Introduction

must have grown with 3.35% on average each year in order for one to maintain the same
lifestyle when retired. One way to increase the value of a bank account is with a specific
savings account. Every year, the bank returns interest on one’s savings account in exchange
for being their customer. As this interest is added to the account on which one gets interest
again the following year, the value of the account grows exponentially, just like inflation. So if
the interest rate on a savings account is on average approximately equal to the inflation over
a given period of time, one has equal spending power. For a long time, this was indeed the
case in the Netherlands. However, looking at Figure 1.1b, tides have changed since 20162.
The interest rate on savings accounts dropped, while inflation only increased. So to keep up
with current inflation, it requires more management than before.

(a) The inflation index of the Netherlands from 1961 -
2019.

(b) The annual inflation rate compared to the annual
interest rate on a ING Lifecycle (savings) account.

Figure 1.1 – The inflation in the Netherlands compared to the interest on a savings account.

1.2.1 Asset Management
Opening a savings account is not the only way one can grow the value of a cash account.
One can trade the cash for stocks, bonds, gold, bitcoin, property, art and many more other
assets. Some of these assets can return interest, while other assets can increase in value or
do both. If one properly manages his assets, it is possible to keep up with inflation as well
and is an alternative to the savings account. The reason one needs proper management with
those kinds of assets is because they are risky. Managing those risky assets is essentially
equivalent to investing, investment management and asset management.

Stocks and bonds are the most well-known financial products and widely used generate
excess returns. While the concepts of those two assets are commonly known, other financial
products, such as options, swaps and other derivatives, can be very complex. (This complex-
ity also caused some great problems, but this will be discussed later.) Depending on one’s
investment goals, there are choices to be made in terms of risk profile and type of assets.
One can determine that for its own, but often a professional gets called in to assist. This
can be someone from the asset management department of a bank or other specific asset
management companies and advisers.

1.2.2 Investment Strategies
Investing can be done in all kinds of ways. Some examples have already been mentioned:
a range of financial products, gold, bitcoin and property for example. Buying publicly traded
shares of a stock is the most common way of investing a relative low amount of cash. There is
2Source Savings Account Interest: https://www.ing.nl/

https://www.ing.nl/


1.2. The Investment World 3

a low entry threshold, they can return recurring interests in the form of dividends and increase
in value, which makes them attractive. Publicly traded stocks are traded on a recognized stock
exchange and can always be bought and sold during trading hours. Financial products that
are traded on such a public exchange are called listed, otherwise they are non-listed assets.

Organisations that hold lots of cash, think of pension funds and insurance companies for
example, need proper asset management. Pensions funds need to manage their assets in
such a way that they can meet their liabilities in 30-50 years with the cash they receive right
now. Everyone has different objectives when it relates to asset management and therefore,
everyone will have a different strategy to try and maximize this objective.

For organisations (or individuals) that manage a significant amount of assets, it is too risky
to spread one’s cash between just a few assets as one can not afford the lose if one of those
assets heavily declines in value (this can happen if a company defaults for example). A solution
for this, is to invest in investment funds. A manager of an investment strategy seeks the best
investments in a particular category and will trade all those assets in one package with the
investor. Themanagers that are responsible for these strategies are so-called asset managers
or portfolio managers and have specialistic knowledge and experience. For the service of
managing the strategy, the investors pay a small percentage of their invested assets as a fee
each year. When investing in a strategy, one becomes part of a collective investment and as
such can benefit from the following:

1. take advantage of professionals who are be able to deliver higher returns;

2. lower transaction costs;

3. a diversified selection of products.

The differences in investment strategies can be very wide or just on a specific topic. The
choice to manage a strategy in a specific direction is based on the knowledge and experience
of the manager. The main distinctions are the following:

• Product type: stocks, bonds, commodities, property, etc;

• Geography: continent, country or region focus;

• Sector: only invest in assets that are active in a specific sector;

• Size: invest in assets with low or high market value;

1.2.3 Alternative Investments
Assets in the form of listed stocks and bonds and cash are considered conventional categories
and the related strategies are managed in the so called mutual funds. Investing in other kinds
of assets are considered alternative investments and can range from investing in your local
barber shop to buying a Van Gogh painting. These are examples of investments in two single
assets. However, there are also funds for these alternative investments. While a conven-
tional investment fund in the Netherlands is regulated by the Authority of Financial Markets,
an alternative fund is often not. In that way, they are able to invest in a variety of assets using
non-traditional strategies. Alternative investment funds are available in a wide variety. The
alternative funds that trade in all kinds of financial products are more commonly known under
the name of hedge funds.
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1.3 History
It was 1936 when Benjamin Graham and Jerome Newman founded the Graham-Newman
Corporation. Looking back, it is considered the first hedge fund ever created. Graham has
become famous by its investing strategy (and can be read about in his books Security Analysis
and The Intelligent Investor). Today, his method is known as Value Investing and creates a
difference between investing and speculating. Value investing is based on research and anal-
ysis and believes in the opportunities of a company. One of the most famous (and successful)
investors, Warren Buffett, got inspired by Graham and his theory about value investing.

While Graham and Newman managed a successful strategy, hedge funds tend to have a
bad reputation. Historical events have shown that hedge funds can impact the entire finan-
cial system of a country or take advantage of a crisis. See Section 1.3.1 and 1.3.2 for such
examples, respectively.

1.3.1 LTCM
Long-Term Capital Management (LTCM)3 is known as a hedge fund with big highs and deep
lows. Initially the fund was very successful with a return of 21% in its first year, 43% in the
second year and 41% in the third year. However, in its fourth year the fund lost $4.6 billion in
less than four months.

LTCM was founded in 1994 and thanked it success to a new developed method that cal-
culates the value of derivatives, namely the Black-Scholes model. After all, the researchers
behind these Nobel Prize winning equations that are derived in the model, Myron S. Scholes
and Robert C. Merton, were members of the board of directors of LTCM.

The fund raised more than $1 billion in capital and initially focused on bond trading. The
trading strategy of the fund was to make arbitrage in convergence trades. It is a method using
quantitative models to exploit deviations in the relationships between liquid securities across
nations and asset classes. LTCM also traded interest rate swaps, which exchanges future
interest payments of a contract for other future interest payments. See Example 1.1 to see
how one can benefit from dropping interest rates.

Example 1.1. Let’s say that the TU Delft has an outstanding loan of $100,000 at Bank A and
pays 5% interest each year. This interest rate is fixed for the entire length of the contract.
Now, the TU Delft has done some financial engineering and so happens to believe that the
interest rate in the market, denoted with 𝑟, will decline in the next few years. To exploit this
opportunity, the TU Delft buys an interest rate swap from Bank B to exchange the interest rate
from the fixed rate of 5% with the interest from the floating rate 𝑟. See Figure 1.2 to see that
the TU Delft then pays a net interest rate of 𝑟. However, Bank B does not offer to do this for
free. The determination of the value of such an interest rate swap is complex and changes
every moment. Because of LTCM’s research, they could do this very well and buy and sell
those contracts for good prices.

Figure 1.2 – The TU Delft buys an interest rate swap from Bank B in order to change its fixed
interest rate in the contract with Bank A for a floating interest rate.

3Source: https://www.investopedia.com/terms/l/longtermcapital.asp

https://www.investopedia.com/terms/l/longtermcapital.asp


1.3. History 5

Due to the small returns generated in the arbitrage opportunities, LTCM had to highly lever-
age itself. Leverage is the use of borrowed money to invest. By borrowing money, bigger
trades can be made with a small amount of capital. As a result, leverage magnifies the returns
from favorable movements, but also magnify losses, see Example 1.2.

Example 1.2. Suppose that one has a $1000 and buys 100 shares of a stock that is worth $10
per share. If the price of the stock increases with $0.50, there is a $50 / 5% profit. However,
one can also choose leverage this trade. Say that one can leverage the trade with a factor
of 20, i.e. trade with a leverage of 1:20. Then another party, usually the broker of the trade,
loans 19 times the money to make the trade 20 times as big. So, with $1000 and a leverage
of 1:20, one can make the trade equivalent to that of a $20.000 investment. Now, if the price
of the stock increases with 5%, one makes a $1000 profit on a $1000 investment, i.e. a return
of 100%. The leverage thus ensures that your return multiplies with the same factor, e.g. 5%
times the leverage of 20. However, this also holds for negative returns of course. A 5% drop in
value of an investment with a 1:20 leverage, means that one’s entire investment has become
worthless as the other 95% is needed to repay the issuer of the loan.

LTCM was at his highest in 1998 with $5 billion in assets and an additional $120 billion
borrowed assets. In August 1998, LTCM was holding large positions in Russian government
bonds. However, when Russia defaulted on his debt, LTCM started losing hundreds of millions
of dollars a day. Since LTCM had highly leveraged itself, it was in danger of defaulting on its
own loans as well. They had borrowed so much money that the government of the U.S.
feared that the collapse would cause a financial crisis. Therefore, in September 1998, the
fund (which continued to sustain losses) was bailed out and a meltdown of the market was
prevented. LTCM was too big to fail.

1.3.2 The Big Short
It is 2005when Scion Capital’s founding hedge fundmanagerMichael Burry, a certifiedmedical
doctor and fascinated by investments, discovers that the U.S. housing market is extremely
unstable.4 In that time, the housing market in the United States was funded with mortgages
from Collateralized Debt Obligations (CDO), which are pools of money that sell loans. While
theseCDO’s had a rating of being in the best shape possible, in fact they were poorly structured
and were only to become even more riskier as interest rates would highly rise from the sold
adjustable-rate mortgages. To anticipate on a market’s collapse, Burry proposes to create a
Credit Default Swap (CDS), allowing him to bet against those mortgage-backed securities.

CDS are contracts that enable investors to swap credit risk with another counterparty. In
other words, the risk of losing your investment if a company, country, CDO (in this case) or
other entity, goes bankrupt, can be bought off with a CDS. In a CDS, the buyer of the swap
makes payments to the swap’s seller until the maturity date of the contract. In return, the
seller agrees that if the party in question defaults, the seller of the CDS will pay the buyer the
security’s value as well as all interest payments that would have been paid between the time
of default and the security’s maturity date.

Burry’s bet in buying CDS, exceeding $1 billion, is accepted by major banks (as they did
not see the risk) and requires paying substantial monthly premiums. The biggest investor in
the fund of Scion Capital calls the bet ’wasting capital’ and also many other investors demand
Burry to reverse the bet and sell everything.

Eventually, the market collapses (which triggered the financial crisis of 2007-2008) and his
fund’s value increased by 489% with an overall profit of over $2.69 billion. The story of Burry’s
4Source: https://www.investopedia.com/articles/investing/020115/big-short-explained.
asp

https://www.investopedia.com/articles/investing/020115/big-short-explained.asp
https://www.investopedia.com/articles/investing/020115/big-short-explained.asp


6 1. Introduction

bet and the overall situation in the market is captured by Michael Lewis in the book The Big
Short.

1.4 Hedge Fund Strategies
Hedge funds are alternative investments that can use risky and creative strategies to generate
returns. These funds require a larger initial investment than others, and generally are acces-
sible only to accredited investors. That is because alternative funds require far less regulation
from the government than conventional funds. Most hedge funds are illiquid, meaning that
investors need to keep their money invested for longer periods of time and withdrawals tend
to to happen only at certain periods of time. It is recommended that potential hedge fund in-
vestors need to understand how these funds manage their strategy and how much risk they
take on when they buy into this financial product. Remark the story in Section 1.3.2 about The
Big Short in which Burry damaged the trust of its investors. While no hedge funds are identical,
most funds generate their returns using one or more of the (more specific) categories that are
outlined below.5

Long/Short Equity
The concept of a long/short equity strategy is intuitive and simple. The investment research of
the hedge fund turns up expected winners and expected losers in terms of stock price. Such
hedge funds take long and short positions in equity and equity related derivatives to generate
return. In general, hedge funds that follow a long/short strategy tend to be long-biased.

Market-Neutral
Market-neutral strategies have zero net-market exposure, i.e. the short and long positions
have an equal market value. This means that the managers generate their entire return from
the net-result of the chosen stocks moving in the predicted direction.

Event Driven & Merger Arbitrage
Merger arbitrage derives its returns from corporate takeover activity. That is why it is also
considered an event-driven strategy. During the process of a corporate takeover a share-
exchange transaction is announced. This announcement contains information about the price
and magnitude of the transaction, which impacts the share price of both companies.

In the more general event-driven strategy, hedge funds buy the debt of companies that are
in financial distress or have already filed for bankruptcy. Managers often focus on senior debt,
which is the debt that is most likely to be repaid. An additional opportunity or hedge is to short
sell the stock when the company has not yet filed bankruptcy.

Short Only
The extreme biased strategies are the short-only hedge funds. They scour through all the
financials of a company and even talk to its suppliers and competitors to find any sign of
trouble that is not yet been noticed by the market. Those hedge fund occasionally score a
very big hit when they discover fraud or some other misbehaviour for example6.

Quantitative
Quantitative hedge fund strategies look for patterns in historical data to make investment de-
cisions. Quantitative analysis mostly uses mathematical and statistical modeling which rely
on large data sets. Quantitative strategies can also leverage the use of the latest technology
to automatically make very fast trading decisions.
5Source: https://www.investopedia.com/articles/investing/102113/
what-are-hedge-funds.asp

6The fraud detection at Wirecard is a perfect and recent example.

https://www.investopedia.com/articles/investing/102113/what-are-hedge-funds.asp
https://www.investopedia.com/articles/investing/102113/what-are-hedge-funds.asp


2
Manager Selection

Investors interested in investing in (alternative) strategies (obviously) want to invest in the best
fund, i.e. the fund that is ranked number 1 among its competitors, as this fund returns the best
result. However, it is not always clear to say which fund performs best. When investors have
different goals they want to achieve with investing, different funds can come up as the best.

2.1 Clients
The investors in a fund are the clients of the manager of the fund. The manager is the end
responsible for everything concerning the fund. Just as with other businesses, clients come
and go. As briefly mentioned in Section 1.2.2, clients pay a fee for the management services
of a fund. This fee is (often) a fixed percentage of the invested capital. So the more clients,
the higher the invested capital and thus the higher the fee. Often, the personal salary or bonus
of the manager is related to the received fee and performance of the fund. In that way, the
motivation of the manager is aligned with that of its clients and the company.

Of course, the fund needs to perform to grow the client base. It is best if you are ranked
number 1 with respect to other funds in the specific category of your strategy. In that way, it is
easier to attract new clients. The minimum investment to participate in a mutual fund can be
around a few hundred to a few thousand euros. This is attractive for individual investors. The
more interesting clients for fund managers are the institutional investors, like pension funds
and other organisations that hold lots of cash. These institutions need to invest multiple mil-
lions and this makes them attractive potential clients. In exchange for investing more capital,
institutional investors pay a smaller fee than other investors.

Where mutual funds are open to all type of investors, hedge funds are more strict and
are only open to investors that satisfy specific requirements, i.e. accredited investors. These
accredited investors want to invest in the best hedge fund. It is assumed that the best hedge
fund is the hedge fund that will have the future performance that satisfies your conditions the
best. But how do potential clients rank the hedge funds to eventually choose the number 1?

2.1.1 Manager Selection
The performance of an investment strategy is measured by the return it generates. The higher
the return, the better the performance and as such, the happier the clients of the fund. It seems
first hand to invest in the fund that has the best historical performance. After all, they have
outperformed the other funds in the past and thus can be considered the best.

However, it has been shown for mutual funds by Goel et al. (2012) [7] that there are other
indicators influencing a fund’s future performance as well. Indicators like turnover, expense ra-

7



8 2. Manager Selection

tio, investment style and ownership style all affect the return of the mutual fund independently.
Also, the asset management department of the Dutch investment bank Kempen states that
they select the mutual funds in which they invest using more criteria than just historical per-
formance. At Kempen, all the managers and funds are selected (and monitored) against the
following criteria: Organization, Strategy, Portfolio, Performance, ESG, Governance & Opera-
tions and Terms & Conditions7. Kempen attaches great importance to the quality and stability
of the investment team of the strategy, for example. Also proper risk management systems
and a (lack of) focus on the integration of sustainability criteria can make a difference at Kem-
pen when selecting a fund.

2.1.2 Strategy Benchmark
It is mentioned that the performance of an investment strategy is expressed in the return it
generates. However, talking about performance with respect to a fund needs to be relative as
every strategy has a benchmark. This benchmark represents the performance of the market
in the specific category that the fund is active in. (If a manager does not communicate a
benchmark for his strategy, his clients probably designate one for them themselves.)

One has probably heard of the AEX and the S&P 500 indices. The AEX is a stock market
index composed of 25 Dutch companies that trade on the Euronext Amsterdam. The S&P
500 is the stock market index that measures the stock performance of 500 companies listed
on stock exchanges in the United States. These are just 2 examples. There are indices for
(almost) every asset category one can think of. Indices are often used as benchmarks for
investment strategies. Some strategies have an absolute return as benchmark, e.g. the fund
aims to have an annual return of 10%.

2.2 Morningstar
An independent research and data institute for investment funds is Morningstar. This institute
is well known for their in-house developed ratings that allows to make the decision process
easier for the investor:

• Morningstar Rating
The Morningstar Rating assesses investment funds from 1 to 5 stars based on perfor-
mance. This performance is adjusted for risk and sales charges with respect to com-
parable funds. Within each category, the top 10% of the funds receive 5 star ratings
and the bottom 10% receive 1 star ratings. The Morningstar Rating is fully objective and
based entirely on an evaluation of historical performance. Morningstar claims that the
Morningstar Rating is a ”useful tool for identifying funds..., but should not be considered
buy or sell signals”.

• Analyst Rating
The Analyst Rating is the expression of the Morningstar forward-looking analysis of a
fund. The Analyst Rating is assigned on a five-tier scale running from Gold to Negative.
The top three ratings, Gold, Silver and Bronze, all indicate a positive fund analysis. The
difference in these three corresponds to the level of analyst conviction in a fund’s ability
to outperform its benchmark and peers through time. The Analyst Rating does not ex-
press a view on a given asset class or peer group, it seeks to evaluate each fund within
the context of its objective, an appropriate benchmark and peer group. In constrast
to the Morningstar Rating, the Analyst Rating is thus a qualitative measure instead of
a quantitative. For funds that are not covered by analysts, Morningstar introduced the
Quantitative Rating. This rating assesses funds along the same scale, but is determined

7Source: https://www.kempen.com/en/asset-management/

https://www.kempen.com/en/asset-management/
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by a machine learning model based on historic ratings and results. In that way, Morn-
ingstar can cover all funds.

• Sustainability Rating
The Sustainability Rating is a measure of the financial ESG (Environmental, Social and
Governance) risks in a fund’s portfolio with respect to the other funds in its category. The
rating is calculated based on the historical holdings using the company-level ESG Risk
Rating. The best 10% get a 5 Globe rating and it drops down to 1 Globe. Morningstar
Rating and the Analyst Rating. Morningstar’s development of this rating emphasizes the
increasing importance and popularity of sustainable investing.

Morningstar claims that their Morningstar Rating should not be considered as a buy or sell
signal. Blake & Morey (2000) [4] on the other hand examined ”the ability of the Morningstar
ratings to predict both un-adjusted and risk-adjusted returns” for U.S. domestic equity funds.
The data showed that low-rated funds generally indicate relatively poor future performance,
but there was little (statistical) evidence that the highest-rated funds outperform the next-to-
highest and median-rated funds. Morey (2003) [10] even states that domestic equity funds
with a 5-star Morningstar Ranking were ”not able to load on momentum stocks as well as they
did before receiving the 5-star ranking”. According to Morey, investors should therefore be
wary about using the 5-star rating as a negative signal for future 3-year performance.

In terms of performance, it thus has been shown that Morningstar had different prediction
qualities. Low-rated funds indeed did not seem to perform (as indicated/predicted by the low
rating), but high-rated funds were not always able to outperform the lower-rated funds. While
Morningstar also does not recommend to consider the ratings as signals for investors, is does
happen. Del Guercio & Tkac (2008) [9] applied an event-study on over 10.000 Morningstar
Rating changes. They showed that not the change in the performance, but the change in the
Morningstar Rating drives the flow of the fund. A change in the rating results in (economically
and statistically significant) abnormal flow in the expected direction caused by the change, i.e.
a positive flow for a rating upgrade and a negative flow for a rating downgrade.

The above states that investors do viewMorningstar and its ratings as a quality measure for
allocation decisions. Also, it confirms the reputation ofMorningstar as an influential player. The
one thing however is that the data used for the research mentioned above is from around the
period 1995-2000. A lot has changed since then. Not only the market for investment funds, but
also Morningstar has developed. For example, in July 2002, Morningstar changed its rating
algorithm. It remained the case that the top 10% of funds receive the 5-star rating, but the
category with respect to the ranking became the fund’s more narrow investment style category
(rather than all domestic equity funds). Also, it was 2016 when Morningstar introduced the
Morningstar Sustainability Rating (as mentioned above). Ammann et al. (2019) [2] examined
the effect of the introduction of Sustainability Rating on mutual fund flows. Strong evidence
was found that investors shifted capital away from low-rated into high-rated funds as a result
of the shock of the available information. Also, during the first year after the publication of the
Sustainability Rating, high-rated funds receive significant higher net flows on average than
an average rated fund. Low-rated funds suffer lower net flows. Switching investments in this
first year mainly applied to retail investors (and funds), while institutional investors react more
weakly to the publication of the rating.

So also recent research shows the impact the of Morningstar an its ratings on the behaviour
of investors. Do remark that the conclusions of the studies mentioned above was all done with
respect to mutual funds. This thesis shall therefore study a specific relation between hedge
funds and mutual funds in Chapter 6.
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2.3 Alt - Long/Short Equity - U.S.
The focus of this research will be on hedge funds that follow a long/short strategy on U.S.
equity. The choice to focus on hedge funds instead of mutual funds is from the hypothesis
that they form a more interesting study with respect to selecting the best fund. First, hedge
funds are often not open for private investors and require a large investment for participation.
This causes the choice of picking the best hedge fund the first time of being of much greater
importance. The focus on the long-short equity strategy seems a natural step as this would
be the to-go-to strategy when one wants to take their investment game to the next level from
mutual funds. It can be frustrating to see mutual funds not taking the advantage of opportuni-
ties in the market. Hedge funds can be more creative in that kind of situations. The choice for
the U.S. market is simply because of its size and it is viewed as the front runner in finance.

2.3.1 Data
It is clear that investors do not rank investment funds at performance alone (for manager
selection). However, it is still considered the most important metric. After all, performance is
the final result of all the work of the manager and needs to be attractive to keep existing and
attract new clients.

Data is collected from Morningstar to view the returns of the hedge funds. The Premium
Fund Screener from Morningstar.com is used to select the specific long/short equity funds
in the alternative strategy bucket. See Figure A.1 and Table A.1 in Appendix A for a look on the
display of the variables of the data. The data consists of the name of the hedge fund and 189
variables. These variables are specific returns, Morningstar ratings, percentage ranks, ratio’s,
portfolio composition and other information. See Table A.1 in Appendix A for a full overview.

2.3.2 Filtering & Ordering
A thing that needs to be sorted out when comparing hedge funds is to specify the asset class as
one strategy can have be divided in multiple asset classes or shares. The difference between
these various types of shares is not in the portfolio or any other strategy related variable,
but mostly on the administrative side. The main distinction is the difference in the shares
for private or institutional investors. As already briefly mentioned, private investors can buy
shares of a fund with a relative lowminimum investment and institutional investors have a large
entry threshold. In return for their commitment, institutional investors pay a lower fee and get
detailed reporting on the management of the strategy. So to compare the hedge funds in a
fair way, it is needed to select an equal (or very comparable) asset class for every strategy.
After all, the fee and structure of the asset class causes (small) changes in the return of the
strategy. While some hedge funds indicate their asset class with a letter at the end of the
name of the strategy (I for institutional, for example), it not clear for all hedge funds what is
what. So to have a fair comparison, the asset class with the lowest fee is chosen to represent
the respective strategy.

Also, the data set includes hedge funds that do not manage their own strategy, but at their
turn invest in other hedge funds. These hedge funds are thus clients of other hedge funds
and are known as Fund of Funds. As they do not make strategic decisions themselves, these
types of funds are excluded from the data.

2.4 Ranking & Hedge Funds
It is beneficial for hedge funds to get ranked number 1 in its respective category. In that way,
more clients are attracted and at the end, that is the goal of every business. The question
remains if (management of the) hedge funds also see this as an important objective or not. To
what extend are the hedge funds trying to beat each other?

Morningstar.com


3
Mathematical Prerequisites

Game theory is the branch of mathematics that models competition. This chapter recalls some
of the basic concepts to lay the necessary groundwork for the mathematical analysis.

3.1 Game Theory
Games are played in all kinds of forms and can result in every possible payoff. An intuitive
payoff of a game is that one player wins, what another player loses. This mostly applies to
two-person games. The describing name of such games are two-person zero-sum games.
Zero-sum indicating the that the sum of the payoff of the two players is 0. A mathematical
description of a two-person zero-sum game is the so called strategic form, see Definition 3.1
from the notes of Ferguson (2014) [6].

Definition 3.1. The strategic form of a two-person zero-sum game is given by a triplet (𝒳,𝒴, Π),
where

1. 𝒳 is a non-empty set, the set of strategies of Player I;

2. 𝒴 is a non-empty set, the set of strategies off Player II;

3. Π is a real valued function defined on 𝑋 × 𝑌, i.e. Π(𝑥, 𝑦) ∈ ℝ for every 𝑥 ∈ 𝑋 and every
𝑦 ∈ 𝑌.

The interpretation of the strategic form is as follows. Player I chooses strategy 𝑥 from his
set of possible strategies 𝒳, in short 𝑥 ∈ 𝒳, and Player II chooses strategy 𝑦 ∈ 𝑌. Of course,
each player chooses his strategy unaware of the choice of the other (or both players choose
simultaneously). A strategy is a complete description of what move to make in every possible
situation that could occur.The chosen strategies thus fix the moves of the players at every turn
in the game. So knowing the strategies, result in knowing exactly how the game is played,
thus the outcome of the game is also known and so is the payoff. The function Π(𝑥, 𝑦) states,
without lose of generality, the wins of Player I and the loses of Player II. It is thus assumed
that the payoff of Player II is −Π. If Π is negative, Player I pays |Π(𝑥, 𝑦)| to Player II.

While it is possible to fit finite games into the strategic form, it can be very time consuming
to compile the set of strategies or even a single strategy for that matter. A game like tic-tac-
toe is small game, but already has quite a lot of possible situations for which one need to
determine every move. So do not even start thinking about putting chess in a strategic form.
See Example 3.1 for the strategic form of the Odd or Even game. A game where only one
move is required.

11
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Example 3.1. [Odd or Even] Consider a game were Player I and Player II simultaneously pick
one of the numbers 1 and 2. Player I wins if the sum of the number is odd and Player II wins
if the sum of the numbers is even. The payoff of the game is the sum of the numbers to the
one who wins. Then the strategic form of this game is as follows:

𝒳 = 𝒴 = {1, 2},

Π(𝑥, 𝑦) = 𝑥
𝑦 1 2

1 −2 3
2 3 −4

= (−2 3
3 −4) .

For simplicity, the function Π can be expressed as a matrix, where the rows represent the
strategies of Player I and the columns the strategies of Player II.

At first, the Odd or Even game looks fair: both players win for 2 out of the 4 combinations
and the average of the possible payoffs for Player II is equal to that of Player I. However,
Player I does have an advantage in this situation. To realise this, Player I must use a so called
mixed strategy for playing the game.

Elements of 𝒳 and 𝒴 are considered pure strategies. There is no randomness involved
with pure strategies. When one randomly chooses among the pure strategies using a proba-
bility distribution that is chosen on forehand, it is considered a mixed strategy. Note that one
can also combine pure strategies at random that only differ at a specific turn in the game.
Therefore, it is possible to take random decisions for every move in the game. A reason to
not include randomness in pure strategies is to avoid that the set of strategies always con-
tains an infinite number of strategies. After all, one random choice gives an infinite number
of options for choosing corresponding probabilities as the subset (0,1) of the real numbers is
uncountable. A two-person zero-sum game is said to be a finite game if 𝒳 and 𝒴 are both
finite. When playing a pure strategy, the payoff of the game is not random and only based on
the interaction of your moves with those of your opponent. When playing a mixed strategy,
the randomness in the moves needs us to talk about the expected payoff.

Let’s have a look into a specific mixed strategy for Player I in the Odd or Even game.

Example 3.1 (Continued). As there are only 2 pure strategies in the strategy set of both
players, a mixed strategy is therefore randomly choosing between playing 1 and 2 using a
fixed probability distribution. Let 𝑝 denote the probability that Player I will play 1. An intuitive
move is to find 𝑝 in such a way that the mixed strategy will always perform, no matter what
Player II does. Then the following must hold for 𝑝:

Π (𝑃𝑙𝑎𝑦𝑒𝑟 𝐼𝐼 𝑝𝑙𝑎𝑦𝑠 1) = Π (𝑃𝑙𝑎𝑦𝑒𝑟 𝐼𝐼 𝑝𝑙𝑎𝑦𝑠 2)
⇒ Π (⋅, 1) = Π (⋅, 2)
⇒ 𝑝Π(1, 1) + (1 − 𝑝)Π(2, 1) = 𝑝Π(1, 2) + (1 − 𝑝)Π(2, 2)
⇒ − 2𝑝 + 3(1 − 𝑝) = 3𝑝 − 4(1 − 𝑝)
⇒ 12𝑝 = 7

⇒ 𝑝 = 7
12.

Playing 1 with probability and playing 2 with probability result in an expected payoff of
Π (⋅, 1) = Π (⋅, 2) = for Player I. So no matter what strategy Player II chooses, Player I
has an expected payoff greater than 0. The game is thus not as fair as it might seem at first.
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3.1.1 Value of the Game
The maximum expected payoff that Player I is able to achieve, no matter what Player II does,
is also known as the value of the game. The formal definition of the value of the game is stated
by Theorem 3.1, a fundamental theorem of game theory [6].

Theorem 3.1. Let (𝒳,𝒴, Π) be a finite two-person zero-sum game. Then the following state-
ments are equivalent:

1. there is a number 𝑉, called the value of the game;

2. there is a strategy for Player I such that his expected payoff is at least 𝑉, no matter what
Player II does, i.e. ∃𝑥 ∈ 𝒳 ∶ Π(𝑥, 𝑦) ≥ 𝑉 ∀𝑦 ∈ 𝒴;

3. there is a strategy for Player II such that his expected loss is at most 𝑉, no matter what
Player I does, i.e. ∃𝑦 ∈ 𝒴 ∶ Π(⋅, 𝑦) ≤ 𝑉 ∀𝑦 ∈ 𝒴.

If 𝑉 is negative, it means that Player I loses at most |𝑉| and Player II wins at most |𝑉|.

Remark 3.1. The 𝑥 and 𝑦 that satisfy the requirements mentioned above in Theorem 3.1 are
also known as optimal strategies. Important to note: such strategies may not be unique. Play-
ing an optimal strategy does not mean that it is the best strategy against a specific strategy. An
optimal strategy is a strategy that gives one the highest minimum payoff against any strategy.

Remark 3.2. Is 𝑉 exists and is equal to 0, then the game is considered fair. If 𝑉 is positive,
then the game is in favor of Player I. If 𝑉 is negative, then the game is in favor of Player II.

In games with 2 or more players, one may need the help of the other players to reach a
solution of the game. Such a solution can be expresses as an equilibrium in the game, see
Definition 3.2.

Definition 3.2. In an equilibrium, no player has anything to gain by only changing his own
strategy. (The strategies that cause an equilibrium are known as the equilibrium strategies.)

For a 2-player game, the equilibrium strategies are the same as the optimal strategies.
However, for a k-player game with 𝑘 > 2 it holds that the equilibrium strategies are only
optimal when the equilibrium is reached. Optimal strategies on the other hand perform in
every situation.

3.2 Probability Theory
Amove in a game can be described by a random variable. Whilst a random variable itself is not
that intuitive, as it is based on the abstract construction of event spaces, probability measures
and probability spaces, a cumulative distribution function does provide a clear view of the
distribution (hence the name) of the possible outcomes. Let Ω denote the set of all possible
outcomes, also known as the sample space. See the Definition 3.3 - 3.5 from Grimmett &
Welsh (2014) [8] to describe the theoretical concept of the random variable and its cumulative
distribution.

Definition 3.3. A triple (Ω, ℱ, ℙ) is a probability space if:

(a) Ω is a non-empty set;

(b) ℱ is an event space of subsets of Ω;

(c) ℙ is a probability measure on (Ω, ℱ).
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Definition 3.4. A mapping 𝑋 ∶ Ω → ℝ on the probability space (Ω, ℱ, ℙ) is a random variable
if:

{𝜔 ∈ Ω ∶ 𝑋(𝜔) ≤ 𝑥} = {𝑋 ≤ 𝑥} ∈ ℱ,
for all 𝑥 ∈ ℝ.

Definition 3.5. Let 𝑋 be a random variable on (Ω, ℱ, ℙ). The cumulative distribution function
(also known as distribution or cdf) of 𝑋 is the function 𝐹 ∶ ℝ → [0, 1], defined by:

𝐹 (𝑥) = ℙ(𝑋 ≤ 𝑥).

A random variable can describe a move based on randomness in the game. When there is
a game that requires many random moves, it is not that great to analyse all random variables
separately. Therefore, it is useful to summarize all the randommoves with one random variable
that represents the payoff of the game. Then the expected payoff of the strategy is represented
by the expected value of the random variable. See Definition 3.6 for the determination of this
metric.

Definition 3.6. Let 𝑋 be a random variable on (Ω, ℱ, ℙ) and let 𝐹 be the cumulative distribution
function of the probability measure ℙ. Then the expected value of 𝑋 is defined by:

𝔼[𝑋] = ∫ 𝑋(𝜔)𝑑ℙ(𝜔) = ∫ 𝑥𝑑𝐹(𝑥).

If the 𝑋 is non-negative, then the following also holds:

𝔼[𝑋] = ∫ (1 − 𝐹(𝑥))𝑑𝑥 = ∫ ℙ(𝑋 > 𝑥)𝑑𝑥.

Next, 3 additional definitions and 3 lemmas are introduced that are needed with respect
to (mixed) strategies and distributions. These statements primarily are needed for the anal-
ysis of discrete, continuous or a mixture of discrete and continuous random variables. See
Definition 3.7 for the requirements of a random variable. Lemma 3.1 states that a continuous
random variable adopts with probability zero the same value as another (independent) random
variable.

Definition 3.7. A random variable 𝑋 is continuous if its distribution function 𝐹 can be written
in the form:

𝐹 (𝑥) = ℙ(𝑋 ≤ 𝑥) = ∫ 𝑓 (𝑢) 𝑑𝑢,

for 𝑥 ∈ ℝ, for some non-negative function 𝑓 .

Lemma 3.1. Let 𝑋 be a continuous random variable and 𝑌 an independent random variable.
Then ℙ(𝑋 = 𝑌) = 0.

Proof. Sketch of the proof: Fix 𝑦 ∈ 𝑌. Then by continuity of 𝑋: ℙ(𝑋 = 𝑦) = 0. As this holds
for every 𝑦 ∈ 𝑌, it remains that ℙ(𝑋 = 𝑌) = 0.

The counterpart of a continuous random variable are the atoms. Where continuous random
variables have associated probability density, atoms have probability mass. See Definition
3.8 for the formal establishment of an atom. Then Definition 3.9 and Lemma 3.2 state that a
random variable can have more than a finite amount of atoms, but not too many more.
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Definition 3.8. A measurable set 𝐴 is called an atom if ℙ(𝐴) > 0 and for every measurable
subset 𝐸 ⊆ 𝐴, it either has that ℙ(𝐸) = 0 or ℙ(𝐴 ⧵ 𝐸) = 0.

Definition 3.9. A set 𝐴 is called countable if there exists a one-to-one correspondence of ℕ
with the elements of 𝐴.

Lemma 3.2. Let 𝑋 be a random variable and define 𝐴 = {𝑎 ∶ ℙ(𝑋 = 𝑎) > 0} (the set containing
all atoms). Then 𝐴 is a countable set.

Proof. Define 𝐴 = {𝑎 ∈ 𝐴 ∶ ℙ(𝑋 = 𝑎) ≥ } for 𝑛 ≥ 1. Then ⋃ 𝐴 = 𝐴 and 𝐴 has at most 𝑛
elements. So 𝐴 is finite and therefore 𝐴 is countable.

Not only competitors, but also distributions can be ordered. When two random variables
can be ordered in terms of distribution and have equal expected value, they actually have an
equal distribution. See Lemma 3.3 for the specific requirements and proof of this statement.

Lemma 3.3. Let 𝑋 and 𝑌 be two random variables from the distributions 𝐹 and 𝐺, respectively.
If 𝑋 ≤ 𝑌 in the sense of stochastic ordering, i.e. 𝐹(𝑥) ≥ 𝐺(𝑥) for all 𝑥 ∈ (−∞,∞), and
𝔼[𝑋] = 𝔼[𝑌], then 𝑋 and 𝑌 have equal distribution.

Proof. The Lemma and proof is from Shaked & Shanthikumar (2007) [12, p. 8]. Define �̂� =
𝐹 (𝑈) and �̂� = 𝐹 (𝑌) where 𝑈 is a random variable uniformly distributed on [0, 1]. Denote
= for equality in distribution. Then �̂� = 𝑋 and �̂� = 𝑌 and ℙ(�̂� ≤ �̂�) = 1:

�̂�(𝑥) = ℙ(�̂� ≤ 𝑥) = ℙ(𝐹 (𝑈) ≤ 𝑥) = ℙ(𝑈 ≤ 𝐹(𝑥)) = 𝐹(𝑥),
�̂�(𝑥) = ℙ(�̂� ≤ 𝑥) = ℙ(𝐺 (𝑈) ≤ 𝑥) = ℙ(𝑈 ≤ 𝐺(𝑥)) = 𝐺(𝑥),

ℙ(�̂� ≤ �̂�) = ℙ(𝐹 (𝑈) ≤ 𝐺 (𝑈)) = ℙ(𝑈 ≤ 𝐹(𝐺 (𝑈))) = 1.

Suppose that ℙ(�̂� < �̂�) > 0 holds. Then the following should hold as well:

𝔼[𝑋] = 𝔼[�̂�] < 𝔼[�̂�] = 𝔼[𝑌].

This is a contradiction. Therefore, ℙ(�̂� < �̂�) = 0 and thus ℙ(�̂� = �̂�) = 1. So this implies:

𝑋 = �̂� = �̂� = 𝑌.

This completes the proof.





4
Competitive Investors

Two investors compete to see which of them, starting with the same initial capital, can end up
with the larger capital. The rules of the competition require that they can only do fair invest-
ments. That is, they can only invest non-negative amounts in assets whose expected return
per unit invested is 1.

Suppose that the investors start with 1 unit of capital each. Thus no matter in what they
invest, their expected capital at the end is equal to their initial capital. To model the choice
of investments, the investors choose a distribution that represents the (random) end-value of
their investment. It assumed that this can not go negative. So the players choose distributions
on [0,∞) with mean 1. Let’s say that Investor I chooses 𝐹 with mean 1 and Investor II chooses
𝐺 with mean 18. Then the random variable 𝑋 has distribution 𝐹 and the random variable 𝑌 has
distribution 𝐺, independently. Investor I wins the best if 𝑋 > 𝑌, Investor II wins if 𝑋 < 𝑌 and it
is a tie if 𝑋 = 𝑌. The investor who wins the bet gets 1 from the other investor and there is no
exchange if it is a tie. Denote Π for the payoff of Investor I. The expected payoff for Investor I
is then expressed as follows:

Π(𝐹, 𝐺) = ℙ(𝑋 > 𝑌) ⋅ 1 + ℙ(𝑋 = 𝑌) ⋅ 0 + ℙ(𝑋 < 𝑌) ⋅ −1
= ℙ(𝑋 > 𝑌) − ℙ(𝑋 < 𝑌).

Consequently, the payoff for Investor II is −Π (as it is a zero-sum game/bet). See Game 1 for
the formal definition of the game described above.

Game 1 (The Competitive Investor Game). Consider a two-player zero-sum game. Player I
chooses a random variable 𝑋 with distribution 𝐹 and Player II an independent random variable
𝑌 with distribution 𝐺, such that 𝑋, 𝑌 ≥ 0 and 𝔼[𝑋] = 𝔼[𝑌] = 1. The players take a random
sample from their distribution, x and y respectively. The payoff Π is 1 if 𝑥 > 𝑦, 0 if 𝑥 = 𝑦 and
−1 if 𝑥 < 𝑦 with respect to Player I.

The strategy space of the Competitive Investor Game is the set of all distributions that
satisfy the requirements of the game. This means that each valid distribution is an element of
the strategy space and thus considered as a pure strategy. Player I and II have access to the
same set of distributions. So the players are equally competitive, As either player can copy
the strategy of their opponent. In this case, each distribution is a pure strategy. See Example
4.1 where such a strategy is put to the test according to the Competitive Investor Game.
8Fun fact: any non-negative capital distribution is achievable from the initial capital 1 by a gambling scheme on
fair coin tosses (Cover (1974) [5]).
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Example 4.1. One can often try to solve a game by trial and error. Suppose that Player I plays
the strategy that he would choose 0 with probability a half and 2 with probability a half. Denote
this strategy by 𝑋 and denote 𝑌 for the random variable that represents the strategy of Player
II. The expected payoff for Player I would be:

Π = 1
2 (ℙ(0 > 𝑌) − ℙ(0 < 𝑌)) +

1
2 (ℙ(2 > 𝑌) − ℙ(2 < 𝑌))

= −12ℙ(0 < 𝑌) +
1
2 (ℙ(2 > 𝑌) − ℙ(2 < 𝑌)) .

What is an optimal response for Player II? If Player II chooses to play the trivial strategy, i.e.
choose 1 with probability 1, he wins half of the time and the expected payoff would be 0 (for
both players). In fact, he can choose any distribution that is between (and with no mass at) 0
and 2 and have an expected payoff of 0. If player II does not (randomly) choose 2 or higher,
Player I will win half of the time.

To improve, let 𝜖 > 0 arbitrarily small and now let Player II play 𝑌 with atoms at 𝜖 and 2+𝜖.
The probabilities for those atoms is solved with a system of 2 equations:

{𝜖 ⋅ ℙ(𝑌 = 𝜖) + (2 + 𝜖) ⋅ ℙ(𝑌 = 2 + 𝜖) = 1ℙ(𝑌 = 𝜖) + ℙ(𝑌 = 2 + 𝜖) = 1

⇒ ℙ(𝑌 = 𝜖) = 1 + 2𝜖
2 − 𝜖 and ℙ(𝑌 = 2 + 𝜖) = 1 − 3𝜖

2 − 𝜖 .

Then the payoff of the game will be the following:

Π(𝐹, 𝐺) = ℙ(𝑋 > 𝑌) − ℙ(𝑋 < 𝑌)

= 1
2 (ℙ(0 > 𝑌) − ℙ(0 < 𝑌)) +

1
2 (ℙ(2 > 𝑌) − ℙ(2 < 𝑌))

= −12ℙ(0 < 𝑌) +
1
2 (ℙ(2 > 𝑌) − ℙ(2 < 𝑌))

= −12 +
1
2 (ℙ(𝑌 = 𝜖) − ℙ(𝑌 = 2 + 𝜖))

= −12 +
1
2 (

1 + 2𝜖
2 − 𝜖 −

1 − 3𝜖
2 − 𝜖 )

= −12 +
5𝜖

2(2 − 𝜖) ≈ −
1
2

Of the 4 possible combinations of scores in the game, Player II only loses when he plays 𝜖
and Player I plays 2. This example suggests that the strategy of 0 or 2 with probability 1/2
is too predictable. Player I can counter the strategy of Player II by choosing 2𝜖 and 2 + 2𝜖 to
beat player II. This indicates that an optimal strategy should be continuous.

4.1 Optimal Strategy
The example above indicates that placing probability mass at a specific point is not ideal as
one can outplay this by placing his probability mass a 𝜖 higher. By intuition, it thus seems that
it is better to choose a continuous distribution. Also, playing very high values does not seem
optimal either. Every probability density (or mass) above 1 needs to be compensated with
probability density under 1. For example, it is not rational to play 10 with probability and to
compensate that by playing 0 with probability . Playing 10 will likely result in a win, but is
it worth it if you lose the other 9 times (on average)? This shows that this game is not about
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getting the highest score, but the players have the goal to beat the other. Relative scores
matters, absolute scores not that much.

Therefore, Theorem 4.1 will be introduced as an optimal strategy for Game 1, followed
by Theorem 4.2 about the uniqueness of the proposed optimal strategy. Theorems 4.2 and
4.2 are due to Bell and Cover (1988). However, the proof is adjusted to the situation of the
described payoff function and complemented with the additional lemmasmentioned in Chapter
3.

Theorem 4.1 (Bell & Cover, 1988). The value of the Competitive Investor Game (Game 1) is
0 and an optimal strategy for both players is the uniform distribution on the interval [0, 2]:

𝐹∗(𝑥) = 𝐺∗(𝑥) = { , 0 ≤ 𝑥 ≤ 2
1, 𝑥 ≥ 2

.

Proof. Let 𝐺 be an arbitrary distribution for Player II satisfying the requirements of the game
and Player I plays 𝐹∗. Let 𝑋∗ have distribution 𝐹∗ and 𝑌 have distribution 𝐺. The density
function of 𝑋∗ is thus equal to 𝑓∗(𝑥) = , 0 ≤ 𝑥 ≤ 2. As 𝑋∗ is continuous, it satisfies ℙ(𝑋∗ =
𝑌) = 0 by Lemma 3.1. Then the expected payoff of strategy 𝐹∗ for Player I is non-negative
against any strategy of Player II:

Π(𝐹∗, 𝐺) = ℙ(𝑋∗ > 𝑌) − ℙ(𝑋∗ < 𝑌) = 1 − ℙ(𝑋∗ ≤ 𝑌) − ℙ(𝑋∗ < 𝑌)

= 1 − 2ℙ(𝑋∗ < 𝑌) = 1 − 2∫ ℙ(𝑌 > 𝑥)𝑓(𝑥) 𝑑𝑥

= 1 − ∫ ℙ(𝑌 > 𝑥) 𝑑𝑥 ≥ 1 − ∫ ℙ(𝑌 > 𝑥) 𝑑𝑥 = 1 − 𝔼[𝑌] = 0.

(4.1)

Since the game is symmetrical in the players, Player II can achieve the opposite by also playing
𝐹∗. As the greatest expected payoff for both players is zero, both players play a strategy that
guarantees them exactly that. 𝐹∗ satisfies this optimality and is an optimal strategy for both
players. The value of the game is indeed thus 0.

Remark 4.1. Originally, the setup of the game in Bell & Cover is that the payoff of Player I is
equal to ℙ(𝑋 ≥ 𝑌). While this changes the value of the game, the optimal strategy remains
the same. After all, both payoff functions depend on the same probabilities.

Remark 4.2. The proof of Theorem 4.1 verifies that the uniform distribution is an optimal
strategy for playing the Competitive Investor Game. However, do notice that the proof reveals
more than just the optimality. More specific, the end of Equation 4.1 states that the expected
payoff for Player I is 1 − 𝔼[𝑌]. So if Player II has another restriction for the expectation of his
distribution, the payoff against the uniform strategy is already known..

Remark 4.3. Game 1 is specified for distributions that have an expected value of 1. It is con-
sidered that every game of this form, but with a different equality requirement for the expected
value of the distribution, is equivalent. It is just a factorization difference. For example, if both
players must choose distributions with an expected value of 𝜇, the optimal strategy would be
to play uniformly on [0, 2𝜇]. The proof of this would be fully equivalent to that of Theorem 4.1,
apart from the scaling of 𝑓(𝑥) and 𝔼[𝑌] (which cancels each other) (see Equation 4.4 in the
proof of Theorem 4.3 if one has that 𝔼[𝑌] = 𝜇 as well).

Remark 4.4. Notice that changing the equality signs in the requirement of the expected value
to a lesser or equal inequality (≤), does not change the optimal strategies of the game. This
change can be considered as a generalisation of the game and will be discussed later in this
chapter.
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Next, is the evaluation of the uniqueness of the optimal strategy from Theorem 4.1. See
the proof of Theorem 4.2 in which the game is further analysed and also concludes that there
is only one optimal strategy.

Theorem 4.2. The uniform distribution on the interval [0, 2] is the unique optimal strategy for
the Competitive Investor Game (Game 1).

Proof. Theorem 4.1 already showed that this strategy is optimal for both players. Next to show
is that there is no other strategy that can guarantee this optimality.

Let �̂� be an arbitrary optimal strategy of Player I, i.e. Π(�̂�, 𝐺) ≥ 0 for any arbitrary strategy
𝐺 of Player II. Remark that Π(𝐹∗, �̂�) = 0must also hold. After all, the game is symmetric in the
players and both strategies are optimal. Let 𝑋∗ have distribution 𝐹∗ and �̂� have distribution �̂�
and recall the inequality in Equation 4.1 from Theorem 4.1:

Π(𝐹∗, �̂�) = 1 − ∫ ℙ(�̂� > 𝑥) 𝑑𝑥 ≥ 1 − ∫ ℙ(�̂� > 𝑥) 𝑑𝑥 = 1 − 𝔼[�̂�] = 0.

If �̂� takes values larger than 2, the inequality ≥ changes into the strict inequality >. In order
for the payoff to remain equal to 0, it thus must hold that �̂�(2) = 1.

Next, �̂� is tested against three two-point distributions. Consider the following random vari-
ables:

• 𝑌 ∼ {0, 𝑐 } with distribution 𝐺 and 1 ≤ 𝑐 ≤ 2,

• 𝑌 ∼ {𝑐 , 2} with distribution 𝐺 and 0 ≤ 𝑐 ≤ 1,

The corresponding probabilities for 𝑌 and 𝑌 are expressed in terms of 𝑐 and 𝑐 , respectively,
in order to keep the expectation of those random variables equal to 1. 𝑌 must have that
0 ⋅ ℙ(𝑌 = 0) + 𝑐 ⋅ ℙ(𝑌 = 𝑐 ) = 1 ⇒ ℙ(𝑌 = 𝑐 ) = and thus ℙ(𝑌 = 0) = . For 𝑌 , a
system of 2 equations must be solved:

{𝑐 ⋅ ℙ(𝑌 = 𝑐 ) + 2 ⋅ ℙ(𝑌 = 2) = 1
ℙ(𝑌 = 𝑐 ) + ℙ(𝑌 = 2) = 1

⇒ ℙ(𝑌 = 𝑐 ) = 1
2 − 𝑐 and ℙ(𝑌 = 2) = 1 − 𝑐

2 − 𝑐 .

Following the assumption of an optimal strategy, this leads to the following inequalities:

Π(�̂�, 𝐺 ) ≥ 0 ⇒ ℙ(𝑌 = 0)Π(�̂�, 0) + ℙ(𝑌 = 𝑐 )Π(�̂�, 𝑐 ) ≥ 0

⇒ 𝑐 − 1
𝑐 (ℙ(�̂� > 0) − ℙ(�̂� < 0)) + 1

𝑐 (ℙ(�̂� > 𝑐 ) − ℙ(�̂� < 𝑐 )) ≥ 0

⇒ (𝑐 − 1)ℙ(�̂� > 0) + ℙ(�̂� > 𝑐 ) − ℙ(�̂� < 𝑐 ) ≥ 0
⇒ (𝑐 − 1) (1 − ℙ(�̂� = 0)) + (1 − ℙ(�̂� ≤ 𝑐 )) − ℙ(�̂� < 𝑐 ) ≥ 0
⇒ − (ℙ(�̂� ≤ 𝑐 ) + ℙ(�̂� < 𝑐 )) − (𝑐 − 1)ℙ(�̂� = 0) ≥ −𝑐
⇒ ℙ(�̂� ≤ 𝑐 ) + ℙ(�̂� < 𝑐 ) ≤ 𝑐 − (𝑐 − 1)ℙ(�̂� = 0)
⇒ ℙ(�̂� ≤ 𝑐 ) + ℙ(�̂� < 𝑐 ) ≤ 𝑐 ,

(4.2)



4.1. Optimal Strategy 21

Π(�̂�, 𝐺 ) ≥ 0 ⇒ ℙ(𝑌 = 𝑐 )Π(�̂�, 𝑐 ) + ℙ(𝑌 = 2)Π(�̂�, 2) ≥ 0

⇒ 1
2 − 𝑐 (ℙ(�̂� > 𝑐 ) − ℙ(�̂� < 𝑐 )) + 1 − 𝑐2 − 𝑐 (ℙ(�̂� > 2) − ℙ(�̂� < 2)) ≥ 0

⇒ ℙ(�̂� > 𝑐 ) − ℙ(�̂� < 𝑐 ) − (1 − 𝑐 )ℙ(�̂� < 2) ≥ 0
⇒ (1 − ℙ(�̂� ≤ 𝑐 )) − ℙ(�̂� < 𝑐 ) − (1 − 𝑐 ) (1 − ℙ(�̂� = 2)) ≥ 0
⇒ − (ℙ(�̂� ≤ 𝑐 ) + ℙ(�̂� < 𝑐 )) + (1 − 𝑐 )ℙ(�̂� = 2) ≥ −𝑐
⇒ ℙ(�̂� ≤ 𝑐 ) + ℙ(�̂� < 𝑐 ) ≤ 𝑐 + (1 − 𝑐 )ℙ(�̂� = 2),

(4.3)

Combine the end-inequality of equation 4.2 and 4.3 to state that the following must hold for
0 ≤ 𝑐 ≤ 2:

{ℙ(�̂� ≤ 𝑐) + ℙ(�̂� < 𝑐) ≤ 𝑐, 1 ≤ 𝑐 ≤ 2
ℙ(�̂� ≤ 𝑐) + ℙ(�̂� < 𝑐) ≤ 𝑐 + (1 − 𝑐)ℙ(�̂� = 2), 0 ≤ 𝑐 ≤ 1.

Suppose that ℙ(�̂� > 2) > 0. Then �̂� has an atom at 0 and at 2. Example 4.1 showed that an
atom in a distribution implies that that strategy can not be optimal, since an advantage can be
obtained by placing probability mass at the atoms +𝜖. So �̂� must have that ℙ(�̂� = 2) = 0 and
therefore satisfy the following:

ℙ(�̂� ≤ 𝑐) + ℙ(�̂� < 𝑐) ≤ 𝑐,0 ≤ 𝑐 ≤ 2.

If �̂� is continuous, then ℙ(�̂� = 𝑐) = 0 for every 0 ≤ 𝑐 ≤ 2 and implies that 2�̂�(𝑐) ≤ 𝑐.
Now assume that �̂� is not (entirely) continuous and that there is an atom at some 𝑐 such that
2�̂�(𝑐) > 𝑐. This implies that ℙ(�̂� = 𝑐) > 0 must hold. Define 𝐴 = {0 ≤ 𝑎 < 2 ∶ ℙ(�̂� = 𝑎) > 0}
the set of atoms excluding the possibility of there being an atom at 2 (as it is already known
that this is not the case). From Lemma 3.2 it is known that 𝐴 then is a countable set.

Choose 𝑎 ∈ 𝐴 arbitrarily. Then �̂�(𝑎) > holds. Define 𝑎 > 𝑎 such that 𝑎 ∉ 𝐴 and

�̂�(𝑎) > . This is possible by the countability of 𝐴. Then �̂�(𝑎 ) ≥ �̂�(𝑎) by the definition of

a distribution and have that �̂�(𝑎 ) > . This is a contradiction. Since 𝑎 is not an atom, it

satisfies �̂�(𝑎 ) ≤ . So 𝐴 is an empty set.
This proves that �̂� must be a continuous distribution satisfying the following:

�̂�(𝑐) ≤ , 0 ≤ 𝑐 ≤ 2
�̂�(2) = 1.

In the sense of stochastic ordering, �̂� thus has that �̂�(𝑥) ≤ 𝐹∗(𝑥) for all 𝑥. Lemma 3.3 is
then needed to complete the proof. Both criteria of Lemma 3.3 are satisfied for 𝑋∗ and �̂�
since �̂�(𝑥) ≤ 𝐹∗(𝑥) ⇒ ℙ(𝑋∗ > 𝑥) ≤ ℙ(�̂� > 𝑥) for all 𝑥 and meet the expectation criteria for
ℎ(𝑥) = 𝑥. This concludes that �̂� and 𝐹∗ have equal distribution and 𝐹∗ is therefore unique. This
concludes the proof of uniqueness for the optimal strategy of Player I. The proof of uniqueness
for 𝐺∗ of Player II follows by symmetry in the players.

This theorem concludes the analysis of the Competitive Investor Game in which the two
players are considered equally competitive.
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4.2 The Asymmetric Investor Game
Next to discuss is the game where there is an inequality in the competitive level of the players.
Without lose of generality, it is considered that Player I is better than Player II. This reflects in
the requirements of the strategies that are allowed for each player. The expected value of the
distribution of Player I is higher than that of Player II. To rule out games that are equivalent by
factorization, it is assumed that Player I has a competitiveness level of 𝜇 > 1 and Player II of
1. The game is thus not symmetric in the players anymore. The other rules of game remains
the same and the formal definition is stated in Game 2.

Game 2 (The Asymmetric Investor Game). Consider a two-player zero-sum game. Player I
chooses a random variable 𝑋 with distribution 𝐹 and Player II an independent random variable
𝑌 with distribution 𝐺 such that 𝑋, 𝑌 ≥ 0. Let 𝜇 > 1 such that 𝔼[𝑋] = 𝜇 and 𝔼[𝑌] = 1. Then the
players take a random sample from their distribution, x and y respectively. The payoff Π is 1 if
𝑥 > 𝑦, 0 if 𝑥 = 𝑦 and −1 if 𝑥 < 𝑦 with respect to Player I.

Remember that Remark 4.2 already stated some additional information about the expected
payoff of the uniform strategy. It states that the expected payoff is at least 1−𝔼[𝑌]when Player
I has a competitive level of 1 and 𝑌 is the random variable corresponding to Player II. Let 𝑌
have a competitive level of , i.e. 𝔼[𝑌] = , where 𝜇 > 1. Then the expected payoff of Player

I is 1 − 𝔼[𝑌] = . Also, this setup of the game is equivalent to that of The Asymmetric

Investor Game by a factorization of : the competitive level of Player I goes from 𝜇 to 1 and

that of Player II from 1 to . So Player I can achieve a minimum expected payoff of in the
Asymmetric Investor Game.

Alpern & Howard (2017) [1] propose (in a more general theorem which will be discussed
later) a optimal strategy for Player II that copies the strategy of Player I or gives up, i.e. plays
0. This means that Player II will have an atom in his distribution. See Theorem 4.3 for the
optimal strategies of the Asymmetric Investor Game. The setup of the proof is similar to that
of the one for the Competitive Investor Game.

Theorem 4.3. The value of the Asymmetric Investor Game is and the optimal strategies
for Player I and Player II, respectively, are the following:

𝐹∗(𝑥) = {
, 0 ≤ 𝑥 ≤ 2𝜇

1, 𝑥 ≥ 2𝜇

𝐺∗(𝑦) = {
+ , 0 ≤ 𝑦 ≤ 2𝜇

1, 𝑦 ≥ 2𝜇
.

Proof. Let 𝐺 be any distribution for Player II satisfying the requirements of the game and Player
I plays 𝐹∗. Let 𝑌 be the random variable with distribution 𝐺 and 𝑋∗ the random variable with
distribution 𝐹∗. The density function of 𝑋∗ is equal to 𝑓∗(𝑥) = , 0 ≤ 𝑥 ≤ 2𝜇. As 𝑋∗ is
continuous, it satisfies ℙ(𝑋∗ = 𝑌) = 0 by Lemma 3.1. Then the expected payoff for Player I is
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positive against whichever strategy Player II chooses:

Π(𝐹∗, 𝐺) = ℙ(𝑋∗ > 𝑌) − ℙ(𝑋∗ < 𝑌) = 1 − ℙ(𝑋∗ ≤ 𝑌) − ℙ(𝑋∗ < 𝑌)

= 1 − 2ℙ(𝑋∗ < 𝑌) = 1 − 2∫ ℙ(𝑌 > 𝑥)𝑓(𝑥)𝑑𝑥

= 1 − 1𝜇 ∫ ℙ(𝑌 > 𝑥)𝑑𝑥 ≥ 1 − 1𝜇 ∫ ℙ(𝑌 > 𝑥)𝑑𝑥

= 1 − 1𝜇𝔼[𝑌] =
𝜇 − 1
𝜇 .

(4.4)

Next, the strategy 𝐺∗ of Player II is tested against an arbitrary strategy 𝐹 of Player I. Let 𝑋 be
the random variable with distribution 𝐹, 𝑌∗ the random variable with distribution 𝐺∗ and 𝑌∗∗ the
random variable with distribution 𝐹∗. Then the following holds:

Π(𝐹, 𝐺∗) = ℙ(𝑋 > 𝑌∗) − ℙ(𝑋 < 𝑌∗)
= ℙ(𝑌∗ = 0) (ℙ(𝑋 > 0) − ℙ(𝑋 < 0)) + ℙ(𝑌∗ > 0) (ℙ(𝑋 > 𝑌∗∗) − ℙ(𝑋 < 𝑌∗∗))

= 𝜇 − 1
𝜇 (1 − ℙ(𝑋 = 0)) + 1𝜇 (ℙ(𝑋 > 𝑌

∗∗) − (1 − ℙ(𝑋 ≥ 𝑌∗∗))) ,
(4.5)

where the second term of the final equation reduces to less than or equal to zero:

1
𝜇 (ℙ(𝑋 > 𝑌

∗∗) − (1 − ℙ(𝑋 ≥ 𝑌∗∗)))

=1𝜇 (2ℙ(𝑋 > 𝑌
∗∗) − 1) = 2

𝜇 ∫ ℙ(𝑋 > 𝑦)𝑓∗(𝑦) 𝑑𝑦 − 1𝜇

=2𝜇 ∫ ℙ(𝑋 > 𝑦) 12𝜇 𝑑𝑦 −
1
𝜇 ≤

1
𝜇 ∫ ℙ(𝑋 > 𝑦) 𝑑𝑦 − 1𝜇

= 1𝜇 𝔼[𝑋] − 1𝜇
=0.

(4.6)

So Π(𝐹, 𝐺∗) ≤ (1 − ℙ(𝑋 = 0)) ≤ .
The optimal strategies thus agree in the minimum guaranteed expected payoff which at its

turn agrees with the proposed value of the game. This concludes the proof.

As already hinted, the optimal strategies indeed exist and the value of the Asymmetric
Investor Game is known. When one is facing a duel and knows that the other player is better,
it is thus best to choose between giving up (play 0) or equal the strategy of the opponent. On
average, it is the best one can do.

A good comparison is with athletes who need to take risk. If an athlete knows that he has
a tough component and only has a one time shot for the win, risk management is key. The
athlete can try to copy the risk profile of his opponent adjusted to his own capabilities, i.e. play
uniformly around his own average. However, he can also choose to take the risk, go for a very
high score and see whether he fails (playing 0) or has a good shot at winning (following the
distribution of the opponent).

Assuming that Player I knows this as well, would there be another optimal strategy as well?
After all, it is shown in Example 4.1 that one can outplay the other if there is an atom in the
distribution of the strategy. Theorem 4.4 shows that is not the case. Playing uniformly is the
unique optimal strategy for the better player in the Asymmetric Investor game.
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Theorem 4.4. The uniform distribution on the interval [0, 2𝜇] is the unique optimal strategy in
the Asymmetric Investor Game of Player I.

Proof. An optimal strategy for Player I for the Asymmetric Investor Game has been found in
Theorem 4.3. Next to prove is that this strategy is unique.

Let �̂� be an arbitrary optimal strategy for Player I, i.e. such that Π(�̂�, 𝐺) ≥ against any
strategy 𝐺 of Player II. First, remark that Π(�̂�, 𝐺∗) = must hold. Consider the inequality in
Equation 4.6 and the final inequality of that proof. If �̂� takes values larger than 2𝜇 or ℙ(𝑋 =
0) > 0, the inequalities changes into strict inequalities. In order to remain optimal, �̂� must
therefore satisfy that �̂�(2𝜇) = 1 and �̂�(0) = ℙ(�̂� = 0) = 0.

Next, �̂� is tested against two-point distributions. Consider the random variables 𝑌 ∼
{0, 𝑐 }, 1 ≤ 𝑐 ≤ 2𝑎, and 𝑌 ∼ {𝑐 , 2𝑎}, 0 ≤ 𝑐 ≤ 1 as the strategies for Player II. In order
to keep the expectation of 𝑌 and 𝑌 equal to one, the corresponding probabilities are ex-
pressed in terms of 𝑐 and 𝑐 , respectively. 𝑌 must have that 0 ⋅ ℙ(𝑌 = 0)+ 𝑐 ⋅ ℙ(𝑌 = 𝑐 ) =
1 ⇒ ℙ(𝑌 = 𝑐 ) = and thus ℙ(𝑌 = 0) = . For 𝑌 a system of 2 equations is solved:

{𝑐 ⋅ ℙ(𝑌 = 𝑐 ) + 2𝜇 ⋅ ℙ(𝑌 = 2𝜇) = 1
ℙ(𝑌 = 𝑐 ) + ℙ(𝑌 = 2𝜇) = 1

⇒ ℙ(𝑌 = 𝑐 ) = 2𝜇 − 1
2𝜇 − 𝑐 and ℙ(𝑌 = 2𝜇) = 1 − 𝑐

2𝜇 − 𝑐 .

Following the assumption, this leads to the following inequalities:

Π(�̂�, 𝑌 ) ≥ 𝜇 − 1
𝜇

⇒ ℙ(𝑌 = 0)Π(�̂�, 0) + ℙ(𝑌 = 𝑐 )Π(�̂�, 𝑐 ) ≥ 𝜇 − 1
𝜇

⇒ 𝑐 − 1
𝑐 (ℙ(�̂� > 0) − ℙ(�̂� < 0))

+ 1
𝑐 (ℙ(�̂� > 𝑐 ) − ℙ(�̂� < 𝑐 )) ≥ 𝜇 − 1

𝜇

⇒ (𝑐 − 1) (1 − 0)) + (1 − ℙ(�̂� ≤ 𝑐 ) − ℙ(�̂� < 𝑐 )) ≥ 𝑐 (𝜇 − 1)
𝜇

⇒ − (ℙ(�̂� ≤ 𝑐 ) + ℙ(�̂� < 𝑐 )) ≥ 𝑐 (𝜇 − 1)
𝜇 − 𝑐

⇒ ℙ(�̂� ≤ 𝑐 ) + ℙ(�̂� < 𝑐 ) ≤ 𝑐 − 𝑐 (𝜇 − 1)𝜇
⇒ ℙ(�̂� ≤ 𝑐 ) + ℙ(�̂� < 𝑐 ) ≤ 𝑐

𝜇

(4.7)
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Π(�̂�, 𝑌 ) ≥ 𝜇 − 1
𝜇

⇒ ℙ(𝑌 = 𝑐 )Π(�̂�, 𝑐 ) + ℙ(𝑌 = 2𝜇)Π(�̂�, 2𝜇) ≥ 𝜇 − 1
𝜇

⇒ 2𝜇 − 1
2𝜇 − 𝑐 (ℙ(�̂� > 𝑐 ) − ℙ(�̂� < 𝑐 ))

+ 1 − 𝑐
2𝜇 − 𝑐 (ℙ(�̂� > 2𝜇) − ℙ(�̂� < 2𝜇)) ≥ 𝜇 − 1

𝜇
⇒ (2𝜇 − 1) (1 − ℙ(�̂� ≤ 𝑐 ) − ℙ(�̂� < 𝑐 ))

− (1 − 𝑐 )ℙ(�̂� < 2𝜇) ≥ (𝜇 − 1)(2𝜇 − 𝑐 )
𝜇

⇒ 2𝜇 − 1 − (2𝜇 − 1) (𝑃(�̂� ≤ 𝑐 ) + ℙ(�̂� < 𝑐 )) ≥ (𝜇 − 1)(2𝜇 − 𝑐 )
𝜇

+ (1 − 𝑐 )ℙ(�̂� < 2𝜇)

⇒ ℙ(�̂� ≤ 𝑐 ) + ℙ(�̂� < 𝑐 ) ≤ 1 − (𝜇 − 1)(2𝜇 − 𝑐 )𝜇(2𝜇 − 1) − 1 − 𝑐
2𝜇 − 1ℙ(�̂� < 2𝜇).

(4.8)

For simplicity in the notation, denote the final right part of Equation (4.8) as the following:

𝑅(𝜇, 𝑐 , ℙ(�̂� < 2𝜇)) ∶= 1 − (𝜇 − 1)(2𝜇 − 𝑐 )𝜇(2𝜇 − 1) − 1 − 𝑐
2𝜇 − 1ℙ(�̂� < 2𝜇).

Then notice that the following holds:

𝑅(𝜇, 𝑐 , 1)) = 𝑐
𝜇 .

So if ℙ(�̂� < 2𝜇) = 1 ⇔ ℙ(�̂� = 2) = 0 not holds, the strategy can not be optimal when following
the same reasoning as in the proof of Theorem ??. So the following is known about �̂�:

ℙ(�̂� ≤ 𝑐) + ℙ(�̂� < 𝑐) ≤ , 0 ≤ 𝑐 < 2𝜇
�̂�(2𝜇) = 1. (4.9)

The derived inequality above is split in two possibilities:

2�̂�(𝑐) ≤ or 2�̂�(𝑐) > .

Consider the second option. This implies that ℙ(�̂� = 𝑐) > 0 and ℙ(�̂� = 𝑐) > 0 must hold to
keep satisfying Inequality 4.7 and 4.8, respectively. Define 𝐴 = {0 ≤ 𝑎 < 2𝜇 ∶ ℙ(�̂� = 𝑎) > 0}
the set of atoms excluding the possibility of there being an atom in 2𝜇. From Lemma 3.2 it is
known that this is a countable set. Choose 𝑎 ∈ 𝐴 arbitrarily. Then it must satisfy the following
�̂�(𝑎) > . Let 𝑎 > 𝑎 such that 𝑎 ∉ 𝐴 and �̂�(𝑎) > . This is possible by the countability of

𝐴. Then �̂�(𝑎 ) ≥ �̂�(𝑎) by the definition of a distribution and have that �̂�(𝑎 ) > . This is a

contradiction. Since 𝑎 is not an atom, it satisfies �̂�(𝑎 ) ≤ . This statement does not hold

for 𝑎 = 2𝜇 as there is no 𝑎 > 2𝜇 for which < �̂�(2𝜇) = 1. So 𝐴 is an empty set and the
following is known about �̂�:

�̂�(𝑐) ≤ , 0 ≤ 𝑐 < 2𝜇
�̂�(2𝜇) = 1. (4.10)
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In the sense of stochastic ordering, �̂�(𝑥) ≤ 𝐹∗(𝑥) thus holds for all 𝑥. To complete the proof of
uniqueness the result from Shaked & Shantikumar (2007) [12], i.e. Lemma 3.3, is introduced.
Both criteria of Lemma 3.3 are met for 𝑋∗ and �̂� as since �̂�(𝑥) ≤ 𝐹∗(𝑥) ⇒ ℙ(𝑋∗ > 𝑥) ≤ ℙ(�̂� >
𝑥) for all 𝑥 and meet the expectation criteria for ℎ(𝑥) = 𝑥. So this concludes that �̂� and 𝐹∗
have equal distribution and 𝐹∗ is therefore unique. This concludes the proof of uniqueness for
the optimal strategy of Player I.

Remark 4.5. The proof of the uniqueness of the optimal strategy of Player II is preserved for
the most general form of this game.



5
Ranking Games

The players of the Competitive Investor and the Asymmetric Investor Game are limited by the
expected value of their strategy. This chapter extends those games in a more general form
as the 𝑘-Player Ranking Game for 𝑘 ≥ 2. This game is from Alpern & Howard (2017) [1] and
introduces a more general and multiplayer form of the two-person zero-sum game that has
been covered so far. Utility functions are introduced to express the risk profile of the players.
One needs to battle a risk-averse player differently than a risk-seeking player.

5.1 The 2-Player Ranking Game
The 2-Player Ranking Game does not just limit the requirements of the distributions of the
players to the mean, but to a limit on the moment of a mapping of the respective random
variable. Player I plays the random variable 𝑋 with distribution 𝐹 and Player II plays the random
variable 𝑌 with distribution 𝐺. Also, let 𝜙 and 𝜓 be two functions. Then instead of the players
being restricted by the first moment of the distribution, much broader restrictions are allowed.
In particular, constraints on the generalised moment:

𝔼[𝜙(𝑋)] ≤ 1 for Player I,
𝔼[𝜓(𝑌)] ≤ 1 for Player II. (5.1)

The functions 𝜙 and 𝜓 have limitations though. First, to keep the game relevant, 𝜙 and 𝜓
are also functions on [0,∞). Otherwise, one can leverage high values with negative values
and that causes the game to lose its purpose. The same holds for decreasing functions and
constant functions. Therefore, 𝜙 and𝜓 are considered strictly increasing functions. Also, it has
been proved that it can be optimal for players play 0. So 𝜙 and 𝜓 also satisfy 𝜙(0) = 𝜓(0) = 0.

Remark 5.1. The best way to think about the functions 𝜙 and 𝜓 is to consider them as utility
functions. A utility function summarizes the preferences of a consumer in terms of how much
utility he or she gets from consuming the goods in the utility function.

There are also conditions on 𝜙 and 𝜓 with respect to each other. These are needed to
ensure the existence of optimal strategies in the game. The conditions are given in the formal
definition of the game described above, see Equation 5.2 in Game 3. The purpose of Equation
5.2 will become clear in the proof of the theorem about optimal strategies (Theorem 5.1).
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Game 3 (The 2-Player Ranking Game). Two players play a zero-sum game. Let 𝜙 and 𝜓 be
continuous strictly increasing functions on [0,∞) with 𝜙(0) = 𝜓(0) = 0, satisfying:

lim
→

1
𝜓(𝑧) ∫ 𝜙(𝑥)𝑑𝜓(𝑥) ≥ 1,

lim
→

1
𝜙(𝑧) ∫ 𝜓(𝑥)𝑑𝜙(𝑥) ≥ 1.

(5.2)

Player I plays 𝑋 with distribution 𝐹 and Player II plays 𝑌 with distribution 𝐺, such that 𝔼[𝜙(𝑋)] ≤
1 and 𝔼[𝜓(𝑌)] ≤ 1. Then the players take a random sample from their distribution, x and y
respectively. The payoff Π is 1 if 𝑥 > 𝑦, 0 if 𝑥 = 𝑦 and −1 if 𝑥 < 𝑦 with repsect to Player I.

The weighted average condition of 𝜙 and 𝜓 with respect to each other (Equation 5.2) seem
quite tough, but that is actually not the case. Namely, if 𝜙 and 𝜓 are unbounded, meaning that
𝜙(𝑥), 𝜓(𝑥) → ∞ if 𝑥 → ∞, the condition is automatically satisfied [1]. So only for bounded
(strictly increasing) 𝜙 and 𝜓, the condition does not hold. Examples of that kind of functions
are 𝑓(𝑥) = arctan(𝑥) and 𝑓(𝑥) = 1 − 𝑎 , 0 < 𝑎 < 1 for 𝑥 ≥ 0. Both 𝑓 have a positive
derivative on every 𝑥 ≥ 0, but are bounded by 𝜋 and 1, respectively.

A usable form for 𝜙 and 𝜓 would be as a 1-term polynomial, as every moment constraint
can be put in that form. See Corollary 1 to see that this indeed always results in a qualified
function for 𝜙 or 𝜓. Such functions for 𝜙 and 𝜓 are used in Example 5.1.

Corollary 1. Consider the setup of Game 3 and let 𝜙(𝑥) = 𝑎𝑥 and 𝜓(𝑥) = 𝑏𝑥 with
𝑎, 𝑏, 𝑛,𝑚 > 0. Then 𝜙 and 𝜓 are well-defined (utility) functions.

Proof. Clearly, the following holds:

𝜙(𝑥) ∈ [0,∞),
𝜓(𝑥) ∈ [0,∞),
𝜙(0) = 𝜓(0) = 0.

Last to check is Equation 5.2:

lim
→

1
𝜓(𝑧) ∫ 𝜙(𝑥)𝑑𝜓(𝑥) = lim

→
1
𝑏𝑧 ∫ 𝑎𝑥 𝑑(𝑏𝑥 ) = lim

→
1
𝑏𝑧 ∫ 𝑎𝑥 𝑏𝑚𝑥 𝑑𝑥

= lim
→

1
𝑏𝑧 ∫ 𝑎𝑏𝑚𝑥 𝑑𝑥 = lim

→
1
𝑏𝑧 [ 𝑎𝑏𝑚𝑛 +𝑚𝑥 ]

= lim
→

𝑎𝑚
𝑛 +𝑚𝑧 → ∞ ≥ 1.

The proof of the second limit is equivalent to that of the above as 𝑎 and 𝑏 are interchangeable,
as well as are 𝑛 and 𝑚:

lim
→

1
𝜙(𝑧) ∫ 𝜓(𝑥)𝑑𝜙(𝑥) = lim

→
𝑏𝑛
𝑛 +𝑚𝑧 → ∞ ≥ 1

This concludes the proof.

Example 5.1. Consider the situation where the players are restricted by the second and third
moment of their strategy, respectively. Player I plays the random variable 𝑋 with distribution 𝐹
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and Player II plays the random variable 𝑌 with distribution 𝐺. Player I is limited in his second
moment by 3 and Player II is limited in his third moment by 5, i.e.:

𝜙(𝑋) = 𝑋 such that 𝐸[𝜙(𝑋)] ≤ 1 ⇔ 𝔼[ 𝑋 ] ≤ 1 ⇔ 𝔼[𝑋 ] ≤ 3,
𝜓(𝑌) = 𝑌 such that 𝐸[𝜓(𝑌)] ≤ 1 ⇔ 𝔼[ 𝑌 ] ≤ 1 ⇔ 𝔼[𝑌 ] ≤ 5.

Using Corollary 1, it is known that 𝜙 and 𝜓 satisfy the conditions of the game.

Intuitively speaking, it is probably not the best to play a distribution that includes atoms
(excluding an atom at zero). This was not optimal at the previous games (the Competitive
Investor Game and the Asymmetric Investor Game) and will likely still hold for this game.

In addition to playing as high as possible without compensating too mcuh, the players also
need to take into account the opponent’s utility function and adjust for that. Alpern & Howard
(2017) [1] propose to incorporate the other player’s utility function in the optimal strategy. See
Theorem 5.1 for the optimal strategies of Player I and II.

Theorem 5.1. Consider the functions 𝜙 and 𝜓 from Game 3. Let 𝑏 be the unique solution to
the equation:

1
𝜓(𝑏) ∫ 𝜙(𝑥)𝑑𝜓(𝑥) = 1 (5.3)

and suppose without lose of generality that:

1
𝜙(𝑏) ∫ 𝜓(𝑥)𝑑𝜙(𝑥) ≥ 1. (5.4)

Then 𝐹∗(𝑥) and 𝐺∗(𝑦) on [0, 𝑏] are optimal strategies for player Player I and Player II, respec-
tively:

𝐹∗(𝑥) = 𝜓(𝑥)
𝜓(𝑏) ,

𝐺∗(𝑦) = 1 − 𝜙(𝑏) − 𝜙(𝑦)
𝜓(𝑏)(𝜙(𝑏) − 1) .

The value of the game is 1 − ( ) .

Proof. First, it is proved that 𝑏 exists and is unique. Then, 𝐹∗ and 𝐺∗ are validated as distribu-
tions and also as strategies satisfying the requirements of the game. At last, it is showed that
𝐹∗ and 𝐺∗ agree in the minimum expected payoff they give to Player I and II, respectively.

Define for the (strictly increasing) functions 𝜙 and 𝜓 the weighted average of 𝜙(𝑥) with
respect to 𝜓(𝑥) for 0 ≤ 𝑥 ≤ 𝑧:

𝜅(𝑧) = 1
𝜓(𝑧) ∫ 𝜙(𝑥)𝑑𝜓(𝑥).

Then 𝜅(𝑧) < 𝜙(𝑧) holds and that also implies 𝜅(𝑧) goes towards zero if 𝑧 goes towards zero
(from above) as 𝜙(0) = 0:

𝜅(𝑧) = 1
𝜓(𝑧) ∫ 𝜙(𝑥)𝑑𝜓(𝑥)

< 1
𝜓(𝑧) ∫ 𝜙(𝑧)𝑑𝜓(𝑥) = 𝜙(𝑧)

𝜓(𝑧) ∫ 𝑑𝜓(𝑥) = 𝜙(𝑧)
𝜓(𝑧)(𝜓(𝑧) − 𝜓(0) = 𝜙(𝑧).
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As 𝜙 and 𝜓 represent utility functions, it is assumed allowed that to believe that 𝜙 and 𝜓 are
also continuously differentiable. Then 𝜅(𝑧) is also a strictly increasing function as its derivative
is positive:

𝑑𝜅(𝑧)
𝑑𝑧 > 0 ⇒ − 𝜓 (𝑧)

𝜓(𝑧) ∫ 𝜙(𝑥)𝑑𝜓(𝑥) + 𝜙(𝑧)𝜓 (𝑧)𝜓(𝑧) > 0

⇒ 𝜓 (𝑧)
𝜓(𝑧) ∫ 𝜙(𝑥)𝑑𝜓(𝑥) < 𝜙(𝑧)𝜓 (𝑧)

𝜓(𝑧)

⇒ ∫ 𝜙(𝑥)𝑑𝜓(𝑥) < 𝜙(𝑧)𝜓(𝑧),

which holds since both the following integrals are bigger than 0 and as such derive the in-
equality:

∫ 𝜙(𝑥)𝑑𝜓(𝑥) + ∫ 𝜓(𝑥)𝑑𝜙(𝑥) = 𝜙(𝑧)𝜓(𝑧)

⇒∫ 𝜙(𝑥)𝑑𝜓(𝑥) < 𝜙(𝑧)𝜓(𝑧).

So, 𝜅(𝑧) is a strictly increasing function for 𝑧 ≥ 0 starting at 𝜅(0) = 0 and Equation 5.2 ensures
that lim → 𝜅(𝑧) ≥ 1. Hence there exits a unique solution for 𝑏 (in Equation 5.3).

The conclusion above directly implies that 𝐹∗ on [0, 𝑏] is a well-defined distribution:

𝐹∗(𝑥) ≥ 0 for 0 ≤ 𝑥 ≤ 𝑏,
𝐹∗(0) = 0,
𝐹∗(𝑏) = 1.

Equation 5.3 and 5.4 imply that 𝜙(𝑏) > 1 and 𝜓(𝑏) > 1must hold. Otherwise, the following
is contradictory:

1 = 1
𝜓(𝑏) ∫ 𝜙(𝑥)𝑑𝜓(𝑥) < 1

𝜓(𝑏) ∫ 𝜙(𝑏)𝑑𝜓(𝑥) = 𝜙(𝑏)
𝜓(𝑏) ∫ 𝑑𝜓(𝑥) = 𝜙(𝑏)

1 ≤ 1
𝜙(𝑏) ∫ 𝜓(𝑥)𝑑𝜙(𝑥) < 1

𝜙(𝑏) ∫ 𝜓(𝑏)𝑑𝜙(𝑥) = 𝜓(𝑏)
𝜙(𝑏) ∫ 𝑑𝜙(𝑥) = 𝜓(𝑏)

(5.5)

Consider the defined distribution 𝐺∗:

𝐺∗(𝑦) = 1 − 𝜙(𝑏) − 𝜙(𝑦)
𝜓(𝑏)(𝜙(𝑏) − 1) = 1 −

𝜙(𝑏) − 𝜙(𝑦)
𝑐

= 1 − 𝜙(𝑏)𝑐 + 𝜙(𝑦)𝑐 = 𝑐 + 𝜙(𝑦)𝑐 for 𝑐 , 𝑐 ∈ ℝ.

Since 𝑐 > 0 (in fact 𝑐 > 1) by Equation 5.5, 𝐺∗ is a constant plus an increasing function
divided by a constant. Therefore, 𝐺∗ is a strictly increasing function for 𝑦 ≥ 0 and well-defined,
i.e. the denominator of the fraction is not zero. It also satisfies 𝐺(𝑏) = 1. Yet to determine
before calling 𝐺∗ a distribution, is to verify that 𝐺∗(𝜓(0)) = 𝐺∗(0) ≥ 0. From integration by



5.1. The 2-Player Ranking Game 31

parts and Equation 5.3 and 5.4, respectively, it is found that:

𝜙(𝑏)𝜓(𝑏) − 𝜙(0)𝜓(0) = ∫ 𝜙(𝑥)𝑑𝜓(𝑥) + ∫ 𝜓(𝑥)𝑑𝜙(𝑥)

⇒ 𝜙(𝑏)𝜓(𝑏) = 𝜓(𝑏) ( 1
𝜓(𝑏) ∫ 𝜙(𝑥)𝑑𝜓(𝑥)) + ∫ 𝜓(𝑥)𝑑𝜙(𝑥)

⇒ 𝜙(𝑏)𝜓(𝑏) − 𝜓(𝑏) = ∫ 𝜓(𝑥)𝑑𝜙(𝑥) ≥ 𝜙(𝑏).

This leads to:

𝐺(0) = 1 − 𝜙(𝑏)
𝜓(𝑏)(𝜙(𝑏) − 1) ≥ 1 −

𝜙(𝑏)
𝜙(𝑏) = 0.

So, 𝐺∗ is also a well-defined distribution.

Define 𝐹 and 𝐺 to be arbitrarily strategies for Player I and II, respectively. Let 𝑋∗ have
distribution 𝐹∗ and 𝑋 have distribution 𝐹 for Player I. Also, let 𝑌∗ have distribution 𝐺∗ and 𝑌
have distribution 𝐺 for Player II. Then 𝐹∗ and 𝐺∗ agree on the value of the game when they
play against 𝐺 and 𝐹, respectively:

Π(𝐹∗, 𝐺) = ℙ(𝑋∗ > 𝑌) − ℙ(𝑋∗ < 𝑌)
= 1 − ℙ(𝑋∗ ≤ 𝑌) − ℙ(𝑋∗ < 𝑌) = 1 − 2ℙ(𝑋∗ ≤ 𝑌)

= 1 − 2∫ 𝐹∗(𝑦)𝑑𝐺(𝑦) = 1 − 2
𝜓(𝑏) ∫ 𝜓(𝑦)𝑑𝐺(𝑦) = 1 − 2

𝜓(𝑏)𝔼[𝜓(𝑌)] ≥ 1 −
2

𝜓(𝑏)
Π(𝐹, 𝐺∗) = ℙ(𝑋 > 𝑌∗) − ℙ(𝑋∗ < 𝑌∗)

= ℙ(𝑌∗ < 𝑋) − (1 − ℙ(𝑌∗ ≤ 𝑋)) ≤ −1 + 2ℙ(𝑌∗ ≤ 𝑋)

= −1 + 2∫ 𝐺∗(𝑥)𝑑𝐹(𝑥) = −1 + 2∫ 1 − 𝜙(𝑏) − 𝜙(𝑥)
𝜓(𝑏)(𝜙(𝑏) − 1)𝑑𝐹(𝑥)

= −1 + 2(1 − 𝜙(𝑏)
𝜓(𝑏)(𝜙(𝑏) − 1)) (𝐹(∞) − 𝐹(0)) +

2
𝜓(𝑏)(𝜙(𝑏) − 1) ∫ 𝜙(𝑥)𝑑𝐹(𝑥)

≤ 1 − 2𝜙(𝑏)
𝜓(𝑏)(𝜙(𝑏) − 1) +

2
𝜓(𝑏)(𝜙(𝑏) − 1))𝔼[𝜙(𝑋)]

≤ 1 − 2(𝜙(𝑏) + 1)
𝜓(𝑏)(𝜙(𝑏) − 1) ≤ 1 −

2
𝜓(𝑏) .

This concludes the proof.

Remark 5.2. The weighted average conditions in the limit for the utility functions 𝜙 and 𝜓
(Equation 5.2) are considered part of the game. One can also decide to lose this restriction
and use it as an additional criteria for Theorem 5.1. In that way, the game becomes more
intuitive without losing the optimal strategies for the players.

Theorem 5.1 shows the optimal strategy for the players for the 2-Player Ranking Game
(with generalised moment constraints). So, the optimal strategies for the previous games (the
Competitive Investor and Asymmetric Investor Game) should be able to be derived from this
generalised game as well. See Corollary 2 for the derivation of the optimal strategies of The
Asymmetric Investor Game.
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Corollary 2. Player I plays 𝑋 with distribution 𝐹 and Player II plays 𝑌 with distribution 𝐺.
Without lose of generality, let 𝜇 > 1 such that 𝔼[𝑋] ≤ 𝜇 and 𝔼[𝑌] ≤ 1. To express the
Asymmetric Investor game in terms of the 2-Player Ranking game, define the functions 𝜙 and
𝜓 as follows:

𝜙(𝑥) = 𝑥
𝜇 ,

𝜓(𝑥) = 𝑥

Proof. Clearly, from Corollary 1 it is known that 𝜙 and 𝜓 satisfy all the requirements of the
game with respect to those functions. Next to find is the unique solution for 𝑏:

1
𝜓(𝑏) ∫ 𝜙(𝑥)𝑑𝜙(𝑥) = 1 ⇔ 1

𝑏 ∫
𝑥
𝜇𝑑𝑥 = 1 ⇔ ∫ 𝑥𝑑𝑥 = 𝜇𝑏

⇔ 1
2𝑏 = 𝜇𝑏 ⇔ 𝑏 = 2𝜇.

It is assumed without lose of generality that 𝜇 > 1. Therefore the final property equation is
satisfied as well:

1
𝜙(𝑏) ∫ 𝜓(𝑥)𝑑𝜙(𝑥) ≥ 1 ⇔ 1

2 ∫
𝑥
𝜇𝑑𝑥 ≥ 1 ⇔

1
2𝜇
(2𝜇)
2 ≥ 1

⇔ 𝜇 ≥ 1.

If this was not the case, the labels of players should have been switched and that would solve
the issue. So, according to Theorem 5.1, Player I and II play on [0, 2𝜇] with the following
distributions:

𝐹∗(𝑥) = 𝜓(𝑥)
𝜙(𝑏) =

𝑥
2𝜇 ,

𝐺∗(𝑦) = 1 − 𝜙(𝑏) − 𝜙(𝑦)
𝜓(𝑏)(𝜙(𝑏) − 1) = 1 −

−

2𝜇( − 1)
= 1 −

2 −
2𝜇

= 1 − 1𝜇 −
𝑦
2𝜇 = 𝜇 − 1

𝜇 + 𝑦
2𝜇 .

The value of the game is then:

𝑉 = 1 − 2
𝜙(𝑏) = 1 −

2
2𝜇 =

𝜇 − 1
𝜇

This coincides 100% with what has been proved for the Asymmetric Investor Game in the
previous chapter.

Remark 5.3. For 𝜇 = 1 in Corollary 2, the game directly simplifies to the Competitive Investor
Game.

5.1.1 Geometry & Uniqueness
Next to determine is the uniqueness of the optimal strategies. To do this, there is a need
for additional lemmas. The method of Alpern & Howard (2017) [1] to prove uniqueness is
somewhat different compared to the that of Bell & Cover (1980) [3]. The use of testing against
two-point distributions will still be used, but has to be extended to a geometric interpretation.
See Definition 5.1 and 5.2 for two geometric principles that are needed in the proof. See Figure
5.1 for an example of Definition 5.2.
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Definition 5.1. A function 𝑓 is said to be concave, if the following holds for any 𝑥 and 𝑦 and
for any 𝛼 ∈ [0, 1]:

𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≥ 𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦).

Definition 5.2. The concavification of a function 𝑓 is defined as the minimum of all concave
functions that are greater than or equal to 𝑓.

Figure 5.1 – The concavification of a distribution 𝐹.

Another lemma is needed about the mixture of two-point strategies. So far, testing against
a single two-point strategy was enough to proof uniqueness for the optimal strategies in the
Competitive Investor and the Asymmetric Investor Game. For this more general approach,
this will not be sufficient anymore. However, Lemma 5.1 from Pinelis (2009) [11] provides a
strong basis to cover all strategies.

Lemma 5.1. Any non-negative distribution with mean 𝜇 can be expressed as a mixture of
two-point distributions with mean 𝜇 and so, any mixture of pure strategies is also a mixture of
two-point distributions.

The material discussed above will be used in the first step to prove uniqueness. That is to
derive a limit for the winning probability of Player II, see Lemma 5.2. It covers a very general
case where Player can play any arbitrary strategy.

Lemma 5.2. Player II plays 𝑌 with non-negative distribution 𝐺 such that 𝔼[𝜓(𝑌)] ≤ 𝜂 where
𝜓(𝑦) is a strictly increasing continuous function on [0,∞) such that 𝜓(0) < 𝜂 < 𝜓(∞).

Player I plays 𝑋 with distribution 𝐹 and define 𝐹(𝑥) = ℙ(𝜒(𝑋) ≤ 𝑥) for the interval
[𝜓(0), 𝜓(∞)).

Now let �̄� be the concavification of 𝐹 on [𝜓(0), 𝜓(∞)). Then Player II his probability of not
losing can not be more than �̄�(𝜂), but Player II can either achieve this of get arbitrarily close.

Proof. Consider a two-point distribution for Player II. One atom gets placed on 𝑢 = 𝜓(𝑐) < 𝜂
and the other atom gets placed on 𝑑 such that 𝜂 < 𝜓(𝑑) = 𝑣. To meet the expectation criteria,
the maximum probability for Player II to assign to 𝑑 is . The probability that Player II then
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wins or draws against 𝐹 is the following:

ℙ(𝑌 = 𝑑)𝐹 (𝑑) + ℙ(𝑌 = 𝑐)𝐹 (𝑐)
=ℙ(𝑌 = 𝑑)𝐹(𝑢) + ℙ(𝑌 = 𝑐)𝐹(𝑣)

=𝑣 − 𝜂𝑣 − 𝑢𝐹(𝑢) +
𝜂 − 𝑢
𝑣 − 𝑢𝐹(𝑣).

(5.6)

Consider the graph of 𝐹 against 𝜓, denote the points (𝑢, 𝐹(𝑢)) and (𝑣, 𝐹(𝑣)) and set a line
between those two points. Because of the (linear) proportions, the height of the line at 𝜂 is
equal to the probability of Player II not losing, i.e. the height is equal to probability in Equation
5.6. So this height is the upper bound for the payoff of Player II when playing a two-point
strategy at 𝑢 and 𝑣. That means that �̄�(𝜂) is then the upper bound to what Player II can
achieve by playing an optimal two-point strategy.

Lemma 5.1 states that any distribution can be expressedwith two-point distributions. There-
fore, �̄�(𝜂) is also the upper bound to what Player II can achieve playing any pure or mixed
strategy.

Next to show is that Player II can also achieve this upper bound or get arbitrarily close.
Consider a (straight) line 𝐿 that does not get below �̄� on [𝜓(0), 𝜓(∞) and touches �̄� at 𝜂. See
Figure 5.2 for an example9.

Figure 5.2 – An illustration of how the line 𝐿 touches a distribution 𝐹, does not touch 𝐹 at 𝜂 and
does not go below the concavication of 𝐹.

Then there are two possibilities:

• 𝐿 also touches 𝐹 at 𝜂. Then Player II can place an atom of probability 1 at 𝜂 and either win
or draw with probability 𝐹(𝜂) = �̄�(𝜂). Player II then only draws if Player I also placed an
atom at 𝜂. However, by placing a atom of probability ( )

( ) at 𝜂+𝜖 and the remaining
probability at 𝜓(0), Player II can get arbitrarily close to achieving �̄�(𝜂) by choosing 𝜖
arbitrarily small. So Player II can achieve �̄�(𝜂) if Player I did not place an atom at 𝜂 or
get arbitrarily close if Player I did place an atom at 𝜂.

• 𝐿 does not touch 𝐹 at 𝜂 (as in Figure 5.2). By the properties of the distribution and
concavification function, 𝐿 must then touch 𝐹 below and above 𝜂 at at least one point.
Let 𝑢 < 𝜂 and 𝑣 > 𝜂 be such two two touching points. By placing atoms at those
points, Player II can achieve 𝜂 provided that Player I has not placed atoms at 𝑢, 𝑣 or

9This figure is partly adopted from Alpern & Howard (2017) [1]
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both. However, by then shifting those atom to 𝑢 + 𝜖 and/or 𝑣 + 𝜖, respectively, for
arbitrarily small 𝜖, Player II can get arbitrarily close to achieving �̄�(𝜂). So Player II can
achieve �̄�(𝜂) if Player I did not place atoms at 𝑢 and 𝑣 or get arbitrarily close if Player I
did place an atom at one of those points.

This concludes that Player II his upper bound for the probability of not losing is �̄�(𝜂) and can
also obtain this or get arbitrarily close.

Remark 5.4. While the proof provides enough evidence to believe the theorem, it is noted that
it can be tricky to believe the statements about the line 𝐿. While intuition supports the claims
about 𝐿 touching 𝐹 or not at certain points, one can consider this as a not fully complete proof.

Using Lemma 5.2, the uniqueness of the optimal strategies of the 2-Player Ranking game
can be proved.

Theorem 5.2. The optimal strategies of the 2-Player Ranking Game from Theorem 5.1 are
unique.

Proof. Let �̂� be an arbitrary optimal strategy for Player I, i.e. a distribution such that Π(�̂�, 𝐺) ≥
against any strategy 𝐺 of Player II.
First, remark that Π(�̂�, 𝐺∗) = must hold and consider the inequality in Equation 4.6

and the final inequality of that proof. If �̂� takes values larger than 2𝜇 or ℙ(𝑋 = 0) > 0, the
inequality changes into a strict inequality. In order to remain optimal, �̂� must therefore have
that �̂�(2𝜇) = 1 and �̂�(0) = ℙ(�̂� = 0) = 0.

See Figure 5.3 for the parametric plot of the already found optimal strategies for Player I
and II, respectively. Those plots will be used to deduce the uniqueness of the optimal strate-
gies.

(a) Parametric plot of ( ( ), ∗( )) (b) Parametric plot of ( ( ), ∗( ))

Figure 5.3 – The parametric plots of the optimal strategies for the 2-Player Ranking Game.

Notice that the concavification of 𝐹∗ is 𝐹∗ itself and the (concavification) function passes
through (1, 𝐹∗(1)) = (1, ). Assume that �̂�(𝑥) > 𝐹∗(𝑥) for some 𝑥 ∈ [0, 2𝜇]. Then the

concavification of �̂� will pass above the point (1, ) and Player II can thus achieve a higher
probability of winning by Lemma 5.2 against this strategy. However, as �̂� is also optimal, this
should not be possible. This contradiction leads to the observation that �̂�(𝑥) ≤ 𝐹∗(𝑥) for all
𝑥 ∈ [0, 2𝜇].

Then it only rests to introduce the result from Shaked and Shantikumar (2007) [12], i.e.
Lemma 3.3, again. Both criteria of Lemma 3.3 are satisfied for 𝑋∗ and �̂� since �̂�(𝑥) ≤ 𝐹∗(𝑥) ⇒
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ℙ(𝑋∗ > 𝑥) ≤ ℙ(�̂� > 𝑥) for all 𝑥 and the expectation criteria is met for ℎ(𝑥) = 𝑥. So that
concludes that �̂� and 𝐹∗ have equal distribution and 𝐹∗ is therefore unique. This concludes
the proof of uniqueness for the optimal strategy of Player I.

Next to prove is the uniqueness of the strategy of Player II. Let �̂� be an arbitrary optimal
strategy for Player II. Remark that Π(𝐹∗, �̂�) = must hold and consider the inequality in
Equation 4.4. If �̂� takes values larger than 2𝜇, the inequality changes into a strict inequality.
In order to remain optimal, �̂� must therefore satisfy �̂�(2𝜇) = 1.

Now consider Lemma 5.2 the other way around: Player II has the fixed strategy �̂�. If
�̂�(𝑦) > 𝐺∗(𝑦) for some 𝑦 ∈ [0, 1], then the concavification of �̂� must pass above the point
(1, 1− ), allowing Player I to play better against �̂� compared to 𝐺∗ according to Lemma 5.2.
That can not be possible, so �̂�(𝑦) ≤ 𝐺∗(𝑦) for 𝑦 ∈ [0, 1].

The atom at 0 of 𝐺∗ allows for �̂� to possibly have that �̂�(𝑦) > 𝐺∗(𝑦) for some 𝑦 ∈ [1, 𝜙(2𝜇))
while having the concavification of �̂� going through the point (1, 1 − ). Lemma 5.2 states
that there must be a line 𝐿 above or touching �̂� such that 𝐿 touches the concavification of �̂� at
(1, 1 − ). Let 𝐻 be the distribution function corresponding to the line 𝐿, see the dashed line
in Figure 5.4 for an example of 𝐻10.

Figure 5.4

The distribution 𝐻 then gives a lower bound to 𝔼[𝜓(𝑌)], since �̂�(𝑥) ≤ 𝐻(𝑥) for all 𝑥 ≥ 0. So
𝔼 [𝜓(𝑌)] ≤ 𝔼 ̂ [𝜓(𝑌)]. Denote 𝑏∗ for the unique value such that 𝑏∗ = 𝑚𝑖𝑛 ∶ 𝐻(𝜙(𝑏)) = 1.
Then the distribution 𝐻 has the following characteristics:

𝐻(𝑥) = 1 − 𝜙(𝑏∗)
𝜙(𝑏∗)𝜓(𝑏) − 𝜓(𝑏) +

𝜙(𝑥)
𝜙(𝑏∗) (1 − (1 −

𝜙(𝑏∗)
𝜙(𝑏∗)𝜓(𝑏) − 𝜓(𝑏)))

= 1 − 𝜙(𝑏∗)
𝜙(𝑏∗)𝜓(𝑏) − 𝜓(𝑏) + 𝜙(𝑥)

1
𝜙(𝑏∗)𝜓(𝑏) − 𝜓(𝑏)

𝑑𝐻(𝑥) = 1
𝜙(𝑏∗)𝜓(𝑏) − 𝜓(𝑏)𝑑𝜙(𝑥)

10This figure is partly adopted from Alpern & Howard (2017) [1]
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The expected value of 𝜓(𝑌) under the distribution 𝐻 then is the following:

𝔼 [𝜓(𝑌)] = ∫
∗

𝜓(𝑥)𝑑𝐻(𝑥) = 1
𝜙(𝑏∗)𝜓(𝑏) − 𝜙(𝑏) ∫

∗

𝜓(𝑥)𝑑𝜙(𝑥).

Differentiating this with respect to 𝜙(𝑏∗) results in:

𝜕𝔼 [𝜓(𝑌)]
𝜕𝜙(𝑏∗) =

𝜓(𝑏)𝜓(𝑏∗)(𝜙(𝑏∗) − 1) − 𝜓(𝑏) ∫
∗
𝜓(𝑥)𝑑𝜙(𝑥)

(𝜓(𝑏)(𝜙(𝑏∗) − 1))

= 𝜓(𝑏)
𝜓(𝑏∗)(𝜙(𝑏∗) − 1) − ∫

∗
𝜓(𝑥)𝑑𝜙(𝑥)

(𝜓(𝑏)(𝜙(𝑏∗) − 1))
. (5.7)

From the theorem, it is known that 𝑏 is the unique solution to the following equation:

1
𝜙(𝑏) ∫ 𝜓(𝑥)𝑑𝜙(𝑥) ≥ 1.

It has been shown that the left side of this equation is strictly increasing, so for 𝑏∗ < 𝑏 it holds
that:

1
𝜙(𝑏∗) ∫

∗

𝜓(𝑥)𝑑𝜙(𝑥) < 1.

Therefore it holds that the numerator of Equation 5.7 is negative for all 𝑏∗ < 𝑏:

𝜓(𝑏∗)(𝜙(𝑏∗) − 1) < ∫
∗

𝜓(𝑥)𝑑𝜙(𝑥)

⇒ 𝜓(𝑏∗)𝜙(𝑏∗) − 𝜓(𝑏∗) < 𝜙(𝑏∗)𝜓(𝑏∗) − ∫
∗

𝜙(𝑥)𝑑𝜓(𝑥)

⇒ ∫
∗

𝜙(𝑥)𝑑𝜓(𝑥) < 𝜓(𝑏∗).

So 𝔼 [𝜓(𝑌)] decreases as 𝑏∗ increases until 𝑏∗ = 𝑏. Let 𝑏∗ increase till 𝑏 such that 𝐻 = 𝐺∗
and 𝐻 thus has expectation 1. So for 𝑏∗ < 𝑏, the distribution 𝐻 is a lower bound for �̂� that
does not meet the expectation requirement. After all, 𝔼 [𝜓(𝑌)] decreases to 1 if 𝑏∗ increases
to 𝑏. The highest lower bound for the expectation is thus reached when 𝐻 = 𝐺∗.

So to summarize. 𝐻 serves as a lower bound for the expectation of 𝜓(𝑌) compared to
under �̂� and preserves the optimality. However, 𝜓(𝑌) under 𝐻 only meets the expectation
requirement of the theorem when 𝐻 = 𝐺∗. This means that �̂�(𝑦) ≤ 𝐺∗(𝑦) for all 𝑦 ∈ [0, 𝜙(𝑏).
Following the equivalent reasoning as before with stochastic ordering, it proves that �̂� = 𝐺∗.

This concludes the proof of uniqueness for the optimal strategies of Player I and II.

Remark 5.5. The proofs of Lemma 5.2 and Theorem 5.2 are the extension of the sketches
provided by Alpern & Howard (2017) [1]. Additional lemmas, definitions and a more extensive
display of the proof provides the proof in a more clear way.

5.2 Multiplayer Rankings
So far, only 2-player games have been discussed. Starting with the very specific Compeitive
Investor Game and extend it to the 2-Player Ranking Game with generalised moment con-
straints. Following up on the 2-Player Ranking game is to allow more players. It is assumed
that 𝑘 ≥ 2 players are equally competitive, have the same generalised moments constraint
and aim to get the highest score. The higher a player scores, the higher he will be ranked.
See Game 4 for the formal definition of the Symmetric Multiplayer Ranking Game.
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Game 4 (The SymmetricMultiplayer RankingGame). Let𝜙(𝑥) be a continuous strictly increas-
ing function on [0,∞) with 𝜙(0) = 0 and lim → 𝜙(𝑥) ≥ 𝑘. Let ℱ be the set of non-negative
distributions 𝐹 such that 𝔼[𝜙(𝑋)] ≤ 1 when 𝑋 ∼ 𝐹 ∈ ℱ. In the k-player game Γ = Γ(ℱ,… , ℱ),
each player 𝑖 chooses a distribution 𝐹 ∈ ℱ. The players take a random sample from their
distribution and the player with highest number wins.

From the discussed 2-player games where the players are equally competitive, it is known
that it is not optimal for one to place probability mass at a specific point, i.e. for one to have 1
or more atoms in his distribution. Intuitively, this will not change for a multiplayer game. When
a optimal strategy exists, it will be accessible to all the players and thus all players should have
equal probability of getting the highest score. In other words, there arises an equilibrium.

In a 2-player game, there is only 1 competitor to beat. In a 𝑘-player game, one needs
to beat 𝑘 − 1 competitors. Therefore, one probably needs to get a significant higher score
than before and compensate by playing low with a high probability. Theorem 5.3 proposes a
strategy that sets the players in an equilibrium.
Theorem 5.3. The Symmetric Multiplayer Ranking Game has an equilibrium when all players
choose the distribution 𝐹∗ ∈ ℱ on [0, 𝜙 (𝑘)] with the following distribution function:

𝐹∗(𝑥) = √𝜙(𝑥)
𝑘 .

Proof. Clearly, the distribution function 𝐹∗ is non-negative. Rewriting the distribution function
finds us the function 𝜙 expressed in terms of our chosen 𝐹∗:

𝐹∗(𝑥) = √𝜙(𝑥)
𝑘 ⇒ 𝐹∗(𝑥) = 𝜙(𝑥)

𝑘 ⇒ 𝜙(𝑥) = 𝑘𝐹∗(𝑥) .

The expectation criteria is also satisfied by substituting 𝑢 = 𝐹∗(𝑥):

𝔼 ∗[𝜙(𝑋)] = ∫
( )
𝜙(𝑥) 𝑑𝐹∗(𝑥) = ∫ 𝑘𝑢 𝑑𝑢 = [𝑢 ] = 1.

So, 𝐹∗ is an element of the strategy space. Next to show is that there exists an equilibrium.
Let the first 𝑘 − 1 players choose 𝐹∗. Then the distribution function for the maximum score is
the distribution 𝐹∗ to the power 𝑘 − 1 by independency:

ℙ(max(𝑋 ,… , 𝑋 ) ≤ 𝑥) = ℙ(𝑋 ≤ 𝑥) ⋅ ⋅ ⋅ ℙ(𝑋 ≤ 𝑥) = [𝐹∗(𝑥)] = 𝜙(𝑥)
𝑘 .

If the last player, player 𝑘, draws 𝑥 , his chance of not losing is thenmin ( ( ) , 1). In advance,
his chance of winning will therefore be:

ℙ(max(𝑋 ,… , 𝑋 ) < 𝑋 ) ≤ ℙ(max(𝑋 ,… , 𝑋 ) ≤ 𝑋 )

= 𝔼 ∗ [min(𝜙(𝑋 )𝑘 , 1)] ≤ 𝔼 ∗ [𝜙(𝑋 )𝑘 ] ≤ 1
𝑘 .

Player 𝑘 can achieve this upper bound by choosing a continuous distribution on [0, 𝜙 (𝑘)]
such that 𝔼[𝜙(𝑋 )] = 1. 𝐹∗ is such a distribution. So, there exists an equilibrium where all the
players have the same strategy.

Remark 5.6. Consider the Symmetric Multiplayer Game Ranking with 𝜙(𝑥) = 𝑥 and 𝑘 = 2.
Then this game reduces to the Competitive Investors Game. The optimal strategy is then

indeed 𝐹∗(𝑥) = √ ( ) = for 0 ≤ 𝑥 ≤ 2. This coincides with the previously found optimal
strategy for the Competitive Investor Game.
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5.2.1 Avoiding Elimination
Many competitions are designed for the players to achieve the highest score compared to the
rest. Other competitions require that one does not have the lowest score in order to continue
to next round, i.e. the player with the lowest score gets eliminated.

This changes the dynamics of the game. When one does not necessarily need to win, a
less risky approach seems the better choice. After all, you only need to beat one player instead
of 𝑘 − 1. See Game 5 for the formal definition of the game described above and Theorem 5.4
for the equilibrium strategy.

Game 5 (The Multiplayer Elimination Game). Let 𝜙(𝑥) be a continuous strictly increasing
function on [0,∞) with 𝜙(0) = 0 and lim → 𝜙(𝑥) ≥ . In the k-player game Γ = Γ(ℱ,… , ℱ),
each player 𝑖 chooses a distribution 𝐹 ∈ ℱ. The players take a random sample from their
distribution and the player with lowest score loses (or gets eliminated).

Theorem 5.4. The Multiplayer Elimination Game reaches an equilibrium when all 𝑘 players
choose the distribution 𝐹∗ ∈ ℱ on [0, 𝜙 ( )] with the following distribution function:

𝐹∗(𝑥) = 1 − √1 − 𝑘 − 1𝑘 𝜙(𝑥).

Proof. The first thing to be checked is that 𝐹∗ indeed satisfies the properties of a distribution:

𝐹∗(0) = 1 − √1 − (𝑘 − 1)𝜙(0)𝑘 = 1 − √1 = 0

𝐹∗ (𝜙 ( 𝑘
𝑘 − 1)) = 1 −

√1 −
(𝑘 − 1)𝜙 ((𝜙 ( ))

𝑘 = 1 − √0 = 1.

In order for 𝐹∗ to be an increasing function, it must hold that √1 − 𝜙(𝑥) is a decreasing

function. As 𝜙 is a strictly increasing function, it holds that 1− 𝜙(𝑥) is a strictly decreasing

function on [0, 𝜙 ( )]. Therefore, √1 − 𝜙(𝑥) is indeed a decreasing function and 𝐹∗

it thus a valid (continuous) distribution.
Rewrite the 𝐹∗ to isolate 𝜙 in terms of 𝐹∗ to then determine the expected value of 𝜙(𝑋)

when 𝑋 has distribution 𝐹∗:

𝐹∗(𝑥) = 1 − √1 − (𝑘 − 1)𝜙(𝑥)𝑘

⇒ (1 − 𝐹∗(𝑥)) = 1 − (𝑘 − 1)𝜙(𝑥)𝑘

⇒ 𝜙(𝑥) = 𝑘 (1 − (1 − 𝐹 (𝑥)) )
𝑘 − 1 = 𝑘

𝑘 − 1 −
𝑘

𝑘 − 1 (1 − 𝐹 (𝑥) ) ,
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such that:

𝔼[𝜙(𝑋)] = ∫
( )

𝜙(𝑥) 𝑑𝐺(𝑥)

= ∫
( ) 𝑘

𝑘 − 1 −
𝑘

𝑘 − 1 (1 − 𝐹 (𝑥) ) 𝑑𝐺(𝑥)

= ∫ 𝑘
𝑘 − 1 −

𝑘
𝑘 − 1 (1 − 𝑢 ) 𝑑𝑢

= 𝑘
𝑘 − 1 ∫ 1 𝑑𝑢 − 𝑘

𝑘 − 1 ∫ (1 − 𝑢) 𝑑𝑢

= 𝑘
𝑘 − 1 ⋅ 1 −

𝑘
𝑘 − 1 [−

1
𝑘(1 − 𝑢) ]

= 𝑘
𝑘 − 1 −

𝑘
𝑘 − 1 (0 − (−

1
𝑘))

= 𝑘
𝑘 − 1 −

1
𝑘 − 1

= 1.

The distribution 𝐹∗ thus satisfies the requirements of the game. Let 𝑘 − 1 players play 𝐹∗
represented by the (independent) random variables 𝑋 ,… , 𝑋 . Then the distribution of the
minimum score of the first 𝑘 − 1 players is as follows:

ℙ(min(𝑋 ,… , 𝑋 ) ≤ 𝑥) = 1 − ℙ(min(𝑋 ,… , 𝑋 ) > 𝑥)
= 1 − (ℙ(𝑋 > 𝑥) ⋅ ⋅ ⋅ ℙ(𝑋 > 𝑥))
= 1 − ℙ(𝑋 > 𝑥)
= 1 − (1 − 𝐹 (𝑥))

= 1 − ( √1 − (𝑘 − 1)𝑘 𝜙(𝑥))

= 𝑘 − 1
𝑘 𝜙(𝑥).

If Player 𝑘 plays 𝑋 with an arbitrary distribution 𝐹 ∈ ℱ, then the probability of not getting
eliminated for Player 𝑘 has the following upperbound:

ℙ(min(𝑋 ,… , 𝑋 ) < 𝑋 ) ≤ ℙ(min(𝑋 ,… , 𝑋 ) ≤ 𝑋 )

= 𝔼 [min(𝑘 − 1𝑘 𝜙(𝑋 ), 1)]

≤ 𝔼 [𝑘 − 1𝑘 𝜙(𝑋 )]

≤ 𝑘 − 1
𝑘 .

(5.8)

In order to achieve this bound, Player 𝑘must choose a continuous distribution on [0, 𝜙 ( )]
such that 𝔼[𝜙(𝑌)] = 1 under that distribution. The requirements of choosing a continuous dis-
tribution, the specific interval and the equality of the expected value can all be deduced from
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the 3 inequality signs in Equation 5.8, respectively. If not, the 3 inequalities change into strict
inequalities and this has the consequence that the other competitiors are in favor.

As 𝐹∗ is a distribution that satisfies all the necessary requirements, Player 𝑘 can play this
distribution as well and this ensures the equilibrium.

This concludes the theory that is available on multiplayer ranking games. The 2-Player
Ranking Game is completely analysed in a very general setting with known unique optimal
strategies. Already, it is clear the amount of effort it takes to proof all of this. For the ranking
game with 𝑘 > 2 players, the current perception is that the equilibrium strategies for winning
or not-losing the Symmetric Multiplayer Ranking Game is the only theory available.

5.3 Winning vs. Not-Losing
The difference and the change in the equilibrium strategies to win and not to lose for various
players becomes much clearer when one draws them next to each other. Therefore, see
Figure 5.5 for the equilibrium distribution when 2 to 5 players want to win and not lose.

(a) The equilibrium distribution when all players want
to win.

(b) The equilibrium distribution when all players do not
want to lose.

Figure 5.5 – The equilibrium distribution of the multiplayer ranking game with 2-5 players. (For
this specific figure it holds that 𝜙(𝑋) = 𝑋. Another function of 𝜙 changes the speed in how the
distribution changes.)

The change in the equilibrium distribution is clear when the number of players in the game
increase. The more players, the more leverage is used in the low scores in order for getting
a higher probability of a higher score if the players aim to beat the others. When the players
do not want to lose, the opposite holds. Then the players become more conservative when
the number of players increase. After all, there is a high probability that another player sets
a relative low score and since that is the only one you have to beat, there is no need to for
higher risk than necessary. See Figure 5.6 to see the results of such an equilibrium strategies
for a 3-player game.

5.4 Distribution of the Maximum
Consider the equilibrium strategy of the Symmetric Multiplayer Ranking Game for 𝑘 players,
i.e.:

𝐹∗(𝑥) = √𝜙(𝑥)
𝑘 for 𝑥 ∈ [0, 𝜙 (𝑘)].
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(a) Playing the equilibrium strategy to win. (b) Playing the equilibrium strategy to not lose.

Figure 5.6 – Five games of the 3-player ranking game in which the players play the equilibrium
strategy to win (a) and not to lose (b). (For this specific figure it holds that 𝜙(𝑋) = 𝑋.)

Then the distribution of the maximum score of the 𝑘 players is as follows:

ℙ(𝑋 ≤ 𝑥, … , 𝑋 ≤ 𝑥) = ℙ(𝑋 ≤ 𝑥) = 𝐹∗(𝑥) = (𝜙(𝑥)𝑘 ) .

The distribution of the maximum thus approaches (for large 𝑘) the uniform distribution over
the same score interval as the strategy. This is an important observation that will be used in
the following chapter.



6
Hedge Fund Dynamics

The setup of themultiplayer ranking games needs to be translated to the hedge fund landscape
in order to analyse the hedge funds in a ranking setting. Of course, the hedge fund landscape
is too complicated to capture in a game. However a similar approach for an optimal strategy
can be expected for hedge funds: an optimal strategy does not perform the best against any
other strategy, but does provide the highest minimum ranking against all other peers

By only looking at hedge funds that are in the same specific category, the strategy set is
assumed equal for the hedge funds and they are indeed in competition with respect to each
other. After all, the hedge funds have access to the similar bucket of assets to invest in. So
from that point of view, there is no distinction in the way the hedge funds can play versus the
players of a ranking game.

In the multiplayer ranking game, the players are limited by the utility on their strategy,
i.e. 𝔼[𝜙(𝑋)] ≤ 1. This is to prevent trivial and infinite strategies and therefore to be able
to construct optimal strategies as well. Also, the limit on the expectation actually represents
the competitive level of the the players. In practice, hedge funds do not play a strategy that
is planned around a limit on forehand. The average of the data realised from the strategy
is metric that can be used as proxy for the competitive level of a hedge fund, for example.
However, any measure for the competitive level of the hedge fund will probably show that they
are never fully equal in practice (or otherwise can be considered as a major coincidence).
For now, let’s consider this assumption to be true. So all hedge funds are considered equally
competitive. Also the assumption that all hedge funds share the same utility function over their
performance is a heavy statement and does not relate to practice.

6.1 Annual Performance of the Hedge Funds
It can then be checked how the hedge funds played the game of trying to get the highest
return. Denote 𝑟 , for the annual return in % of hedge fund 𝑖 in year 𝑗 and 𝑚 , for the annual
multiplication factor over the invested capital of hedge fund 𝑖 in year 𝑗, i.e.:

𝑚 , = 1 + 𝑟 ,

The annual return of a hedge fund is thus considered the score in the game where the hedge
funds want to beat each other in terms of performance. The random variable that represent
the score of the hedge fund is based on the risk that the hedge fund takes. See Figure 6.1 for
the distribution of the returns in those two forms: as annual returns in terms of percentages
and as multipliers over the capital invested in Figure 6.1a and 6.1b, respectively.

43
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(a) The empirical distribution of ⋅, realised by the
hedge funds for , … , .

(b) The empirical distribution of ⋅, realised by the
hedge funds for , … , .

Figure 6.1 – The empirical distribution of the realised annual performance of the hedge funds over
the period 2010-2019.

Since the discussed theorems in Chapter 5 have the restriction that only non-negative
strategies are allowed, it is only consistent to continue with the returns expressed asmultipliers
to study the hedge fund landscape from a ranking game perspective.

Remark 6.1. The Competitive Investor Game is also expressed in way such that the score
represents a multiplier over the invested capital. Recall that the setup of the game requires
that two players invest 1 unit of capital in games with an expected payoff of 1 and the payoff
can be considered the multiplication factor of that invested capital.

Figure 6.1 shows the distribution of the scores of the group of hedge funds per game,
i.e. the distribution of all the realised annual returns per year. One would expect to see that
although hedge funds score differently each year, the distribution of the score of the group
would to some extent be the same as they play the same game each year. From this point of
view, it does not seem fair to compare the score of one game to that of the other.

This is where there is difference in the hedge fund landscape versus the theoretical ranking
game. In the ranking game, the situation stays the same each game. In the case of hedge
funds, there is that the (lack of) activity in the market, the arise of a crisis or other events and
circumstances influence the performance of the hedge funds. Therefore, to be able to say
that the game does not change over the years, the performance of the hedge funds needs to
be normalized in some way or another with respect to market, to each other or the amount or
risk that can be taken.

6.2 Normalisation of the Performance
As the respective category of the hedge funds is the Long/Short U.S. Equity, it is only natural
to have a market benchmark related to U.S. stocks. The Morningstar data already states the
reported benchmark for some of the hedge funds, like the Russell 1000 Growth/Value, the S&P
1500, the S&P 500, Morningstar’s own constructed indices and others. For this research, the
S&P 500 index is chosen to represent the performance of the overall US equity market and
thus as a possible normalization method for the performance of the hedge funds.

Next to normalizing by the S&P 500 index, two other methods are proposed to adjust the
hedge fund performances over the years. These will relate to the mean and the variation of
the annual performance over the years. The normalization by the S&P 500 index reflects the
annual performance of the hedge funds with respect to that of the market. However, every
year is different and that is not always well reflected in the annual performance. In other
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words, hedge funds can benefit from (short-term) movements in the market or other specific
opportunities that are not reflected in the annual return of the market. Therefore it is proposed
to look at the mean and the variation of the performance of the hedge funds to assess the
performance relative to the group only.

6.2.1 Methods
Threemethods are introduced to normalize the performance of the hedge funds over the years.
The performance of the hedge funds, expressed asmultipliers over the invested capital, in year
𝑗 will be normalized by the normalization factors 𝑛 , 𝑛 and 𝑛 . The normalized performance
of the hedge fund 𝑖 in year 𝑗 by method 𝑐, denoted with �̂� , , is then as follows:

�̂� , = 𝑚 , ⋅ 𝑛 .

Let 𝑘 be the number of active hedge funds (number of players) for the years 𝑗 = 2010,… , 2019.
The proposed methods that take into account the performance of the S&P 500 index and the
average and deviation of the performance with respect to the hedge funds, are the following:

1. Normalisation by the S&P 500 Index
The annual performance of the hedge funds are corrected for the performance of the U.S.
stock market represented by the S&P 500 index. To quantify, the following variables are
defined:

𝑟 = the annual return (%) of the S&P 500 index in year 𝑗,
𝑚 = 1 + 𝑟

= the annual multiplication factor of the S&P 500 index in year 𝑗,

𝑚 = (∏𝑚 )
#

= the average annual multiplication factor of the S&P 500 index over all years.

Then the following holds for 𝑛 :

𝑛 = 𝑚
𝑚

.

This normalization adjusts the annual return of the hedge funds for the annual perfor-
mance of the U.S. stock market over the years.

2. Normalisation by the Mean of the Realised Returns
Due to the long/short strategy, the hedge funds have the ability to perform regardless
of the performance of the market. So normalizing the performance of the hedge funds
with the S&P 500 index may not be the most fair representation when comparing years.
Therefore, the average performance of the hedge fund group will be used as the bench-
mark for the realised performance of the respective year. The following variables are
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defined:

𝑚 = (∏𝑚 , )

= the annual average performance of the hedge funds in year 𝑗,

𝑚 = (∏𝑚 )
#

= the average performance of all hedge funds over all years.

This implies the following for the normalization factor that normalizes by the mean:

𝑛 =
𝑚
𝑚

.

This normalization adjusts the annual return of the hedge funds for the average annual
performance of the hedge fund group over the years.

3. Normalisation by the Standard Deviation of the Realised Returns The annual perfor-
mances of the hedge fund group indicates about the conditions and opportunities of the
respective years. However, the spread in the realised annual performance among the
hedge funds says something about the opportunities and the risk taken in that year. Af-
ter all, the closer the performance of the hedge funds, the less distinctive actions (could)
have been made in that year. Normalizing the returns with the deviation of the returns
serves as a proxy for the risk that is taken in a year. Use the following variables:

𝑚 ( ) = the standard deviation over all 𝑚⋅, in year 𝑗
𝑚 ( ) = the standard deviation over all 𝑚 ( ).

The third normalization factor is then defined as follows:

𝑛 =
𝑚 ( )

𝑚 ( )
.

This normalization adjusts the annual return of the hedge funds for the deviation of the
annual performances of the hedge fund group over the years.

Remark 6.2. It is chosen that the mean performance of S&P 500 index and that of the group
performance is determined by annualizing the product of all the multipliers that represent the
returns, i.e. taking the geometric mean instead of taking the arithmetic mean. In that way, a
lose of 10% in one year is not yet made up for with a profit of 10% in the next year. After all,
this is not how exponential growth (like inflation does) works. To make up for a lose of 10%,
one would need to make multiply his invested capital with a factor of . ≈ 1.11.

See Table 6.1 to see the outcome of the normalization factors for the three methods over
the years. A factor smaller than 1 represents the situation that the hedge fund performance is
overestimated and a factor bigger than 1 an underestimation of the performance with respect
to the year and the benchmark.
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𝑗 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
𝑘 12 14 18 21 22 24 29 37 40 41
𝑛 0.988 1.112 0.979 0.857 0.997 1.120 1.014 0.931 1.187 0.866
𝑛 0.943 1.072 0.985 0.868 1.011 1.090 1.024 0.964 1.118 0.953
𝑛 0.775 1.397 0.960 0.737 1.219 1.166 0.779 1.219 1.265 0.980

Table 6.1 – The number of active hedge funds and the normalization factors of the three methods
for the period 2010-2019 with respect to the market, the mean performance of the group and the
deviation in the performance of the group.

Example 6.1. The interpretation of the normalization factors is as follows. Suppose that a
hedge fund scored a return of 20% in 2013, i.e. a multiplier of 1.2. Then compared to the
normalized performance of the market in 2013, that score actually is only worth 1.2 ∗ 0.857 =
1.0284 where 1 is the average score of the market over all the years. The hedge fund is
expected to (at least) follow the benchmark. So when themarket also had a good performance,
the score of the hedge fund gets corrected for that.

Remark 6.3. Notice the increase in the number of active hedge funds over the years. The data
only consists of the hedge funds that are currently active and does not provide performances
of hedge fund strategies that are currently closed. It is seen in Section 5.3 that this change in
the number of players highly influences the equilibrium strategy.

For most of the years, the methods are consistent in stating if the hedge fund performance
is over- of underestimated. Only in 2015, 2017 and 2018 there are different assessments.
However, for the year of 2015 the difference is very small and can be neglected as the market
performed just positive, while the mean and deviation of the performance of the hedge fund
group were just lower than average. In 2016, the variation in the performance was signifi-
cantly higher with respect to the performance of the market and the group. The most likely
explanation for this was that Donald Trump won the U.S. presidency. Such an event does
not highly impact the annual performance, but does causes a lot of uncertainty under the in-
vestors. Therefore a wide spread in performance is observed in that specific year. 2017 can
be stated as the year of ten years after the start of the financial crisis. Also, it was a year with
economic growth. The U.S. economy grew with 3,3% just in one quarter (a 3-year high) and
unemployment was the lowest it has been since the year 2000 11. It seems that the hedge
funds all captured to some extent this growth and that no special circumstances arose to make
a difference. This had the result that the hedge funds on average underperformed the market
(probably by their short positions) and there was not much deviation in the performance of the
group.

See Figure 6.2 to see how the distribution of realised performance of the hedge funds
changes when normalized by the 3 methods.

The normalization methods were introduced to compare different years in a fair way. A
fair comparison should hold that the at least the average performance of the group is similar
to some extent and also the distributions should not vary too much. It is hard to quantify
when years can be considered comparable. However, it is clear that the original performance,
the performance normalized by the S&P and the performance normalized by the standard
deviation do not provide a fair comparison. Whether the performance normalized by the mean
is good enough to view as comparable over the years is debatable, but it is the best compared
to the other methods and original performance.

11Source: https://www.cfr.org/blog/ten-most-significant-world-events-2017

https://www.cfr.org/blog/ten-most-significant-world-events-2017
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(a) The empirical distribution of ̂ ⋅, realised by the
hedge funds for , … , .

(b) The empirical distribution of ̂ ⋅, realised by the
hedge funds for , … , .

(c) The empirical distribution of ̂ ⋅, realised by the
hedge funds for , … , .

Figure 6.2 – The empirical distributions of the normalized hedge fund performance realised by the
hedge funds over the period 2010-2019.

6.3 The Maximum Performance
It is hard to quantify the distribution of the (normalized) performance with respect to the ranking
game perspective. It is the distribution of themaximum of the group that can be quantified. See
Figure 6.3 on how the maximum of the normalized performance of the hedge funds behaves
over the years and in terms of empirical distribution.

The maximum normalized by the S&P and the mean demonstrate similar movements in
terms of direction and size. The maximum normalized by the standard deviation on the other
hand heavily swings between relative low and high performance. The big spread is also clearly
visible in the distribution of that maximum. Do keep in mind that the normalizations other than
by the mean actually do not a fair comparison of the years. So there is no reasoned statement
why the maximum performance normalized by the S&P and the mean show similarities.

6.3.1 Distribution of the Normalized Maximum
According to the theorem about the multiplayer ranking game, the maximum performance of
the group approaches a uniformly distribution when all the players try to get the highest score
in an optimal way. A uniform distribution of the maximum would indicate that the group of
hedge funds indeed play like they are willing to have some low scores in exchange for higher
scores in order to have all have an equal probability of getting the highest score. It is neglected
that the maximum does not entirely reach the uniformity. See Figure 6.4 for the best fit of the
uniform distribution to the data for all 3 methods.
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(a) The maximum of the normalized hedge fund perfor-
mance over the period 2010-2019.

(b) The distribution of the maximum of the normalized
hedge fund performance.

Figure 6.3 – The maximum of the normalized hedge fund performance expressed over the years
and in the form of an empirical distribution.

Figure 6.4 – The best linear fit for the maximum of the normalized hedge fund performance over
the period 2010-2019.

At first sight, the maxima do not differ not that much from their respective best-fit uniform
distribution. This is a first indication that the hedge funds may manage strategies that result in
an equilibrium with respect to setting the highest rank in terms of performance, just as in the
multiplayer ranking game. Such an equilibrium would imply that the every fund has an equal
opportunity of winning. Looking back at the data shows that there are 9 different winners over
a period of 10 years. Only 1 hedge fund managed to get the best performance compared to its
peers twice. This further strengthens the suspicion that the hedge fund landscape is to some
extent similar to that of the multiplayer ranking game.

6.3.2 Test Statistic
To further asses if all the maximum follow the best-fit uniform distribution, the Kolmogorov-
Smirnov (K-S) distance is tested. The K-S distance measures the greatest distance from the
empirical distribution to the distribution it is tested against. Again, an absolute number from the
K-S does not yet provide enough information. Therefore, another 1000 tests are performed in
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the following way for all 3 methods:

1. Draw 𝑉 ,… , 𝑉 from the best-fit uniform distribution on the maximum of the normalized
hedge fund performance;

2. Determine the uniform distribution that best fits 𝑉 ,… , 𝑉 and denote this distribution with
�̂�;

3. Calculate the K-S distance of 𝑉 ,… , 𝑉 and �̂�.

See Figure 6.5 for the result of this test compared to the K-S distance of the data.

(a) The distribution of simulated K-S distances com-
pared to the K-S distance of themaximum performance
normalized by the S&P.

(b) The distribution of simulated K-S distances com-
pared to the K-S distance of themaximum performance
normalized by the mean.

(c) The distribution of simulated K-S distances com-
pared to the K-S distance of themaximum performance
normalized by the deviation.

Figure 6.5 – Three times the distribution of 1000 simulated K-S distances with indicated 95%
confidence intervals compared to the K-S distance of the maximum of the normalized performance
by the three methods, respectively .

From this assessment, it can not be rejected that all the maxima are uniformly distributed.
That the maximum performance normalized by the mean follows a uniform distribution indi-
cates a similarity between the hedge funds and the multiplayer ranking game. However, the
other 2 distributions of the maximum show similar results whilst the they are not in relation to
the game. So the evidence that the hedge fund performance normalized by the mean can be
modelled by a ranking is not that strong.

Also, the theory suggest that in order to play optimal, players must have probability density
all the way down to the score of 0. For hedge funds, this is definitely not the case and the data
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confirms this. Each fund can have different standards, but it is most certain that the hedge
funds can not afford loses of multiples of 10%, let alone multiple loses of multiples of 10%.

This is where the utility function of 𝜙 in the game can provide an additional parameter in
translating the hedge fund performance to the interval of the game. To do that, one needs to
determine the 0-point score for hedge funds. Looking at the performance normalized by the
mean, the 0-point for the hedge fund performance is advised to be taken around 0.85-0.9. This
has the consequence that the distribution of the maximum does not cover the same interval
the as the whole performance. This also is not consistent with the game.

Another complication that in the translation is the growing number of hedge funds. This
would suggest that each year should actually be considered a different game. A counterar-
gument against this contrast is that not all hedge funds join the competition. It is much likely
that not all hedge fund feel that they are in the competition (to win). Perhaps only a group of
10 hedge fund feel the pressure of beating their peers, which makes the issue of the growing
number of hedge funds disappear. Further studies could try to tackle the problem of the utility
function and the changing number of players.

6.4 Mutual Funds for U.S. Equity
In order to try to analyse the competition among the hedge funds in another way, an equal
study is performed on mutual funds that also focus on U.S. equity. As the quantification of
the competitiveness of the hedge funds is hard on an absolute basis, a study on mutual funds
can give a relative comparison. The chosen set of mutual funds are the distinct funds (distinct
in terms of the asset class) that invest in U.S. Large Cap Blend Equity. It is assumed that
these are the funds that invest in the largest companies of the U.S. while combining value and
growth stocks, i.e. the mutual funds that best represent the S&P 500 benchmark. See Figure
A.2 and Table A.1 in Appendix A for a look on the display of the variables of the data of the
mutual funds. The empirical distribution of the performance of the mutual funds in terms of
multipliers over the invested capital can be found in Figure 6.6.

Figure 6.6 – The empirical distribution of 𝑟⋅, realised by the mutual funds for 𝑗 = 2010,… , 2019.

Just as for the hedge funds, the empirical distributions of the performance of the mutual
funds must be normalized in order to compare them over the years. The construction for
determining the normalization factors is the exactly the same as the one used for the hedge
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funds. See Table 6.2 for the normalization factors with respect to the mutual funds. (Notice
that the factors related to the S&P stay the same as this is not influenced by the funds.)

𝑗 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
𝑘 278 289 299 309 316 329 341 357 371 385
𝑛 0.988 1.112 0.979 0.857 0.997 1.120 1.014 0.931 1.187 0.866
𝑛 1.119 0.974 0.848 1.006 1.128 1.013 0.930 1.199 0.869 0.970
𝑛 0.983 1.274 0.910 1.231 1.191 1.059 1.190 1.050 0.869 0.641

Table 6.2 – The normalization factors of the three methods for the period 2010-2019 for the mu-
tual funds with respect to market, the mean performance of the group and the deviation in the
performance of the group.

Where the normalization methods applied to the hedge funds were consistent for every
year, except for two points, they are not for mutual funds. There are more years where they
are not consistent than that they are. Only 2012, 2015 and 2019 agree on the under- or
overestimation of the performance of the mutual funds across the 3 methods.

(a) The empirical distribution of ̂ ⋅, realised by the mu-
tual funds for , … , .

(b) The empirical distribution of ̂ ⋅, realised by the mu-
tual funds for , … , .

(c) The empirical distribution of ̂ ⋅, realised by the mu-
tual funds for , … , .

Figure 6.7 – The empirical distributions of the normalized hedge fund performance realised by the
mutual funds over the period 2010-2019.

Also, the number of active mutual funds grow over time and there are significant more
active mutual funds that there are hedge funds. There is a bigger growth in absolute terms
compared to that of the hedge funds over the years, but this does not hold for the relative
growth. From the theory on being in an equilibrium in a ranking game, it is known that the
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number of active players highly influence the amount of risk that needs to be taken in order to
have a shot on winning.

See Figure 6.7 for the empirical distributions of the performance of the mutual funds nor-
malized by the 3 methods, respectively.

The results of the normalizations on the performance of the mutual funds are very similar
to those of the hedge funds. The normalizations by the S&P and the standard deviation widely
spread the years, whilst it had the intention to have similar distributions as output. The per-
formance normalized by the mean on the other hand show that the distribution of the group
is very similar ever year. Only the year of 2019 stands out from the figure as it a much wider
spread than the other years (which can also be seen in Table 6.2). So just as for the hedge
funds, only the performance normalized by the mean is considered a fair comparison of the
years.

See Figure 6.8 for the summary of how the maximum of the performance of the mutual
funds behave over the years in time, in distribution and complemented with the best-linear fit.

(a) The maximum of the normalized mutual fund per-
formance over the period 2010-2019.

(b) The distribution of the maximum of the normalized
mutual fund performance over the period 2010-2019.

(c) The best linear fit for the maximum of the normal-
ized hedge fund performance over the period 2010-
2019.

Figure 6.8 – The maximum of the normalized mutual fund performance expressed over the years
in time, in the form om an empirical distribution and added with a best-fit uniform distribution.

In the case of the hedge funds, the maximum normalized by the S&P and the mean be-
haved somewhat similar in terms of direction and size. For the mutual funds this is not the
case. The maximum normalized by the mean even seems pretty consistent with an exception
for the year 2019. This is also clearly visible in the best-linear fit. The line does not provide a
good representation of the data because of that last year.
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The maximum normalized by the standard deviation again heavily swings over time, just
as was the case for the hedge funds. For that matter there is not much difference in terms of
behavior. However, it is noticeable that the maximum normalized by the S&P shows similar
characteristics as the maximum normalized by the standard deviation.

To follow-up on the best-linear fit to the data, the same K-S test statistic is performed on
the maxima of the mutual funds. See Figure 6.9 for the results.

(a) The test statistic on the maximum performance of
the mutual funds normalized by the S&P.

(b) The test statistic on the maximum performance of
the mutual funds normalized by the mean.

(c) The test statistic on the maximum performance of
the mutual funds normalized by the standard deviation.

Figure 6.9 – Three times the distribution of 1000 simulated K-S distances with indicated 95%
confidence intervals compared to the K-S distance of the maximum of the normalized performance
of the mutual funds by the three methods, respectively

Most notable among the 3 figures is the rejection of the hypothesis that the maximum that is
normalized by the mean originates from the best-fit uniform distribution as the K-S distance is
outside the 95% confidence interval. However, earlier observing Figure 6.8c showed that the
high K-S distance is caused by a very skewed best-fit. Treating this specific fund as an outlier
in 2019, only with respect to the normalization by mean, massively changes the perspective
on how this maximum behaves and the best-fit uniform distribution. See Figure 6.10 for the
adjustments.

The removal of the outlier causes the best-fit uniform distribution to actually represent the
data this time. Also the test statistic shows similar results compared to the the rest.

6.5 Comparison of the Maximum
So, one debatable outlier aside, there is not really a noticeable difference between the maxi-
mum performance of the hedge funds and mutual funds in terms of a uniform fit. See Figure
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(a) The best linear fit for the maximum of the normal-
ized hedge fund performance over the period 2010-
2019, added with the best-fit for the maximum normal-
ized by the mean with the outlier deleted.

(b) The distribution of 1000 simulated K-S distances
compared to the K-S distance with and indicated 95%
confidence interval of the maximum performance of the
mutual funds normalized by the mean of the group per-
formance with outlier deleted.

Figure 6.10 – The best linear fit and K-S distance test statistic of the maximum performance of
the mutual fund normalized by the mean performance of the group with the outlier deleted

6.11 to view pair by pair how the maxima, normalized by the respective methods, differ from
hedge funds compared to the mutual funds.

A quick look at Figure 6.11c shows that the distribution of the maximum that is corrected
by the standard deviation of the group is very similar in terms of spread, the minimum and
uniform fit. As possible explanation is by the fact that both groups operate in a very similar to
equal asset class.

Sort of the same holds for the maxima that is normalized by the mean of their respective
group (when the possible outlier is neglected). There is a similar spread, equal maximum and
uniform fit for the hedge funds and the mutual funds with respect to the distribution. However,
there are much more players in the mutual fund game then there are in the hedge fund game.
If the mutual funds would be as competitive as the hedge funds, is should be expected that
the maximum of the mutual funds would be bigger than that of the hedge funds.

The most noticeable difference among the 2 groups is the very different distribution of
the maximum with respect to the market. The first observation is that the minimum and the
maximum of the 2 best-fit uniform distributions are very different. Also, one can observe a split
in the maximum of the mutual funds. Whilst the maximum of the hedge funds is evenly spread,
the maximum of the mutual funds is centered around 1.1 or 1.4 plus a very high maximum (that
originates from the year 2018, not 2019 as were the case before). So whilst the K-S distance
does not remark this, it is definitely notable with respect to the uniformness of the distribution.

Finally, remark that the performance normalized by themean is the only fair way to compare
the performance over the years. All the figures related to the other methods are essentially
only for comparison.
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(a) The best linear fit of the maximum of the hedge
funds and the mutual funds when normalized for the
market.

(b) The best linear fit of the maximum of the hedge
funds, the mutual funds and the mutual funds with the
outlier deleted when normalized for the mean perfor-
mance of the respective group.

(c) The best linear fit of the maximum of the hedge
funds and the mutual funds when normalized for the
deviation of the performance of the respective group.

Figure 6.11 – The best linear fit of the maximum of the hedge fund and the mutual fund when
normalized by the 3 methods.
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Conclusion

7.1 Summary
The world of hedge funds is a complex domain. Hedge funds are less regulated than mutual
funds and their creative strategies can lead to historical events. Manager selection is key in
asset management and strategies need to perform to attract clients as demonstrated in the
past by the impact of the independent research institute Morningstar. It is thus of the benefit
of the hedge fund to have a high ranking compared to its peers.

Ranking games were the primary research topic of this thesis. The scores that players
realise in a game determines their ranking: a higher score than a competitor means a better
ranking. Zero-sum games are the foundation of the simplest ranking game and introduce the
value of a game. By definition, an optimal strategy in a game does not perform the best against
every strategy, but does provide the highest minimum expected payoff against any strategy.

The strategy of a player is represented by the distribution of the player’s score under the
requirements of the game. It is not optimal from the perspective of a ranking game to have an
atom in the distribution of your score if all players are equally competitive. One can outplay
such strategies by placing probability mass at the same point plus 𝜖. The proof of uniqueness
is sketched by Bell & Cover (1980) [3] and is complemented with additional clarification in this
thesis. When one is being less competitive in the 2-player game, it is uniquely optimal to copy
the strategy of the opponent with maximum probability and otherwise quit.

When the payoff function in the 2-Player Ranking Game gets adjusted by the means of a
utility function, the optimal strategies adjust with it. Both players will play their optimal strate-
gies on the same interval and use the utility function of the other player to achieve the highest
minimum expected payoff. The proof of uniqueness is sketched by Alpern & Howard (2017)
[1] and is given a new look in this thesis.

Where the 2-player game is about beating 1 opponent, the 𝑘-player multiplayer game is
about beating 𝑘−1 competitors. The Symmetric Multiplayer Ranking Game has an equilibrium
such that all players have equal probability of winning. All players then leverage low scores
with a small probability of setting a high score and getting the win. The more players, the
higher the probability on a low score in order for a higher leverage for higher scores. Such a
setting implies that the maximum of the score approaches the uniform distribution across the
playing interval.

The hedge fund landscape in terms of performance is analysedwith respect to the Symmet-
ric Multiplayer Ranking Game and the analysis is focused on the distribution of the maximum.
The normalization by the mean is needed to have comparable years in terms of distribution of
the performance. The number of active hedge funds in the data heavily increases over time
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which results in less-comparable games. Also, the assumptions on the winner-takes-all payoff
function and equal competitiveness and utility highly impact the translation. Still, the maximum
normalized by the mean provides some minor evidence that the hedge funds observe compe-
tition. Also, there are 9 different winners over a period of 10 years, which coincides with the
equilibrium of the ranking game.

A study on benchmark-relatedmutual funds is used to put the results of the hedge funds in a
relative perspective. The analysis show similar results, but not as suitable to the ranking game
as hedge funds. The performance of mutual funds show less winners whilst there are more
players compared to the hedge funds and also a possible outlier had to be deleted in order to
believe that the maximum normalized by the mean originates from a uniform distribution.

7.2 Limitations
This thesis aimed to translate a multiplayer ranking game to the world of hedge funds. While
the initial idea is plausible, it is clear that the theory of ranking games is limited and that this
reflects the accuracy of the translation. The following points are identified as critical points
that influence the reliability of this research:

• The analysis of the hedge funds is based on the data that is retrieved from Morningstar.
While the available data can be considered reliable, there is no view on the completeness
of the data. Also, only the hedge fund that actively managed a strategy in 2019 are
taken into account. Surely there were more hedge fund in the period of 2010 - 2019 that
increased the competition, but they are not in the data.

• The translation between the Symmetric Multiplayer Ranking Game and the hedge funds
landscape is to simplistic. First, the equilibrium strategies of Symmetric Multiplayer
Ranking Game are based on a winner-takes-all payoff. A more suitable distribution
would be that the top 10% split the winnings or some sort of winner-takes-most approach,
for example. Also, perhaps an even more important assumption, is that the players do
not lose anything when they have a low score. After all, the distribution of the scores in
the games are based on risk, not effort. Where the game has a score of zero without
consequences, this certainly does not hold for hedge funds. There is no conventional
minimum for the return of a hedge funds and if there is, this would certainly have a neg-
ative impact. Also the assumptions that all hedge funds have the same utility function
and competitive level does not contribute to modelling of the hedge fund performance
based on ranking. It has been shown that it takes a great amount of work to only anal-
yse the 2-Player Ranking Game. For the multiplayer ranking game, the mathematical
possibilities are currently (too) limited.

It is proposed that future research focuses on the limitations mentioned above.
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Data Overview

Figure A.1 – The data of the hedge funds from the Premium Fund Screener of Morningstar.com
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Data Variables
% Assets in Top 10 Holdings 3-Year Return +/- Category Classic Growth (%) Non-US Stock (%)
10-Year % Rank 3-year Tax Cost Ratio % Closed to All Investments Not Classified (%)
10-Year Return (%) 4-Week % Rank Closed to New Investors Not Rated ( % )
10-Year Return +/- Category 4-Week Return (%) Current Price (NAV $) Number of Holdings in Portfolio
10-year Tax Cost Ratio % 4-Week Return +/- Category Cyclical (%) Other (%)
12b-1 Fee (%) 5-Year % Rank Date of Most Recent Portfolio Other Regions (%)
15-Year % Rank 5-Year Return (%) Developed Markets (%) P/B Ratio
15-Year Return (%) 5-Year Return +/- Category Distinct Asset Class P/C Ratio
15-Year Return +/- Category 5-year Tax Cost Ratio % Distinct Portfolio Only P/E Ratio
15-year Tax Cost Ratio % A (%) Distressed (%) P/S Ratio
1-Year % Rank AA (%) DTC Last Year (%) Pacific (%)
1-Year Return (%) AAA (%) DTC Year Before Last (%) Potential Cap Gains Exp ( % )
1-Year Return +/- Category AfterTax Return (no sale) 10-Year (%) Emerging Markets (%) Qualified Access
2010 % Rank AfterTax Return (no sale) 1-Year (%) Enhanced Index Funds Redemption Fee %)
2010 Annual Return AfterTax Return (no sale) 5-Year (%) Europe (%) ROA Last Year (%)
2010 Return +/- Category AfterTax Return (no sale) Since Inception (%) Expense Ratio (%) ROA Year Before Last (%)
2011 % Rank AfterTax Return (with sale) 10-Year (%) Expense Ratio (%)2 ROE Last Year (%)
2011 Annual Return AfterTax Return (with sale) 15-Year (%) Front-end Load (%) ROE Year Before Last (%)
2011 Return +/- Category AfterTax Return (with sale) 1-Month (%) Fund Familty Score R-Squared
2012 % Rank AfterTax Return (with sale) 1-Year (%) Fund Family SEC Yield (%)
2012 Annual Return AfterTax Return (with sale) 3-Month (%) Fund Inception Date Sharpe Ratio
2012 Return +/- Category AfterTax Return (with sale) 3-Year (%) Fund of Funds Slow Growth (%)
2013 % Rank AfterTax Return (with sale) 5-Year (%) Hard Assets (%) Socially Conscious Funds
2013 Annual Return AfterTax Return (with sale) YTD (%) High Yield (%) Speculative Growth (%)
2013 Return +/- Category Aggressive Growth (%) Index Funds Standard Deviation
2014 % Rank AIP Minimal Initial ($) Institutional Funds Stocks in Large-cap Blend (%)
2014 Annual Return Alpha Japan (%) Stocks in Large-cap Growth (%)
2014 Return +/- Category Average Credit Quality Latin America (%) Stocks in Large-cap Value (%)
2015 % Rank Average Duration (Years) Life Cycle Funds Stocks in Mid-cap Blend (%)
2015 Annual Return Average Manager Tenure (Years) Load-Adj Return 10-Year (%) Stocks in Mid-cap Growth (%)
2015 Return +/- Category Average Market Cap ($Mil) Load-Adj Return 3-Year (%) Stocks in Mid-cap Value (%)
2016 % Rank Average Maturity Load-Adj Return 5-Year (%) Stocks in Small-cap Blend (%)
2016 Annual Return Average Moat Rating Manager Name Stocks in Small-cap Growth (%)
2016 Return +/- Category Average Weighted Coupon Manager Name2 Stocks in Small-cap Value (%)
2017 % Rank Average Weighted Price Mean Style Box
2017 Annual Return B ( % ) Minimum Initial Purchase ($) Style Box2
2017 Return +/- Category Back-end Load (%) Minimum Initial Purchase IRA ($) Symbol
2018 % Rank BB ( % ) Mornigstar Rating 10 year Total Assets ($ mil)
2018 Annual Return BBB ( % ) Mornigstar Rating 5 year Turnover ( % )
2018 Return +/- Category Bear Market % Rank Morningstar Analyst Rating US & Canada (%)
2019 % Rank Below B ( % ) Morningstar Analyst Report US Stock (%)
2019 Annual Return Best Fit Alpha Morningstar Rating Yield (%)
2019 Return +/- Category Best Fit Beta Morningstar Rating 3 Year YTD % Rank
3-Month % Rank Best Fit Index Morningstar Risk YTD Return (%)
3-Month Return (%) Best Fit R-Squared Morningstar Sustainability Rating YTD Return +/- Category
3-Month Return +/- Category Beta Net Margin Last Year (%)
3-Year % Rank Bond (%) Net Margin Year Before Last (%)
3-Year Return (%) Cash (%) No-Load Funds

Table A.1 – All the variables that are available in the Premium Fund Screener of Morningstar.
com

Morningstar.com
Morningstar.com
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Figure A.2 – The data of the mutual funds from the Premium Fund Screener of Morningstar.
com

Morningstar.com
Morningstar.com
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