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Summary
Recent studies have shown that flood risk contributes to a major part of the total risk caused by natural hazards
in Western Europe. Especially in the United Kingdom, flood risk has been identified as a substantial threat,
which is likely to continue to grow due to (coastal) urbanisation, sea level rise and climate change. A separate
study has shown that common analysis practice may underestimate flood risk due to the exclusion of compound
flood events. These are flood events with multiple flood causes, such as a combined coastal and pluvial flood
event.

Floods are often caused by a complex system of multiple dependent flood driving mechanisms, which vary
and interact as time progresses. Various fundamentally different methodologies have been developed to estimate
the susceptibility of an area to floods. There is no singular best methodology which can be applied to every
problem. Due to the complex nature of flood events, it is vital to understand these methodologies and their
characteristics to represent the susceptibility to flooding correctly. Misrepresentation of flood susceptibility can
lead to inefficient decision making, or worse, insufficient flood safety.

The goal of this research is to compare several flood susceptibility estimation methodologies (including
coastal, pluvial, and compound flooding), to observe the results and clarify notable differences in outcomes.
A case study is conducted on the coastal town of Eastbourne, which has various common, but non-trivial
characteristics. The flood susceptibility of Eastbourne is estimated using various estimation techniques, such
as statistical analysis and numerical modelling. Not only did this give insight into the flood susceptibility of
Eastbourne, but it also illustrated the capabilities of the selected methodologies.

Eastbourne has a history of coastal and pluvial/fluvial flooding. In order to include the physical mechanisms
of these flood types, it was decided to use relatively computationally expensive flood susceptibility estimation
methodologies. Hence, use was made of sensibly chosen storm scenarios, based on extreme value analysis.

The statistical analysis started with a general exploratory data analysis in order to find notable dependence
structures between variables. Afterwards, two variants of extreme value analysis on reanalysed historical data
were used to create "smart" scenarios. First of all, the peak over threshold approach (POT) was used to create
scenarios in which a singular flood type was dominating. Secondly, the conditional approach was applied to
create compound storm scenarios. In total, 8 different scenarios were created. These scenarios gave the input
conditions for the models.

At the coastal boundary, a spectral action balance resolving wave model (SWAN) was used to estimate close
shore conditions based on offshore scenario input. These nearshore conditions where then used to estimate over-
topping rates into the inundation domain via three different overtopping methodologies. First of all, a empirical
equation (the "new" overtopping formula of the EuroTop manual) has been applied. Secondly, a Gaussian
process emulator (Bayonet GPE), an approach similar to a neural network, has been applied. And lastly, use
was made of a numerical hydrodynamic model (SWASH) to simulate wave transformation and overtopping. This
last approach is especially interesting since numerical models have the ability to improve upon spectral action
balance resolving wave models. Numerical models can implicitly account for infra gravity waves, a physical
mechanism that is known to impact overtopping rates, something that spectral action balance resolving models
struggle with.

The numerical hydrodynamic model HEC-RAS, is used for the simulation of inundation caused by the storm
scenarios. All 8 scenarios are calculated twice, in order to compare simulations made with two sets of governing
equations: The diffusive wave approximation of the shallow water equations (DSW) and the full shallow water
equations (SWE), also known as the Saint Venant equations. The DSW approach has the advantage of being
relatively computationally efficient, whilst SWE approach has the benefit of including a more accurate represen-
tation of physics. Since the DSW approach is more computationally efficient, it allows for solving on a higher
spatial resolution. The model was applied to the part of Eastbourne, which is deemed to have the highest
flood risk. It was then fed with overtopping discharges at the coastal flood defences and used precipitation
events as defined by the respective scenarios. After the simulation, flood maps have been generated to compare
the inundation patterns. Inundation curves have been made as well, for a more objective and apprehensible
comparison of the severity of the flood events.

The overtopping results showed that all three approaches agreed reasonably well, and were able to estimate
plausible overtopping rates. There were no overtopping measurements for validation purposes, but the over-
topping magnitude does agree with the coastal flood history of Eastbourne. The numerical method is more
advanced than the empirical formula and the GPE. However, the results also showed a large sensitivity with
regards to the (vertical) discretisation. Furthermore, the numerical approach, as applied in this research, did
require explicit inclusion of refraction and fitting of breaking behaviour based on computationally expensive
simulations, in order to give reasonable estimations. The numerical approach is promising and has the potential
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to become more accurate than the other methods considered. However, in its current state the method does
seem as uncertain as the other considered approaches, whilst being more complex to implement.

Lastly, regarding the comparison of governing equations for the estimation of inundation, it was found that
the low spatial resolution SWE approach systematically underestimated inundation severity with regards to the
high spatial resolution DSW approach. In addition to this, it was found that the times between the storm peaks
and the inundation peaks was systematically lower for the SWE simulations than for the DSW simulations.
Both these phenomena can be explained as a consequence of using a different spatial discretisation. When
using the same spatial discretisation these effects disappear and the inundation curves agree well. There are,
however, still some smaller local differences between simulations visible on the inundation maps. In the case of
Eastbourne, modelled as described in this report, it is thus more important to accurately include topological
features than to accurately represent the flow physics. This could, however, be different when considering higher
spatial resolutions.
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Definition of key terms

Term Description
Compound
flooding

A flood resulting from two or more physical flood driving mechanisms. Recently more
attention is given to the concept of compound flooding due to the realisation that strong
location varying dependencies between flood driving mechanisms can exist. This report
researches for example the dependency between an extreme sea state and precipitation,
which are flood driving mechanisms regarding coastal and pluvial flooding.

Flood driving
mechanism

A flood driving mechanisms is a physical mechanisms that can lead to or affect the
severity of a flood. For example intense precipitation can be a flood driving mechanisms
resulting in pluvial flooding, or a large storm surge can be a flood driving mechanism
resulting into coastal flooding.

Hydrodynamic
model

A hydrodynamic model numerically describes the flow of water over space and time by
resolving simplified versions of the incompressible Navier-Stokes equations. Examples of
such models applied in this research are SWASH (The SWASH team, 2019) and HEC-RAS
(US Army Corps of Engineers, 2021)

Iribarren number Denoted by ξ, also known as the surf similarity parameter and breaker parameter, is
a dimensionless parameter expressing the seabed steepness relative to the steepness of
the breaking waves.

Precipitation
intensity

Denoted by Ir, is the discharge of precipitation per unit with of area, often expressed
in mm/h. An average value for the precipitation intensity per unit of time can be
calculated by measuring the cumulative rainfall per unit of area over than unit of time.
One can for instance measure the amount of rainfall fallen in an hour to calculate the
hourly rainfall intensity.

Primary variable "Primary variable" refers in this research to a variable used to define a storm scenario.
In this research all scenarios are based on combinations of Hm0 and Ir. These are the
primary variables of this research.

Return period Denoted by RP , also known as a recurrence interval, is the expected/average time
between events.

Secondary
variables

Secondary variables refer to variables which are not directly used for scenario defini-
tion. Variables such as the wave period and the wind direction are necessary for the
simulations, but they are not required for scenario definition. Instead these variables
are chosen based on their dependence structure with the primary variables.

Significant wave
height

Denoted by Hs or if using the spectral definition Hm0. Historically the significant wave
height is defined as the average height of the highest one-third of waves in a sea state
(H1/3). However, these days the formal spectral definition using the M0 moment is used
more often. The significant wave height is a parameter directly linked to the potential
energy of a sea state.

Spectral action
balance resolving
models

A numerical wave model solving the spectral action balance is fundamentally different
from a hydrodynamic wave model. The spectral action balance equation describes the
motion of wave energy over space and time and does not resolve individual waves. An
example of a spectral action balance resolving model used in this research is SWAN (The
SWAN team, 2020b).

Spectral analysis
of ocean waves

These days, spectral analyses is often used instead of wave by wave analyses in order
to describe sea states. The concept is the following: A time series of water elevation
is Fourier transformed into a sum of sine waves. The amplitudes and frequencies of
those sines can than be related to the potential energy of the waves in their respective
frequency bands. This is most commonly expressed via a wave height variance spectrum
(wave spectrum). Integration of this spectrum times the frequency to the power of n
gives the n’th moment. Moments are often used for spectral definition of parameters
such as the significant wave height (Hm0) or the mean wave period (Tm−1,0). Further
information regarding the representation of waves in oceanic waters can be found in
Holthuijsen (2007).
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1 Introduction

1.1 Problem definition
A recent study by the European Commission Joint Research Centre (JRC) on multihazard assessment in Europe
concluded that Western Europe is especially susceptible to coastal and river floods compared to other natural
hazards (Forzieri et al., 2016). Similarly, the (United Kingdom) Committee on Climate Change (CoCC) con-
ducted research on future challenges regarding coastal protection (Russell, 2018). They concluded that coastal
areas are already facing relatively large threats from coastal flooding, which will most likely increase even further
in the future. This increase in risk is mainly driven by climate change and the growth in coastal urbanisation.

Accurate estimation of an areas susceptibility to different types of floods, is an essential tool for effective
risk management. Misrepresentation of flood susceptibility could result in the derivation of skewed conclusions,
which in turn can lead to ineffective or even insufficient flood risk reduction measures. Three specific difficulties
within the estimation of flood susceptibility are outlined here.

1. A phenomenon that has gained much attention in research recently is compound flooding. Compound
floods are flood events with multiple co-occurring flood causes. An example of this is a flood event caused
by both a high river discharge and a high storm surge. Various studies have shown that compound flooding
can have a significant impact on the flood susceptibility (Couasnon et al., 2020) (Hendry et al., 2019)
(Paprotny et al., 2018). These studies state that not accounting for compound storms in susceptibility
analysis often leads to misrepresentation and underestimation of flood risk. Another recent study (Eilander
et al., 2020) found that around 19.7% of the coastline of the world is "compound-dominated", meaning
that compound flooding is the governing flood type. Hence, not including compound flooding in risk
analyses may in many cases lead to underestimation of the flood susceptibility. Compound flooding is,
however, not accounted for by many traditional methodologies. One reason for this exclusion is that
flood drivers were often assumed to be independent in the past. Another reason is because capturing the
complex physical interactions of different flood types requires computationally intensive hydrodynamic
modelling techniques using relatively high spatial resolutions (Paprotny et al., 2018).

2. Overtopping is the concept of waves flowing or splashing over a flood defence structure. Overtopping
can lead to severe inundation of the hinterland and can thus induce flooding. There are various funda-
mentally different methodologies for the estimation of overtopping discharges. Methodologies usually use
a parametric representation of the nearby sea state and the geometry of the flood defence as input for
their estimations. Overtopping is a known source of uncertainty in flood susceptibility analyses. Most
methodologies admit to this, by stating a relatively high uncertainty in their original publications (van der
Meer et al., 2018) (Pullen et al., 2018) (Suzuki et al., 2017). Overtopping discharge estimations are usually
within a factor of 3 of the actual overtopping discharge, meaning this value may be up to 3 times higher or
lower in reality. For the sake of simplicity it is often preferred to use a singular estimation methodology.
However, the effect of choosing one method over the others on the results is often unclear for the person
performing the susceptibility assessment.

3. A common methodology of representing inundation is by using a numerical hydrodynamic model. Such
models are regarded as accurate tools, since they are based on the motion of viscous fluids describing
Navier-Stokes equations, in contrast to, for example "bathtub method"-type models, which are known to
overestimate inundation (Gallien et al., 2014). Integration of the full Navier-Stokes equations in a general
manner is, however, one of the open Clay Mathematics Institute millennium problems∗. For the foreseeable
future, hydrodynamic modelling will need to make use of simplified versions of these equations. There
are various versions with different gradations of simplification and accuracy available for hydrodynamic
modelling. Generally, in hydrodynamic modelling, one has to make a trade off between accuracy and
computational efficiency. There are, however, no set rules regarding the required accuracy of governing
equations when modelling flood susceptibility. Specifically inundation modelling of urban areas requires
relatively high spatial resolutions (Asselman, 2009), which is why using very accurate governing equations
may not always be computationally feasible. Conversely, using too much simplification could lead to
misrepresentation of the flood susceptibility.

Flood events in coastal urban areas are in many instances caused by a complex system of multiple dependent
flood driving mechanisms, which vary and interact as time progresses. The term "flood driving mechanisms"
refers to the physical mechanisms that affect the severity or probability of a flood event. Many different

∗All 7 Clay Mathematics Institute millennium problems can be found at https://www.claymath.org/millennium-problems
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methodologies and combinations of methodologies have been developed to estimate the flood susceptibility of
coastal areas. However, no perfect flood susceptibility estimation method exists and some simplification will
always be required. It is often unclear what effect choosing one methodology over the other will have on the
end result. Even after doing the assessment it is often unclear whether the method accurately represents reality.
Validation of flood estimation methodologies is difficult to execute since data regarding the severity of floods
is hard to come by. Reliable inundation data is scarce because extreme meteorological events such as coastal
storms or intense rainfall usually coincide with heavy clouds, which obscure the inundation pattern for satellites.

It is vital to understand the differences between various flood susceptibility estimation methodologies to choose
the one that suits the problem at hand best. Furthermore, even after selecting the most suitable methodology,
it is still vital to understand which processes are well captured by the used method and which are not. Knowing
and understanding when a method is conservative and when not, is essential to correctly interpret the results.

1.2 Research goal
This report aims to compare several flood susceptibility estimation methodologies to each other within an
coastal urban context, to observe the results and clarify possible differences in outcome. Three specific method-
ology concepts are considered. Firstly, the necessity of including compound flooding in flood susceptibility
assessment is researched. Secondly, the differences between three different types of overtopping discharge es-
timation methodologies are investigated. Finally, the numerical representation of inundation estimations via
hydrodynamic modelling is researched. This research goal is achieved by addressing the following questions:

Research question:

How do different modelling techniques influence the overall flood susceptibility estimation?

Sub-questions:

1. How to generate representative storm scenarios?

2. How do different overtopping estimation methodologies compare to each other?

3. What set of governing equations should be solved when using numerical inundation modelling for the
estimation of flood susceptibility?

The approach used to answer these questions is by conducting a case study research on the British coastal
town of Eastbourne. Why specifically Eastbourne has been chosen for the case study, is further addressed in
section 2.2. The flood susceptibility of Eastbourne will estimated based on various estimation techniques, such
as statistical analyses and numerical modelling, which where found using literature research. The results of
these methodologies will then be compared to each other. Note that the flood estimation methodologies are not
compared to measured data, since such data is not available. Not only will this approach give insight into the
flood susceptibility of Eastbourne regarding different flood types, but it also serves as a case study to compare
the different methodologies in practice.

1.3 Research demarcation
First of all, comparing all different methodologies developed to estimate flood susceptibility would be an enor-
mous task. A task too large for a single MSc thesis. Hence, only several specific methodologies are actually
included and compared in this research (see figure 2 in section 2.1).

Secondly, it is important to note that this paper discerns between flood risk and flood susceptibility. Flood
risk is most commonly defined as the probability of floods occurring times the consequences of those floods.
Flood susceptibility, as defined in this report, is the probability of floods occurring times the inundation severity
of those floods. This paper on flood susceptibility does thus not include any damage estimation techniques.

Thirdly, in order to estimate the flood susceptibility of Eastbourne, some assumptions need to be made to
make the research feasible. These assumptions are listed below.

• It is assumed that the flood susceptibility of Eastbourne is driven by either coastal flooding, fluvial flooding
or flash flooding. Other (less common) types of flooding, such as groundwater flooding, are assumed to
be negligible in the Eastbourne case study. Tidal effects are taken into account, however tidal flooding
has not been treated specifically.

2



• The effect of the urban drainage system on the inundation is difficult to represent without the dimensions
and layout of the system. This is why a worst case scenario, in which the urban drainage system is full,
is assumed.

• The topography of the foreshore, (natural) sea defences and the coastal town of Eastbourne itself are
assumed constant in time.

• The effect of evaporation and infiltration is assumed to be negligible on the inundation for short time
scales. The effect of wind on the inundation process within the inundation domain is also assumed to be
negligible (wind is however accounted for in the estimation of the sea state).

1.4 Report structure
In order to answer the research question, various flood susceptibility estimation techniques are implemented and
compared. The report starts by introducing and describing these methodologies and how they are applied in
this research in chapter 2. The subsequent results yielded from the implementing these techniques are given and
compared to each other in chapter 3. The application of the techniques, the results they yielded, and potential
implications are further discussed in chapter 4. Last of all, conclusions regarding the three sub-questions are
drawn and recommendations are given in chapter 5.

Appendix A gives a small summary of common flood susceptibility estimation practice. Appendix B gives an
in-depth description of the scenario creation procedure based on the conditional approach. Appendix C gives an
example of the input scripts used for SWAN wave modelling. Appendix D gives an example of the input scripts
used by SWASH for the numerical overtopping estimation approach. Lastly, appendix E gives additional figures
which are referred to throughout the report.
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2 Methodology
Since not all flood susceptibility estimation techniques can be compared, is this research focusing on a single
case study and only a selection of flood susceptibility estimation methodologies. This chapter will go over the
case study and the implementation of the various used techniques.

Firstly, the general overarching approach, explaining which and how various methodologies are addressed,
is given in section 2.1. Secondly, the choice of location for the case study (Eastbourne), is elaborated in section
2.2. Thirdly, the used data and the statistical methodology which has been implemented to handle this data,
is discussed in section 2.3. Fourthly, the concept of wave modelling (spectral action balance modelling) is
introduced in section 2.4, which also discusses its implementation. Fifthly, various overtopping methodologies
and their implementation are given and explained upon in section 2.5. Lastly, section 2.6 explains the techniques
and implementation of the inundation estimation.

2.1 General approach
There are various approaches one can use to estimate flood susceptibility as is elaborated upon in appendix
A. Which approach should be used, depends on the scale of the area, the complexity of the flood driving
mechanisms, and the available computational power. The area of interested of this research is the coastal town
of Eastbourne. Eastbourne is a relatively complex case since it is susceptible to both coastal and pluvial/fluvial
flooding. Therefore, more computationally expensive methodologies representing physical mechanisms will
be used and compared (instead of e.g., fully statistical approaches). Figure 2 shows the phases and various
approaches, which will be used and compared in this research.

Figure 2: Modelling phases and the techniques which will be applied and compared in their respective phase

1. Extreme value analysis is used to create scenarios (meteorological variable combinations) with a return
period of 100 years. There are two methodologies compared in this phase. The univariate methodology
considers a singular variable as its basis for scenario creation. This means, one can use traditional extreme
value analysis, such as the peak over threshold approach which has been applied in this research. In this
research this methodology is applied to create a scenario based on a precipitation event with a return
period (RP ) of 100y and a significant wave height (Hm0) with a return period of 100y. The conditional
multivariate methodology refers to the conditional approach developed by Heffernan & Tawn (2004),
which allows for explicitly treating the combination of extreme precipitation and an extreme sea state.
This approach is however more complex, and much more somewhat more computationally intensive.
The application of both approaches is elaborated upon in section 2.3, and appendix B discusses the
mathematical procedure of the conditional approach.

2. Wave transformation modelling is the approach used to translate offshore wave input to nearshore sea
conditions. The data used in this research is offshore data (as is elaborated upon in section 2.3.1),
which makes this a vital step. This research estimates the wave transformation by solving the spectral
action balance equations via the open source software SWAN (The SWAN team, 2020b). A more in depth
description of this approach can be found in section 2.4.
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3. Overtopping modelling translates the nearshore sea state conditions to discharge fluxes into the flood
domain over the flood defences. Three different approaches are used and compared in this phase. Firstly,
an empirical formula (the new overtopping formula from van der Meer et al. (2018)) is applied at the toe.
Secondly, the Gaussian process emulation Bayonet GPE (Pullen et al., 2018) (similar to a neural network)
is applied with the same input. Lastly, a 1DH numerical model (SWASH (The SWASH team, 2019))
is applied over a larger domain in an attempt to capture more accurate wave breaking and overtopping
behaviour. Further description of the application of the empirical equation, the GPE and the numerical
model can be found in section 2.5.2, 2.5.3 and 2.5.4 respectively.

4. Inundation modelling and interpretation of its results is the last phase of the flood susceptibility analysis.
The chosen inundation model (HEC-RAS (US Army Corps of Engineers, 2021)) is a numerical model
which solves a greatly simplified version of the Navier-Stokes (similar to SWASH). In this phase two
different simplifications of the Navier-Stokes equation are compared. The diffusive wave approximation is
a relatively fast and very robust methodology, however this comes at the cost of neglecting inertial terms.
The shallow water equations do take these inertial terms into account, which makes this approach more
accurate, but less stable and more computationally intensive. The application of the HEC-RAS model and
its boundaries is further discussed in section 2.6.

2.2 Location
2.2.1 Case study selection

The area of interested of this case study is the coastal town of Eastbourne, which is located at the south coast
of England. This town is subjected to a coast with a North Sea wave climate. Typically storms propagate from
a south-west direction. However, less common north-easterly storms do occur. Furthermore, the town has a
little river delta, which means there is some fluvial flood risk.

Figure 3: Left: Location of Eastbourne in red square; Right: Areal photo of Eastbourne

Many locations around the UK are available for case study due to a generally healthy supply of data.
Eastbourne has been chosen for this study since it fulfills certain requirements, which makes it interesting for
detailed study. Three hard requirements are listed here and elaborated upon below.

• The location is an urban area

• There is a substantial threat of coastal flooding at the location

• There is a substantial threat of fluvial/pluvial flooding at the location

Firstly, Eastbourne is an urban area. This is a location requirement since this means the location has significant
economical and social value. Flood susceptibility estimation at Eastbourne is thus relevant for flood risk
reduction strategies to protect these assets. Urban areas are also more prone to pluvial flooding (precipitation
flooding), which increases the importance of accurate flood susceptibility estimation.

Secondly, this research compares several methodologies which are used for specifically coastal flood suscepti-
bility estimation. For these methodologies to be relevant, there should thus be some existing coastal flood risk.
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According to the long-term flood risk map (shown in figure 4) created by the UK Environmental Agency, East-
bourne has a substantial existing coastal flood risk, making it suitable for this research (Environment Agency,
2019).

Figure 4: Flood risk of Eastbourne, as estimated by the UK national flood risk map (Environment Agency,
2019). The dark blue shaded area along the coastline is an indication of risk induced by coastal flooding. The
blue areas along rivers are an indication of risk induced by fluvial flooding.

Lastly, there needs to be expected pluvial/fluvial flood risk. Having flood susceptibility induced by the
coastal boundary, the river boundary and direct precipitation makes for a complex, but frequently occurring
problem. It is interesting to quantify the importance of treating more than one type of flooding, which is
effectively done by the "smart" scenario selection methodology as explained in section 2.3.2. The long term
flood risk map created by the Environmental Agency (figure 4) shows Eastbourne has a significant pluvial/fluvial
flood risk and thus fulfills this requirement too.

2.2.2 Case study characteristics

Eastbourne is a town with a population of a little over 100.000 people. The west side of the town has a
relatively high elevation (up to MSL + 200m). The coastline at the west coast is characterised by large chalk
cliffs. Conversely, the center and east side of Eastbourne have very different characteristics. The elevation in
the center and east is generally just slightly above mean sea level (MSL), whilst the coastline mainly exists out
of shingle beaches. On the east side of Eastbourne the shingle beach coastline is interrupted by the Sovereign
Harbour, a marina complex of four small linked harbours. The entrance of this harbour complex consist of twin
sea locks which are closed during coastal storms.

Eastbourne has several interesting characteristics with regards to flooding which makes it an interesting
choice for a case study. These interesting characteristics are listed here:

1. The center and East coastline of Eastbourne has an interesting coastal climate. The town has mild to
moderately sloped beaches, exposed to a moderate to large tidal range, with a moderate to large storm
surge during severe sea states. This combination of characteristics will result into a complex, but common
situation, in which accurate modelling is required (opposing, e.g., a tide-dominated system). As to relate
this to the Ternary shoreline classification diagram, a coast with the preferred characteristics for this study
is placed somewhere around the red dot in figure 5.

2. Eastbourne has an easily defined river delta. This means that sufficient historical data on the river system
is available. The tidal delta of Eastbourne is also relatively small, which means a large portion can be
accurately represented by the inundation domain.
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Figure 5: Ternary shoreline classification diagram in which the red dot is pointing out the coastal characteristics
of interest. This illustration based on the work of Dalrymple et al. (1992) and Boyd et al. (1992).

3. The center and eastern land soil profiles of Eastbourne are low in chalk content according to the national
soil map of England (Cranfield University, 2013). A high chalk content can increase the probability
and severity of groundwater flooding, which is an excluded type of flooding in this study due to time
constraints.

4. A preferred characteristic is a region with little to no history of tsunamis or meteotsunamis. Tsunamis/me-
teotsunamis can cause flooding, but should be accounted for with specialised methodologies. This is why
tsunamis/meteotsunamis fall out of the scope of this research. Since Eastbourne has no history of flooding
by tsunamis/meteotsunamis, one can safely assume that not accounting for tsunamis/meteotsunamis does
not change the overall result of the research.

2.3 Statistical analysis
A statistical analysis of historical data at Eastbourne is required for the first step of the general approach as
shown in section 2.1 (extreme value analysis). Firstly, the chosen data sources are given and elaborated upon in
section 2.3.1. Secondly, the concept of "smart" scenario selection is explained in section 2.3.2. Lastly, in order
to create storm scenarios, a data analysis approach is given in section 2.3.3.

2.3.1 Data sources

This research had to make use of various types of data provided from various sources. This section will elaborate
on which sources have been used and why. One can distinguish two different types of data based on their
timescale. Firstly, variable data refers to data with a relatively short timescale. For example precipitation data
or wave characteristics. Secondly, topographic data refers to spatially varying data describing the elevation of
a terrain. The timescale of variations in topographic data is generally much larger than variable data and will
be assumed constant in this research.

Variable data
This research has used the following four sources for variable data.

1. The fifth generation ECMWF atmospheric reanalysis of the global climate (ERA5) (coordinates 50.75,
0.25), hourly data (1979 to 2020) (Copernicus Climate Change Service (C3S), 2020)

2. Port of New Haven, hourly tidal gauge data (43 years) (British Oceanographic Data Centre (BODC),
2020)

3. Herstmonceux West end, hourly precipitation gauge (1992 to 2021) (Met Office, 2021)

4. Langney bridge, 15min river gauge (2016 to 2021) (Environment Agency, 2021)
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The variables researched for the simulation of flood events are listed in the following two columns. The numbers
behind the variables indicate the used data source.

• Hm0: Significant wave height (1)

• Ir: Precipitation intensity (1)

• Dr: Precipitation event duration (3)

• Tm−1,0: Mean wave period (1)

• θ̄: Mean wave direction (1)

• σE : Wave spectral directional width (1)

• u10: Wind speed (1)

• θwind: Wind direction (1)

• ζ: Water surface elevation (2)

• driver: River water levels (4)

Arguably, the most important data source of this research is the reanalysed ERA5 data. ERA5 data is
produced based on many historical observations around the world, advanced modelling and data assimilation
systems. This reanalysed data has been used for exploratory data analysis and scenario creation. The reason
reanalysed data has been used instead of directly measured data is because it is easily and freely available all
over the world, it captures a relatively long period of time (41 years), and the reanalysing procedure may remove
some scatter, which leads to a more clear dependence structures between variables.

The reanalysed ERA5 data does however exclude accurate water level elevation measurements, since water
level is strongly influenced by local topography. Water level elevation data is however important regarding the
analysis of the tidal cycle and storm surge level estimation. This is why it was necessary to use a separate tidal
gauge (Port of New Haven). This tidal gauge data has been analysed with the open source Python module
UTide∗ (Bowman, 2021). The modules allows for harmonic analysis on water level time series, in order to find the
main tidal constituents. Not only does this give the various tidal amplitudes and frequencies, but by subtracting
the tidal signal from the data one finds an estimation of the storm surge. This storm surge estimation has a
strong dependence structure on other variables and is included in the scenario creation procedure as discussed
in section 2.3.3.

An important weakness of the reanalysed data is representation of short duration events. Especially short
but intense local precipitation events are not captured well by reanalysed data as is shown in section 2.6.4.
Using only reanalysed precipitation data would lead to misrepresentation of event duration. This is why locally
gauged data (at Herstmonceux West end), has been used to find a reasonable estimate for the duration of
precipitation events. This is further elaborated upon in section 2.6.4.

Historical observations of a locally measured river gauge have been used to estimate a reasonable upstream
boundary condition for the inundation model.

Topographic data
This research makes use of multiple models which have their own domain. Each of these domains has its own
topographic data source.

• Coastal domain: Marine DEM (1arcsec) (Department for Environment, Food and Rural Affairs, 2020a)

• Surfzone domain: Surfzone DSM (2m) (Department for Environment, Food and Rural Affairs, 2020b)

• Inundation domain: EA Lidar DSM (1m) (Environment Agency, 2020)

• Land cover data: UKCEH Land Cover Map 2019 (LCM2019) (20m) (UK Centre for Ecology & Hydrology,
2019)

2.3.2 "Smart" scenario methodology

Some flood susceptibility estimation methodologies are very efficient and do not require much computational
power. This allows for many simulations, which means one can use statistical analysis on the results. Eastbourne
is however a relatively complex case since there are multiple flood types which can cause simultaneous or serial
flooding as discussed in section 2.2. In order to resolve complex hydrodynamic interactions between different
flood drivers, high resolution 2D flood models are required (Eilander et al., 2020). Hence, one has to apply
computationally intensive methodologies. Using a computationally intensive methodology means only a small
number of simulations can be made, which in turn means that no valid statistical analysis can be conducted on
the results. This is why the statistical analysis is done before the modelling phase by cleverly creating storm
scenarios.

∗The used Python version of UTide is open source and freely available at https://pypi.org/project/UTide
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With the "smart" scenario approach is meant, creating various scenarios with the same return period, which
represent combinations of different flood types. In the case of Eastbourne (a coastal urban area with a small
delta), the flood susceptibility seems mainly governed by coastal and precipitation-driven flooding. One can get
an indication of the relation between these types of floods by modelling scenarios with the same return period,
in which the boundary conditions are selected based on the type of flooding. For this case study, figure 6
qualitatively shows the boundary combinations of the scenarios. The significant wave height (Hm0, a parameter
representing the potential energy of a wave climate) and the precipitation intensity (Ir), have been chosen as
primary variables for scenario creation due to their respective relation with the flood types. Table 1 quantifies
the rareness of one flood type forcing with respect to the other, by giving a return period ratio (RPHm0/RPIr ).

It is important to note that the extremity of the individual variables in this table depends on the dependency
of these variables. For example, in the case of two variables with a strong positive correlation, a scenario
combination leading to a return period ratio of 1, would mean that the return period of the individual variables
is close to the return period of the combination. Conversely, if we consider two completely independent variables,
a scenario with a return period ratio of 1 would result into relatively common conditions for both individual
variables.

Figure 6: This figure gives a qualitative description of the various scenarios. Two examples are: scenario 1 has
a very extreme significant wave height (Hm0) in combination with a precipitation intensity (Ir) of zero, and
scenario 4 has a Hm0 with the same return period as the Ir. Note that the Ir severity in scenario 2 and the
Hm0 severity in scenario 6 are very small, but not zero.

Scenario 1 2 3 4 5 6 7 8
RPHm0/RPIr ∞ 500 10 1 1/10 1/500 0 ∞

Table 1: Qualitative scenario overview. This table quantifies the relative rarity of the primary variables in the
various scenarios. The combination of these primary variables will lead to scenarios with the same total return
period (100y). The individual variable return periods cannot be given at this point since they depend on the
dependence structure of the primary variables.

After conducting the exploratory data analysis, it was found that next to the common south-westerly storm,
a rarer and milder north-easterly storms can hit Eastbourne (see the results in section 3.1.1). This type of
coastal climate is explored with scenario 8.

The first step in the methodology comparison is effectively already made by implementing this "smart" sce-
nario approach (see figure 2 in section 2.1). One can use a simplified approach by making the assumption of
a single flood type dominating over the other. By making this assumption you can treat the flood types as
independent, which would reduce table 1 to only scenario 1,7 and 8. This means that one can use an univari-
ate approach (traditional extreme value analysis) for the creation of scenarios, instead of the more complex
dependant bi/multivariate extreme value analysis.

2.3.3 Data analysis

The data analysis, as executed in this research, has two parts. First, a general exploratory data analysis is
executed to get an understanding of the dependence structure between the variables. After which, the first step
of the general approach as shown in section 2.1, the scenario creation, is executed. During the scenario creation
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the difference is made between primary variables and secondary variables. Primary variables are the variables
on which the scenarios are based, whereas secondary variables are chosen based on the dependence structure.

Exploratory data analysis
The exploratory data analysis starts by plotting the various ERA5 variables against each other in the form
of a correlation matrix. Such a correlation matrix plot is helpful in order to observe the general dependence
structure because it shows what combinations occur.

The correlation matrix (and correlation coefficients) are less well suited for the description of tail dependence.
Tail dependence is however essential when creating extreme storm scenarios. A methodology better suited to
describe this, is by plotting the multivariate conditional Spearman’s correlation coefficient across a sliding
window of values, following Schmid & Schmidt (2007). This methodology has been implemented in the texmex
package for the programming language R, of which the implementation is discussed in Southworth et al. (2020).
The results of this methodology are given and discussed in section 3.1.1.

Lastly, a less formal, but very indicative description of the relation between precipitation and wave height
is given by plotting conditional probability density distributions. Such plots show very clearly whether there is
a positive dependence between precipitation and the significant wave height. Such a relation could mean that
compound storms (storms which result into flooding from both land and sea) are more probable than one might
guess.

Primary variables: Univariate
Primary variables are in this research defined as variables directly used for scenario creation. One has to choose
one or more variables to base a scenario on, i.e., a significant wave height with a return period of 100 years. If
one were to consider every variable as primary, then this would reduce the extremity of the singular variables.
This research treats two primary variables for scenario creation. These are the precipitation intensity and the
significant wave height. These variables have been selected since they play a primary role in pluvial and coastal
flooding according to the flood estimation handbook (Kjeldsen, 2007) and the overtopping manual (van der
Meer et al., 2018).

The univariate approach assumes the tails of the primary variables to be independent (or weakly dependent),
such that the combination of both variables being extreme during a singular event is very low. This would mean
that one can treat coastal flooding and pluvial/fluvial flooding as separate independent processes.

Making this assumption, one can use traditional extreme value analysis methodologies to estimate values
with a certain return period for the considered primary variable. There are two traditional extreme value analysis
methodologies; the peak-over-threshold (POT) approach and the block maxima approach. The extreme value
analysis methodology applied for the univariate case is the POT method (Coles, 2001). The main advantage of
this methodology over the block maxima method is that all relevant information (the peaks) are used, whereas
using the block maxima method one does not. Another reason for choosing the POT approach is because
executing this approach is the first step of the conditional approach (Heffernan & Tawn, 2004).

The execution of the POT approach is a relatively simple task these days, with the help of the statistical
programming language R. First one picks a threshold for the considered variable. One can use threshold stability
plots and mean residual life plots to find appropriate thresholds. Functions to make these plots are included in
the texmex package for R, and Southworth et al. (2020) describes how to apply and interpret them.

After an appropriate threshold has been selected, one can fit the generalized Pareto distribution family to the
remaining data. One can then use this fit to find variable values with an arbitrary return period. The texmex
package does also include predefined functions for these operations. Further info regarding the mathematical
procedure of the approach and the formulas can be found in appendix B.1.

Primary variables: Conditional multivariate
The univariate approach as outlined in the previous section has as main disadvantage that it does not account
for combinations of primary variables. However, the results of the exploratory data analysis (section 3.1.1) do
show a positive (tail) dependence. Compound floods (in this case combinations of fluvial/pluvial floods and
coastal floods) may thus be more important then one might expect. The conditional multivariate approach by
Heffernan & Tawn (2004) allows for extreme value analysis of multiple dependent variables and can thus be
used for the creation of compound storm scenarios.

Until recently, the largest downside of the conditional approach was its complexity. Anyone wanting to
implement this method was required to thoroughly understand high level mathematics and be very proficient
in a programming language to code it up. However, since 2012 all code required to apply the methodology is
freely available in the form of an R package called texmex.
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Appendix B delves into the application and the mathematical background of this approach, but the main steps
are summarised here below.

1. Apply the peak over threshold approach to both primary variables separately to gain the marginal distri-
butions.

2. Transform these marginal distributions and the data into Laplace marginals.

3. Fit a regression model of the first variable conditional on the second based on the transformed data.

4. Repeat step 3 now conditioning the second variable on the first (this could be done up to n variables!).

5. Use both marginal distributions and Monte-Carlo sampling to create artificial samples of both variables
and use the regression models to find their pairs.

6. Plot the original samples, and the artificial samples with pairs and make Joint exceedance curves with a
singular return period (the limits of these curve are the same as the univariate approach).

Secondary variables
Secondary variables are, as mentioned before, the variables which do not directly define the scenarios. These
variables are however required as input for the simulations and may have a substantial effect on end result. The
main bulk of the considered variables are regarded as secondary, since only precipitation and the significant
wave height are used for scenario definition. Variables such as wave period, wind velocity, and storm surge are
thus all regarded as secondary variables.

Secondary variables should be chosen based on their dependence structure with the primary variables, which
is fixed by the scenario definition. Based on historical data, one can estimate the likeliest value of a secondary
variable given a value for one or more primary variables. This is done by finding the maximum of the conditional
probability density function (PDF) of the secondary variable (envision taking a slice from a bivariate distribution
and finding its maximum). This method becomes less certain when estimating extremes since little extreme
data is available by definition. However, one can use the conditional approach (Heffernan & Tawn, 2004) to
simulate synthetic extreme data to make this prediction more certain. This approach is applied in this research
and is shortly summarised in a visual way here.

First, one should have a primary variable combination to base the secondary variable on. You can then fit
a dependence structure of a secondary variable based on one or more primary variables. In this research the
secondary variable is estimated based on its relation with the primary variable that has the strongest physical
relation to it. So, for example, the wave period is estimated based on its relation to the significant wave height
and not on the precipitation. The variable structure can be used to simulate synthetic data (even with a certain
threshold if required). One can then take a "slice" of this data (as shown in figure 7 and regard this as a discrete
PDF (probability density function) of the secondary variable given a value of the primary variable. Finding the
maximum value of this PDF will then give the likeliest value of the secondary variable given the scenario. This
approach is described in more detail in appendix B.
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Figure 7: Plotting the joint density function (left) and the conditional PDF (right) based on synthetic data.
This approach is applied in order to find the likeliest value of a secondary value based on a fixed primary variable
value.

One cannot use the conditional approach to simulate synthetic data for directional variables such as the wind
or wave direction (since they do not fit in the GPE family) (Coles, 2001). The likeliest value for directional data
will thus be chosen based on historical data alone. A strong directional dependence exists, as can be seen from
the correlation matrix in section 3.1.1. This approach is representative for reality due to this strong directional
dependency.

2.4 Nearshore wave model (SWAN)
The second phase of the general flood susceptibility estimation approach (as shown in section 2.1 figure 2) is
wave transformation modelling via SWAN∗. The output of this phase is given in section 3.2 and is used as a
boundary condition for phase 3 (overtopping modelling).

SWAN is an open source third generation wave model based on the theoretical concepts presented in Holthuijsen
(2007). The basic equation of the model is the spectral action balance equation. This equation can be rewritten
to the energy balance equation in the absence of an ambient current which is shown in equation 1 (formulated
in Cartesian coordinates). Information regarding the numerical discretization applied by SWAN can be found in
the technical documentation (The SWAN team, 2020a).

∂E(ω, θ;x, y, t)

∂t
+
∂cg,xE(ω, θ;x, y, t)

∂x
+
∂cg,yE(ω, θ;x, y, t)

∂y
+
∂cθE(ω, θ;x, y, t)

∂θ
= S(ω, θ;x, y, t) (1)

In which the variables are defined as:

• E: Variance density spectrum [m2/Hz]

• ω: Angular frequency (ω = 2π/T ) [rad/s]

• θ: Wave direction [rad]

• S: Spectral energy density (the source term, representing all effects of generation, wave–wave interactions
and dissipation per unit time per unit surface area) [m2/Hz/◦]

• cg: Celerity of wave groups [m/s]

• cθ: turning rate of the wave direction due to the change in (nautical) direction [rad/s]
∗SWAN is an open source third-generation wave model developed at Delft University of Technology. It is available at http://

swanmodel.sourceforge.net
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Equation 1 describes the spatial and temporal conservation of wave energy (a parameter directly linked to the
wave height) on the left hand side, while the right hand gives a sink/source term. The physical mechanisms
which can be included in this term are the following:

• Wind input

• Bottom friction induced dissipation

• White capping induced dissipation

• Surfbreaking induced dissipation

• Three-wave interactions (triads)

• Four-wave interaction (quadruplets)

SWAN offers various options regarding the representation of these terms. Table 2 gives an overview of how these
terms are represented in this research. Appendix C gives an example of a typical SWAN input file used in this
research.

Mechanism Enabled Input
Wind Yes Constant, scenario dependent
Friction Yes Default: cfjon = 0.038
Whitecapping Yes Default: Komen
Quadruplets Yes Default: DIA method
Depth-induced breaking Yes Default: Constant γbi = 0.73
Wave induced set-up No
Triads No
Turbulent viscosity No

Table 2: Physics included in the wave modelling (SWAN). More info regarding the chosen methods can be found
in SWAN’s technical documentation (The SWAN team, 2020a)

The enabled mechanisms and the chosen methodologies to represent them are relatively straightforward, but
the reason as to why three mechanisms have been disabled deserves some further clarification. Calculation of
wave induced set-up has been turned off in the SWAN model, because wave induced set-up is already included in
the storm surge as calculated in the statistical analysis (based on buoy data). Storm surge has been explicitly
included as a scenario creation variable and shows a high dependency on the significant wave height. One should
note that this was a non-conservative decision. Triad wave interactions have been turned off since the default
values of SWAN are only representative of long-crested waves (The SWAN team, 2020a). Finding good values to
represent the three-wave interactions for this case would be a research of its own and is therefore excluded from
the scope of this research. Lastly, the turbulent viscosity has been turned off because this term is expected to
be relatively small and difficult to accurately represent.

13



Domain & discretisation (SWAN)
The 2D nearshore model domain reaches from the coordinates 50.70◦ (latitude), 0.06◦ (longitude) to 50.92◦,
0.42◦, which corresponds to about 25.3km by 25km. The domain and its bathymetry is shown in figure 8.

As mentioned in section 2.3.1, the SWAN domain (figure 8) makes use of the DEFRA Marine DEM, which
has a resolution of one arcsecond (≈ 30m). A disadvantage of using this DEM is that it stops at mean sea level.
During a coastal storm we find that the water level can rise to around 3 meters above mean sea level (surge and
tide). Making this difference even larger is a bathymetry mismatch between the DEFRA DEM marine (SWAN
domain) and the more accurate DEFRA sufzone DSM (Overtopping bathymetry). The mismatch between this
data is at some places up to 3 meters. This means that the SWAN domain ends before reaching a water depth of
0 meters.

Figure 8: SWAN domain with coastline and bathymetry

For the spatial discretisation, a flexible triangular mesh has been generated using the OceanMesh2D∗ MATLAB
toolbox Pringle et al. (2020) (see figure 9). A flexible mesh was used since preliminary results using a rectangular
mesh showed a high resolution was required in the surf zone region. The generated mesh has a resolution (triangle
edge length) of approximately 20 meters in relatively shallow zones, whilst cells go up to 100 meters in deeper
water. The grade of the mesh (αg) ensures the size transition smoothness and is set to 0.35 in accordance
with the user guide (Roberts & Pringle, 2020). The used feature width (R), ensuring adequate inclusion of the
shallow zone has been set to 100 triangles.

∗OceanMesh2D is open source and freely available at https://github.com/CHLNDDEV/OceanMesh2D
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Figure 9: Flexible mesh used for wave modelling (SWAN)

To adequately capture the directionality of storms, use is made of 72 directional bins representing all angles
(∆θ = 5◦). And in order to capture the various relevant wave periods, 31 frequency bins, reaching from
0.03 to 0.6Hz (logarithmically distributed), have been used. This number of frequency bins is based on the
recommended frequency resolution of ∆f/f = 0.1 (The SWASH team, 2019).

Scenario input (SWAN)
The SWAN simulations use the storm scenarios, as defined via the data analysis (section 2.3.3), as input (bound-
ary) conditions. These input conditions are given in table 5 of results-section 3.1.2, where they are further
discussed.

The input conditions of table 5 on its self are not enough to define the offshore SWAN boundaries. One should
also define a spectrum and a coefficient regarding directional spreading. Research on historical data has shown
that bimodal sea states are relatively rare at the coast of Eastbourne (Dhoop, 2018). This is why a traditional
JONSWAP spectrum, with an average peak enhancement factor (γjonswap) of 3.3 has been implemented. A
constant factor of directional spreading (standard deviation) of 30◦ has been chosen based on the reanalysed
ERA5 data. Furthermore, the typical cosm(θ − θpeak) distribution for directional spreading is assumed.

2.5 Overtopping estimation techniques
The third phase of the flood susceptibility estimation approach (as shown in section 2.1) is wave overtopping
modelling using three different methodologies. These three methodologies do share a general overtopping
estimation approach, which will be discussed first in section 2.5.1. After which, the three methodologies are
discussed in ascending order of complexity. Firstly, the application of the empirical overtopping equation is
discussed in section 2.5.2. Secondly, the application of a Gaussian process emulator approach is discussed in
section 2.5.3. And lastly, the application of a numerical approach using SWASH, is discussed in section 2.5.4.

2.5.1 General overtopping estimation approach

The offshore wave model SWAN of the previous phase is ran in 2DH mode (see section 2.4). This means one can
define overtopping domain boundaries at arbitrary points in or along this domain. The empirical method and the
GPE (Gaussian process emulator) method are both strictly one-dimensional approaches, whilst the numerical
method is very computationally intensive in 2DH. This is why the overtopping estimation is conducted using
multiple representative 1DH domains.
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Three main cross sections have been defined to be representative of coastline segments as shown in figure
10. Only three main cross sections are used for simplicity’s sake, to keep the computational time feasible and to
make the result interpretation more manageable. Cross sections of these locations reaching up to 2km offshore,
are visible in appendix E.3.

Figure 10: Representative locations; coloured: main locations, grey: intermediate locations

Next to the three main coastline sections, two intermediate sections have been defined as well (see figure
10). These intermediate sections have a singular characteristic which prevents them from being part of the
main cross sections. At intermediate section one (I1) the ground level is 1 to 2 meters higher than at locations
1 and 2, where as at intermediate section 2 (I2) the shore normal angle is significantly different from location
2. Overtopping estimations at these intermediate sections are approximated via a neighbouring main location
and then empirically corrected for their respective deflecting characteristic. Estimations made for intermediate
sections using the empirical method are corrected with this method as well, and estimations made with the
GPE are corrected using the GPE approach. Using the numerical approach it self to correct its intermediate
sections would be relatively computationally intensive, which is why a combination of the empirical approach
and the GPE approach is used instead.

2.5.2 Empirical overtopping equation (EurOtop)

The traditional methodology of estimating overtopping rates is via an empirical formula. The current (European)
standard for this approach, given by the EurOtop Manual (equation 4.3) (van der Meer et al., 2018), is the
"new" overtopping formula shown in equation 2. According to the manual, the overtopping rates found by
empirically derived equations as this one, should be regarded as, "at best" within a factor of 1 to 3 of the actual
overtopping rate.

q√
g ·H3

m0

=
0.023√
tanα

γb · ξm−1,0 · exp

[
−
(

2.7
Rc

ξm−1,0 ·Hm0 · γb · γf · γβ · γv

)1.3
]

(2)
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Of which the variables are defined as:

• q: Overtopping rate [l/s/m]

• g: Gravitational acceleration (9.81) [m/s2]

• Hm0: Significant wave height defined using the spectral moment m0 [m]

• α: Beach slope angle [◦]

• γ: Influence factors, see table 3 [-]

• ξm−1,0: Iribarren parameter (surf similarity parameter) defined using the m − 1, 0 spectral moment (see
equation 3) [-]

• Rc: Crest height (defined as the height difference between the SWL and the crest top) [m]

The Iribarren number should be defined as shown in equation 3 for this approach (van der Meer et al., 2018).

ξm−1,0 =
tanα√

Hm0/Lm−1,0
=

tanα√
Hm0/

(
1, 56 · T 2

m−1,0
) (3)

The approach makes use of four different influence factors which are defined as shown in table 3 and described
below.

Variable Symbol Value
Influence factor for a berm γb 1
Influence factor for roughness elements on the slope γf 0.9
Influence factor for a wall at the end of the slope γv 1
Influence factor for oblique wave attack γβ 1− 0.0033|β|

Table 3: Influence factors of the empirical approach and the GPE approach

• The coast of Eastbourne does not have any berms and the description of the bathymetry would not benefit
from including one, hence there is no berm reduction (γb = 1).

• Accurately describing the roughness of the beach profile is relatively challenging. The shoreline of East-
bourne consists mainly of pebble beaches. The overtopping formula (equation 2) is mainly used for a hard
structures and no recommended roughness factor (γf ) could be found in literature. Therefore, a most
likely conservative value of 0.9 is assumed.

• The coastline of Eastbourne is in reality protected by an additional wall on most dike crests. This wall
does, however, not show up properly in the bathymetry files (resolution of 1m) due to its slenderness. This
makes it difficult to accurately include, especially in the numerical approach. Therefore, the additional
wall is neglected in all approaches (γv = 1).

• According to the EurOtop Manual (equation 5.29) (van der Meer et al., 2018) one should include an
oblique wave attack reduction factor of γβ = 1− 0.0033|β| when using equation 2 for short crested waves.
In this formula β is defined as the angle of wave attack with a maximum/minimum value of ±80◦.

Input of overtopping formula
The overtopping formula (equation 2) requires both geometric input and wave conditions. The beach slopes of
the respective locations remain constant for each scenario and have been estimated based on the beach profiles
(see appendix E.3). Locations 1 to 3 have average slopes of 1:9.24, 1:8.56 and 1:7.54 respectively.

The remaining input variables are calculated by the SWAN model via the method as explained in section
2.4.These values differ per location and per scenario.
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2.5.3 Gaussian Process Emulator (Bayonet GPE)

Bayonet GPE is a generic metamodelling overtopping model, based on the application of Gaussian process
emulation (GPE) techniques (Pullen et al., 2018). The concept is somewhat similar to traditional artificial neural
networks (ANN), but it improves upon them by including the uncertainty within the physical model data. The
main reason for including specifically this overtopping estimation method is because it is the approach currently
used in the UK National Risk Assessment (Aldridge et al., 2017). The approach is very computationally efficient
similarly to the overtopping formula method (section 2.5.2) and uses the same input boundary.

Application of Bayonet GPE
Bayonet GPE uses geometric input similarly to the overtopping formula. The approach improves upon the
overtopping formula in this regards because it gives the user the option to specify additional features, such
as including multiple slopes and the width of the toe. Attempts to represent the bathymetry profiles more
accurately by including two different slopes, or a berm led to very large Mahalnobis distances. The Mahalnobis
distance represents the distance from the center of training data, and a large distance does thus indicate that the
GPE is most likely incapable of reproducing an accurate estimate. Hence, the various cross sections were best
described as simple sloped structures (see figure 11), which does not include the additional features Bayonet
GPE offers.

Figure 11: Bayonet structure input example (location 1). Orange line: represents the beach profile; dashed blue
line: the average water level (with respect to still water); solid blue line: Sine wave giving a representation of
the wave conditions.

Bayonet GPE can be used in two ways. One can use the user interface to calculate one scenario and location
at a time, or one can use batch processing to calculate all of them in one go. Since this research compares 5
locations and 8 scenarios, use was made of batch processing.

Input of Bayonet GPE
The wave condition input of Bayonet is the same as the input of the overtopping formula since both methods use
input estimated at the toe of the structure. The only difference is that bayonet uses the wave period (Tm−1,0)
and wave direction (β) directly as input variables, whereas the overtopping equation used dimensionless variants
(the Iribarren number ξ, and the oblique wave attack reduction factor γβ). The input of of the GPE is further
discussed as output of the SWAN model in section 3.2.

2.5.4 Numerical modelling of the surfzone and beach (SWASH)

Hydrodynamic numerical modelling is an approach that fundamentally differs from the empirical formula and
the GPE. Instead of fitting empirical relations, the method approximates the behaviour of water derived from
the laws of physics. The open source model SWASH∗ (developed by the SWASH team) is a numerical tool
capable of simulating unsteady, non-hydrostatic, free-surface, rotational flow. The governing two-dimensional

∗SWASH is freely available at http://swash.sourceforge.net
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equations of this model describe the depth-averaged, non-hydrostatic, free surface flow of an incompressible
fluid over a varying bed topography shown by equation 4 and 5 (Zijlema, 2020). Further information regarding
the numerical discretisation used by SWASH can be found its technical documentation (Zijlema et al., 2011).

Conservation of volume :
∂ζ

∂t
+∇ · q = 0 (4)

Conservation of momentum :
∂hu

∂t
+∇ · (q⊗ u) + gh∇ζ = −

∫ ζ

−d
∇pdz − cfu‖u‖ (5)

In which the symbols are defined as:

• ζ: water level elevation with respect to mean water level [m]

• d: depth from bottom to mean water level [m]

• h: total height of the water coulomb (h+ ζ + d) [m]

• u: flow velocity vector [m/s]

• q: mass flux vector (q = uh) [m2/s]

• p: non-hydrostatic pressure (normalised by the density) [Pa m3/kg]

• cf : dimensionless friction coefficient [-]

SWASHmakes use of a computational grid in order to approximate equation 4 and 5. The horizontal discretisation
approach of this grid differs from the vertical approach. For the horizontal direction a structured or unstructured
mesh needs to be supplied. The cells of this mesh stay constant in geometry over time. In the vertical direction,
a number of layers needs to be defined. The vertical time-varying water coulomb will then be divided over these
layers, which means that the vertical geometry does change over time.

Usage of a hydrodynamic model for the estimation of overtopping is the most complex and advanced ap-
proach. However, this does not automatically mean that this hydrodynamic modelling is also the most accurate
mode. It is important to realise that the empirical equation and the GPE are the more established solutions
for overtopping estimation, whilst the hydrodynamic model is more experimental. A limitation of SWASH is that
even though it uses vertical layers, it is a depth integrated model. This means that it is unable to represent the
overturning (plunging) waves or overhanging structures. SWASH does however account for the lack of plunging
wave dissipation via the application of a hydraulic jump analogy(Smit et al., 2013).

Numerical models are often better at describing wave breaking behaviour than spectral action balance
solving models (such as SWAN) since they incorporate breaking behaviour implicitly. Most notable is the implicit
inclusion of infra gravity wave generation in numerical models, a physical mechanism spectral action balance
solving models struggle with. It is thus wise to select a coupling point between the wave model (SWAN) and the
numerical model (SWASH) far enough offshore to incorporate wave breaking. The best location of this coupling
point can be estimated based SWAN output. Appendix E.3 shows the evolution of various parameters along the
shore normal profiles of location 1 to 3. Based on these plots, the decision has been made to fix the coupling
point to a fixed distance of 2km off shore (defined at MSL+ 0m). Increasing the size of the domain to such an
extent does however mean that directionality may play a significant role within it.

Representing directionality in the numerical model
SWASH can be used in 2 dimensional mode with optional vertical layers (2DH) or in 1 dimensional mode with
optional vertical layers (1DH). Representing the directionality of the problem is especially important when
dealing with westerly coastal storms at Eastbourne, because Eastbourne is partially sheltered from these storms
(as has been discussed in section 2.2). Because of this, attempts have been made to model waves from the
breaking point until overtopping in 2DH with the TU Delft HPC08 cluster (using up to 80 CPU’s). Sadly, various
issues regarding instability arose. After these failed attempts the decision was made to focus on 1DH modelling
due to time restrictions. 1DH modelling does also have the benefit of being much more computationally efficient,
hence usage of the HPC08 cluster was no longer required. Due to the sheltered nature of Eastbourne, wave energy
dissipation by refraction cannot be neglected however. Refraction has therefore been incorporated explicitly
with the help of a frequency-dependent refraction coefficient.

19



Implementation of refraction in 1D
If we assume the energy of waves to stay constant between wave rays as a wave approaches the shore, then one
can express the change in wave height as a multiplication of a shoaling and a reflection coefficient (see equation
6)(Judith Bosboom, 2021)∗.

H2

H1
= K∗shK

∗
ref =

√
c1
c2

n1
n2

√
b1
b2

(6)

In which the variables are defined as:

• Hm: Wave height at position m [m]

• Ksh: Dimensionless shoaling coefficient [-]

• Kref : Dimensionless refraction coefficient [-]

• cm: Wave celerity at position m [m/s]

• nm: Ratio between group celerity and higher phase celerity (n = cgroup/c) at position m [-]

• bm: Conceptual width of a wave ray at position m [m]

A 1D numerical model will be able to capture the effect of shoaling, however refraction is a 2 dimensional
problem. If one assumes the shore to be approximately uniform, then one can approximate the refraction
coefficient in the following manner according to the well-known Snell’s law.

kref =

√
b1
b2

=

√
cos(θ1)

cos(θ2)
(7)

In which θ is the wave angle at the respective location. One can explicitly account for refraction by multiplying
each wave height with this factor at the coupling point. This will not lead to a perfect representation of the
problem, since the reduction of the wave height due to refraction is a gradual process and the shore is not
uniform. However, to incorporate refraction accurately, one should turn to 2DH hydrodynamic modelling.

The refraction we try to represent is from the coupling point till the shoreline (the 1D domain). It is
reasonable to assume the waves to be approximately shore normal at the shoreline, which will simplify the
cos(θ2) term of equation 7 to 1. However, SWAN does not output individual waves, but a wave spectrum. One
can apply this method to a spectrum by multiplying each frequency bin of the spectral energy density (S(f))
with the square of the respective refraction factor, since E = 1

2ρga
2. In which θ1 is a vector with the mean

directions of the various bins. This leads to equation 8. The result of applying this correction methodology is
discussed in section 3.3.1.

S2(~f ) = cos(θ1(~f ))S1(~f ) (8)

Model discretisation
The approach uses 1D shore normal cross section bathymetry files derived from the surfzone DSM (2m) (De-
partment for Environment, Food and Rural Affairs, 2020b) using a third order spline. In order to represent
the bathymetry accurately, the computations are also discretised using 2m cells. The timesteps of the runs
are adaptive selected to match the default Courant number requirement of 0.2 ≤ C ≤ 0.5. The duration of
the simulations is 2 hours and 15 minutes, of which 15 minutes is spin-up time (The SWASH team (2019)
recommends 10 to 15% of the total run time).

Frequency dispersion should be represented reasonable if Kh ≤ 7 (The SWASH team, 2019)(in which K is
the wave number and d is the depth). The highest Kh value estimated by SWAN value was 6.24 in scenario 8 and
this was outside the area of interest, which means that frequency dispersion should be adequately represented.

In order to get stable runs for all scenarios, two different input files were used. Relatively stable runs could
be solved using a relatively small water depth threshold (DEPMIN) of 1mm, and the relatively mild Superbee
flux-limiter, whilst the less stable runs required a higher water depth threshold of 5mm, and the Koren flux-
limiter. An example of an input file describing the latter simulation can be seen in appendix D. Flux limiters are
numerical techniques that force monotonicity of the solution in order to increase stability (more info regarding
this approach can be found in Zijlema et al. (2020)).

∗Most commonly these coefficients refer to the shoaling and refraction ratios with respect to the deep water condition. However,
in this report they refer to the ratio with respect the the SWAN-SWASH coupling point.
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In order to keep the approach computationally efficient only three vertical equidistant layers have been used.
Initial comparisons between SWAN and SWASH output did however seem to suggest that using only 3 vertical
layers does not represent dissipation by surf breaking well enough. The applied solution to incorporate accurate
surf-breaking whilst keeping the computational demand low is by making 3 computationally expensive 20 layer
runs (one for each location), and adjusting the wave breaking behaviour to match the results close to the
shoreline. This approach has been applied and its results are discussed in section 3.3.

Input of the numerical approach
The numerical approach uses input calculated by the near shore wave model (SWAN) similar to the empirical
approach and the GPE. The coupling point between the SWAN model and the numerical approach is however
defined further of shore and the numerical approach allows for spectral input. Spectral wave input gives a better
description of the wave climate than the significant wave height (Hm0) and the wave period (T ). This can be
especially relevant with regards to overtopping since a wide spectrum may have long waves which are unlikely
to break, whilst a narrow spectrum with the same Hm0 and T may not include these long waves. The input
values of the numerical approach are further discussed as result of the SWAN simulation in section 3.2.

2.6 Inundation modelling
2.6.1 Numerical approach

Inundation modelling can be executed in different ways with various tools (Teng et al., 2017). The method
executed in this research makes use of a numerical hydrodynamic model (similar to SWASH) called HEC-RAS∗.
Numerical modelling was chosen since it is able to describe complex flow dynamics and does not require extensive
historical inundation data in contrast to many conceptual or empirical approaches. The HEC-RAS model was
chosen since is it an established engineering tool for which much documentation is available.

Generally, numerical inundation models solve equations based on the conservation of mass and the conservation
of momentum. Using these conservation laws to describe the motion of viscous fluid substances, results into the
well-known Navier-Stokes equations. Depth-integrating these equations, while assuming the horizontal length
scale is much larger than the vertical length scale, and assuming a constant density results into the much more
manageable shallow water equations (SWE) also known as the Saint-Venant equations. The one dimensional
version of these equations is given in equation 9 and 10 for the sake of simplicity (Zijlema et al., 2020). HEC-RAS
solves the two dimensional variant of these equations.

Conservation of volume :
∂ζ

∂t
+
∂uh

∂x
= 0 (9)

Conservation of momentum :
∂u

∂t
+ u

∂u

∂x
+ g

∂ζ

∂x
+ cf

u|u|
h

= 0 (10)

In which the variables are defined as:

• ζ: Elevation of water level with respect to the mean water level [m]

• t: Time [s]

• u: Flow velocity in x direction [m/s]

• h: Height of the water coulomb, from bottom to elevation (h = ζ + d) [m]

• x: Location in x direction of a Cartesian coordinate system [m]

• g: Gravitational acceleration (9.81) [m/s2]

• cf : Dimensionless friction coefficient [-]

The long wave assumption results into an inability to represent the progression of short waves (in contrast to
the approach SWASH used), but these are often seen as less relevant when estimating the extent and severity
of a flood. The full SWE set is therefore often used when simulating inundation.

Another popular approach is using the diffusive wave approximation to the shallow water equations (DSW).
The diffusive wave approximation is derived by assuming the exchange of horizontal momentum is dominated
by gravity, friction, and pressure. This assumption effectively allows one to neglect the local acceleration term

∗HEC-RAS is freely available at https://www.hec.usace.army.mil/software/hec-ras
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∂u
∂t and the adjective acceleration term u∂u∂x of the momentum equation (equation 10). Due to this additional
assumption, the DSW approach is less accurate than the full SWE approach. The DSW equations do, however,
allow for more efficient solving and a larger time step.

The "no inertia" approximation is often justified by claiming the flooding plain area has a slowly evolving
topography. However, whether this approximation still holds in urban areas is questionable. Costabile et
al. (2017) compared the results of a measured experiment, the full SWE and the DSW approximation. The
research concluded that the DSW approximation led to a poor description of inundation around buildings.
This poor description is caused by the DSW approximations inability to capture shock waves around buildings.
Detailed description may however not always be required for the flood susceptibility estimation, which is what
is researched by this paper. The HEC-RAS manual (US Army Corps of Engineers, 2021) recommends to always
apply both sets of equations and to only use the DSW approximation, if it proves to be valid for the task at
hand. Using the full SWE with the same discretisation may however not always be computationally feasible.

In order to compare the practical usability of both the SWE and the DSW equations, runs of similar
computational cost will be made with both approaches. This means that the computational efficiency of the
DSW will be compensated by using a spatial resolution to represent the domain. Given the restrictions in
computational resources, it was decided to use runs with a computational demand of around six hours on
typical 4 core work laptop (it is worth mentioning that HEC-RAS allows for parallel processing). To achieve this
computational cost the full SWE runs were made using a spatial grid with a resolution of 8mx8m, while the
DSW runs used a spatial resolution of 4mx4m. These resolutions may seem relatively large, but HEC-RAS makes
use of an elevation volume/area relationship to represent the underlying terrain of each cell more accurately
(see US Army Corps of Engineers (2021) for more information). The traditional Eulerian-Lagrangian Method
solver option (SWE-ELM) of HEC-RAS has been chosen over the Eulerian Method solver (SWE-EM), since it is more
computationally efficient∗. In both cases a time step was chosen based on stability.

2.6.2 The inundation domain

Ideally, one would model the entire rain catchment area in order to properly capture the catchment response
to a precipitation event. Modelling the whole catchment surrounding Eastbourne would however require more
computational power than is available. Since the flood susceptibility of the whole of Eastbourne is estimated, it
makes sense to model all areas within Eastbourne with a relatively high flood risk (defining risk as susceptibility
· consequence).

Figure 12: Left: Elevation of Eastbourne; Right: Land cover of Eastbourne

∗The exact discretisation methodology of these solvers could not be cited, since they have not been publicly published by the
US Army Corps of Engineers.
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The flood susceptible area (and thus the inundation domain) of Eastbourne is estimated based on elevation
data (figure 12, left) and land cover data (figure 12, right). Larger versions of these maps are visible in appendix
E.6. The north and east sides of Eastbourne have large topographic gradients. Severe inundation is unlikely to
occur in these areas, since water can flow downstream easily. In the middle of Eastbourne (technically outside
of the town borders) we find large flat fields. These fields are likely susceptible to fluvial flooding, but the
economic and non-monetary consequences are relatively low. This case study will thus focus on the urban and
sub-urban south-eastern part of Eastbourne (the hashed region in figure 12). This susceptible area with high
monetary and non-monetary value (thus high risk) will be used as the inundation domain.

A numerical inundation model requires land cover data to estimate the imperiousness and roughness of the
cells. This research makes use of the UKCEH LCM2019 data (UK Centre for Ecology & Hydrology (UKCEH),
2020) which does not have standard and published imperiousness and roughness values. Because of this, the
UKCEH LCM2019 land cover types have been matched to their equivalent parts used by the US Army Corps
of Engineers (2021). The used roughness and impervious values are presented in table 4.

ID Name NManning %Impervious
1 Deciduous woodland 0.16 0
2 Coniferous woodland 0.16 0
3 Arable 0.05 0
4 Improve grassland 0.04 0
5 Calcareous grassland 0.04 0
6 Acid grassland 0.04 0
7 Fen 0.04 50
8 Heather 0.05 0
9 Heather grassland 0.05 0
10 Inland rock 0.03 0
11 Saltwater 0.035 100
12 Freshwater 0.035 100
13 Supralittoral sediment 0.03 0
14 Littoral sediment 0.03 0
15 Saltmarsh 0.07 75
16 Urban 0.2 90
17 Suburban 0.12 65

Table 4: Land cover classes from UK Centre for Ecology & Hydrology (UKCEH) (2020) with Manning coefficient
and impervious percentages estimated based on the HEC-RAS 2D user manual (US Army Corps of Engineers,
2021)

After the Crumbles Sewer river enters the inundation domain it flows southwards until it eventually fills the
Crumbles Pond at Princes Park. From the Crumbles Pond, water can flow via a 100 meter unnamed stream to
a culvert, from which then flows into the see. The culvert is a 2.3m square box culvert with tidal flap with a
length of 243m Eastbourne borough council (1987). The invert of the culvert is fixed atMSL−0.03m, although
the EA Lidar DSM (1m) data (Environment Agency, 2020) suggests that a 17cm layer of sediment has formed
over the years. The culvert is included in the inundation modelling via normal 2D flow between cells.

2.6.3 Overtopping boundaries

At the coastal boundaries of the inundation domain overtopping can occur. The three overtopping estimation
methodologies discussed in section 2.5 give constant average overtopping rates given a constant coastal forcing
(the peak of the storm). In order to be conservative, the largest overtopping rates of the 3 overtopping methods
have been selected per scenario. For estimation of overtopping discharge over the course of a coastal storm, use
is made of the DNV recommended typical significant wave height design storm profile (figure 13)(Nestegård et
al., 2006). The profile is based on a single tidal cycle with a peak lasting six hours.
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Figure 13: Coastal storm profile expressed relative to the maximum significant wave height from Nestegård et
al. (2006)

Using this storm profile, one could estimate the overtopping rates using all three overtopping methodologies
as they vary over time. This would be a relatively easy task using the empirical formula (discussed in section
2.5.2), a somewhat more complex task using the GPE (discussed in section 2.5.3) and a very difficult task using
the numerical model (discussed in section 2.5.4) due to the required computational demand. Hence, it was
decided to calculate a dimensionless overtopping profile by calculating the time varying overtopping rate via
the overtopping formula (equation 2) and dividing it over its maximum value. The end result of this approach
are storm profiles very similar to figure 13, but expressed in overtopping discharge instead of significant wave
height (see figure 14). These profiles can simply be multiplied with their respective constant overtopping rates
(discussed in section 3.3).

Figure 14: Coastal storm profiles expressed relative to the maximum overtopping rates calculated with the
overtopping formula (equation 2).

One can calculate the total input discharge of the overtopping boundaries by multiplying the specific dis-
charges per meter with the lengths of the shoreline segments, and summing them. Such plots give a general
description of the overtopping boundary and are included in the boundary summary plots shown in appendix
E.7.

2.6.4 Precipitation boundary

The data analysis (described in section 2.3.3) yields scenarios with a constant peak precipitation rate (similar
to the peak overtopping rate as described in section 2.6.3). One may expect, since decoupled hourly data is
used, that the found storm scenarios should also have a duration of around 1 hour. The reanalysed ERA5 data
does however not represent short but intense precipitation events properly. One can investigate this property
further by creating intensity-duration-frequency (IDF) curves with both the reanalysed ERA5 data and locally
measured data (see figure 15). These curves have been created with python code based on scripts written for
the Imperial College module "CI9-EE-21 Rainfall-Runoff Modelling and Flood Hydrology" by Dr Athanasios
Paschalis.
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Figure 15: Intensity-Duration-Frequency (IDF) curves made with ERA5 data (red) and gauged data (black).

One can see from figure 15 that the reanalysed ERA5 data does indeed severely underestimate, especially
the shorter duration events. Estimating the precipitation event duration based on the reanalysed ERA5 data,
would thus misrepresent the severity of the storms. This is why the decision was made to use locally measured
data instead of reanalysed ERA5 data.

IDF curves like the ones of figure 15 have been used to find realistic rainfall event durations that fit with
given rainfall intensities and return periods. Precipitation intensity values are taken from the extreme value
analysis results (see section 3.1.2) and fitting return periods are found from the original marginal (Pareto)
distributions. Now with the return periods and precipitation intensities determined, one can use IDF curves
based on measured data to find realistic precipitation event durations. The found durations using this method
range between 5 and 13 hours and seem reasonable.

Following the current design practice, a specific design precipitation storm profile type is used. The UK’s
flood estimation handbook recommends using a hyetograph profile of the form as shown in figure 16, which is
implemented in this research (Kjeldsen, 2007). Looking at the worst coastal storms and rainfall events, no clear
evidence suggesting a certain amount of time-lag was found. Because of this is chosen to synchronise the peaks
of the precipitation event and the overtopping.

By multiplying the precipitation intensity with the total area, one can calculate the total influx of water as
a discharge. This discharge has been plotted over time and is visible per scenario in the boundary condition
summary (appendix E.7).

Figure 16: Precipitation hyetograph block profile of scenario 7 based on Kjeldsen (2007)

2.6.5 River boundaries

There are two types of river boundaries within the inundation domain; namely, an upstream boundary and
a downstream boundary. Firstly, there is a single upstream river boundary within the domain where the
Crumbles Sewers meets the northern domain edge. Making a worst case scenario assumption, the water level
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at this boundary is fixed around 10cm below ground level (at MSL+ 2m) for each scenario. Representing the
catchment response to precipitation via empirical relations has been considered, but was turned down due to
time constrains.

Secondly, there is one downstream boundary where the culvert of the Crumbles Pond meets the sea. The sea
level during the computation is simulated as a simple M2 tidal cycle + an additional storm surge level outputted
by the SWAN model. The tidal cycle is synchronised with the coastal forcing since the storm profile (figure 13)
is based on a single tidal cycle. This water level boundary is shown per scenario in the boundary condition
summary (appendix E.7).

Additional tidal amplitudes are as likely to increase the water level as they are likely to decrease it, which
is why they have been omitted. The susceptibility of Eastbourne to tidal flooding is not further investigated
within this research.

2.6.6 Flood severity comparison

Expressing the severity in a simple comparable manner is less straightforward than one may think. Inundation
maps are very insightful and convey especially much spatial information, but they are difficult to compare.
Hence, the decision is made to create inundation curves showing the percentage of area versus the minimal
inundation height as well. Inundation of non-urban area is filtered out in these curves since the consequences of
flooding non-urban area are generally much lower than urban/sub-urban area. Figure 17 shows an example of
such curves as flood scenario 1 progresses over time. It shows, for example, that about 8% of the domain had an
inundation of at least 0.5m (whilst being classed as urban/sub-urban), at 1 day and 5 hours into the simulation
(the red line). The red line shows the moment in time at which the volume of water within the inundation
domain was at its maximum. This snapshot of the flood event is chosen to represent the worst moment and
will be used in the comparison.

Figure 17: Inundation curve showing the percentage of the area against the minimal inundation depth as scenario
1 progresses over time. Start of scenario at 01-01-2021 00:00:00. Red line: Maximum water volume inside the
domain
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3 Results
The results of this research have been divided in four sections. Firstly, section 3.1 discusses the results of the
statistical analysis and the created storm scenarios. Secondly, section 3.2 discusses the output of the wave model
SWAN, which is used as the boundary condition for the overtopping estimation methodologies. Thirdly, section
3.3 discussed the output of the three overtopping estimation methodologies. Lastly, section 3.4 discusses the
inundation maps, the inundation curves, and compares these based on the two governing equations.

3.1 Statistical analysis and model scenario selection
The first sub-question as defined in section 1.2, is: "How to generate representative storm scenarios?" In order to
answer this question one should first research local historical data, followed by the creation of various scenarios.
The results of an exploratory data analysis are presented in section 3.1.1, whilst the scenario creation results
are presented in section 3.1.2. This first sub-question is further addressed in section 3.4, which discusses the
inundation severity of the various scenarios.

3.1.1 Exploratory data analysis

An exploratory data analysis for the creation of model scenarios has been conducted in two stages. In the first
stage the general dependence structure is analysed by interpreting the correlation matrix containing various
input variables (figure 18). In the second stage the extremal dependence is further analysed by calculating the
Spearman correlation over a rolling window. A closer look is then taken at the relationship of precipitation and
wave height by conditioning the significant wave height distribution on precipitation (figure 19).

General dependence structure
The first step of the exploratory data analysis is analysing the general dependence structure of the variables
via a correlation matrix. The entire correlation matrix is visible in appendix E.1 and a smaller matrix is shown
in figure 18. First of all, we can clearly see a very strong dependence dependence between the significant wave
height and the mean wave period. This is what one would expect because higher waves are longer as well and
will therefore have larger periods (Holthuijsen, 2007).

Secondly, we find another very clear dependency between the significant wave height and the wind speed.
This makes much sense as well since the wind generates wind waves (which dominates over swell).

Thirdly, we find a very clear dependence structures between high waves and winds towards a direction
around −1.23rad from north. This means that very high waves (> 5m) have only been generated in case of
a south-westerly wind. This make much sense when looking at geometry of the English channel (figure 3). A
wind from the south-east has more fetch length than from any other direction. Waves can also be generated
from the north-east, but these waves cannot grow as big since they have to pass the narrow part of the channel
at Dover. Including a north-easterly storm scenario is however interesting, since Eastbourne does not have any
natural protection (cliffs) against these storms.

Lastly, no very clear dependence structure can be observed related to precipitation from these plots. It looks
like there may be some positive dependence between precipitation and wind speed, but no conclusions can be
derived from this. The next section investigates this relation further.
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Figure 18: Correlation matrix showing dependence structures of various input variables
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Tail dependence
A very intuitive manner of describing tail dependence is by plotting the discrete conditional probability density
distributions of two variables. Figure 19 shows the probability density distribution of the significant wave height
conditioned on the precipitation. One can clearly see that a higher precipitation condition does also lead to a
higher chance of large waves.

Figure 19: Distribution of the significant wave height of wind waves conditioned on precipitation

A more formal way to illustrate a tail dependence structure is via χ & χ̄ plots following Coles et al. (1999)
or by plotting the multivariate conditional Spearman’s correlation coefficient (MSC) over a sliding window
following Schmid & Schmidt (2007). Both methodologies have been implemented in the texmex package of the
programming language R. Plots of the latter approach are shown in figure 20 and 21. The χ & χ̄ plots have also
been made and gave similar results, which is why they have been omitted.

(a) MSC on a rolling window illustrating very strong
positive tail dependence between Hm0 and u10.

(b) MSC on a rolling window illustrating moderate positive
tail dependence between Hm0 and storm surge.

Figure 20: The bivariate case of the multivariate conditional Spearman’s correlation coefficient (MSC) over a
rolling window showing the extremal dependency of u10 on Hm0 (20a) and storm surge on Hm0 (20b).

In the bivariate case, the MSC as defined by Schmid & Schmidt (2007) is an alternative to the traditional
Spearman’s ρ coefficient and can be interpreted as such. The Spearman correlation coefficient is bounded by
[−1, 1], which indicates a perfect Spearman correlation (the variables are perfect monotone functions of each
other). Using a sliding window of data is a way of showing tail dependence. One calculates the MSC value
multiple times whilst conditioning on both variables as we require them to be larger, similar to what is done in
figure 19.

Figure 20 shows 2 clear examples made from the ERA5 data close to Eastbourne. Figure 20a shows the
relation between the significant wave height and the wind speed at 10m. We see an already relatively strong
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Spearman correlation coefficient of around 0.7 when using all data (0th percentile). However, as we move further
up the tail, and require both variables to be large, we see this coefficient increase even further. This shows that
during mild conditions there is some correlation but also some randomness. However, when high waves or fast
winds occur, then there is an even stronger dependency.

We find a similar relation when looking at the MSC’s between the significant wave height and storm surge
in figure 20b. When including all data, we find almost no correlation at all. But, as we move further up the tail
of the distributions, we see a clear increase of the correlation. This makes perfect sense as well, since (wind)
waves and surge are both driven by the wind. Including all data means that many calm sea states are included,
which again means much randomness. And this random part is once again removed as we require our variables
to be larger.

Now, having illustrated the concept of the MSC on a sliding window with two relatively trivial relationships,
we once again look at the relationship between the significant wave height and precipitation. Including all data
we find a very mild MSC of around 0.1. However, similar to the previous two cases, we find that the correlation
coefficient goes up as we require the variables to be larger. This can also be explained from a physical standpoint;
the amount of precipitation which can fall is dependent on the amount of moisture content carried by the wind.
More wind will thus both increase the (wind) wave height and the influx of moisture content, which in turn
leads to precipitation.

Figure 21: MSC on a rolling window illustrating a moderate positive tail dependence between Hm0 and precip-
itation.

A positive tail dependence indicates that one should not assume the significant wave height and the precipi-
tation intensity to be independent when considering large values. Making this assumption regardless would lead
to an underestimation of especially compound flood events. The susceptibility of Eastbourne to such events is
further investigated in section 3.4.1.

3.1.2 Scenario creation

The primary variables, as defined in section 2.3.3, of this research are the significant wave height (Hm0) and
rainfall intensity (Ir). By applying the conditional approach (Heffernan & Tawn, 2004), one can represent the
dependence structure of variables and use it to simulate more (synthetic) samples as is explained in section 2.3.3
and appendix B. Using both the synthetic samples and the measured samples one can create joint exceedance
curves with fixed return periods. The mathematical description of such plot is P (Hm0 ≥ x, Ir ≥ y) = T−1.
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Figure 22: Scenarios with a return period of 100y created via the Heffernan & Tawn (2004) approach. Red
dots: Era5 samples; amber dots: simulated samples

Figure 22 shows the 7 south-westerly storm Hm0 and precipitation scenarios as defined by their return period
ratio in table 1 of section 2.3.2. The added benefit of using the joint exceedance curves is that the limits (the
red marker and pink marker in figure 22) describe the singular marginal (Pareto) distributions. This means
that the conditional approach effectively includes the univariate approach (as explained in section 2.3.3). The
downside of this is that the limits may not be very realistic scenarios.

Figure 22 also clearly illustrates the positive dependence between significant wave height and precipitation at
Eastbourne, as was predicted by the results of the exploratory data analysis (section 3.1.1). We sea especially
clearly that extreme high waves (Hm0 > 7) are almost certainly accompanied by some precipitation. Only
treating a singular coastal scenario without any precipitation would thus be unwise.

Secondary variables are defined as variables chosen based on their dependence structure with a primary variable.
The likeliest value of a secondary variable is chosen, given a determined value for the primary variable that has
the strongest physical relationship. Primary variable values are the scenarios given in section 22. The method
used to estimate the likeliest secondary variable values is summarised in section 2.3.3 and further explained
in section B. By applying this methodology, the full scenario input conditions are found. These scenarios are
shown in table 5.

Scenario RPHm0/RPIr Hm0 Ir Tm−1,0 surge θpeak[◦|N] ‖u10‖
1 ∞ 8.02 0. 9.50 0.97 -70.32 24.73
2 500 7.81 2.93 9.48 0.88 -70.32 24.26
3 10 6.77 4.41 9.03 0.76 -70.32 22.23
4 1 5.99 5.16 8.62 0.64 -70.32 20.41
5 1/10 5.12 6.03 8.05 0.57 -70.32 18.71
6 1/500 3.30 7.43 6.84 0.43 -70.32 14.76
7 0 0. 8.78 6.55 0.26 -70.32 12.69
8 ∞ 5.87 0. 7.88 0.69 117.46 19.58

Table 5: Scenario input conditions∗

The scenarios in table 5 match the findings of the exploratory data analysis. We find that scenarios with
a high significant wave height (Hm0) have a longer wave period (Tm−1,0), a higher storm surge (surge) and
a stronger wind speed (||u10||). Notable is the wave period of scenario 8 (north-easterly storm). The north-
easterly storm appears to have a shorter wave period with regard to its wave significant height, indicating a
higher wave steepness (Wave height over wave length) than the south-westerly storm variant.

∗The wind direction and the wave direction showed an almost 1 to 1 dependency, which is why only one directional variable
has been included in the scenario definitions.
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3.2 Nearshore wave model (SWAN)
The nearshore wave model SWAN is applied in 2D to estimate wave conditions for overtopping at the three
different shoreline segments (location 1 to 3). Figure 23 shows an example of the 2D output SWAN gives. The
output locations for the empirical formula and the GPE is at the toe of the beach∗, whilst the numerical
approach uses the conditions at 2km from the shoreline.

Figure 23: 2 dimensional SWAN output showing the evolution of the significant wave height (Hm0) in scenario 1.
The various colored markers indicate the coupling points for the overtopping methodologies.

Sea state at the toe used by the empirical formula and the GPE
It would be difficult to interpret the sea state from tables since it is described by several variables for 3 locations
and 8 scenarios. This is why these values are given in the form of a plot. Figure 24 shows the variables as used
by the empirical formula of equation 2 and figure 25 gives two alternative variables used by the GPE.

Figure 24: SWAN output at toe’s used for overtopping estimation via the empirical formula and the GPE
∗The overtopping formula (equation 2) and Bayonet GPE are both supposed to make use of wave input at the toe of the

structure. However, in the case of a beach the exact location of the toe is somewhat dubious. The eventually used location was the
edge of the SWAN domain (MSL− 2m to MSL− 3m).

32



Significant wave height (Hm0): Notably, scenario 8 has a higher significant wave height than scenario 1 at
the coupling point, even though scenario 1 has a higher significant wave height at the sea boundary. This is due
to a large amount of refraction since the coastline of Eastbourne is sheltered by cliffs in case of south-westerly
storms.

Iribarren number (ξ): The Iribarren numbers decrease as the scenarios get milder from 1 to 7, this is due to
a decrease in wave period as we see in figure 25. Notable is the lower Iribarren number of scenario 8. Easterly
storms have a somewhat larger wave steepness than westerly storms as was shown in the data analysis (section
3.1.2). One can also see that location 3 has a systematically higher Iribarren value, which is caused by a steeper
beach profile.

Crest level relative to SWL (Rc): The crest levels increase as expected when storms get milder. Notable is
location 2, which has a crest level almost a meter higher than locations 1 and 3.

Oblique wave reduction factor (γβ): We find an increasing overtopping reduction caused by the wave angle
as the scenarios get milder. This is caused by waves turning more towards the in the case of longer and higher
waves than in the case of shorter and smaller waves. Scenario 8 has very different values since this is an easterly
storm (opposing the westerly storms modelled in scenarios 1 to 7). We find lower reduction values for Easterly
storms since there are no cliffs sheltering the Eastbourne from the east side.

Figure 25: Additional SWAN toe output for Bayonet GPE

Input of the numerical approach
Instead of using parametric input, as is used by the empirical formula and the GPE, the SWASH model allows
for spectral input. Spectral input allows for a more accurate description of the sea state. The spectral input
method does not use a single wave height (such as the significant wave height (Hm0)) and a single wave period
(such as the mean wave period (Tm−1,0)) to represent the distribution of energy of a sea state. Instead SWASH
uses the distribution of wave energy expressed using the variance density over the wave frequency.

Figure 26 shows the wave spectrum input of scenario 1 to 8 at location 1. Appendix E.5 shows the wave
spectra of all scenarios for all 3 locations. Notable is scenario 8, which has more energy and a higher peak
frequency. This indicates scenario 8 has high waves, which could cause more overtopping. However, it also
shows scenario 8 has shorter wave periods, which is known to reduce overtopping.

Figure 26: Example of SWASH wave spectrum input, location 1
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3.3 Overtopping results and comparison
This section addresses the results regarding the second sub-question as defined in section 1.2: "How do different
overtopping estimation methodologies compare to each other?" First, the necessity of correcting the numerical
approach with regards to refracting and breaking is discussed, after which the overtopping results are given.
These results consist of a comparison of the outcomes of the three different overtopping estimation methodologies
as defined in section 2.5, and an analysis of this outcome.

3.3.1 Correcting the numerical approach for refraction and breaking

Explicit correction for refraction
Eastbourne lies relatively sheltered by cliffs from the typical south-westerly storm. Initial results showed that
this caused a substantial amount of refraction. Since a one dimensional approach is incapable of implicitly
including this phenomenon, it was decided to use an explicit correction methodology as explained in section
2.5.4. Applying this method gives frequency dependent refraction coefficients. Figure 27 shows the found
refraction coefficients at location 1 as an example. Note that the wave spectra, used as input for SWASH, are
multiplied with k2ref since the wave energy is proportional to H2

m0. The refraction curves of all three locations
are visible in appendix E.2. Especially shorter waves seem to susceptible to dispersion by refraction.

Figure 27: Example of frequency varying refraction coefficients, location 1. Scenario 1 and 2 overlap almost
exactly.

Figure 28 shows an example of how this approach affects the significant wave height evolution. The blue line
shows the significant wave height over a shore normal cross section as calculated by a 2D wave model (SWAN).
The orange line shows the overestimation one finds if the entire 1D wave spectrum is forced in a 1D wave model
run. The green line shows this same 1D wave model run, but now including the explicit refraction induced wave
spectrum reduction as formulated in equation 8. This 1D wave model run seems much more representative
and finds a very similar significant wave height value at the end of the SWAN domain. This confirms that 1̃m
significant wave height reduction was caused by refraction. It also shows that the approach results into a
seemingly very reasonable estimate. The red line shows the significant wave height evolution as estimated by
a 1D numerical model run that includes the explicit refraction. This run finds a somewhat higher value. This
actually expected since wave models (spectral action balance solving models) do not include infra gravity waves,
whilst SWASH does capture this energy.
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Figure 28: Significant wave height (Hm0) comparison showing the effect of refraction

Correction for accurate depth induced breaking
Initial results showed that using only three vertical layers did not lead to an adequate representation of depth-
induced wave breaking. SWASH offers to option to use additional breaking parameters to force breaking using
a hydraulic jump analogy (Smit et al., 2013). The αbreak parameter gives a range of maximum steepness
requirement, whilst the βbreak parameter gives a reduced maximum steepness requirement for active cells.

This approach is illustrated in figure 29 by comparing the significant wave height evolution of normal
simulations made 3 layers, 20 layers, and a simulation made with 3 layers while using fitted breaking parameters.
It is important to note that the break parameters are chosen in such a way to represent the wave climate at
the coastline and not further off shore. The breaking parameters giving the best results were αbreak = 0.28 &
βbreak = 0.14.

Figure 29: Significant wave height (Hm0) comparison for breaking behaviour
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3.3.2 Overtopping estimations

The average overtopping rates for the 8 different scenarios, the three different methodologies and the three main
locations are presented in plot form in figure 30. This plot form has been chosen over a traditional table, since
a table would be relatively large and difficult to interpret.

Figure 30: Comparison of the average overtopping discharge∗

One can make various observations from these findings. The most notable remarks have been listed here.

1. The numerical models seems to agree relatively well with the empirical formula and the GPE.

2. The overtopping discharges for a T=100y event seem to match with Eastbourne’s coastal flood history.
No coastal flood events, with a higher consequences severity classification than "Minor", have occurred at
Eastbourne in recorded flood history (from 1915) (Haigh et al., 2017).

3. None of the methods exhibit a clear bias based on these results.

4. The numerical model finds slightly more overtopping at location 1 + scenario 1 and location 2 + scenario
2, which may be caused by the inclusion of the infra gravity waves.

5. The empirical equation finds almost no overtopping in location 2 (higher crest level), whereas the other
methodologies do find some.

6. The three overtopping methodologies do not show the same behaviour for scenario 8.

7. GPE finds a higher mean overtopping discharge for scenario 8 than the other methods. The GPE does
however state that this scenario is well within its training data (classified as green). Whereas all other
scenarios were said to be acceptably close to the training data (classified as amber).

One can investigate the overtopping behaviour further by comparing the wave spectra of the SWAN and the
SWASH model. The SWAN model can output the 1D (and 2D) directional spectra directly, whilst for the SWASH

∗Note: All three overtopping estimation methods are said to estimate the discharge accurately within a factor of 3 of the actual
overtopping discharge(van der Meer et al., 2018)(Pullen et al., 2018)(Suzuki et al., 2017). This accuracy does however decrease for
all methods when estimating low overtopping rates (q < 1l/s).
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output Python code based on the scripts written for the TU Delft module "CIE4325 Ocean waves" by Dr.
Marion Tissier and Prof.dr. Ad Reniers has been used. Figure 31 shows the wave spectra of the two models at
the "toe" of the beach (the red dot in figure 28) during scenario 1 at location 1.

Figure 31: SWAN - SWASH wave spectrum comparison, scenario 1, location 1

Note that the empirical approach and the GPE both disregard the full (SWAN) wave spectrum and only use the
significant wave height Hm0 (given in the legend of figure 31) to represent wave energy. We find as expected
no energy in the infra gravity domain (low frequencies) of the SWAN spectrum. Also, since triads are turned off,
we find less energy in the shorter waves compared to SWASH. These two processes cause the SWASH spectra to be
much wider than the SWAN spectra. However, both the empirical approach and the GPE (the approaches using
SWAN input at the toe) do not include the width of the spectrum as input. The significant wave height calculated
by the SWAN model is slightly lower than the SWASH estimation. This could very well be a consequence of the
SWAN model not including infra gravity waves. This could also be the reason for the slightly lower overtopping
predictions by the empirical approach and the GPE found at location 1 in scenario 1 (see figure 30).

Figure 32 makes the same comparison as figure 32, but for the north-easterly storm scenario at location 3.
Location 3 is of special interest for this scenario since the wind and wave direction are almost exactly shore
normal. Refraction reduces especially the wave energy of waves with a short period as has been shown by section
2.5.4 figure 27 (and appendix E.2). However, the lack of this reduction is not clearly visible from figure 32. The
SWASH spectrum of figure 32 seems to remain somewhat more peaked than in figure 31. However, we do clearly
see the same behaviour of the spectrum being flatter than the SWAN estimation due to the previously mentioned
reasons. Notable for this scenario is that the numerical approach does not estimate the highest overtopping
volume even though the significant wave height of the SWASH model is 0.54m higher at the "toe" of the beach.
This is most likely caused by the high degree of uncertainty in all three approaches.

Figure 32: SWAN - SWASH wave spectrum comparison, scenario 8, location 3

3.4 Inundation modelling
The inundation modelling results help with answering two sub-questions. Firstly, the first sub-question "How
to generate representative storm scenarios?" will be addressed by estimating the inundation severity of the
various scenarios in section 3.4.1. Secondly, the third sub-question "What set of governing equations should be
solved when using numerical inundation modelling for the estimation of flood susceptibility?" will be addressed
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in section 3.4.2. In section 3.4.2 inundation simulations made using two different governing equations (the full
SWE and DSW) are compared and discussed.

3.4.1 Inundation severity estimation

Inundation resulting from the 8 different scenarios, as defined in section 3.1.2 by table 5, has been estimated
using the methodology as described in section 2.6. The resulting inundation maps of all scenarios are visible
in appendix E.8. Figure 33 shows the inundation maps of the two limit scenarios (scenarios 1 and 7) created
via the univariate approach (as explained in section 2.3.3). These two maps illustrate the two different flood
patterns caused by the two flood types (coastal and pluvial).

(a) Inundation extend of a once in 100 year coastal storm
(Scenario 1) using DSW equations

(b) Inundation extend of a once in 100 year precipitation
event (Scenario 7) using DSW equations

Figure 33: Comparison of inundation caused by a coastal flood event (left) and pluvial flood event (right)

One can clearly see that the pluvial flood scenario (figure 33b) results into a more spread out inundation
pattern. The reason for this is that coastal flooding is a much more local process than pluvial flooding. There
are various clear regions which remain completely dry during the coastal scenario, but do flood due to ponding
during the precipitation event. Clear examples are the area behind the harbour in the East (red marker), the
hilly area in the south-west (green marker), and the elevated district (Roselands) in the west (orange marker).
The two western areas remain dry during the coastal event due to their topography, whilst the area in the East
is protected by the harbour (water can freely flow away into the harbour).

Inundation curves have been generated following the method as described in section 2.6.6. These curves (shown
in figure 34) illustrate not only the extent of the flooding but also the severity. The y-axis of this plot gives
the percentage of the flood domain, whereas the x-axis gives the minimal inundation depth found on that
percentage of the flood domain. For example, scenario 1 resulted into around 8% of the inundation domain
having an inundation depth of 0.5m whilst being classed as urban/suburban.
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Figure 34: Inundation comparison of the 8 scenarios calculated via the DSW approximation on a 4mx4m grid.
Scenario definition is shown in table 1 and the input conditions are given in table 5.

Based on the inundation curves of figure 34 one can make the following observations:

• The scenarios with intense coastal forcing lead to the most severe inundation. Scenario 2, a com-
pound storm with intense coastal forcing and mild precipitation (defined via a return period ratio of
RPHm0/RPIr = 500), leads to the most severe inundation.

• All scenarios with precipitation lead to more inundated area than scenarios without precipitation.

• A once in a hundred year south-westerly coastal flood (scenario 1) leads to more inundation than a once
in a hundred year north-easterly coastal flood (scenario 8). This is most likely caused by the higher storm
surge which is affiliated with the south-westerly storm and the lower wave period which is affiliated with
the north-easterly storm.

3.4.2 Comparison of governing equations

Inundation curve comparison
The inundation curves show in section 3.4.1 (figure 34), were created by solving the diffusive wave approximation
of the shallow water equations (DSW) with a 4mx4m (referred to as "high") spatial resolution. Figure 35 shows
these same curves, but this time the full set of shallow water equations (SWE) have been solved with an 8mx8m
(referred to as "low") spatial resolution. Both methods seem to yield similar results, but we can find some
notable differences by subtracting the two results as is shown in figure 36.

Figure 35: Inundation comparison of the 8 scenarios calculated via the SWE approximation on an 8mx8m grid

Figure 36 is the result of subtracting the low spatial resolution SWE curves (figure 34) from the high
spatial resolution DSW curves (figure 35). Positive values do thus indicate that the DSW simulations find more
inundation. The DSW simulation finds significantly more inundation for all scenarios with precipitation, whilst
scenarios without precipitation seem to be less effected. This effect could be caused by the different governing
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equations, but it is more likely to caused by the different spatial resolution. Coarsening the spatial resolution
causes the topography to flatten. This means that smaller local depressions become less deep and thus less
water will accumulate. This also explains why we only see this phenomenon at scenarios with precipitation.
Namely, the precipitation causes inundation in the form of local ponding, which are precisely the depressions
which get flattened.

Figure 36: Difference between the inundation curves obtained via the high resolution DSW simulation and the
low resolution SWE simulation (DSW-SWE)

This theory is further investigated by making a third type of simulation in which the DSW scheme is used in
combination with a low resolution 4mx4m spatial grid. Figure 37 compares the results of such a simulation in
the case of scenario 7 (precipitation event with a 100y return period). The figure shows that the DWE simulation
and the SWE simulation have remarkably similar inundation curves given the same spatial discretisation. Since
the other runs with precipitation show similar trends, one can conclude that the difference between the DSW
and the SWE simulations shown in figure 36 are probably mainly caused by the different spatial discretisation.

Figure 37: Comparison of governing equation and spatial resolution for scenario 7

Inundation peak time lag
When looking at the time between the peak of the flood event and the peak of the inundation (the inundation
peak time lag), one can find some notable behaviour as well. Table 6 shows this time lag for all scenarios
calculated with both the SWE and the DSW equations.

Scenario 1 2 3 4 5 6 7 8
DSW [h] 8 3 4 3 4 6 7 8
SWE [h] 7 8 3 3 4 5 6 7

Table 6: Comparison of inundation peak time lag between the high resolution DSW run and the low resolution
SWE run

First of all, we can clearly relate these values to the forced boundary conditions as summarised in appendix
E.7. The overtopping boundary has a relatively long time scale, which is why scenarios 1 and 8 find a relatively
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large inundation peak time lag as well. Ignoring scenario 2 for now, we find that if present, the inundation peak
time lag is mainly dominated by precipitation. Simulations with shorter precipitation events such as scenarios 3
and 4 find smaller inundation peak time lags, whilst scenarios with longer precipitation events such as scenario
7 find larger inundation peak time lags.

Secondly, when comparing the time lags of the high spatial resolution DSW simulations with the low spatial
resolution SWE simulations, we find a clear relation with the notable exception of scenario 2. The SWE
simulations have a systematically lower time lag, which indicates a narrower outflow discharge curve. This
concept is illustrated with help of a simple box model in figure 38. By narrowing the outflow curve one
effectively decreased the amount of time in which Qin > Qout holds. In this simple box model, maximum
volume is found at the tipping point of Qin = Qout. One can once again relate this change in behaviour to the
change in spatial resolution. Reducing the spatial resolution does also reduce the representation of obstacles,
which thus reduces the implicit roughness. With this smoother version of the domain, water is able to flow out
of the domain more easily, which thus narrows the outflow curve.

Figure 38: Illustration of the inundation peak time lag phenomenon using a simplistic box model

Scenario 2 displays somewhat different behaviour, which can be explained in a similar fashion. The high
spatial resolution DSW simulation reaches peak inundation directly after the precipitation event, whilst the low
spatial resolution SWE simulation reaches it at a later point when the overtopping influx reduces. Precipitation
generally has a longer flow path towards the river or the sea than overtopping due to its large spatial cover.
Reducing the implicit roughness by decreasing the spatial resolution would thus effect the outflow curve of
precipitation more than the outflow curve of overtopping. This effectively reduces the respective inundation
contribution of the precipitation. As noted on before, the reduction in local ponding by using a coarser grid
does also reduce the amount of precipitation induced inundation. This reduction of contribution is likely the
cause of why the overtopping boundary dominates the inundation peak time lag over the precipitation boundary
for the SWE simulation and not for the DSW simulation. This change in behaviour does explain the peculiar
DSW-SWE curve shown in figure 36 too.
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4 Discussion
This chapter serves to reflect on the methodologies proposed by section 2 and the subsequent results as shown
in section 3. Firstly, the applied methodology is critically evaluated in section 4.1. Secondly, the results are
clarified by comparing them to the findings of previous studies in section 4.2. Both sections cover the research
chronologically following the phases as outlined in figure 2 of section 2.1. Lastly, potential implications of the
results are discussed based on personal interpretation in section 4.3.

4.1 Evaluation of applied method
This section lists various remarks on the applied methodologies of this research.

Scenario creation procedure

• There may be a bias in the representation of marginal distributions due to the applied decoupling method,
which may include some double counting. Due to the multivariate nature of the approach decoupling of
data is relatively difficult. The applied decoupling approach consisted of using the daily maxima instead
of defining various separate storm events. Using the daily maxima instead ensures the structure of the
data remains and it is easy to implement, but can lead to double counting of longer storms.

• The selection of the duration of both the coastal forcing and the precipitation event are not derived via
a statistical approach. The duration of the precipitation was chosen based on the inundation duration
frequency (IDF) curves, in order to correct for the negative bias of intense precipitation events with a
short duration of the ERA5 data (Jiang et al., 2021) (Kawohl, 2020). Whereas the duration of the coastal
storm has been based on current design practice. An alternative method of including duration in the
statistical scenario creation is suggested in section 5.4.

Coastal boundary representation

• It should be noted that an attempt was made to numerically model the entire surfzone till overtopping
in 2DH using the hydrodynamic model SWASH on the TU Delft HPC08 cluster computer. Regrettably,
many issues regarding instability were encountered. Stability was only achieved by adding much numerical
diffusion, which altered the solution to such extend that it was decided to forgo this approach and focus
on 1DH.

• The applied methodology to represent storm surge is somewhat simplified. Storm surge levels have been
estimated based on tidal gauge data and have been applied as constant in both space and time. SWAN has
the ability to compute local wave set-up, but this has been turned off in order to prevent double counting.
Assuming storm set-up as constant in space is reasonable due to the size of the domain, and assuming a
constant storm surge over time is conservative. However, using a time varying storm surge profile based
on the significant wave height profile, would have been more representative.

• The numerical overtopping approach includes the surf zone in an attempt to capture depth-induced wave
breaking more accurately than the heavily parameterised approach applied by SWAN. It was however
difficult to pick a well defined coupling point based on breaking characteristics, even if use had been
made of scenario and location varying points. Because of this, the SWASH model will not fully capture all
depth-induced breaking for all location and scenario combinations.

• A large remark on the numerical approach is the overtopping discharge found during the 20 layer com-
putations. The 20 layer computations found up to 6 times more overtopping as was found using only 3
layers. Suzuki et al. (2014) performed a sensitivity analysis and concluded that numerical overtopping
estimation is much more sensitive to changes in the numerical discretisation than the representation of
wave transformation. Using more than 3 layers for overtopping estimations seems unconventional, and
no further information could be found regarding this phenomenon. The 20 layer computation seemed to
grossly overestimate, however, judging from the estimations made using the empirical formula and the
Gausian process emulator (GPE). The overtopping estimations made with three layers whilst fitting wave
breaking behaviour on the 20 layer simulations, did however agree very well with the overtopping formula
and the GPE.

• A shortcoming of all three overtopping methodologies, as applied in this research, is the exclusion of
morphodynamics. The coast of Eastbourne is protected by a shingle beach. The morphology of shingle
beaches can drastically change over the course of a coastal storm, which can even lead to a breach. Such
a breach would lead to a much more intense and localised flood event than considered in this research.
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Inundation severity estimation procedure

• The representation of the incoming river boundary, as fixed at a high water level, may lead to some
overestimation of the fluvial flood susceptibility. The modelled river (the Crumbles Sewer) has a relatively
strong tidal character, which is not well captured because of this assumption. This misrepresentation
means the outflow culvert has to discharge a relatively high baseflow, which reduces its efficiency in
reducing the inundation severity.

• This research used the worst case scenario assumption: "the urban drainage system is filled completely".
This assumption is conservative, but can lead to misrepresentation of the flood susceptibility. The flood
susceptibility will overestimated because of this assumption. This overestimation will most likely be larger
for pluvial flood events due to the global nature of precipitation, whereas the more local overtopping is
more likely to overload the local urban drainage capacity.

• The inundation domain definition has a large direct influence on the inundation curves. By defining the
inundation boundaries further land inwards, one effectively raises area susceptible to pluvial flooding,
whilst the area susceptible to coastal flooding will remain mostly unchanged due to its local nature. The
inundation modeller can thus directly effect the respective importance of pluvial and coastal flooding by
defining the inundation boundaries.

4.2 Clarification of results and comparison with previous studies
In the statistical analysis, presented in section 3.1, various relations between variables were found and used
for scenario creation. Most notable was the positive relation between the significant wave height and the
precipitation intensity. A positive relation between (wind) waves and precipitation would be relatively trivial
given a positive partial dependence structure between wind speed and precipitation intensity. Such dependence
structure matches the findings of Zscheischler et al. (2021). They researched the spatial structure of this relation
in central Europe and found Spearman ρ correlation coefficients up to 0.7. Making the found result even more
plausible is the yet to be published results of an ongoing research by Halliday et al. (2020). They found a
nation-wide correlation between wind speed and pluvial flooding, which was especially strong in the south-west
of England. An explanation for this relation is that the amount of precipitation which can fall, is dependent
on the influx of moisture content carried by the wind. In other words, higher winds means more rain can be
supplied. Another study, Paprotny et al. (2018), confirms these findings by finding an especially large correlation
between storm surge and precipitation in the West of the UK as well.

Another reason for this result could be based on directionality. south-westerly winds are more likely to carry
large amounts of moisture since there is no landmass on this side. The results showed that large storms in the
English Channel mainly propagate from the south-west to the north-east. Winds from this direction do have a
longer effective fetch length, which allows for more energy transfer and thus larger waves. However, according
to the results rared and milder storms can also propagate from the north-east to the south-west. This result was
also found by Dhoop & Mason (2018), which stated that only 2 mild storms from the north-east have occurred
in the last 16 years.

The inundation duration frequency (IDF) curves based on ERA5 precipitation data showed a negative bias
regarding intense short-term events. This phenomenon is a known flaw of the ERA5 precipitation data and has
been shown by many previous studies such as Jiang et al. (2021) and Kawohl (2020).

The three overtopping models gave relatively similar results, which gives strength to their validity. When
considering the known uncertainty of the techniques, these predictions seem even more reasonable. All three
methods are said to predict overtopping discharge accurately within a factor of 3 of the actual discharge (van der
Meer et al., 2018)(Pullen et al., 2018)(Suzuki et al., 2017). All estimations larger than 1l/s seem to be within
this factor of 3 of each other. Lower estimations do diverge more, but difficulty with the estimation of low
overtopping discharge is a known flaw of all three methods.

Another indication of the overtopping estimations being valid is the coastal flood history of Eastbourne. No
very large overtopping discharges (q > 100l/s) have been recorded by in UK’s coastal flooding database (going
back to 1915) (Haigh et al., 2017). Hence, it makes sense that the found overtopping discharge predictions are
maximally 10l/s. Regrettably, there is no data available to compare the overtopping predictions against. This
would have given much insight regarding the accuracy of the three approaches.

Furthermore, the observed spectral behaviour of the SWAN and SWASH model seem to agree well with the
findings of Ryu et al. (2020). The research showed that SWASH was able to represent wave transformation
accurately whereas SWAN estimated and overly peaked spectrum. This result is however somewhat trivial given
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SWAN’s incapability of representing the infra gravity domain (Filipot & Cheung, 2012) and the fact that three-
wave interactions have been excluded. However, the estimated loss of wave energy caused by the exclusion of
the infra gravity domain is moderate, which explains why the SWASH method does not give substantially larger
overtopping discharges.

The areas with systematically low inundation seem to agree fairly well with the low flood risk zones of the
UK’s national "Flood Map for Planning" service∗. This is however most likely mainly a function of the local
bathymetry. Inspecting the current Eastbourne Strategic Flood Risk Assessment report (Scott Wilson, 2008),
one finds extensive research on overtopping induced flooding. The overtopping inundation maps of Scott Wilson
(2008) agree very well with the inundation maps of scenario 1 (a once in a 100y overtopping event). The
inundation found by Scott Wilson (2008) is more severe than estimated in this report, but they also used a
larger return period (500y).

Conversely, the Eastbourne Strategic Flood Risk Assessment has not treated pluvial flooding in much detail,
even though they do identify it as a threat. However, in 2013 nation wide assessment regarding pluvial flooding
has been executed via the "Risk of Flooding from Surface Water" map (Environment Agency (EA), 2019). They
found milder inundation, but this is can be explained by their inclusion of the urban drainage system (using a
steady outflow across the catchment of 12mm/hr) and their shorter event durations (1, 3 and 6h). The areas
of severe inundation do seem to match the results of scenario 7 relatively well. Regrettably, no nation-wide or
local compound flood simulation result could be found for validation purposes of scenarios 2 to 6.

The differences in the inundation results of simulations made with the full shallow water equations (SWE) and
the simulations made with the diffusive wave approximation seemed overshadowed by the change in spatial
resolution. The observed differences between the simulations (change in inundation severity and a change in
the inundation peak time lag) match the findings of Ozdemir et al. (2013). In theory the full SWE should lead
to a better representation of the inundation caused by a flood event. Costabile et al. (2017) even showed that
the local difference can be substantial. However, the gain in computational efficiency by choosing the DSW
equations did allow for a better representation of the topography, which seems more important in the grand
scheme. Especially when estimating the total flood susceptibility via inundation curves, we found very similar
results if the spatial resolution matched. Regrettably, there is no flood inundation data available to compare
the estimations against. Such data would have been valuable to this research since it would allow for prediction
quality assessment.

Lastly, assuming the DSW runs are the most representative, we found that scenario 2 leads to the most severe
inundation. Scenario 2 is a compound storm scenario with extreme coastal forcing and a mild precipitation
event. This results match the findings of Hendry et al. (2019). They stated that especially locations with
a south-western coast climate have a relatively high chance of compound flooding. They also state that this
relation has most likely been underestimated in risk assessment due to a lack of consideration.

4.3 Potential implications
The results showed that if one did not account for compound effects, then they would have made a slight
underestimation regarding the flood susceptibility of Eastbourne. This underestimation would, however, have no
significant effect on decision making regarding flood mitigation strategies most likely. The positive dependency
between precipitation and wind waves is, however, a relation which varies over space. Areas on the south-
west coast of the UK have, for example, have shown a stronger positive correlation (Halliday et al., 2020).
One should thus include compound storms in flood susceptibility assessments, unless historical data shows no
significant positive dependency between flood driving mechanisms. This can be shown by for example plotting
the Spearman rank correlation coefficient over a sliding window, as was done in this research.

The three overtopping estimation methodologies showed similar results. The numerical approach takes ad-
vantage of using the entire wave spectrum and includes better representation of wave transformation, but the
numerical discretisation leads to much added uncertainty. The empirical formula and the GPE are well es-
tablished engineering methodologies, but simplify the problem and are known to be imprecise. The results of
the three overtopping methodologies as applied in this research agreed well, and no conclusive best approach
could be defined. The numerical approach does however look relatively promising. See 5.4 for recommendations
regarding further research on this topic.

∗The "Flood Map for Planning" service provided by the UK Environment Agency (EA) and freely available at https://
flood-map-for-planning.service.gov.uk
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The inundation modelling results showed that increasing the accuracy of the topography can have a more
significant impact on the results than using a more physically accurate set of governing equations. This is
especially vital if the computational demand is large and the modeller has to decide between a high spatial
accuracy or a more accurate representation of physics. This result was found by comparing spatial discretisations
of a 4mx4m and an 8mx8m grid. One can however hypothesise, that by increasing the spatial accuracy, at
some point, a tipping point is reached at which using a more accurate set of governing equations does become
more influential. This concept is discussed as a recommendation for further research in section 5.4.
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5 Conclusion
The goal of this research is to analyse the differences between various flood susceptibility estimation techniques,
in order to clarify the strengths and weaknesses of these respective techniques. The coastal town of Eastbourne,
located at the south coast of England, serves as a case study. Both pluvial, coastal, and compound storm
scenarios have been modelled with multiple techniques and the results have been analysed. The objective of
this project has been converted to the following main research question:

How do different modelling techniques influence the overall flood susceptibility estimation?

This question has been subdivided into three manageable sub-questions as shown in section 1.2. First, the
main findings regarding these three respective questions are discussed in section 5.1 to 5.3. Subsequently, a
recommendation regarding future research on this topic is given in section 5.4.

5.1 Representative storm scenario generation
The coastal town of Eastbourne has been chosen for case study based on its interesting flood characteristics.
An exploratory data analysis was executed to find notable dependence structures between the flood related
variables. The analysis showed a moderate positive dependence structure between the significant wave height
and the precipitation intensity. Such a dependency could signal a high compound flood susceptibility, an area of
research which has recently been gaining attention. Subsequently, two extreme value analysis methodologies were
executed for storm scenario creation. A traditional methodology (the peak of threshold (POT) approach), which
does not allow for compound events, and a more complex methodology (the conditional approach (Heffernan &
Tawn, 2004)) which does.

The different storm scenarios displayed vastly different inundation behaviour based on the magnitude of
forcing at the various boundaries. Coastal storms induced a more intense localised inundation pattern, whereas
precipitation storms led to more inundated area in the form of less severe, more globally distributed ponding.
The severity of the various scenarios were objectively compared via inundated area curves. The most severe
flooding was induced by storm scenario 2, a compound storm with extreme coastal forcing and mild precipitation.
Even though, a compound storm scenario led to the most severe flood event, the fully coastal storm (scenario
1) did lead to a flood event of the same magnitude. This would suggest that flood mitigation strategies, based
on the traditional POT approach, do only slightly underestimate the overall flood susceptibility in the case
of Eastbourne. Additionally, a milder north-easterly coastal storm scenario with the same return period was
simulated as well, since Eastbourne has less natural protection against such storms. However, this scenario led
to less severe flooding than the more common south-westerly storm.

5.2 Overtopping estimation comparison
Three different overtopping estimation methodologies have been implemented for the 8 storm scenarios at 3
representative locations of the coastline of Eastbourne. All three methods used input conditions calculated by
the 2D spectral action balance resolving wave model SWAN. The three methods consist of an empirical formula
(the "new" overtopping formula of van der Meer et al. (2018)), a Gaussian process emulator (Bayonet GPE
described by Pullen et al. (2018)) and a 1DH hydrodynamic numerical model (SWASH described by The SWASH
team (2019)). The application of a numerical model is especially interesting, since they allow for accurate
representation of wave transformation without relying on parametrization. A hydrodynamic model such as
SWASH implicitly includes infragravity waves, a mechanism SWAN is unable to represent, which can be of great
significance for overtopping.

The results showed that all three methodologies agree fairly well. The results did not indicate a significant
bias in one of the methods. The estimations are of the order of magnitude one would expect based on the coastal
flood history of Eastbourne. Discharge estimations above 1l/s did not vary more than a factor of three, which
is the typical confidence interval of all three methods. Estimations below 1l/s did vary more. However, the high
uncertainty regarding the estimation of low overtopping discharge is a known weakness of all three methods. For
the case study of Eastbourne, all three methods seem evenly applicable. The hydrodynamic SWASH model does
include more physical mechanisms, but its sensitivity to the numerical discretisation adds additional uncertainty.
Additionally, the hydrodynamic model methodology required explicit refraction correction, and the fitting of
breaking parameters on computationally intensive runs to perform reasonable. The numerical methodology
does, however, have the potential to outperform the empirical formula and the GPE due to its ability to include
more physical processes.
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5.3 Governing equations of inundation modelling
The hydrodynamic model HEC-RAS (described by US Army Corps of Engineers (2021)) has been used to model
the inundation of the 8 different storm scenarios, in order to estimate the flood severity and the inundation
pattern. These 8 simulations have been performed twice in order to compare two sets of governing equations.
Namely, diffusive wave approximation of the shallow water equations (DSW) and the full shallow water equations
(SWE). The DSW approach is more computationally efficient, which allows for a higher spatial resolution
(4mx4m). The SWE scheme required an 8mx8m spatial resolution in order to reach a similar computational
cost, but represents the physics of flowing water more accurately.

The results showed a significant difference between the two types of simulations. Simulations made with
the SWE scheme predicted systematically less severe inundation than their DSW counter parts. And the time
between the peak of the storm and the peak of the inundation was systematically shorter for the SWE simulations
compared to the DSW simulations. Both of these phenomena can be explained as consequences of varying the
spatial resolution of the inundation estimations. Additional DSW 8mx8m simulations showed mainly small
localised differences to their SWE counter parts and the resulting inundation curves were remarkably similar.
In the case of Eastbourne it is thus most likely more accurate to use a fine spatial discretisation in combination
with the computationally efficient DSW equations, than using the physically more accurate SWE approach on
a coarser grid.

5.4 Recommendations
The execution of this project led to various recommendations for future research. These recommendations
consist of both advice on how to improve upon the applied methodology and new topics for future research.

Future research could improve the applied scenario creation methodology in the following ways:

• A more sophisticated decoupling methodology such as the method outlined by Ferro & Segers (2003) could
be performed to detach storms. Such an approach would lead to a more accurate representation of the
marginal distributions in the extreme value analysis. This does mean that separate decoupling is required
for precipitation and coastal storms, but the conditional approach of Heffernan & Tawn (2004) can handle
this by using a family of conditional models.

• Instead of using reanalysed ERA5 precipitation data and correcting its bias with a duration based on
gauged data, one can use only gauged precipitation data from the start. One may even consider using
precipitation and coastal storm duration as a third and fourth primary variable. By including these
variables as primary variables, you would be able to estimate short intense storms and longer storms with
the same return period.

The following topics for future research arose regarding the estimation of overtopping :

• Numerical estimation of overtopping could potentially estimate overtopping more accurately than the
other reviewed approaches due its inclusion of infra gravity waves and since it takes advantage of the
full wave spectrum. The results of this research and the results of Suzuki et al. (2014) showed that
overtopping estimation via hydrodynamic numerical modelling is very susceptible to changes in (vertical)
discretisation. It would be interesting to research this relation and to establish what discretisation leads
to the most accurate representation of overtopping. Such a study would benefit greatly from experimental
data such as overtopping measurement from flume experiments.

• The validity of the methodologies and their respective errors were difficult to judge in this research since
there were no measurements to compare with. A research comparing estimations to measurements is
required to define and compare the accuracy of the three approaches in a valid manner.

Recently, advances were made regarding the in situ measurement of overtopping over flood defences
(Pinnell et al., 2019). A new overtopping monitoring system called “WireWall” is being developed by HR
Wallingford. Overtopping data acquired from such a system would allow for the validation of overtopping
simulations by modelling historical events.

• The numerical model methodology was used to both improve the representation of wave transformation
and to predict overtopping. It would be interesting to see how the empirical formula and the GPE perform
if wave transformation from breaking point till the toe was estimated via numerical modelling.
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The following topics for future research arose regarding the estimation of flood severity via inundation modelling:

• The results showed that spending computational resources on a finer spatial discretisation was more
beneficial than spending it on a more physically accurate set of governing equations. One can, however,
hypothesise there to be a tipping point, at which, it is more beneficial to use more accurate governing
equations over an even finer spatial discretisation. Would the found results for instance still hold if spatial
resolutions of 2mx2m and 4mx4m had been used? And subsequently, how fine should the resolution
actually be for accurate flood susceptibility estimation based on inundation curves in an urban area?

Such a study would benefit greatly from flood inundation data. Promising advancements regarding flood
mapping are currently made within the field of remote sensing. Traditional optical satellite imaging
has difficulty with regards to cloud coverage. Microwave based flood mapping does, however, allow for
inundation estimation during cloudy storms (Anusha & Bharathi, 2020). Such a technique could be used
to validate inundation estimations by comparing the measured inundation data to simulations of the
historical event.

• The applied approach could be extended for risk analysis and subsequently economically optimised risk
mitigation strategies. First of all, one can use inundation curves for the objective assessment of flood
susceptibility by comparing inundation curves of various areas. Secondly, one can use the output of the
inundation model (inundation depth and flow velocity) together with cadastral maps and population data
to estimate areas with high risk. Objectively identification of these areas is important for the development
of effective flood risk mitigation strategies.

Lastly, in this research we found that a compound flood scenario led to the most severe flood. Regardless,
it was found that the exclusion of compound flooding in risk assessment, would most likely lead to a decent
representation of the actual risk in the case of Eastbourne. It would be a very valuable tool to be able to
estimate when computationally intensive compound flood simulations are required. In this research a moderately
strong positive tail dependence structure was found between the significant wave height (Hm0) and the rainfall
intensity (Ir). One can speculate that the strength of this tail dependence may be a valuable parameter to
estimate whether compound flood assessment is required or not. This concept could be further investigated by
estimating the flood susceptibility as executed in this report at various locations.
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Appendices
A Summarising current flood susceptibility assessment practice
This appendix gives a summary of the original literature research report written for this thesis. The full original
report was not written with the intention of making it publicly available, but the report has been rewritten for
the technical writing module (WM0201TU-ENG) taught at TU Delft. This rewritten version of the report is
available here∗.

A.1 General
Much research has been done on flood risk analysis, and many methodologies have been established. Giving a
complete overview all methodologies is beyond the scope of this research, but having a thorough understanding
of the commonly applied methodologies is required. This section will thus attempt to give a concise overview
of the currently commonly used methodologies based on the physical processes represented by the flood risk
assessment. The heading of table 7 gives 4 main flood driving mechanisms. The body of this table lists often
treated processes per flood driving mechanisms.

Coastal flooding Fluvial (river) flooding Pluvial flooding Ground water flooding
Flood defence failure Baseflow Areal runoff Local water bodies
Infra gravity waves Flood defence failure Overland flow Precipitation
Overtopping/Overflow Flood wave propagation Precipitation Soil conductivity
Sea level rise Precipitation Urban drainage Storage capacity
Storm surge Overland flow
Tides
Tsunamis/Meteo tsunamis
Wind waves

Table 7: Flood driving mechanisms and processes being treated in conventional in risk analysis.

A.2 Spatial scale
Risk assessment methodologies are often differentiated based on the size of the area of interested. The UK
methodology for national-scale flood risk assessment for example is quite general and simplistic, but therefore
widely applicable and rigid. This methodology defines flood planes as areas protected by a group of flood
defences. The probability of failure of a flood defence is estimated based on the design failure probability of
the defences and failure is assumed independent. Multiple scenarios are created and the flood intensity is based
on empirical relations. Next a inundation shape is assumed based on the type of flood event and flood depth
is again estimated via empirical relations. Many scenarios are then ran through this procedure and a flood
probability map is created (Hall et al., 2003). This procedure does not represent many physical processes. But
again this is the trade off made in order to get singular widely applicable procedure.

The UK methodology for regional-scale flood risk assessment does treat the physical processes in more detail.
This methodology starts by defining a hydraulic forcing per treated flood defence. Hydraulic forcing dependent
probability of failure curves are generated per flood defence based on data while considering 2 failure modes
(piping and rear phase erosion). At failure, a breach is assumed and severity curves (bound by probabilities of
occurrence) are used to find the most likely breach dimensions. Next and overtopping or a weir equation is used
to estimate the flood volume which is then spread out via a simplified bathtub type model. This procedure is
once again run for many failure scenarios in order to obtain an flood probability map of the considered flood
plane (Gouldby et al., 2008).These are just two examples of typical flood risk assessment methodologies. They
share the common trade of being widely applicable.

A.3 Accurate representation of the physical mechanisms
Methodologies start to represent the physics more accurately when they are developed to represent certain
specific flood driving mechanisms, or when the area of interested is smaller. This is now possible since the
methodology is less constricted by being widely applicable, and the smaller areal scale of these type of in depth

∗https://www.overleaf.com/read/qwvhzqncmvyx
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studies requires less computational effort. Research on the specific coastal flooding mechanisms can for example
be represented by more accurate methodologies.

An example of a widely applied methodology (due to it’s computational efficiency) regarding coastal flooding
is the following. Extreme scenarios of wind, surge and offshore wave spectrum’s are estimated based on historical
data. The near shore wave climate is then represented by a spectral action balance model (such as SWAN).
And an overtopping equation/neural network (such as the EurOtop NN) is then used and forced by the model
output to estimate a discharge. This methodology is even fast enough to do real time flood risk predictions
with, but it subjected to some simplification (Aldridge et al., 2017).

The coastal flooding can however be represented even more accurately. A combination of spectral action
balance and oceanic circulation models can be solved simultaneously with extreme meteorological forcing to
obtain extreme estimates for the wave climate, the shoaling and the tide. Spectral action balance models are
less accurate in the near shore region (mostly due to the negligence of infragravity waves). This is why many
in depth studies represent this region via numerical hydrodynamic models. Frequency dispersion effects in this
region is of relative importance as well, which is why Boussinesq models or fast layered models (not depth
averaged) are often used in this specific region. Boussinesq type models eliminate the vertical direction from
flow equation similar to the shallow water equations. Boussinesq type models do however retain part of the
vertical structure by representing its effects as a function of time and space.

The fluvial (river) flood mechanism is often approached via a more simplistic methodology in risk assessment.
For example a direct extreme value analysis can be performed on the river discharge or water level. Other studies
try to estimate the river runoff based on precipitation and base flow. One can try to estimate the processes
more accurately via hydrological modelling. These are conceptual models that try to present relatively large
scale processes within a catchment via empirical equations which are fitted to data. Once a discharge input is
obtained via one of these methods 2D numerical models can be used to calculate inundation in the catchment.
However, some methodologies such as the UK’s methodologies for flood risk assessment do not use such models,
but estimate the discharge per individual flood defence given an extreme forcing scenario. The inundation
assessment is then done after the derivation of the flood volume.

The pluvial flood mechanism is often researched within an urban context. Heavy precipitation needs to be
artificially drained via sewer systems due to the generally bad natural drainage in urban areas. Governmental
organisations asses the sewer system via modelling techniques including the elevation of the area and the sewer
system. Representing the contribution of the sewer system is a difficult task for non governmental research
agencies since the sewer system layout and dimensions are not publicly available usually. This is why research
often assumes the contribution of the urban drainage to be negligible for the estimation of the initial inundation.
This is justified by making the worse case assumption of the urban drainage system being filled during an
extreme storm. Precipitation intensity distributions are usually represented by so called "design storms", since
probabilistic representation by using many events is very computationally demanding. Countries will usually
have their own standards regarding these distributions.

A relatively low amount of research has been conducted on groundwater flood risk assessment. This is most
likely caused by the much smaller spatial scale of groundwater flooding (incidence are most commonly local).
Representing subsurface flows is a difficult challenge since they are difficult to measure and validate. Ground-
water flow models do exist and are often used in other types of research, such as when ground water extraction
is conducted or when salt intrusion is an issue. However, the implementation of groundwater flow models for
flood risk assessment is a relatively new concept.

A.4 Compound effects
The interaction between flood driving mechanisms is often referred to as the compound effects. Research which
includes such effects does often focus on the specific contribution and the interaction of specific flood driving
mechanisms. A typical example is including the effect of coastal storm surge on a delta flood risk analysis
(storm surge can heighten the lower river boundary). Pluvial and fluvial flooding methodologies are also often
intertwined due to their co-occurrence in many urban areas.

A typical methodology which addresses compound effects to a certain extend is to asses all flood defence
protecting a flood plain individually. The failure of these defences are often assumed independent, but the
forcing is not. Research on dependent coastal, pluvial and river forcing has been conducted on specific projects,
but it is rarely incorporated in general flood assessments practice.

A new progression of compound flood research is the modelling the ocean, near shore, overtopping/overflow
and land inundation using a single numerical model. Such a model needs to be relatively fast while still
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incorporating the contributing physical mechanisms (conflicting requirements). The newly developed SFINCS
model by Deltares attempts to do exactly that. The model makes some arguable simplifications (negligence of
advection in the momentum equation), but can be ran in combination with a Monte Carlo type research, due
to its high computational efficiency.

A.5 Discussion on current common practice methodologies
No singular best methodology for flood risk assessment exist. The methodology to be used should be based on
two main aspects of the study. The spatial scale of the assessment and the dominant flood driving mechanisms
of the location. Representing too much detail in projects with a large spatial scale would make the assess-
ment infeasible, whereas representing negligible flood mechanisms would result into an inefficient methodology.
Detailed research of interacting flood mechanisms is rarely conducted in flood risk assessment, because the
time scale of such projects is often constricted. Neglecting details and interactions can however lead to miss
representation of the overall flood risk, therefore this should always be done with care.
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B The conditional approach for multivariate extreme values
The conditional approach for multivariate extreme values, first formulated by Heffernan & Tawn (2004), over-
comes some of the problems most traditional approaches have to cope with. This section tries the summarise
this approach as implemented in this research, using the texmex package written for the programming language
R. The approach can broadly speaking be summarised in 2 main steps (Southworth et al., 2020). The first step
comprises of marginal distribution fitting via the peak over threshold approach, while the second step covers
the conditional modelling.

B.1 The peak over threshold approach (POT)
Extreme value theory explains, when using appropriate normalisation of the threshold excesses, while the
threshold u tends to the upper end point of the distribution, the tail distribution shall be part of the generalised
Pareto distribution (GPD) family (given the distribution of the original data is smooth enough and certain
non-degeneracy conditions of the limit distribution are satisfied) (Coles, 2001). This means that whatever the
distribution of the original data might be (with notable exeptions such as directional data), if a sufficiently
high threshold has been selected the tail distribution can be well approximated by the GPD, which has the
distribution function as shown in equation 11 and 12 (Davison & Smith, 1990).

P (X ≤ x) = 1−
{

1 + ξ

(
x− u
σ

)}−1/ξ
for x > u ∩ ξ 6= 0 (11)

P (X ≤ x) = 1− exp

(
−x− u

σ

)
for x > u ∩ ξ = 0 (12)

In which:

• u: Threshold for fitting;

• σ: Scale parameter > 0;

• ξ: Shape parameter ∈ R.

Although it is common to parameterise the GPD as shown in equation 11, the texmex package reparameterises
the scale parameter σ as φ = log(σ). It uses this approach due to three main reasons Southworth et al. (2020).
First of all, numerical algorithms used for optimising the log-likelyhood are said to converge more reliably when
using this approach. Secondly, it automatically fulfills the σ > 0 constrain (a constrain which arises when
modelling with covariates). And lastly, φ is more likely to have a Gaussian-like distribution.

Two standard threshold selection aids (further explained by Coles (2001)) are threshold stability plots and
the mean residual life (MRL) plot. These 2 aids have been implemented in the texmex package and have been
used for threshold selection. The threshold stability and mean residual life (MRL) plots of the considered
variables and the resulting chosen thresholds are visible here∗.

B.2 Conditional POT
The conditional multivariate approach as developed by Heffernan & Tawn (2004) starts by fitting the marginal
distributions of the individual variables as summarised in paragraph B.1. The method then continues by
transforming these marginals and estimates the dependence structure of secondary variables based on the
threshold excess of a chosen primary variable via a regression type model (Southworth et al., 2020).

The dependence structure of the marginal distributions is not described on the original scale of the margins.
Instead, the margins are transformed to a standard margin. The original paper of Heffernan & Tawn (2004)
transformed the marginal distributions of the data to Gumbel marginals. However, more recent research (Keef
et al., 2013) has shown that additional constrains in the model formulation, can be added by using the Laplace
distribution instead. Using this newer method helps overcome problems regarding negative dependence, pa-
rameter identifiability and drawing conditional inferences, which is why this method has been applied in this
research. Transformation of the marginals has been done via the general probability integraltransform formula
as cited in equation 13 (Southworth et al., 2020).

∗https://1drv.ms/w/s!Auz0LY1jjdqQgqYsAf6DmYC9s3pa2Q?e=2L1g43
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Yi =
(
G−1 (Fi (Xi)) , i = 1, . . . , d (13)

In which:

• Xi: The original data of variable i;

• i: The variable/dimension index number and d is the total amount of variables/dimensions;

• Fi: Estimate of the marginal distribution function based on the data of variable i;

• G: The distribution function of the standardised marginal distribution and G−1 its inverse;

• Yi: The variable after being transformed into the chosen marginal distribution.

The specific probability integraltansform formula used to transform the GPD marginals into Laplace marginals
is shown in equation 14 (Keef et al., 2013).

Yi =

{
log {2Fi (Xi)} for Xi < F−1i (0.5)

− log {2 [1− Fi (Xi)]} for Xi ≥ F−1i (0.5)
(14)

After fitting and transforming the marginal distributions the Heffernan & Tawn (2004) approach continues
by conditioning variables on a chosen primary variable whilst it is above a certain threshold. This threshold
can differ from the threshold(s) used during the marginal distribution fitting procedure. The conditioning is
done via a regression type model which has been fitted to the transformed data. The choice of the regression
model depends on the chosen distribution function G. The regression model for Laplace marginals as suggested
by Keef et al. (2013) has been implemented in the texmex package and is shown in equation 15.

Y −i = α|iYi + (Yi)
β|i Z|i (15)

In which:

• Y −i: The marginal distributions of all secondary variables whilst being transformed to the Laplace dis-
tribution;

• Yi: The marginal distribution of the primary variable whilst exceeding a picked threshold t and being
in its Laplace form;

• α|i: A fitting parameter which expresses a positive dependency when positive and a negative dependency
when negative ∈ [−1, 1]d−1;

• β|i: A fitting parameter ∈ [−∞, 1]d−1;

• Z|i: A vector residual.

Note that the regression model does not use a parametric family of distributions to describe the distribution
of the residual vector Z|i. Instead Z|i is an empirical distribution resulting from the residuals after fitting the
parameters α|i and β|i. This makes the Heffernan & Tawn (2004) dependence model semi-parametric.

One of the most straight forward ways of doing statistics on the dependence structure is by sampling data
points from the model. This has also been implemented in the texmex package. In the case of one or multiple
variables being dependent on one primary variable, an additional sampling threshold can be put on the primary
variable.

B.3 Complete joint distribution sampling
In the previous paragraph (B.2) creating dependence structures via the Heffernan & Tawn (2004) approach
based on a single primary variable has been summarised. The paper of Heffernan & Tawn (2004) also explains
how to expand this method to a fully joint distribution of multiple dependent variables. The texmex package
implements this method as well and their texmexMultivariate vignette clarifies their implementation in 6
steps (Southworth et al., 2020).

1. Create a Monte Carlo sample of the required size (without restrictions) from the original dataset on the
original scale by uniform sampling with replacement.
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2. Transform the Monte Carlo samples of step 1 into Laplace/Gumbel scale using a GPD fitted to the original
data as explained in paragraph B.2.

3. Compare the data on the common Laplace scale and select the largest (least likeliest) values.

4. Select of the values obtained in step 3 the values that lie above the chosen dependence threshold. Then
use these values to fit the regression model (equation 15 in the case Laplace marginals are used).

5. Create conditioning on each variable in turn a large sample of independent events, and use the dependence
structures obtained in step 4 to find values for the dependent (not conditioned on) variables. These values
are then transform back to the original variable scale.

6. Now replace the values identified by step 3 & 4 in the Monte Carlo sample of step 1 with the values
obtained in step 5 from the appropriate conditional model.

This method can be used to simulate data in the upper tail end of an n dimensional dependent structure.
Standard methods of data analysis can then be applied on this simulated data.

B.4 Creating scenarios using the conditional approach
B.4.1 Primary variables

In the case of a single variable one can create a traditional return level plot (value of the variable on the y-axis
and the return period variable on the x-axis). However, when dealing with 2 or more variables such a simple
and clear plot cannot be made. In the 2 dimensional case one can visualise the data in a similar way by plotting
the return period contours. The texmex package can calculates such a method in the form of joint exceedance
curves (Southworth et al., 2020). The concept behind this approach is to fix on one or more return periods, find
all parameter combinations that lead to the chosen return period(s), and interpolate them (or more formally:
equation 16). An example of a joint exceedance curve is shown in figure 39.

{(x1,p, . . . , xd,p) : Pr (X1 > x1,p, . . . , Xd > xd,p) = p} (16)

Figure 39: An illustration showing an example of joint exceedance curves. In which the return period of the
grey curve is the smallest and the return period of the red curve is largest.

In order to find meaningful results on the importance of flood drivers, one can create multiple scenarios with
the same return period. In the bivariate case this does thus mean that variable combinations should be chosen
that share a contour line on the joint exceedance curve plot. The limits of these curves describe the original
marginal distributions of the GPD.
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B.4.2 Secondary variables

Not every imposed model variable should be used to base the scenarios on. This is because inclusion of many
variables will decrease the probability of occurrence of an extreme event. These secondary variables should
thus be chosen without impacting the overall probability of the scenario. Although it might not be specifically
implemented, the texmex package can relatively easily be used to find the likeliest value of a dependent secondary
variable, assuming that the primary variable has a value within a certain region.

The method as used in this research to find the likeliest value for the secondary values is relatively simple
as is explained by the following steps.

1. Values of one ore more secondary variables are simulated via the a dependence structure using either one
or more primary variable(s) as explained in paragraph B.2 and B.3.

2. A value/values are chosen for the primary variable(s) together with a small deviation determined by the
user.

3. All primary variable values outside the chosen value(s) + its deviation and their respective secondary
variable values are disregarded.

4. The remaining secondary values are now representing a discrete PDF of the secondary variable given the
primary variable has a certain value (+ a small deviation).

5. The value with the highest probability is found by maximising the discrete PDF (right illustration of
figure 40).

A more visual way to interpret this, is to take a slice of a density plot of two variables and maximise it as is
shown on the plots of figure 40. This method works especially well when using only one primary variable, since
in this case one can create samples above a variable threshold. One simply pick a threshold close to the value
of interested to create many relevant samples.

Figure 40: Finding the likeliest value of a secondary value based on a fixed primary variable value.
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C Typical SWAN input file
$*************HEADING****************************************
$
PROJ ’Eastbourne’ ’sc1’
$
$***********MODEL INPUT************************************
$
SET LEVEL=3.232936697
MODE STATIONARY TWODimensional
COORDINATES SPHErical
$
CGRID UNSTRUCtured CIRCLE 72 0.03 0.6 31
READ UNSTRUCTURED ADCIRC
$
WIND 24.7287391 20
$
BOUN SHAPE JONswap 3.3 MEAN DSPR DEGRees
BOUN SIDE 1 UNIForm PAR 8.01888854631365 9.6008068 19.68 30
$
FRICtion
DIFFRAC
NUMeric STOPC STAT 100 0.01
$
$************ OUTPUT REQUESTS *************************
FRAME ’FRAM1’ 0.06 50.69490 0. 0.36 0.2251 500 340
TABLE ’FRAM1’ HEAD ’..\Output\Eastbourne_01_f1.tab’ XP YP DEP HS WLEN WATLEV PDIR DISSIP
DISBOT DISSURF DISWCAP DISSWELL TPS TM01 DIR
$
CURVE ’LOC1’ 0.2974939 50.771925 1220 0.42 50.694258
TABLE ’LOC1’ HEAD ’..\Output\Eastbourne_01_c1.tab’ DIST DEP HS WLEN WATLEV PDIR DISSIP
DISBOT DISSURF DISWCAP DISSWELL TPS TM01 DIR XP YP BOTLEV
$
CURVE ’LOC2’ 0.3263300 50.784963 1156 0.40839 50.69490
TABLE ’LOC2’ HEAD ’..\Output\Eastbourne_01_c2.tab’ DIST DEP HS WLEN WATLEV PDIR DISSIP
DISBOT DISSURF DISWCAP DISSWELL TPS TM01 DIR XP YP BOTLEV
$
CURVE ’LOC3’ 0.3344078 50.795129 676 0.42 50.767515
TABLE ’LOC3’ HEAD ’..\Output\Eastbourne_01_c3.tab’ DIST DEP HS WLEN WATLEV PDIR DISSIP
DISBOT DISSURF DISWCAP DISSWELL TPS TM01 DIR XP YP BOTLEV
$
POINTS ’P_1’ 0.301829 50.769175
TABLE ’P_1’ HEAD ’..\Output\Eastbourne_01_loc1.tab’ XP YP DEP HS WLEN WATLEV PER DIR
TMM10
$
POINTS ’P_2’ 0.3290068 50.782025
TABLE ’P_2’ HEAD ’..\Output\Eastbourne_01_loc2.tab’ XP YP DEP HS WLEN WATLEV PER DIR
TMM10
$
POINTS ’P_3’ 0.3393806 50.793523
TABLE ’P_3’ HEAD ’..\Output\Eastbourne_01_loc3.tab’ XP YP DEP HS WLEN WATLEV PER DIR
TMM10
$
POINTS ’1DCP1’ 0.3175938 50.7592085
SPECout ’1DCP1’ SPEC1D ABS ’..\..\SWASH\Input\1D_spec_1.bnd’
$
POINTS ’1DCP2’ 0.3405458 50.7693898
SPECout ’1DCP2’ SPEC1D ABS ’..\..\SWASH\Input\1D_spec_2.bnd’
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$
POINTS ’1DCP3’ 0.3597503 50.7869629
SPECout ’1DCP3’ SPEC1D ABS ’..\..\SWASH\Input\1D_spec_3.bnd’
$
POINTS ’2DCP1’ 0.3175938 50.7592085
SPECout ’2DCP1’ SPEC2D ABS ’..\..\SWASH\Input\2D_spec_1.bnd’
$
POINTS ’2DCP2’ 0.3405458 50.7693898
SPECout ’2DCP2’ SPEC2D ABS ’..\..\SWASH\Input\2D_spec_2.bnd’
$
POINTS ’2DCP3’ 0.3597503 50.7869629
SPECout ’2DCP3’ SPEC2D ABS ’..\..\SWASH\Input\2D_spec_3.bnd’
$
POINTS ’1DP_1’ 0.301829 50.769175
SPECout ’1DP_1’ SPEC1D ABS ’..\..\SWASH\Input\1D_spec_Loc_1.tab’
$
TEST 1,0
COMPUTE
STOP
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D Typical SWASH input file
!*************HEADING***********************************
!
PROJ ’EAST1D’ ’01’
!
! 1D Surfzone model
! with actual bathemetry
!
!***********MODEL INPUT*********************************
!
SET DEPMIN=0.005 maxerr=1 seed=34567890
MODE DYN ONEDimensional
!
CGRID 0. 0. 0. 2500. 0. 1249 0
!
VERT 3 33.3333333 33.3333333 33.3333333
!
INPGRID BOTTOM 0. 0. 0. 1249 0 2. 0.
READINP BOTTOM 1. ’../../../SWASH1D_loc1.bot’ 1 0 FREE
!
INIT CONstant 3.2329
!
BOUndcond SIDE W UNIForm SPECFile ’1D_spec_ref_1.bnd’ 010000
BOUndcond SIDE E BTYPe WLEV CONstant 2.5
!
WIND -10.45081673 0
FRIC MANNING 0.019
VISC SMAG
BREAK 0.28 0.14
NONHYDrostatic STAN PREC ILU
!
DISCRET UPW MOM KOREN
BOTCel MIN
TIMEI METH EXPL 0.2 0.5
!
!************ OUTPUT REQUESTS *************************
!
!CURVE’LINE’ 0 0 1250 2500 0
!TABLE ’LINE’ HEAD ’../Output/Eastbourne_1D_01_loc1_gr_break.tbl’ TSEC WATL BOTLEV XP DEP
OUTPUT 001500.000 .5 SEC
!
POINts ’OVERT’ 2084 0
TABLE ’OVERT’ HEAD ’../Output/Q_01_loc1.tbl’ TSEC QMAG QDIR OUTPUT 001500.000 1 SEC
!
!POINts ’WSIG’ 1561 0
!TABLE ’WSIG’ NOHEAD ’../Output/h_100m_no_ref_break_loc1.tbl’ WATL OUTPUT 001500.000 .25
SEC TEST 1,0
COMPUTE 000000.000 0.02 SEC 021500.000
STOP
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E Figures

E.1 Correlation matrix

Figure 41: Full correlation matrix with correlation coefficients. Hs: significant waveheigt [m], Hs_ww: signifi-
cant wave height of wind waves [m], dw: directional width [◦], Hs_s_m: significant wave height of swell [m],
mod10: average wind speed 10m above MSL [m/s], P: precipitation intensity [mm/h], T_s_m: mean swell
period [t], T_ww_m: mean wind wave period [t], surge: Storm surge estimation based on Utide analysis [m],
d_ww: wind wave direction.
Note: There is a bias in the wave direction due to an error in the data handing, a correct directional plot is
visible in section 3.1.1 figure 18.
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E.2 Refraction coefficients

Figure 42: Period varying refraction coefficients for all scenarios at location 1

Figure 43: Period varying refraction coefficients for all scenarios at location 2

Figure 44: Period varying refraction coefficients for all scenarios at location 3
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E.3 Surf zone cross sections

Figure 45: Shore normal bathymetry cross section and slope at location 1

Figure 46: Shore normal bathymetry cross section and slope at location 2

66



Figure 47: Shore normal bathymetry cross section and slope at location 3
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E.4 SWAN output: Shore normal cross sections
Significant wave height
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Peak period
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Mean wave direction
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Breaking parameter

Breaking parameter via Battjes & Stive (1985) as described by Holthuijsen (2007).
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Surfbreaking dissipation as calculated by SWAN
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E.5 SWAN output: SWASH wave spectrum input

Figure 48: SWASH wave spectrum input, location 1

Figure 49: SWASH wave spectrum input, location 2

Figure 50: SWASH wave spectrum input, location 3
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E.6 Maps of Eastbourne
Elevation of Eastbourne

Figure 51: Elevation map of Eastbound showing the inundation domain (hashed part)

74



Land Cover of Eastbourne

Figure 52: Land cover map of Eastbound showing the inundation domain (hashed part)
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E.7 Boundary summary plots
The following plots give a summary view of the time varying boundary conditions per scenario.
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E.8 Inundation maps of Eastbourne

(a) Scenario 1 using DSW (b) Scenario 1 using SWE

Figure 53: SWE & DSW inundation comparison, scenario 1

(a) Scenario 2 using DSW (b) Scenario 2 using SWE

Figure 54: SWE & DSW inundation comparison, scenario 2

(a) Scenario 3 using DSW (b) Scenario 3 using SWE

Figure 55: SWE & DSW inundation comparison, scenario 3
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(a) Scenario 4 using DSW (b) Scenario 4 using SWE

Figure 56: SWE & DSW inundation comparison, scenario 4

(a) Scenario 5 using DSW (b) Scenario 5 using SWE

Figure 57: SWE & DSW inundation comparison, scenario 5

(a) Scenario 6 using DSW (b) Scenario 6 using SWE

Figure 58: SWE & DSW inundation comparison, scenario 6
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(a) Scenario 7 using DSW (b) Scenario 7 using SWE

Figure 59: SWE & DSW inundation comparison, scenario 7

(a) Scenario 8 using DSW (b) Scenario 8 using SWE

Figure 60: SWE & DSW inundation comparison, scenario 8
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