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Propositions

appended to the dissertation
Multiscale thermomechanical analysis of multiphase materials

Sourena Yadegari Varnamkhasti

1-  In  a  consistent  thermomechanical  formulation,  a  decomposition  of  the  total 
deformation  implies  a  decomposition  of  entropy,  in  a  way  in  which  the  two 
decompositions are in a one to one correspondence with each other, i.e.,  for a given 
process there exists a unique sub-entropy that describes the thermal aspect of the same 
process. The converse of the proposition also holds.

2- The devil is in the details, and the details are in microstructures.

3- Adoption of multiscale methods by industry can be accelerated given than they are 
combined  with  solution  methods  that  benefit  from many-core  architectures  that  are 
common in today's hardware. Example of this include usage of heterogeneous parallel 
schemes. 

4- Mathematical objects and physical phenomena belong to two different domains. The 
former being abstract objects that only exist in a mathematician's mind, while the latter 
being 'observables' that may be measured objectively. The task of a modeler is to assign 
mathematical  objects  to  a  particular  phenomenon  that  'approximates'  the  best  the 
observations.

5- "Essentially, all models are wrong, but some are useful" George E.P. Box.
A model cannot be judged to be right or wrong (based on absolute quantifiers); at best, it 
can  approximate  what  has  been  observed.  Instead,  for  the  description  of  a  given 
observable with multiple models, it can be stated that there is no right model; some just 
provide better approximations than others.

6- A community deprived of educational opportunities requires as much attention as a 
community  exposed  to  food  shortage.  The  negative  consequences  of  the  latter  are 
immediate  and  life  threatening,  while  the  negative  consequences  of  the  former  are 
gradual, yet could result in the latter.

7- If an activity is your intellectual habit, do not make it into your *work.
(Work is defined here as an activity that is performed for a limited amount of money in a 
limited amount of time.)

8- A debate ought not to be started unless at least one of the partners is willing to 
change his/her opinion at the end of the debate.

9- Advancements in computational technology have made the computer science courses 
an indispensable part of any serious graduate program that deals with numerical analysis. 

Stellingen

behorende bij het proefschrift
Multiscale thermomechanical analysis of multiphase materials

Sourena Yadegari Varnamkhasti

1- In een consistente thermomechanische formulering impliceert een decompositie van 
de  totale  deformatie  een  decompositie  van  entropie,  op  zo’n  wijze  dat  de  twee 
decomposities in een één-op- één-verhouding staan tot elkaar, m.a.w., voor een bepaald 
proces  bestaat  er  een  unieke  sub-entropie  dat  het  thermische  aspect  van  hetzelfde 
proces beschrijft. Het tegenovergestelde geldt ook.

2- De duivel schuilt in de details, en de details schuilen in microstructuren.

3- De ingebruikname van multischaalmethoden door de industrie kan versneld worden, 
op voorwaarde dat zij gecombineerd worden met oplossingsmethoden die profiteren van 
veel-kern  architecturen  die  gangbaar  zijn  in  de  hardware  van  tegenwoordig.  Een 
voorbeeld hiervan is het gebruik van heterogene parallelle schema’s.

4- Wiskundige objecten en fysische fenomenen behoren tot twee verschillende domeinen. 
De eerstgenoemde soort bestaat uit abstracte objecten die uitsluitend in de geest van een 
wiskundige  bestaan,  terwijl  de  laatstgenoemde  soort  bestaat  uit  'observabelen'  die 
objectief  gemeten  kunnen  worden.  De  taak  van  een  modelleur  bestaat  eruit  om 
wiskundige objecten toe te wijzen aan een bepaald fenomeen dat de waarnemingen het 
meest ‘benadert’.

5- “In wezen zijn alle modellen fout, maar sommigen zijn nuttig" George EP Box.
Een  model  kan  niet  bestempeld  worden  goed  of  fout  te  zijn  (op  basis  van  absolute 
kwantoren);  op  zijn  best  kan  het  hetgeen  dat  waargenomen is,  benaderen.  In  plaats 
daarvan kan voor de beschrijving van een bepaald observabele met meerdere modellen 
gesteld worden, dat er geen goed model is; sommige modellen verstrekken simpelweg 
betere benaderingen dan anderen.

6- Een gemeenschap die beroofd is van onderwijsmogelijkheden vergt evenveel aandacht 
als een gemeenschap die blootgesteld is aan voedselschaarste. De negatieve gevolgen 
van  de  laatstgenoemde  zijn  onmiddellijk  en  levensbedreigend,  terwijl  de  negatieve 
gevolgen  van  de  eerstgenoemde  geleidelijk  zijn,  doch  in  de  laatstgenoemde  zouden 
kunnen resulteren.

7- Indien een activiteit uw intellectuele gewoonte is, maak er dan niet uw *werk van.
(‘Werk’ wordt hier gedefinieerd als een activiteit die uitgevoerd wordt voor een beperkte 
hoeveelheid geld in een beperkte hoeveelheid tijd.)

8- Een debat behoort niet aangevangen te worden totdat ten minste één van de partijen 
bereid is om zijn/haar mening aan het einde van het debat te herzien.

9- De vooruitgang in computationele technologie heeft de informatica-opleidingen tot 
een  onmisbaar  onderdeel  gemaakt  van  ieder  serieus  promotieprogramma  dat  zich 
bezighoudt met numerieke analyse.

    Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig goedgekeurd 
door de promotoren Prof.dr.ir. R Benedictus, Prof.dr.ir. ASJ Suiker en copromotor Dr. S Turteltaub

   These propositions are considered opposable and defendable and as such have been approved 
by promotors Prof.dr.ir. R Benedictus, Prof.dr.ir. ASJ Suiker and co-promotor Dr. S Turteltaub
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Summary

The thermomechanical simulation of materials with evolving, multiphase microstructures
poses various modeling and numerical challenges. For example, the separate phases in a
multiphase microstructure can interact with each other during thermal and/or mechanical
loading, the effect of which is significantly more complicated than the individual behavior
of the phases. The interactive behavior also depends on the specific volume fractions and
spatial distribution of the individual phases. An accurate modeling of the phases requires
a thermodynamically consistent formulation and a robust numerical implementation of
the evolution of the corresponding observable and internal variables. The complex non-
linear characteristics of these micromechanical models introduce substantial challenges
with respect to their upscaling towards higher levels of observation, as necessary for an-
alyzing large-scale engineering problems in a computationally efficient way. The work
presented in this thesis addresses these aspects in detail by focusing on a class of mul-
tiphase steels, which are the so-called transformation-induced plasticity (TRIP) steels.
This class of structural steels shows an excellent combination of strength and ductility.
The transformation-induced plasticity effect can be ascribed to the presence of grains of
metastable austenite that are surrounded by ferritic grains. The austenite can undergo a
phase transformation when subjected to thermal and/or mechanical loading, thereby in-
troducing an increase in the effective material strength. In addition, both the austenite and
the ferritic matrix may deform plastically, which increases the overall ductility of the ma-
terial. In order to explore the complex micromechanical characteristics and the practical
application of this material in more detail, three main research questions were identified,
of which the first one is: (1) How can a TRIP steel microstructure be modelled in a fully
thermodynamically consistent way? The thermomechanical coupling is particularly rele-
vant since in TRIP steels the phase transformation occurring during mechanical loading
is accompanied by the release of a substantial amount of energy (latent heat) that, in turn,
affects the mechanical response of the material. The second research question formulated
is: (2) How does the response of a TRIP steel microstructure depend on the spatial distri-
bution of the austenitic phase within the ferritic matrix? From the viewpoint of practical
applications, the attention here is focused on comparing the response of a TRIP steel sam-
ple with a banded austenitic microstructure to that of a sample with randomly distributed
austenitic grains. Considering the large number of degrees of freedom of these and other
engineering problems, a computationally efficient implementation of the micromechani-
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cal model is necessary. This issue is reflected by the third research question, which reads:
(3) Is it possible to include the micromechanical constitutive behavior and geometry of
the individual phases within an computationally efficient multiscale formulation?

For answering the three research questions above, the thermomechanical behavior
of the TRIP steel phases is modelled in a fully coupled way, where the generation of
heat associated to the martensitic phase transformation and the plastic deformation are
accounted for explicitly in the thermodynamic formulation. In analogy with the decom-
position of the deformation, the entropy density is separated in a reversible contribution, a
transformation contribution, a plasticity contribution and a thermal-mechanical coupling
contribution. The last term follows from combining mechanical and thermal constitu-
tive information of the individual phases with basic thermodynamical requirements. One
of the observations resulting from this approach is that for a single crystal of austenite
the increase in temperature associated with the latent heat of transformation reduces the
transformation rate and significantly reduces the transformation-induced plasticity effect.
However, for an aggregate of austenitic and ferritic grains, which is representative of a
TRIP steel, the delay in the transformation-induced plasticity effect due to latent heat is
relatively small, since the ferric matrix absorbs the latent heat generated in the austen-
ite and thus effectively acts as a thermal sink. To evaluate the influence of the spatial
distribution of the austenitic (secondary) phase within the ferritic matrix, the effective re-
sponses for banded and dispersed austenitic microstructures are computed by means of
numerical homogenization. A comparison of these microstructures shows that banded
microstructures may allow for plastic localization in the ferritic matrix, which, in com-
parison to dispersed microstructures, diminishes the strengthening effect provided by the
austenitic phase. For the performance of more demanding computational simulations at
higher (macroscopic) scales of observation, an efficient multiscale approach termed the
generalized grain cluster method (GGCM) was developed. The method is suitable for the
prediction of the effective macroscopic behavior of an aggregate of single-crystal grains
composing a multiphase steel. The GGCM is based on the minimization of a functional
that depends on the microscopic deformation gradients in the grains through the equilib-
rium requirements of the grains as well as kinematic compatibility between grains. By
means of the specification of weighting factors it is possible to mimic responses falling
between the Taylor and Sachs bounds. The numerical computation is carried out with an
incremental-iterative algorithm based on a constrained gradient descent method. For a
multiscale analysis, the GCCM can be included at integration points of a standard finite
element code to simulate macroscopic problems. A comparison with FEM direct numer-
ical simulations illustrates that the computational time of the GGCM may be up to about
an order of magnitude lower. In large-scale FEM models for structural applications, the
responses at material point level thus may either follow from the GGCM alone, or from
combining this method with fully-resolved FEM modeling at the level of individual grains
(i.e., a combined GGCM - FE2 approach), depending on the required resolution.



Samenvatting

De thermomechanische simulatie van materialen met evoluerende, meerfasige microstruc-
turen poneert diverse modelmatige en numerieke uitdagingen. Zo kunnen bijvoorbeeld de
afzonderlijke fasen in een meerfasige microstructuur tijdens thermische en/of mechanis-
che belasting met elkaar interacteren, waarvan het effect significant gecompliceerder is
dan het individuele gedrag van de fasen. Het interactieve gedrag hangt ook af van de
specifieke volumefracties en de ruimtelijke verdeling van de afzonderlijke fasen. Een
nauwkeurige modellering van de fasen vereist een thermodynamisch consistente formu-
lering en een robuuste numerieke implementatie van de evolutie van de overeenkomstige
waarneembare en interne variabelen. De complexe non-lineaire eigenschappen van deze
micromechanische modellen introduceren aanzienlijke uitdagingen inzake de opschaling
naar hogere niveaus van observatie, hetgeen vereist is voor de rekentechnisch-efficiënte
analyse van grootschalige ingenieursproblemen. Het werk dat in dit proefschrift gepre-
senteerd is adresseert deze aspecten in detail door te focussen op een klasse van meer-
fasige staalsoorten, de zogeheten transformatie-geı̈nduceerde plasticiteit (TRIP) stalen.
Deze klasse van constructiestaal vertoont een excellente combinatie van sterkte en duc-
tiliteit. Het transformatie-geı̈nduceerde plasticiteitseffect kan worden toegeschreven aan
de aanwezigheid van korrels van metastabiel austeniet die omringd zijn door ferritis-
che korrels. Het austeniet kan een fasetransformatie ondergaan wanneer deze onder-
worpen wordt aan thermische en/of mechanische belasting, welk een verhoging in de
effectieve materiaalsterkte veroorzaakt. Bovendien kunnen zowel het austeniet als de fer-
ritische matrix plastisch vervormen, hetgeen de totale ductiliteit van het materiaal doet
toenemen. Om de complexe micromechanische eigenschappen en de praktische toepass-
ing van dit materiaal in meer detail te onderzoeken werden drie hoofdonderzoeksvragen
geı̈dentificeerd, waarvan de eerste luidt: (1) Hoe kan een TRIP-staal microstructuur op
een volledig thermodynamisch consistente manier gemodelleerd worden? Het thermo-
mechanisch koppelen is in het bijzonder relevant omdat in TRIP-stalen de fasetransfor-
matie die optreedt tijdens mechanische belasting gepaard gaat met de afgifte van een
aanzienlijke hoeveelheid energie (latente warmte) die op zijn beurt invloed heeft op de
mechanische respons van het materiaal. De tweede onderzoeksvraag die geformuleerd is
luidt: (2) Hoe hangt de reactie van een TRIP-staal microstructuur af van de ruimtelijke
verdeling van de austenitische fase binnen de ferritische matrix? Beschouwd vanuit het
oogpunt van praktische toepassingen wordt de aandacht hier gericht op het vergelijken van
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de respons van een TRIP-staal proefstuk met een gelaagde austenitische microstructuur
met die van een proefstuk met willekeurig gedistribueerde austenitische korrels. Gezien
het grote aantal vrijheidsgraden van deze en andere ingenieursproblemen, is een compu-
tationeel efficiënte implementatie van het micromechanische model noodzakelijk. Deze
kwestie wordt weerspiegeld door de derde onderzoeksvraag, die luidt: (3) Is het mogelijk
om het micromechanische constitutieve gedrag en de geometrie van de afzonderlijke fasen
in een rekenkundig-efficiënt meerschalen-formulering te omvatten?

Om de drie bovengenoemde onderzoeksvragen te beantwoorden, wordt het thermo-
mechanische gedrag van de TRIP-staal fasen op een volledig gekoppelde wijze gemod-
elleerd, waarbij de warmteontwikkeling geassocieerd met de martensitische fasetransfor-
matie en de plastische deformatie expliciet in de thermodynamische formulering wor-
den meegenomen. In analogie met de decompositie van de vervormingstensor is de en-
tropiedichtheid samengesteld uit een omkeerbare bijdrage, een transformatie-bijdrage,
een plasticiteits-bijdrage en een thermisch-mechanische koppelingsbijdrage. De laatste
term volgt uit het combineren van de mechanische en thermische constitutieve informatie
van de afzonderlijke fasen met elementaire thermodynamische condities. Een van de
observaties die uit deze benadering voortkomt is dat voor een enkele austenietkristal de
temperatuurstijging geassocieerd met de latente warmte van transformatie de transfor-
matiesnelheid reduceert en het transformatie-geı̈nduceerde plasticiteitseffect op signifi-
cante wijze vermindert. Echter, voor een aggregaat van austenitisch en ferritische ko-
rrels, welk representatief is voor een TRIP-staal, is de vertraging in het transformatie-
geı̈nduceerde plasticiteitseffect door latente warmte relatief klein, aangezien de ferritis-
che matrix de latente warmte gegenereerd in het austeniet absorbeert, en dus effectief als
een warmteafvoer acteert. Om de invloed van de ruimtelijke verdeling van de austeni-
tische (secundaire) fase binnen de ferritische matrix te evalueren, worden de effectieve
antwoorden voor gelaagde en willekeurig verdeelde austenitische microstructuren berek-
end middels numerieke homogenisatie. Een vergelijking van deze microstructuren toont
aan dat gelaagde microstructuren plastische lokalisatie in de ferritische matrix kunnen
toestaan die, in vergelijking met willekeurig verdeelde microstructuren, vermindert het
versterkende effect dat wordt veroorzaakt door de austenitische fase. Om rekenintensieve
simulaties op hogere (macroscopische) schalen van observatie uit te kunnen voeren, werd
een efficiënte meerschalige benadering, genaamd de Generalized Grain Cluster Method
(GGCM), ontwikkeld [83]. De methode is geschikt voor de voorspelling van het ef-
fectieve macroscopische gedrag van een aggregaat van monokristallijne korrels die een
meerfasig staal karakteriseren. De GGCM is gebaseerd op de minimalisatie van een func-
tionaal die afhangt van de microscopische deformatiegradiënten in de korrels door middel
van de evenwichtseisen van de korrels alsmede de kinematische compatibiliteit tussen de
korrels. Door middel van de specificatie van weegfactoren is het mogelijk om de respon-
sies na te bootsen die tussen de Taylor- en Sachs-grenzen vallen. De numerieke bereken-
ing is uitgevoerd met een incrementeel-iteratief algoritme gebaseerd op een constrained

gradient descent method. Voor een multischaal-analyse kan de GGCM worden gekop-



peld aan de integratiepunten van een standaard eindige-elementencode om macroscopis-
che problemen te simuleren. Een vergelijking met directe FEM simulaties illustreert dat
de berekeningstijd van de GGCM een orde van grootte lager kan liggen. In grootschalige
FEM modellen voor structurele toepassingen kan de responsie op materiaalpuntniveau
aldus volgen uit ofwel de GGCM alleen, ofwel vanuit een combinatie van de GGCM
methode en een gedetailleerde FEM modellering op het niveau van individuele korrels
(i.e., een gecombineerde GGCM-FE2 benadering), afhankelijk van de gewenste resolutie.
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1
Introduction

The improvement of material properties involves a time-consuming cycle of manipula-
tion of the underlying microstructure, e.g., chemistry, composition and processing, and
testing of the modified material. While some ”rule of thumb” guidelines can be used to
enhance the properties in the direction that is intended, these rules cannot achieve the
level of targeted goals which are dictated by a design bureau or market requirements. Un-
derstanding the effect of different parameters at the microscopic level on the (effective)
response of the material requires a detailed description of the geometry and parameters.
Together these two can grow into a huge set of data. The computational power that can
obtain a solution on such a detailed domain in an acceptable amount of time is scarce by
even today’s computational resources. Multiscale methods, among other methods, can be
used to reduce the computational cost by decomposing a single, detailed simulation of the
domain into multiple, concurrent or hierarchical sets of simulations.

1.1 Multiscal methods: Overview

Multiscale methods can be classified either as hierarchical or concurrent [39], although
this classification is not mutually exclusive since concurrent methods can be embedded in
a hierarchical approach when bridging disparate length scales and, conversely, hierarchi-
cal methods can be used to provide constitutive information in a concurrent calculation, as
explained below. Hierarchical methods use a lower-scale model to determine an effective
material behavior that is used in a large-scale problem. In this approach, the lower-scale
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problem is weakly coupled to the large-scale problem and in general can be solved inde-
pendently of the large-scale problem. The coupling is achieved through suitable initial,
boundary and/or average conditions for the representative volume element (RVE) asso-
ciated to each macroscopic point. An attractive feature of the hierarchical approach is
its modularity: numerical codes or models for different length scales can be developed
independently from each other and connected through a relatively simple interface, which
also simplifies parallelization. The lower-scale problem in hierarchical methods can be
solved analytically or semi-analytically (see, e.g., [11]). In situations where no analytical
techniques can be used, the hierarchical approach is implemented in a fully numerical
fashion at the level of an RVE (i.e., its purpose is to numerically provide macroscopic
constitutive information during the simulation). In concurrent methods, the approach is
to simultaneously solve the small and large-scale models, typically within the same do-
main representing the large-scale domain, which results in a strong coupling between
scales. The intention is to use the small-scale model sparsely and the method requires a
suitable coupling between the regions where each model is used through a so-called hand-
shake region, where information is passed back and forth from the distinct models. An
illustrative example of a concurrent approach is the simulation of nanoindentation, where
an atomistic model is used in regions close to the tip of the indenter, whereas a discrete
dislocation approach, which is computationally less costly, can be used in regions away
from the nanoindenter (see, e.g., [16]). However, the advantage of a computationally ef-
ficient coarse model is often limited to situations where there is a priori knowledge of
the applicability of each model. Although the concurrent approach does not enjoy the
modularity advantage of hierarchical methods, it is usually deemed necessary when there
is a strong coupling between two scales (e.g., development of discrete cracks or strain
localizations), which prevents the use of a hierarchical approach. A common problem of
fully numerical algorithms (either hierarchical or concurrent) is that they are computa-
tionally very demanding. Adaptive procedures that combine concurrent and hierarchical
approaches are useful for mentioned computationally expensive multiscale problems as
they provide a balance between computational cost and accuracy. Within the context of
finite element simulations, adaptive techniques have traditionally been used for the so-
called hp-adaptivity, where the mesh size parameter h and/or the polynomial order p of
the shape functions are modified depending on a desired error tolerance ([1, 28]). In the
same manner, model refinement can improve the accuracy and it fits naturally within a
concurrent multiscale method ([46, 47]). The basic strategy is to assume the existence
of a so-called fine-scale model that provides the most accurate response of a material.
Usually the fine-scale model is never solved (as in fact it might not be known). Rather,
simpler models are used and, in conjunction with the solution of a so-called surrogate
problem (adjoint problem), an error estimate can be obtained for each model. A less rig-
orous but computationally more efficient approach is to use (a posteriori) error indicators,
which are useful whenever the formulation of the adjoint problem is not known, as is the
case for complex constitutive models. Depending on a quantity of interest to be controlled
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(the goal, usually a parameter relevant for the large-scale solution), a choice can be made
regarding the use of a specific coarse scale model in a given region of the domain. The
computationally less expensive coarse model is used whenever it provides a reasonable re-
sponse compared to the fine-scale model (model coarsening) and, conversely, lower scale
models are selectively applied in regions and/or time intervals where they are deemed
necessary (model refinement). The key ingredient in this strategy is the identification of a
suitable quantity of interest that indicates whether model refinement is required or model
coarsening is possible. An objective of this thesis is to develop methods with various
degrees of complexity and accuracy such that an adaptive model refinement methodology
can employ them to determine the complex material behavior as in the case of multiphase
materials.

1.2 Multiscale Modeling of Multiphase Materials

The modeling of multiphase materials for engineering applications, such as forming and
crash simulations, require models that on the one hand are sufficiently accurate to repre-
sent the influence of microstructural information on the constitutive response of a material
and , on the other hand, are sufficiently simple to achieve a solution within a reasonable
computational time. Furthermore, the evolution of material at the microscale is (often)
a thermomechanical process rather than a purely thermal or mechanical process. Thus,
for any multiscale method to capture the effective response of the underlying material
one has to employ a set of thermomechanical constitutive laws. A prominent example of
this class of materials is the transformation-induced plasticity (TRIP) steels. A distinctive
characteristic of a TRIP steel is the presence of grains of metastable austenite inside the
ferritic matrix. The ferritic phase can deform plastically while the austenitic phase can
transform into the harder, brittle martensitic phase upon application of thermomechanical
loading.

As the focus of this thesis is on the computational aspects of TRIP steels rather than
the material modeling, in order to familiarize the reader with the underlying material, the
following subsection describes shortly the metallurgical properties of TRIP steels.

1.2.1 Multiphase TRIP-steels; Composition and chemistry

A typical microstructure of TRIP-steel consists of ferrite as the most dominant phase,
accompanied by bainite, retrained austenine and occasionaly a small fraction of thermal
martensite, at room temperature. Intercritical ferrite forms up to 75% (volumetric) of the
microstructure. Ferrite has a body-centered cubic (BCC) lattice and it is the softest phase
in the mixture. Nano-indentation tests by Furnémont [21] indicate the hardness of ferrite
in a typical multiphase steel to be about 5 GPa. The size of ferritic grains in a typical
TRIP-steel varies between 5 to 10 µm, according to [21, 32].
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As opposed to ferrite, bainite does not possess a single-phase structure, with the mi-
crostructure consisting of an assembly of layers of iron carbide (cementite) and bainitic
ferrite. The formation of bainite is achieved by an isothermal process which holds bainite
at a temperature between 600 and 700 K . Bainite is a harder phase than the ferritic phase
duo to its smaller grain size and the existence of carbide precipitations. The size of bainite
grains ranges typically between 1 to 6 µm. Additionally, a higher dislocation density for
initial bainite is reported in [32]. The composition of chemicals in TRIP steels is such that
the formation of carbides is restricted, resulting in a bainite that is almost carbon-free, but
still possesses a fine plate-like structure [32, 21, 31].

As opposed to other stable phases in TRIP steel, retained austenite is a metastable
phase. Austenite possesses a face-centered cubic (FCC) structure and it is stable at a high
temperature. Several factors contribute to metastability of austenite at room temperature,
such as local carbon enrichment and the constraining effect from the neighboring grains.
The transformation of metastable austenite into martensite is achieved through a combina-
tion of mechanical and thermal loading, thus generating the TRIP-effect. A rapid cooling
(or quenching) of austenite may result into a small fraction of martensite (called thermal
martensite). Martensite has a body-centered tetragonal structure (BCT). The brittleness of
martensite can be attributed to supersaturated interstitial carbons, which results in strain
fields that restrict the movement of dislocations in the lattice.

1.2.2 Thermomechanical modeling and simulation in TRIP steels

In oder to describe the crystal plasticity and transformation at the level of a single grain,
kinematics of the two phenomena are expressed by means of an averaging scheme cou-
pling the lower microscale to the upper microscale. Both processes can be written as a
weighted average of individual systems that account for their relevant processes [75]. To-
gether with proper evolution laws, constitutive relations can be obtained by integrating the
resulting equations from the so-called Coleman-Noll procedure [15]. Because of the ther-
momechanical nature of these processes, it is desirable to incorporate the thermoelastic
coupling effect into the set of kinematical laws [72]. Upon the introduction of such gen-
eralization, the thermomechanical consistency of the model cannot be satisfied by using
the same decomposition and integration schemes as before. Neglecting the consistency
could lead to models that violate the second law of thermodynamics. The current work
proposes a new approach in dealing with such thermoelastic coupling effects.

The retained (metastable) austenite in TRIP steels can be transformed into marten-
site through application of thermal and mechanical loadings. This process is also ac-
companied by a relative (positive) change of volume. The plastic deformation in the
austenitic and ferritic phases is also a dissipative process. Therefore, a fully coupled-
thermomechanical simulation of TRIP-steels is justified by considering the fact that both
of these processes (phase transformation and plasticity) can interact with each other via
mechanical and thermal loadings. As such, neglecting the coupling effects of thermal and
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mechanical fields for any non-isothermal process, e.g., an adiabatic situation or a high
rate test, can lead to unreliable results. It is therefore desirable to study these phenomena
in a fully coupled thermomechanical numerical scheme.

1.3 Objectives and outlines

The objective of the current manuscript is twofold: 1- To better understand the multi-
physics and interaction of thermal and mechanical fields in multiphase steels, both at the
level of the modeling and numerical simulations, and 2- To bring together the tools and
techniques that enable an efficient multiscale simulation of materials with complex mi-
crostructures. In doing that, we first turn our attention to the thermomechanics of TRIP
steels and identify the current pitfall and shortcomings. The proposed model is then used
to simulate and investigate the effect of the mechanical and thermal fields on each other.
Next, the underlying material is used to build numerical tools and homogenization tech-
niques that can make a link between the mechanical properties of the material at the mi-
croscale and its effective response at the macroscale. In the subsequent sections, purely
mechanical simulations are considered. The focus of the thesis will be to understand the
effect of texture on the overall response of these microstructures through the direct numer-
ical simulation (DNS) as well as the development of an algebraic, cost-efficient method
for obtaining the effective properties of the microstructure. The two described sections
are outlined as follows:

1. Thermo-mechanical interaction in TRIP steels: The thermomechanical modeling
and simulation of low-alloyed TRIP steels is analyzed, by taking into account the cou-
pling between the thermal and mechanical fields (chapter 2). The two-way coupling
is considered both at the level of the micromechanical (mesoscale) model as well as
a set of numerical simulations. In order to construct the constitutive relations, the
model proposed by Turteltaub and Suiker [75] and expanded by Tjahjanto et. al. [72]
is adopted and the kinematics of the model is extended by considering the thermal
deformation gradient as a function of the reversible entropy. Unlike the classical sit-
uations, the resulting equations obtained from the Coleman-Noll procedure cannot be
decoupled from each other. This coupling leads to challenges in the integration of the
constitutive relations. The derivation is proceeded by considering the internal energy
potential instead of the Helmholtz free energy potential, as is the case for the decou-
pled situations. The thermomechanical driving forces are identified and the effect of
the thermal deformation gradient in the terms is highlighted. For the numerical sim-
ulations, the linear momentum and the energy equations are solved simultaneously
(coupled system) in a fully-implicit numerical scheme. The coupling effects are il-
lustrated for both single crystals of austenite and aggregates of austenitic and ferritic
grains. The interaction of the thermal and the mechanical fields are highlighted through
these numerical examples and the differences with the purely mechanical simulations
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are pointed out.

2. Homogenization of microstructures: The influence of the spatial distribution of the
secondary phase, i.e., the austenitic phase, embedded in a ferritic matrix is analyzed
in chapter 3. The main tool for this is the numerical homogenization of representative
volume elements (RVEs) with distinct microstructural morphologies. For that, sev-
eral volume elements (VE) with increasing number of grains are considered. In each
VE, a random distribution of crystal orientation is assigned to both phases. The VEs
are simulated subjected to periodic, non-redundant, boundary conditions. The macro-
scopic responses in VEs are analyzed and the minimum number of grains to form an
RVE is identified. A material with the second phase clustered in a band-like region
is compared with a benchmark distribution, which consist of microstructures with a
randomly-dispersed secondary phase inside the matrix. Key parameters that affect
the macroscopic response are compared between the banded and the disperse samples
with the same volume fraction. An efficient, algebraic, method for the calculation of
the macroscopic response of typical microstructure, that compromises of Voronoi cells
of arbitrary shape, is presented in chapter 4. A key assumption of constant strain per
grain is introduced in order to simplify and reduce the number of unknowns in the
solution space. It is shown that at the interface of two neighboring grains the com-
patibility equation has to be considered alongside the linear momentum equation. An
iterative minimization scheme based on the constrained gradient descent is adopted
for numerical solution of the discretized field equations (the linear momentum and the
compatibility). To demonstrate the dependency of the solution method on the initial
estimate at each step, different methods for constructing the initial estimate are dis-
cussed and their effects on the macroscopic response are discussed through a set of
numerical examples. Finally, the capability of the method in capturing a broad range
of responses in the underlying material is demonstrated and the influencing parame-
ters on the effective response of the domain are calibrated in order to approximate the
macroscopic response of the DNS.

1.4 Nomenclature

The scheme of notation described here is used consistently throughout this manuscript.
Scalar quantities are written as light-face italic letters. Unless mentioned explicitly, vec-
tors are denoted as boldface lower case (e.g., a, ξ). Second order tensors are written
as boldface capital letters (e.g., A, Σ), where as the fourth order tensors are denoted as
black board capital letters (e.g., C, A). Boldface sans-serif letters are used to denote ma-
trices and vectors in the linear algebra context, e.g., Lx = f, for the linear transformation
L acting on vector x. Cartesian components of vectors and tensors are expressed in an
orthonormal coordinate system, i.e., the covariant and contra-variant components are the
same. For the index notation, and unless indicated otherwise, implicit summation on re-
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peated indices is assumed. A single contraction between two second order tensors or a
tensor and vector is assumed as FFT or Fx, respectively. A double contraction is implied
between a fourth order tensor and a second order tensor, e.g., CE and the full contraction
between two tensors of the same rank is denoted by a centered dot. The tensor product
(dyadic product) between two tensors is denoted by m ⊗ n, i.e., minj . The transpose
of a tensor and the differential operator are denoted by a superscript, roman font, T and
d, respectively. Unless idicated otherwise, subscripts A, M and F indicate the quantities
corresponding to material properties of austenite, martensite and ferrite, respectively.
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2
Coupled thermomechanical modeling and

simulation of TRIP steels

1Low-alloyed multiphase steels assisted by transformation-induced plasticity, commonly
known as TRIP steels, have been identified as ideal candidates for applications requiring
high strength-to-mass ratios, particularly in the automotive industry where fuel efficiency
and safety are primary concerns. A distinctive characteristic of a TRIP steel is the pres-
ence of grains of metastable austenite in its microstructure, with volume fractions usually
between 5 to 20%, embedded in a ferrite-based matrix [61, 32, 34]. Due to the addition
of small quantities of alloying elements such as Al or Si, the austenite is retained in the
material during processing as it is cooled down to room temperature. The presence of
retained austenite is critical for the transformation-induced plasticity effect. Indeed, upon
subsequent application of mechanical and/or thermal loads during forming or operation,
the austenite may transform into a harder phase, martensite, providing the material with
enhanced work-hardening characteristics compared to more conventional high-strength
steels.

In order to understand the details of the transformation-induced plasticity effect, var-
ious models have been proposed in the literature ranging from micromechanically-based
formulations to purely phenomenological constitutive relations at a macroscopic level
[6, 30, 41, 59, 38, 42, 37, 56, 54]. These models have been mostly applied to study the
isothermal response of a multiphase steel, typically at room temperature. Tensile tests

1This chapter is based upon S. Yadegari, S. Turteltaub, A.S.J. Suiker, Mech Mat, 53, 1-14, 2012
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conducted at various externally-controlled temperatures have shown that the martensitic
transformation rate strongly depends on temperature (see, e.g., [5, 36]), which indicates
that a comprehensive investigation of this class of steels should include their thermal be-
havior. The thermal sensitivity of TRIP steels has been studied under different thermal
loading paths in [72], where it was shown that the onset of inelastic response decreases
with temperature. Nonetheless, that study also showed that upon continued deformation,
the strength of a TRIP steel becomes the largest at the lowest temperature considered in
the analyses. The simulations presented in [72] were carried out under the assumption
that the temperature was externally-controlled and uniform within the sample, hence the
energy equation was trivially satisfied. However, during actual operational conditions,
the temperature is usually not controlled, hence the thermal behavior of the material de-
pends on the internal heat generated by inelastic processes (transformation and plasticity).
In particular, the phase transformation is accompanied by the release of a considerable
amount of energy per unit volume (latent heat) which affects the local temperature as
shown in non-isothermal tensile tests presented in [51]. Under those circumstances, the
thermomechanical behavior of a material sample needs to be obtained as the solution of
a coupled problem involving the balance of both linear momentum and energy. The cou-
pling occurs in both directions since the thermal response is affected by the internal heat
stemming from mechanical processes and, conversely, the mechanical response depends
on the thermal behavior.

The present contribution focusses on the formulation and the numerical analysis of
a fully-coupled thermomechanical model for multiphase steels. The model, presented in
Section 2.1, is based on the work originally proposed in [75, 73], which was expanded
in [70] to account for crystalline plasticity in the austenitic phase and the surrounding
matrix and further extended in [72] to incorporate thermoelastic coupling effects. From
a theoretical point of view, one important refinement in the present formulation relates to
the decomposition of the entropy density, where the entropic counterpart of the thermal
strain is derived from thermodynamic requirements. Although the resulting formulation
is similar to that presented in [72], the new entropy decomposition formally provides ther-
modynamic consistency. This model has been implemented in a fully-implicit numerical
framework in order to solve simultaneously the equations of linear momentum and en-
ergy. To illustrate the predictions of the model, Section 2.2.1 includes simulations of a
single crystal of austenite undergoing plastic deformation and/or phase transformation.
These simulations are carried out at different initial temperatures and compared to the
predictions of isothermal simulations. Subsequently, in Section 2.2.2, the basic behavior
of a grain of austenite embedded in a ferritic matrix is simulated to study the influence of
the surrounding matrix on the thermomechanical behavior of austenite.
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2.1 Thermomechanical model for multiphase steels

In this section, a constitutive model is developed to describe the thermo-elasto-plastic
response of single-crystal FCC austenite that may transform into one or more martensitic
BCT phases (referred to as transformation systems). The model is based on the work
presented in [75, 73, 70, 72] and incorporates new features to satisfy consistency from
a thermodynamical point of view. To this end, the deformation gradient and the entropy
are decomposed analogously to each other with special attention given to the terms that
account for the coupling between the entropy and the deformation.

2.1.1 Kinematics

To describe the deformation of a single-crystal grain of austenite that may partially or
totally transform into martensite, the total deformation gradient F is multiplicatively de-
composed as

F = FeFthFpFtr, (2.1)

where Fe, Fth, Fp and Ftr are the elastic, thermal, plastic and transformation contribu-
tions to the total deformation gradient, respectively. This decomposition defines several
(local) intermediate configurations Bi (i = 1, 2, 3) between the reference configuration
B0 (chosen to coincide with a stress-free state of the underlying material) and the current
configuration B as shown schematically below

B0
Ftr

F

B1
Fp

B2

Fth

B B3
Fe

The transformation deformation gradient includes lower length-scale kinematical infor-
mation of the product martensitic phase(s) through crystallographic information derived
from the theory of martensitic transformations [75]. A material point x in the reference
configuration B0 is interpreted as representing a small neighborhood containing a mixture
of austenite and one or more martensitic transformation systems. The mixture is quanti-
fied using the volume fractions ξ(α) of the martensitic transformation system α (measured
per unit referential volume). The total possible number of transformation systems for an
FCC to BCT transformations is M = 24. Each transformation system characterized by
a pair of vectors, b(α) and d(α) that represent, respectively, the shape strain vector and
the normal to the habit plane (interface between a martensitic transformation system α
and austenite). The (unconstrained) transformation deformation gradient associated with
an individual martensitic transformation system α is F(α) = b(α) ⊗ d(α) and the cor-
responding change in volume due to the transformation is, for any system α, given by
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J (α)
tr = detF(α) = 1 + δT with [75]

δT := b(α) · d(α) . (2.2)

The time rate of change of the effective transformation gradient of a mixture, Ḟtr, is given
by the volume average (in the reference configuration) of the rates of the transformation
deformation gradients of all active martensitic transformation systems, which can be ex-
pressed as (see [70, 75, 73])

Ḟtr =
M
∑

α=1

ξ̇(α)b(α) ⊗ d(α), (2.3)

The evolution of the plastic deformation is described by the effective plastic velocity
gradient Lp that is related to the effective plastic deformation gradient Fp through

Lp = ḞpF
−1
p . (2.4)

The effective plastic velocity gradient is expressed as a volume average, measured in the
second intermediate configuration B2, of the plastic velocity gradients of the austenitic

phase, Lp,A, and the martensitic phases, L
(α)
p , see [70]. In the present model it is as-

sumed that the high-carbon martensite does not deform plastically (i.e., L
(α)
p = 0), in

accordance to experimental observations, see [33]. Consequently, the effective plastic ve-
locity gradient can be related to the plastic gradient of the austenitic phase in the second
intermediate configuration as [70]

Lp = ξ̃ALp,A =
ξA

JtrJp
Lp,A =

ξA
Jtr

Lp,A, (2.5)

where ξA and ξ̃A represent the austenitic volume fraction in the reference (B0) and sec-
ond intermediate (B2) configurations, respectively, Jtr represents the determinant of the
effective transformation deformation gradient, and Jp is the determinant of the effective
plastic deformation gradient. The austenitic volume fraction in the reference configura-
tion is given by ξA = 1 −

∑M
α=1 ξ

(α). Observe that the last relation in (2.5) is obtained
assuming that the plastic deformation is isochoric, i.e., Jp = 1. Consistent with a crystal
plasticity description of slip along the slip systems i = 1, . . . , N = 24 of FCC austenite,
the effective plastic velocity gradient is expressed as [70]

Lp =
N
∑

i=1

γ̇(i)m(i)
A ⊗ n

(i)
A , (2.6)

where m
(i)
A and n

(i)
A are the unit vectors parallel to the slip direction and normal to the

slip plane for the austenitic slip system i, respectively, and γ̇(i) represents the effective
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plastic slip rate on slip system i, given by [70]

γ̇(i) =
ξA
Jtr

γ̇(i)A , (2.7)

with γ̇(i)A the rate of slip along the austenitic slip system i (measured within the austenitic
region).

The effective thermal deformation gradient Fth is expressed as the volume average
of the thermal deformation gradients (in the second intermediate configuration) of the

austenitic phase, Fth,A, and martensitic phases, F
(α)
th , i.e.,

Fth =
1

Jtr

(

ξAFth,A + (1 + δT)
M
∑

α=1

ξ(α)F(α)
th

)

, (2.8)

where, as before, the plastic deformation has been taken as isochoric. The dependency
of the thermal deformation gradient on thermal variables will be discussed below after
introducing a decomposition for the entropy.

2.1.2 Entropy

In an entropy-based thermodynamical framework, the entropy plays for the thermal fields
an analogous role as the deformation gradient does for the mechanical fields [9]. In order
to develop a thermodynamically-consistent formulation, the following decomposition for
the total entropy density per unit mass η is used:

η = ηe + ηm + ηp + ηtr, (2.9)

where ηe is referred to as the thermal part of the reversible entropy density (analogous to
the elastic deformation gradient), ηm is the reversible entropy density that accounts for
the coupling between the mechanical and thermal fields (analogous to the thermal defor-
mation gradient) and ηp and ηtr are the entropy densities related to plastic and transfor-
mation processes, respectively (analogous to the plastic and transformation deformation
gradients).

The rate of change of the transformational entropy density ηtr is expressed as (see [75,
70])

η̇tr =
M
∑

α=1

ξ̇(α)
λ(α)T

θT
, (2.10)

where λ(α)T is the latent heat at the transformation temperature θT, which is the heat
(per unit mass) required to transform austenite into a specific martensitic transformation
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system α during an isothermal process at θ = θT. Similarly, the rate of change of the
plastic entropy density ηp is formally written as (see [70])

η̇p = ξA

N
∑

i=1

γ̇(i)A φ(i)A = Jtr

N
∑

i=1

γ̇(i)φ(i)A , (2.11)

where φ(i)A measures the change in entropy per unit slip along the slip system i. The
form of the term ηm will be discussed in more detail in the context of thermodynamical
consistency.

2.1.3 State and internal variables

State and internal variables need to be chosen to characterize the internal energy den-
sity of the material. From the decomposition of the deformation gradient and the en-
tropy, convenient state variables are the elastic deformation gradient Fe and the ther-
mal part of the reversible entropy ηe. In addition, the volume fractions of the marten-
sitic transformation systems ξ =

(

ξ(1), ξ(2), . . . , ξ(M)
)

and the amounts of plastic slip

γ =
(

γ(1), γ(2), . . . , γ(N)
)

are used as variables that characterize internal structural
changes in the material due to phase transformations and plastic deformations. When-
ever required for partial differentiation, functions that depend on some or all the variables
Fe, ηe, ξ and γ will be denoted in the sequel with a superimposed tilde.

For subsequent use, assumptions are made regarding the dependency of the coupling
terms Fth and ηm that appear in the decompositions (2.1) and (2.9) of the deformation
gradient and the entropy, respectively. The classical model for the thermal deformation
gradient assumes that Fth depends on the temperature θ. However, since the temperature
is not chosen as a primary variable, it is instead assumed that the thermal deformation
gradient depends on the (purely thermal) reversible entropy ηe. Furthermore, in view
of (2.8), it may be observed that the thermal deformation gradient also depends on ξ;
consequently it is assumed that

Fth = F̃th (ηe, ξ) . (2.12)

At a later stage, a classical model of the thermal deformation gradient as a function of the
temperature will be introduced with a suitable change of variables.

As will be shown in subsequent sections, the reversible entropy associated with the
thermomechanical coupling ηm cannot be independently specified from the thermal de-
formation gradient (2.12); however it is possible to formally express ηm as follows:

ηm = η̃m (Fe, ηe, ξ) . (2.13)

Observe that the decomposition of the deformation gradient and the entropy is done
in terms of two types of variables, namely (i) quantities related to reversible processes
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(Fe, Fth, ηe, ηm) and (ii) quantities representing irreversible processes (Fp, Ftr, ηp, ηtr).
The existence of relations of the types (2.12) and (2.13) is consistent with the notion of
reversibility.

2.1.4 Thermodynamical relations

Useful thermodynamical relations can be established as a result of the procedure estab-
lished by Coleman and Noll [15]. To this end, consider the dissipation rate D (per unit
volume) at a material point given by

D := −ρ0ϵ̇+P · Ḟ+ ρ0θη̇ −∇θ ·Φ, (2.14)

where ρ0 is the referential mass density, ϵ̇ is the rate of change of the internal energy
density ϵ (per unit mass), P is the first Piola-Kirchhoff stress, Ḟ is the rate of change of
the deformation gradient, θ is the temperature, η̇ is the rate of change of the entropy, ∇θ is
the (referential) temperature gradient and Φ is the entropy flux, all written for a material
point in the reference configuration.

Using the kinematic relations (2.3), (2.6), (2.4) and (2.12) and applying the chain rule,
the internal mechanical power P · Ḟ can be expressed as

P · Ḟ = PFT
trF

T
pF

T
th · Ḟe + FT

e PFT
trF

T
p ·

∂F̃th

∂ηe
η̇e

+
M
∑

α=1

(

τ (α)tr + FT
e PFT

trF
T
p ·

∂F̃th

∂ξ(α)

)

ξ̇(α) +
N
∑

i=1

τ (i)p γ̇(i),

(2.15)

with τ (α)tr and τ (i)p denoting the resolved stresses on the transformation system α and on
the plastic slip system i, respectively. The resolved stress for transformation has the form

τ (α)tr = FT
pF

T
thF

T
e P ·

(

b(α) ⊗ d(α)
)

. (2.16)

and the resolved stress for plastic slip is given by

τ (i)p = FT
thF

T
e PFT

trF
T
p ·
(

m
(i)
A ⊗ n

(i)
A

)

, (2.17)

The internal thermal power ρ0θη̇ in (2.14) can be expanded in a similar way using (2.9),
(2.10), (2.11) and the dependency condition for ηm in (2.13), i.e.,

ρ0θη̇ =ρ0θ
∂η̃m
∂Fe

· Ḟe + ρ0θ

(

1 +
∂η̃m
∂ηe

)

η̇e

+
M
∑

α=1

(

ζ(α)tr + ρ0θ
∂η̃m
∂ξ(α)

)

ξ̇(α) +
N
∑

i=1

ζ(i)p γ̇(i),

(2.18)
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where ζ(α)tr and ζ(i)p are the thermal analogues of the resolved stresses τ (α)tr and τ (i)p ,
respectively, given by

ζ(α)tr = ρ0θ
λ(α)T

θT
, ζ(i)p = ρ0Jtrθφ

(i)
A . (2.19)

The rate of change of the internal energy can be expressed in terms of rates of state and
internal variables and, more generally, might also depend on fluxes. The model that will
be used here to take into account the stored energy associated with plastic deformations is
relatively simple. With this in mind, for the purposes of the present model, it is sufficient
to assume that the internal energy does not arbitrarily depend on all components of γ
but only through a specific combination of them. To this end, a strain-like variable β is
defined (in rate form) as a weighted sum of the rates of plastic slips γ̇(i) [70], i.e.,

β̇ =
N
∑

i=1

w(i)γ̇(i), (2.20)

where the form of the weighting functions w(i) will be derived at the end of Section 2.1.6
in terms of a hardening model. The scalar quantity β plays the role of an equivalent
plastic (micro) strain and is henceforth treated as an internal variable (see [70] for details).
Correspondingly, it is assumed that the internal energy ϵ is given by a function ϵ̃ that
depends on the state and internal variables Fe, ηe, ξ and β and, a priori, may also depend
on the fluxes ξ̇, β̇, and Φ, i.e.,

ϵ = ϵ̃
(

Fe, ηe, ξ,β; ξ̇, β̇,Φ
)

. (2.21)

Combining (2.15), (2.18), (2.20) and (2.21) with (2.14) results in the following expression
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for the dissipation:

D =

(

PFT
trF

T
pF

T
th + ρ0θ

∂η̃m
∂Fe

− ρ0
∂ϵ̃

∂Fe

)

· Ḟe

+ ρ0

(

θ + θ
∂η̃m
∂ηe

+
1

ρ0
FT

e PFT
trF

T
p ·

∂F̃th

∂ηe
−

∂ϵ̃

∂ηe

)

η̇e

+
M
∑

α=1

(

τ (α)tr + ζ(α)tr + FT
e PFT

trF
T
p ·

∂F̃th

∂ξ(α)

+ρ0θ
∂η̃m
∂ξ(α)

− ρ0
∂ϵ̃

∂ξ(α)

)

ξ̇(α) −
M
∑

α=1

ρ0
∂ϵ̃

∂ξ̇(α)
ξ̈(α)

+
N
∑

i=1

(

τ (i)p + ζ(i)p − ρ0
∂ϵ̃

∂β
w(i)

)

γ̇(i)

− ρ0
∂ϵ̃

∂β̇
β̈ −∇θ ·Φ− ρ0

∂ϵ̃

∂Φ
· Φ̇.

(2.22)

The second law of thermodynamics states that for every thermomechanical process, the
local entropy rate must be non-negative, Γ ≥ 0, which for this case, it is equivalent to
D = Γθ ≥ 0, since the temperature is always positive. Furthermore, the terms in (2.22)
that are multiplied by the rates Ḟe, η̇e, β̈, ξ̈ and Φ̇ must vanish, since otherwise a process
can be specified for which the dissipation is negative (see [15]). Correspondingly, it can
be concluded that

ρ0
∂ϵ̃

∂Fe
= PFT

trF
T
pF

T
th + ρ0θ

∂η̃m
∂Fe

,

∂ϵ̃

∂ηe
= θ + θ

∂η̃m
∂ηe

+
1

ρ0
FT

e PFT
trF

T
p ·

∂F̃th

∂ηe
,

∂ϵ̃

∂β̇
= 0,

∂ϵ̃

∂ξ̇
= 0,

∂ϵ̃

∂Φ
= 0.

(2.23)

As a result of the last three relations in (2.23), the internal energy cannot depend on the
fluxes, which reduces (2.21) to

ϵ = ϵ̃ (Fe, ηe, ξ,β) . (2.24)

Enforcing (2.23) in (2.22), the dissipation can be written as D = Dtr + Dp + Dq, where
Dtr, Dp and Dq are the dissipations due to phase transformation, plastic deformation and
heat conduction, respectively, defined as

Dtr :=
M
∑

α=1

f (α)ξ̇(α), Dp :=
N
∑

i=1

g(i)γ̇(i), Dq := −∇θ ·Φ, (2.25)

17



CHAPTER 2. COUPLED THERMOMECHANICAL MODELING AND SIMULATION OF TRIP STEELS

with f (α) and g(i) the driving forces for transformation and plasticity, respectively, given
by

f (α) :=τ (α)tr + ζ(α)tr + FT
e PFT

trF
T
p ·

∂F̃th

∂ξ(α)

+ ρ0θ
∂η̃m
∂ξ(α)

− ρ0
∂ϵ̃

∂ξ(α)
,

g(i) :=τ (i)p + ζ(i)p − ρ0
∂ϵ̃

∂β
w(i).

(2.26)

For the kinetic relations of the present model, it will be assumed that a strong form of
the dissipation inequality applies, namely that the dissipation associated with individual
processes is non-negative, i.e., it will be required that

Dtr ≥ 0, Dp ≥ 0, Dq ≥ 0. (2.27)

Observe that the Coleman-Noll procedure yields two types of results, namely (i) relations
for the partial derivatives of the (stored) internal energy (see (2.23)1,2) and (ii) expres-
sions for the transformational and plastic driving forces (see (2.26)). After introducing
specific constitutive models between the dependent variables P, θ, Fth and ηm and the
state variables Fe and ηe, the first set of thermodynamical relations from the Coleman-
Noll procedure can be integrated to obtain an expression for the internal energy. Once the
expression for ϵ̃ has been established, the second set of thermodynamical relations (2.26)
can be applied to further develop specific forms for the driving forces. Finally, kinetic
relations that relate the evolution of the internal variables to the driving forces can be
proposed such that the dissipation inequality is satisfied for all possible processes. These
steps are carried out in the subsequent sections.

2.1.5 Models for the internal energy, thermal deformation gradient
and reversible entropy

To obtain an expression for the internal energy density ϵ, it is convenient to work with a
different set of state variables. In particular, since the constitutive relation between the
stress and the (elastic) deformation must be frame indifferent, the stress tensor cannot
depend on (elastic) rotations. This can be guaranteed using a strain measure where the
rotation has been factored out, such as the elastic Green-Lagrange strain defined as

Ee = Ẽe(Fe) =
1

2

(

FT
e Fe − I

)

. (2.28)

Furthermore, the classical models for the thermal deformation gradient and the thermal
energy are expressed in terms of the temperature θ and not the (purely thermal) reversible
entropy ηe. It is assumed that there is a one-to-one correspondence between θ and ηe of
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the form θ = θ̃ (ηe, ξ), which can be inverted as ηe = η̂e (θ, ξ). Accordingly, a new set of
state and internal variables, namely (Ee, θ, ξ,β), is used in the foregoing analysis. Hence-
forth, a superimposed “hat” on a function indicates that it depends on some or all of the
variables Ee, θ, ξ and β. It is worth pointing out that in order to use the temperature as a
state variable, the most natural formulation is in terms of the Helmholtz energy ψ, which,
assuming a one-to-one correspondence between conjugate variables, can be obtained from
a Legendre transformation, namely ψ̂ (Ee, θ, ξ,β) = ϵ̃ (Ee, η̂e (θ, ξ) , ξ,β) − θη̂e (θ, ξ).
However, in anticipation of a numerical implementation that is based on the internal en-
ergy, it is more convenient to perform a direct change of variables instead of a Legendre
transform. This choice requires the use of the chain rule, but otherwise provides an equiv-
alent formulation as the Legendre transform.

Based on the aforementioned assumptions, the change of variables can be achieved
employing the following relations for a (scalar, vector or tensor-valued) function f :

∂ f̃

∂Fe
= Fe

∂ f̂

∂Ee
, P = JtrJthFeSF

−T
th F−T

p F−T
tr ,

∂ f̃

∂ηe
=

∂θ̃

∂ηe

∂ f̂

∂θ
,

∂η̂e
∂θ

=

(

∂θ̃

∂ηe

)−1

,

∂ f̃

∂ξ(α)
=

∂ f̂

∂ξ(α)
+

∂θ̃

∂ξ(α)
∂ f̂

∂θ
,

∂ f̃

∂β
=
∂ f̂

∂β
,

(2.29)

where S corresponds to the second Piola-Kirchhoff stress tensor in the third intermediate
configuration B3. Employing the relations (2.29), equations (2.23)1,2 can be written as

ρ0
∂ϵ̂

∂Ee
= JtrJthS+ ρ0θ

∂η̂m
∂Ee

,

ρ0
∂ϵ̂

∂θ
= ρ0θ

∂

∂θ
(η̂e + η̂m) + JtrJthF

T
e FeS ·

∂F̂th

∂θ
F−1

th .

(2.30)

It is assumed that the stress tensor S and its conjugate strain tensor Ee are related through
the constitutive relation

S = Ŝ (Ee, ξ) = C (ξ)Ee, (2.31)

where C = C (ξ) is an effective fourth order elasticity tensor for the mixture of austenite
and martensite that, in the present model, is estimated as a volume average in the third
intermediate configuration, i.e.,

C (ξ) =
1

JtrJth

(

Jth,AξACA + (1 + δT)
M
∑

α=1

J (α)
th ξ(α)C(α)

)

, (2.32)

where CA and C(α) are the stiffness tensors of austenite and twinned martensite, respec-

tively, and Jth = detFth, Jth,A = detFth,A and J (α)
th = detF(α)

th . Specific forms for
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CA and C(α) are given in [75]. It is noted that the effective stiffness C formally depends

on the temperature since the thermal deformation gradients Fth,A and F
(α)
th depend on θ.

However, this dependency is not intrinsically physical because it is only related to the ap-
proximation scheme used, namely the volume averaging. In the sequel, it will be assumed
that the dependency of C on θ is weak in the sense that

∂

∂θ
(JtrJthC) ≈ 0 . (2.33)

Correspondingly, the formal dependency of C on θ is not indicated in (2.32).
Integrating (2.30)1 with respect to Ee yields

ϵ̂ (Ee, θ, ξ,β) = ϵ̂m (Ee, ξ) + θη̂m (Ee, θ, ξ) + ϵ̂1 (θ, ξ,β) , (2.34)

where ϵ̂1 is a function that does not depend on Ee and ϵ̂m is the strain energy given by

ϵ̂m (Ee, ξ) =
JtrJth
2ρ0

C(ξ)Ee ·Ee. (2.35)

Taking the partial derivative of (2.34) with respect to the temperature (accounting for the
assumption (2.33)), equating the resulting expression with (2.30)2 and rearranging the
terms leads to

η̂m =
1

ρ0
JtrJthF

T
e FeS ·

∂F̂th

∂θ
F−1

th +

(

θ
∂η̂e
∂θ

−
∂ϵ̂1
∂θ

)

. (2.36)

As discussed in Section 2.1.2, the term η̂m accounts for the entropy associated with an
elastic deformation. Consequently, η̂m should vanish in the absence of an elastic defor-
mation, i.e.,

η̂m (Ee = 0, θ, ξ) = 0. (2.37)

Observe that the relation shown in (2.37) should hold for arbitrary values of the tempera-
ture θ and the volume fractions ξ. By setting Ee = 0 (and hence S = 0) in (2.36), and in
view of (2.37), it follows that

θ
∂η̂e
∂θ

−
∂ϵ̂1
∂θ

= 0. (2.38)

Consistent with the foregoing assumptions, the above relation is valid for arbitrary values
of θ and ξ and does not depend on the elastic deformation. The term ϵ1 can be obtained
upon integration of (2.38), which requires a constitutive relation between θ and ηe. The
following constitutive relation is then proposed [75]:

ηe = η̂e(θ, ξ) = h(ξ) ln

(

θ

θT

)

+ ηT, (2.39)

where h = h (ξ) stands for the effective specific heat (per unit mass), θT is the trans-
formation temperature at zero elastic deformation and ηT denotes the value of ηe at the
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transformation temperature. The above model corresponds to assuming that the specific
heat remains constant during a purely thermal process. The effective specific heat h is
estimated as a volume average of the specific heat of the austenitic phase, hA, and the
specific heats of the martensitic transformation systems, h(α) (see [75]), i.e.,

h (ξ) = ξAhA +
M
∑

α=1

ξ(α)h(α) . (2.40)

Using (2.39) in (2.38) and integrating with respect to θ results in

ϵ̂1 (θ, ξ,β) = ϵ̂th(θ, ξ) + ϵ̂2 (ξ,β) , (2.41)

where ϵ̂2 is a function that does not depend on the temperature and ϵ̂th is the thermal
internal energy, which corresponds to a classical model, i.e.,

ϵ̂th(θ, ξ) = h(ξ)θ . (2.42)

The function ϵ̂2 is used to introduce two other forms of (lower-scale) energy that play
a role at the mesoscale, namely a defect energy ϵ̂d that represents the elastic distortion
of the lattice due to the presence of dislocations and a surface energy ϵ̂s stored in the
austenite-twinned martensite interfaces. Correspondingly, the function ϵ̂2 is expressed as

ϵ̂2 (ξ,β) = ϵ̂d (ξ,β) + ϵ̂s (ξ) + ϵ̂∗ (ξ) . (2.43)

Adopting the models presented in previous works [73, 75, 70], the defect energy and the
surface energy are formulated as

ϵ̂d (ξ,β) =
1

2ρ0
JtrJthωAµ(ξ)β

2,

ϵ̂s (ξ) =
χ

l0ρ0

M
∑

α=1

ξ(α)
(

1− ξ(α)
)

,
(2.44)

where ωA is a scaling factor for the strain energy of an assembly of dislocations, β is
the strain-like internal variable related to plastic slip through (2.20), χ is an interface
energy per unit referential area and l0 is a length-scale parameter representing the volume-
to-surface ratio of a circular platelet of martensite within a spherical grain of austenite
(see [75] and [74] for details). The term µ = µ(ξ) is an equivalent (isotropic) shear
modulus (obtained through averaging the modulusµA of austenite and µ(α) of martensite,
see [70]), i.e.,

µ (ξ) =
1

JtrJth

(

Jth,AξAµA + (1 + δT)
M
∑

α=1

J (α)
th ξ(α)µ(α)

)

.
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Similar to the approach adopted for the stiffness C, it is assumed that the dependency of
µ on θ is weak in the sense that ∂ (JtrJthµ) /∂θ ≈ 0.

The last term in the decomposition (2.43), ϵ̂∗, is used to satisfy an additional require-
ment on the energy at the transformation temperature θT, namely that the transformation
driving force (for all systems) should vanish when the transformation process takes place
at the transformation temperature, at zero elastic strain (hence at zero stress), at zero plas-
tic deformation (hence at zero plastic microstrain) and in the absence of a surface energy.
The previous requirement can be formally expressed as

f (α)
∣

∣

∣

Ee=0, θ=θT, β=0, χ=0
= 0. (2.45)

Upon using (2.16), (2.19)1, (2.29)2, (2.31), (2.34), (2.35), (2.36), (2.40), (2.42), (2.43)
and (2.44) in (2.26)1 (with Ee = 0, θ = θT,β = 0,χ = 0), the condition (2.45) results in

λ(α)T −
(

h(α) − hA

)

θT −
∂ϵ̂∗

∂ξ(α)
= 0, (2.46)

Integration of (2.46) gives the following expression for ϵ̂∗:

ϵ̂∗ (ξ) =
M
∑

α=1

λ(α)T ξ(α) − h (ξ) θT. (2.47)

It is convenient to combine the term ϵ̂∗ with the thermal internal energy ϵ̂th given in (2.42)
into a thermal energy ϵ̂∗th that also accounts for the latent heat, i.e.,

ϵ̂∗th(θ, ξ) = h(ξ)(θ − θT) +
M
∑

α=1

λ(α)T ξ(α) . (2.48)

Before closing this section, a classical model for the thermal deformation gradient is
considered. In particular, the thermal deformation gradient is assumed to depend linearly

on the temperature, i.e., Fth,A = I+AA(θ− θ0) and F
(α)
th = I+A(α)(θ− θ0), with θ0

being a reference temperature and AA and A(α) the tensors of thermal expansion of the
austenitic and martensitic phases, respectively. In view of the relations above, expression
(2.8) becomes

Fth = F̂th (θ, ξ) = I+A(ξ) (θ − θ0) (2.49)

with A the effective tensor of thermal expansion given by

A(ξ) =
1

Jtr

(

ξAAA + (1 + δT )
M
∑

α=1

ξ(α)A(α)

)

. (2.50)

The specific form of the reversible entropy η̂m associated with the thermomechanical
coupling can be obtained by substitution of (2.32), (2.35) and (2.49) in (2.36) (accounting
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for (2.38)), i.e.,

η̂m (Ee, θ, ξ) =
1

ρ0
JtrJthF

T
e FeSF

−T
th ·A . (2.51)

In view of (2.28), (2.31) and (2.49), the term η̂m is interpreted as a function of Ee, θ and
ξ. The explicit form of the internal energy, i.e.,

ϵ̂ = ϵ̂m + θη̂m + ϵ̂∗th + ϵ̂s + ϵ̂d , (2.52)

can be obtained from (2.35), (2.44), (2.48) and (2.51).

2.1.6 Driving forces and kinetic relations

To complete the thermomechanical formulation, the driving forces for transformation and
plasticity and the kinetic relations for the evolution of the internal variables of the model
are presented in this section. Explicit forms for the driving forces corresponding to the
internal energy developed in the previous section can be computed using (2.26) together
with the change of variables (2.29) and the expressions for the distinct terms of the in-
ternal energy given in (2.52). After some algebra, where the simplifying assumption
∂(Jtr)−1/∂ξ(α) ≈ 0 is used, it is possible to decompose the driving forces based on their
relevant mechanism as follows:

f (α)
tr = f (α)

m + f (α)
m,th + f (α)

th + f (α)
d + f (α)

s ,

g(i)A = g(i)m + g(i)th + g(i)d ,
(2.53)

where f (α)
m , f (α)

m,th, f (α)
th , f (α)

d and f (α)
s stand for the purely mechanical contribution,

the coupled thermomechanical contribution, the purely thermal contribution, the defect
energy contribution and the surface energy contribution, respectively, as given by

f (α)
m = JtrJthF

T
pF

T
thF

T
e FeSF

−T
th F−T

p F−T
tr ·

(

b(α) ⊗ d(α)
)

+
1

2

(

Jth,ACA − (1 + δT)J
(α)
th C

(α)
)

Ee ·Ee,

f (α)
m,th = JthF

T
e FeSF

−T
th ·

(

(1 + δT)A
(α) −AA

)

(θ − θ0),

f (α)
th = ρ0

λ(α)T

θT
(θ − θT)

+ ρ0
(

hA − h(α)
)

(

θ − θT − θ ln

(

θ

θT

))

,

f (α)
d =

ωA

2

(

Jth,AµA − (1 + δT)J
(α)
th µ(α)

)

β2,

f (α)
s =

χ

l0

(

2ξ(α) − 1
)

.

(2.54)
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Similarly, the contributions of the mechanical energy, the thermal energy and the defect
energy to the driving force for plasticity are, respectively,

g(i)m = JthF
T
thF

T
e FeSF

−T
th ·

(

m
(i)
A ⊗ n

(i)
A

)

,

g(i)th = ρ0θφ
(i)
A ,

g(i)d = −ωAµβw
(i).

(2.55)

Typically, the most relevant contributions to the transformation driving force are f (α)
m

and f (α)
th given by (2.54)1,3. More specifically, the main contribution is the first term in

each of these expressions (i.e., the stress resolved on a transformation system in (2.54)1
and its thermal analogue in (2.54)3). Other terms in the transformation driving force that
account for changes in energy due to changes in material properties may have a significant
influence if, for example, there is a large difference in stiffness, thermal expansion and/or
specific heat between the parent phase (austenite) and the product phase (martensite).

Similarly, the most important contribution for the plastic driving force is g(i)m (i.e., the

stress resolved on a slip system). The thermal analogue to the resolved stress (i.e., g(i)th

in (2.55)2) appears to have a minor contribution. Finally, the term g(i)d , which is meant
to account for the increase in stored energy due to elastic distortion around dislocation

cores, is always negative and thus acts against plastic slip. However, g(i)d has typically a
minor contribution compared to the resolved stress.

Following the approach of Onsager for irreversible thermodynamics [9], constitutive
relations for the evolution of the internal variables ξ and γ need to be specified in the
form of kinetic relations. These relations must comply with the dissipation inequality
that in the present framework is assumed to take the form given in (2.27). For the phase
transformation process, the following kinetic relation for the rate of growth of the volume
fraction of system α is adopted [73, 75]

ξ̇(α) =

⎧

⎪

⎨

⎪

⎩

ξ̇0 tanh

(

f (α) − f (α)
cr

νf (α)
cr

)

if f (α) ≥ f (α)
cr ,

0 otherwise,

(2.56)

where ξ̇0 > 0 is the maximum value of the transformation rate, ν is a dimensionless,

viscosity-like parameter and f (α)
cr is a critical value that acts as an energy barrier for the

transformation process.
Similarly, the following kinetic relation is used for the evolution of plastic slip on

system i in the austenite [70]

γ̇(i)A =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

γ̇A0

⎛

⎜

⎝

(

g(i)A

s(i)A

)

(

1
nA

)

− 1

⎞

⎟

⎠
if g(i)A ≥ s(i)A ,

0 otherwise,

(2.57)
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where γ̇A0 is a reference slip rate, nA is the rate-sensitivity exponent and s(i)A is the resis-
tance against slip on system i. The resistance against slip is taken to evolve according to
the following hardening relation:

ṡA =
N
∑

j=1

H(i,j)
A γ̇(j)A , (2.58)

where the hardening moduli of the austenite H(i,j)
A are given as

H(i,j)
A = ((1 − qA)δij + qA) k

(j)
A . (2.59)

In (2.59), qA is the latent hardening ratio, which accounts for the difference between cross

and self-hardening, k(j)A is the single slip hardening modulus of slip system j and δij is
Kronecker’s delta. The evolution of the single slip hardening modulus is given by [70]

k(i)A = kA0

(

1−
s(j)A

sA∞

)uA

, (2.60)

where kA0 is a reference hardening modulus, sA∞ is the hardening saturation value, and uA

is the hardening exponent.
In order to determine the form of the weighting functions w(i) introduced in (2.20),

a kinetic relation for the evolution of the effective plastic microstrain β is presented.
Analogous to the expression used for the effective plastic velocity gradient in (2.5), the
rate of change of the effective plastic microstrain β is related to the rate of change of the
plastic microstrain βA within the austenitic phase as

β̇ = ξ̃Aβ̇A =
ξA
Jtr

β̇A. (2.61)

The rate of change of βA is assumed to depend linearly on the rate of change of the slip
resistance in austenite as

cAµAβ̇A =
1

N

N
∑

i=1

ṡ(i)A , (2.62)

where µA is the equivalent isotropic shear modulus of the austenite and cA is a scaling
factor that accounts for dislocation interaction [70]. Combining (2.7), (2.58), (2.61) and
(2.62) results in

β̇ =
1

cAµAN

N
∑

i=1

N
∑

j=1

H(i,j)
A γ̇(j) . (2.63)

Comparing (2.63) and (2.20) allows to identify the weighting functions w(i) as

w(i) =
1

cAµAN

N
∑

j=1

H(j,i)
A . (2.64)
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The last kinetic relation necessary to complete the model is the heat conduction relation
for which a classical model is used (Fourier’s law), i.e., taking the entropy flux as Φ =
q/θ, with q the heat flux, then

q = −K∇θ , (2.65)

where K is the heat conductivity tensor. The kinetic relations (2.56), (2.57) and (2.65)
satisfy the dissipation inequality (2.27) with appropriate restrictions (e.g., the tensor K
must be positive semi-definite). For simplicity, isotropic models are adopted for thermal
expansion and thermal conduction, i.e., AA = αAI, A

(α) = α(α)I, KA = kAI and
K(α) = k(α)I, with αA, α(α), kA and k(α) the corresponding coefficients of thermal
expansion and heat conduction for the austenite and martensite.

In the sequel, simulations will be presented for single crystals of austenite and for
grains of austenite embedded in an aggregate of ferritic grains. The model used for ferrite
may be formally derived from the model for austenite by suppressing all features related to
phase transformation. However, since ferrite has a BCC structure while austenite is FCC,
there are some differences in the formulation. Apart from using different slip systems
(and numerical values for the model parameters), the model for BCC ferrite includes a
non-Schmid term in the resistance to plastic slip. Details are omitted here and can be
found in [71]. These models are used to simulate the response of austenitic and ferritic
grains subjected to quasi-static thermomechanical loading.

2.2 Numerical Simulations

To illustrate the features of the proposed model under thermomechanical loading, two
sets of simulations are presented in this section. The first set consists of a single crystal
of austenite under homogeneous tension. The second set is a tensile test for a multiphase
TRIP steel microstructure composed of a single-crystalline grain of austenite surrounded
by a ferritic matrix. The simulations are performed using the finite element package
ABAQUS and the constitutive models are implemented using the UMAT and UMATHT
subroutines for a fully-coupled thermomechanical analysis. Details about the numerical
time integration of the phase transformation model can be found in [62]. The initial-
boundary value problem consists of solving simultaneously the balance of linear momen-
tum (for a quasi-static process in the absence of body forces) and the balance of energy
(in the absence of non-contact heat exchange), i.e.,

divP = 0, ρ0ϵ̇ = P · Ḟ− divq , (2.66)

together with appropriate initial and boundary conditions for the thermal and mechanical
fields.

The material parameters for the austenite, martensite and ferrite used in the simu-
lations are shown in Table 2.1 with the sub- or superscripts A, M or F indicating the
corresponding phase. These parameters are equal to those presented in [72] (see also
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x1

x2

x3

[111]A

Orientation [111]A

[100]A

Orientation [100]A

Figure 2.1: Austenitic single crystal sample loaded in two distinct crystalline orientations.

references therein for additional information on the calibration of those parameters). De-
tailed crystallographic data for the transformation systems can be found in [75]. Plastic
deformation in the FCC austenite is accounted for by considering slip along the systems
of the ⟨110⟩A{111}A family. For the BCC ferrite, plastic deformation is modeled based
on the ⟨111⟩F{110}F family and data for the non-Schmid contribution to slip resistance
can be found in [71]. In addition, representative values for the specific heat and thermal
conductivities of typical low-allowed carbon steels are taken from [65]. Observe that, for
simplicity, the conductivity and the specific heat of all phases are taken equal to that of a
multiphase steel and they do not depend on temperature, which is a reasonable assumption
for the range of temperatures considered in the present analysis.

2.2.1 Austenitic single crystal under uniaxial tension

A simulation is performed on a cubical sample of a single crystal of austenite subjected
to an axial nominal strain up to ε11 = 0.2 using a strain rate of 10−4s−1, where the
nominal strain is ε = V − I, with V the left stretch tensor in the polar decomposition of
the deformation gradient F. To achieve this mechanical loading condition, three mutually
perpendicular faces of the cube are constrained along their normals while pulling the top
plane of the specimen in x1-direction with the prescribed loading rate (see Fig. 4.1). The
two remaining faces are set to be traction-free. A zero heat-flux boundary condition is
applied in the thermomechanical simulation, hence there is no heat exchanged with the
surrounding environment. To study the effect of the internal heat generated from inelastic
mechanisms (transformation and plasticity) on the mechanical response, each thermo-
mechanical simulation is repeated under isothermal conditions for comparison purposes.
In the isothermal simulations only the linear momentum equation is solved with a tem-
perature equal to the initial temperature of its thermomechanical counterpart. To assess
the effect of the initial temperature, each type of simulation, i.e., isothermal and ther-
momechanical, is performed for two different values of the initial temperature, namely
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Parameter(s) Value(s) Equation(s)

Mechanical

Elastic moduli κA
1 = 286.8, κA

2 = 166.4, κA
3 = 145.0 (GPa) (2.32)

κM
1 = 372.4, κM

2 = 345.0, κM
3 = 191.0 (GPa)

κM
4 = 508.4, κM

5 = 201.9, κM
6 = 229.5 (GPa)

κF
1 = 233.5, κF

2 = 135.5, κF
3 = 118.0 (GPa)

Transformation kinetic parameters
ξ̇0 = 0.003

(

s−1
)

, ν = 0.17, (2.56)

f
(α)
cr = 227 (MPa)

Surface energy parameters χ = 0.2
(

J ·m−2
)

, l0 = 0.05 (µm) (2.44)2,(2.54)5

Plastic kinetic parameters γ̇A
0 = 0.001

(

s−1
)

, nA = 0.02 (2.57)

γ̇F
0 = 0.001

(

s−1
)

, nF = 0.02

Defect energy parameters
βA,0 = 0.0056, cA = 0.5, ωA = 10 (2.44)1,(2.62),

βF,0 = 0.0056, cF = 0.5, ωF = 7 (2.63),(2.64)

µA = 67.5, µ(α) = 98.4, µF = 55.0 (GPa)

Hardening parameters sA,0 = 189, sA
∞

= 579 (MPa) (2.60),(2.59)

kA0 = 3 (GPa) , uA = 2.8, qA = 1

sF,0 = 154, sF
∞

= 412 (MPa)

kF0 = 1.9 (GPa) , uF = 2.8, qF = 1

Thermal

Thermal driving force parameters
λ
(α)
T = −50.5

(

kJ · kg−1
)

, (2.48),(2.54)3,

φ
(i)
A = 5.13

(

J · kg−1 ·K−1
)

(2.55)2

φ
(i)
F = 4.27

(

J · kg−1 ·K−1
)

, θT = 633 (K)

Specific heat hA = h(α) = hF = 450
(

J · kg−1 ·K−1
)

(2.40)

Thermal expansion coefficient
αA = α(α) = 2.1× 10−5

(

K−1
)

, (2.49),(2.50)

αF = 1.7× 10−5
(

K−1
)

Heat conductivity kA = k(α) = kF = 60
(

W ·m−1 ·K−1
)

(2.65)

Table 2.1: Model parameters for austenite, martensite and ferrite. The elasto-plastic models used for ferrite and
austenite are formally similar; see section 2.1.6.
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θ0 = 300K and θ0 = 350K. Due to the anisotropic mechanical properties of the austen-
ite and the martensite, the aforementioned simulations are performed for two crystalline
orientations such that the loading direction x1 corresponds to the crystallographic direc-
tions [100]A and [111]A, measured with respect to the austenitic crystal lattice as shown in
Fig. 4.1. The sample is initially fully austenitic, stress-free and the reference temperature
θ0 for the thermal strains is set to coincide with the initial temperature, hence the initial
thermal deformation gradient is identity.

Tension along the [100]A direction

The results for the sample loaded along the [100]A direction are shown in Fig. 4.2. The
figure indicates the evolution of (a) the axial component T11 of the Cauchy stress tensor
T, (b) the temperature θ, (c) the total martensitic volume fraction ξM =

∑N
α=1 ξ

(α) and
(d) the plastic microstrain β, as a function of the axial logarithmic strain e11, where the
logarithmic strain is e = lnV. The total volume fraction ξM monitors the nucleation
and subsequent growth of the martensitic phase whereas plastic slip can be correlated
to the plastic microstrain β. From Fig. 4.2a, it can be observed that the evolution of
the axial stress T11 is significantly different for the thermomechanical case (labeled as
“th.mech.”) and the isothermal case (labeled as “iso.th.”). In the isothermal case, there
is a clear stress plateau as the austenite gradually transform into martensite, i.e., as ξM
increases from 0 to 1 (see Fig. 4.2c). The stress response curve exhibits a plateau in
accordance with the constitutive model that does not contemplate hardening as a direct
result of the phase transformation mechanism (i.e., nucleation of new martensite is not
hindered by the previous appearance of that phase). The stress plateau for the isothermal
deformation at θ0 = 300K starts at a lower strain than for the isothermal deformation
at θ0 = 350K since, in the latter case, the austenite deforms plastically prior to the
nucleation of martensite (compare the evolution of ξM and β in Figures 4.2c and 4.2d,
respectively). Moreover, from Fig. 4.2d, it can be seen that for the isothermal deformation
at θ0 = 300K there is no plastic slip and for the isothermal deformation at θ0 = 350K
plastic slip is suppressed as soon as the material starts to transform (see Fig. 4.2c and
Fig. 4.2d). The end of the stress plateau for both temperatures corresponds to the point
where the austenite has fully transformed into martensite, which behaves elastically.

In contrast to the isothermal case, the stress in the austenite in the thermomechanical
case under zero heat flux boundary conditions shows a gradual increase with continu-
ous deformation. Both inelastic mechanisms (plasticity and transformation) are active
throughout the process as shown in Figures 4.2c and 4.2d, i.e., in this case the transfor-
mation mechanism does not suppress the plastic deformation. The difference in the stress
response between the isothermal and thermomechanical cases can be explained as fol-
lows: The heat generated from the inelastic processes increases the temperature of the
material as shown in Fig. 4.2b. According to (2.54)3, an increase in temperature results

in a decrease in the thermal contribution to the transformation driving force f (α)
th (ob-
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serve that, in view of the values shown in Table 2.1, f (α)
th is a monotonically decreasing

function of the temperature). This feature reflects the fact that austenite is more stable
at higher temperatures. The main contributions of the total transformation driving force

f (α) are the thermal part, f (α)
th , and the mechanical part, f (α)

m . Consequently, in order to

further activate the phase transformation mechanism, as the thermal part f (α)
th decreases

with temperature, a larger stress is required for the mechanical part f (α)
m to increase up

to the point where the total driving force f (α) reaches the critical value f (α)
cr . Hence, an

increase in temperature produces an apparent stress “hardening” observed in the stress
response curves that is not directly associated with plastic hardening (see, e.g., the stress
response in Fig. 4.2a for the thermomechanical case with θ0 = 300 K where initially
there is no plastic deformation as can be observed from Fig. 4.2d).

For the thermomechanical case, the evolution of the temperature θ is depicted in
Fig. 4.2b. Since the specimen is subjected to zero normal heat flux at external boundaries,
the change in temperature occurs due to the internal heat generated from the inelastic pro-
cesses. In view of the fact that there is an explicit expression for the internal energy, the
temperature field can be obtained as the solution of (2.66) without the need to assume that
a constant portion of the inelastic mechanical power is converted into heat (i.e., a fraction
of the last two terms on the right hand side of (2.15)). Instead, the expression given in
(2.52) is used to solve (2.66)2 iteratively, in the present case with a Newton-Raphson algo-
rithm. As can be seen in Fig. 4.2b, the temperature in the simulation with the lower initial
temperature (θ0 = 300K) increases at a higher rate and eventually becomes larger than
the temperature in the simulation with the larger initial temperature (θ0 = 350K). This
result, which at first sight might be counterintuitive, can be traced back to the underly-
ing deformation mechanisms. Indeed, as indicated in Fig. 4.2c, more austenite transforms
into martensite in the simulation with θ0 = 300K than in the simulation with θ0 = 350K.
Conversely, from Fig. 4.2d, more plastic deformation is observed in the simulation with
θ0 = 350K than in the simulation with θ0 = 300K. Thus, it may be concluded that more
heat is generated due to the phase transformation than due to plastic deformation, which
correlates with the evolutions of the temperatures shown in Fig. 4.2b. This feature also
serves to explain why the initial “thermal” stress hardening discussed above and shown
in Fig. 4.2a is higher for the simulation with θ0 = 300K than in the simulation with
θ0 = 350K.

Tension along the [111]A direction

The results for the sample loaded in the [111]A direction, for two initial temperatures
θ0 = 300K and θ0 = 350K and the corresponding isothermal cases, are shown in
Fig. 2.3 in terms of the evolution of the axial Cauchy stress T11, the temperature θ, the
total martensitic volume fraction ξM and the plastic microstrain β. In this case, except
for the isothermal simulation at θ = 300K, all responses are nearly identical in terms of
the stress, transformation and plastic behavior (see Fig. 2.3a,c and d, respectively). In the
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Figure 2.2: Response of a single crystal of austenite loaded in the [100]A direction for two initial temperatures
(θ0 = 300K and θ0 = 350 K) for the isothermal and thermomechanical (zero heat flux) cases: Evolution as a
function of the axial logarithmic strain e11 of (a) the Cauchy axial stress T11 , (b) temperature θ, (c) martensitic
volume fraction ξM and (d) plastic microstrain β.
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Figure 2.3: Response of a single crystal of austenite loaded in the [111]A direction for two initial temperatures
(θ0 = 300K and θ0 = 350 K) for the isothermal and thermomechanical (zero heat flux) cases: Evolution as a
function of the axial logarithmic strain e11 of (a) the Cauchy axial stress T11, (b) temperature θ, (c) martensitic
volume fraction ξM and (d) plastic microstrain β.
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isothermal simulation at θ = 300K both inelastic mechanisms (plasticity and transforma-
tion) are active until the austenite fully transforms into martensite, effectively suppressing
plasticity since the martensite deforms elastically. In contrast, the other three simulations
(isothermal at θ = 350K and thermomechanical with initial temperatures θ0 = 300K
and θ0 = 350K), are dominated by plastic deformation with little or no phase transfor-
mation and, from this point of view, the corresponding responses differ significantly from
those of the sample loaded along the [100]A direction shown in Fig. 4.2. The plastic
driving force, as given in (2.55), has only a weak dependence on the temperature for the
given set of material parameters indicated in Table 2.1. Consequently, the stress response
for the thermomechanical case does not significantly diverge from the isothermal case in
a process dominated by plasticity.

The differences between the responses of the specimens loaded in the [100]A and
[111]A directions can be traced back to the mechanical part of the transformation driv-
ing force shown in (2.54)1, in particular the first term that involves an inner product with
the transformation strain b(α) ⊗ d(α). Indeed, based on the crystallographic data for the
transformation systems (see [75]), the axial stress required to nucleate martensite is signif-
icantly larger when a specimen is loaded in the [111]A direction compared to a specimen
loaded in the [100]A direction. Similarly, in view of the expression of the mechanical plas-

tic driving force g(i)m given by (2.55)1 (i.e., the Schmid stress), the axial stress required
to trigger plastic slip is also larger for a specimen loaded in the [111]A direction com-
pared to a specimen loaded in the [100]A direction. Nevertheless, the stress required to
activate plasticity is less than the stress required to nucleate a transformation system for a
specimen loaded in the [111]A-direction, thus plastic slip becomes the preferred inelastic
mechanism. In addition, as the temperature increases, the thermal part of the transforma-
tion driving force decreases (see (2.54)3 and note that λT < 0) while the thermal part
of the plastic driving forces increases (see (2.55)2), which reinforces the preference of
plasticity as an inelastic mechanism at larger temperatures.

The results of the simulations for a single crystal of austenite shown in this section
are in good qualitative agreement with high-energy X-ray diffraction measurements re-
cently presented in [8] where it was observed that the transformation rate increases with
decreasing temperature and that the transformation occurs preferentially when the grain
is loaded in the [100]A-direction.

2.2.2 Austenitic grain embedded in a ferritic matrix

To study the thermomechanical interaction between the constituent phases of a typical
low-alloyed multiphase TRIP steel, a cubic sample consisting of a single grain of retained
austenite embedded in a matrix of six ferritic grains is considered in this section, as shown
in Fig. 2.4. The cubic sample has a side length of 3µm and the polyhedral austenitic grain
has a characteristic size of 2µm and occupies approximately 13% of the total volume (i.e.,
the initial volume fraction of austenite is ξA,0 = 0.13). The samples are discretized with a
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Ferrite

Austenite 
[111]A,F

Crystal orientations

Loading direction

x1

x2 x3

[100]A,F

Figure 2.4: Grain of retained austenite surrounded by a ferrite-based matrix. The sample is loaded along the
x1-direction and two distinct crystal orientations are considered (see inset).

total number of 864 linear hexahedral elements. The loading of the sample is similar to the
uniaxial deformation tests in the previous section with an average extensional strain rate
of 10−4 s−1 along the x1-direction that is achieved by imposing a normal displacement
on the top face, zero normal displacements imposed on the bottom and two lateral faces
and traction-free conditions prescribed on the remaining directions and external faces.
For the thermomechanical simulations, a uniform initial temperature of θ0 = 300K is
applied and zero heat flux is prescribed on the external surfaces of the specimen. Heat
can flow and be exchanged between the distinct phases according to Fourier’s law of
heat conduction. The sample is initially stress-free with zero thermal strain prior to the
loading, i.e., the reference temperature for the thermal strains in all phases is set equal
to the initial temperature θ0. To explore the influence of the crystal orientations on the
sample’s response, two crystal orientations are analyzed, namely (i) all ferritic grains and
the austenitic grain are oriented such that the loading direction x1 coincides respectively
with the [100]F and [100]A directions and (ii) all ferritic grains and the austenitic grain
are oriented such that the loading direction x1 coincides respectively with the [111]F and
[111]A directions. In Fig. 2.4 these two orientations are denoted as [100]A,F and [111]A,F.
The motivation for this choice of orientations is that they represent “soft” and “hard”
responses, thus they characterize lower and upper limits for the possible combinations of
the crystallographic orientations of the two phases.

The isothermal and thermomechanical response are shown in Fig. 2.5 in terms of (a)
the average axial Cauchy stress T̄11, (b) the average temperature θ̄, (c) the normalized
austenitic volume fraction ξ̄A = ξA/ξA,0 and (d) the phase-averaged plastic microstrain
β̄ for each phase (i.e., β averaged over the austenitic grain as shown on the left, and β av-
eraged over the ferritic grains as sown on the right). The stress, strain and the temperature
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Figure 2.5: Response of an aggregate of austenitic and ferritic grains for an isothermal simulation at θ =
300 K and a thermomechanical (zero heat flux) simulation with initial temperature θ0 = 300K: Evolution as a
function of the average axial logarithmic strain e11 of (a) the average Cauchy axial stress T11, (b) the average
temperature θ, (c) the normalized austenitic volume fraction ξ̄A and (d) the phase-averaged plastic microstrain
β.
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are averaged over the whole cubic sample whereas the microstrains are averaged over the
corresponding phases (ferrite and austenite).

As anticipated, the stress response for the [111]A,F-loaded sample is considerably
higher than for the [100]A,F-loaded sample, both for the isothermal and thermomechan-
ical cases (see Fig. 2.5a). However, the differences between the isothermal and thermo-
mechanical cases for the same orientation are relatively small. This is due to the facts
that (i) the samples contain mostly ferrite, whose stress response dominates the overall
behavior and (ii) in the present model the isothermal and thermomechanical responses
for the ferritic phase are similar since the plastic driving force only depends weakly on
temperature and the resistance to plastic slip is taken to be temperature-independent.

The increase in temperature in the thermomechanical simulations of the aggregate of
ferrite and austenite is on average smaller than for the single crystal of austenite (com-
pare Fig. 2.5b with Fig. 4.2b and Fig. 2.3b for θ0 = 300K). As for the stress response,
the significant amount of ferrite in the sample (87%) dominates the overall thermal be-
havior. The internal heat generation in the ferrite is only due to plastic deformation and
it is less significant than the heat generated due to phase transformation in the austen-
ite. Consequently, the average heat generated per unit volume in the aggregate of ferrite
and austenite is less than in the austenitic single crystal. Moreover, contour plots of the
temperature (not presented here) indicate that the loading is sufficiently slow for the heat
generated in the austenite from the transformation to be conducted towards the ferritic
matrix, as a result of which the temperature field is nearly spatially uniform. Hence, as
the heat generated in the austenite due to transformation is conducted towards the fer-
ritic matrix, the austenitic grain remains cooler in an aggregate compared to the single
crystal case. Since the temperature in the austenite in an aggregate does not increase
as much as for the single crystal, it is easier to trigger a phase transformation in the
former case than in the latter. This phenomenon also serves to explain why the (normal-
ized) transformation rates dξ̄M/dē11 in the thermomechanical simulations of aggregates
loaded in the [100]A,F and [111]A,F-directions are higher than the transformation rates
dξM/de11 in the thermomechanical simulations of a single crystal for the correspond-
ing loading directions [100]A and [111]A (compare Fig. 2.5c with the thermomechanical
curves for θ0 = 300K in Fig. 4.2c and Fig. 2.3c keeping in mind that ξ̄M = 1− ξ̄A hence
dξ̄M/dē11 = −dξ̄A/dē11). Nevertheless, as in the single crystal case, the transformation
rates in the thermomechanical simulations of austenite-ferrite aggregates remain lower
than the transformation rates for the corresponding isothermal simulations in the same
aggregates due to the increase in temperature in the former case (see Fig. 2.5c).

2.3 Conclusion

A thermomechanical model applicable to individual single-crystal grains of austenite un-
dergoing plastic deformation and phase transformation has been developed with special
emphasis on a thermodynamically-consistent formulation for the thermomechanical cou-
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pling. Consistency is achieved through a decomposition of the entropy density that in-
cludes an entropic counterpart of the thermal deformation gradient. The model was used
to analyze fully-coupled thermomechanical deformations of a single crystal of austen-
ite as well as an aggregate of austenitic and ferritic grains. The simulations indicate
that for a single crystal of austenite, the increase in temperature associated with the la-
tent heat of transformation reduces the transformation rate and significantly delays the
transformation-induced plasticity effect. Consequently, the effective hardening response
under axial deformation of a thermally-insulated sample is initially higher but eventually
lower compared to a sample deformed under isothermal conditions. However, the delay
in the transformation-induced plasticity effect due to the latent heat is relatively small
when the ferritic matrix is taken into account. The ferritic matrix absorbs the latent heat
generated in the austenite and, since ferrite accounts for a large volume in a multiphase
steel, it effectively acts as a thermal sink, thus mitigating the temperature increase. In
that case, the effective stress responses for the isothermal and thermomechanical cases
are similar. However, it is relevant to indicate that the conclusions from the present study
are applicable to quasi-static processes where there is sufficient time for the heat gener-
ated in the austenite to flow to the surrounding ferritic matrix. For materials with a more
significant volume fraction of austenite (e.g., austenitic alloys) as well as for impact prob-
lems involving high strain rates, it can be anticipated that thermal effects may be more
significant than for low-alloyed multiphase steels under quasi-static loading.
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3
RVE simulation of different TRIP steel

microstructures

1A thorough understanding of the link between the microstructural-level characteristics of
a material and its macroscale response is critical for the development of new multiphase
materials with enhanced effective mechanical properties. Typical microstructures of high-
strength low-alloyed multiphase steel assisted by transformation-induced plasticity (TRIP
steels) are composed of grains of retained austenite embedded in a ferritic matrix. Upon
mechanical deformation, the austenite transforms into martensite, which is a harder phase,
thus increasing the effective hardening of the material compared with a steel without
retained austenite. The microstructure of a multiphase steel can be modified through its
processing route [4, 77]. For a TRIP steel, microstructural characteristics such as the
initial volume fraction of austenite, the carbon concentration in the retained austenite and
crystallographic texture, have a strong influence on the stability of the retained austenite,
and, consequently, on the overall mechanical response [69]. Grain size also greatly affects
the macroscopic properties, an issue that has been analyzed with continuum and discrete
models [74, 54]. In the present study, attention is focused on determining the influence of
the spatial distribution of the austenite on the macroscopic mechanical response.

In general, the macroscopic properties of a multiphase steel not only depend on the
initial volume fraction of the austenite, but also on how the austenite is distributed within

1This chapter is based upon S. Yadegari, S. Turteltaub, A.S.J. Suiker, P.J.J. Kok, Comp Mat Sci, 84, 339-349,
2014
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the ferritic matrix. Two distinct, technologically-relevant distributions are analyzed and
compared, namely (i) a benchmark microstructure with isolated, randomly-distributed
austenitic grains embedded in the ferritic matrix and (ii) a microstructure where the
austenitic grains are clustered in a plate-like region (band). The benchmark distribution is
typically encountered in cold-rolled TRIP steels that are subsequently subjected to a two-
step annealing (intercritical annealing followed by isothermal heat treatment). Retained
austenite is typically found in grains wedged between ferritic grains. On the other hand,
austenitic grains clustered in a band-like region may appear during hot-rolling (i.e. high-
temperature mechanical deformation during processing), whenever the banded morphol-
ogy is not completely removed during further heat treatment (see [53]). The relevance
of banded morphologies in ferrous alloys has been discussed in [23, 13, 66]. Using a
discrete dislocation-transformation model, the effect of a banded microstructure was ana-
lyzed in [55], where it was found that a microstructure composed of randomly-distributed
grains of austenite is optimal in terms of strength since it delays the onset of plastic lo-
calization compared with banded microstructures. The present analysis is based on a
continuum approach which, compared with the aforementioned discrete model, allows to
extend the analysis to a three-dimensional setting and for a larger range of deformations
(i.e. not only for the onset of plastic deformation), thus providing a more comprehensive
insight on the effect of spatial distribution.

In order to establish a direct link between the spatial distribution of austenite and
the macroscopic properties of a multiphase steel, simulations are conducted in banded
and dispersed microstructures while keeping all other relevant microstructural features
the same (i.e. initial volume fraction of austenite, average crystallographic orientation,
carbon content, etc.). The constitutive models used for ferrite and austenite are summa-
rized in Section 3.1. A multilevel Voronoi algorithm is used in Section 3.2 to generate
microstructural computational samples of aggregates of grains. These samples are used
in a convergence analysis to establish the required size of a representative volume ele-
ment used to determine macroscopic properties. The effect of a banded microstructure is
analyzed in Section 3.3 based on a comparison with benchmark simulations. Conclusive
remarks are provided in Section 3.4.

3.1 Micromechanical modeling of multiphase TRIP steels

The microstructures considered in the present analysis consist of an aggregate of ferritic
grains (primary phase) and metastable retained austenitic grains (secondary phase). Upon
loading, the austenitic grains may partially or totally transform into a martensitic phase.
The goal of the present work is to determine the collective response of the aggregate of
grains for which separate constitutive models are used for each phase. The main charac-
teristics of the models are summarized in this section and the interested reader is referred
to relevant publications for further details.

40



3.1. MICROMECHANICAL MODELING OF MULTIPHASE TRIP STEELS

3.1.1 Elasto-plastic-transformation model for austenitic grains

The elastoplastic response of the austenitic phase and its possible transformation into the
martensitic phase is simulated using the model originally proposed by Turteltaub and
Suiker [75, 73, 62] and subsequently extended by Tjahjanto et al. [70] and Yadegari et
al. [82]. The model assumes that, upon loading, a region inside each grain (i.e. at the
sub-grain length scale) may undergo a plastic deformation through slip and/or a sudden
change in crystalline structure, i.e., martensitic phase transformation. The transforma-
tion of austenite, which possesses a face-centered cubic (FCC) structure, into twinned
martensite, composed of pairs of body-centered tetragonal (BCT) martensitic variants, is
described according to the theory of martensitic transformations [3]. The distinct pairs of
(twinned) variants of martensite, referred to as transformation systems, are characterized
by two vectors, namely the habit plane normal and the shape strain vector. The transfor-
mation model is coupled to a crystal plasticity model to simulate the sub-grain interaction
between transformation and plastic deformation [70]. Plastic deformation at the sub-grain
level is described by slip occurring on active slip systems. Following the approach used
in crystal plasticity, individual slip systems are characterized by a pair of vectors that
represent the slip plane normal and the slip direction.

The sub-grain length scale behavior of a collection of slip systems and transformation
systems is translated to the mesoscale (grain-level) by considering the weighted average of
active systems that account for the corresponding inelastic mechanisms. This averaging is
performed within sub-regions in the grains, which allows to simulate non-homogeneous
plastic deformations and/or transformations inside individual grains. The averaged re-
sponse for the martensitic transformation is obtained upon time-integration of the rate of
change of the volume fractions of the individual transformation systems. This set of rates

is denoted as ξ̇ =
(

ξ̇(1), . . . , ξ̇(N)
)

, where ξ̇(α) represents the rate of change of the vol-

ume fraction of the α-th martensitic system within a sub-region inside a grain and N is the
total number of available transformation systems. For plasticity, the averaged responsed
is determined from the rate of slip in each system, i.e., from γ̇ =

(

γ̇(1), . . . , γ̇(M)
)

, where

γ̇(i) denotes the rate of slip in the i-th system and M is the total number of slip systems in
the underlying material. Although the martensite is assumed to deform only elastically,
the model takes into account the amount of plastic slip that occurred in the austenite prior
to transformation.

The rates of change for transformation and plastic slip upon loading are modeled
using a formulation that is thermodynamically-consistent with respect to the dissipation
inequality. The isothermal model used in the present simulations is derived from a ther-
momechanical formulation using a constant homogeneous temperature such that the ther-
mal deformation gradient is equal to identity [82]. Following the formalism proposed by
Onsager [9] and guided by the so-called Coleman-Noll procedure [15], the terms in the
dissipation inequality are expressed as a sum of products of affinities (i.e. driving forces)
and fluxes (i.e. rates of change for volume fractions and plastic slip) for each inelas-
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tic mechanism. The model includes constitutive evolution relations between fluxes and
affinities, i.e., kinetic relations. In particular, the transformation of the austenitic phase
into the martensite is described by a tangent hyperbolic function that relates the rate of
transformation of each individual transformation system to the driving force of the cor-
responding system. Similarly, the plastic deformation in the austenite is governed by a
power law that relates the plastic slip rate of each individual slip system to the corre-
sponding plastic driving force. The evolution of plastic slip resistance is accounted for by
a hardening power law. The kinetic relations are complemented by initiation criteria that
indicate the onset of the inelastic deformation. Detailed expressions for the driving forces
and the kinetic relations can be found in [70] and [82].

At the mesoscale (grain-level), the kinematical description of the austenitic phase
is based on a large deformation framework where the deformation gradient at a given
material point is multiplicatively decomposed as follows:

F = FeFpFtr, (3.1)

where Ftr is the transformation deformation gradient, Fp is the plastic deformation gradi-
ent and Fe is the elastic portion of the deformation gradient, respectively. The mesoscale
Cauchy stress tensor T is determined from the elastic deformation gradient and an effec-
tive stiffness for a mixture of austenite and martensite (see [75] for details). The meso-
scopic Helmholtz energy, which contains contributions related to the “bulk” elastic strain
energy, a surface energy and a lattice defect energy, is described by a state function that
depends on the elastic strain Ee defined as Ee = (1/2)(FT

e Fe − I) and on internal state
variables, namely the volume fractions of the transformation systems ξ and a so-called
microstrain β that is meant to reflect the elastic distortion in the crystalline lattice due to
the presence of dislocations (see [70] and [82] for details).

To monitor the evolution of the martensitic transformation at the mesoscale, results
are reported using the total martensitic volume fraction, defined as ξM =

∑

α ξ
(α), with

ξM = 1 being reached for a fully-transformed sub-region inside an austenitic grain. For
monitoring the overall plastic deformation in the austenite, the accumulated amount of
plastic slip is correlated to the microstrain βA in the austenitic phase.

3.1.2 Elastoplastic model for ferritic grains

The elastoplastic deformation of the ferritic grains is simulated using a crystal plasticity
model suitable for a body-centered cubic (BCC) phase. The model is similar to the one
used for the austenitic phase, except that it incorporates an additional term in the resis-
tance to slip to account for non-symmetric behavior in the twinning and anti-twinning
directions (see [71] for details). At the mesoscale (grain-level), the kinematical descrip-
tion of the ferritic phase is decomposed as follows:

F = FeFp, (3.2)
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where the plastic deformation gradient Fp is computed based on the contributions of the
active slip systems. It is worth pointing out that the models used for the austenitic and
ferritic phases are anisotropic and explicitly incorporate the orientation of the underlying
crystalline lattice.

3.2 Representative volume element

To establish a representative link between the mesoscale response, characterized by the
individual behavior of grains, and the macroscale response, governed by the collective
behavior of a large number of grains, one has to analyze a material volume element con-
taining a sufficiently large number of grains NG such that the average response of the
aggregate does not vary as the number of grains is further increased (i.e., the macroscale
response converges within a desired tolerance). A representative volume element (RVE),
comprising at least NG grains, characterizes the macroscopic bulk response of the mate-
rial. Note that the establishment of an RVE depends on the choice of the quantities used
to monitor convergence. Since the current study aims at establishing the macroscopic
mechanical response, the major components of the stress are chosen as a primary set of
interest for the establishment of an RVE. In a multiscale framework, the upper scale does
not contain an explicit constitutive relation; instead, the response relies on the information
from the lower scale that is necessary to provide a macroscopic state of equilibrium un-
der quasi-static loading, i.e., the average stress computed from lower scale information.
In order to establish an RVE based on convergence of other quantities, such as crystal-
lographic texture or internal variables, typically a different number of grains is required
than for the mechanical response.

3.2.1 Microstructural volume elements

In order to identify the minimum number of grains required for an RVE, the responses of
seven microstructural samples are analyzed. The samples consist of aggregates of ferritic
and austenitic grains with a total number of grains increasing from 8 to 800 as indicated
in Table 3.1. The volume fraction of the secondary phase (austenite) in each sample is ap-
proximately 12%, which is a typical value for multiphase TRIP steels (see, e.g., [61, 32]).
The geometrical construction of the microstructures is achieved with a newly-developed,
three-dimensional algorithm that is based on the generation of Voronoi-shaped polyhe-
drons. Standard Voronoi cells are convex, a property which is not consistent with the
mesoscale morphology of grains. In order to perform simulations with more realistic,
non-convex grains, the following two-level algorithm is proposed: At the first level, a
standard periodic Voronoi tessellation is generated, i.e., seed points are randomly-chosen
within a cubic region and the seed point field is fully-replicated in all adjacent cubic re-
gions, thus forming a 3x3x3 stacking (i.e., the central cubic region is translated in 26
directions). Subsequently, Voronoi cells are generated from the complete seed point field
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Sample # Austenitic grains Ferritic grains Volume fraction

1 1 7 12.0

2 8 56 12.1

3 12 88 12.2

4 24 176 11.9

5 56 394 12.0

6 72 525 12.0

7 100 700 11.9
Table 3.1: Composition and volume fraction of different microstructural samples used in the RVE convergence
study.

Figure 3.1: Two-dimensional illustration of a microstructure obtained from a multilevel Voronoi tessellation.
The first level (fine tessellation) contains 200 cells and the second level (coarse tessellation) has 30 cells. White
lines and small circles show, respectively, the cells and Voronoi seed points of the first level tessellation. The
thin black lines show the cells of the second level tessellation. The bold black lines show the resulting complex-
shaped grain structure. The grain size is largely determined by the coarse tessellation while the fine tessellation
controls the grain morphology, particularly the grain boundaries.

in the 27 cubic domains. Only the Voronoi cells of the central cubic region are used to
create a periodic structure; the cells that are cut by the cube’s faces are modified to fit
exactly in the cubic domain. These first-level Voronoi cells are referred to as the fine tes-
sellation. At the second level, a coarser tessellation is created, also with randomly-chosen
seed point field, but with a smaller seed point density compared with the density of the
first tessellation. Cells from the coarse tessellation are used as master regions for the con-
struction of complex-shaped grains. To this end, all cells of the finer tessellation, whose
seed points are in the interior of the same master cell, are merged to form a single grain.
This procedure is illustrated in Figure 3.1 for the two-dimensional case. By modifying
the point field densities at both levels (fine and coarse), it is possible to generate a broad
range of different shapes and sizes of grains.

For a multiphase material, the next step is to assign a phase to each newly-shaped
grain. In the present study, two phases are distributed within the microstructure, namely
ferrite and austenite, with a given volume fraction. For the samples indicated in Table 3.1,
the spatial distribution of the secondary phase (austenite) inside the matrix (ferrite) is done
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randomly. An iterative procedure is employed to satisfy the given volume fraction of each
phase. However, since a sample contains a finite number of grains with volumes obtained
from a random process, the targeted volume fraction cannot in general be matched exactly
(see Table 3.1).

3.2.2 Crystallographic orientation

In the current study, the orientation distribution of an aggregate of grains is assumed to
be isotropic for both the austenitic and ferritic phases. The orientation of the crystalline
lattice of an individual grain with respect to a global vector basis is described in terms
of Euler angles using the 313 convention, i.e., each grain orientation is represented by
three angles that characterize rotations around three coordinate axes. In order to cover the
whole orientation space without using the symmetry properties of the underlying crys-
talline structure, the three Euler angles range, respectively, from 0 to 2π, 0 to π and 0 to
2π. For a sufficiently large number of grains, a uniform (isotropic) orientation distribution
can be achieved by choosing the three Euler angles as, respectively, 2πa, cos−1 (2b− 1),
and 2πc, where a, b and c are random variables ranging between 0 and 1. Note that the
expression used for the second Euler angle guarantees an unbiased orientation distribu-
tion by decoupling the composite Euler rotations. For each of the samples indicated in
Table 3.1, four distinct random orientation distributions are chosen to study the influence
of the grain orientation. Typical distributions, displayed as [100]-pole figures, are shown
in Figure 3.2 for the first, fourth and seventh samples listed in Table 3.1.

3.2.3 Numerical simulations

All volume elements are subjected to an average simple shear deformation F̄ = I+ γ̄e1⊗
e3 where γ̄ is the amount of shear, ei, i = 1, 2, 3 is an orthonormal basis aligned with the
cubic samples and ⊗ denotes the tensor product. The samples are quasi-statically loaded
from γ̄ = 0 to γ̄ = 0.2 with an applied rate of deformation equal to 10−4 s−1. Periodic
boundary conditions are prescribed on the external surfaces of the cubic sample, which
ensure that the average deformation gradient corresponds to the prescribed value F̄ during
loading, i.e., ⟨F⟩ = F̄, where ⟨·⟩ denotes the volume average. Details of the numerical
implementation of a non-redundant set of periodic boundary conditions are given in A.1.
It is worth recalling that simulations with periodic boundary conditions generally provide
a softer response (and usually a more physically-meaningful prediction) compared with
simulations based on pointwise affine boundary conditions. All simulations are performed
on a mesh with 30 × 30 × 30 elements. Linear hexahedral elements with reduced inte-
gration are used in the simulations and geometrically-nonlinear strain measures are used
in the solution of the linear momentum equation. The update of the internal variables is
performed by means of an implicit iterative-scheme. Details of this implementation can
be found in [62]. A complete list of material parameters used for the constitutive models
can be found in [82].
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Figure 3.2: Typical [100]-pole figures for the first sample (a, b), fourth sample (c,d) and seventh sample (f, g)
listed in Table 3.1. The left column corresponds to austenite and the right one to ferrite.

The results of a typical set of simulations for four distinct randomly-chosen crystal
orientation distributions (indicated as O1, O2, O3 and O4) that are used in the same vol-
ume element (in this case sample 4 from Table 3.1), are shown in Figure 3.3 as a function
of the average amount of shear γ̄. Figures 3.3(a,b) indicate the average Cauchy stress
components T̄31 and T̄11, respectively, where the average is carried out over all grains
(ferrite and austenite). Figure 3.3(c) shows the average microstrain in the ferrite (aver-
aged over ferritic grains only) and Figure 3.3(d) shows the average total volume fraction
of martensite ξ̄M (averaged over austenitic grains only). For sample 4, the influence of the
crystal orientation distribution on the plastic response of the ferritic matrix, as monitored
using the average microstrain β̄F, is relatively small as shown in Figure 3.3(c). However,
the crystal orientation has a relatively important effect on the response of the austenitic

grains (secondary phase) as may be inferred from Figure 3.3(d), which shows the evolu-
tion of the average normalized martensitic volume fraction ξ̄M. Since sample 4 contains
176 grains of ferrite but only 24 grains of austenite, it is expected that the scatter of the
responses of the secondary phase would be larger than for the primary phase. Due to
the distinct evolutions of the martensitic phase transformation in the secondary phase for
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Figure 3.3: Typical results of simulations for sample 4 (with a total of 200 grains) for four distinct crystal
orientations, labeled Oi, with i = 1, . . . , 4).

different crystal orientation distributions, the average Cauchy stress component T̄11 also
evolves quantitatively differently as may be observed in Figure 3.3(b). Similar results,
not shown here, are observed for the average stress components T̄22 and T̄33. Neverthe-
less, the influence of the crystal orientation is less noticeable for the main average Cauchy
shear stress component T̄31, as can be seen in Figure 3.3(a). This trend can be ascribed to
the fact that a phase transformation induces a (local) volumetric expansion, which needs
to be compensated for by a volumetric contraction elsewhere in the domain (i.e., in the
untransformed austenite and/or the ferritic matrix) since the imposed average simple shear
deformation is isochoric. Since the normal components are affected by the (average) bulk
properties, this dilatation behavior has a stronger effect on the average normal stress com-
ponents T̄ii, i = 1, 2, 3, than on the average shear stress component T̄31. The dilatation
response of the secondary phase is thus responsible for both negative values for the av-
erage normal components as well as a larger scatter in the responses compared with the
average shear component. In particular, observe that the normal (compressive) stress T̄11

for orientation O1 is the largest (in absolute value) for all orientations analyzed, which
correlates with the highest amount of transformation ξ̄M, obtained for the same orienta-
tion. The influence of the crystal orientation on the response of the computational samples
is further analyzed in the next section.
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Figure 3.4: Stress state of volume elements at γ̄ = 0.2: (a)-(d) average Cauchy stress components T̄31 , T̄11,
T̄22 and T̄33, respectively.

3.2.4 Convergence analysis

In order to establish a lower bound for the number of grains required for an RVE, the
final states of the simulations (i.e., at γ̄ = 0.2) for the seven volume elements indicated
in Table 3.1 are plotted in Figure 3.4 in terms of the average Cauchy stress components
and in Figure 3.5 in terms of the average plastic deformation in the ferritic and austenitic
grains and the average volume fraction of martensite. In Figures 3.4 and 3.5, the results are
shown as a function of the total number of grains in the samples (which are also labeled
with the corresponding sample numbers as indicated in Table 3.1). For each sample,
the four data points (shown as crosses) correspond to the results of four distinct random
crystal orientations. To better visualize these results, an interpolated area bounded by
the upper and lower simulation values is shaded in gray and the interpolated mean value
(mean value of the four orientation distributions) is shown by a dashed line.

From Figure 3.4(a), it can be observed that the main shear stress component T̄31

converges, within an acceptable tolerance, for samples comprising about 200 grains or
more. The plastic deformation in the ferritic matrix also converges for a similar number
of grains, as can be seen in Figure 3.5(a) in terms of the microstrain β̄F. However, con-
vergence of the normal stress components T̄ii, i = 1, 2, 3, is relatively low as shown in
Figure 3.4. The low rate of convergence on the normal stress components can be traced
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Figure 3.5: Inelastic state variables of volume elements at γ̄ = 0.2: (a) average ferritic microstrain β̄F, (b)
average austenitic microstrain β̄A and (c) average normalized martensitic volume fraction ξ̄M.

back to the low rate of convergence of the response of the secondary phase, austenite, as
discussed in Section 3.2.3. Indeed, as can be inferred from Figures 3.5(b,c), the inelastic
response of the secondary phase, measured in terms of the amount of plastic deformation
in the austenite and its transformation into martensite, shows a scatter due to the lim-
ited number of austenitic grains in the samples (see Table 3.1). Nevertheless, as may be
observed in Figures 3.4 and 3.5, three out of the four simulations for the largest sample
(sample 7, with 100 grains of austenite), already show a reasonable convergence as these
results are clustered around the mean value.
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The convergence analysis indicates that the macroscopic shear stress in a multiphase
steel under simple shear may be determined with a relatively small number of total grains
(e.g., 200), but the macroscopic normal components require a larger number of grains of
the secondary phase. Reasonable results may be expected with about 100 grains of the
secondary phase. These guidelines are used in the next section to study the effect of the
spatial distribution of the secondary phase on the overall response of a multiphase steel.

3.3 Effect of a banded microstructure on the response of

a multiphase steel

In this section, the influence of the spatial distribution of the secondary phase (austenite)
on the macroscopic properties of a multiphase steel is analyzed. In particular, the mechan-
ical behavior of a material where the austenitic grains are clustered in a plate-like region
(band) is compared with the response of a benchmark microstructure where the austenitic
grains are randomly scattered within the ferritic matrix. These two microstructures are
henceforth referred to as the banded and the dispersed microstructures, respectively.

3.3.1 Volume elements with banded microstructure

The analysis is carried out for three pairs of banded and dispersed microstructures with
austenitic volume fractions of 10%, 20% and 30% as shown in Table 3.2. The microstruc-
tural samples are generated using the same multi-level periodic Voronoi tessellation as
described in Section 3.2. The banded microstructures were created by defining a banded
region and, within that region, assigning grains to the austenitic phase iteratively until the
targeted volume fraction of austenite (for the whole sample) approximately matched the
targeted value. As indicated in Table 3.2, all microstructures contain more than 200 grains
in total, which was identified in Section 3.2.4 as a threshold for an RVE based on the
macroscopic shear stress. The microstructures contain between 47 and 144 grains of the
secondary phase (austenite), which should provide reasonable to accurate predictions for
the normal stresses and the internal variables. Due to the multilevel Voronoi generation,
there are less grains of austenite in the banded microstructures than in the corresponding
dispersed microstructures, hence nominally the austenitic grains in the banded microstruc-
tures are larger than those of the dispersed microstructures (with an average grain size that
scales with the cubic root of the volume). The difference in average austenitic grain size
of the banded and dispersed microstructures range from 13% to 22%, which is relatively
small. Moreover, since the purpose of the present analysis is to study the effect of the
spatial distribution of the austenite rather than grain size effects, a length scale parame-
ter in the model that is related to the grain size (see [74]) has been kept the same for all
simulations.
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10% volume fraction 20% volume fraction 30% volume fraction

Austenite: 77 Austenite: 122 Austenite: 144
Ferrite: 194 Ferrite: 193 Ferrite: 187

Austenite: 47 Austenite: 67 Austenite: 99
Ferrite: 197 Ferrite: 178 Ferrite: 160

Table 3.2: Volume elements with distinct initial volume fractions of austenite. Austenitic grains are displayed
in dark gray while the ferritic grains are shown in light gray. The microstructures with randomly-dispersed
austenitic grains are shown in the top row while the banded microstructures are indicated in the bottom row.
The number of austenitic and ferritic grains is indicated below each sample.
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e3

e1 e2

(a)

Transverse shear

(b)

In-plane shear

Figure 3.6: Simple shear naming convention with respect to the band’s plane: (a) transverse shearing case and
(b) in-plane shearing case. The dark gray band represents the region where the austenitic grains are clustered.

3.3.2 Numerical simulations with banded microstructures

As in Section 3.2, all microstructures are subjected to a macroscopic simple shear from
γ̄ = 0 to γ̄ = 0.2. The loading rate and periodic boundary conditions are the same as
those indicated in Section 3.2.3. Randomly-chosen crystal orientations, as explained in
Section 3.2.2, are used in the simulations. Although some fluctuations in the response
may still occur for distinct randomly-chosen crystal orientations, it is expected from the
convergence study in Section 3.2.4 that these would not qualitatively affect the simula-
tions based on the number of grains used in the samples shown in Table 3.2.

As opposed to a dispersed microstructure, which is essentially macroscopically isotropic,
a banded microstructure may be sheared in distinct ways depending on the orientation of
the shearing direction and the shearing plane with respect to the band-like region where
the secondary phase is clustered. This motivates separate simulations and comparisons of
the samples for different shear loading cases. Two extreme shear loading cases are shown
in Figure 3.6, where the plate-like austenitic region is represented as an idealized band
in the middle of a cubic-sample. The two loading cases are referred to as transverse and
in-plane shearing, respectively. Other possible shearing directions have been omitted for
brevity because their responses are bounded by the results of the in-plane and transverse
shear loading cases.

The average Cauchy shear stress component T̄31, the average normalized martensitic
volume fraction ξ̄M and the average ferritic microstrain β̄F are shown as functions of the
average amount of shear γ̄ in Figure 3.7 for the transverse shear loading case and in
Figure 3.8 for the in-plane shear loading case. The results for the banded microstructures
are indicated by black curves and for the benchmark dispersed microstructures in gray.
Dotted, dashed and solid line patterns are used to identify the results for microstructures
with, respectively, 10%, 20% and 30% volume fraction of austenite.
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Figure 3.7: Evolution under transverse shear loading of (a) the average main Cauchy shear stress, (b) the average
martensitic volume fraction and (c) the average ferritic microstrain as functions of the macroscopic amount of
shear. Graph (d) contains the relative difference between the response at γ̄ = 0.2 of the banded and dispersed
microstructures.

3.3.3 Influence of the initial austenitic volume fraction

From Figure 3.7(a), which corresponds to the transverse shear loading case, it can be
observed that for the microstructures with dispersed grains of austenite (gray lines), the
shear strength increases with increasing initial volume fraction of austenite. However,
for the banded microstructures (black lines), the trend is not monotonic as the response
of the sample with 10% austenite has a slightly higher strength than the sample with
20% austenite. The influence on the shear strength of a higher initial volume fraction of
austenite in the banded microstructure only becomes noticeable for the sample with 30%
austenite. In contrast, for the banded microstructure loaded under in-plane shearing, the
dependence of the shear strength on the austenitic volume fraction shows a similar trend
as for the dispersed microstructures, see Figure 3.8(a). In that case, the shear strength
always increases with increasing initial volume fraction of austenite.

Although strictly speaking there is no monotonic dependence of the martensitic trans-
formation rate on the initial volume fraction of austenite, from Figures 3.7(b) and 3.8(b),
one may conclude that the general trend is that the martensitic transformation rate un-
der simple shear decreases with increasing austenitic volume fraction. This trend applies
to both the transverse and in-plane shear loading cases. However, it is noted that this
trend refers to the amount of martensite formed in the austenitic grains and not to the
total amount of martensite in the sample, which depends on the initial volume fraction
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Figure 3.8: Evolution under in-plane shear loading of (a) the average main Cauchy shear stress, (b) the average
martensitic volume fraction and (c) the average ferritic microstrain as functions of the macroscopic amount of
shear. Graph (d) contains the relative difference between the response at γ̄ = 0.2 of the banded and dispersed
microstructures.

of austenite. Indeed, despite that the transformation rate is smaller with increasing initial
volume fraction of austenite, the total amount of martensite formed during deformation
increases with increasing initial volume of austenite, which explains the increase in shear
strength since martensite is the hardest phase.

The plastic deformation in the ferrite appears to be rather insensitive to the initial
volume fraction of austenite except for the banded microstructure under transverse shear
loading, where the plastic deformation in the ferrite slightly increases with increasing
initial volume fraction of austenite, see Figure 3.7(c).

3.3.4 Influence of the spatial distribution of austenite

To compare the responses of the banded and dispersed microstructures for samples with
equal amount of austenite, the relative differences between the shear stress, martensitic
volume fraction and microstrains of the banded and dispersed microstructures at the end
of the simulations are indicated in Figures 3.7(d) and 3.8(d) for the transverse and in-
plane shear loading cases, respectively. The relative difference for the main shear stress
is defined as

∆T̄31 =
T̄ banded
31 − T̄ dispersed

31

T̄ dispersed
31

∣

∣

∣

∣

∣

γ̄=0.2

,
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and similar formulas are used for the internal variables.

One can observe from Figure 3.7(d) that the banded microstructures have a lower
shear strength than the dispersed ones under transverse shear for all austenitic volume
fractions analyzed (i.e., the values of ∆T̄31 are negative). Moreover, the absolute value
of the relative difference in strength, i.e., |∆T̄31|, increases with increasing initial volume
fraction of austenite. This trend may be correlated to the response of the secondary phase
(austenite) and its effect on the primary phase (ferrite). Indeed, as shown in Figure 3.7(d),
the amount of transformation as well as the plastic deformation in the austenite are sig-
nificantly lower in the banded microstructures than in the dispersed ones (up to 50%
difference). Observe that, within the austenitic phase, a decrease in transformation is
not compensated for by an increase in plastic deformation. Rather, both inelastic mecha-
nisms within the austenite show the same decreasing trend (i.e., less plastic deformation
and less transformation for the banded microstructure compared with the dispersed mi-
crostructure). Consequently, this indicates that the austenite tends to deform less when
it is clustered around a band-like region compared with microstructures with randomly
distributed isolated grains of austenite inside the ferritic matrix. Correspondingly, in or-
der to achieve the same imposed average shear deformation, the ferritic matrix tends to
deform more in the banded microstructures compared with the dispersed ones. This be-
havior can be confirmed from the values of ∆β̄F, which measures the differences between
the microstrains in the ferritic matrix of the banded and dispersed microstructures, as
shown in Figure 3.7(d). Indeed, the amount of plastic deformation in the ferritic matrix is
higher for banded microstructures than for dispersed ones, which in relative terms dimin-
ishes the contribution to the overall strength of the (harder) secondary phase in banded
microstructures. This prediction of the simulations is consistent with experimental obser-
vations reported by [53], albeit for tensile tests. In the experimental results, a significant
portion of the deformation was carried by the ferritic matrix while the austenite in the
banded regions experienced a smaller deformation and, consequently, a relatively small
transformation rate. In the cited experimental work, the authors attributed the reduction
in the transformation rate to unfavorable crystal orientations with respect to the external
loading; however, the present simulations suggest that a reduced transformation rate in
the austenite may be ascribed to a relatively high deformation of the ferritic matrix.

For the in-plane shear loading case, the shear strength of the banded microstructures
is somewhat similar to the strength of the corresponding dispersed microstructures, as can
be observed in Figures 3.8(a) and 3.8(d). In contrast to the transverse shear loading case,
under in-plane shear loading there is more transformation and plastic deformation in the
austenite for the banded microstructures than for the dispersed ones (see Figures 3.8(b,d)).
Correspondingly, there is less plastic deformation in the ferrite for banded microstructures
than for dispersed ones (see Figures 3.8(c,d)). Nevertheless, the distinct behavior of the
banded and dispersed microstructures under in-plane shear is not sufficient to achieve
significantly different shear strengths.

In order to gain a better insight in the different responses of banded microstructures
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(a)

Transverse shear

(b)

In-plane shear
Figure 3.9: Deformed shape at γ̄ = 0.2 of banded microstructure for (a) transverse shear and (b) in-plane shear
for samples with 30% initial volume fraction of austenite.

under transverse and in-plane shearing, the deformed shapes of the samples are shown in
Figure 3.9 (see also sketch in Figure 3.6). The samples shown in the figure correspond
to 30% initial volume fraction of austenite. As illustrated in Figure 3.9(a), the austenitic
region deforms less than the ferritic matrix under transverse shear. In this case the (softer)
ferritic matrix carries most of the deformation. In contrast, the deformation under in-plane
shear is more homogeneous, hence the shear deformation is more evenly distributed be-
tween the ferrite and austenite. Correspondingly, the austenitic region carries a relatively
smaller amount of the load under transverse shear than under in-plane shear. Indeed, the
average shear stress in the austenite, T̄A

31, at the end of the simulation is 400 MPa for the
transverse shear loading case and 537 MPa for the in-plane shear loading case. The cor-
responding average shear stresses in the ferrite, T̄ F

31, are 367 MPa for the transverse shear
loading case and 359 MPa for the in-plane shear loading case. Since for both loading
cases the average stresses in the ferrite are similar, the shear stress T̄31 averaged over the
whole domain is lower under transverse loading (377 MPa) than under in-plane loading
(413 MPa).

3.4 Conclusions

A convergence analysis is carried out to establish the size of representative volume ele-
ments for multiscale simulations using non-convex grain shapes that are generated from a
multilevel Voronoi tessellation. From the numerical simulations of microstructures with
banded and dispersed austenitic grains, it is found that:

• The shear strength of a TRIP steel increases with increasing volume fraction of
austenite for microstructures with randomly-dispersed grains of austenite. For mi-
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crostructures with clustered austenitic grains in band-like regions, the shear strength
does not necessarily increase with increasing volume fraction of austenite.

• In a multiphase steel with a banded microstructure loaded under transverse shear,
the plastic deformation localizes in the (softer) ferritic matrix, which diminishes the
contribution of the secondary austenitic phase.

• The shear strength of a TRIP steel with clustered grains of austenite in a band-like
region may be lower than the shear strength of a steel with similar composition but
with the austenitic grains being dispersed.

From the aforementioned findings, one may conclude that clustering of the austenite in
band-like regions in general has a negative effect on the hardening contribution of the
secondary phase.
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4
Generalized grain cluster method for

multiscale response of multiphase
materials

1The constitutive behavior of metals and alloys is strongly influenced by their microstruc-
tural characteristics, such as the size, fraction, orientation and composition of the individ-
ual metallic phases. The need for understanding the evolution of microstructural charac-
teristics with deformation has stimulated the development of advanced micromechanical
models that accurately describe the underlying physical phenomena, e.g., recrystalliza-
tion [12, 43], martensitic phase transitions [73, 48, 50], phase separation and coarsening
by diffusion [17], twinning and detwinning [26, 79], dislocation interactions [22, 19],
and cracking and damage growth [14, 63, 7, 20]. In order to apply state-of-the-art mi-
cromechanical models for the analysis of large-scale engineering problems, efficient and
generic multiscale methods need to be developed for keeping the computational times
within manageable bounds.

Starting with the landmark contributions of Voigt [78] and Reuss [49], substantial re-
search effort has been devoted to efficiently transferring information from small length
scales to the macroscopic scale, leading to a wide spectrum of analytical and numeri-
cal formulations for the effective mechanical behavior of composites [52, 67, 25, 27, 29,
80, 44, 10, 64, 81, 85]. Although for a broad range of materials these methods have

1This chapter is based upon S. Yadegari, S. Turteltaub, A.S.J. Suiker, Comp Mech, 56, 193-219, 2015
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provided an impetus to the homogenization of basic constitutive properties (elasticity,
(rate-dependent) plasticity, power law creep), their extension towards the description of
advanced microstructures composed of a diversity of phases with relatively complex con-
stitutive behavior often is far from straightforward, and poses considerable mathemati-
cal challenges. Furthermore, the description of sophisticated micromechanical phenom-
ena may introduce complementary conditions on the static and/or kinematic hypotheses
adopted in classical homogenization approaches, such as the well-known Taylor assump-
tion that demands the deformation in each microstructural phase to be equal to the applied
macroscopic deformation. For example, for polycrystalline materials this kinematic as-
sumption appears to be too restrictive for adequately simulating grain size effects [19]
and deformation texture [76]; hence, during the last decade this has triggered the devel-
opment of homogenization schemes in which deformation heterogeneity among grains is
explicitly accommodated for by relaxing the Taylor assumption [40, 19, 76, 18, 68]. This
relaxation can be formulated in various ways and at different degrees, and essentially
comes down to requiring that the macroscopic deformation is no longer imposed on each
grain individually, but rather on specific clusters of grains, by equating it to the weighted
average of the grain deformations within a cluster. Accordingly, the distribution of strain
remains homogeneous within each grain, but not within a cluster of grains.

To date, the grain cluster-type formulations presented in the literature typically con-
sider relatively small clusters of 2 to 8 hexahedral (rectangular) grains, with the defor-
mation incompatibilities at the grain boundaries being described by a set of additional
kinematic variables, i.e., the a-priori unknown relaxations [19, 76, 18, 68]. These local
relaxations are computed by minimizing the total work of the system, whereby the station-
arity condition with respect to the relaxations results in the corresponding equations for
traction continuity at the grain boundaries. For providing the relaxations with a physical
background, the deformation mismatch at grain boundaries, commonly expressed by the
Nye tensor [45, 24], often is constitutively connected to the development of dislocation
networks, see [19, 68].

Despite their efficiency in terms of computational time, the current grain cluster-type
formulations are not very suitable for being extended to clusters composed of a vast num-
ber of grains with realistic (convex and non-convex) shapes, since the incorporation of
numerous relaxations at grain boundaries of arbitrary orientation makes the mathematical
implementation relatively cumbersome. For this reason, in the present chapter a general-

ized grain cluster method (GGCM) is proposed in which these limitations are removed.
In specific, the general character of this formulation can be defined by means of three
distinctive aspects, namely: (i) the method is able to model grains of arbitrary polyhedral
shape, (ii) the method can handle a relatively large number of grains in a computationally
tractable way, thereby explicitly accounting for interactions between individual grains,
(iii) the method is formulated within a geometrically nonlinear framework and is indepen-
dent of the actual micromechanical model(s) applied within the grains. The latter aspect
allows for the analysis of an aggregate of dissimilar (multiphase) grains with different,
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user-defined constitutive properties.

The basic starting point of the method is to assume that each grain in a polycrystalline
aggregate deforms homogeneously, whereby the deformation gradient is allowed to vary
from grain to grain. However, as opposed to other grain cluster-type models, both traction
discontinuities and deformation incompatibilities along grain boundaries are minimized
simultaneously in the cluster, by means of iteratively adjusting the deformation gradients

in the individual grains. This key ingredient is based upon the construction of a rep-
resentative objective functional, which brings in the advantage that the method can be
straightforwardly applied to a large number of grains of arbitrary shape. The use of sepa-
rate weighting factors in the objective functional on the conditions for traction continuity
and deformation compatibility makes it possible to cover the range of effective nonlinear
responses lying between the Taylor bound (uniform deformation in the grains) and the
Sachs bound (uniform stress in the grains). Although the method does allow for describ-
ing the incompatibilities at grain boundaries in terms of any particular localized defor-
mation mechanism, such as geometrically necessary dislocations or intergranular cracks,
for reasons of simplicity and generality these incompatibilities here are straightforwardly
adopted as a consequence of the kinematic assumptions made in the formulation.

This chapter is organized as follows. The generalized grain cluster method is for-
mulated in Section 4.1 and its numerical implementation is treated in Section 4.2. The
calibration of the weighting factors and a detailed analysis of the efficiency and accu-
racy of the method is demonstrated in Section 4.3 through a series of simulations on
grain clusters of various sizes. The simulations were performed for a multiphase ma-
terial composed of ferritic grains undergoing plastic deformation and austenitic grains
undergoing a combination of plastic deformation and phase transformation. The ad-
vanced microstructural geometries considered in the analyses were generated by means
of a multilevel Voronoi algorithm developed recently in Section 3.2.1, and represent a
steel experiencing transformation-induced plasticity, i.e., a TRIP steel. The plasticity
and transformation phenomena activated under shear loading were simulated by means
of crystallographically-based models presented in previous works by the authors [73, 75,
71, 70, 82]. One important objective for the development of the GGCM is to have a flex-
ible scheme that can be used in a so-called multiscale adaptive algorithm. Within that
algorithm, microscale simulations may be conducted using either the GGCM or a fully-
resolved finite-element simulation at the level of individual grains, depending on the re-
quired resolution. In view of this, the performance of the GGCM is compared to (finite
element-based) direct numerical simulations for the same microstructure (Chapter 3, Sec-
tion 3.2.3). This illustrates that the generalized grain cluster method is able to efficiently
account for the evolution of the stress and history variables, such as plastic slip and trans-
formation volume fractions. Some concluding remarks are provided in Section 4.4 on the
coupling of the GGCM with commercial FEM software, and the bifurcation sensitivity of
microstructural responses.
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N

N’

I

γ
γ’

N I

Periodic grain

Figure 4.1: Periodic aggregate of grains Ω.

4.1 Formulation of generalized grain cluster method

4.1.1 Basic assumptions

Consider an aggregate of Ngr grains, with each grain N = 1, . . . , Ngr occupying a region
ΩN , as shown schematically in Fig. 4.1. The region filled by the cluster of grains is
denoted as Ω, i.e.,

Ω =

Ngr
⋃

N=1

ΩN . (4.1)

This aggregate of grains is assumed to be periodic in space. Each grain N is taken as a
polyhedron, although not necessarily convex. The boundary of each polyhedral grain N
is composed of MN faces, denoted by ΓN,γ and identified using the global grain index N
and a local face index γ = 1, . . . ,MN . For notational purposes, it is convenient to intro-
duce a global interface index I given by I = Î(N, γ). The common interface ΓI between
adjacent grains N and N ′ (corresponding to the local indices γ and γ′, respectively), is
uniquely identified as I = Î(N, γ) = Î(N ′, γ′), as illustrated in Fig. 4.1. Furthermore,
observe that parts of grains on the “external” boundary of Ω appear as disconnected, but
are in fact treated as a single grain due to periodicity. In that case, the index N refers to
the whole grain and the index I to the whole interface, see Fig. 4.1. Correspondingly, the
total number of interfaces in the cluster is

Nint =
1

2

Ngr
∑

N=1

MN . (4.2)

The description of a deformation ŷ from a reference configuration is written as

y = ŷ(x, t) with x ∈ Ω and y ∈ Ωt , (4.3)
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where Ω and Ωt denote the regions occupied by the grain cluster in the reference and
the current configurations (at time t), respectively, x is a (material) point in the reference
configuration and y denotes the current location of x at time t. The deformation gradient
F is defined as

F := ∇ŷ , (4.4)

where ∇ = ∂/∂x designates the gradient with respect to x.

Previous grain cluster-type formulations rely on variables that describe the deforma-
tion of interfaces, see [19, 76, 18, 68]. While this approach is adequate for the description
of cubic-like grains, it becomes cumbersome and requires enforcement of redundant con-
straints for grains with an arbitrary polyhedral shape. In order to reduce the number of
variables while preserving the simplicity of the grain cluster method, it is more efficient
to work directly with the deformation gradient of the grain as the primary variable. This
modification allows for an extension of the range of applications to a large number of
grains of arbitrarily complex shapes; hence, the method is termed the generalized grain

cluster method (GGCM). In view of developing the weak formulation of the GGCM, the
deformation field ŷ and a generic test function ŵ are assumed to be linear inside each
grain, i.e.,

y = ŷ(x, t) = FN (t)x+ cN (t),

w = ŵ(x, t) = GN (t)x+ dN (t),
(4.5)

for x in ΩN . At a given time t, the tensor FN and the vector cN thus are considered as
uniform in grain N , with FN the deformation gradient; note that for an admissible defor-
mation it is required that det (FN ) > 0. The deformation gradient and the displacement
are allowed to vary discontinuously from grain to grain. From this perspective, the pro-
posed method shares similarities with non-conforming Galerkin finite element methods,
where displacements are allowed to be discontinuous at element boundaries, see, e.g., [2].
The tensor GN and the vector dN characterizing the test functions in (4.5)2 are assumed
to be constant in the interior of each grain. Further, at the common interface I between
two adjacent grains N and N ′, these quantities are taken as a simple average, i.e.,

GI :=
1

2
(GN +GN ′) ,

dI :=
1

2
(dN + dN ′) ,

(4.6)

with I = Î(N, γ) = Î(N ′, γ′) representing a global interface index, see the inset in
Fig. 4.1. As will be shown below, the relevance of using (4.6) is to (approximately)
recover continuity of traction and kinematic compatibility across grain boundaries.
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4.1.2 Weak formulation and discretization of the balance of linear
momentum

Neglecting body forces, for a quasi-static process the balance of linear momentum in
terms of the first Piola-Kirchhoff stress tensor P is expressed as

divP = 0, (4.7)

with div = divx denoting the divergence in the reference configuration. Multiplying (4.7)
with a suitable test function w gives

divP ·w = div
(

PTw
)

−P ·∇w = 0 , (4.8)

where (·)T designates the transpose of a tensor.

In the classical formulation of a boundary value problem the macroscopic boundary
conditions are applied on the external boundary of the domain Ω. However, due to the
periodicity of the present microstructure, all interfaces of the domain Ω are treated as
internal boundaries, for which the boundary data is not explicitly defined. For this reason,
the macroscopic deformation is imposed pointwise on the interior of the grain cluster
instead, by means of the following multiscale kinematic constraint:

∫

Ω

(

F− F̄
)

dv = 0, (4.9)

where F is the deformation gradient in a microscopic material point and F̄ reflects the
deformation gradient at the macroscopic level. Observe that the multiscale kinematic
constraint (4.9) cannot be transformed to pointwise periodic boundary conditions, since
the displacement field is not continuous across grains. Taking a variation in (4.9) with
respect to the deformation gradient, it follows that a (virtual) deformation gradient δF =
∇w should satisfy that its average over the domain Ω is zero. Consequently, a suitable
test function w is assumed to fulfill the condition

∫

Ω
∇wdv = 0 . (4.10)

Integrating (4.8) over the reference domain Ω, followed by using the decomposition
(4.1) and incorporating the constraint (4.10), gives

Ngr
∑

N=1

[
∫

ΩN

(

div
(

PTw
)

−P ·∇w
)

dv +Σ ·

∫

ΩN

∇wdv

]

= 0 , (4.11)

where Σ is a Lagrange multiplier tensor. Since the assumed displacement field u pre-
sented in (4.5) may be discontinuous across grain boundaries, the divergence term in
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(4.11) may not be defined at the internal interfaces. However, it is still possible to use the
divergence theorem for each grain separately, which leads to

Ngr
∑

N=1

[

MN
∑

γ=1

∫

ΓN,γ

(Pn) ·wda−

∫

ΩN

P ·∇wdv +Σ ·

∫

ΩN

∇wdv

]

= 0 , (4.12)

where n = n(N, γ) refers to the outward normal unit vector of face ΓN,γ . Rewriting
(4.12) using the assumed fields (4.5) yields the following expression for the weak form

Ngr
∑

N=1

[

MN
∑

γ=1

∫

ΓN,γ

(PNn) · (GIx+ dI) da−

∫

ΩN

(PN −Σ) ·GNdv

]

= 0 , (4.13)

where PN refers to the first Piola-Kirchhoff stress in grain N and GI and dI are given
by (4.6) with I = Î(N, γ). Consistent with the assumption of a homogeneous grain
subjected to a uniform deformation gradientFN , the stress PN is taken as uniform within
an individual grain N .

To elaborate further on expression (4.13), observe that the first term refers to a summa-
tion over all grains N and all interfaces γ (local index), hence it involves surface integrals
on both sides of each interface I = Î(N, γ) = Î(N ′, γ′). For a specific grain N that
shares an interface I with a neighboring grain N ′, the contribution from both grains to
the first term in (4.13) is, using relation (4.6),

∫

ΓN,γ

(PNn(N, γ)) ·
(

GÎ(N,γ)x+ dÎ(N,γ)

)

da

+

∫

ΓN′,γ′

(PN ′n′(N ′, γ′)) ·
(

GÎ(N ′,γ′)x+ dÎ(N ′,γ′)

)

da

=

∫

ΓN,γ

1

2
(PNn(N, γ)) · ((GN +GN ′)x+ (dN + dN ′)) da

+

∫

ΓN′,γ′

1

2
(PN ′n′(N ′, γ′)) · ((GN ′ +GN )x+ (dN ′ + dN )) da

=

∫

ΓN,γ

1

2
(PNn(N, γ) +PN ′n′(N ′, γ′)) · (GNx+ dN ) da

+

∫

ΓN′,γ′

1

2
(PN ′n′(N ′, γ′) +PNn(N, γ)) · (GN ′x+ dN ′) da

=

∫

ΓN,γ

1

2
(PN −PN ′)n(N, γ) · (GNx+ dN ) da

+

∫

ΓN′,γ′

1

2
(PN ′ −PN )n′(N ′, γ′) · (GN ′x+ dN ′) da ,

(4.14)
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Figure 4.2: Common interface of grains N and N ′.

where the last expression follows from the fact that the outward normal unit vector of face
ΓN ′,γ′ satisfies n′ = n′(N ′, γ′) = −n(N, γ), as shown in Fig. 4.2. Consequently, the
first term in (4.13) may be expressed as follows:

Ngr
∑

N=1

MN
∑

γ=1

∫

ΓN,γ

(PNn) · (GIx+ dI) da

=

Ngr
∑

N=1

MN
∑

γ=1

∫

ΓN,γ

1

2
(PN −PN ′)n · (GNx+ dN ) da ,

(4.15)

where, to simplify the notation, the arguments of n have been suppressed. A further
simplification in (4.15) may be achieved by using the fact that the traction vector PNn in
each interface I is constant, hence

Ngr
∑

N=1

MN
∑

γ=1

∫

ΓN,γ

1

2
(PN −PN ′)n · (GNx+ dN ) da

=

Ngr
∑

N=1

MN
∑

γ=1

1

2
AN,γ (PN −PN ′)n · (GNrN,γ + dN ) ,

(4.16)

where rN,γ represents the position vector of the centroid of interface I = Î(N, γ) and
AN,γ is the corresponding area. From the assumptions (4.5) and in view of (4.16), it
follows that (4.13) may be written as

Ngr
∑

N=1

[

MN
∑

γ=1

1

2
AN,γ (PN −PN ′)n · (GNrN,γ + dN )− VN (PN −Σ) ·GN

]

= 0 ,

(4.17)
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with VN reflecting the volume of the N -th grain.
In the weak formulation (4.17), which needs to be satisfied for all test tensors GN

and test vectors dN , the unknowns are the deformation gradient tensors FN with N =
1, . . . , Ngr and the Lagrange multiplier Σ; observe that the vectors cN have no contribu-
tion in this formulation. Note that the first Piola-Kirchhoff stress PN in grain N depends
on the deformation gradient FN through the constitutive law of grain N , whereas the first
Piola-Kirchhoff stress PN ′ in an adjacent grain N ′ depends in a similar fashion on the
deformation gradient FN ′ . Here, it is implicitly assumed that, with the actual constitu-
tive relation, the stress (or stress rate) depends objectively on the deformation through an
appropriate formulation.

Since the test tensors GN can be specified independently of the test vectors dN , the
(virtual) deformation GN rN,γ + dN of the centroid of an interface γ may be defined
independently of the (virtual) deformation gradient GN of the grain. Consequently, the
formulation (4.17), together with the constraint (4.9), leads to the following system of
equations for each grain and each interface:

AN,γ (PN −PN ′)n = 0

VN (PN −Σ) = 0

for all N = 1, . . . , Ngr , γ = 1, . . . ,MN

subjected to:

Ngr
∑

N=1

VN

(

FN − F̄
)

= 0 .

(4.18)

In principle this is an over-determined system of equations since, in view of (4.2) and
(4.18), there are Nint+Ngr+1 distinct tensor-valued equations and only Ngr+1 tensor-
valued unknowns, i.e., the deformations gradients in each grain and the global Lagrange
multiplier. Observe that one solution of this system of equations corresponds to a uniform
state of stress, with the Lagrange multiplier Σ representing the actual macroscopic stress
value.

As mentioned before, equation (4.18)3 enforces compatibility between the volume-
averaged microscopic deformation gradients FN in the grains and the macroscopic de-
formation gradient F̄ of the whole cluster of grains. However, in analogy with a displa-
cement-controlled process in which F̄ is prescribed, it also acts as the ”external loading”
for which the system of equations (4.18)1,2 must be satisfied. In particular, note that in
the absence of the loading term (4.18)3, equations (4.18)1,2 are trivially satisfied with a
stress-free state Σ = 0. Accordingly, a state of equal stress in the grains, which reflects
the well-known Sachs bound, requires the solution for the deformation gradients FN that
satisfies (4.18)3. Obviously, this solution neglects kinematic compatibility across grain
boundaries, which indeed would induce a non-uniform state of stress in the grain cluster.
The incorporation of the kinematic compatibility equation in the formulation is treated in
the section below.
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4.1.3 Weak formulation and discretization of the kinematic compat-
ibility equation

As mentioned in Section 4.1.1, the basic kinematic assumption adopted in the generalized
grain cluster method is that the displacement field is linear within each grain, but gener-
ally may be discontinuous across grain boundaries. This discontinuity can be related to
a physical mechanism, such as crack formation or dislocation activity [19, 68], but for
simplicity and generality is considered here as a direct result of the above kinematic as-
sumptions. Accordingly, the purpose is to find piecewise linear displacement fields that
minimize the kinematic incompatibilities at grain boundaries. To this end, the equation of
kinematic compatibility, which guarantees continuity of a displacement field, is explicitly

incorporated in the formulation as a field equation.
Referring to a cartesian basis, the components of a vector n and a tensor F are, re-

spectively, given by ni and Fij , with i, j = 1, 2, 3. Accordingly, the curl of the tensor
field F = F(x) and the cross product between n and F can be expressed as

(∇× F)ij = εimnFjn,m ,

(n× F)ij = εimnnmFjn .
(4.19)

Here, implicit summation on repeated indices is assumed, (·)·,m refers to partial differen-
tiation with respect to xm, εijk = (1/2)(i − j)(j − k)(k − i) represents the alternator
(or permutation) tensor, and ∇× (·) designates the curl of a tensor (in the reference con-
figuration). When interpreting F as the microscopic deformation gradient, the kinematic
compatibility equation can be written as

∇× F = 0 . (4.20)

Multiplying (4.20) by a suitable tensor-valued test functionG and using the identity (B.5)
(see appendix) yields

(∇× F) ·G = tr (∇× (GF)) +
(

∇×GT
)

· FT = 0 , (4.21)

where tr indicates the trace of a tensor. Integrating (4.21) over the domain Ω and using
the decomposition (4.1) gives

Ngr
∑

N=1

∫

ΩN

(

tr (∇× (GF)) +
(

∇×GT
)

·FT
)

dv = 0 . (4.22)

Applying the generalized divergence theorem for each grain separately then leads to

Ngr
∑

N=1

[

MN
∑

γ=1

tr

(

∫

ΓN,γ

n× (GF) da

)

+

∫

ΩN

(

∇×GT
)

· FTdv

]

= 0 , (4.23)
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where the linearity of the integration and trace operators was used to interchange their
order.

The tensor-valued test function G is taken as the gradient of a vector-valued test
function w, i.e., G = ∇w. Consequently, ∇ × GT = ∇ × (∇w)T = ∇ (∇×w).
In general, this term is not zero, but for the choice of piece-wise linear test functions
w introduced in (4.5), it follows that inside each grain N the tensor G is constant and
therefore meets the relation ∇ × GT = 0. Correspondingly, the second term in (4.23)
vanishes. Now, using the assumed fields (4.5) in (4.23) and in view of the identity
tr (n× (GF)) = (n× F) · G, the weak form of the kinematic compatibility equation
becomes

Ngr
∑

N=1

MN
∑

γ=1

∫

ΓN,γ

(n× FN ) ·GIda = 0 , (4.24)

where GI is given by (4.6), with I = Î(N, γ).
The summation in (4.24) is carried out over all grains N and all interfaces γ, hence it

includes surface integrals on both sides of each interface I . Correspondingly, using (4.6),
the weak form (4.24) may be expressed as

Ngr
∑

N=1

MN
∑

γ=1

∫

ΓN,γ

1

2
(n× FN + n′ × FN ′) ·GNda

=

Ngr
∑

N=1

MN
∑

γ=1

∫

ΓN,γ

1

2
(n× (FN − FN ′)) ·GNda = 0 ,

(4.25)

where n′ = −n refers to the outward normal unit vector of face ΓN ′,γ′ .

The formulation (4.25), together with the constraint (4.9), leads to the following sys-
tem of equations

AN,γ
1

2
n× (FN − FN ′) = 0,

for all N = 1, . . . , Ngr , γ = 1, . . . ,MN ,

subjected to:

Ngr
∑

N=1

VN

(

FN − F̄
)

= 0 .

(4.26)

Similar to the weak formulation of linear momentum presented in (4.18), the weak for-
mulation (4.26) for the equation of kinematic compatibility leads to an over-determined
system of equations, i.e., there are Nint + 1 distinct tensor-valued equations and only
Ngr tensor-valued unknowns. Observe that a trivial solution to this system of equations
corresponds to a uniform state of deformation, FN = F̄ in the grains N , reflecting the
well-known Taylor bound.
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Note that the equilibrium and compatibility equations presented in Sections 4.1.2 and
4.1.3 have been consistently obtained using the common assumption (4.5) for the test
functions w. This is particularly relevant in view of the framework presented in the sec-
tion below, which combines both sets of equations.

4.1.4 Formulation of the constrained minimization problem

By assuming grain-wise constant deformation gradients, see expression (4.5), the discrete
form of the balance of linear momentum (4.18) leads to the uniform stress solution (Sachs
bound), whereas the discrete form of the kinematic compatibility equation (4.26) provides
the state of a uniform deformation gradient or strain (Taylor bound). The GGCM con-
sists of finding solutions that simultaneously approximate these two conditions. A simple
combination of the formulations (4.18) and (4.26) results in 2Nint + Ngr + 1 distinct
tensor-valued equations. The unknown variables in these equations are (i) the deforma-
tion gradients of the cluster’s grains, which can be collected in a set F defined as

F := {FN}N=1...,Ngr
, (4.27)

and (ii) the Lagrange multiplier Σ. Correspondingly, there are Ngr + 1 (tensor-valued)
unknowns, resulting in an over-determined system of equations. This is a consequence of
the simplifying assumption of a grain-wise constant deformation gradient, which does not
provide sufficient degrees of freedom for finding a solution that simultaneously satisfies
the weak forms of (4.7) and (4.20). Therefore, a compromise between these requirements
needs to be found, which is accomplished by using a minimization formulation that ap-
proximates (4.18)1,2 and (4.26)1 while enforcing the multiscale condition (4.18)3 (which
is the same as (4.26)2). For this purpose, a weighted scalar functional J is defined that
depends on the variables F and Σ as follows:

J(F ,Σ) := α1J1(F) + α2J2(F) + α3J3(F ,Σ), (4.28)

where αi, with i = 1, 2, 3, are scalar weighting factors and

J1(F) :=
1

2β2Aint

Ngr
∑

N=1

MN
∑

γ=1

AN,γ ∥(PN −PN ′)n∥2 ,

J2(F) :=
1

2Aint

Ngr
∑

N=1

MN
∑

γ=1

AN,γ ∥n× (FN − FN ′)∥2 ,

J3(F ,Σ) :=
1

2β2V

Ngr
∑

N=1

VN ∥(PN −Σ)∥2 .

(4.29)

Here, ∥ ·∥ refers to the norm of the corresponding vector or tensor, i.e., for a vector a with

cartesian components ai, ∥a∥ =
(

∑3
i=1 a

2
i

)1/2
and for a second-order tensor A with
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components Aij , ∥A∥ =
(

∑3
i,j=1 A

2
ij

)1/2
.

The terms Aint and V denote the total interfacial area and the total volume of the
cluster Ω, respectively, as expressed by

Aint :=
1

2

Ngr
∑

N=1

MN
∑

γ=1

AN,γ , V :=

Ngr
∑

N=1

VN . (4.30)

For the numerical implementation of the GGCM it is convenient to warrant that the stress-
related terms, i.e., J1 and J3, and the term directly related to the deformation gradients,
i.e., J2, are of the same order of magnitude. Thus, a scaling factor β (units of stress)
is introduced in (4.29)1,3 in order to non-dimensionalize the stress terms J1 and J3 and
achieve a proper scaling. In principle, the same goal may be realized with the weighting
factors αi; however, for presentation purposes it is convenient to work with nondimen-
sional values for αi.

The generalized grain cluster method can now be outlined as follows: For a given
macroscopic deformation gradient F̄ applied to a cluster of N = 1, . . . , Ngr polyhedral
grains, each with volume VN and connected to adjacent grains N ′ through interfaces of
area AN,γ with outward normal unit vectors n = n(N, γ), find the collection of defor-
mation gradients F∗ = {F∗

N}N=1...,Ngr
and the Lagrange multiplier Σ∗ such that

J(F∗,Σ∗) = min
F ,Σ

J(F ,Σ) ,

subjected to C
(

F , F̄
)

= 0,
(4.31)

with J given by (4.28) and (4.29) and the tensor-valued multiscale constraint C given by

C
(

F , F̄
)

:=

Ngr
∑

N=1

VN

V
FN − F̄ . (4.32)

The first Piola-Kirchhoff stress tensor PN in (4.29)1,3 is assumed to be determined by a
(path-dependent) constitutive model of grain N that depends on the deformation gradient
FN and a set of internal variables characterizing the inelastic response.

The solution to the constrained minimization problem summarized by expressions
(4.31) and (4.32) depends on the specific choice of the weighting factors αi, i = 1, 2, 3.
In general, a range of solutions may be obtained that is bounded by the limit cases of
a uniform stress and a uniform deformation gradient in the grain cluster. Accordingly,
the GGCM should be equipped with a calibration procedure for determining the specific
combination of weighting factors for which a close approximation of an accurate refer-
ence solution or an experimental response is found. This procedure will be discussed in
more detail in Section 4.3. The numerical implementation of the GGCM is discussed in
Section 4.2 below.
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4.2 Numerical implementation

If the microscopic material behavior in the grain cluster is inelastic and thus path-dependent,
its effective macroscopic response can be computed by incrementally loading the cluster
from an initial state to the final state of deformation F̄. Correspondingly, the loading
process may be divided into discrete steps s = 1, . . . , Nsteps, where Nsteps represents the
total number of steps. The initial state (s = 0) typically corresponds to an unloaded
configuration characterized by the macroscopic deformation gradient being equal to iden-
tity, F̄s=0 = I. The loading process can be parameterized by a scalar ts, which may be
interpreted as the actual time for rate-dependent constitutive models, with F̄s = F̄ (ts)
reflecting the macroscopic loading at time ts in a quasi-static process. Consider a given
macroscopic loading increment expressed by the change in the deformation gradient go-
ing from step s to step s+ 1,

(

∆F̄
)s+1

:= F̄s+1 − F̄s . (4.33)

Denote by {F ,Σ,Ξ} a microscopic state, where Ξ := {ξN}N=1...,Ngr
represents a col-

lection of internal variables ξN of the inelastic constitutive model in grain N . Start-
ing from the last converged state {Fs,Σs,Ξs} corresponding to the macroscopic defor-
mation gradient F̄s, the goal is to determine the state

{

Fs+1,Σs+1,Ξs+1
}

that mini-
mizes J under the incremental deformation (4.33), subject to the multiscale constraint
C(Fs+1, F̄s+1) = 0. Since the internal variables Ξs+1 are determined from a user-
defined, constitutive model, the task is to calculate the Lagrange multiplier Σs+1 and a
collection of deformation gradients Fs+1 that minimize J . To this end, the gradients of
J with respect to the Lagrange multiplier Σ and the deformation gradients FN (collected
in the set F ) need to be computed, as described below.

4.2.1 Unconstrained gradient

For solving the constrained minimization problem (4.31), a simple constrained gradient
descent method based on the computation of the gradient of the objective functional J is
proposed. In this section the components of the unconstrained gradient of the objective
functional are derived. Observe that, in view of (4.28) and (4.29), the symbolic expression
for the unconstrained gradient is the same for all loading steps s, hence the superindex s
will be suppressed for notational simplicity.

Consider a generic grain K ∈ [1, . . . , Ngr] and the corresponding deformation gradi-
ent FK with cartesian components (FK)mn. Henceforth, implicit summation on repeated
cartesian components i = 1, 2, 3 will be assumed. The derivatives of the terms composing
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J in (4.29) are as follows:

∂J1
∂ (FK)mn

=
2

β2Aint

MK
∑

γ=1

AK,γ ×
(

(PK)ij − (PK′)ij

)

nj
∂ (PK)ik
∂ (FK)mn

nk ,

∂J2
∂ (FK)mn

=
2

Aint

MK
∑

γ=1

AK,γ × ((FK)ml − (FK′)ml) (δnl − nnnl) ,

∂J3
∂ (FK)mn

=
VK

β2V

(

(PK)ij − Σij

) ∂ (PK)ij
∂ (FK)mn

,

∂J3
∂Σmn

= −
1

β2V

Ngr
∑

N=1

VN ((PN )mn − Σmn) ,

(4.34)

where the identity ϵiklϵipn = δkpδln − δknδlp was used to derive (4.34)2, with δij repre-
senting the Kronecker delta symbol. Observe that the factor 2 in front of ∂J1/∂ (FK)mn
and ∂J2/∂ (FK)mn is related to the contributions from grains K ′ that are adjacent to K .
The tangential stiffness ∂ (PK)ij /∂ (FK)mn is obtained from the constitutive model of
grain K , and can be calculated analytically and/or numerically, for example, through a
numerical perturbation technique [62]. The constitutive model further provides the stress
components (PK)ij and the internal variables by means of an incremental-iterative up-
date scheme, such as a return mapping algorithm commonly used for classical plasticity
models. Henceforth, it is assumed that for an arbitrary deformation gradient (FK)mn it
is possible to compute (PK)ij and ∂ (PK)ij /∂ (FK)mn from a user-defined constitutive
model for grain K .

It is convenient to enforce the necessary condition for a minimum of the objective
functional J with respect to the Lagrange multiplier Σ from the outset, i.e., the derivative
of J with respect to Σ is set to zero. Consequently, in view of (4.34)4, the Lagrange
multiplier Σ that satisfies the necessary condition for a minimum of J is interpreted as
the macroscopic stress, i.e.,

Σ =

Ngr
∑

N=1

θNPN , (4.35)

where the scalars θN correspond to the volume fractions of the grains:

θN :=
VN

V
N = 1, . . . , Ngr . (4.36)

It is worth pointing out that the Hill-Mandel condition, which refers to the consistency

between the microscale power
∑Ngr

N=1 θNPN ·ḞN and macroscale stress powerΣ· ˙̄F, is in
general only approximately satisfied, since neither the kinematical compatibility relation
nor the equilibrium condition are exactly met in the present framework. A consequence of
this is that the spatial average of the energy dissipated at the microscale is not equal to the
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energy dissipated in a material point at the macroscale, although the difference is expected
to be small in general. In the limit cases of uniform deformation and uniform stress,
the Hill-Mandel condition is satisfied, albeit at the expense of relaxing, respectively, the
equilibrium condition and the kinematic compatibility relation.

Using (4.35) in (4.34) and in view of (4.28), the derivative of J with respect to the
deformation gradient in a generic grain K becomes

∂J

∂ (FK)mn

=
2α1

β2Aint

MK
∑

γ=1

AK,γ

(

(PK)ij − (PK′)ij

)

nj (AK)ikmn nk

+
2α2

Aint

MK
∑

γ=1

AK,γ ((FK)ml − (FK′)ml) (δnl − nnnl)

+
α3θK
β2

(

(PK)ij − Σij

)

(AK)ijmn ,

(4.37)

with Σij given by (4.35) and the material tangent stiffness AK of the K-th grain defined
in cartesian components as

(AK)ijmn :=
∂ (PK)ij
∂ (FK)mn

. (4.38)

Observe that the tensor I−n⊗n (in components: δnl−nnnl) appearing in the second term
on the right hand side of (4.37) represents a projection (of the microscopic deformation
gradient) onto a grain boundary with normal vector n; hence this term measures the rel-
ative difference in deformation at grain boundaries. Furthermore, the first term in (4.37)
reflects the traction discontinuity across a grain boundary and the third term represents
the difference between the microscopic stress in a grain and the macroscopic stress.

In the gradient descent method, the estimate of the deformation gradient is modified
by an incremental amount in the opposite direction of the derivative (4.37) in order to
minimize the jumps in traction and displacement across grain boundaries, as well as the
deviation of the microscopic stresses from the macroscopic stress. However, this mod-
ification cannot be performed arbitrarily, as it is required that the average microscopic
deformation gradient remains unconditionally equal to the macroscopic deformation gra-
dient, see expression (4.31)2. Accordingly, in the next section a gradient descent direction
is constructed that satisfies this multiscale constraint.

4.2.2 Constrained gradient

In view of the numerical implementation of the constrained gradient descent method, a
matrix-vector notation is henceforth used, such that a single index Q is obtained from a
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combination of a grain index K and two cartesian indices m and n, i.e.,

Q = Q(K,m, n) with Q = 1, . . . , 9Ngr,

for K = 1, . . . , Ngr, m, n = 1, 2, 3 .
(4.39)

Similarly, two cartesian indices m and n are combined into a single index q such that

q = q(m,n) with q = 1, . . . , 9 for m,n = 1, 2, 3 .

The index Q = 1, . . . , 9Ngr ranges over all degrees of freedom in the minimization prob-
lem while the index q = 1, . . . , 9 ranges over all cartesian components of the deformation
gradient. With this notational convention, the gradient of the objective functional can be
collected in a vector g, for which the 9Ngr components gQ are given by

gQ :=
∂J

∂ (FK)mn

with Q = Q(K,m, n) .

Similarly, denote as f̄ the vector representing the 9 components of the macroscopic defor-
mation gradient F̄ and denote as x the vector representing the 9Ngr components of all the
microscopic deformation gradients FK in the set F , i.e.,

f̄q := F̄mn and xQ := (FK)mn ,

with q = q(m,n) , Q = Q(K,m, n) .
(4.40)

Accordingly, the multiscale constraint (4.31)2 can be written as

Lx = f̄ , (4.41)

where L is a 9×9Ngr (non-square) matrix composed of a collection of Ngr matrices, each
of size 9× 9 and arranged as follows:

L :=
[

θ1I | θ2I | . . . |θNgr I
]

, (4.42)

where the scalars θN , with N = 1, . . . , Ngr, are the grain volume fractions defined in
(4.36) and I represents the 9 × 9-identity matrix. The matrix L may be viewed as a “vol-
ume averaging” operator that maps a microscopic deformation state x to the macroscopic
deformation state f̄.

Projecting the gradient g to the subspace characterized by the multiscale constraint
(4.41) ensures that the gradient descent method preserves this constraint for all iterations
at a given loading step. The projection may be achieved using a basis for the null space
N (L) of the matrix L. In view of (4.42), it can be shown that the null space N (L) has
dimension 9Ngr − 9. The gradient descent direction is thus obtained by first computing
the tangent g according to (4.37) and then projecting it onto N (L). However, instead of
working with the null space directly, it is convenient to operate first in the subspace that
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is the orthogonal complement of the null space, since this subspace has a dimension that
is generally far less than the dimension of the null space itself, i.e., 9 instead of 9Ngr − 9.
Because the projection has to be performed for every newly calculated tangent vector g
in each iteration, for the efficiency of the computations it is preferable to first project

the tangent vector g to the complementary subspace N (L)⊥ and then subtract this result

from the tangent g. An orthonormal basis for N (L)⊥ can be constructed by taking the
first nine left-singular vectors obtained from the singular value decomposition of LTL.
Consequently, the projected gradient descent direction, denoted as gp, is calculated in
accordance with:

gp := g −
9
∑

q=1

(g · uq)uq . (4.43)

Here, uq, with q = 1, . . . , 9, are the first nine left-singular vectors of the matrix U, as

obtained from the singular-value decomposition of LTL, i.e.,

UDVT = svd
(

LTL
)

,

withD being the diagonal matrix of singular values andV the matrix of right-singular vec-
tors. Because the multiscale constraint (4.41) is linear, the unit vectors uq (q = 1, . . . , 9)
can be expressed in closed-form, such that the components of the projected gradient fol-
low as:

g
p
Q =

∂J

∂ (FK)mn

−
θK

θ̂2
Hmn with Q = Q(K,m, n), (4.44)

where

Hmn :=

Ngr
∑

N=1

θN
∂J

∂ (FN )mn

and θ̂ :=

⎛

⎝

Ngr
∑

N=1

θ2N

⎞

⎠

1
2

. (4.45)

The tensor H with cartesian components Hmn defined in (4.45) represents the volume
average of the gradient of J , while the factor θ̂ reflects theL2 norm of the volume fractions
of the grains.

4.2.3 Constrained gradient descent algorithm

Suppose that the converged state at loading step s has been determined and let xs denote
the corresponding vector of deformation gradients in the grains. If the constitutive model
of a grain uses internal variables, it is assumed that these were determined in the conver-
gence process of the vector xs by means of an incremental (iterative) update algorithm
at the grain level. This update algorithm also provides the converged stress Ps

N in the
grain, which, in view of (4.35), results in the update of the macroscopic stress Σs. In
summary, xs may thus be formally interpreted as the vector with the main state variables
in the grains of the cluster, for which the corresponding stress and history variables at
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the grain level are computed through a user-defined constitutive model. To determine the
converged state xs+1 at loading step s + 1, the time-like parameter is incremented from
ts to ts+1 by a sufficiently small time step ∆ts+1, and the corresponding macroscopic

deformation gradient is incremented from f̄
s

to f̄
s+1

. Starting from an initial estimate
xs+1,0, the vector of deformation gradients is updated from iteration i to iteration i + 1
by using the projected gradient gp as

xs+1,i+1 = xs+1,i − ω (gp)i i = 0, 1, . . . . (4.46)

In (4.46), the scalar ω > 0 is a suitably-chosen step size that, for simplicity, is assumed
to be constant at a given loading step. The value of ω can be chosen such that the mag-
nitude of ω (gp)i is a fraction of the magnitude of xs. The projected gradient is given

in components in (4.44), and is computed from the unconstrained gradient (g)i, given in
components in (4.37) and evaluated at xs+1,i.

The linearity of the constrained subspace characterized by (4.41) ensures that the
projected gradient always lies within this subspace, and that all estimates xs+1,i, with
i = 0, 1, . . ., satisfy the multiscale kinematic constraint (4.41), independent of the mag-
nitude of the projected gradient or the value of the step size. The estimates are iteratively
updated until a convergence criterion is satisfied, as represented by the objective func-
tional J reaching a minimum within a prescribed tolerance ε:

|J i+1 − J i|

J i
< ε . (4.47)

Alternatively, or as a complementary check, the relative magnitude of the projected gradi-
ent can be monitored at a given iteration, where at a converged state it should be confirmed
that

∥

∥

∥
(gp)i+1

∥

∥

∥

∥

∥

∥
(gp)0

∥

∥

∥

≪ 1 . (4.48)

with (gp)0 the projected gradient at the onset of the iterative process. If the convergence
criterion (4.47) is not satisfied after a certain number of iterations, the time step ∆ts must
be reduced and the update algorithm needs to be restarted at the last converged loading
step.

The procedure indicated above is repeated for all loading steps s until the imposed
macroscopic deformation gradient f̄

s
reaches its final value. To start the constrained gra-

dient descent method at a new loading step s+1, it is required to specify an initial estimate
xs+1,0 for the vector of microscopic deformation gradients. This issue deserves special
attention and is discussed in the following section.
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4.2.4 Loading step increment satisfying the multiscale kinematic con-
straint

Moving from loading step s to s + 1, an initial estimate xs+1,0 for the microscale defor-
mation gradients needs to be specified, with the superscript ’0’ indicating the onset of the
iterative process. This initial estimate should satisfy the multiscale kinematic constraint,
i.e.,

Lxs+1,0 = f̄
s+1

, (4.49)

where f̄
s+1

represents the vectorized form of the macroscopic deformation gradient F̄s+1

at time ts+1. The system of equations (4.49) has more equations than unknown vari-
ables and lacks a unique solution. In order to find an accurate, approximate solution to
this system of equations, the initial estimate for the microscopic deformation gradients is
expressed as

xs+1,0 = xs + ds+1 (4.50)

where xs denotes the converged solution at the previous loading step s and ds+1 is a vec-
tor of 9Ngr components representing an initial estimate for the incremental microscopic
deformation gradients. Substituting (4.50) in (4.49) and using the fact that the converged
solution xs at step s meets the constraint Lxs = f̄

s
, it follows that

Lds+1 = ∆f̄
s+1

with ∆f̄
s+1

:= f̄
s+1

− f̄
s
. (4.51)

From (4.51), the solution ds+1 may be generally expressed as

ds+1 = d̃
s+1

− L+
(

Ld̃
s+1

−∆f̄
s+1
)

(4.52)

where d̃
s+1

is an arbitrarily-chosen vector of 9Ngr components and L+ is the (right)
Moore-Penrose pseudo-inverse of L. Since the rows of L are linearly independent, the
pseudo-inverse is given by

L+ := LT
(

LLT
)−1

. (4.53)

The averaging operator L presented in (4.42) has a relatively simple form, as a result of
which the pseudo-inverse L+ can be derived explicitly. This results in a 9Ngr × 9 matrix
composed of a collection of Ngr matrices, each of size 9× 9 and arranged as follows:

L+ =
1

θ̂2

⎡

⎢

⎢

⎢

⎣

θ1I
θ2I

...
θNgr I

⎤

⎥

⎥

⎥

⎦

, (4.54)

where, as before, the scalars θN are the grain volume fractions, I represents the 9 × 9-
identity matrix and θ̂ is given by (4.45)2. It can be confirmed that inserting (4.52) into

78



4.2. NUMERICAL IMPLEMENTATION

(4.50), followed by multiplying the result by L and invoking (4.53) and (4.51), indeed
leads to the multiscale kinematic constraint (4.49) for the initial estimate xs+1,0 of the
microscale deformation gradients.

In principle, one may choose any vector d̃
s+1

in (4.52) to obtain an increment ds+1

that can in turn be used in (4.50) to generate an initial estimate for xs+1,0 in the con-
strained minimization procedure. However, since the material response typically is path-
dependent, it may be expected that the performance of the update algorithm will signif-
icantly depend on this initial estimate. Hence, it is critical to make a judicious choice

for d̃
s+1

in (4.52), such that the corresponding initial value xs+1,0 is located close to
the final value obtained after reaching the convergence criterion (4.47). Accordingly,

it is convenient to impose conditions on d̃
s+1

, under which at the grain boundaries the
kinematic compatibility and/or traction continuity requirements are approximately satis-
fied, see Section 4.2.5 for examples. Furthermore, to effectively transfer the properties of

d̃
s+1

to ds+1, the term Ld̃
s+1

−∆f̄
s+1

in (4.52) must be as small as possible, whereby

ds+1 ≈ d̃
s+1

. This requirement can be satisfied by determining the vector d̃
s+1

from a
uniform scaling relation, i.e.,

d̃
s+1

= ηs+1d̂
s+1

. (4.55)

Here, ηs+1 is a scaling factor and d̂
s+1

is an auxiliary vector, for which four specific
options are discussed in Section 4.2.5. After inserting (4.55) in (4.52), it follows that

the L2 norm of the vector Lηs+1d̂
s+1

− ∆f̄
s+1

needs to be minimized for meeting the

condition ds+1 ≈ d̃
s+1

. This simply leads to the following expression for the scaling
factor:

ηs+1 =

(

Ld̂
s+1
)T

∆f̄
s+1

(

Ld̂
s+1
)T

Ld̂
s+1

. (4.56)

A schematic representation of the above incremental/iterative method is shown in Fig. 4.3.
Starting from the converged state xs at loading step s and a specific choice for the auxil-

iary vector d̂
s+1

, the scaling factor ηs+1 and the vector d̃
s+1

are computed from (4.56)
and (4.55), respectively, the vector ds+1 containing the initial incremental deformation
gradients is computed from (4.52) and the initial estimate xs+1,0 for the deformation gra-
dients is determined from (4.50). Observe that xs+1,0 lies within the ”feasible solution
space”, as characterized by the space containing the vectors x that satisfy the multiscale

kinematic constraint Lx = f̄
s+1

. Subsequently the constrained gradient is computed from
(4.44) and the estimate is updated according to (4.46) until it converges to the final solu-
tion xs+1 within the feasible solution space.
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Figure 4.3: Schematic representation of the initial estimate xs+1,0 of the vector of deformation gradients at
loading step s + 1, and the subsequent constrained gradient descent method. Points in the domain on the
left represents schematically the collection of microscale deformation gradients for the grain cluster, which are
mapped through the averaging operator L to the space of macroscale deformation gradients on the right.

4.2.5 Possible estimates for the initial deformation gradient incre-
ment

For an optimal performance of the constrained minimization algorithm visualized in Fig. 4.3,
it is critical to choose an appropriate estimate for the vector containing the increments

in the deformation gradient d̃
s+1

, which directly depends on the auxiliary vector d̂
s+1

through expression (4.55). Accordingly, four options for d̂
s+1

are discussed below.

Initial estimate based on uniform deformation gradient increment.

A possible choice for d̂
s+1

is to assume that all grains deform in accordance with the
macroscopic increment of the deformation gradient from step s to step s+ 1. In compo-
nents, this choice is given by

(

d̂s+1
)

Q
= ∆F̄ s+1

mn with Q = Q(K,m, n), K = 1, . . . , Ngr . (4.57)

With this particular choice it can be easily verified that

Ld̂
s+1

−∆f̄
s+1

= 0 ,
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from which it follows from (4.56) that the scaling factor ηs+1 = 1, and from (4.52) that
the corresponding vector ds+1 is given by

ds+1 = d̃
s+1

= d̂
s+1

. (4.58)

The incremental estimate indicated in (4.57) and (4.58) is the exact incremental solution to
the limit case of a uniform deformation gradient (Taylor bound), for which α1 = α3 = 0
in expression (4.28). Hence, it will serve as a good estimate for cases where the weighting
factors α1 and α3 are relatively small compared to α2, but generally will not provide a
suitable initial estimate if these weighting factors are relatively large and the limit case of
uniform stress (Sachs bound) is approached.

Initial estimate based on uniform stress increment.

An alternative way to obtain an initial estimate for d̂
s+1

is to incrementally deform the
grains in accordance with a uniform stress increment. This initial estimate satisfies the
equilibrium conditions, and therefore would be particularly useful if the contribution to J
by the equilibrium conditions (reflected by the weighting factorsα1 andα3 in (4.28)) has a
higher importance than the kinematic compatibility condition (reflected by the weighting
factor α2 in (4.28)). Suppose that from step s to step s + 1 the average stress tensor in
the grain cluster increases from Σs to Σs+1. Although the stress Σs+1 is unknown at the
beginning of step s+1, it can be estimated based on temporarily assuming that all grains
are subjected to one and the same increment of the deformation gradient, ∆F̄s+1. For
computing the corresponding increment in macroscopic stress, Σs+1, a frame-indifferent
stress measure based on the Lie derivative of the first Piola-Kirchhoff stress is considered.
The Lie derivative P̊ of the first Piola-Kirchhoff stress P is given as P̊ = FṠ, where
S = F−1P is the second Piola-Kirchhoff stress and Ṡ denotes its invariant material time
derivative. Correspondingly, the Lie derivative of P may be formulated as

P̊ = Ṗ− ḞF−1P , (4.59)

where the superimposed dot indicates a material time derivative. In analogy with this
expression, for a sufficiently small load increment and under the assumption of an equal
deformation increment in the grains, the initial estimate of the macroscopic stress incre-
ment from step s to step s+ 1, denoted as ∆Σs+1,0, may be computed as

∆Σs+1,0 := Ā
s∆F̄s+1 −∆F̄s+1

(

F̄s+1
)−1

Σs with Ā
s :=

Ngr
∑

N=1

θNA
s
N . (4.60)

Here, Ās is the volume average of the cluster’s material tangent stiffness, As
N is the ma-

terial tangent stiffness of grain N and Σs is the macroscopic first Piola-Kirchhoff stress,
all evaluated at the last converged step s. The estimate of the uniform stress increment,
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(4.60), can now be used to compute an initial estimate of the corresponding non-uniform

increments in the deformation gradient of the grains, ∆Fs+1,0
K , by formulating a relation

similar to (4.60) for each specific grain K:

(As
K)∆F

s+1,0
K −∆F

s+1,0
K Ss

K = ∆Σs+1,0,

with Ss
K := (Fs

K)−1
Ps

K K = 1, . . . , Ngr .
(4.61)

Observe that in the above expression the second Piola-Kirchhoff stress in the grains, Ss
K ,

is known from the last converged loading step s. Hence, (4.61) represents a linear sys-
tem of equations in terms of the initial values of the deformation gradients in the grains,
∆F

s+1,0
K , i.e., one set of 9 linear equations for each grain K . For computing the numer-

ical solution of this system of equations, the vectors d̂
s+1

K and ps+1,0 are invoked, each
composed of 9 components. These vectors incorporate, respectively, the initial estimate
of the incremental deformation gradient in grain K and the estimate of the increment in
the macroscopic first Piola-Kirchhoff stress, i.e.,

(

d̂s+1
K

)

q
:=
(

∆F s+1,0
K

)

mn
;
(

ps+1,0
)

q
:= ∆Σs+1,0

mn ,

with q = q(m,n), for K = 1, . . . , Ngr .
(4.62)

Similarly, define the 9× 9 material tangent stiffness matrix As
K of grain K (which corre-

sponds to the converged solution at the previous step s) as

(As
K)pq := (As

K)ijkl − δik (S
s
K)lj ,

with p = p(i, j), q = q(k, l) for K = 1, . . . , Ngr ,
(4.63)

where As
K and Ss

K are the material tangent stiffness and the second Piola-Kirchhoff stress
in the K-th grain, respectively, and δik reflects the Kronecker delta symbol. Employing
the notation in (4.63), the system of equations (4.61) can be expressed in vector-matrix
form as

As
K d̂

s+1

K = ps+1,0 for K = 1, . . . , Ngr (no sum on K) . (4.64)

The matrix As
K is non-singular for the subspace of (vectorized) symmetric tensors but

is singular for the subspace of (vectorized) skew-symmetric tensors. To circumvent this
singularity, the general solution of (4.64) is formulated as

d̂
s+1

K = ˜̃
ds+1
K − (As

K)+
(

As
K
˜̃
ds+1
K − ps+1,0

)

(4.65)

where (As
K)+ is the pseudo-inverse of As

K and
˜̃
ds+1
K is an arbitrarily-chosen vector of

9 components. For definiteness, the components of the vector
˜̃
ds+1
K are chosen as zero,

which simplifies (4.65) into

d̂
s+1

K = (As
K)+ ps+1,0 . (4.66)
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The grain cluster vector d̂
s+1

of 9Ngr components can now be straightforwardly assem-

bled from the grain level vectors d̂
s+1

K for the K = 1, . . . , Ngr grains. Subsequently, the
initial estimate of the deformation gradients xs+1,0 follows from (4.56), (4.55), (4.52) and
(4.50). Clearly, the determination of the uniform stress initial increment is computation-
ally more demanding than the computation of the uniform deformation gradient initial
increment presented in Section 4.2.5. Nonetheless, as will be demonstrated in detail in
Section 4.3, the uniform stress initial increment has the advantage that it provides an
adequate prediction for a wide range of material responses and weighting factors αi.

Initial estimate based on previous loading steps

Another option for the calculation of the initial estimate d̂
s+1

is to use the history of
converged solutions at previous loading steps. Particularly, one could straightforwardly

compute d̂
s+1

from the difference of the converged solutions at steps s and s− 1, i.e.,

d̂
s+1

= xs − xs−1 . (4.67)

Substituting (4.67) in (4.56) and noting that L(xs − xs−1) = ∆f̄
s
, it follows that

ηs+1 =

(

∆f̄
s)T

∆f̄
s+1

(

∆f̄
s)T

∆f̄
s

with ∆f̄
s+1

:= f̄
s+1

− f̄
s
, ∆f̄

s
:= f̄

s
− f̄

s−1
. (4.68)

The initial guess based on the loading history is proposed here because of its simplicity,
and because it may provide an accurate and efficient prediction for material systems sub-

jected to proportional loading. Under the latter condition the vectors ∆f̄
s+1

and ∆f̄
s

are
parallel with respect to each other, whereby ηs+1 in (4.68) becomes equal to the relative
change in loading magnitude going from step s to step s+1. However, under strongly non-
proportional loading the initial estimate (4.67) should be treated with care: Note that in

the extreme case a load increment ∆f̄
s+1

may be specified such that
(

∆f̄
s)T

∆f̄
s+1

= 0,
for which ηs+1 becomes zero and the current estimate would not be applicable.

Initial estimate based on the null vector

The last option presented in this section is included for completeness, and corresponds

mathematically to the most basic choice for d̂
s+1

, namely the null vector. Although from
(4.56) it may be concluded that for this case the scaling factor ηs+1 is not defined, in view

of (4.55) it follows that d̃
s+1

= 0. Correspondingly, from (4.52) the vector ds+1 simply
becomes

ds+1 = L+∆f̄
s+1

. (4.69)
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Using expression (4.54), expression (4.69) can be written in components as

(

ds+1
)

Q
=
θK

θ̂2
∆F̄ s+1

mn with Q = Q(K,m, n), K = 1, . . . , Ngr , (4.70)

where θ̂ is given by (4.45)2. Note that this initial estimate is based on the grain size only,
i.e., the increment in the deformation gradient for a grain K scales proportionally with
the grain volume fraction θK , see (4.70). Preliminary numerical tests not presented here
have indicated that such an initial estimate, though simple to determine, may result in an
inconvenient starting point for the incremental-iterative update algorithm, and therefore
in a (very) poor convergence behavior.

4.2.6 Overview of GGCM algorithm

The incremental-iterative update algorithm for the generalized grain cluster method is
summarized in Algorithm 1. The algorithm is based upon the uniform stress initial in-
crement presented in Section 4.2.5; the implementations of the three alternative initial
estimates presented in Section 4.2.5 occurs in a similar fashion, but are omitted here for
brevity reasons. A detailed analysis of the performance of the different initial estimates is
provided in Section 4.3.3.

It is worth pointing out that user-defined constitutive models may provide tangent stiff-
nesses based on stress and deformation measures different than the first Piola-Kirchhoff
stress and the deformation gradient used in expression (4.38). However, these mate-
rial tangent stiffnesses may be converted to this format using push-forward and pull-
backward relations presented in the literature, see, e.g., [57, 62]. Furthermore, the pa-
rameters α1,α2,α3,β, ω and the time step ∆t require a calibration procedure, such as
that described in Section 4.3.5. Representative values of these parameters are used in the
numerical examples treated in the section below.

4.3 Simulations of clusters of multiphase materials

4.3.1 Preliminaries

A series of simulations involving microstructures typically found in low-alloyed multi-
phase steels is presented in this section in order to illustrate important features of the
generalized grain cluster method. These microstructures consist of an aggregate of fer-
ritic grains (primary phase) and metastable retained austenitic grains (secondary phase).
Under mechanical loading, the austenitic grains may partially or totally transform into a
third phase, called martensite. The crystal plasticity model presented in [71] and extended
in [70] is used to simulate the elasto-plastic deformation in the ferritic grains. For incor-
porating the crystal plasticity model in the GGCM, the deformation gradient FK , for each
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Algorithm 1 Algorithm for GGCM

Pre-processing:
Generate cluster’s microstructural geometry, e.g., using a (multilevel) Voronoi algorithm
Assign grain and surface indices N = 1, . . . , Ngr and γ = 1, . . . ,MN

Construct global connectivity array I = Î(N, γ)

Compute volumes VN and V , areas AI and Aint and volume fractions θN and θ̂ from (4.30), (4.36) and
(4.45)2
Assemble averaging operator L from (4.42) and its pseudo-inverse L+ from (4.54) (use compact storage)
Select weighting parameters α1,α2,α3, scaling factor β and step size ω appearing in (4.28), (4.29) and
(4.46)
Initialize (s = 0)
for N = 1, . . . , Ngr do

For an unloaded and unstressed initial state, construct x0 from F0
N = I and set P0

N = 0, Σ0 = 0

For inelastic constitutive models, initialize internal variables Ξ0
N

Compute initial constitutive tangents A0
N (see (4.38)) from the given constitutive model(s) of grain N

end for
Main loop (s ≥ 1)
while s+ 1 ≤ Nsteps do

Store converged state at loading step s and increase the time-like process parameter ts+1 = ts +∆ts+1

Update externally-applied macroscopic deformation gradient f̄
s+1 = f̄

s +∆f̄
s+1

Initial deformation gradient xs+1,0

For the method shown in Section 4.2.5: (see Section 4.2.5 for other methods)
Compute estimate of stress increment ps+1,0 from (4.62)2 and (4.60)
for N = 1, . . . , Ngr do

Compute As
N from (4.63) and (4.61)2 and its pseudo-inverse

(

As
N

)+

Compute grain-level increment d̂
s+1
N from (4.66) and assemble in cluster-level vector d̂

s+1

end for
Compute scaled initial deformation gradient increment d̃

s+1
from (4.56) and (4.55)

Compute projected initial deformation gradient increment ds+1 from (4.52)
Get initial estimate xs+1,0 from (4.50)
Constrained minimization
i = 0
while Not converged do

Compute (PN ,AN ,ΞN )s+1,i for N = 1, . . . , Ngr from the grains’ constitutive model(s)
Update the estimate of the macrostress Σs+1,i from (4.35)
Compute unconstrained gradient (g)i from (4.37)

Compute constrained gradient (gp)i from (4.44) and (4.45)
Update estimate of deformation gradients xs+1,i+1 from (4.46)
Check convergence
i← i+ 1

end while
s← s+ 1

end while
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ferritic grain K , is decomposed as

FK = Fe
KF

p
K

where Fe
K represents the elastic part of the deformation gradient and F

p
K is the plastic

part of the deformation gradient. The crystal plasticity model includes a so-called fer-
ritic microstrain as an internal variable, which reflects the local elastic distortions in the
crystalline lattice due to the presence of dislocations, see Section 3.1.2 and Section 2.1.6
(2.63) for more details. For the K-th ferritic grain, the microstrain is denoted as βF

K ,
and the volume average over the ferritic grains is indicated as β̄F. The latter parameter
will be used for characterizing the average plastic deformation in the ferritic grains in the
simulation results presented in this section.

The constitutive behavior of the austenitic grains is simulated using the model devel-
oped in [73, 75] and extended in [70]. This model is suitable for simulating single-crystal
grains simultaneously undergoing a plastic deformation and a martensitic phase transfor-
mation from a face-centered cubic austenitic lattice structure into a body-centered tetrag-
onal martensite upon mechanical and/or thermal loading. The model includes the possible
transformation into crystallographically-distinct martensitic phases, referred to as trans-

formation systems. For the implementation of the phase transformation model within the
GGCM, the deformation gradient FK for each austenitic grain K is decomposed as

FK = Fe
KF

p
KFtr

K

where, as before, Fe
K and F

p
K represent the elastic and plastic parts of the deforma-

tion gradient, respectively, and Ftr
K corresponds to the transformation part. For the K-th

austenitic grain, the total martensitic volume fraction is denoted as ξMK =
∑N

α=1 ξ
(α)
K ,

which corresponds to the sum of volume fractions of the individual transformation sys-

tems, ξ(α)K (α = 1 . . .N ). The volume average of the martensitic volume fraction over the
austenitic grains is indicated as ξ̄M. This parameter will be used for quantifying the aver-
age martensitic transformation in the austenitic grains in the simulation results presented
in this section. The material parameters used in the numerical simulations for the ferrite,
austenite and martensite can be found in Table 2.1. The computation of the stress, tan-
gential stiffness and internal variables in the individual grains is carried out by means of a
fully implicit, incremental-iterative update algorithm formulated within a large deforma-
tion framework. The details of this numerical implementation, which includes a selection
algorithm for the determination of the active transformation systems and slip systems, can
be found in [62].

Using the constitutive models outlined above allows for testing the GGCM for rel-
atively complex and challenging material systems, where a large number of internal
variables at each material point inside a grain capture inelastic phenomena originating
from the sub-grain length scale, i.e., plastic slip and phase transformation resolved in
crystallographically-distinct planes. The periodic microstructures used in the simulations
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Sample # Total number
of grains

Austenitic grains Ferritic grains Volume frac-
tion of austen-
ite (%)

S1 8 1 7 12.0

S2 64 8 56 12.1

S3 100 12 88 12.2

S4 200 24 176 11.9

S5 450 56 394 12.0

S6 600 72 528 12.0
Table 4.1: Composition and volume fraction of different microstructural samples used in the GGCM simulations
and the (finite element-based) DNS.

are constructed from a two-level Voronoi algorithm generating realistic (convex and non-
convex) polyhedral grains, see Section 3.2.1 for details. A randomly-chosen crystal orien-
tation is assigned to each single-crystal grain in the cluster in order to approach a macro-
scopically isotropic material under an increasing number of grains. Representative pole
figures for the orientation distributions of the samples analyzed in the present study can
be found in Section 3.2.2. All grain clusters were macroscopically loaded under simple

shear according to
F̄ = I+ γ̄e1 ⊗ e2 ,

where γ̄ is the amount of shear and e1 and e2 are orthonormal unit vectors perpendicular
to the external faces of the cubic grain cluster. The imposed macroscopic shear rate was
˙̄γ = 10−4s−1, which is in the range of quasi-static loading, i.e., it was confirmed that
the inertial terms in the balance of linear momentum can be neglected. The samples were
deformed up to a final value of γ̄ = 0.2. Unless indicated otherwise, the step size for the
constrained gradient descent method equals ω = 20 and the convergence criterion used
is provided by expression (4.47), with the tolerance prescribed a priori as ε = 10−3. It is
emphasized that the simple shear deformation mode was chosen for reasons of simplic-
ity, such that the basic characteristics of the GGCM can be demonstrated in a consistent
and unequivocal fashion. The computation of sample responses under alternative, more
complex deformation modes falls beyond the scope of this study, although it may be rea-
sonably expected that these will expose similar characteristics of the GGCM as for the
simple shear mode.

The performance of the GGCM is demonstrated by considering six microstructures,
each composed of a different number of grains, see Table 4.1. Note that for all these
microstructures the initial volume fraction of the secondary austenitic phase is approxi-
mately 12 %, which is within the range of experimental values observed in multiphase
TRIP steels [60, 35, 58]. A parametric study is carried out using a wide range of values
of the weighting factors αi, with i = 1, 2, 3, see Table 4.2. In accordance with (4.28)
and (4.29), in the solution procedure the weighting factors α1 and α3 determine the rel-
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Set # α1 = α3 α2 Ratio α2/α1

W1 1.0× 10−7 1.0× 100 1.0× 107

W2 5.0× 10−6 2.0× 10−2 4.0× 103

W3 1.0× 10−5 1.0× 10−2 1.0× 103

W4 2.0× 10−5 5.0× 10−3 2.5× 102

W5 1.0× 10−4 1.0× 10−3 1.0× 101

Table 4.2: List of distinct weighting factors used in the GGCM simulations. In all cases, α1 and α3 were
chosen equal to each other. Set W1 approximates the Taylor bound where the deformation gradient is uniform
across the grains, while set W5 tends to the Sachs bound, for which the stress in the grains is uniform, within
the tolerance provided by the kinematical multiscale constraint. Sets W2-W4 represent intermediate cases.

ative importance of the equilibrium conditions at the grain boundaries and within each
grain, respectively, while the weighting factor α2 sets the relevance of kinematical com-
patibility across grain boundaries. The scaling factor β that appears in (4.29) was kept
fixed, by setting it equal to β = 1 (units of stress). The performance of the GGCM is
demonstrated by considering six microstructures, each composed of a different number
of grains, see Table 4.1. Note that for all these microstructures the initial volume fraction
of the secondary austenitic phase is approximately 12 %, which is within the range of ex-
perimental values observed in multiphase TRIP steels [60, 35, 58]. A parametric study is
carried out using a wide range of values of the weighting factors αi, with i = 1, 2, 3, see
Table 4.2. In accordance with (4.28) and (4.29), in the solution procedure the weighting
factors α1 and α3 determine the relative importance of the equilibrium conditions at the
grain boundaries and within each grain, respectively, while the weighting factor α2 sets
the relevance of kinematical compatibility across grain boundaries. The scaling factor β
that appears in (4.29) was kept fixed, by setting it equal to β = 1 (units of stress).

For each grain cluster, the results from a direct numerical simulation (DNS) performed
with an accurate finite element model were used as a benchmark. The term DNS is bor-
rowed from its classical context in fluid mechanics to reflect the analogy between re-
solving the spatial scales of turbulence and resolving the micromechanical scales; it thus
represents the full-field numerical solution obtained from determining the balance of lin-
ear momentum at each microscopic material point. Details of the finite element-based
DNS simulations can be found in Chapter 3. Unless indicated otherwise, all DNS calcu-
lations were performed using a regular 30 × 30 × 30 mesh (27000 hexahedral elements
with a reduced integration scheme) with pointwise periodic boundary conditions, result-
ing in 81021 displacement degrees of freedom. This mesh size is based on a convergence
study where the relative error in the effective main shear stress is less than 2% of the value
found for a (substantially) finer 40 × 40 × 40 mesh, see also [84]. The maximum time
step in the DNS was determined as ∆t = 3.2s, since larger time steps typically triggered
numerical convergence problems. All other parameters used in the DNS are identical to
those in the simulations performed with the GGCM.
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Figure 4.4: Average (macroscopic) Cauchy shear stress T̄12 (a), stress component T̄11 (b), martensitic volume
fraction ξ̄M (c) and microstrain in the ferrite β̄F (d), all plotted as a function of the applied amount of shear γ̄,
for three distinct time steps in the GGCM: ∆t = 1.0, 5.0 and 25.0 s. The sample used is S4 with 200 grains in
total, see Table 4.1, and the set of weighting factors equals W2, see Table 4.2. The dashed lines represent the
corresponding DNS responses, obtained from an accurate 30× 30× 30 finite element model.

4.3.2 Influence of time step size

In order to examine the influence of the size of the time step on the accuracy and stability
of the numerical results computed with the GGCM, the response of a microstructural sam-
ple loaded under simple shear is analyzed considering three distinct time steps, namely
∆t = 1s, 5s and 25s. The sample is composed of 24 grains of austenite and 176 grains
of ferrite (sample S4 in Table 4.1). The corresponding response curves are shown in
Fig. 4.4, which include the main Cauchy shear stress component T̄12 averaged over the
whole cluster (Fig. 4.4a), the average normal stress component T̄11 (Fig. 4.4b), the aver-
age martensitic volume fraction ξ̄M (Fig. 4.4c) and the average microstrain in the ferrite
β̄F (Fig. 4.4d), all plotted as a function of the macroscopic amount of shear γ̄. The
GGCM curves were computed using calibrated weighting factors α1 = α3 = 5.0× 10−6

and α2 = 2.0 × 10−2 (set W2 in Table 4.2) and an initial estimate for the deformation
gradient based on a uniform stress increment. As shown in the figure, for the largest time
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step, ∆t = 25s, the GGCM response shows significant fluctuations and deviates strongly
from the DNS response represented by the dashed line. In contrast, the GGCM responses
for ∆t = 1s and ∆t = 5s are relatively smooth and remain close to each other over the
whole deformation range, thereby approaching the DNS response closely. Hence, it may
be concluded that a specific minimum time step is required for obtaining a GGCM solu-
tion of satisfactory accuracy. Using an L2 norm of the main shear stress along the com-
plete deformation path (see also Section 4.3.5, expression (4.71)), the relative difference
between the responses for ∆t = 1s and ∆t = 5s is calculated as 2.5%. Correspondingly,
the results obtained with the time step ∆t = 5s were considered as sufficiently accurate,
and forthcoming results were computed using this value.

From the aspect of stability, no specific conclusions on the maximum time step size
can be drawn from the GGCM simulations, since for all three time steps considered the
response remains bounded within the range analyzed. Conversely, as already indicated in
the previous section, the DNS calculation did encounter convergence problems for time
steps larger than ∆t = 3.2s; hence the DNS is characterized by a smaller maximum time
step than the GGCM simulations.

4.3.3 Influence of initial estimate of the deformation gradients

In Section 4.2.5 several options were described for estimating the initial incremental mi-

croscale deformation gradients d̂
s+1

required at the onset of each new loading step s+1 of
the constrained minimization algorithm. Due to the loading path dependency of inelastic
material models, this initial estimate may affect the accuracy and efficiency of the gener-
alized grain cluster method. Since GGCM has the general aim of closely approximating
accurate DNS response curves at (much) lower computational cost, it needs to be exam-
ined in detail what the effect of this estimate is on the numerical accuracy and efficiency
of the GGCM result. Accordingly, in this section the numerical responses computed for

three different initial estimates of d̂
s+1

are compared, as based upon (i) a uniform defor-
mation gradient initial increment (Section 4.2.5), (ii) a uniform stress initial increment
(Section 4.2.5) and (iii) previously converged loading steps (Section 4.2.5). The initial
estimate based upon the null vector (Section 4.2.5) is left out of consideration in this com-
parison, since preliminary computations (not presented here) clearly indicated a deficient
performance with respect to the other three approaches.

In the analysis a sample consisting of 8 grains of austenite and 56 grains of ferrite
(set S2 in Table 4.1) is subjected to simple shear, where the GGCM responses calculated

with the three initial estimates of d̂
s+1

are compared against the response of the accurate
benchmark FEM model described in Section 4.3.1. In the GGCM the weighting factors
are α1 = α3 = 5.0× 10−6 and α2 = 2.0× 10−2 (set W2 in Table 4.2) and the time step
equals ∆t = 5s. The results of the simulations are shown in Fig. 4.5 in terms of the main
Cauchy shear stress T̄12 (Fig. 4.5a), the stress component T̄11 (Fig. 4.5b), the martensitic
volume fraction ξ̄M (Fig. 4.5c) and the microstrain in the ferrite β̄F (Fig. 4.5d). All
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Figure 4.5: Average (macroscopic) Cauchy shear stress T̄12 (a), stress components P̄11 (b), martensitic volume
fraction ξ̄M (c) and microstrain in the ferrite β̄F (d) as a function of the applied amount of shear γ̄ for distinct
initial estimates of the deformation gradient at the beginning of each GGCM loading step. The three initial

estimates for the vector of deformation gradients within the grains, d̂
s
, are based on (i) a uniform deformation

gradient increment, (ii) a uniform stress increment, and (iii) previously converged loading steps. The sample
used is S2 with 64 grains in total, see Table 4.1, and the set of weighting factors is W2, see Table 4.2. The
dashed lines represent the corresponding DNS responses, obtained from an accurate 30×30×30 finite element
model.

quantities are displayed as a function of the macroscopic amount of shear γ̄. It can be
observed that the simulations based on a uniform deformation gradient initial increment
and a uniform stress initial increment are relatively smooth and remain close to each other.
The method based on a uniform deformation gradient increment predicts a slightly stiffer
response for the main Cauchy shear stress T̄12 compared to the simulation based on a
uniform stress increment, while the opposite occurs for the stress T̄11, see Fig. 4.5a,b. For
the present choice of weighting factors W2 both methods approach the solution obtained
with DNS closely, although the method based on a uniform stress initial increment appears
to be slightly more accurate. The response of the secondary phase, expressed in terms
of the martensitic phase transformation, is somewhat underpredicted by both methods
at larger deformation, γ̄ > 0.1, see Fig. 4.5c, while the microstrain β̄F in the ferrite
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Initial estimate microscopic defor-
mation gradient

Section Sample Weighting CPU
time
(hours)

Uniform deformation gradient ini-
tial increment

4.2.5 S2 W2 8

Uniform stress initial increment 4.2.5 S2 W2 17

Initial increment by previously con-
verged loading steps

4.2.5 S2 W2 9

Table 4.3: Computational times of GGCM with distinct initial estimates of the microscopic deformation gradient
at the onset of each incremental loading step. The sample is loaded under simple shear.

is predicted accurately over the whole deformation range, see Fig. 4.5d. In contrast,
the simulation based on an initial estimate obtained from previously converged loading
steps is characterized by significant fluctuations in the stress components and a relatively
large over-prediction of the volume fraction of martensite. Moreover, the step size in the
constrained minimization algorithm had to be reduced here from ω = 20 to ω = 10 in
order to circumvent convergence problems. Consequently, the initial estimate based on
extrapolating previously converged loading steps was deemed sub-optimal compared to
initial estimates based upon an increment of a uniform deformation gradient and a uniform
stress.

The computational times for the three initial estimates of d̂
s+1

are compared in Ta-
ble 4.3. It is noted that in Section 4.3.6 the computational times of simulations performed
with the GGCM will be also compared objectively to those of finite element-based DNS.
The table shows that the simulations with a uniform deformation gradient initial increment
and an initial increment based on previously converged loading steps are characterized by
similar computational times, which are about half of the computational time obtained for
a uniform stress initial increment. Nonetheless, additional simulations (not shown here)
have indicated that the numerical results computed with the uniform deformation gradi-
ent initial increment may substantially loose their accuracy under conditions approaching
the uniform stress limit case (i.e., set W5 in Table 4.2). Conversely, the numerical re-
sults obtained with the uniform stress initial increment proved to be accurate for both the
uniform stress limit case (set W5) and the uniform deformation gradient limit case (set
W1). Hence, despite its higher computational cost, from the viewpoint of accuracy all

GGCM simulations discussed in the subsequent sections were carried out using a uniform

stress initial increment. Note, however, that the method based on a uniform deformation
gradient initial increment remains an attractive alternative under conditions generating
negligible to moderate differences between the deformations in individual grains i.e., sets
W1 to W3 in Table 4.2.
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Figure 4.6: Shear stress distribution P12 across sample S2 at a macroscopic shear deformation γ̄ = 0.2 for
weighting factors representing (a) the uniform deformation gradient limit case (set W1), (b) an intermediate
case (set W2) and (c) the uniform stress limit case (set W5).

4.3.4 Influence of weighting factors αi and sample composition

In this section the effects on the GGCM response by the weighting factors, αi with
i = 1, 2, 3, see (4.28), and the sample composition are demonstrated. For this purpose, a
sample subjected to simple shear deformation, up to γ̄ = 0.2, is analyzed for five different
sets of weighting factors, W1-W5, as listed in Table 4.2, and two different microstructural
compositions, S1 and S4 (of 8 grains and 200 grains in total, respectively), see Table 4.1.
The samples S1-S6 presented in Table 4.1 were recently subjected to an extensive con-
vergence study using an accurate finite element model of 30 × 30 × 30 elements, which
demonstrated that sample S4 represents a lower bound for the number of grains required
for reaching a macroscopic representative volume element (RVE), see [84] for more de-
tails. Accordingly, by comparing the response of the “minimal” RVE sample S4 to the
response of the “small sample” S1, the influence by the discreteness of the microstructure
on the overall response can be highlighted. A detailed analysis of the convergence behav-
ior of the GGCM responses, including all samples S1-S6 summarized in Table 4.1, will
be presented in Section 4.3.5.

In order to clearly illustrate some essential features of the weighting factors, first for
sets W1, W2, and W5 the main Piola-Kirchhoff shear stress distribution P̄12 in sam-
ple S2 is considered at the final state of deformation γ̄ = 0.2, see Fig. 4.6. As can be
observed from Fig. 4.6a, in the limit of a uniform deformation gradient (set W1) the kine-
matic compatibility between individual grains is preserved, which occurs at the expense
of violating the equilibrium requirements for the grains, i.e., the shear stress P12 jumps
significantly in value across grain boundaries. The response shown in Fig. 4.6c for the
limit case of uniform stress (set W5) indeed satisfies the equilibrium requirements, but
clearly violates kinematic compatibility between grains. The intermediate case (set W2)
shown in Fig. 4.6b corresponds to a compromise solution that partially satisfies both the
kinematic compatibility and equilibrium requirements.

In Fig. 4.7 the evolutions of macroscopic state and internal variables of the samples
S1 and S4 are compared. The figure illustrates the main Cauchy shear component, T̄12,
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(Fig. 4.7a,b) and the stress component T̄11 (Fig. 4.7c,d), i.e., grain cluster averages, of
the two samples, as a function of the applied macroscopic shear deformation γ̄. It further
shows the evolutions of the effective martensitic volume fraction ξ̄M in the secondary,
austenitic phase (Fig. 4.7e,f) and the effective microstrain β̄F in the ferritic matrix (Fig
4.7g,h), with the latter parameter being a measure for the amount of plastic deformation
generated. For both samples the GGCM responses for the five different sets of weighting
factors W1-W5 are plotted together with the response obtained from an accurate finite
element-based DNS described in Section 4.3.1. As mentioned before, the GGCM simu-
lations were carried out with a uniform stress initial increment.

Both for samples S1 and S4 the limit cases of a uniform deformation gradient (set
W1) and a uniform stress (set W5) provide relatively smooth response curves, which,
as may be expected from basic homogenization principles, respectively overpredict and
underpredict the DNS response. For the intermediate sets with weighting factors W2 to
W4 the closest resemblance with the DNS response is realized by set W2, although for
the small sample S1 some distinctive drops in stress are observed, see Fig. 4.7a,c. These
stress drops result from a competition between the two opposing terms in the objective
functional J given by (4.28), which are the compatibility term, α2J2, and the equilib-
rium term, α1J1 + α3J3. During the minimization procedure both terms occasionally
fluctuate strongly in magnitude, thereby showing a tendency of compensating each other.
Whenever the minimization of the functional J was dominated by the derivative of the
force equilibrium term (i.e., the term ∂(α1J1 + α3J3)/∂ (FK)mn following from (4.37)
and (4.34)), the force equilibrium term α1J1 + α3J3 decreased while the compatibility
term α2J2 increased. In contrast, this process was reversed when the compatibility term
α2J2 became dominant. As demonstrated by the shear stress response in figure 4.7a,
this bifurcation-type behavior is more apparent for the small sample S1, and thus can
be associated to the level of discreteness of the microstructure. More discussion on the
bifurcation sensitivity of the microstructural responses can be found in Section 4.4.

Under a stepwise change of the sets of weighting factors from W1 to W5 the corre-
sponding Cauchy shear stress responses T̄12 decrease monotonically, see Fig. 4.7a,b. A
similar order in the responses for the different sets of weighting factors can be observed
for the ferritic microstrain β̄F, see Fig. 4.7g,h. In contrast, the responses of the stress com-
ponent T̄11 and the martensitic volume fraction ξ̄M do not follow this regular order, see
Fig. 4.7c,d,e,f. This difference can be explained as follows. Under the applied isochoric
shear deformation γ̄ the secondary austenitic phase transforms into martensite, whereby
the resulting volumetric expansion is compensated for by the surrounding ferritic matrix
under the generation of normal stresses. Since the number of austenitic grains in samples
S1 and S4 is relatively low (i.e., 1 grain and 24 grains, respectively, see Table 4.1), the
resulting predictions for the effective stress component T̄11, and the martensitic volume
fraction, ξ̄M occasionally are sensitive to inaccuracies, and therefore do not provide the
regular order in responses mentioned above. Despite this aspect, for sample S4 all 4 re-
sponse curves computed with the set of weighting factors W2 follow the corresponding

94



4.3. SIMULATIONS OF CLUSTERS OF MULTIPHASE MATERIALS

A
ve

ra
ge

 s
he

ar
 s

tr
es

s 
T

1
2
 (G

P
a)

A
ve

ra
ge

 s
tr

es
s 

T
1

1
 (G

P
a)

A
ve

. m
ar

t.
 v

ol
um

e 
fr

ac
ti

on
 ξ

M
A

ve
. f

er
ri

ti
c 

m
ic

ro
st

ra
in

 β
F

A
ve

ra
ge

 s
he

ar
 s

tr
es

s 
T

1
2
 (G

P
a)

A
ve

ra
ge

 s
tr

es
s 

T
1

1
 (G

P
a)

A
ve

. m
ar

t.
 v

ol
um

e 
fr

ac
ti

on
 ξ

M

0.05

0.10

0.00 0.10

0.20

0.15 0.20

0.40

0.50

0.30

0.05
-0.60

0.00 0.10

-0.40

0.15 0.20

0.00

0.20

-0.20

0.05

0.10

0.00 0.10

0.20

0.15 0.20

0.40

0.30

0.05

0.001

0.00 0.10

0.002

0.15 0.20

0.004

0.003

0.05

0.10

0.00 0.10

0.20

0.15 0.20

0.40

0.50

0.30

0.05
-0.60

0.00 0.10

-0.40

0.15 0.20

0.00

0.20

-0.20

0.05

0.10

0.00 0.10

0.20

0.15 0.20

0.40

0.30

0.05

0.001

0.00 0.10

0.002

0.15 0.20

0.004

0.003

A
ve

. f
er

ri
ti

c 
m

ic
ro

st
ra

in
 β

F
Sample S4Sample S1

Average amount of shear γ Average amount of shear γ

W5

W2
W3
W4

W1

DNS DNS

DNS DNS

DNS DNS

DNS DNS

W5

W2
W3
W4

W1

W5

W2
W3
W4

W1

W5

W2
W3
W4

W1

W5

W2
W3
W4

W1

W5

W2
W3
W4

W1

W5

W2
W3
W4

W1

W5

W2
W3
W4

W1

(e) (f)

(g) (h)

(c) (d)

(a) (b)

Figure 4.7: Average (macroscopic) Cauchy shear stress T̄12 (a),(b), stress component T̄11 (c),(d), martensitic
volume fraction ξ̄M (e),(f) and microstrain in the ferrite β̄F (g),(h) in samples S1 and S4, respectively, plotted
as a function of the applied amount of shear γ̄ for different sets of weighting factors W1-W5, see Table 4.2.
The dashed lines represent the corresponding DNS responses, obtained from an accurate 30 × 30 × 30 finite
element model.
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DNS response curves reasonably well, see Fig. 4.7b,d,f,h.

The computational times of the numerical simulations presented in Fig. 4.7 are sum-
marized in Table 4.4. All simulations were carried out with the uniform stress initial
increment method, since this initial estimate leads to a good balance between compu-
tational accuracy and efficiency, see Section 4.3.3. It can be observed that the compu-
tational times are the largest for the uniform deformation gradient limit case W1. This
is, because the initial estimate provides a deformation state that is incompatible at the
grain boundaries, as a result of which in W1 the most dominant term, α2J2, representing
kinematic compatibility, see (4.34) and (4.37), initially is relatively far off its minimum.
Consequently, the number of iterations required for finding a converged state that satis-
fies kinematic compatibility is relatively large. Obviously, the application of the uniform
deformation gradient initial increment method will reduce the number of iterations for
set W1, since it matches the kinematic compatibility requirement and also satisfies the
multiscale kinematic constraint given by (4.9). Recall, however, that this initial estimate
may become inaccurate and inefficient under conditions approaching the limit case W5
of a uniform stress in the sample, see Section 4.3.3.

Table 4.4 shows that the computational time decreases when the set of weighting fac-
tors is changed stepwisely from W1 to W4. In accordance with this trend and the discus-
sion presented above, it is somewhat counterintuitive to observe that the computational
time for the uniform stress limit case W5, instead of being the lowest, is significantly
higher than that of sets W2, W3 and W4. This can be explained, however, from the
correction step that projects the uniform stress initial estimate for the deformation gradi-

ent, d̂
s+1

, given by (4.66), within the feasible solution space that satisfies the multiscale
kinematic constraint (4.9), leading to the projected initial deformation gradient increment
ds+1, see (4.52) and (4.55) as well as Fig. 4.3. Accordingly, for step s+1 the starting val-
ues for the local deformation gradients in the minimization algorithmxs+1,0 = xs+ds+1,
see (4.50), do not fully reflect a state of uniform stress. This makes the minimization pro-
cess for reaching the uniform stress limit case W5 computationally more demanding than
for the “intermediate” sets W2, W3 and W4 for which the stress distribution in the sample
is (far) less uniform.

4.3.5 Calibration procedure

From the results presented in Section 4.3.4 it became clear that the weighting factors
α1,α2 and α3 and the sample size play a major role in i) the accuracy and (ii) the com-
putational efficiency of the generalized grain cluster method. If the analyst wants to
adequately account for these two aspects in the calibration of the weighting factors, a
parametric analysis similar to that presented in Section 4.3.4 needs to be performed. By
inspection of Fig. 4.7 it was concluded that the set W2 provides the best agreement with
the DNS response; therefore the parameters αi (with i = 1, 2, 3) of set W2 may be re-
ferred to as the “calibrated weighting factors”. A sensitivity analysis of these weighting
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Weighting CPU time
sample S1
(hours)

CPU time
sample S4
(hours)

W1 (≈ uniform deformation gradient) 13 244

W2 3 39

W3 1.5 16

W4 0.5 7

W5 (→ uniform stress) 4.75 91
Table 4.4: Computational times (sample loaded under simple shear) of GGCM for distinct weighting factors,
using a uniform stress initial increment and two different samples, S1 and S4 (Note: decimals refer to fractions
of 60 minutes).

factors has indicated that differences in GGCM responses become significant only when
the ratio α2/α1 is modified by at least a factor of 2. For example, Table 4.2 illustrates
that the change in α2/α1 in the transition of set W2 to set W3 equals a factor of 4. As
further shown in this table, the method becomes rather insensitive to changes in the ratio
α2/α1 close to the uniform deformation gradient limit case W1 (α2/α1 approaches in-
finity) or the uniform stress limit case W5 (α2/α1 approaches zero). If the experimental
data required for calibration is not readily available or if the analyst wants to “design” a
material starting from its microstructural features, the relation between the microscopic
behavior and the effective macroscopic response may be initially estimated using “de-
fault” weighting factors in the range of set W2.

In principle, the calibration procedure should be carried out with a grain cluster cor-
responding to a macroscopic representative volume element (RVE). Similar to common
procedures used for multiscale simulations based on the finite element method, the min-
imally required size of an RVE for the GGCM may be established from a convergence
analysis of the macroscopic response on grain clusters of increasing size. As mentioned
before, the microstructures S1-S6 presented in Table 4.1 were recently subjected to such
a convergence study, performed with an accurate finite element model of 30 × 30 × 30
elements [84]. The results of this convergence study are here compared to that of a conver-
gence study carried out with the GGCM, by computing the relative difference in macro-
scopic response for the individual samples S1-S6. The macroscopic response is reflected
by two distinct macroscopic variables, which are the main Cauchy shear stress T̄12 and
the martensitic volume fraction ξ̄M. The main shear stress is representative of the whole
grain cluster whereas the martensitic volume fraction reflects the average value in the
secondary (austenitic/martensitic) phase. As indicated byFig. 4.8a, for both macroscopic
variables the relative difference in response is based on an L2 norm, which is taken over
the complete deformation path from γ̄ = 0 to γ̄ = 0.2. For an arbitrary scalar function

97



CHAPTER 4. GENERALIZED GRAIN CLUSTER METHOD FOR MULTISCALE RESPONSE OF MULTIPHASE MATERIALS

ξ̄GGCM
M − ξ̄DNS

M L2

ξ̄DNS
M L2

D
if

fe
re

nc
e 

G
G

C
M

 &
 D

N
S

 r
es

po
ns

es

100 200 300 400 500 600

0.1

0.2

0.3

0.4

0.5

Number of grains

T̄GGCM
12 − T̄DNS

12 L2

T̄ DNS
12 L2

100 200 300 400 500 600

Number of grains

C
P

U
 h

ou
rs

 f
or

 G
G

C
M

 S
am

pl
es

 (
W

2)
 

S1

S2

S3

S5

S4
S6

(a) (b)

S1

S2

S3

S5

S4 S6
50

60

R2 = 0.8743

40

30

20

10

0

Figure 4.8: (a) Relative differences in responses (to simple shear) computed by the GGCM and DNS, plotted
as a function of the total number of grains in the sample. The GGCM computation of the macroscopicCauchy
shear stress T̄12 and martensitic volume fraction ξ̄M was performed using the set of weighting factors W2, see
Table 4.2. (b) Computational times (in CPU hours) of grain clusters S1-S6 subjected to simple shear (γ̄ = 0.2),
together with a linear approximation (dashed line) in terms of the total number of grains in the sample. The
microstructural characteristics of samples S1-S6 are listed in Table 4.1.

f̄ = f̄(γ̄), this norm thus may be expressed as

∥f̄∥L2 =

(
∫ γ̄=0.2

γ̄=0
f̄2dγ̄

)1/2

. (4.71)

The GGCM response to simple shear for all samples S1-S6 was computed using the same
set of weighting factors W2. As shown in Fig. 4.8a, the shear stresses predicted by
GGCM and the accurate finite element-based DNS simulation remain within 5% differ-
ence when the number of grains grows. Furthermore, the difference between the marten-
sitic volume fractions calculated by the GGCM and DNS simulations oscillates around
15% at a larger number of grains. Hence, the predictions by the GGCM and DNS simula-
tions appear to have similar rates of convergence, from which it can be concluded that the
minimal macroscopic RVE for the two methods is identical, i.e., the “minimal” RVE sam-
ple S4 with 200 grains in total. An additional observation from Fig. 4.8a is that, once a
set of weighting parameters has been calibrated for a small sample, it can be subsequently
used for an alternative, larger sample without significantly compromising to the accuracy
of the results. Accordingly, the calibrated weighting factors appear as “objective”, in a
sense that they do not need to be modified when analyzing alternative microstructures.
In addition, by using a sample that is smaller than the minimal RVE sample, this char-
acteristic leads to a quick and straightforward calibration of the weighting factors. For
example, in the present study sample S2 was used for a quick calibration of the weighting
factors W2, see Section 4.3.3, which is composed of about three times fewer grains than
the minimal RVE sample S4, see Table 4.1.

98



4.3. SIMULATIONS OF CLUSTERS OF MULTIPHASE MATERIALS

4.3.6 Performance assessment of GGCM in comparison to DNS

Fig. 4.8b illustrates the overall computational performance of the GGCM by depicting
the CPU time for samples S1-S6 versus the corresponding number of grains in the sam-
ple. All computations were carried out on the same single-processor computer, using the
uniform stress initial increment method and the set of weighting factors W2. The six data
points depicted are approximated by a linear relation (dashed line) up to an R2-value of
0.8743 calculated by a least squares regression. The linear relation between the GGCM
computational time and the total number of grains Ngr in the sample results from solving
the local deformation gradient per grain, whereby the average computational effort per
grain (i.e., the update of the stress, internal variables and tangential stiffness) is nearly

independent of the total number of grains Ngr. In contrast, the computational time asso-
ciated to a finite element calculation typically scales with the power n of the number of
elements, where n > 1. Hence, it depends on the number of grains indirectly by means
of the number of elements per grain required for achieving a converged solution to within
a specific tolerance. Since the finite element models of the samples S1 to S6 use compa-
rable 30× 30× 30 meshes, they are characterized by similar computational times, in the
range of 220± 30 CPU hours.

For an objective evaluation of the computational cost of the GGCM, its computational
time should be compared against that of a finite element model of the same accuracy. As
pointed out in Section 4.3.3, the calibration procedure of the GGCM under simple shear
was efficiently performed using a relatively small sample S2 (64 grains in total), which
led to the set of weighting factors W2. With these weighting factors the shear response
of the ”minimal RVE sample” S4 (200 grains in total) was computed, see Fig. 4.7 in
Section 4.3.4. The accuracy of this GGCM solution will now be quantified with respect
to a reference DNS solution, calculated using a finer finite element mesh of 403 = 64000
hexahedral elements. Subsequently, the computational speed of this GGCM solution will
be compared against that of a DNS solution with the same accuracy. This DNS solution
can be traced back from FEM responses obtained for distinct finite-element meshes of 83,
153, 203 and 303 hexahedral elements (equipped with a reduced integration scheme), by
evaluating their accuracies measured with respect to the reference DNS solution obtained
for the mesh of 403 elements. The accuracies of these distinct FEM solutions are plotted
in Fig. 4.9a by means of the error in the main Cauchy shear stress T̄DNS

12 , measured with
respect to the main Cauchy shear stress T̄12 computed with the accurate FEM model of
403 elements in terms of an L2 norm.

The figure also shows the relative L2 error of the GGCM, which is slightly below
2%. It can be observed that the errors of the FEM calculations range from about 6% for a
coarse 83 element mesh to about 1% for a fine 303 element mesh. By means of straight-
forward interpolation, the FEM model with the same 2% error as the GGCM turns out
to consist of about 243 elements, see Fig. 4.9a. The computational times for the various
FEM discretizations are shown in Fig. 4.9b. For comparison purposes, the simulations
with coarser meshes (83, 153 and 203 elements) were carried out with the same time step
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as applied in the GGCM, namely ∆t = 5s. As already indicated in Section 4.3.1, the time
step used for the 303 element mesh had to be reduced to ∆t = 3.2 s to avoid convergence
problems. The GGCM requires 39 CPU hours to complete a simulation for sample S4. In
contrast, through a simple interpolation it can be estimated that a finite element simulation
with a 243 element mesh requires about 160 CPU hours for completing this task, which
thus is about 4 times more CPU time than the GGCM.

It is worth pointing out that by using the uniform deformation gradient increment
method (Section 4.2.5) instead of the uniform stress increment method (Section 4.2.5),
an additional decrease in the GGCM computational time of about a factor of 2 can be
expected, see Table 4.3, which then makes the GGCM about 8 times faster than the FEM
simulation with 243 elements. Obviously, for accomplishing this result a recalibration of
the weighting factors is required.

The part of the CPU time spent on iteratively solving the mathematical equations of
the GGCM can be globally subdivided into (i) the time required at the local level of an
integration point by the implicit update algorithms (for crystal plasticity and crystallo-
graphic phase transformations) to compute the stress and consistent tangent stiffness in
each grain, and (ii) the time required at the global (system) level by the constrained gra-
dient descent algorithm for minimizing the objective potential reflecting the equilibrium
conditions and kinematic compatibility conditions of all grains. The update algorithms
used at the integration point level are the same as used in the integration points of a finite
element-based DNS, where, for the incremental step size and specific crystallographic
models used in the current simulations, convergence is typically reached within 10 iter-
ations. Note that the GGCM only uses the equivalent of one integration point per grain,
while a representative DNS with a sufficiently fine mesh of 24× 24× 24 elements on av-
erage uses 70 integration points per grain when computing the response for the minimal
RVE size of 200 grains in total (Sample S4, Table 1). The resulting gain in computational
efficiency by the GGCM is partly lost at the system level due to the relatively large (100
to 200) iterations required for convergence of the constrained gradient descent algorithm.
Hence, for further increasing the efficiency of the GGCM it is worthwhile investigating
the application of faster numerical algorithms at the system level. This remains a topic
for future studies. +

4.4 Concluding remarks

The generalized grain cluster method presented in this communication can be used for
the efficient and accurate simulation of advanced multiphase microstructures composed
of a large number of grains of arbitrary shape. It was demonstrated that an accurate cali-
bration of the GGCM can be performed relatively quickly by using samples smaller than
the ”minimal RVE sample”. For samples subjected to simple shear deformation, a com-
parison of the computational results with those obtained from finite element-based direct
numerical simulations indicated that, for a given accuracy, the computational speed of
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12 of sample S4 under simple
shear (γ̄ = 0.2), computed for different FEM mesh sizes M corresponding to 83, 153, 203 and 303 elements in
total. The DNS reference value T̄12 characterizing the relative L2 error was computed using a fine FEM mesh
of 403 elements. For comparison, the relative error for the GGCM simulation of sample S4 (also measured with
respect to the DNS reference value T̄12) is specified by the dashed line. The GGCM simulation uses the set of
weighting factors W2, see Table 4.2. (b) Computational time (in CPU hours) of sample S4 for different mesh
sizes of the DNS. For comparison, the GGCM computational time of sample S4 is indicated by the dashed line.

the GGCM may be up to almost an order of magnitude lower, i.e., a factor of 8. This
motivates the application of the GGCM in multiscale analyses of large-scale engineering
problems, whereby the solution to the macroscale problem is calculated by the finite el-
ement method, and the material response at the microscale is computed by the GGCM.
The coupling between the two methods is rather straightforward; since the GGCM uses
the macroscopic deformation gradient as input for solving the microscale response of a
multiphase material, it can be naturally included in commercial finite element codes as a
user-supplied subroutine at the integration point level, where the effective stress and the
effective constitutive tangent stiffness calculated for the multiphase material are returned
by the GGCM to the finite element model. Obviously, the gain in computational time
compared to a multiscale FE2 approach will be considerable for large-scale engineering
problems, since with the GGCM a relative decrease in computational time up to almost
an order of magnitude is obtained for every macroscopic integration point in the FEM
model.

Due to the overdetermined system of equations that characterizes the GGCM, the col-
lection of possible microscale solutions contains numerous local minima. Accordingly,
under an incremental macroscopic deformation, a stationary point may jump from one
local minimum to another local minimum. These fluctuations may be activated by nu-
merical inhomogeneities such as the value of the incremental step size, the convergence
criterion applied or the initial estimates used in the iterative solution procedure. In the
simulation results presented in this communication, the bifurcation sensitivity of the solu-
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tion became manifest through local variations in some of the responses computed, as ob-
served in the variation studies on the time step (see Fig. 4.4a,b), the initial estimate for the
incremental deformation gradient (see Fig. 4.5a,b,c), and the GGCM weighting factors
(see Fig. 4.7a,c,e). In addition, the oscillatory convergence behavior of microstructural
samples under an increasing number of grains (see Fig. 4.8a) also implies a bifurcation
sensitivity of the response. However, the numerical results in Fig. 4.4, 4.5, 4.7 and 4.8
also show that fluctuations due to bifurcations (substantially) diminish once (the size of)
the numerical parameters and the size of the RVE are adequately determined. A further
reduction of the fluctuations may be obtained by applying numerical regularization tech-
niques in the iterative update algorithm applied at the system level, which is a topic for
future research.
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5
Challenges and future developments

In chapter 2, a thermodynamically-consistent model was developed in order to study the
thermomechanical response of multiphase steels at the mesoscopic length scale. In par-
ticular, the coupling between the entropy and the deformation gradient was rigorously
established under the assumption that the deformation gradient depends on the reversible
entropy (2.12). Through the integration of the equations obtained from the Coleman-Noll
procedure (2.23)1,2, it was shown that the two thermal and mechanical state variables are
not completely independent of each other. In particular, a change in the thermal entropy
necessarily induces a deformation according to the classical thermomechanical coupling
and, conversely, a deformation generates a change in the reversible entropy. When ap-
plying the Coleman-Noll procdure, which is meant to guarantee that the dissipation is
always non-negative, it is routinely assumed that the thermal and mechanical variables
may be modified independently, which, in view of the coupling, is generally not a valid
assumption. In order to enforce the non-negativity of the dissipation under coupled con-
ditions, it was concluded that the entropy should depend on the elastic deformation field.
An open issue would be the experimental verification of this theoretical result for mul-
tiphase steels. A challenging aspect are the relatively small length scales at which the
model parameters would need to be measured, which would require carefully designed
and controlled experiments.

In chapter 3, the FEM package Abaqus was used for the thermomechanical simulations
of microstructural samples. The numerical implementation of the mesoscale thermo-
mechanical model required the use of two user-defined subroutines, namely UMAT and
UMATHT, which may be compiled with the main code. Due to current limitations in the
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code, only hexahedral elements are available with a combination of the aforementioned
subroutines. A consequence of this limitation is that arbitrary grain-like shapes gener-
ated from an arbitrary Voronoi tesselation are difficult to mesh with hexahedral elements,
which meant that grains had to be approximated with irregular boundaries. An improve-
ment would be to create a custom-made tetrahedral element (using the UEL subroutine in
Abaqus) to more accurately reproduce the grains shapes. This, however, requires a care-
ful derivation of the coupled thermomechanical element stiffness and extensive numerical
testing to validate the robustness of the new element.

From the point of view of multiscale analysis, an open issue is the homogenization
of thermomechanical problems. For purely mechanical problems, the scale transition
requires controlling the average value of the deformation gradient in a representative vol-
ume element. The average value of the displacement field is not required since constitutive
relations do not depend on this parameter. However, the scale transition for thermome-
chanical problems requires controlling the average value of the deformation gradient, the
temperature and the temperature gradient. This is due to the fact that constitutive rela-
tions may depend on both the temperature and the temperature gradient. The difficulty
in this approach arises since commonly-used periodic boundary conditions do not allow
to simultaneously control the average temperature and the average temperature gradient.
The challenge is to establish an algorithm and/or special boundary conditions that would
circumvent this problem.
In chapter 4, an algebraic approach, termed the generalized grain cluster method (GGCM),
was developed for estimating the macroscale response of a aggregate of single-crystal
grains. The purpose of this method is to provide a computationally-efficient alternative to
a direct numerical simulation (DNS). It was shown that the GGCM provides results with
equivalent accuracy as the DNS at a significantly lower computational cost. However, to
carry out multiscale simulations on relatively large macroscopic samples (e.g., during a
forming process), it is required to further improve the efficiency of the method. To this
end, two approaches may be explored, namely (i) the improvement of the GGCM and (ii)
the use of an model adaptation multiscale method. For the first point, it is suggested to de-
velop an efficient line search algorithm to find an improved step size in the minimization
algorithm, which would reduce the number of iterations required for convergence. For the
second point, it is advisable to implement a concurrent model adaptation algorithm cou-
pled to a hierarchical mesoscale approach to create an efficient multiscale computational
environment for accurately representing the material behavior in large scale simulations.
An interesting challenge in that context is to develop reliable error indicators from which
a sufficiently accurate and computationally-efficient model can be chosen at various spa-
tial locations. In particular, in regions where the deformation localizes, it is generally
expected that detailed models are required whereas in regions experiencing smaller defor-
mations a coarser model may be used.
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A
A.1 Non-redundant periodic boundary conditions

In order to have a consistent transition between two different scales, the volume average
of the deformation gradient in a given microstructural volume element should be equal to
the prescribed deformation gradient F̄ from the upper scale, i.e.,

⟨F⟩ :=
1

|Ω|

∫

Ω
Fdv = F̄, (A.1)

where |Ω| denotes the volume of the microstructural domain. Since F̄ is constant over the
domain, (A.1) can be written as

∫

Ω
∇
(

u−
(

F̄− I
)

x
)

dv = 0, (A.2)

with u being the displacement field, I the identity tensor and x a material point in the
reference configuration. A straightforward application of the divergence theorem results
in the following expression:

∫

∂Ω
n⊗

(

u−
(

F̄− I
)

x
)

dv = 0, (A.3)

where ∂Ω is the external surface of the domain and n is the outward unit normal vector.
Henceforth, it is assumed that the microstructural domain Ω is a cube of edge length h
and the edges are aligned with a global basis ei, i = 1, 2, 3, as shown in Figure Fig. A.1.
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Figure A.1: Labeling convention for (a) external faces and corners and (b) edges of the computational domain.

Sufficient conditions for (A.1) to hold can be inferred from (A.3) in terms of the relative
displacements of parallel faces of the cube, i.e.,

uF1 − uF2 = a1 :=
(

F̄− I
)

he1,

uF3 − uF4 = a2 :=
(

F̄− I
)

he2,

uF5 − uF6 = a3 :=
(

F̄− I
)

he3,

(A.4)

where uFi, with i = 1, . . . , 6, denote the surface displacement for points on the i-th
surface of the cube (see Figure A.1). The vectors a1, a2 and a3, defined in (A.4), are
assumed to be known. While equations (A.4) are sufficient for satisfying the periodic-
ity condition on the external boundary of the domain, this system of equations contains
redundant information for points on the external corners and edges of the cube, which
may potentially cause problems in numerical implementations. To avoid this redundancy,
one has to establish the minimum number of independent relations (corner-to-corner and
edge-to-edge relations) that preserve periodicity.

For the corner points, there are twelve relations that can be obtained from (A.4),
namely

uC5 − uC1 = a1,

uC6 − uC5 = a2,

uC7 − uC6 = a3,

...

(A.5)

with other relations between corner points obtained in a similar fashion. In (A.5), uCi,
with i = 1, . . . , 8, denotes the displacement of the i-th corner point. This system of
equations has a rank deficiency of five (only seven independent corner-to-corner relations
can be described). A non-redundant set of relations can be established by solving (A.5)
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in terms of the displacement of a given corner point. Choosing corner C1 as a reference
point yields the following solution:

uC2 = uC1 + a2,

uC3 = uC1 + a2 + a3,

uC4 = uC1 + a3,

uC5 = uC1 + a1,

uC6 = uC1 + a1 + a2,

uC7 = uC1 + a1 + a2 + a3,

uC8 = uC1 + a1 + a3.

(A.6)

Observe that the value of the displacement uC1 of corner C1 can be chosen arbitrarily as
the material response is invariant under a rigid body translation. Consequently, choosing
uC1 = 0, the displacement of all corner points can be obtained from (A.6).

For the edges of the cube, equations (A.4) are used again to write twelve displacement
constraints between periodic edges. The resulting system has a rank deficiency of three
(only nine independent edge-to-edge relations can be described). One possible solution
is to solve the system in terms of uE7, uE8 and uE9, the displacement fields of points
along edges E7, E8 and E9, respectively (see Figure A.1). This yields the following set
of relations for the edges of the cube:

uE1 = uE7 + a1 − a3,

uE2 = uE8 + a2 − a3,

uE3 = uE7 − a3,

uE4 = uE8 − a3,

uE5 = uE7 + a1,

uE6 = uE8 + a2,

uE10 = uE9 + a2,

uE11 = uE9 + a2 − a1,

uE12 = uE9 − a1.

(A.7)

In summary, a set of non-redundant periodic boundary conditions may be prescribed using
Equations (A.6) to fully specify the displacements of the corner points, Equations (A.7)
to constrain the displacements of points on the edges (excluding corner points) and finally
Equations (A.4) to constrain the displacements of points on the external faces (excluding
the edges).
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B
B.1 Trace of the curl of the composition of two tensor-

valued functions

To derive the weak formulation of the compatibility equation, it is required to integrate
by parts the curl of the composition of two tensor-valued functions. A useful formula for
this purpose is derived in this appendix. Let G = G(x) and F = F(x) be two tensor-
valued functions of a vector x. The cartesian components of these functions are denoted
as Gij and Fij , with i, j = 1, 2, 3. Let tr be the trace operator and ∇x × (·) be the curl
with respect to x. Consider the term tr (∇x × (GF)), which can be written in cartesian
components as

tr (∇x × (GF)) −→ εkij (GmnFnj),i δkm, (B.1)

where (·)·,i denotes partial differention with respect to xi and implicit summation is as-
sumed on repeated indices (see also Section 4.1.3 for additional notation). This term can
be expanded as

εkij (GmnFnj),i δkm = εkij (Gmn,iFnj +GmnFnj,i) δkm

= εmijGmn,iFnj + εmijGmnFnj,i .
(B.2)

Using the properties of the alternator (permutation) tensor, the first term on the right hand
side of (B.2) can be written as

εmijGmn,iFnj = −εjimGT
nm,iFnj ,
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which can be expressed in direct notation as

− εjimGT
nm,iFnj −→ −

(

∇x ×GT
)

· FT . (B.3)

The second term on the right hand side of (B.2) can be expressed in direct notation as

εmijGmnFnj,i −→ (∇x × F) ·G . (B.4)

Combining (B.1)-(B.4) yields the following relation

tr (∇x × (GF)) = −
(

∇x ×GT
)

·FT + (∇x × F) ·G . (B.5)

B.2 Averaging matrix and pseudoinverse.

The cluster’s averaging operator L defined in (4.42) has the following explicit form:

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

θ1 0 0 0 0 0 0 0 0 · · · θNgr 0 0 0 0 0 0 0 0
0 θ1 0 0 0 0 0 0 0 · · · 0 θNgr 0 0 0 0 0 0 0
0 0 θ1 0 0 0 0 0 0 · · · 0 0 θNgr 0 0 0 0 0 0
0 0 0 θ1 0 0 0 0 0 · · · 0 0 0 θNgr 0 0 0 0 0
0 0 0 0 θ1 0 0 0 0 · · · 0 0 0 0 θNgr 0 0 0 0
0 0 0 0 0 θ1 0 0 0 · · · 0 0 0 0 0 θNgr 0 0 0
0 0 0 0 0 0 θ1 0 0 · · · 0 0 0 0 0 0 θNgr 0 0
0 0 0 0 0 0 0 θ1 0 · · · 0 0 0 0 0 0 0 θNgr 0
0 0 0 0 0 0 0 0 θ1 · · · 0 0 0 0 0 0 0 0 θNgr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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The right pseudo-inverse L+ defined in (4.53) can be expressed explicitly as

L+ =
1

θ̂2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

θ1 0 0 0 0 0 0 0 0
0 θ1 0 0 0 0 0 0 0
0 0 θ1 0 0 0 0 0 0
0 0 0 θ1 0 0 0 0 0
0 0 0 0 θ1 0 0 0 0
0 0 0 0 0 θ1 0 0 0
0 0 0 0 0 0 θ1 0 0
0 0 0 0 0 0 0 θ1 0
0 0 0 0 0 0 0 0 θ1
...

...
...

...
...

...
...

...
...

θNgr 0 0 0 0 0 0 0 0
0 θNgr 0 0 0 0 0 0 0
0 0 θNgr 0 0 0 0 0 0
0 0 0 θNgr 0 0 0 0 0
0 0 0 0 θNgr 0 0 0 0
0 0 0 0 0 θNgr 0 0 0
0 0 0 0 0 0 θNgr 0 0
0 0 0 0 0 0 0 θNgr 0
0 0 0 0 0 0 0 0 θNgr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where θ̂ is given by (4.45)2.
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surement of the nanohardness of the constitutive phases of trip-assisted multiphase
steels. Mat Sci Eng A-Struct, 328(1):26–32, 2002.

[22] H Gao, Y Huang, WD Nix, and JW Hutchinson. Mechanism-based strain gradient
plasticity - I. Theory. J Mech Phys Solids, 47:1239–1263, 1999.

[23] RA Grange. Effect of microstructural banding in steel. Metall Trans B, 2(2):417–
426, 1971.

114



BIBLIOGRAPHY

[24] ME Gurtin. A gradient theory of single-crystal viscoplasticity that accounts for
geometrically necessary dislocations. J Mech Phys Solids, 50(1):5–32, 2002.

[25] Z Hashin and S Shtrikman. A variational approach to the theory of the elastic be-
haviour of multiphase materials. J Mech Phys Solids, 11:127–140, 1963.

[26] R Heinen, K Hackl, W Windl, and MF-X Wagner. Microstructural evolution dur-
ing multiaxial deformation of pseudoelastic NiTi studied by first-principles-based
micromechanical modeling. Acta Mater, 57:3856–3867, 2009.

[27] R Hill. Continuum micromechanics of elastoplastic polycrystals. J Mech Phys

Solids, 13:89–101, 1965.

[28] A Huerta, A Rodrı́guez-Ferran, P Dı́ez, and J Sarrate. Adaptive finite element strate-
gies based on error assessment. Int J Numer Meth Eng, 1803.

[29] JW Hutchinson. Bounds and self-consistent estimates for creep of polycrystalline
materials. P Roy Soc Lond A Mat, 348:101–127, 1976.

[30] AV Idesman, VI Levitas, and E Stein. Elastoplastic materials with martensitic phase
transition and twinning at finite strains: numerical solution with the finite element
method. Comput Method Appl M, 173(1-2):71–98, 1999.

[31] PJ Jacques. On the control of the interactions between phase transformations and

mechanical properties in finely-grained multiphase alloys: A way for sustainable

development in materials science. Thesis for agrégé de lénseignement supérieur,
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