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Abstract

This paper presents the design and development of an Electrical Discharge Machining (EDM) device
aimed at achieving precise hole creation in diverse metal materials. The EDM device was conceptu-
alized and constructed based on specific requirements identified by the group. The design process
encompassed four main stages: dielectric fluid selection, electrode design, control system develop-
ment and power supply.

In the dielectric fluid stage, the importance and criteria for selecting an appropriate fluid were discussed,
resulting in the choice of distilled water for its superior dielectric properties. The electrode design
stage followed a similar methodology, leading to the selection of a copper rod as the optimal electrode
material.

The control system stage detailed the development of an open-loop, manual, and closed-loop control
system, emphasizing the utilization of Klipper software for precise electrode control.

The power supply section outlined three primary circuits: the power source, power amplification circuit,
and square wave generator circuit. Detailed schematics, component justifications, and optimization
values for key parameters were provided to enhance power supply efficiency.

Experimental evaluation demonstrated the capability of the EDM device to effectively create holes
in various metals using an open-loop control system. Additional experiments focused on parameter
variations within the power supply setup further illustrated their impact on machining performance.

The discussion highlights the challenges encountered throughout the project, particularly the constraints
imposed by limited time, which prevented the realization of all initially set requirements. Despite these
challenges, the EDM device successfully met most of the specified objectives, showcasing promising
results for future refinements and applications in precision machining.
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1
Introduction

In this chapter, key concepts used in this project will be presented. After this, the goal of the entire
project will be defined. The division of the project into subgroups will be explained, and the goal of the
subgroup of this thesis will be specified. Lastly, the structure of this thesis will be described.

1.1. Principle of Electrical Discharge Machining
Electrical Discharge Machining (EDM) is a widely used non-conventional material removal process that
uses electrical energy to generate controlled sparks between the tool and a workpiece. This process
mainly relies on thermal energy produced by the discharge sparks to erode material from the workpiece,
creating a replica of the tool’s form on the workpiece. An EDM is particularly effective for machining
hard-to-machine material and intricate shapes.

Fundemental Mechanism
EDM operates on the principle of thermal erosion, where a series of high-frequency electrical dis-
charges occur between the tool and the workpiece. The tool, typically the cathode, and the workpiece,
the anode, are both immersed in a dielectric medium. A potential difference is applied between them,
generating an electric field across the gap. This concept is visualised in figure 1.1. As the tool ap-
proaches the workpiece, dielectric breakdown occurs, forming a plasma channel.

Figure 1.1: Basic concept of Electric Discharge Machining [2].

Dielectric Medium and Plasma Channel
The dielectric medium, usually a liquid with high breakdown strength, low viscosity, and effective cooling
capabilities, plays a crucial role in the EDM process [3]. When the electrical field is established, free
electrons are accelerated from the tool towards the workpiece, causing collisions and ionization of the
dielectric molecules. This ionization creates a plasma channel with low electrical resistance, allowing

1



1.2. The Goal of the Project 2

a significant current to flow between the tool and the workpiece [4]. This sudden flow of electrons and
ions is visually observed as a spark.

Thermal Energy and Material Removal
The kinetic energy of the accelerated electrons and ions is converted into thermal energy upon impact
with the workpiece and tool surface. This intense localized heat flux, which can exceed temperatures
of 10.000 °C, results in the melting and partial vaporization of the workpiece material [4]. The molten
material is then expelled from the crater by the dielectric fluid, with some solidifying as a recast layer.
the size of the crater, and consequently the material removal rate, is controlled by the discharge energy,
which can be adjusted by varying the discharge current and duration [3].

Advantages and Applications
One key advantage of using an EDM is the lack of mechanical contact between the tool and workpiece,
eliminating issues related to mechanical stresses, chatter, and vibration during machining. This makes
it particularly suitable for machining difficult-to-machinematerials and high-strength, temperature-resistant
alloys. The process is extensively used to produce complex shapes, such as injection moulds, punch
dies, and intricate cavities in hard materials [4].

Summary
In summary, EDM is a highly effective and versatile machining process that uses controlled electrical
discharges to erode material from a workpiece. Its ability to machine complex shapes in hard materials
with high precision and surface finish makes it an essential technique in modern manufacturing. The
principle of EDM lies in its thermal erosion mechanism, facilitated by forming a plasma channel in a
dielectric medium, resulting in localized melting and material removal.

1.2. The Goal of the Project
Current drilling technologies often struggle to create precise holes in a wide range of metals, particu-
larly when high accuracy is required. Traditional methods can be effective in some contexts, but they
often fall short when dealing with harder or more delicate materials, leading to inaccuracies and po-
tential damage to the workpiece. In industrial applications, such imperfections can result in significant
problems, including increased material waste and higher production costs. Additionally, precise hole
creation is critical in aerospace, medical devices, and precision engineering, where minor deviations
can have substantial repercussions.

To address these challenges, our project aims to develop a method for creating precise holes in various
metals using advanced EDM techniques. By leveraging the unique properties of EDM, which allows for
non-contact material removal and high precision, we seek to achieve greater accuracy and consistency
compared to the drilling process.

The goal of this project is to utilize the EDM process to produce highly accurate holes in a range of
metals, including those that are difficult to machine using conventional methods. This involves optimiz-
ing the EDM parameters and ensuring the process can be applied to different metal types with minimal
adjustment. By focusing on these areas, we aim to enhance the overall efficiency and reliability of the
drilling process.

Ultimately, our project aims to establish a robust and versatile drilling method that can be applied across
multiple industries, providing a reliable solution for creating precise holes in metals. This method’s suc-
cessful implementation will improve manufacturing accuracy and reduce material waste and production
costs, leading to significant advancements in various high-precision fields.
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1.3. Problem Definition
Conventional drilling methods for creating holes in metals face numerous challenges. The most notable
issue is the significant pressure thesemethods exert on themetals, which complicatesmachining fragile
metal shapes, such as making holes in thin surfaces with limited drilling space. To address these
problems, the group will utilize a non-conventional technology called Electrical Discharge Machining
(EDM) to create an EDM device. This EDM device will enable precise hole creation in various metals
and metal surfaces, possibly achieving an exceptional precision in the order of micrometers [5]. Thus,
the group aims to develop an EDM device to overcome the limitations of traditional drilling methods.

Multiple factors must be considered when creating the EDM device. The most crucial aspect is that the
group has only about nine weeks to study the technology and build the EDM device. To achieve the
goal, the group will be divided into subgroups. This paper will focus on the ”Electrode, Dielectric Fluid,
and Structural Design” subgroup. As the name suggests, this subgroup will focus on selecting the most
optimal electrode and dielectric fluid. Most of the effort will be dedicated to the structural design, which
includes setting up the EDM device and developing its mechanical movement system. The subgroup
will also pay attention to the power supply needed to conduct experiments that test the device.

The EDM device has numerous design requirements, detailed in Chapter 2. The most significant limita-
tions are the availability of materials at the university and the cost of certain equipment needed to create
the device. These challenges have been addressed by selecting smart designs that utilize resources
available at the university.

The EDM device’s performance must be measured throughout the project. Many studies on EDM have
evaluated performance using Material Removal Rate (MRR) and Tool Wear Rate (TWR). Since this
paper focuses on creating holes, the primary performance measure is the time required to penetrate
the material. Another key performance measure is the surface finish of the metal, which indicates the
precision of the hole created.

In summary, conventional drilling methods face significant challenges, particularly in applying exces-
sive pressure onmetals, complicating the machining of delicate shapes and thin surfaces. To overcome
these hurdles, the group is adopting Electrical Discharge Machining (EDM) technology to develop a pre-
cise EDM device with exceptional precision tolerance. Despite a tight nine-week timeline, the group’s
efforts are organized into subgroups, focusing on crucial aspects such as electrode and dielectric fluid
selection, structural design, and power supply considerations. Material availability and cost constraints
are carefully managed to ensure project feasibility. Performance measurement throughout the project
will center on time efficiency in material penetration and the quality of surface finishing, key indicators
of the EDM device’s effectiveness in surpassing conventional drilling limitations.

1.4. Structure of Thesis
The thesis is structured as follows. Chapter 2 outlines the program of requirements for this project.
Chapter 3 details the design for this subgroup, including an overview and a detailed description. Chap-
ter 4 presents the evaluation of the design through experiments and their results. Chapter 5 discusses
the project’s progression. Finally, Chapter 6 provides the thesis conclusion and offers recommenda-
tions for future work.



2
Program of Requirements

The aim of this thesis is to develop a method for creating precise holes in a variety of metals, including
but not limited to steel, aluminium, titanium, and their alloys. This will be achieved by designing an Elec-
trical DischargeMachine (EDM) capable of producing accurate holes. Given the numerous EDMdesign
variations, specific requirements have been established for the overall system. The requirements are
split into two sections. The first section covers the technical specifications for the electrode, dielectric
fluid, control system, accuracy and precision, machine design, and power supply. This is crucial for
the design segment of the thesis since the components must be designed according to these specifica-
tions. The second section addresses operational requirements, concentrating on the core functionality
of the entire EDM device and the necessary safety features for its operation. The requirements are as
follows:

1. Technical Requirements

a) Electrode Specifications

• The electrode must be readily accessible; therefore, rare materials should not be utilized
as electrodes.

• The electrode size should be between 1 and 3 mm.

b) Dielectric Fluid Specification

• The dielectric fluid must not have a flash point (to avoid fire hazards).

• The dielectric fluid must not emit toxic fumes.

• The dielectric fluid should have a low viscosity to ensure good flushing of debris.

• The dielectric fluid should be electrically non-conductive to avoid short circuits.

c) Control system

• The control system must have the possibility of manual control.

• The control system shall have the possibility of open-loop control.

• The control system should have the possibility of closed-loop control.

d) Accuracy and Precision

• The system must achieve an accuracy of ±0.005 mm.

4



5

e) Machine Design

• The machine design must be compact. It should be suitable for placement on a desk or
similar surface.

• The machine design shall include flushing.

• The machine design should be able to operate along all (x, y, z) dimensions.

f) Power Supply

• The power supply must use a limited power source of 100 [W].

• The power supply must be capable of delivering a variable peak current between 0 to 15
[A] to the workpiece.

• The power supply shall be capable of delivering a variable voltage between 40 and 150
[V] to the workpiece.

• The power supply should be capable of delivering a spark frequency range of 1 to 50
[kHz].

• The power supply should be able to sense the gap voltage between the tool and the
workpiece.

• The power supply should preferably quantify the duration of the voltage gap between the
tool and the workpiece.

2. Operational Requirements

a) Core Functionality

• The machine must absolutely make a hole inside a workpiece.

• The system should exhibit a minimum material removal rate (MRR) of 1.0 mm3/min in Alu-
minium.

b) Safety Features

• The machine shall have an emergency stop button that automatically shuts down all electric-
ity through the machine.

• The machine should have proper shielding to protect the operator from sparks and dielectric
splashes.

• The machine should have built-in sensors to detect any malfunction and automatically stop
the operation.



3
Design Description

3.1. Overview
The most general overview of the EDM device is presented in Figure 3.1. The mechanical part of the
device consists of the electrode, dielectric fluid, 3D printer, flushing system, and general (3D-printable)
parts, which make the operation of the device simple and stable. The goal of the mechanical structure
is to support the EDM operation and allow for easy and precise processing of conductive materials. The
controller is responsible for the movement of the electrode and workpiece in the x-, y-, and z-direction.
The EDM device is primarily controlled by the use of an open-loop system, but a closed-loop system
is also investigated. The sensing, which is part of the closed-loop system, is done primarily by our
colleagues from the power supply subgroup [1]. In the case of a closed-loop system, the input of the
controller is the voltage wave that is applied across the electrode and workpiece. Based on the wave-
form, the controller can determine whether a short circuit is present and adjust the movements of the
3D printer accordingly.
The required voltage and current waveforms are supplied by the power supply. The power supply pro-
vides a square voltage wave of which the duty cycle, frequency, voltage level and short circuit current
are adjustable. This allows for the possibility to optimise these parameters so that optimal results can
be obtained for different workpieces, dielectric fluids, and electrode materials.

Figure 3.1: General diagram of EDM machine.

6
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3.2. Mechanics
3.2.1. Overview
The mechanical component of the EDM device is crucial for maintaining stable operation and achieving
optimal performance. This section initially presents a comparative analysis of the dielectric medium and
electrode. Following that, the key features of the 3D printer are examined. Additionally, the design of
a 3D-printable electrode mount is briefly outlined, along with a brief discussion on the flushing system
used in the EDM machine. A comprehensive view of how these elements are integrated into a single
setup is provided in Figure 3.2. The NC stands for numerical control, where the 3D printer (its motor)
and closed-loop control (Raspberry Pi Pico and Raspberry Pi 5) are included.

(a) Schematic of the EDM setup [2].

(b) Real-life implementation of the EDM setup.

Figure 3.2: The EDM setup.

3.2.2. Dielectric Fluid
Dielectrics have a major influence on the performance of an EDM and should, therefore, be chosen
carefully. Under normal conditions, the dielectric material acts as an insulator but ionizes into positive
and negative ions when a high electric field is applied. This process causes a bridge to form between
the electrode and workpiece for current to flow. The heat formed in this process vaporizes part of the
workpiece and electrode. A carefully chosen dielectric fluid enhances cooling, ensures effective debris
flushing from the spark gap, and influences overall machining efficiency [6]. In this section, different
dielectrics are compared in different aspects, such as time, availability, cost, and performance.
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Hydrocarbon oils
Hydrocarbon oils, such as transformer oil, mineral oil and kerosene, are themost widely used dielectrics
today in the case of die-sinking EDM [7]. Especially kerosene has been used extensively in EDM due to
its high dielectric strength, low conductivity, and high breakdown strength [8]. Other EDM types, such
as wire EDM, micro-EDM and fast hole drilling EDM, mostly work with deionized water [9]. Accord-
ing to [10], hydrocarbon oils are preferred over water-based dielectrics in terms of performance. The
disadvantages of hydrocarbon oils are risks of fire hazards and the release of toxic fumes [8], making
them one of the main sources of pollution according to [9]. Another drawback is that flushing using
jets, which have been found to increase performance, cannot be used due to an increased risk of fire
hazards [9].

Biodiesel
Biodiesel has the same characteristics as conventional dielectrics, but less harmful substances are emit-
ted during processing, and the waste is processed more easily [11]. P. Sadagopan and B. Moulipras-
anth [12] investigated the use of biodiesel as dielectric against kerosene and transformer oil. It was
found that a higher MRR and lower EWR can be achieved with biodiesel. The same conclusion was
found by P. S. Ng et al. [11] when using canola and sunflower biodiesel.

Water-based
A. Erden and D. Temel [13] investigated the performance of tap water, distilled water, salted water, and
kerosene. They found that only distilled water performed reasonably well if a brass tool was used. For
distilled water, smoother surfaces were obtained, and fire hazards and logistical problems were elimi-
nated. On the other hand, S. Tariq Jilani and P.C. Pandey [14] found that better operating performance
could be achieved under specific circumstances with tap water. They suggested that machining insta-
bility and short circuits may be the cause of the lower performance achieved by Erden and Temel [13].
S.Tariq Jilani and P.C. Pandey [14] also found that the tool wear rate was not that different between
distilled water and tap water. They found that the use of tap water is preferred at low currents and low
pulse duration. A pulse duration of 100 µs was found to be optimal.

Current dielectric research
Even higher performance can be achieved by using powders in water-based dielectrics [9]. This is out-
side of the scope of this report. Other dielectrics, such as gases, are also being investigated. Gaseous
dielectrics can have advantages, such as low tool wear and no environmental harm, for certain EDM op-
erations. However, it still faces big challenges due to arcing and debris reattachment on the workpiece
[7]. This technique should first be optimised more to be economically viable [9].

Selection of dielectric
The dielectric medium in an Electrical Discharge Machining (EDM) setup should possess several key
characteristics that make it suitable for usage. Dielectric strength is crucial as it determines the maxi-
mum electric field a medium can withstand before breakdown occurs, thus affecting the time after which
a breakdown happens when a potential is applied between the electrode and the workpiece [15]. Un-
der normal conditions, a dielectric should exhibit insulating behaviour. Other important characteristics
include a high flash point, good wetting behaviour, appropriate viscosity, and thermal conductivity [16].

The advantages and disadvantages of various dielectrics are summarized in Table 3.2 and Table 3.3.
Based on easy accessibility, low cost, and environmentally friendly properties, the most suitable dielec-
tric for the EDM device is deionized water. Additionally, the literature supports the potential of deionized
water, and its properties can be enhanced by adding various materials, such as powders. In reality,
distilled water was used as it is almost identical to deionized water and was obtainable more easily.

Table 3.1 compares the material properties of deionized water to kerosene. The state of a dielectric
can either be liquid or gas, affecting its application and performance. Dielectric strength measures the
maximum electric field a material can withstand without breaking down, with higher values indicating
better insulation. The dielectric constant shows a material’s ability to store electrical energy, whereas
higher constants imply better energy storage. Electric conductivity reflects how easily electric current
can pass through amaterial, with lower values indicating better insulation. Viscosity, both kinematic and
dynamic, influences the flow and cooling characteristics of the dielectric, with lower viscosity promoting
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better flow and cooling. Specific heat measures the heat required to raise the material’s temperature,
with higher specific heat signifying better heat absorption. Thermal conductivity indicates how well a
material conducts heat, where higher values mean better heat dissipation. Density affects the weight
and buoyancy of the dielectric, making different densities suitable for different applications. Lastly, the
boiling point is the temperature at which a material changes from liquid to gas, where higher boiling
points prevent vaporization during EDM.

Property Hydrocarbon oil (kerosene) [17] [18] Deionized Water [17]
State Liquid Liquid

Dielectric Strength (MV/m) 14-22 13
Dielectric Constant 1.8 80.4

Electric Conductivity (S/cm) 0.015 1.33
Kinematic Viscosity (cm/s) 1.16 ·10−2 0.852 · 10−2

Dynamic viscosity (g/ms) 1.64 0.92
Specific Heat (J/kgC) 2100 4200

Thermal Conductivity (W/mk) 0.149 0.606
Density (kg/m) 860 1000
Boiling Point (C) 200 100

Table 3.1: Overview of physical properties for dielectrics used in EDM.

Advantages
Hydrocarbon

Disadvantages
Hydrocarbon

Advantages
Deionized water

Disadvantages
Deionized water

General good
performance Toxic fumes Environment-friendly General lower

performance

Risk of fire hazards Good performance
for specific cases

Energy need
for deionization

Polluted material
waste Easily obtainable

Table 3.2: Advantages and disadvantages of Hydrocarbon and Deionized water

Advantages
Tap water

Disadvantages
Tap water

Advantages
Biodiesel

Disadvantages
Biodiesel

Low cost General low
performance Good performance More costly

than water

Easily obtainable Less convienent
to work with

Table 3.3: Advantages and disadvantages of tap water and biodiesel

3.2.3. Electrode
Functionality of Electrode for Electrical Discharge Machining (EDM)
The functionality of an electrode in Electrical Discharge Machining (EDM) is to serve as a tool that helps
create the desired shape or feature on the workpiece through the process of electrical discharge. The
electrode is typically made of conductive materials such as copper, graphite, or tungsten, and it is used
to generate sparks that erode the workpiece material. The electrode is connected to a power supply
that generates electrical pulses, creating a spark gap between the electrode and the workpiece. As the
sparks discharge, material is removed from the workpiece, allowing for precise machining and shaping.
The choice of electrode material and design plays a crucial role in the efficiency and accuracy of the
EDM process.
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Selection of an electrode for Electrical Discharge Machining (EDM)
Several decisions need to be made to select the optimal electrode for the project. Initially, it is important
to consider the necessary properties of an electrode to perform effectively in Electrical Discharge Ma-
chining (EDM). The two key properties of the electrode material are a high melting point and electrical
conductivity. High electrical conductivity is vital for efficient material removal in EDM. Additionally, the
electrode’s high melting point is necessary to withstand the intense heat produced during EDM.

Other advantageous properties of the electrode include high thermal conductivity, increased density
(to reduce tool wear), ease of manufacturing, and cost-effectiveness. High thermal conductivity plays
a crucial role in Electrical Discharge Machining (EDM) by aiding in the dissipation of heat generated
during the process. EDM involves the use of electrical discharges to eliminate material from a work-
piece, resulting in significant heat production. If the material utilized in EDM possesses high thermal
conductivity, it can effectively transfer this heat away from the cutting area, preventing overheating and
ensuring consistent and precise machining. This leads to enhanced machining efficiency, improved
surface finish, and prolonged tool life. On the other hand, increased density is vital for EDM as it can
enhance material removal rates and machining effectiveness. Materials with higher density typically
exhibit superior mechanical properties, including increased strength and wear resistance. This enables
more efficient material removal during the EDM process, leading to quicker machining speeds and re-
duced tool wear. Moreover, materials with higher density often boast better thermal conductivity, aiding
in the dissipation of heat generated during EDM and resulting in more consistent and accurate machin-
ing outcomes.

After reviewing multiple research papers on Electrical Discharge Machining (EDM), it was found that
a small number of electrodes, namely Copper, Tungsten, Aluminium, and Graphite, were frequently
discussed and utilized [19]–[24]. As a result, these electrodes will be examined in this thesis for po-
tential use in the final EDM process. The key characteristics influencing the performance of Electrical
Discharge Machining (EDM) are outlined in Table 3.4.

Electrical conductivity at 20°
(S/m)

Liquefaction point
(°C)

Heat conductivity
((W/m) ∗K)

Density
(kg/m3)

Copper 5.96×107 1084 398 8960
Brass 1.67×107 930 111 8500

Tungsten 1.79×107 3420 164 19250
Graphite 2 to 3×105 3600 168 641

Table 3.4: Properties of candidates for the electrode.

It is also beneficial to examine the output parameters of the EDM. This can aid in selecting the most
suitable electrode. According to various research papers, the two key performance parameters are
Material Removal Rate (MRR) and Tool Wear Rate (TWR) [19], [20], [22]–[24]. These performance
metrics are significantly influenced by the input parameters of the EDM. The Material Removal Rate
is particularly influenced by the peak current input parameter, followed by pulse duration [23]. On
the other hand, the Tool Wear Rate is greatly impacted by the properties of the electrode. Since the
outcomes are closely tied to input parameters, the pros and cons of each electrode can be found in
research papers. These pros and cons of each electrode are depicted in tables 3.5 and 3.6.

Upon evaluating the advantages and disadvantages of various electrodes, it is clear that copper and
graphite are the most effective choices. This trend is also observed in modern EDM practices within
large corporations [25]. Ultimately, the choice between graphite and copper electrodes should be de-
termined by the specific needs of the EDM operation, considering factors such as workpiece material,
desired machining outcomes, cost, dielectric fluid selection, and overall machining efficiency. The
choice of graphite is mainly gone because of the non-compatibility between the graphite and dielectric
fluid. Consequently, copper emerges as the best electrode option for this project.

Electrode Shape Design Die-sinking EDM can form various shapes, including those intended to be
imprinted onto the workpiece. The project aims to create a hole in a workpiece with a circular shape
selected as specified in the requirements. Research into various EDM devices revealed that drilling
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Advantages
Copper

Disadvantages
Copper

Advantages
Graphite

Disadvantages
Graphite

Good wear resistance Low wear resistance
compared to Graphite

Cheap Material for long
duration EDM applications Vulnerable to breakage

Highly Conductive Expensive Material for long
duration EDM applications Good wear resistance Low Conductivity

Strong metal Limited Machining Speed Withstand high temperatures Limited compatibility with
certain dielectric fluids

Resistance to Corrosion Limited Hardness Environmentally friendly Exhibit dimensional changes
under high heat

High MMR
Large Craters Poor surface finish Easy to handle X

Table 3.5: Advantages and disadvantages of Copper and Graphite.

Advantages
Tungsten

Disadvantages
Tungsten

Advantages
Aluminium

Disadvantages
Aluminium

Good Wear Rate High amount of Brittleness High MMR
Large Craters Bad wear resistance

Highly Conductive Difficult to Machine X Poor surface finish
Resistant to Erosion Difficulties with Fine Detailing X Low melting point

Good Surface Finish High Initial Costs X Chemical reactive with
the dielectric fluid

Consistent in Performance Poor Combability with
certain EDM Machines X challenging to machine

to precise shapes

Table 3.6: Advantages and disadvantages of Tungsten and Aluminium.

EDM shapes was the most effective method. This shape, illustrated in Figure 3.3a, features a hollow
center in the electrode to facilitate the flushing process, where dielectric fluid is injected through the
electrode’s hole. This electrode shape requires a powerful pump, which was neither readily available
nor cost-effective. Therefore, it was opted for a cylindrical electrode taken from copper wires. A possi-
bility is to sharpen the electrode as depicted in Figure 3.3b. The sharp point at the end of the electrode
is essential for localised energy concentration. The sharp point concentrates electrical discharges in a
small area, leading to more efficient energy use and faster material removal in that localized region. In
the immediate area of the point, the MRR can be higher due to the concentrated energy [26]. Eventu-
ally, a flat-bottomed electrode was used, because a pointy electrode would loose its effect after erosion
from machining.

(a) The drilling electrode shape design [27]. (b) The selected electrode shape design [28].

Figure 3.3: The electrode shape designs that have been considered.
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3.2.4. 3D printer
The 3D printer used is the Ender3 Pro from Creality. It uses the 32-bit Creality 4.2.2 board with a
GD32F103 chip and NEMA 17 stepper motors to facilitate movement in the x-, y-, and z directions.
Movement in the x—and z-direction is achieved by movement of the electrode, while movement of the
printer bed controls movement in the y-direction.

The steppermotor rotates with a fixed angle for each received pulse, called the step angle [29]. The step
angle for NEMA 17 stepper motors is 1.8◦ [30]. The addition of a lead screw and the possibility of micro-
stepping, which is a feature of stepper motors, provide extra precision in the z-direction. The precision
of the movement of the 3D printer, particularly in the z-direction, is of great importance because the
spark gap between the electrode and the workpiece should be narrow.

The minimum theoretical step size in the z-axis is calculated using Equation 3.1 and follows the princi-
ples of stepper motors.

step size =
lead screw pitch

steps per revolution ·microsteps
(3.1)

For the Ender3 Pro, the lead screw pitch is 8 [mm] [31], the steps per revolution are 360◦/1.8◦ = 200,
and the amount of microsteps is equal to 16 [32]. Therefore, the theoretical minimum step size in the
z-axis is 0.0025 [mm], which is sufficiently accurate. The minimum x- and y-axis step size is 0.0125
[mm].

For the EDM device in this report, it is essential to have low operating speeds since the material removal
of EDM machines is generally slow. Stepper motors are controlled by a PWM (Pulse Width Modulated)
signal [33]. The greater the density of high pulses, the faster the rotation of the motor. This feature of
stepper motors allows for extremely slow machining speeds, as the time between pulses can be made
infinitely large.

3.2.5. 3D-printable electrode mount
At the position where the nozzle of the extrusion system was originally located, a 3D-printable mount
was designed to hold electrodes up to a diameter of 3 [mm]. The mount was designed in Fusion 360
and is shown in Figure 3.4. The electrode can be pinned down by inserting a screw in the front holes.

Figure 3.4: Electrode mount drawing in Fusion 360.

3.2.6. Flushing System
The flushing system in Electrical Discharge Machining (EDM) plays a critical role in maintaining stable
machining. Flushing serves primarily to evacuate eroded debris particles from the electrode-workpiece
gap, which, if not removed, can obstruct the electric discharge path, resulting in unstable machining
conditions and increasing the likelihood of short circuits. Moreover, the flushing is boosted by lifting
the electrode periodically and replacing the polluted fluid. A flushing angle of 15 degrees relative to
the tool axis has been established for minimizing debris accumulation and ensuring the stability of the
EDM process [34]. The placement of the pump can be seen in Figure 3.2b.
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3.3. Control system
3.3.1. Overview
The movement of the electrode with respect to the workpiece should be controlled accurately and
implemented by an external control system. This allows for better control over the 3D printer and the
possibility to implement feedback and set up a remote connection to a laptop. A schematic overview
of the control system is shown in Figure 3.5.

Figure 3.5: General schematic of EDM control system.

The control system consists of a Raspberry Pi 5, Raspberry Pi Pico, and a voltage scaling circuit. The
system is remotely connected to a laptop via an SSH connection that allows for remote and manual
input. The input, which could be a singular command or complete file, is send to the Raspberry Pi 5
that decodes these commands and sends them to the 3D printer, which translates the commands into
mechanical movement.

Closed-loop feedback is implemented by a Raspberry Pi Pico microcontroller and some additional
circuitry that is responsible for sensing and scaling the voltage waveform produced by the power supply.
Based on the waveform, the Raspberry Pi Pico can detect short circuits, which can be used to alter the
movement of the electrode via the feedback network. In order to communicate with the Raspberry Pi,
a webserver is hosted on the Raspberry Pi Pico that allows for wireless serial communication. Besides
short circuit detection, the Raspberry Pi Pico is also used to control the duty cycle and frequency of the
square voltage wave that is applied across the electrode and workpiece. The duty cycle and frequency
can also be set via the laptop connected to the Raspberry Pi. These parameters are send to the
Raspberry Pi Pico via the bidirectional serial connection. Implementation of the voltage readout circuit
and Raspberry Pi Pico are done by our colleagues from the power supply group [1].

This section starts by describing the Raspberry Pi 5 and its connections to the Raspberry Pi Pico, laptop,
and 3D printer. Furthermore, installation of Klipper, which is the firmware used for the 3D printer control,
is explained. This is followed by a brief overview of the most relevant Klipper source code and any
adjustments that have been made to improve the usability of the 3D printer and implement closed-loop
feedback. Finally, the usage of the control system is discussed.

3.3.2. Raspberry Pi 5
The Raspberry Pi 5 is a small single-board computer developed by the Raspberry Pi Foundation. Two
versions are available with either 4GB or 8GB of memory. In order to operate the device, a micro-SD
card should be inserted on which the Klipper software is stored. Some relevant features of the Pi
are the availability of 40 I/O pins, 802.11ac Wi-Fi and several USB ports. Figure 3.6 shows a general
schematic of the Raspberry Pi and corresponding GPIO pins.

Communication with the Raspberry Pi Pico is done via I2C, which is a communication protocol that
uses two buses, namely SDA and SCL. The connection is made by connecting the Pi Pico and Pi 5
with jumper wires. Pin 3 and 5 from Figure 3.6 are used to connect the I2C inputs and pin 6 is used
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for the ground reference. The connection with the 3D printer is established via a USB port. Power is
delivered to the board with a 27W charger that is also provided by Raspberry.

The Raspberry Pi 5 4GB is used to run Klipper, which is the firmware responsible for controlling the 3D
printer. Even though other methods might be available, the Raspberry Pi is the recommended host for
Klipper, and plenty of information is available about the installment [35]. Next section will delve deeper
into the software of the control system.

Figure 3.6: GPIO Pinout diagram of Raspberry Pi 5 [36]

3.3.3. Klipper Firmware
The standard Marlin firmware on the printer is unsuitable for external control system use. Instead, the
Marlin firmware is replaced with the open-source Klipper firmware, which is fully adjustable to specific
needs. The Klipper firmware must be installed on the 3D printer and the Raspberry Pi 5. By setting up a
web server on the Raspberry Pi 5, the 3D printer can be controlled remotely via a laptop or desktop. The
Moonraker web server API and Fluidd web server interface are also installed to facilitate this. KIAUH
is the Klipper installer used for this project and also facilitated the instalment of Moonraker and Fluidd.

Klipper Software Installation
A generic but detailed guide on how to install Klipper is provided by the YouTube channel Vector 3D
[37]. This tutorial is used as a basis for installing Klipper on the Raspberry Pi 5. Since the exact setup
of the EDM device does not completely correspond with that shown in the video, some general steps
and additional information are provided here.

The Raspberry Pi OS Imager is used to install the Raspberry Pi OS on a micro-SD card by using a
USB to micro-SD adapter. After installation of the imager, some advanced settings were configured
by entering the control, shift, and x keyboard commands. In the settings, SSH should be enabled for
remote access, a username and password should be set, and the credentials for a Wi-Fi connection
should be entered. Instead of a regular Wi-Fi connection, a hotspot was hosted from a laptop. After
editing the advanced settings, the Raspberry Pi OS (32-bit) operating system was flashed onto the
micro-SD card, which was then inserted into the Raspberry Pi.

To connect with the Raspberry Pi, the following command should be entered in a command terminal,
where the IP address can be found in the settings of the mobile hotspot: ssh pi@<ip address>. Log-
ging in uses the username and password entered during the Raspberry Pi OS installation. The following
commands are used to install git, install KIAUH, and open KIAUH, respectively [37]:

• sudo apt-get install git -y

• git clone https://github.com/th33xitus/kiauh.git
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• ./kiauh/kiauh.sh

Installation of Klipper, Moonraker, and Fluidd on the Raspberry Pi via KIAUH is straightforward and done
in the same manner as shown in [37], and thus not repeated here. In order for Klipper to work, a config
(.cfg) file should be supplied to Klipper that contains information about the specific printer microcontroller
board. The configuration file corresponding to the Creality Ender3 Pro is printer-creality-ender3pro-
2020.cfg, which is found at [38] and should be renamed to printer.cfg. This file can be supplied to
Klipper by uploading it to the configuration section in the Fluidd web interface, which can be accessed
by typing the IP address of the Raspberry Pi 5 in a web browser. To finalize, the command [include
fluidd.cf] should be added to the printer.cfg file [37].

Before the operation of the printer can start, the right configuration should be set up. The configuration
of Klipper with KIAUH and Fluidd in [37] is done for the SKRMini E3 printer board. Due to the difference
in 3D printers, the correct configurations for the Ender3 Pro are listed below. With these settings the
installation of Klipper on the Raspberry Pi 5 is completed.

• The board type is Creality V4.2.2

• The micro-controller architecture is ’STMicroelectronics STM32’.

• The processor model is STM32F103.

• Disable SWD at startup.

• Bootloader offset is 28 KiB.

• Communication interface is USART1 PA10/PA9.

• The GPIO startup pin does not have to be set.

Installation of Klipper on the printer is simply done by inserting a micro-SD card in the printer micro-
controller board (MCU). The micro-SD card should contain the Klipper.bin file from the Klipper GitHub
repository [38].

Klipper Code Overview
G-codes are used as commands to specify the movement of the printer and regulate other functional-
ities, such as movement speed, and fan speed. An extensive list of supported G-code commands by
Klipper and their functionalities can be found at [39]. These commands can be inserted in the Fluidd
web server interface and are sent via an SSH connection to the Raspberry Pi 5, which hosts the Klip-
per firmware. Controlling the printer from the Fluidd web interface allows for different methods to send
G-code commands to the printer. These are manual controls that involve clicking buttons, sending
G-code via a command line, and sending a complete file with numerous G-codes.

Klipper’s main function is receiving, processing, and executing G-code commands. Extra functionality
can be added by creating additional macros in the printer config file or by directly editing the Klipper
source code. Adding macros is a great method that allows for easy implementation of automated tasks,
but they have limited flexibility. Therefore, the main approach has been to edit the Klipper source code
instead. The Klipper firmware can be edited directly on the Raspberry Pi 5 from the connected laptop.
Due to the extensiveness of the Klipper software, only a brief overview will be given about the most
important files and functionalities because most code does not have to be altered nor understood for
correct operation of the EDM device. The official Klipper source code can be found in the Klipper github
repository [38].

The main loop that runs the Klipper program can be found in klippy.py. Besides the main loop, the file
also takes care of all initializations needed before the operation can start. The reactor.py file implements
polling mechanisms, which are used to check inputs from the Fluidd webserver interface, for example.

The schematic in Figure 3.7 shows a simplified schematic of the code execution in Klipper. Inputs re-
garding console commands, restarting Klipper or other inputs from the Fluidd web server are received
in the webhooks.py file. If inputs are detected by the polling mechanism, then the command is anal-
ysed and send to appropriate handler functions. Each handler function contains the code responsible
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for handling a certain command. For example, the emergency stop command is handled by the _han-
dle_estop_request function and gcode command directly typed into the Fluidd console are handled by
the _handle_script function.

Figure 3.7: Simplified schematic of code execution within the Klipper firmware.

G-code files are processed separately by the virtual_sd.py file. G-codes from either the command
line or g-code file input are send to gcode.py. In this file, the commands are dissected and directed
to the appropriate handler function. These handler functions can be found in various files such as
gcode_move.py, homing.py, and gcode.py file itself. The G1 command, which is used to control the
movement of the printer nozzle (in this case electrode), is processed further in the gcode_move.py,
while the G28 command is handled in the homing.py file. The G28 command is responsible for moving
the electrode to its origin position. This code should be executed before any program to help the
program calibrate its position.

The toolhead.py file tracks the printer movements and calculates acceleration and movement speed
by looking at future commands. In the file, a buffer of g-codes is implemented which are used to predict
the future movement of the printer for smoother motions. From toolhead.py, other files are invoked
that further process g-code commands. Based on this, signals are send to the printer microcontroller
(MCU), which translates inputs to stepper movements.

Klipper Test Setup
Homing the printer to its origin before each operation is inconvenient, especially during tests. Therefore,
the necessity for this command is overwritten by adding additional g-codes to the Klipper software. The
G30 and G31 commands are used to set an override variable to ’True’ or ’False’, respectively. In case
the variable is set true, the check for whether the printer is homed before operation is not performed.

The handler function for the G30 and G31 commands are implemented in the homing.py file. New
command should be registered in order for the code to know what G-code commands can be used.
The homing check and override are performed in cartesian.py. The modified code can be found in
Appendix A.

Closed-loop Feedback
The closed-loop feedback is based on the principle shown in Figure 3.8. If a voltage is applied across
the sparkgap, then after a certain delay, the discharge occurs. During the discharge, a bridge is formed
between the electrode and workpiece for current to flow. Consequently, the gap voltage decreases
significantly. The time it takes for a discharge to occur after a gap voltage is applied is the ignition delay
and is a measure of the width of the sparkgap [2]. As shown in Figure 3.8, a short delay corresponds
to a small gap width, while a longer delay indicates a large gap. By measuring the voltage waveform
across the electrode and workpiece and comparing it to a threshold value, it is determined whether the
sparkgap should be larger or smaller. The electrode movement can be adjusted based on this decision.
This theory is supported by measurement of a discharge as shown in Figure 4.4 of section 4.3
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Figure 3.8: Approximate voltage and current profiles during an EDM discharge as documented by [2].

A simpler implementation of this principle is to only detect short circuits or discharges, without including
time measurements. This form of closed-loop feedback control is used for the EDM device discussed
here, but implementing a more complex control system based on the principle discussed above is
also possible. Sensing of the discharge delay is done by the power supply group [1]. By hosting a web
server, the Raspberry Pi Pico sends the measurement result to the Raspberry Pi 5 over a wireless serial
communication. The Raspberry Pi Pico should be connected to the hotspot set up by the laptop, as
discussed in subsection 3.3.3. Some modifications of the Klipper code were made to ensure adequate
responds to these inputs.

The Printer class in klippy.py is modified to contain functions for setting up and closing the connection
to the Raspberry Pi Pico as well as sending and reading data. Setting up a connection with the Rasp-
berry Pi Pico is done by invoking the MakeConnection function. Inside this function, the IP address of
the Raspberry Pi Pico should be entered as well as the port number, which is set by the code on the
Raspberry Pi Pico. ThewriteCommand function is used to send data to the Raspberry Pi Pico. Sending
data to the Raspberry Pi Pico is not required for implementing the closed-loop feedback, but has been
implemented so that the frequency and duty cycle of the voltage wave can be set with a single G-code
command, which greatly improves testability and adaptability of the system. The functions readCom-
mand and CloseConnection are used for reading data and closing the connection, respectively.

Each of the functions regarding the connection between the Raspberry Pi Pico and Raspberry Pi 5,
except for the readCommand function, are invoked by newly specified G-code command. These com-
mands are implemented in the gcode.py file where other commands are handled as well. The M60
command is implemented to invoke the MakeConnection function. Likewise, M61 and M62 invoke the
readCommand and writeCommand functions, respectively.

The actual response mechanism for the closed-loop feedback is implemented in virtual_sd.py. By
opening a new thread, the communication can be regularly polled without interrupting the normal code
execution. The communication is polled every hundredth of a second by invoking the readCommand,
which is discussed above. If a short circuit is detected, a G-code command is added to the already exist-
ing G-code command list. This command can insert a pause in case multiple discharges are measured
or a command that enables upward movement of the electrode in case of short circuit detection.

Finally, to reduce delays between short circuit or discharge detection and execution of the modified
electrode path the G-code command buffer in the toolhead.py file should be reduced. The buffer is
implemented to allow for better prediction of future printer movements and thus smoother operation.
The standard settings introduce a delay of approximately 2-3 [s], which is undesired for precise control
of the EDM device. Therefore, the buffer length is shortened.

To conclude, the Klipper software modifications discussed above regarding the closed-loop feedback
integration have been implemented succesfully. The modified code parts can be found in Appendix B.
The location of the added code could still be improved for better code structure.
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Operation
Klipper handles all G-code commands sequentially, which poses a challenge on creating an optimal
control system. Pausing the printer by inserting a pause command requires the last processed G-code
command to be completely executed first. The related time delay can be minimised to insert G-code
files where each movement is as big as the smallest step size, which is 0.0025 [mm] in the z-direction.
By implementing this strategy, a constant downward movement of the printer can be achieved with
quick adjustments in case either short circuits or multiple discharges are detected.

3.4. Power Supply
3.4.1. Overview
The power supply delivers the required voltage waveform to the electrode and workpiece. The required
voltage waveform is a square wave, of which the duty cycle, frequency, voltage, and current should be
controllable. Controlling these parameters is necessary to find the optimal set of parameters to achieve
optimal performance.

The power supply comprises of three distinct electronic circuits: a DC power source, a power amplifi-
cation circuit, and a square wave generator. The power amplification circuit is designed to provide a
substantial amount of DC voltage and current essential for operation. The square wave generator is
responsible for producing the waveform required by the EDM device. The block diagram presented in
Figure 3.9 displays the interconnections among all components. The real-life implementation is visible
in Figure 3.10. The board visible with the blue tape is the power amplification circuit. The board below
is the square wave generator circuit. These circuits are all explained in detail throughout this chapter.

Figure 3.9: General schematic of Power Supply

Figure 3.10: Real-life implementation of the power supply.
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3.4.2. Power Source
To avoid unnecessary complexity, a pre-existing voltage— and current-controllable power source, the
BoseTech 305, is used. This source can provide a DC voltage ranging from 0 to 30 [V] and a DC current
ranging from 0 to 5 [A]. As per the requirements, the maximum voltage that was used during operation
is 20 [V] to ensure a maximum power of 100 [W] consumed by the system. Also, increasing the voltage
further introduced unpleasant sounds in the transformer, which is discussed later.

The power source circuit is depicted in Figure 3.11. This figure shows that inside of the BoseTech 305,
a capacitor is present. However, this capacitor seemed not to deliver enough energy to the circuit as
it would consistently limit the current to the workpiece. Besides, a built-in short circuit detection circuit
required the power source to be turned off and on, thus preventing the automatic operation of the EDM.
Thus, an additional (polarised) capacitor was added. This capacitor is relatively large and is also used
to stabilise the power source at low voltages and prevent short currents inside the power source. Ad-
ditional benefits of the capacitor are:

• Voltage Smoothing: The capacitor smooths out voltage fluctuations, essential for maintaining
a stable output voltage. This is achieved as the capacitor charges during peaks and discharges
during dips in the input voltage, formulated as:

Vout =
1

RC

∫
Vin(t)dt

where Vin(t) is the input voltage as a function of time, and RC is the time constant of the circuit.

• Energy Storage: A substantial capacitance is necessary to store sufficient energy, which is cal-
culated using the formula:

E =
1

2
CV 2

Due to a relatively low voltage from the power source, a large capacitor is required to store enough
energy, so that the short circuit protection is not triggered in case large currents are required at
the output.

• Pulse Handling: The capacitor can quickly release stored energy, supporting circuits that require
high power pulses. This capability is especially useful in applications needing quick, substantial
energy releases, where the discharge current is given by:

I = C
dV

dt

where dV/dt is the rate of voltage change across the capacitor.

Figure 3.11: Schematic of power source plus additional capacitor.

The capacitor within the power source is approximately 2.2 [µF], and the capacitor connected to the
power source is around 1.5 [mF]. The value was chosen such that no limitations were experienced
by the power source. Furthermore, an even larger capacitor was not used due to safety concerns, as
using an excessively large capacitor can be extremely hazardous.
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3.4.3. Power Amplification Circuit
As the power source’s specifications fall short of the necessary requirements, a power amplification
circuit has been constructed that allows for short-duration and high-energy pulses during which the
current far exceeds the values delivered by the DC power source. Besides, higher voltages are reached
as well, because that is required to set the dielectric breakdown phenomenon in motion.

The exact breakdown voltage level of distilled water is unknown for the specific set-up used in this
report because it depends on many factors, such as electrode geometry and material and the purity
of the water, among others [40]. The optimal value is best found experimentally, as also done in [41].
The output voltage of the EDM design discussed here is based on literature and observations in the
experiments, which are discussed in chapter 4. Values that are often used are around 50 to 100+ [V]
[41]–[43]. A value of approximately 140 [V] has been used in the EDM device discussed here, but
the optimal value remains unknown and should be found through experiments. The output current is
determined based on the power amplification circuit and a limiting resistor, which is discussed together
with the square wave generation circuit in subsection 3.4.4.

The power amplification circuit includes several key components: a DC-to-AC converter, a transformer,
a rectifier, and a capacitor with a resistor in parallel. The schematic of the circuit is visible in Figure 3.12.
The input of this circuit is connected to the output of the power source, and the output of this circuit
is connected to the input of the square wave generation circuit. This circuit will explained in detail by
going through each component separately.

Figure 3.12: Power amplification schematic

The first component, the ZVS high-voltage flyback driver board, serves as a DC-to-AC converter. It
operates within a voltage range of 10-30 [V] and produces an AC peak-to-peak voltage equal to the
input DC voltage multiplied by pi.

The second component, a custom-made transformer that raises the voltage to 140[V], requires the
AC waveform. The transformer features 4 primary and 10 secondary windings, which amplify the AC
voltage by a factor of 2.5 and concurrently reduce the current by the same factor.

The third component, known as the KBPC5010 rectifier, is notable for its capability to handle voltages
of up to 1000V and currents of 50A. Its primary function within the circuit is to convert the AC voltage
and current back to their DC counterparts. Given the circuit’s requirement for DC voltage and current
delivery, this component assumes significant importance.

The last stage of the power amplification circuit consists of an RC network. The main function of the
capacitor is to quickly provide the energy needed during discharges, essentially performing the same
function as the capacitor that was placed after the power source. Also, the additional benefits of a
capacitor mentioned before in subsection 3.4.2 are also applicable here. The parallel resistance allows
for faster discharge after the operation has finished and is thus mostly implemented for safety reasons.
Based on the requirement that the power source cannot deliver more than 5 [A], the capacitor was fitted
to meet this requirement and is chosen to be 40 [µF]. The requirements imposed on the resistor are
that it should allow for faster discharging after operation, but it must not influence the output current
much during operation. A value of 1.2 [MΩ] for the resistor was found to be sufficient. The complete
calculation and test on the discharge times are found in Appendix C.4.
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3.4.4. Square Wave Generation Circuit
The square wave generation circuit employs a main board with an H-bridge (shown in Figure C.6)
configuration that consists of four gate drivers (shown in Figure C.5) and four MOSFETs, controlled by
an Arduino Uno. A high-level overview of the square wave generation circuit is shown in Figure 3.13.
In the figure, Vdd corresponds to the positive output voltage of the power amplification circuit and GND
to the negative output voltage.

Figure 3.13: Square Wave Generation schematic

The Arduino is programmed to precisely control the timings for turning the MOSFETs on and off, de-
noted as ton and toff, outputting two 5 [V] signals that correspond to these timings. The gate drivers
receive the 5 [V] signals from the Arduino and amplify them to 15 [V] square waves, maintaining the
same ton and toff timings set by the Arduino. These enhanced signals are then used to control the
gates of the MOSFETs. From the four MOSFETs of the H-bridge, only two are required for the EDM.
That is because two MOSFETs are responsible for a positive pulse and two for negative pulses. In the
EDM device, only the positive pulses are used, while in the toff period, the output should be zero. Addi-
tionally, to ensure controlled operation and to prevent excessive current flow, which could damage the
components, a current limiting resistor is integrated into the circuit to limit the maximum current pass-
ing through the MOSFETs, thereby safeguarding the circuit from overcurrent conditions. The power
resistor is positioned between Vdd and the MOSFETs. Its value is crucial because it must limit the cur-
rent to prevent damaging the MOSFETs, yet it needs to be as low as possible to maximize the current
delivered to the workpiece. This current is significant because it affects the energy of the sparks and,
consequently, the material removal rate [43]. The optimal value for the power resistor is 2.4 [Ω] and
has been determined through experiments, which are found in section 4.4.

As becomes clear from the experiments (see Figure 4.4 in section 4.3), the voltage over the gap showed
pronounced oscillations during switching activities. The presence of these oscillations results mostly
from the MOSFETs and stray inductances, as was investigated by [1]. The influence of these oscilla-
tions on the sparks remains unknown.

3.4.5. Energy efficiency
During the experiments, attention was given to find a proper duty cycle to achieve a balance between
power efficiency and effective machining. The aim was to establish an energy balance where the high-
voltage side consistently supplied a controlled voltage across a current-limiting resistor and the spark
gap.

The energy per pulse Epulse can be calculated as follows, assuming the voltage across the gap when it
is conducting:

Epulse =
V 2

R
· ton
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where V is the applied voltage, R is the resistance of the current limiter and the spark gap, and ton is
the duration of the ”on” time. This calculation indicates that the energy per pulse is directly proportional
to the square of the voltage and the duration of the on-time while being inversely proportional to the
resistance.

The input energy to the system, provided by the power source over one complete cycle, is expressed
as:

Einput = Vpower source × Ieff × (ton + toff)

Where Vpower source is the voltage of the power source and Ieff is the effective current, accounting for total
current supplied minus current lost due to consumption by various components. For system equilibrium,
the energy supplied per cycle by the power source should match the energy utilized in sparking:

V 2

R
· ton = Vpower source × Ieff × (ton + toff)

From experimental tests it was concluded that adjustments of the duty cycle and frequency parameters
are crucial for enhancing the EDM process efficiency. By fine-tuning these settings, a significant influ-
ence on the machining performance, specifically in terms of spark consistency and material removal
rates, is achieved. Thus, a well-calibrated duty cycle and frequency ensure optimal power usage and
enhance the EDM operation’s overall stability and reliability.

As discussed by the authors in [44], the material removal rate (MRR) is significantly influenced by the
pulse duration during the EDM process. Longer pulse durations lead to a spread in the diameter of
the discharge column, which lowers the energy density at the discharge spot on the workpiece surface.
This insufficient electrical energy density fails to effectively melt and vaporize the material, resulting
in a decrease in MRR. Conversely, excessively short pulse durations do not provide enough electrical
discharge energy to the machining gap. This leads to minimal material removal, especially for materials
like cemented tungsten carbides with high melting points. Therefore, optimizing the energy density is
crucial for increasing MRR.

Considering these insights, a pulse duration of 10 [µs] with an off time of 500 [µs] was found to balance
the energy density effectively, aiming to optimize the MRR for materials with high melting points. More
extensive analysis should be done to further optimize these values, but operation using the values
above have been validated to be satisfactory in experiment 3 of section 4.4.



4
Experimental Evaluation

4.1. Overview
The Electrical Discharge Machining (EDM) process involves numerous components that require thor-
ough testing. To ensure comprehensive evaluation, a series of experiments is conducted. The first
experiment serves as the baseline, providing essential data. Subsequent experiments build upon the
findings of the previous ones, progressively refining the process. This iterative experimentation is de-
signed to reach the point of developing the final version of the EDM system, which is the ultimate
objective of this project. By systematically enhancing each aspect of the EDM through careful testing
and analysis, the project aims to achieve optimal performance and reliability.

4.2. Experiment 1: Observation of Discharge Spark
The primary objective of the first experiment is to observe a discharge spark between the tool and the
workpiece. This involves creating a power supply and establishing the basic setup of the EDM system.
Notably, this initial configuration lacks both flushing mechanisms and mechanical control systems. The
focus at this stage is on confirming the basic functionality of spark generation, which will serve as a
foundation for further experimentation.

4.2.1. Materials and Equipment
A variety of materials are required to set up the experiment. These materials have been chosen based
on their quality and equipment availability at the university. The necessary materials and equipment
for the experiment include:

• Deionized Water

• Copper Rod

• Aluminum Plate

• Plastic Bucket

• Manual load frame

• Power Supply

• Power Source

• Connection Cables

• Arduino

• Laptop

• Oscilloscope

• Differential Probes

The deionized water functions as the dielectric fluid, the aluminium plate is the workpiece, and the
tungsten rod is the electrode. Themanual load frame has the efficiency of moving the electrode towards
the workpiece in micrometers. The laptop is needed to program the Arduino, creating the wanted
square pulses. Finally, the differential probes will be connected to nodes inside the circuit to view the
performance of the power supply.
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4.2.2. Experiment Setup
The experiment setup is divided into two sections. The first section is the EDM setup, which includes
the manual load frame, electrode, and a bucket filled with dielectric fluid, as illustrated in Figure 4.1.
The second section is the power supply, which needs to be connected to the workpiece and electrode.
The Arduino of the power supply is connected to the computer. By manually rotating the manual load
frame, the electrode is moved towards the workpiece with micrometer precision, until the spark gap is
sufficiently small to create discharges.

(a) Experiment 1: EDM setup schematic [45]. (b) Experiment 1: Real-Life implementation of the EDM setup.

Figure 4.1: The EDM setup used for experiment 1.

4.2.3. Results
The results of this experiment are largely qualitative, as the primary objective was to observe the oc-
currence of sparks. This objective was met, and various types of sparks, ranging from very weak to
strong, were observed. These variations were influenced by changing the parameters of the square
wave used. These variations were mostly on the duty cycle of the square wave made by the power
supply.

The hole created in the workpiece was not satisfactory because the manual load frame did not keep
the electrode straight, allowing it to move in small circles. The outcome of the hole in the workpiece is
depicted in Figure 4.2.

Figure 4.2: Experiment 1: The created hole inside the workpiece encircled by the red square.
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4.3. Experiment 2: Incorporation of 3D printer and Flushing
The main goal of this experiment is to complete the setup of the EDM device with the integration of a
3D printer. This addition is expected to enhance the control of the electrode movement, both open-loop
and closed-loop. These controls facilitate precise spark generation between the tool and the workpiece,
thus effectively creating a hole in the workpiece. Given the important role of effective debris removal
in EDM processes, integrating a flushing system into the setup is also deemed essential.

4.3.1. Materials and Equipment
This experiment builds upon the setup from experiment 1 but introduces modifications to accomplish
more accuracy with an Ender3 Pro 3D printer. While many materials from the initial experiment are
reused, additional components for the control and flushing for this experiment are as follows:

• Raspberry Pi 5

• Raspberry Pi Pico

• 20K potentiometer

• Aalborg TPU AD

• Ender 3 Pro

• Electrode mount on the 3D printer

4.3.2. Experiment Setup
The configuration closely mirrors that of experiment 1. However, there are some notable changes. The
manual frame has been substituted with the Ender3 Pro 3D printer. Consequently, the electrode is now
secured to the 3D printer via an electrode mount. The 3D printer is linked to the Raspberry Pi 5 and a
laptop. Additionally, a connection must be established between the 20K potentiometer that is mounted
on the Raspberry Pi Pico and the Raspberry Pi 5. Also, the Aalborg TPU AD water pump is connected
to the EDM setup. This pump, connected through the electrode mount, ensures flushing occurs at
approximately a 15-degree angle into the gap between the tool and the workpiece. The schematic and
real-life implementation of the setup is shown in Figure 3.2.

4.3.3. Results
In this experiment, the incorporation of the 3D printer allowed for precise control over the electrode
movements in the EDM setup. This capability resulted in the successful creation of a hole in an alu-
minium workpiece within 4 minutes. The impact of the flushing mechanism on the process efficiency
and accuracy has yet to be assessed. The hole can be seen in figure 4.3.

Figure 4.3: Experiment 2: The created hole inside the workpiece.

For the control mechanisms, the open-loop operation was managed by sending multiple G-code com-
mands directly to the 3D printer. Even though accurate holes could be made, there were still challenges
regarding short circuits. The lack of an automated closed-loop control system made it difficult to deal
with the prevention of short circuits between tool and electrode, except for manually altering the elec-
trode heights or setting the movement speed of the electrode extremely low. Closed-loop control was
implemented through a combination of sending G-commands and visually monitoring the status of the
discharge. Observations included the current of the power source, the frequency of discharges, and
the movement of the electrode. Adjusting the movement speed via a potentiometer, as explained in
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subsection 3.3.3, worked as intended, except for a relatively large delay between input and output. This
was, however, not tested in combination with creating discharges.

Another important conclusion could be drawn for the closed-loop feedback system. The phenomena on
which the theoretical control system discussed in subsection 3.3.3 was based could be measured on
the oscilloscope. Figure 4.4 shows that the discharge happens after approximately 4 [µs], after which
the current rises and voltage drops.

Figure 4.4: Measured voltage and current waveform during a discharge. The discharge can be seen after about 4 [µs].

4.4. Experiment 3: Increasing Discharge Energy
To further improve the performance of the EDM, the influence of the current limiting power resistor is
examined. This is important because the power source only delivers 100 [W] at maximum. The initial
resistance value of 3.33 [Ω] is compared to resistor values of 2.4 [Ω] and 1.6 [Ω]. This was assessed
by measuring the current through the resistances with a special current probe. Also, some qualitative
tests were performed to see the impact of discharges on the capacitor charge.

Except for the resistor values, the materials and measurement setup was the same as in experiment
2, with the power supply set to constant parameters: 140 [V] DC and a square wave with a ton of 10
[µs] and toff of 500 [µs].

In case of a short circuit between the electrode and the workpiece, overcurrent must not happen. There-
fore, by ignoring the inductance that is present in the power resistor and assuming only the resistance of
the current-limiting power resistor, a rough estimation could be made about the maximum current. The
current should be below the rated pulse current of the MOSFETs. For 3.33 [Ω], this would be 140/3.3
= 42.4 [A], and for 2.4 [Ω] and 1.6 [Ω], 58.3 [A] and 87.5 [A], respectively. The 140 [V] is the maximum
voltage across the output capacitor. From the datasheet of the MOSFET, the voltage-current relation
can be found for pulsed signals. The corresponding figure can be found in Appendix D. For a ton of 10
[µs], no data is available, so the limits were tested experimentally using the estimations above.

4.4.1. Results
The current measurements for resistances of 2.4 [Ω] and 3.3 [Ω] are shown in Figure 4.5. The corre-
sponding current levels were 36 [A] and 47 [A], respectively. The discrepancy between the theoretical
and experimental currents is due to the parasitic inductance of the power resistors. This parasitic
inductance increases the impedance, leading to a lower current than predicted by theoretical calcula-
tions. Inserting a resistance of 1.6 [Ω] resulted in a current of approximately 70 [A], which could not be
recorded because the MOSFET was broken down as a result.
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Figure 4.5: Current measurements for a current limiting resistance of 3.33 [Ω] and 2.4 [Ω].

In the plot shown in Figure 4.6, the voltage across the capacitor demonstrated a decrease during
short circuit events, indicating that energy stored in the capacitor was being released. After multiple
discharges, the voltage across the capacitor stabilized, suggesting that equilibrium was reached where
the energy utilized by the resistor and discharge equalled the energy supplied by the power source. This
observation supports the theoretical principles concerning the discharge timing parameters ton and toff
(subsection 3.4.5).

Figure 4.6: Voltage over capacitor during discharges, illustrating the energy dynamics and stabilization.

To enhance the material removal rate (MRR) and discharge energy, one potential approach involves
reducing the resistance of the current-limiting resistors. This modification would increase the current
and subsequently the energy across the discharge gap. However, the current MOSFETs in use cannot
handle these increased current levels.
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4.5. Experiment 4: Integration of Power Supply
Following the observation of an enhanced MRR with increased current, a new experiment was initiated
using electronic components from another subgroup [1]. This group employed an IPW65R037C6 MOS-
FET, maintaining a turn-on time (ton) of 10 microseconds. According to the data sheet, this MOSFET
can handle a maximum current of approximately 297A at a voltage range of 30-90V. (see Appendix E).
Consequently, the transformer was removed and a current limiting resistor of approximately 0.25 [Ω]
was installed. This adjustment theoretically allowed for the possibility of reaching the maximum cur-
rent of 300A. However, in practical scenarios, achieving this current is unlikely due to other circuit
resistances.

The integration of the power supply from [1] also enabled the ability to test and implement the closed-
loop feedback system.

4.6. Results
There was a noticeable improvement in MRR based on visual inspection, and the circuit components
remained intact without any signs of failure or overheating. Unfortunately, due to time constraints,
quantitative measurements could not be recorded. One significant issue encountered was the loss
of connectivity between the Raspberry Pi and the Creality microcontroller, caused by high current dis-
charges. This necessitated manual operation of the experiments. Despite extensive grounding mea-
sures, including the 3D printer, a metallic tank under the workpiece, and surrounding the cables and
electronics with aluminum foil as shown in Figure 4.7, the issue persisted. Despite these challenges, a
hole was quickly created in the workpiece by manually moving the workpiece to the electrode, leading
to the experiment being deemed successful. The outcome of the hole in the workpiece is depicted in
Figure 4.8. The removal of the indicated metal part was done in a time scale of approximately 300 [s].

Figure 4.7: 3D printer setup with measures that
unsuccessfully prevent problems regarding interference.

Figure 4.8: The created hole inside the workpiece
encircled by the red square.

Loss of connectivity due to interference also obstructed comprehensive testing of the closed-loop feed-
back system. Even though automatic control of the printer was mostly not possible, adjusted movement
of the printer based on a detected discharge was observed. Also, changing the frequency and duty
cycle of the voltage signal by inserting G-codes was found to be successful.
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Discussion

5.1. Challenges
The project progressed at an exceptionally rapid pace, from the literature review to the development of
the EDM device and the creation of the first holes. Despite the enjoyment, the group faced numerous
difficulties and technical challenges. The initial problem involved developing a power supply for testing.
While the power supply group focused entirely on creating a dedicated power supply, our group had to
develop one quickly to test critical aspects such as the mechanical system and the overall EDM system
design. This task consumed a lot of valuable time, although it provided us with some valuable insights.

The initial circuit had several issues, primarily due to missing components essential for its functionality.
The first issue was the exclusion of current-limiting power resistors, which led to the failure of transistors
and gate drivers. Once this was addressed, the second problem was the breakdown of the transformer.
Figure 5.1 shows the damaged transformer, which was not immediately apparent and likely resulted
from excessive heat. The third issue involved the square wave generation; the circuit was supposed
to operate at 5 [V] but required at least 5.3 [V] to function correctly. Numerous issues that arose each
took some time to resolve.

Figure 5.1: Broken transformer, likely due to excessive heat.

Significant obstruction of the project was due to the problem of interference between the applied power
and the microcontroller board of the 3D printer. When the applied current was limited at the beginning
of the project, this could be prevented by simply moving the electrode and workpiece away from the
microcontroller. However, after integration with the power supply group, the current was increased
significantly. Consequently, the interference became irrepressible, even after numerous attempts to
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minimize it. For example, packing the wires in grounded aluminium foil and adding a grounded metallic
pan did not prevent interference, and it still remains an unsolved problem. As a result of this obstruction,
the ability to test the closed-loop feedback system was also limited.

Furthermore, the EDM device faces some small mechanical challenges. Small vibrations can already
negatively affect the EDM operation due to short circuits between the tool and electrode. This problem
was primarily caused by the lack of a proper mechanical structure to support the bath with workpiece
and dielectric fluid.

The final and most critical challenge was the limited time available. With numerous interconnected
parameters to test, the group could not develop the optimal EDM device. Achieving this would require
extensive testing and continuous improvements. Each week brought new changes or enhancements,
making it an ongoing challenge. Additionally, issues with the power supply further delayed progress
and made consistent weekly testing difficult, as these problems had to be resolved before any new
tests could be conducted. Despite these obstacles, the group made significant strides, although the
time constraints prevented reaching the desired level of optimization.

5.2. Validation of Requirements
Reflecting back at the requirements that were introduced in chapter 2, it can be stated that the re-
quirements for the electrode, dielectric fluid, and accuracy and precision were met successfully. The
requirements for the control system are not fully satisfied, although the most important requirements
regarding manual control and open-loop control are considered to be achieved. The ability of closed-
loop control was investigated and partially tested but not physically implemented. In the end, open-loop
control was not executable due to inference, but it has been observed to work before.

The requirements regarding machine design were only partly met. Even though compact packaging
of the used components is not yet done, it is possible to place and operate the device on a desk or
similar surface. Operation in the (x, y, z) dimensions has been observed to be possible but is not further
investigated in this report. The inclusion of flushing has been briefly tested as well, but too little has
been reported to report significant results. Eventually, flushing has been left out because other tasks
were prioritized.

The power supply requirements were met by our self-created power supply and the power supply de-
signed by [1]. With only extracting a maximum of 100 [W] from the grid, fast metal removal has been
achieved by manual control. The upper limit of the current requirement was not correct since much
higher currents are required for satisfactory operation. Achieving a spark frequency of up to 50 [kHz] is
theoretically possible but has not been tested. The power requirement and limitations caused by charg-
ing the capacitors in the power supply are causes that could limit the achievable frequency. Because a
frequency of about 2 [kHz] has been found to be working reasonably well, it can be concluded that the
requirement regarding the spark frequency was too stringent for this project. Sensing the gap voltage
and quantifying its duration was eventually done by the power supply group.

Operational requirements were largely fulfilled, demonstrating core functionality as the EDM success-
fully created holes in aluminium and steel workpieces. Exact measurements for the MRR have not yet
been performed, but it can be stated that the requirement regarding the material removal rate (MRR)
has not been met consistently. The fastest time to create a (messy) 1.5[mm] diameter hole in a 2[mm]
thick workpiece was measured to be approximately 30 [s].

While progress was made in integrating safety features, full compliance was not achieved. The emer-
gency stop function in the Fluidd web server or the power switch could be used to stop the movement of
the 3D printer. After shutting off the power supply, some delay is present due to the capacitors discharg-
ing before it becomes safe to touch the electronic circuits. Additionally, time constraints prevented the
development of a built-in sensor.
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Conclusion

6.1. Conclusion
This paper investigated the development of an Electrical Discharge Machining (EDM) device that is
designed to create precise holes or shapes in various metals. The development of the EDMwas guided
by limitations and requirements detailed in Chapter 2. The fulfilment of the requirements is addressed
in Section 5. A short literature review was performed, which resulted in the choice to use distilled water
as dielectric fluid and copper as the electrode. Furthermore, research has been performed to control a
3D printer optimally. This research involved investigations into the specifications of the 3D printer, the
3D print design of an electrode mount, and the setting up of an external control system. Additionally,
a power supply has been created to allow for testing of the EDM machine. During the last week of
this project, attention has been given to the integration of the power supply and the voltage sensing
designed by [1].

The EDM device discussed in this report does not yet fully operate as desired, but a solid foundation
has been provided, which can be used as a basis for future work.

6.2. Recommendation and Future Work
The recommendations for future work are based on utilizing the other group’s square wave generation
circuit from the power supply, as our group’s square wave generation circuit has several potential im-
provements that could not be implemented in time. Therefore, it is strongly advised to use the other
group’s square wave generation circuit from their power supply [1]. Moving forward, there are several
key areas that need focused attention to improve the performance and functionality of the EDM device.

Firstly, while the groundwork has been laid for a closed-loop control system, its implementation was not
feasible within the current time constraints. Future efforts should prioritize the development and inte-
gration of a closed-loop system. This advancement will improve the device’s precision and operational
stability by enabling real-time adjustments based on feedback.

Secondly, improvements to the mechanical structure could be explored. A proper bath for the dielectric
fluid combined with mounts to hold the workpiece tightly is necessary for optimal performance. More-
over, addressing electromagnetic interference, particularly with the microcontroller board, remains a
significant challenge. Future designs should explore more effective shielding methods and spatial con-
figurations to mitigate these issues.

Additionally, certain components warrant further attention, which were not covered in this report. Specif-
ically, the flushing and emergency stop buttons are critical elements highlighted in various literature but
were not explored due to time constraints.

Lastly, comprehensive experimentation with operational parameters is essential for optimizing the EDM’s
performance. These operational parameters include gap voltage, current, duty cycle, and frequency.
Future studies should systematically vary and refine these parameters to determine the most effective
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settings for different machining tasks.

Addressing these areas in future research and development cycles can lead to significant advance-
ments in the capabilities and efficiency of the EDM device, leading to improved outcomes in manufac-
turing and prototyping applications.
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Listing A.1: PrinterHoming class of the homing.py file with modifications
1 # Helper code for implementing homing operations
2 #
3 # Copyright (C) 2016-2021 Kevin O'Connor <kevin@koconnor.net>
4 #
5 # This file may be distributed under the terms of the GNU GPLv3 license.
6

7 class PrinterHoming:
8 #----------------- Added code ------------
9 override = 0 # Added code
10 #-----------------------------------------
11 def __init__(self, config):
12 self.printer = config.get_printer()
13 # Register g-code commands
14 gcode = self.printer.lookup_object('gcode')
15 gcode.register_command('G28', self.cmd_G28)
16 gcode.register_command('G30', self.cmd_G30)
17 def manual_home(self, toolhead, endstops, pos, speed,
18 triggered, check_triggered):
19 hmove = HomingMove(self.printer, endstops, toolhead)
20 try:
21 hmove.homing_move(pos, speed, triggered=triggered,
22 check_triggered=check_triggered)
23 except self.printer.command_error:
24 if self.printer.is_shutdown():
25 raise self.printer.command_error(
26 "Homing␣failed␣due␣to␣printer␣shutdown")
27 raise
28 def probing_move(self, mcu_probe, pos, speed):
29 endstops = [(mcu_probe, "probe")]
30 hmove = HomingMove(self.printer, endstops)
31 try:
32 epos = hmove.homing_move(pos, speed, probe_pos=True)
33 except self.printer.command_error:
34 if self.printer.is_shutdown():
35 raise self.printer.command_error(
36 "Probing␣failed␣due␣to␣printer␣shutdown")
37 raise
38 if hmove.check_no_movement() is not None:
39 raise self.printer.command_error(
40 "Probe␣triggered␣prior␣to␣movement")
41 return epos
42

43 #----------------- Added code ------------
44 @staticmethod
45 def override_state():
46 return PrinterHoming.override
47 def cmd_G30(self, gcmd):
48 PrinterHoming.override = 1

36
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49 def cmd_G31(self, gcmd):
50 PrinterHoming.override = 0
51 #-----------------------------------------
52

53 def cmd_G28(self, gcmd):
54 logging.info('G28␣homing.py')
55 # Move to origin
56 axes = []
57 for pos, axis in enumerate('XYZ'):
58 if gcmd.get(axis, None) is not None:
59 axes.append(pos)
60 if not axes:
61 axes = [0, 1, 2]
62 homing_state = Homing(self.printer)
63 homing_state.set_axes(axes)
64 kin = self.printer.lookup_object('toolhead').get_kinematics()
65 try:
66 kin.home(homing_state)
67 except self.printer.command_error:
68 if self.printer.is_shutdown():
69 raise self.printer.command_error(
70 "Homing␣failed␣due␣to␣printer␣shutdown")
71 self.printer.lookup_object('stepper_enable').motor_off()
72 raise

Listing A.2: CartKinematics class of the cartesian.py file with modifications
1 # Code for handling the kinematics of cartesian robots
2 #
3 # Copyright (C) 2016-2021 Kevin O'Connor <kevin@koconnor.net>
4 #
5 # This file may be distributed under the terms of the GNU GPLv3 license.
6 import logging
7 import stepper
8 from . import idex_modes
9 #----------------- Added code ------------
10 import extras.homing as homing
11 #-----------------------------------------
12

13 class CartKinematics:
14 def __init__(self, toolhead, config):
15 self.printer = config.get_printer()
16 # Home override state
17 self.override = 0
18 # Setup axis rails
19 self.dual_carriage_axis = None
20 self.dual_carriage_rails = []
21 self.rails = [stepper.LookupMultiRail(config.getsection('stepper_' + n))
22 for n in 'xyz']
23 for rail, axis in zip(self.rails, 'xyz'):
24 rail.setup_itersolve('cartesian_stepper_alloc', axis.encode())
25 ranges = [r.get_range() for r in self.rails]
26 self.axes_min = toolhead.Coord(*[r[0] for r in ranges], e=0.)
27 self.axes_max = toolhead.Coord(*[r[1] for r in ranges], e=0.)
28 self.dc_module = None
29 if config.has_section('dual_carriage'):
30 dc_config = config.getsection('dual_carriage')
31 dc_axis = dc_config.getchoice('axis', {'x': 'x', 'y': 'y'})
32 self.dual_carriage_axis = {'x': 0, 'y': 1}[dc_axis]
33 # setup second dual carriage rail
34 self.rails.append(stepper.LookupMultiRail(dc_config))
35 self.rails[3].setup_itersolve('cartesian_stepper_alloc',
36 dc_axis.encode())
37 dc_rail_0 = idex_modes.DualCarriagesRail(
38 self.rails[self.dual_carriage_axis],
39 axis=self.dual_carriage_axis, active=True)
40 dc_rail_1 = idex_modes.DualCarriagesRail(
41 self.rails[3], axis=self.dual_carriage_axis, active=False)
42 self.dc_module = idex_modes.DualCarriages(
43 dc_config, dc_rail_0, dc_rail_1,
44 axis=self.dual_carriage_axis)
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45 for s in self.get_steppers():
46 s.set_trapq(toolhead.get_trapq())
47 toolhead.register_step_generator(s.generate_steps)
48 self.printer.register_event_handler("stepper_enable:motor_off",
49 self._motor_off)
50 # Setup boundary checks
51 max_velocity, max_accel = toolhead.get_max_velocity()
52 self.max_z_velocity = config.getfloat('max_z_velocity', max_velocity,
53 above=0., maxval=max_velocity)
54 self.max_z_accel = config.getfloat('max_z_accel', max_accel,
55 above=0., maxval=max_accel)
56 self.limits = [(1.0, -1.0)] * 3
57 def get_steppers(self):
58 return [s for rail in self.rails for s in rail.get_steppers()]
59 def calc_position(self, stepper_positions):
60 return [stepper_positions[rail.get_name()] for rail in self.rails]
61 def update_limits(self, i, range):
62 l, h = self.limits[i]
63 # Only update limits if this axis was already homed,
64 # otherwise leave in un-homed state.
65 if l <= h:
66 self.limits[i] = range
67 def override_rail(self, i, rail):
68 self.rails[i] = rail
69 def set_position(self, newpos, homing_axes):
70 for i, rail in enumerate(self.rails):
71 rail.set_position(newpos)
72 if i in homing_axes:
73 self.limits[i] = rail.get_range()
74 def note_z_not_homed(self):
75 # Helper for Safe Z Home
76 self.limits[2] = (1.0, -1.0)
77 def home_axis(self, homing_state, axis, rail):
78 # Determine movement
79 position_min, position_max = rail.get_range()
80 hi = rail.get_homing_info()
81 homepos = [None, None, None, None]
82 homepos[axis] = hi.position_endstop
83 forcepos = list(homepos)
84 if hi.positive_dir:
85 forcepos[axis] -= 1.5 * (hi.position_endstop - position_min)
86 else:
87 forcepos[axis] += 1.5 * (position_max - hi.position_endstop)
88 # Perform homing
89 homing_state.home_rails([rail], forcepos, homepos)
90 def home(self, homing_state):
91 # Each axis is homed independently and in order
92 for axis in homing_state.get_axes():
93 if self.dc_module is not None and axis == self.dual_carriage_axis:
94 self.dc_module.home(homing_state)
95 else:
96 self.home_axis(homing_state, axis, self.rails[axis])
97 def _motor_off(self, print_time):
98 self.limits = [(1.0, -1.0)] * 3
99 def _check_endstops(self, move):
100 end_pos = move.end_pos
101 #----------------- Added code ------------
102 override_state = homing.PrinterHoming.override_state()
103 #-----------------------------------------
104 if override_state == 0:
105 for i in (0, 1, 2):
106 if (move.axes_d[i]
107 and (end_pos[i] < self.limits[i][0]
108 or end_pos[i] > self.limits[i][1])):
109 if self.limits[i][0] > self.limits[i][1]:
110 raise move.move_error("Must␣home␣axis␣first")
111 raise move.move_error()
112 def check_move(self, move):
113 limits = self.limits
114 xpos, ypos = move.end_pos[:2]
115 if (xpos < limits[0][0] or xpos > limits[0][1]
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116 or ypos < limits[1][0] or ypos > limits[1][1]):
117 self._check_endstops(move)
118 if not move.axes_d[2]:
119 # Normal XY move - use defaults
120 return
121 # Move with Z - update velocity and accel for slower Z axis
122 self._check_endstops(move)
123 z_ratio = move.move_d / abs(move.axes_d[2])
124 move.limit_speed(
125 self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio)
126 def get_status(self, eventtime):
127 axes = [a for a, (l, h) in zip("xyz", self.limits) if l <= h]
128 return {
129 'homed_axes': "".join(axes),
130 'axis_minimum': self.axes_min,
131 'axis_maximum': self.axes_max,
132 }
133

134 def load_kinematics(toolhead, config):
135 return CartKinematics(toolhead, config)



B
Klipper Source Code Modifications 2

Listing B.1: Printer class in the klippy.py file with modifications
1 #----------------- Added code ------------
2 import socket
3 #-----------------------------------------
4

5 class Printer:
6 config_error = configfile.error
7 command_error = gcode.CommandError
8 def __init__(self, main_reactor, bglogger, start_args):
9 #----------------- Added code ------------
10 self.SERVER_ADDR = 0
11 self.SERVER_PORT = 0
12 self.sock = 0
13 self.addr = 0
14 #-----------------------------------------
15

16 self.bglogger = bglogger
17 self.start_args = start_args
18 self.reactor = main_reactor
19 self.reactor.register_callback(self._connect)
20 self.state_message = message_startup
21 self.in_shutdown_state = False
22 self.run_result = None
23 self.event_handlers = {}
24 self.objects = collections.OrderedDict()
25 # Init printer components that must be setup prior to config
26 for m in [gcode, webhooks]:
27 m.add_early_printer_objects(self)
28 #----------------- Added code ------------
29 # set up pico connection
30 def MakeConnection(self):
31 self.SERVER_ADDR = '192.168.137.117'
32 self.SERVER_PORT = 4242
33 self.sock = socket.socket()
34 self.addr = (self.SERVER_ADDR, self.SERVER_PORT)
35 self.sock.connect(self.addr)
36 def readCommand(self):
37 buf = self.sock.recv(1)
38 return buf
39 def writeCommand(self, data):
40 logging.info('Data:␣%s', data)
41 data_to_bytes = bytes(data, 'utf-8')
42 logging.info('Data_to_bytes:␣%s', data_to_bytes)
43 self.sock.send(data_to_bytes)
44 def CloseConnection(self):
45 self.sock.close()
46 #-----------------------------------------
47 def get_start_args(self):
48 return self.start_args

40
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49 def get_reactor(self):
50 return self.reactor
51 def get_state_message(self):
52 if self.state_message == message_ready:
53 category = "ready"
54 elif self.state_message == message_startup:
55 category = "startup"
56 elif self.in_shutdown_state:
57 category = "shutdown"
58 else:
59 category = "error"
60 return self.state_message, category
61 def is_shutdown(self):
62 return self.in_shutdown_state
63 def _set_state(self, msg):
64 if self.state_message in (message_ready, message_startup):
65 self.state_message = msg
66 if (msg != message_ready
67 and self.start_args.get('debuginput') is not None):
68 self.request_exit('error_exit')
69 def add_object(self, name, obj):
70 if name in self.objects:
71 raise self.config_error(
72 "Printer␣object␣'%s'␣already␣created" % (name,))
73 self.objects[name] = obj
74 def lookup_object(self, name, default=configfile.sentinel):
75 if name in self.objects:
76 return self.objects[name]
77 if default is configfile.sentinel:
78 raise self.config_error("Unknown␣config␣object␣'%s'" % (name,))
79 return default
80 def lookup_objects(self, module=None):
81 if module is None:
82 return list(self.objects.items())
83 prefix = module + '␣'
84 objs = [(n, self.objects[n])
85 for n in self.objects if n.startswith(prefix)]
86 if module in self.objects:
87 return [(module, self.objects[module])] + objs
88 return objs
89 def load_object(self, config, section, default=configfile.sentinel):
90 if section in self.objects:
91 return self.objects[section]
92 module_parts = section.split()
93 module_name = module_parts[0]
94 py_name = os.path.join(os.path.dirname(__file__),
95 'extras', module_name + '.py')
96 py_dirname = os.path.join(os.path.dirname(__file__),
97 'extras', module_name, '__init__.py')
98 if not os.path.exists(py_name) and not os.path.exists(py_dirname):
99 if default is not configfile.sentinel:
100 return default
101 raise self.config_error("Unable␣to␣load␣module␣'%s'" % (section,))
102 mod = importlib.import_module('extras.' + module_name)
103 init_func = 'load_config'
104 if len(module_parts) > 1:
105 init_func = 'load_config_prefix'
106 init_func = getattr(mod, init_func, None)
107 if init_func is None:
108 if default is not configfile.sentinel:
109 return default
110 raise self.config_error("Unable␣to␣load␣module␣'%s'" % (section,))
111 self.objects[section] = init_func(config.getsection(section))
112 return self.objects[section]
113 def _read_config(self):
114 self.objects['configfile'] = pconfig = configfile.PrinterConfig(self)
115 config = pconfig.read_main_config()
116 if self.bglogger is not None:
117 pconfig.log_config(config)
118 # Create printer components
119 for m in [pins, mcu]:



42

120 m.add_printer_objects(config)
121 for section_config in config.get_prefix_sections(''):
122 self.load_object(config, section_config.get_name(), None)
123 for m in [toolhead]:
124 m.add_printer_objects(config)
125 # Validate that there are no undefined parameters in the config file
126 pconfig.check_unused_options(config)
127 def _build_protocol_error_message(self, e):
128 host_version = self.start_args['software_version']
129 msg_update = []
130 msg_updated = []
131 for mcu_name, mcu in self.lookup_objects('mcu'):
132 try:
133 mcu_version = mcu.get_status()['mcu_version']
134 except:
135 logging.exception("Unable␣to␣retrieve␣mcu_version␣from␣mcu")
136 continue
137 if mcu_version != host_version:
138 msg_update.append("%s:␣Current␣version␣%s"
139 % (mcu_name.split()[-1], mcu_version))
140 else:
141 msg_updated.append("%s:␣Current␣version␣%s"
142 % (mcu_name.split()[-1], mcu_version))
143 if not msg_update:
144 msg_update.append("<none>")
145 if not msg_updated:
146 msg_updated.append("<none>")
147 msg = ["MCU␣Protocol␣error",
148 message_protocol_error1 ,
149 "Your␣Klipper␣version␣is:␣%s" % (host_version ,),
150 "MCU(s)␣which␣should␣be␣updated:"]
151 msg += msg_update + ["Up-to-date␣MCU(s):"] + msg_updated
152 msg += [message_protocol_error2 , str(e)]
153 return "\n".join(msg)
154 def _connect(self, eventtime):
155 try:
156 self._read_config()
157 self.send_event("klippy:mcu_identify")
158 for cb in self.event_handlers.get("klippy:connect", []):
159 if self.state_message is not message_startup:
160 return
161 cb()
162 except (self.config_error, pins.error) as e:
163 logging.exception("Config␣error")
164 self._set_state("%s\n%s" % (str(e), message_restart))
165 return
166 except msgproto.error as e:
167 logging.exception("Protocol␣error")
168 self._set_state(self._build_protocol_error_message(e))
169 util.dump_mcu_build()
170 return
171 except mcu.error as e:
172 logging.exception("MCU␣error␣during␣connect")
173 self._set_state("%s%s" % (str(e), message_mcu_connect_error))
174 util.dump_mcu_build()
175 return
176 except Exception as e:
177 logging.exception("Unhandled␣exception␣during␣connect")
178 self._set_state("Internal␣error␣during␣connect:␣%s\n%s"
179 % (str(e), message_restart ,))
180 return
181 try:
182 self._set_state(message_ready)
183 for cb in self.event_handlers.get("klippy:ready", []):
184 if self.state_message is not message_ready:
185 return
186 cb()
187 except Exception as e:
188 logging.exception("Unhandled␣exception␣during␣ready␣callback")
189 self.invoke_shutdown("Internal␣error␣during␣ready␣callback:␣%s"
190 % (str(e),))
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191 def run(self):
192 systime = time.time()
193 monotime = self.reactor.monotonic()
194 logging.info("Start␣printer␣at␣%s␣(%.1f␣%.1f)",
195 time.asctime(time.localtime(systime)), systime, monotime)
196 # Enter main reactor loop
197 try:
198 self.reactor.run()
199 except:
200 msg = "Unhandled␣exception␣during␣run"
201 logging.exception(msg)
202 # Exception from a reactor callback - try to shutdown
203 try:
204 self.reactor.register_callback((lambda e:
205 self.invoke_shutdown(msg)))
206 self.reactor.run()
207 except:
208 logging.exception("Repeat␣unhandled␣exception␣during␣run")
209 # Another exception - try to exit
210 self.run_result = "error_exit"
211 # Check restart flags
212 run_result = self.run_result
213 try:
214 if run_result == 'firmware_restart':
215 self.send_event("klippy:firmware_restart")
216 self.send_event("klippy:disconnect")
217 except:
218 logging.exception("Unhandled␣exception␣during␣post␣run")
219 return run_result
220 def set_rollover_info(self, name, info, log=True):
221 if log:
222 i = 1
223 # logging.info(info)
224 if self.bglogger is not None:
225 self.bglogger.set_rollover_info(name, info)
226 def invoke_shutdown(self, msg):
227 if self.in_shutdown_state:
228 return
229 logging.error("Transition␣to␣shutdown␣state:␣%s", msg)
230 self.in_shutdown_state = True
231 self._set_state("%s%s" % (msg, message_shutdown))
232 for cb in self.event_handlers.get("klippy:shutdown", []):
233 try:
234 cb()
235 except:
236 logging.exception("Exception␣during␣shutdown␣handler")
237 logging.info("Reactor␣garbage␣collection:␣%s",
238 self.reactor.get_gc_stats())
239 def invoke_async_shutdown(self, msg):
240 self.reactor.register_async_callback(
241 (lambda e: self.invoke_shutdown(msg)))
242 def register_event_handler(self, event, callback):
243 self.event_handlers.setdefault(event, []).append(callback)
244 def send_event(self, event, *params):
245 return [cb(*params) for cb in self.event_handlers.get(event, [])]
246 def request_exit(self, result):
247 if self.run_result is None:
248 self.run_result = result
249 self.reactor.end()

Listing B.2: GCodeDispatch class in the gcode.py file with modifications
1 # Parse and dispatch G-Code commands
2 class GCodeDispatch:
3 error = CommandError
4 Coord = Coord
5 def __init__(self, printer):
6 self.printer = printer
7 self.is_fileinput = not not printer.get_start_args().get("debuginput")
8 printer.register_event_handler("klippy:ready", self._handle_ready)
9 printer.register_event_handler("klippy:shutdown", self._handle_shutdown)
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10 printer.register_event_handler("klippy:disconnect",
11 self._handle_disconnect)
12 # Command handling
13 self.is_printer_ready = False
14 self.mutex = printer.get_reactor().mutex()
15 self.output_callbacks = []
16 self.base_gcode_handlers = self.gcode_handlers = {}
17 self.ready_gcode_handlers = {}
18 self.mux_commands = {}
19 self.gcode_help = {}
20 self.status_commands = {}
21 self.delay = 0
22 # Signal parameters
23 self.frequency = 2000
24 self.duty_cycle = 0.5
25 # Register commands needed before config file is loaded
26 handlers = ['M110', 'M112', 'M115',
27 #----------------- Added code ------------
28 'M60', 'M61', 'M62',
29 #-----------------------------------------
30 'RESTART', 'FIRMWARE_RESTART', 'ECHO', 'STATUS', 'HELP']
31 for cmd in handlers:
32 func = getattr(self, 'cmd_' + cmd)
33 desc = getattr(self, 'cmd_' + cmd + '_help', None)
34 self.register_command(cmd, func, True, desc)
35 def is_traditional_gcode(self, cmd):
36 # A "traditional" g-code command is a letter and followed by a number
37 try:
38 cmd = cmd.upper().split()[0]
39 val = float(cmd[1:])
40

41 return cmd[0].isupper() and cmd[1].isdigit()
42 except:
43 return False
44 def register_command(self, cmd, func, when_not_ready=False, desc=None):
45 # logging.info("CMD: %s FUNC: %s", cmd, func)
46 if func is None:
47 old_cmd = self.ready_gcode_handlers.get(cmd)
48 if cmd in self.ready_gcode_handlers:
49 del self.ready_gcode_handlers[cmd]
50 if cmd in self.base_gcode_handlers:
51 del self.base_gcode_handlers[cmd]
52 self._build_status_commands()
53 return old_cmd
54 if cmd in self.ready_gcode_handlers:
55 raise self.printer.config_error(
56 "gcode␣command␣%s␣already␣registered" % (cmd,))
57 if not self.is_traditional_gcode(cmd):
58 origfunc = func
59 func = lambda params: origfunc(self._get_extended_params(params))
60 self.ready_gcode_handlers[cmd] = func
61 if when_not_ready:
62 self.base_gcode_handlers[cmd] = func
63 if desc is not None:
64 self.gcode_help[cmd] = desc
65 self._build_status_commands()
66 def register_mux_command(self, cmd, key, value, func, desc=None):
67 prev = self.mux_commands.get(cmd)
68 if prev is None:
69 handler = lambda gcmd: self._cmd_mux(cmd, gcmd)
70 self.register_command(cmd, handler, desc=desc)
71 self.mux_commands[cmd] = prev = (key, {})
72 prev_key, prev_values = prev
73 if prev_key != key:
74 raise self.printer.config_error(
75 "mux␣command␣%s␣%s␣%s␣may␣have␣only␣one␣key␣(%s)" % (
76 cmd, key, value, prev_key))
77 if value in prev_values:
78 raise self.printer.config_error(
79 "mux␣command␣%s␣%s␣%s␣already␣registered␣(%s)" % (
80 cmd, key, value, prev_values))
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81 prev_values[value] = func
82 def get_command_help(self):
83 return dict(self.gcode_help)
84 def get_status(self, eventtime):
85 return {'commands': self.status_commands}
86 def _build_status_commands(self):
87 commands = {cmd: {} for cmd in self.gcode_handlers}
88 for cmd in self.gcode_help:
89 if cmd in commands:
90 commands[cmd]['help'] = self.gcode_help[cmd]
91 self.status_commands = commands
92 def register_output_handler(self, cb):
93 self.output_callbacks.append(cb)
94 def _handle_shutdown(self):
95 if not self.is_printer_ready:
96 return
97 self.is_printer_ready = False
98 self.gcode_handlers = self.base_gcode_handlers
99 self._build_status_commands()
100 self._respond_state("Shutdown")
101 def _handle_disconnect(self):
102 self._respond_state("Disconnect")
103 def _handle_ready(self):
104 self.is_printer_ready = True
105 self.gcode_handlers = self.ready_gcode_handlers
106 self._build_status_commands()
107 self._respond_state("Ready")
108 # Parse input into commands
109 args_r = re.compile('([A-Z_]+|[A-Z*/])')
110 def _process_commands(self, commands, need_ack=False):
111 for line in commands:
112 # Ignore comments and leading/trailing spaces
113 line = origline = line.strip()
114 cpos = line.find(';')
115 if cpos >= 0:
116 line = line[:cpos]
117 # Break line into parts and determine command
118 parts = self.args_r.split(line.upper())
119 numparts = len(parts)
120 cmd = ""
121 if numparts >= 3 and parts[1] != 'N':
122 cmd = parts[1] + parts[2].strip()
123 elif numparts >= 5 and parts[1] == 'N':
124 # Skip line number at start of command
125 cmd = parts[3] + parts[4].strip()
126 # Build gcode "params" dictionary
127 params = { parts[i]: parts[i+1].strip()
128 for i in range(1, numparts, 2) }
129 gcmd = GCodeCommand(self, cmd, origline, params, need_ack)
130 # Invoke handler for command
131 handler = self.gcode_handlers.get(cmd, self.cmd_default)
132 try:
133 handler(gcmd)
134 except self.error as e:
135 self._respond_error(str(e))
136 self.printer.send_event("gcode:command_error")
137 if not need_ack:
138 raise
139 except:
140 msg = 'Internal␣error␣on␣command:"%s"' % (cmd,)
141 logging.exception(msg)
142 self.printer.invoke_shutdown(msg)
143 self._respond_error(msg)
144 if not need_ack:
145 raise
146 gcmd.ack()
147 def run_script_from_command(self, script):
148 self._process_commands(script.split('\n'), need_ack=False)
149 def run_script(self, script, data):
150 with self.mutex:
151 self._process_commands(script.split('\n'), need_ack=False)
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152 def get_mutex(self):
153 return self.mutex
154 def create_gcode_command(self, command, commandline, params):
155 return GCodeCommand(self, command, commandline, params, False)
156 # Response handling
157 def respond_raw(self, msg):
158 for cb in self.output_callbacks:
159 cb(msg)
160 def respond_info(self, msg, log=True):
161 if log:
162 logging.info(msg)
163 lines = [l.strip() for l in msg.strip().split('\n')]
164 self.respond_raw("//␣" + "\n//␣".join(lines))
165 def _respond_error(self, msg):
166 logging.warning(msg)
167 lines = msg.strip().split('\n')
168 if len(lines) > 1:
169 self.respond_info("\n".join(lines), log=False)
170 self.respond_raw('!!␣%s' % (lines[0].strip(),))
171 if self.is_fileinput:
172 self.printer.request_exit('error_exit')
173 def _respond_state(self, state):
174 self.respond_info("Klipper␣state:␣%s" % (state,), log=False)
175 # Parameter parsing helpers
176 extended_r = re.compile(
177 r'^\s*(?:N[0-9]+\s*)?'
178 r'(?P<cmd>[a-zA-Z_][a-zA-Z0-9_]+)(?:\s+|$)'
179 r'(?P<args>[^#*;]*?)'
180 r'\s*(?:[#*;].*)?$')
181 def _get_extended_params(self, gcmd):
182 m = self.extended_r.match(gcmd.get_commandline())
183 if m is None:
184 raise self.error("Malformed␣command␣'%s'"
185 % (gcmd.get_commandline(),))
186 eargs = m.group('args')
187 try:
188 eparams = [earg.split('=', 1) for earg in shlex.split(eargs)]
189 eparams = { k.upper(): v for k, v in eparams }
190 gcmd._params.clear()
191 gcmd._params.update(eparams)
192 return gcmd
193 except ValueError as e:
194 raise self.error("Malformed␣command␣'%s'"
195 % (gcmd.get_commandline(),))
196 # G-Code special command handlers
197 def cmd_default(self, gcmd):
198 cmd = gcmd.get_command()
199 if cmd == 'M105':
200 # Don't warn about temperature requests when not ready
201 gcmd.ack("T:0")
202 return
203 if cmd == 'M21':
204 # Don't warn about sd card init when not ready
205 return
206 if not self.is_printer_ready:
207 raise gcmd.error(self.printer.get_state_message()[0])
208 return
209 if not cmd:
210 cmdline = gcmd.get_commandline()
211 if cmdline:
212 logging.debug(cmdline)
213 return
214 if cmd.startswith("M117␣") or cmd.startswith("M118␣"):
215 # Handle M117/M118 gcode with numeric and special characters
216 handler = self.gcode_handlers.get(cmd[:4], None)
217 if handler is not None:
218 handler(gcmd)
219 return
220 elif cmd in ['M140', 'M104'] and not gcmd.get_float('S', 0.):
221 # Don't warn about requests to turn off heaters when not present
222 return
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223 elif cmd == 'M107' or (cmd == 'M106' and (
224 not gcmd.get_float('S', 1.) or self.is_fileinput)):
225 # Don't warn about requests to turn off fan when fan not present
226 return
227 gcmd.respond_info('Unknown␣command:"%s"' % (cmd,))
228 def _cmd_mux(self, command, gcmd):
229 key, values = self.mux_commands[command]
230 if None in values:
231 key_param = gcmd.get(key, None)
232 else:
233 key_param = gcmd.get(key)
234 if key_param not in values:
235 raise gcmd.error("The␣value␣'%s'␣is␣not␣valid␣for␣%s"
236 % (key_param, key))
237 values[key_param](gcmd)
238 #----------------- Added code ------------
239 # send data to raspberry pico
240 def cmd_M60(self, gcmd):
241 # Start connection with pico
242 try:
243 self.printer.MakeConnection()
244 except:
245 raise self.error('No␣connection␣established')
246 def cmd_M61(self, gcmd):
247 # Write signal parameters to pico
248 params = gcmd.get_command_parameters()
249 if 'F' in params:
250 # check for change in frequency
251 freq = int(params['F'])
252 if freq >= 100 and freq <= 100000:
253 send_freq = freq
254 self.frequency = send_freq
255 else:
256 send_freq = self.frequency
257 if 'D' in params:
258 # check for change in duty cycle
259 duty_cycle = float(params['D'])
260 if duty_cycle > 0 and duty_cycle <= 1:
261 send_duty_cycle = duty_cycle
262 self.duty_cycle = send_duty_cycle
263 else:
264 send_duty_cycle = self.duty_cycle
265 try:
266 self.printer.writeCommand(f'freq={send_freq},duty={send_duty_cycle};\n')
267 except:
268 raise self.error('Could␣not␣write␣to␣Raspberry␣Pi␣Pico')
269 def cmd_M62(self, gcmd):
270 # Close connection with pico
271 try:
272 self.printer.CloseConnection()
273 except:
274 raise self.error('Connection␣not␣closed')
275 #-----------------------------------------
276 # Low-level G-Code commands that are needed before the config file is loaded
277 def cmd_M110(self, gcmd):
278 # Set Current Line Number
279 pass
280 def cmd_M112(self, gcmd):
281 # Emergency Stop
282 self.printer.invoke_shutdown("Shutdown␣due␣to␣M112␣command")
283 def cmd_M115(self, gcmd):
284 # Get Firmware Version and Capabilities
285 software_version = self.printer.get_start_args().get('software_version')
286 kw = {"FIRMWARE_NAME": "Klipper", "FIRMWARE_VERSION": software_version}
287 msg = "␣".join(["%s:%s" % (k, v) for k, v in kw.items()])
288 did_ack = gcmd.ack(msg)
289 if not did_ack:
290 gcmd.respond_info(msg)
291 def request_restart(self, result):
292 if self.is_printer_ready:
293 toolhead = self.printer.lookup_object('toolhead')
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294 print_time = toolhead.get_last_move_time()
295 if result == 'exit':
296 logging.info("Exiting␣(print␣time␣%.3fs)" % (print_time ,))
297 self.printer.send_event("gcode:request_restart", print_time)
298 toolhead.dwell(0.500)
299 toolhead.wait_moves()
300 self.printer.request_exit(result)
301 cmd_RESTART_help = "Reload␣config␣file␣and␣restart␣host␣software"
302 def cmd_RESTART(self, gcmd):
303 self.request_restart('restart')
304 cmd_FIRMWARE_RESTART_help = "Restart␣firmware,␣host,␣and␣reload␣config"
305 def cmd_FIRMWARE_RESTART(self, gcmd):
306 self.request_restart('firmware_restart')
307 def cmd_ECHO(self, gcmd):
308 gcmd.respond_info(gcmd.get_commandline(), log=False)
309 cmd_STATUS_help = "Report␣the␣printer␣status"
310 def cmd_STATUS(self, gcmd):
311 if self.is_printer_ready:
312 self._respond_state("Ready")
313 return
314 msg = self.printer.get_state_message()[0]
315 msg = msg.rstrip() + "\nKlipper␣state:␣Not␣ready"
316 raise gcmd.error(msg)
317 cmd_HELP_help = "Report␣the␣list␣of␣available␣extended␣G-Code␣commands"
318 def cmd_HELP(self, gcmd):
319 cmdhelp = []
320 if not self.is_printer_ready:
321 cmdhelp.append("Printer␣is␣not␣ready␣-␣not␣all␣commands␣available.")
322 cmdhelp.append("Available␣extended␣commands:")
323 for cmd in sorted(self.gcode_handlers):
324 if cmd in self.gcode_help:
325 cmdhelp.append("%-10s:␣%s" % (cmd, self.gcode_help[cmd]))
326 gcmd.respond_info("\n".join(cmdhelp), log=False)

Listing B.3: VirtualSD class in the virtual_sd.py file with modifications
1 class VirtualSD:
2 def __init__(self, config):
3 self.printer = config.get_printer()
4 self.printer.register_event_handler("klippy:shutdown",
5 self.handle_shutdown)
6 #----------------- Added code ------------
7 self.data = 0
8 self.data_i2c = 255
9 self.data_prev = 0
10

11 self.set_break = False
12 self.pause = False
13 #-----------------------------------------
14

15 # sdcard state
16 sd = config.get('path')
17 self.sdcard_dirname = os.path.normpath(os.path.expanduser(sd))
18 self.current_file = None
19 self.file_position = self.file_size = 0
20 # Print Stat Tracking
21 self.print_stats = self.printer.load_object(config, 'print_stats')
22 # Work timer
23 self.reactor = self.printer.get_reactor()
24 self.must_pause_work = self.cmd_from_sd = False
25 self.next_file_position = 0
26 self.work_timer = None
27 # Error handling
28 gcode_macro = self.printer.load_object(config, 'gcode_macro')
29 self.on_error_gcode = gcode_macro.load_template(
30 config, 'on_error_gcode', DEFAULT_ERROR_GCODE)
31 # Register commands
32 self.gcode = self.printer.lookup_object('gcode')
33 for cmd in ['M20', 'M21', 'M23', 'M24', 'M25', 'M26', 'M27']:
34 self.gcode.register_command(cmd, getattr(self, 'cmd_' + cmd))
35 for cmd in ['M28', 'M29', 'M30']:
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36 self.gcode.register_command(cmd, self.cmd_error)
37 self.gcode.register_command(
38 "SDCARD_RESET_FILE", self.cmd_SDCARD_RESET_FILE ,
39 desc=self.cmd_SDCARD_RESET_FILE_help)
40 self.gcode.register_command(
41 "SDCARD_PRINT_FILE", self.cmd_SDCARD_PRINT_FILE ,
42 desc=self.cmd_SDCARD_PRINT_FILE_help)
43 def handle_shutdown(self):
44 if self.work_timer is not None:
45 self.must_pause_work = True
46 try:
47 readpos = max(self.file_position - 1024, 0)
48 readcount = self.file_position - readpos
49 self.current_file.seek(readpos)
50 data = self.current_file.read(readcount + 128)
51 except:
52 logging.exception("virtual_sdcard␣shutdown␣read")
53 return
54 logging.info("Virtual␣sdcard␣(%d):␣%s\nUpcoming␣(%d):␣%s",
55 readpos, repr(data[:readcount]),
56 self.file_position, repr(data[readcount:]))
57 def stats(self, eventtime):
58 if self.work_timer is None:
59 return False, ""
60 return True, "sd_pos=%d" % (self.file_position ,)
61 def get_file_list(self, check_subdirs=False):
62 if check_subdirs:
63 flist = []
64 for root, dirs, files in os.walk(
65 self.sdcard_dirname, followlinks=True):
66 for name in files:
67 ext = name[name.rfind('.')+1:]
68 if ext not in VALID_GCODE_EXTS:
69 continue
70 full_path = os.path.join(root, name)
71 r_path = full_path[len(self.sdcard_dirname) + 1:]
72 size = os.path.getsize(full_path)
73 flist.append((r_path, size))
74 return sorted(flist, key=lambda f: f[0].lower())
75 else:
76 dname = self.sdcard_dirname
77 try:
78 filenames = os.listdir(self.sdcard_dirname)
79 return [(fname, os.path.getsize(os.path.join(dname, fname)))
80 for fname in sorted(filenames, key=str.lower)
81 if not fname.startswith('.')
82 and os.path.isfile((os.path.join(dname, fname)))]
83 except:
84 logging.exception("virtual_sdcard␣get_file_list")
85 raise self.gcode.error("Unable␣to␣get␣file␣list")
86 def get_status(self, eventtime):
87 return {
88 'file_path': self.file_path(),
89 'progress': self.progress(),
90 'is_active': self.is_active(),
91 'file_position': self.file_position,
92 'file_size': self.file_size,
93 }
94 def file_path(self):
95 if self.current_file:
96 return self.current_file.name
97 return None
98 def progress(self):
99 if self.file_size:
100 return float(self.file_position) / self.file_size
101 else:
102 return 0.
103 def is_active(self):
104 return self.work_timer is not None
105 def do_pause(self):
106 if self.work_timer is not None:
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107 self.must_pause_work = True
108 while self.work_timer is not None and not self.cmd_from_sd:
109 self.reactor.pause(self.reactor.monotonic() + .001)
110 def do_resume(self):
111 if self.work_timer is not None:
112 raise self.gcode.error("SD␣busy")
113 self.must_pause_work = False
114 self.work_timer = self.reactor.register_timer(
115 self.work_handler, self.reactor.NOW)
116 def do_cancel(self):
117 if self.current_file is not None:
118 self.do_pause()
119 self.current_file.close()
120 self.current_file = None
121 self.print_stats.note_cancel()
122 self.file_position = self.file_size = 0
123 # G-Code commands
124 def cmd_error(self, gcmd):
125 raise gcmd.error("SD␣write␣not␣supported")
126 def _reset_file(self):
127 if self.current_file is not None:
128 self.do_pause()
129 self.current_file.close()
130 self.current_file = None
131 self.file_position = self.file_size = 0
132 self.print_stats.reset()
133 self.printer.send_event("virtual_sdcard:reset_file")
134 cmd_SDCARD_RESET_FILE_help = "Clears␣a␣loaded␣SD␣File.␣Stops␣the␣print␣"\
135 "if␣necessary"
136 def cmd_SDCARD_RESET_FILE(self, gcmd):
137 if self.cmd_from_sd:
138 raise gcmd.error(
139 "SDCARD_RESET_FILE␣cannot␣be␣run␣from␣the␣sdcard")
140 self._reset_file()
141 cmd_SDCARD_PRINT_FILE_help = "Loads␣a␣SD␣file␣and␣starts␣the␣print.␣␣May␣"\
142 "include␣files␣in␣subdirectories."
143 def cmd_SDCARD_PRINT_FILE(self, gcmd):
144 if self.work_timer is not None:
145 raise gcmd.error("SD␣busy")
146 self._reset_file()
147 filename = gcmd.get("FILENAME")
148 if filename[0] == '/':
149 filename = filename[1:]
150 self._load_file(gcmd, filename, check_subdirs=True)
151 self.do_resume()
152 def cmd_M20(self, gcmd):
153 # List SD card
154 files = self.get_file_list()
155 gcmd.respond_raw("Begin␣file␣list")
156 for fname, fsize in files:
157 gcmd.respond_raw("%s␣%d" % (fname, fsize))
158 gcmd.respond_raw("End␣file␣list")
159 def cmd_M21(self, gcmd):
160 # Initialize SD card
161 gcmd.respond_raw("SD␣card␣ok")
162 def cmd_M23(self, gcmd):
163 # Select SD file
164 if self.work_timer is not None:
165 raise gcmd.error("SD␣busy")
166 self._reset_file()
167 filename = gcmd.get_raw_command_parameters().strip()
168 if filename.startswith('/'):
169 filename = filename[1:]
170 self._load_file(gcmd, filename)
171 def _load_file(self, gcmd, filename, check_subdirs=False):
172 files = self.get_file_list(check_subdirs)
173 flist = [f[0] for f in files]
174 files_by_lower = { fname.lower(): fname for fname, fsize in files }
175 fname = filename
176 try:
177 if fname not in flist:
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178 fname = files_by_lower[fname.lower()]
179 fname = os.path.join(self.sdcard_dirname, fname)
180 f = io.open(fname, 'r', newline='')
181 f.seek(0, os.SEEK_END)
182 fsize = f.tell()
183 f.seek(0)
184 except:
185 logging.exception("virtual_sdcard␣file␣open")
186 raise gcmd.error("Unable␣to␣open␣file")
187 gcmd.respond_raw("File␣opened:%s␣Size:%d" % (filename, fsize))
188 gcmd.respond_raw("File␣selected")
189 self.current_file = f
190 self.file_position = 0
191 self.file_size = fsize
192 self.print_stats.set_current_file(filename)
193 def cmd_M24(self, gcmd):
194 # Start/resume SD print
195 self.do_resume()
196 def cmd_M25(self, gcmd):
197 # Pause SD print
198 self.do_pause()
199 def cmd_M26(self, gcmd):
200 # Set SD position
201 if self.work_timer is not None:
202 raise gcmd.error("SD␣busy")
203 pos = gcmd.get_int('S', minval=0)
204 self.file_position = pos
205 def cmd_M27(self, gcmd):
206 # Report SD print status
207 if self.current_file is None:
208 gcmd.respond_raw("Not␣SD␣printing.")
209 return
210 gcmd.respond_raw("SD␣printing␣byte␣%d/%d"
211 % (self.file_position, self.file_size))
212 def get_file_position(self):
213 return self.next_file_position
214 def set_file_position(self, pos):
215 self.next_file_position = pos
216 def is_cmd_from_sd(self):
217 return self.cmd_from_sd
218 #----------------- Added code ------------
219 # Regulate printer control based on communication input
220 def _read_data(self):
221 while True:
222 buf = self.printer.readCommand()
223 self.data_prev = self.data
224 self.data = int.from_bytes(buf, byteorder='big')
225 logging.info('Short␣Circuit␣Present:␣%s', buf)
226 time.sleep(0.1)
227

228 self.pause = True
229 if self.set_break:
230 break
231 logging.info('Program␣Completed')
232 #-----------------------------------------
233 # Background work timer
234 def work_handler(self, eventtime):
235 logging.info("Starting␣SD␣card␣print␣(position␣%d)", self.file_position)
236 self.reactor.unregister_timer(self.work_timer)
237 try:
238 self.current_file.seek(self.file_position)
239 except:
240 logging.exception("virtual_sdcard␣seek")
241 self.work_timer = None
242 return self.reactor.NEVER
243 self.print_stats.note_start()
244 gcode_mutex = self.gcode.get_mutex()
245 partial_input = ""
246 lines = []
247 error_message = None
248
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249 #----------------- Added code ------------
250 listener_thread = threading.Thread(target=self._read_data, daemon=True)
251 listener_thread.start()
252 #-----------------------------------------
253 while not self.must_pause_work:
254 if not lines:
255 # Read more data
256 try:
257 data = self.current_file.read(8192)
258 except:
259 logging.exception("virtual_sdcard␣read")
260 #----------------- Added code ------------
261 self.set_break = True
262 #-----------------------------------------
263 break
264 if not data:
265 # End of file
266 self.current_file.close()
267 self.current_file = None
268 logging.info("Finished␣SD␣card␣print")
269 self.gcode.respond_raw("Done␣printing␣file")
270 break
271 lines = data.split('\n')
272 lines[0] = partial_input + lines[0]
273 partial_input = lines.pop()
274 lines.reverse()
275 self.reactor.pause(self.reactor.NOW)
276 continue
277 #----------------- Added code ------------
278 if self.data == 1 and self.pause == True:
279 lines.append('G1␣Z-0.1␣F10\r') # add movement for short circuit
280 lines.append('G1␣Z0.1␣F10\r')
281 # lines.append('G4 P100') # add 0.1 [s] pause for multiple discharge

detection
282 self.pause = False
283 #-----------------------------------------
284 # Pause if any other request is pending in the gcode class
285 if gcode_mutex.test():
286 self.reactor.pause(self.reactor.monotonic() + 0.100)
287 continue
288 # Dispatch command
289 self.cmd_from_sd = True
290 line = lines.pop()
291 if sys.version_info.major >= 3:
292 next_file_position = self.file_position + len(line.encode()) + 1
293 else:
294 next_file_position = self.file_position + len(line) + 1
295 self.next_file_position = next_file_position
296 try:
297 self.gcode.run_script(line, self.data)
298 except self.gcode.error as e:
299 error_message = str(e)
300 try:
301 self.gcode.run_script(self.on_error_gcode.render(), self.data)
302 except:
303 logging.exception("virtual_sdcard␣on_error")
304 break
305 except:
306 logging.exception("virtual_sdcard␣dispatch")
307 break
308 self.cmd_from_sd = False
309 self.file_position = self.next_file_position
310 # Do we need to skip around?
311 if self.next_file_position != next_file_position:
312 try:
313 self.current_file.seek(self.file_position)
314 except:
315 logging.exception("virtual_sdcard␣seek")
316 self.work_timer = None
317 return self.reactor.NEVER
318 lines = []
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319 partial_input = ""
320

321 logging.info("Exiting␣SD␣card␣print␣(position␣%d)", self.file_position)
322 self.work_timer = None
323 self.cmd_from_sd = False
324 if error_message is not None:
325 self.print_stats.note_error(error_message)
326 elif self.current_file is not None:
327 self.print_stats.note_pause()
328 else:
329 self.print_stats.note_complete()
330

331 #----------------- Added code ------------
332 listener_thread.join()
333 #-----------------------------------------
334 return self.reactor.NEVER
335 # except KeyboardInterrupt:
336 # pass
337 # finally:
338 # device.stop()
339

340 def load_config(config):
341 return VirtualSD(config)



C
Power Supply

The power supply comprises of three primary components: the power source, power amplification,
and square wave generator. Consequently, a comprehensive examination of numerous components
is required. This chapter will present figures depicting the outputs of these components to assess their
functionality.

C.1. DC to AC Converter
Figure C.1 displays the output of the DC to AC converter, commonly referred to as the ZVS Flyback
Driver. This figure confirms the successful completion of the DC to AC conversion process as intended.
Additionally, it highlights the amplification of pi, which is evident in the higher voltages present in the
AC lines.

Figure C.1: Input and output voltage of the DC to AC converter.

54



C.2. Transformer 55

C.2. Transformer
The output of the transformer is also important to measure, as it should deliver the desired voltage
amplification. The amplification is shown in Figure C.2. The transformer has achieved the goal of
amplifying the voltage by 2.5.

Figure C.2: Input and output voltage of the transformer.

C.3. Rectifier and Capacitor
The conversion of the AC to DC voltage is shown in Figure C.3. This figure shows the output of the
rectifier and capacitor as the DC voltage.

Figure C.3: Input and output voltage of the rectifier and capacitor.
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C.4. Discharge Time of Circuit
To stabilize the voltage during discharge phases, the capacitance C calculated based on the charge
Q discharged over 10 microseconds (the typical duration of a spark) with a 50A current, taking into
account a voltage fluctuation ∆V of 20V:

Q = 50 A× 10× 10−6s = 500× 10−6C,

Thus:
C =

500× 10−6C
20V

= 25µF.

The choice of a 40 µF capacitor offers additional margin to ensure reliable operation under varying
conditions and provides enhanced capability for energy storage and pulse handling, calculated as:

The resistor is placed in parallel with the capacitor for safety reasons. The resistor was chosen based
on availability. The value of the chosen resistor is 1.2 MΩ. The resulting discharge time constant is
calculated as follows:

τ = R× C = 1.2× 106 × 40× 10−6 = 48s

The experiments yielded the results depicted in Figures C.4, illustrating the variations in discharge time
depending on whether the square wave is active or inactive. The theoretical RC calculation was fairly
accurate when the square wave circuit was off. The discrepancy arises from the additional capacitances
at the power source, which reduce the circuit’s RC value. When the square wave circuit is on, the circuit
exhibits a much lower RC value due to the significant influence of MOSFETs and other resistances,
which accelerate the discharge process.

(a) The discharge time when the square wave circuit is turned off. (b) The discharge time when the square wave circuit is turned on.

Figure C.4: The discharge time of the power amplification circuit.
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C.5. Square Wave Generator
The complete schematic of the square wave generator that had been given to us is visible in Figures
C.5 and C.6.
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Figure C.5: Schematic of Gate Driver.
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Figure C.6: Schematic of Main Board with gate drivers.



D
IRF300P226 MOSFET voltage-current

limits

Figure D.1: IRF300P226 MOSFET voltage-current limits [46].
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E
IPW65R037C6 MOSFET

voltage-current limits

Figure E.1: IPW65R037C6 MOSFET voltage-current limits [47].
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