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Abstract

Testing of software is crucial to the quality of the
final product - manual test assertion creation has be-
come a significant bottleneck in the development pro-
cess, which delays release. Having shown promise in
generating assertions automatically, Large language
models (LLMs) have showed promise in generating
assertions automatically. This is due to their fluency
in both natural languages and code, as well as the fact
that they produce tests a lot faster than a developer
would. However, LLMsmust reckon with deployment
issues that come with the high computation time and
latency of large models, or the limited functionality of
their smaller, locally-executable counterparts. Knowl-
edge distillation, a technique that aims to "transfer
knowledge" from a teacher model to a student one,
can thus enable the potential of smaller and faster
models. This drives the research to explore the ef-
fectiveness of knowledge distillation in developing
a smaller and efficient model for assertion genera-
tion. With CodeT5 as the teacher model, the student
model learns from the teacher. The student is itera-
tively trained in epochs, validated on unseen data.The
metrics used to evaluate include assertion accuracy,
similarity to teacher model output and ground truth,
model size, inference time, with the goal to quantify
the trade-offs and determine the feasibility of dis-
tilled models for practical assertion generation. We
presented and analyzed the results we achieved. The
capability the student showed was around 1/3 of that
of the teacher, which suggest a potential for creating
efficient, yet reliable assertion generation tools.

1 Introduction
Software testing is a critical process for ensuring software quality
by evaluating and verifying that a product or application behaves as
intended. Its goal is to identify defects, ensure requirements are met,
and improve overall reliability before release. This is done with the
help of "test cases" - different scenarios in which a given function-
ality of the software is tested. However, crafting effective test cases,
and in particular the manual creation of accurate test assertions,
represents a significant bottleneck [15]. Developers dedicate con-
siderable time to manually defining and reviewing these assertions,
which could cause delays in releasing a software [8]. While tech-
niques like Search-Based Software Testing (SBST), which automate
the generation of test data and test assertions, offer some advance-
ments [7] such as reduced manual effort in the initial generation
of tests, and other approaches like dynamic invariant detection [2]
exist, they often still rely on manual verification against confirmed
correct behaviors or runtime observations, demanding substantial
developer involvement [15].
Large Language Models (LLMs) present exciting possibilities for
automating and improving aspects of software testing, including
test case and assertion generation [10]. Their combined fluency in
natural language and code [1, 14] allows them to produce effective
andmore readable tests [3]. Nevertheless, deploying powerful LLMs
like GPT-4 introduces challenges: high computational cost, latency
issues, and a dependence on persistent internet connectivity hinder

their use in resource-constrained environments. This underscores a
major practical limitation of current powerful LLMs as they cannot
be easily or effectively deployed everywhere. Smaller, local models
often lack the coding sophistication to create appropriate assertions
for complex code structures.
Knowledge distillation [13] emerges as a potential solution. By
transferring the knowledge of a larger, more capable "teacher" LLM
to a smaller "student" model, we could develop a more efficient,
localized model capable of assertion generation with acceptable
quality, mitigating the drawbacks of larger LLMs. Knowledge dis-
tillation is particularly promising as it allows for the transfer of
nuanced code understanding and assertion logic, learned by a large
model, into a more resource-efficient student model. Although
LLMs have been explored for testing and knowledge distillation
[3, 10, 13, 14], a practical, small-scale model optimized for efficient
and accurate assertion generation for complex code structures is
yet to be perfected.
This work aims to bridge this gap by evaluating knowledge distilla-
tion for creating a small, efficient assertion generation model. We
will distill a large LLM’s assertion generation capabilities into a
smaller model, assess its performance characteristics against the
teacher and a baseline, and evaluate its effectiveness using a dedi-
cated dataset of code. Success in this area could significantly widen
the availability of advanced assertion generation capabilities, mak-
ing them accessible in diverse development environments.
Our distilled student model showed promise in reproducing teacher
assertion with results for accuracy, precision, recall and f1-score
(all these metrics will be explained later in the paper) ranging from
0.356 to 0.364 and a similarity score of 0.816, while being signifi-
cantly smaller (around 4 times) than its teacher. The student also
showed promise when we tested it against the ground-truth - repro-
ducing around 30% of the factual assertions. While exact replication
of the teacher’s outputs and the ground-truth was challenging,
these results suggest a significant potential for creating efficient,
yet reliable assertion generation tools.

2 Background
This section outlines the foundational concepts crucial for under-
standing the subsequent research: automated test assertion gener-
ation, the role and limitations of Large Language Models in this
domain, and the principles of knowledge distillation.
Assertion-based Testing. In software testing, an assertion test is
a boolean expression in a test case that verifies if a specific con-
dition holds true at a certain point during the program execution.
Typically, assertions signal a defect whenever they fail. Manual gen-
eration of complete and correct assertions is the most significant
bottleneck in software development, consuming much of develop-
ers’ time and often delaying release.
Search-Based Software Testing. Search-Based Software Testing
(SBST) applies meta-heuristic search techniques to generate test
data. Thus, SBST automates some parts of test case generation, but
the assertions generated from it are observed runtime behavior.
This observation means an assertion can be a manifestation of the
currently misbehaving behavior of the program rather than the
reflectively intended correct behavior; therefore, such assertions
need to undergo deliberate manual inspection and improvement.
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Dynamic InvariantDetection.Dynamic invariant detection seeks
to determine likely invariants of a program from the execution
traces. However, such tools generate very many invariants, many of
which may be trivial, coincidental, or not immediately useful as test
assertions-and thus require the developer to expend heavy effort in
curation. The main trade-off both SBST and dynamic invariant de-
tection frequently offer is between the level of automation achieved
and the quality, relevance, and manual inspection costs incurred
in verifying one asserted statement. Large Language Models for
Assertion-based Testing. There are substantial trade-offs when
it comes to the usefulness of LLMs in real-world software devel-
opment processes. Large-scale, state-of-the-art LLMs (like GPT-4)
perform well but come with high computational costs, which cause
generation latency and frequently call for cloud-based APIs, which
raises questions about data privacy and continuous connectivity.
The nuanced understanding and sophisticated generation capabili-
ties of their larger counterparts are typically absent from smaller, lo-
cally executable LLMs, which are faster and more resource-efficient.
They frequently struggle with complex code structures or generate
generic, less insightful assertions. This leads to a choice between
reduced cost/latency and compromised capability or high capability
with high cost/latency.
Knowledge distillation. Knowledge distillation is technique that
offers an interesting approach to model compression. The core idea
behind it is to use the knowledge of a large model, the teacher, to
train a smaller one, called the student model. The student model
learns both from the teacher one (soft target) as well as from a
ground-truth data (hard target). By learning from both the ground-
truth labels and the teacher, the student model can often learn more
effectively and generalize better than if trained solely on the hard
labels. In order to do that, a loss function - a function that "shows
the difference" between the student’s output and the reference one,
is utilized. The final loss for training the student is a weighted sum
of the loss on soft targets (mimicking the teacher) and the loss on
hard targets (fitting the ground truth). A hyperparameter (alpha)
balances the contribution of these two loss components. After that,
the weights of the model are updated in a effort to minimize this
loss and the process occurs again.
In the context of this, study large language models have showed
promise. However, there are some barriers to practical adoption.
Knowledge distillation provides an attractive means to extract a
large teacher model’s nuanced code understanding and assertion-
generation rationale into a compact, nimble student model. This
could enable the use of helpful, LLM-based assertion generation
tools in computationally resource-poor settings, or for applications
requiring lower latency.

3 Methodology
With the focus on employing knowledge distillation techniques in
building a smaller and efficient language model used for assertion
generation, this chapter explains the step-by-step process followed
for the study. The CodeT5 [12] “teacher” model is trained and re-
fined, then a specific dataset is used to train a “student” model to
mimic the behavior of the teacher model. The evaluation measures
cover both performance and resource utilization.
Teacher model. The teacher model for this research is CodeT5, a

Figure 1: High-overview of the pipeline

state-of-the-art pre-trained encoder-decoder model recognized for
its strong performance across a variety of code intelligence tasks.
CodeT5 relies on the attention mechanism, allowing it to focus on
the most relevant parts of the input when generating code[11]. A
version of CodeT5, more specifically, the Salesforce/codet5-base
1, available on Hugging Face, was used. This pretrained teacher
model serves as the primary source of knowledge for the student
model and the benchmark against which the student’s assertion
quality is measured.
Dataset.The dataset [5] consists of Javamethods under test (MUTs).
For the purpose of training, each MUT is paired with a correspond-
ing test suite where the original assertions have been masked. The
complete, ground-truth assertions are retained for evaluation pur-
poses. This structure allows the student model to learn the task of
filling in these masked assertions. Each modeling step utilizes a
comprehensive training and validation datasets. Importantly, the
validation set is guaranteed to contain data that has not been seen
by the model during training, preserving an objective evaluation of
generalization performance.
Studentmodel.The studentmodel for this research is the Salesforce/codet5-
small 2, again available on Hugging Face. We chose the student
model to be smaller than CodeT5-base in architecture size in order
to properly evaluate the effectiveness of the knowledge distillation.
Knowledge distillation. The most important part of this study is
knowledge distillation. The student model is trained on both the
ground-truth data and the outputs of the teacher model.
Training. The student model, Salesforce/codet5-small is trained on
around 9000 examples, part of the dataset (described in section 3).
Training proceeds for a default of 3 epochs (a common, small num-
ber for initial fine-tuning experiments to observe learning without
excessive time) with a default training batch size of 2.
The optimization process uses the AdamWoptimizer [9], configured
with a learning rate of 5e-5 (a standard, effective starting learning
rate for fine-tuning Transformer models like T5) and weight decay
of 0.01 (a common regularization value for AdamW to help prevent

1https://huggingface.co/Salesforce/codet5-base
2https://huggingface.co/Salesforce/codet5-small



overfitting). A learning rate scheduler is employed, featuring a lin-
ear warm-up over the first 10% (helps stabilize training in the initial
phase by gradually increasing the learning rate) of the total training
steps, followed by a linear decay towards zero by the end of the
final epoch. Gradients are accumulated (defaulting to 1 – meaning
no accumulation unless a larger effective batch size is needed than
fits in memory per step) before an optimizer step. Gradients are
clipped to a maximum norm of 1.0 (a standard value to prevent
exploding gradients and stabilize training).
At the beginning of each epoch, the student model is set to training
mode. The training loop then iterates. Each forward and backward
pass for a batch proceeds as follows:

• Data Preparation: A batch of objects is loaded. This in-
cludes input_ids, attention_mask, hard_labels, and poten-
tially teacher_logits.

• Student Forward Pass: We pass the input_ids and atten-
tion_mask through to the student model to obtain stu-
dent_logits.

• Loss Computation: We compute a combined distillation
loss, using the hard loss and the soft loss:
– Hard Loss: This is the standard cross-entropy loss

which is derived by measuring the student model’s
assertions with the dataset. This term steers the stu-
dent model towards the generation of factually correct
assertions.

– Soft Loss: This term motivates the student to follow
the output probability distributions (logits) of the fine-
tuned CodeT5 teacher model. Calculation is done with
the use of Kullback-Leibler (KL) divergence. The dis-
tributions are tempered more with a temperature (T)
parameter, allowing the transfer of subtle “dark knowl-
edge” from the teacher, such as the relative probabili-
ties of different tokens. Temperature scaling [4], helps
to calibrate the output probabilities, leading to more
reliable uncertainty estimates.

The overall loss function is a weighted sum: Total Loss =
alpha * SoftLoss + (1 - alpha) * HardLoss. The hyperparam-
eter alpha controls the relative importance of mimicking
the teacher versus fitting the hard labels.

• Backpropagation: We backpropagate the loss.
• Optimizer Step: After gradients are accumulated, they are

clipped. Then we update the weights, and adjust the learn-
ing rate. Gradients are then set to zero.

During the epoch, training progress is logged every 50 steps. At
the end of every epoch, we validate the student model on the vali-
dation dataset, which consists of around 1000 examples the student
has not seen before. Then if this is the best model, we have found
so far, we save it to the specified directory. Finally, after all epochs,
the final model state is saved regardless of validation performance
relative to earlier epochs.

After every training session followed by an evaluation on the
validation set, model parameters are updated. This includes:

• Alpha: The value of alpha, which balances the soft and hard
losses, is adjusted to control the learning from the teacher
and the actual data.

• Temperature: This parameter is adjusted to control how
much detail of knowledge is passed down by the teacher’s
logits.

This iterative refinement process aims to maximize the student
model’s performance on the validation metrics.

Hardware setup. The training and evaluation steps took place
on Google Colab, utilizing an NVIDIA A100 GPU.

4 Study Design
This section aims to explain how we evaluated our student model
in order to pursue answers to the research questions: (1) How does
the distilled model compare to a larger teacher model and a base-
line, ground-truth, in terms of assertion accuracy, similarity, model
size? (2) How changes of a certain parameters (temperature, alpha)
influence the student’s performance? To investigate these problems,
we designed the following evaluation framework.

Evaluation setup. The core of our evaluation relies on assessing
the student model (Salesforce/codet5-small, pre-trained and then
fine-tuned via distillation) on a dedicated validation dataset. This
dataset, like the training data, consists of Java Methods Under
Test (MUTs) where the original assertions are masked, along with
the corresponding ground-truth assertions and the pre-computed
outputs (predicted assertions and logits) from the teacher model
(Salesforce/codet5-base). The approximately 1000 examples in the
validation dataset are those the student model was not exposed
to during its training phase, hence they are used for an objective
evaluation of how well the student model generalizes. For each
entry in the validation set, the following process occurs:

• Input preparation: The student model receives the masked
tests along with focal content (the class under test) as input.
Then we tokenize the input, using the student model’s
tokenizer.

• Assertion generation: The student model generates asser-
tions for the given input.

• Output decoding: We decode the token IDs that the student
generated back into textual assertions using the student
tokenizer.

• Normalization: Before comparison, we normalized the as-
sertions.We did this in order for the comparison to be as fair
as possible. Examples of normalization include collapsing
multiple whitespaces to one and using the same casing.

• Metric computation: The generated assertions are then com-
pared against the ground-truth assertions and the teacher
model’s assertions. We will describe the evaluation metrics
in the following paragraph.

Evaluation metrics. To comprehensively evaluate the perfor-
mance of the distilled student model and compare it to the teacher
model (CodeT5-base), the following metrics are utilized:

• Precision: This shows the ratio between the number of the
exact matches - generated assertions which match com-
pletely the reference ones, and the number of the total gen-
erated assertions. Higher precision means higher quality
of the generated tests.
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• Recall: This indicates the ratio between the number of the
exact matches to the total number of the reference asser-
tions. It indicates the proportion of reference assertions
successfully reproduced by the model.

• F1-Score: The harmonic mean between precision and recall,
which aims to provide a balanced measure of the test’s over-
all accuracy in terms of both correctness and completeness
of the generated assertion set.

• Accuracy: This is the ratio between the exact matches and
the bigger number between the total reference assertions
and the generated ones.We penalize the student for creating
too many assertions relative to the reference ones.

• Similarity: Measures the character-level similarity. For each
normalized generated assertion, its highest similarity ratio
against any normalized reference assertion is found, and
these best-match scores are then averaged. This provides a
granular, character-by-character measure of similarity.

• Model Size: The physical size of the student model is com-
pared against that of the teacher.

• Inference Time: The average time taken by the student
model to generate an assertion for a given input is recorded
and contrasted with the teacher model’s inference time.

• Loss: A combined overall loss between the hard and the
soft ones. A lower value suggests that the student is more
successful in generating factual assertions and mimicking
the the teacher model.

These metrics try to directly answer our research questions that
concern the trade-offs between accuracy of assertions, inference
speed, and resources consumed by distilled models as compared
to these larger teacher models. These evaluation results will lend
credence to the question of whether distilled LLMs are a viable op-
tion for efficient generation of assertions in disparate development
environments.

5 Results

Value Inference Time (ms/sample) Loss

0.1 343.3 0.424
0.5 381.9 0.493
1.0 427.7 0.662
1.5 463.1 1.063
2.0 513.1 1.762
3.0 576.9 4.657
4.0 611.7 11.083

Table 1: Inference Time and Loss for the Temperature

In this section we will present the outcomes of our experiments.
We will show results which aim to shed some light on the research
questions.

Student model versus the teacher one. In this part, we will
mainly consider the results which were obtained with temperature
= 1.0 and alpha = 0.5. We chose them because the student model
produced the best results with them, when compared to the teacher
one. We will explain in a later section why this may be the case.
The other values for these parameters produced a bit worse results.

Figure 2: Accuracy, Precision, Recall and F1-Score Metrics
for the Temperature

Figure 3: Similarity Metric for the Temperature

Value Inference Time (ms/sample) Loss

0.1 365.7 0.791
0.2 395.7 0.754
0.5 427.7 0.662
0.6 424.3 0.626
0.7 466.9 0.596
0.9 522.6 0.537

Table 2: Inference Time and Loss for the Alpha

• Precision: The highest assertion precision we achieved is
0.359 when running the student model against the teacher
one.

• Recall: The proportion of the reference assertions success-
fully reproduced by the student model peaked at 0.364.



Figure 4: Accuracy, Precision, Recall and F1-Score Metrics
for the Alpha

Figure 5: Similarity Metric for the Alpha

• F1-Score: We recorded the harmonic mean between the best
results of the precision and the recall metrics to be 0.360.

• Accuracy: The highest accuracy we managed to achieve
when testing the student model against the teacher one is
0.356.

• Similarity: The best similarity our experiments produced is
0.816.

• Model size: The chosen studentmodel, namely Salesforce/codet5-
small, is approximately 1/4 of the size of the teacher one -
Salesforce/codet5-base.

• Inference time: The average time the model needed to gen-
erate an assertion for a given input is 427.7 miliseconds
(ms).

Student model versus the ground-truth. Here, we will talk
about the results which we obtained when comparing the student
model against the ground-truth.

• Precision: The precision peaked at 0.297 when running the
student, with temperature = 0.1 and alpha = 0.5, against the
ground-truth.

• Recall: The highest recall we recorded is 0.3. We achieved
this with temperature = 1.0 and alpha = 0.6.

• F1-Score: When we used temperature of 1.0 and alpha of
0.2, we got the best value for the F1-Score - 0.297.

• Accuracy: The highest accuracy we achieved is 0.294 with
parameters - temperature = 0.1 and alpha = 0.5.

• Similarity: Temperature of 1.0 and alpha of 0.2 led to the
best similarit we achieved - 0.785.

Effect of the temperature. The tests for the temperature were
run with alpha = 0.5, meaning that the soft and hard losses had
equal impact. We chose this value in order to see what impact
the temperature has when comparing to both the teacher and the
ground-truth. We will go through the results for each evaluation
metric:

• Precision: As we can see from figure 2, the assertion pre-
cision, when comparing to the teacher, was the highest at
temperature (T) = 1. On the other hand, when comparing
to the ground-truth the model performed the best when T
= 0.1. However, for both comparisons, the bigger the tem-
perature was (that is true after T = 1 for the comparison
with the teacher), the worse the performance got.

• Recall: Here we observe (figure 2) almost the same results
as with the Precision. The only difference is that in this
case, when comparing to the ground-truth, T = 0.1 and T =
1.0 performed practically the same.

• F1-Score: Considering that this is the harmonic mean of the
Precision and the Recall, it is no surprise that we achieved
similar results to the two aforementioned metrics as we can
see from figure 2.

• Accuracy: As figure 2 shows us, our model peaked at T
= 1.0, when comparing to the teacher, whereas, when we
consider the ground-truth, the lower the temperature, the
better the results we got.

• Similarity: Here the results (figure 3) when comparing
against both the ground-truth and the teacher, follow simi-
lar pattern - they both peaked at T = 1.0, for T bigger than
1.0 they got increasingly worse and the results were close
between T = 0.1 and T = 1.0.

• Inference Time: As we can see from table 1, the higher the
temperature, the more the time for generating an assertion
for a given input increased.

• Loss: With the increase of the temperature, the overall loss
also increased. This can be seen from table 1.

Effect of the alpha parameter. The tests for the alpha were
run with temperature = 1.0 because we found it performed the best
as we will describe in the Discussion section. We will go through
the results for each evaluation metric:

• Precision: We can see from figure 4, that the student per-
formed the best, compared to the teacher, when alpha was
0.5. However, this is not the case for the comparison with
ground-truth, where the student performed the best at al-
pha = 0.2.
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• Recall: The best results we got for the student versus the
teacher were at alpha = 0.5 and alpha = 0.9. The student
practically performed equally well with these values. The
graph for the student versus the ground-truth peaked at
alpha = 0.2 and alpha = 0.6, although it did almost as well
at alpha = 0.5. We can observe this at figure 4.

• F1-Score: As figure 4 shows, the result for the compari-
son with the teacher gradually improved up until alpha
= 0.5 where it peaked. Once again, the value of alpha for
which the comparison with the ground-truth peaked was
0.2. However, both alpha = 0.5 and alpha = 0.6 were close
second.

• Accuracy: Fromfigure 4we can see that the correlation from
the previous metrics is still intact - the student performed
the best at alpha = 0.5, when we test it against the teacher,
whereas, when put against the ground truth, the peak was
at alpha = 0.2.

• Similarity: When looking at the results for the student ver-
sus the teacher for that metric, presented at figure 5, we
can see that all values for alpha which we experimented
with gave quite close outcomes, but once again alpha = 0.5
performed better than the others. The comparison with the
ground-truth shows that the best results were achieved at
alpha = 0.2 and alpha = 0.5.

• Inference time: As we can see from table 2, the higher the
alpha, the more the time for generating an assertion for
a given input increased, with the exception of alpha = 0.6
which led to a slightly shorter time than alpha = 0.5.

• Loss: As table 2 shows, With the increase of the alpha, the
overall loss decreased.

6 Discussion of the results
In this section, we will interpret the outcomes presented in the
Results section. We will go through the results for every research
question.

Discussion about the comparison between the student and
the teacher model. We will focus on how the student performed
compared to the teacher.
The precision, recall, f1-score and the accuracy metrics collectively
indicate the level of fidelity of the student model in mimicking the
teacher one. The scores which are between 0.356 and 0.364 suggest
that, while the student is not perfectly mimicking the teacher, it
manages to reproduce a significant, slightly higher than 1/3, of the
teacher’s assertions correctly. The similarity offers an interesting
perspective. The high score of 0.816, suggest that the student has
a significant knowledge of the teacher’s style and behavior. These
results are particularly valuable as they imply the student can pro-
duce assertions that are teacher-like in quality and form, even if
not identical on every occasion.
The achieved results become particularly interesting when we con-
sider that the student model size is 1/4 of the teacher’s one. This
matters because our model can be used in resource-constrained
environments while offering a solid performance. The inference
time, coupled with the smaller model size, enhances the student
model’s utility in scenarios requiring rapid assertion generation or

where computational resources are limited.
The distilled student model offers a compelling trade-off when com-
pared to the larger teacher model. It achieves a substantial reduction
in model size and offers fast inference. This efficiency comes at the
cost of perfect, exact replication of the teacher’s output. However,
the high similarity indicates that the student has learned a big part
of the teacher’s nuances. When we consider the fact that we used a
compressed teacher’s logits, which inarguably hindered the results,
the outcome suggest that there is potential in knowledge distillation
and requires further research.

Discussion about the comparison between the student
model and the ground-truth.Wewill analyze the student model’s
performance when directly evaluated against the ground-truth as-
sertions.
The precision peaked at 0.297 and the accuracy did so at 0.294 with
temperature = 0.1 and alpha = 0.5 for both these best scores. This
suggest that for an optimal performance of the student, when tests
on the ground-truth assertions, a low temperature is beneficial. This
may be the case because a lower T does not allow much exploration
- it makes the student model focus on high-probability tokens. A
balanced alpha indicates that benefited equally form learning both
from the student model and the ground-truth.
The best F1-Score and the parameters, T = 1.0 and alpha = 0.2, we
achieved it with, reinforces the observation that the current model’s
ability to both generate correct and cover a good portion of the
ground-truth is around the 30% mark. An alpha of 0.2, which pri-
oritizes learning from the ground-truth (hard loss), seems to align
with our intuition that a metric that directly measures correctness
against factual data performs the best.
The temperature of 1.0 and alpha of 0.6 for the highest recall we
achieved, 0.3, suggest that to capture a broader range of correct
assertions, some influence from the teacher’s distribution and a
slightly less conservative generation strategy might be helpful.
The similarity score of 0.785 implies that, even if the student’s as-
sertion are not an exact match, they are at least often lexically and
structurally close. The combination of T = 1.0 and a low alpha (0.2)
suggests that while focusing on ground-truth, the teacher’s unsoft-
ened distribution still helps in shaping these structurally similar
outputs.
The performance of the student on these metrics suggest that, even
with its small size and the handicap of compressed logits, it is still
able to reproduce a little below 30% of the factual assertions. Even
though, we obtained the results for the metrics with different pa-
rameters, certain ones - temperature of 0.1 and 1.0, alpha of 0.2 and
0.5, consistently performed well and can make for good starting
points in further researches.

Discussion about the effect of the Temperature. We will
focus on how the temperature influenced the mimicking of the
teacher, aligning with the ground-truth and efficiency and training
dynamics.
We observe that a temperature of 1.0 consistently emerged as the
best option when it comes to replicating the teacher’s outputs. A
possible reason for this might be that T = 1.0 likely corresponds to
the teacher’s unsoftened output probability distribution. This dis-
tribution might offer the richest "dark knowledge" of the teacher’s
distinctive features, which the student aims to learn. Values lower
than 1.0 may make the teacher’s signal too sparse, which can lead



to losing beneficial for the student nuances. On the other hand,
temperatures higher than 1 might lead to "over-smoothing" of the
teacher’s features, making it hard for the student model to learn
from them.
The lowest temperature we researched, namely 0.1, was the best per-
former on almost all of the metrics, although 1.0 was a close second.
Lower temperatures makes the student to focus on the predictions
the teacher is the most confident about. If these high-confident pre-
dictions turn out to be correct (aligned with the ground-truth), this
might help the student generate assertions that are more accurate,
when compared to the factual truth. In contrast, high temperatures
might lead to more ambiguous information relative to the ground-
truth.
When it comes to the inference time, it increased with higher tem-
peratures. A possible causemight be that themodel, which is trained
with softer distributions when the temperature is higher, may ex-
plore more token possibilities during generation.
Reported training loss increases significantly with higher tempera-
tures. This is primarily an artifact of the distillation loss function
scaling the soft loss component by T to the power of 2, which is a
standard technique to maintain the relative impact of the soft loss
when distributions are very flat.
We can see that there is not such a thing as an optimal temperature
- this largely depends on the distillation objective. However, consid-
ering that our main goal is to learn from a teacher model, T = 1.0
emerges as a promising choice.
Discussion about the effect of the Alpha.We will focus on how
the alpha influenced the mimicking of the teacher, aligning with
the ground-truth and efficiency and training dynamics.
As we can see from the graphs, alpha = 0.5 generally provides the
best results for the mimicking of the teacher. This might be be-
cause a focus purely on the teacher (very high alpha) might lead
to the student replicating the teacher’s errors. The inclusion of the
ground-truth balances the learning and helps the student to gain a
refined version of the teacher’s behavior, thus leading to a better
overall mimicry of the valuable aspects.
An alpha of 0.2 gives the best performances when it comes to
the aligning with the ground-truth. However, an alpha of 0.5 is
a close "competitor". Directly optimizing for performance against
the ground-truth maximizes the outcome in this department. The
teacher’s logits, though, still can provide useful information, po-
tentially helping the student generalize better than solely learning
from hard labels.
The inference time tends to increase with higher values for alpha,
with one exception. A possible reason for this might be that a
stronger focus on the teacher, leads to the student learning more
complex behavior, hence needing more time.
Overall training loss tends to decrease as alpha increases. This is
likely because the KL divergence (soft loss) often yields numeri-
cally smaller values than cross-entropy (hard loss) against sparse
labels, especially if the student can effectively match the teacher’s
smoother distribution.
Again the value we choose for alpha depends on the context we are
in. Lower values lead to better factual accuracy against the ground-
truth, whereas a more balanced alpha is better for capturing the
teacher’s overall behavior.

7 Threats to Validity
Several factors could influence the interpretation and generalizabil-
ity of our findings:

• Teacher Logit Compression and Information Retainability:
A primary consideration is the use of compressed teacher
logits. The original teacher model (Salesforce/codet5-base)
produces logits in 32-bit floating-point format. Due to their
substantial size, and the necessity of transferring this data
(to local machines for dataset preparation or to environ-
ments like Google Colab for training), these logits were com-
pressed to 8-bit representations using the LZ4 algorithm.
This 32-bit to 8-bit compression inevitably involves a loss
of precision. Consequently, the student model learns from
a teacher signal whose maximum possible retain is not at
its absolute highest compared to using uncompressed, orig-
inal 32-bit logits. The observed distillation effectiveness is
therefore conditional on the quality of these decompressed
8-bit logits.

• Dataset Specificity: Our experiments utilize a dataset of Java
methods where assertions are masked. The effectiveness
of the distilled student model might differ for other pro-
gramming languages (e.g., Python, C++) or datasets with
assertions generated or masked differently.

Addressing these threats involves further experimentation, using
different datasets and utilizing the uncompressed teacher logits.
Our current findings should be considered with the aforementioned
limitations in mind.

8 Responsible Research
The study is committed to upholding ethics, transparency, and
reproducibility. We feel that any advancement of the field of auto-
mated software testing, particularly assertion generation, should
be straight. That is to say that new tools and techniques must be
accessible and their implications understood.
Ethical considerations. The ultimate goal to this work is ex-
ploring the feasibility of creating smaller, more efficient LLMs for
assertion generation by means of knowledge distillation. Aware of
the potential positives, one could consider:

• Accessibility: Offering advanced assertion generation capa-
bilities to developers constrained by environment or simply
preferring local tools.

• Efficiency: Higher computational cost and latencies are in
the way of development working cycles-long. By being
efficient, it could allow for neater handling of those issues.

To the contrary, we also consider the following potential ethical
considerations:

• Over-reliance: In the end, a developer might start to overly
rely on automated assertion generation without review. We
insist that such distilled models should be used as assistive
tools, complementing developer knowledge and critical
judgment in test assertion generation. Human oversight is
still necessary.

• Quality of Distilled Knowledge: The performance of the
student model is inherently linked to the quality of the
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teacher model and the data. A distilled model retains use-
ful knowledge, so it must continuously be evaluated for
usefulness and limitations.

Reproducibility and Transparency. This study is based on
publicly available resources and intends to make as many core parts
as possible publicly accessible:

• Dataset: The dataset used for training and evaluation, which
consists of Javamethodswithmasked assertions and teacher
model logits, is publicly available at Zenodo [5]. Being based
on publicly available code sources for the dataset makes
the data origins transparent.

• Models: Both the teacher model (Salesforce/codet5-base)
and the student model (Salesforce/codet5-small) are open-
source models to which one can freely gain access on
platforms such as Hugging Face, hence affording other
researchers the opportunity to use the same underlying
architectures.

• Methodology and Code: The distillation process, combined
loss function, training procedure, and all evaluation metrics
are fully described in Section 3 (Methodology) and Section 4
(Study Design). The core Python script used for conducting
the experiments is available at Zenodo [6] including default
hyperparameter settings, to enable replication of our study
design.

By adhering to these principles, we hope to contribute positively
to the research community, fostering an environment where ad-
vancements in LLMs for software engineering are developed and
deployed ethically and transparently.

9 Conclusions and Future Work
The main objective of this work was to verify the possibility of
knowledge distillation into a smaller, and thus, more resource-
friendly, assertion generation model. It was possible to successfully
distill knowledge from the larger CodeT5-base, acting as the teacher,
into the CodeT5-small as the student, thus designing a trade-off
between performance and resource burden for deployment. The
study further explored the role of hyperparameters, temperature
and alpha, in enabling the student to reproduce the teacher and
the ground-truth assertions. Our results confirmed that knowledge
distillation can be considered a way of developing smaller models
for test assertions. Distillation-wise, it hugely shrinks by a factor
of 4 with the student model, while inference is very fast. While an
exact duplication of the teacher´s and the ground-truth assertions
was almost impossible, the student model showed great similarity
in output, indicating that a great deal of stylistic and structural
knowledge got transferred. The student model was able to correctly
reproduce around one-third of the teacher assertions and around
30% of the factual assertions.
Optimal hyperparameter settingswere found to be context-dependent:
a temperature of 1.0 and alpha of 0.5 yielded the best mimicry of the
teachermodel, while lower temperatures (e.g., 0.1) and a lower alpha
(0.2) generally improved alignment with ground-truth assertions.
This highlights the trade-off between reproducing a (potentially
imperfect) teacher and directly optimizing for ground-truth accu-
racy. Despite the inherent information loss from using compressed
8-bit teacher logits, the results affirm the potential of distillation in

this domain.
Being limited to compressed (8-bit) teacher logitsmight have capped
the student’s highest achievable performance in this study. The orig-
inal 32-bit logits would probably have supplied more information
to teach. Another point is that our findings are based on one dataset
of Java methods with masked assertions, whether it generalizes to
other languages, other kinds of code structures, or other assertion
generation tasks requires further investigation. Subsequent stud-
ies should ideally experiment with uncompressed (32-bit) teacher
logits to set a higher performance ceiling above which the student
model can learn. It would also be interesting to explore the effects of
different student model architectures than CodeT5-small. Moreover,
extending the evaluation to other datasets involving other program-
ming languages and test generation scenarios would increase the
generality of these findings. Finally, human evaluation of generated
assertions would add qualitative insights into their practical utility
beyond automated metrics.
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