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The interaction between electrons in arrays of electrostatically defined quantum dots is naturally

described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these

systems makes them a powerful platform to simulate different regimes of the Hubbard model.

However, most quantum dot array implementations have been limited to one-dimensional linear

arrays. In this letter, we present a square lattice unit cell of 2� 2 quantum dots defined electrostati-

cally in an AlGaAs/GaAs heterostructure using a double-layer gate technique. We probe the properties

of the array using nearby quantum dots operated as charge sensors. We show that we can deter-

ministically and dynamically control the charge occupation in each quantum dot in the single- to

few-electron regime. Additionally, we achieve simultaneous individual control of the nearest-

neighbor tunnel couplings over a range of 0–40 leV. Finally, we demonstrate fast (�1 ls) single-

shot readout of the spin state of electrons in the dots through spin-to-charge conversion via Pauli

spin blockade. These advances pave the way for analog quantum simulations in two dimensions,

not previously accessible in quantum dot systems. VC 2018 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5025928

Electrostatically defined quantum dots in semiconduc-

tors have been proposed as the basic underlying hardware in

quantum computation,1 as well as digital and analog quan-

tum simulations.2–5 This is due to their ease of tunability,

control of the relevant parameters, fast measurement of the

spin and charge states, and their potential for scalability. In

particular, quantum dot arrays are natural candidates for sim-

ulating the Fermi-Hubbard model, as they adhere to the same

Hamiltonian

H ¼
X

i

Uini"ni# �
X
i; j;r

ti;j c†
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lini
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The on-site interaction energy Ui corresponds to the quantum

dot charging energy on site i, and the hopping energy ti, j
corresponds to the tunnel coupling between dots i and j. The

chemical potential term li controls the electron number in

each dot, as well as the relative energy detuning between dots.

For quantum dot arrays, there is an additional term Vi, j that

describes the inter-site Coulomb interaction energy. The opera-

tors ci; c
†
i ; and ni in Eq. (1) represent the second quantization

annihilation, creation, and number operators, respectively, with

the individual spins of the electrons being denoted by the sub-

script r ¼ f"; #g. For simplicity, we have assumed that no

external magnetic field is present in the system.

For the study of Fermi-Hubbard physics, control of the

ratio U/t is essential.6–8 The hopping term can be tuned elec-

trostatically, covering a range of t� 0–100 leV between

nearest neighbors in a linear array.9 The on-site interaction

energy U is set by the shape of the confinement potential and

is not freely tunable, but it can be accurately measured with

typical values of 1–10 meV.10 Similarly, V is not tunable

independently but can be measured precisely.

Quantum simulations of the Fermi-Hubbard model have

previously been explored experimentally in cold atom sys-

tems,11–15 manipulating arrays of the order of 100 atoms.

However, these experiments are often limited by the initial

entropy of the system.12–14 Quantum dot arrays can over-

come this problem by operating in dilution refrigerators,

where electron temperatures can reach kTe� 1 leV. On the

other hand, experiments with quantum dots are still mainly

being performed with linear arrays with no more than a few

sites.9,16,17 Efforts to go beyond 1D with quantum dot arrays

have so far stopped short of achieving well-characterized

tunnel couplings in the few-electron regime.18–20

In this letter, we report on the design, fabrication, and

measurement of a quantum-dot plaquette in a 2� 2 geome-

try. We describe a fabrication technique used to implement a

two-layer gate structure needed for this device. We then pre-

sent measurements that demonstrate deterministic filling of

electrons in all dots and controllable tunnel coupling over a

large range (0–40 leV) between all nearest-neighbor pairs.

As the final ingredient for this quantum simulator, we per-

form single-shot measurements of the two-electron singlet/

triplet states ðjSi=jTiÞ using two dots in the array.

The device contains electrostatically defined quantum

dots formed by selectively depleting electrons using nano-

fabricated gate electrodes on the surface of a GaAs/AlGaAs

heterostructure. The gate pattern is designed to form four

quantum dots in a 2� 2 geometry, where the nearest neigh-

bors are cyclic, i.e., iþ 4¼ i [Fig. 1(a)]. The coupling of
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each of the dots to its own electron reservoir is controlled

through the constriction created between the Biþ1 and Ci

gates. This is designed to allow for operation of the quantum

dots in the isolated regime;16,21 however, we do not explore

this configuration here. Deterministic electron filling of the

quantum dots is achieved by adjusting li relative to the

Fermi energy of the reservoirs, through the use of the gates

Pi. A center gate (D0) reaches the substrate at the center of

the plaquette. Biasing this gate negatively effectively sepa-

rates the dots from each other. It thereby suppresses tunnel

couplings along the two diagonals of the array and also influ-

ences the nearest-neighbor tunnel couplings (along the

perimeter of the array) since the combination of D0 with a Ci

gate controls ti,iþ1. The device design also includes an extra

set of gates (Xi, Yi, Si) used to define two larger dots to be

operated as charge sensors. The GaAs/AlxGa1�xAs hetero-

structure is Si-doped, with a two-dimensional electron gas

at the 90 nm deep interface (x¼ 0.314, mobility¼ 1.6

� 106 cm2/V s, and electron density¼ 1.9� 1011 cm�2). All

gates except D0 are fabricated in a first layer of Ti/Au of

thickness 5/20 nm, evaporated on the bare substrate and

patterned following standard procedures22 [the top inset in

Fig. 1(a) shows the schematic of this layer]. The D0 gate

runs above gate C3 and contacts the substrate at the center of

the array with a foot of �50 nm radius. It is fabricated using

10/100 nm evaporated Ti/Au and isolated from the bottom

layer gates using a 50 nm thick, 200 nm wide, and 1.5 lm

long dielectric slab of SiNx, fabricated using sputtering and

lift-off. For this step, an 80 nm thick layer of AR-P 6200

(Ref. 23) is used as the e-beam resist and lift-off is

performed in hot (80 �C) N-Methyl-2-Pyrrolidone. A scan-

ning electron microscopy (SEM) image of a completed

device is shown in Fig. 1(b).

The device was cooled down with positive bias voltages

(see values in Table I) on all gates in order to decrease

charge noise.24 All the Pi and Ci gates are connected to high-

frequency (�1 GHz) lines for pulsing and fast sweeping.

One reservoir for each sensing dot is connected to a resonant

RF circuit for high-bandwidth (up to 3 MHz) charge sensing.

The two readout circuits have resonance frequencies of 84.5

and 130.6 MHz, are connected to a single amplifier chain,

and are read out simultaneously using frequency multiplex-

ing.25 By measuring charge stability diagrams using different

combinations of gates, we can identify and tune the four dots

to the few-electron regime. In Figs. 1(c) and 1(d), we show

examples of two charge stability diagrams, where we have

identified the charge states of the four dots, ranging from

(0000) to (4142), where (klmn) indicate the charge occupa-

tion of dots 1 through 4. The different cross-capacitances

between the dots and the gates lead to charge transition lines

with four different slopes in the charge stability diagrams,

corresponding to the filling of the four dots.

Using these diagrams, appropriate voltages can be

applied to the gates to achieve deterministic filling of the

dots. Although we can reach the regime with one electron in

each dot, it was difficult to tunnel couple all neighboring

dots. We attribute this to the center gate being slightly too

large. To bypass this problem, we keep the first orbital shells

of dots 1 and 3 filled with two electrons each. In this configu-

ration, the electron wavefunction is larger, which facilitates

tunnel coupling neighboring dots. However, it is important

to note that in this configuration, the unpaired electron occu-

pies an antisymmetric (2p) orbital,26 which can result in

effects such as a sign inversion in the tunnel coupling. The

gate voltages needed to achieve (1111) and (3131) charge

states are specified in Table I. We perform finite voltage-bias

measurements27,28 to extract the lever arm (see Table I)

between gate voltage and dot chemical potential energy.

Using these, the charging energies for the four dots are

then estimated from the distance between charge transition

lines in the charge stability diagrams [U1¼ 2.1 meV, U3

¼ 2.3 meV (3 electron dots) and U2¼ 3.4 meV, U4¼ 3.3 meV

(1 electron dots)]. From the same diagrams, we also extract

the inter-site Coulomb interaction energies V1,2¼ 0.67 meV,

V2,3¼ 0.55 meV, V3,4¼ 0.47 meV, and V4,1¼ 0.39 meV.

We next characterize and control the four inter-dot tun-

nel couplings. Starting with the array in the (3131) charge

state, we measure ti,j by moving to a gate voltage configura-

tion that removes one electron from the system and is cen-

tered at li¼lj while keeping the other two dots (slightly)

detuned. Around this point, the charge stability diagram

shows an inter-dot transition line [Fig. 2(a)]. As we sweep

the voltage along the detuning axis (perpendicular to the

inter-dot transition), the charge sensor signal displays a step

as the extra electron moves over from one dot to the other.

The width of this step is dependent on the tunnel coupling ti,j
and the electron temperature Te.

9,29 Figure 2(b) shows a

sample measurement where the sensor signal is plotted as

we sweep the gate voltages across the inter-dot transition.

This signal is then fitted to extract ti,j given Te� 70 mK

FIG. 1. (a) Schematic of the gate design, with the dot locations labeled in

the center. (The first layer in the top inset and the bottom inset shows a

schematic of the dot plaquette, with relevant Hubbard model terms.) (b)

SEM image of a device from the same batch as the one used for measure-

ments. The overlaid blue circles are impressions of the dot wave-functions.

(c) and (d) Charge stability diagrams showing controlled filling of all four

quantum dots in the single- (c) and few- (d) electron regime. The data in (c)

and Fig. 3 were taken in one device cooldown and the data in panel (d),

Table I, and Fig. 2 in another cooldown.

183505-2 Mukhopadhyay et al. Appl. Phys. Lett. 112, 183505 (2018)



(�6 leV). Te was measured by fitting a similar trace for the

case t� Te. Note that this measurement of Te provides an

upper bound for the charge noise. From the fits to the current

traces, we derive the excess charge as a function of detuning

between the two dots [Fig. 2(b)].

Nearest-neighbor tunnel couplings can be controlled

electrostatically by opening/closing the constrictions created

between D0 and the Ci gates. However, if we vary these gates

only, the cross-capacitance between these gates and the dots

results in unwanted changes in the chemical potential of the

dots. To remedy this, we map out a cross-capacitance matrix

that expresses the capacitive coupling between all gates and

every dot. For small changes in gate voltage (�100 mV), we

can assume these cross-capacitances to remain constant and

the changes in the individual dot energies can be expressed

as linear combinations of gate voltages

dl1 dl2 dl3 dl4

� �
¼ dGa

G ¼ P1 P2 P3 P4 C1 C2 C3 C4 D0

� �
; (2)

where a is a 4� 9 matrix of cross-capacitances: ai,i corre-

sponds to the lever-arm of gate Pi to dot i and ai,j¼ ai,ibi,j,

where bi,j¼ dPi/dGj is the slope of the charge transition of

dot i, which can be extracted from a charge stability diagram.

Once extracted, a can then be used to define virtual gates9

(C0i or D00) that allow us to vary one of the Ci or D0 gates,

while simultaneously adjusting all the Pi gates to keep

dli¼ 0. For example, for C0i, the adjustment of Pi can be

calculated from

dP1

dP2

dP3

dP4

2
6664

3
7775 ¼ �dC1

a1;1 a1;2 a1;3 a1;4

a2;1 a2;2 a2;3 a2;4

a3;1 a3;2 a3;3 a3;4

a4;1 a4;2 a4;3 a4;4

2
6664

3
7775

�1 a1;5

a2;5

a3;5

a4;5

2
6664

3
7775: (3)

This technique significantly simplified the process of

adjusting the tunnel barriers and was a key element in

achieving effective tunnel coupling control. In Fig. 2(c), this

control is demonstrated by uniformly setting all four tunnel

couplings to 5 GHz (�20 leV, blue traces) and 10 GHz

(�40 leV, red traces).

Finally, we demonstrate single-shot read-out of two-spin

states using a three-stage pulse.30 The Pauli exclusion

principle31 is used to convert a charge measurement into a

measurement that distinguishes between singlet and triplet

states of two spins occupying neighboring quantum dots. We

follow a protocol used previously to read out spins in a dou-

ble dot32 where a random two-spin state is loaded in the

(1,1) charge configuration. The detuning between the dots is

then pulsed to favor tunneling towards the (2,0) charge state.

For a singlet ðjSiÞ, tunneling to (2,0) is allowed. For a triplet

ðjTiÞ, however, the Pauli exclusion principle requires the

(2,0) state to occupy the first excited state orbital of the dot,

which is energetically inaccessible (�0.4 meV away).

Therefore, spins in jTi remain in the (1,1) state [Fig. 3(a)]

until they relax to jSi, with rate 1/T1. To identify the spin

states, we monitor the charge sensor signal at a specific time

sm after the start of the read-out pulse. We integrate the sig-

nal for 0.1 ls around sm. If the integrated signal exceeds

(does not exceed) a fixed threshold, we conclude that the

charge state was (1,1) [(2,0)], indicating a jTi ðjSiÞ spin state

[Fig. 3(b)].

The read-out fidelity is limited by several factors. A

histogram of the integrated sensing dot signal at time sm con-

structed from 10 000 single-shot measurements with a ran-

dom initial spin state shows two peaks, corresponding to the

signal measured for each of the spin states [Fig. 3(d)]. Due to

noise in the current traces, there is a small overlap between

the two peaks that will lead to spin read-out errors. From a

double Gaussian fit to the histograms, we extract an error

TABLE I. Relevant gate voltages and lever arms.

B1 B2 B3 B4 P1 P2 P3 P4 C1 C2 C3 C4 D0 X1 X2 Y1 Y2 S1 S2

Voltages at 1111 (mV) �150 �230 �130 �100 �263 �60 �9 �221 �120 �180 �180 �220 �180 �360 �120 �280 �270 �110 �390

Voltages at 3131 (mV) �100 �20 �90 �194 �169 �335 –30 �469 �188 �141 �37 �57 �135 �343 �95 �310 �274 �429 �504

Bias cooling voltage (mV) 300 250 300 250 150 150 150 150 250 250 250 250 200 350 350 300 300 200 200

Lever arms (leV/mV) 39 41 54 31

(Plungers to dots) (D1) (D2) (D3) (D4)

FIG. 2. (a) Charge stability diagram zoomed in on an inter-dot transition. (b)

A line cut of panel (a) along the detuning axis [blue line in (a)] and fitting of

the line to get tunnel coupling and excess charge distribution. (c) Excess

charge extracted from the sensing dot signal when changing gate voltages

along the detuning axis for the four different double dots in the plaquette.

The data show controllable tunnel couplings between all nearest-neighbor

double-dot pairs. All the curves of the same color were taken using the same

global gate configuration.

183505-3 Mukhopadhyay et al. Appl. Phys. Lett. 112, 183505 (2018)



contribution eN¼ 0.006. When averaging 10 000 complete

read-out traces, the sensor signal shows an exponential

decay, with a time constant T1 [Fig. 3(c)]. The T1 value

varies with inter-dot detuning,32 reaching up to T1¼ 11.4 ls.

A relaxation event before sm leads to a measurement error,

and so, it is important to keep sm short. In order to achieve a

sufficient signal-to-noise ratio, we low-pass filtered the sig-

nal with a 1 MHz cut-off, which in turn leads us to choose

sm¼ 0.8 ls. The jTi measurement error due to relaxation is

then eT1 ¼ 1� exp ð�sM=T1Þ ¼ 0:07. This is the dominant

source of error in this system, with smaller error contribu-

tions from thermal excitation, limiting the average measure-

ment fidelity to Fm� 0.96.

In summary, we have implemented and operated a quan-

tum dot plaquette with reliable control of electron filling and

tunnel coupling, for which we demonstrated single-shot spin

measurements. This makes this system a promising analog

quantum simulator of Fermi-Hubbard physics. The two-

dimensional lattice configuration presents symmetries not

accessible in the more common linear arrays, enabling the

emulation of phenomena such as Nagaoka ferromagnetism33

and resonating valence bond states,34 which have been pre-

dicted for high-temperature superconductors. Moreover,

using the two-layer fabrication technique shown here, the

2� 2 geometry can be extended directly to a ladder of quan-

tum dots (size 2�N), which is the smallest system capable

of showing pairing in under- or over-doped lattices35 and

other interesting quantum phases.36 Moreover, leveraging

the fabrication experience of the semiconductor industry,

quantum dot arrays might be scaled up to N�N arrays,

opening up a host of possibilities.

Raw data and analysis files supporting the findings of

this study are available from https://doi.org/10.5281/

zenodo.1219088.
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