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Abstract We present a method to determine lower and
upper bounds to the predicted production or any other
economic objective from history-matched reservoir mod-
els. The method consists of two steps: 1) performing a
traditional computer-assisted history match of a reservoir
model with the objective to minimize the mismatch between
predicted and observed production data through adjust-
ing the grid block permeability values of the model. 2)
performing two optimization exercises to minimize and
maximize an economic objective over the remaining field
life, for a fixed production strategy, by manipulating the
same grid block permeabilities, however without signifi-
cantly changing the mismatch obtained under step 1. This is
accomplished through a hierarchical optimization procedure
that limits the solution space of a secondary optimization
problem to the (approximate) null space of the primary
optimization problem. We applied this procedure to two
different reservoir models. We performed a history match
based on synthetic data, starting from a uniform prior and
using a gradient-based minimization procedure. After his-
tory matching, minimization and maximization of the net
present value (NPV), using a fixed control strategy, were
executed as secondary optimization problems by changing
the model parameters while staying close to the null space
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of the primary optimization problem. In other words, we
optimized the secondary objective functions, while requir-
ing that optimality of the primary objective (a good history
match) was preserved. This method therefore provides a
way to quantify the economic consequences of the well-
known problem that history matching is a strongly ill-posed
problem. We also investigated how this method can be used
as a means to assess the cost-effectiveness of acquiring dif-
ferent data types to reduce the uncertainty in the expected
NPV.

Keywords Computer-assisted history matching ·
Uncertainty · Hierarchical optimization · Multi-objective
optimization

1 Introduction

It is well known that assimilation of production data into
reservoir models is an ill-posed problem; see, e.g. [15, 20,
24]. This is mainly because generally the number of uncer-
tain model parameters largely supersedes the number of
measurements. Moreover, the measurements are strongly
correlated because they originate from a relatively small
number of sources: the wells. As a result, they contain
less information about the true value of the model parame-
ters than could be expected based solely on the number of
data points. A relevant question in view of the purpose of
large-scale, physics-based reservoir models is howmuch the
long-term predictions can vary because of the ill-posedness
of the assimilation problem. In other words, what may be
the economic consequences of the lack of information about
the reservoir in the measurements?

In most practical circumstances, this question is
addressed by constructing and history-matching low- and
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high-case models, besides the nominal model. Alternatively,
a set of model realizations can be used in a data-assimilation
algorithm to obtain an entire collection of predictions, as
is the case with ensemble Kalman filter (EnKF) meth-
ods; see, e.g. [1, 7]. However, in either way, the result-
ing history-matched models are heavily influenced by the
prior information that went into the data-assimilation pro-
cess. Hence, properly answering the question stated above
requires either some (heuristic) method to translate static
geological properties to flow behaviour or economic perfor-
mance, or requires many forward simulation runs to obtain
a proper low- or high-case prior model. These methods may
be either unreliable or impractical to provide a good mea-
sure of the economic consequences of the lack of knowledge
about the true field.

In this paper, a method is introduced to search for lower
and upper bounds on predicted production (or any other
economic objective) over the remaining life of a field,
using a history-matched model. The method consists of
two steps: (1) performing a traditional computer-assisted
history match of a reservoir model with the objective to
minimize the mismatch between predicted and observed
production data through adjusting the permeability values
of the model and (2) performing two optimization exer-
cises to minimize and maximize an economic objective over
the remaining field life, for a fixed production strategy,
by manipulating the same grid block permeabilities, how-
ever without significantly changing the mismatch obtained
under step 1. To achieve this, we make use of the fact that
history matching through adjusting grid block parameters
is an ill-posed problem such that many combinations of
parameter values may result in (nearly) identical mismatch
values.

2 Problem definition

The problem of determining a history-matched model that
provides either a lower or an upper bound on the predicted
economic performance over the life of a reservoir is essen-
tially a multi-objective optimization problem. For a general
overview of multi-objective optimization, see, e.g. [14].
The first objective is to find a certain realization of model
parameters that minimizes the error between the measured
and simulated production data, which can be expressed
through a quantitative objective function V , e.g. mean
square difference. The second objective relates to finding a
set of parameter values that—for a certain future produc-
tion strategy—minimizes or maximizes some economic cost
function J , e.g. net present value (NPV). However, the mul-
tiple objectives are not of the same importance; priority lies
with obtaining a good history match, while determining a
lower or upper bound on predicted economic performance

serves as a secondary objective. To that end, the multi-
objective optimization problem may be cast into a hierar-
chical optimization problem, as presented in [10] and more
recently specifically for oil production optimization in [4,
8, 23]. In this structure, optimization of a (secondary) eco-
nomic cost function J is constrained by the requirement that
the (primary) quantitative history-matching cost function V

must remain close to its minimal value Vmin. This requires
solving the following two (hierarchical) optimization
problems,

Vmin = min
θ

V (θ , ū) , (1)

s.t. gk+1 (ūk, xk, xk+1, θ) = 0, k = 0, . . . , K − 1, x0 = x̄0,

(2)

ck+1 (ūk+1, xk+1, θ) ≤ 0, (3)

and

max
θ

J (θ , ū) or min
θ

J (θ , ū) , (4)

s.t. gk+1 (ūk, xk, xk+1, θ) = 0, k = 0, . . . , K − 1, x0 = x̄0,

(5)

ck+1 (ūk+1, xk+1, θ) ≤ 0, (6)

V (θ) − Vmin ≤ ε, (7)

where ū is the fixed control vector (input vector), x is the
state vector (typically grid block pressures and saturations),
g is a vector-valued function that represents the system
equations, x0 is a vector of the initial conditions of the reser-
voir, the subscript k indicates discrete time andK is the total
number of time steps. The vector of inequality constraints c
relates to the capacity limitations of the wells. The term ε

is small value compared to Vmin. In order to solve the sec-
ondary optimization problem, given in Eq. 4 to Eq. 7, first, a
(single) optimal solution to the primary optimization prob-
lem Eq. 1 to Eq. 3 is required to determine Vmin. The optimal
solution to the primary problem θ∗

1 can serve as a feasible
initial guess for the secondary problem. Note that the sec-
ond optimization problem is also solved in terms of θ , while
the values of the control ū remain unchanged. The search
space of the secondary problem is now constrained by the
null space of the primary objective function at a value of
Vmin, through inequality constraint Eq. 7. In other words, the
redundant degrees of freedom (DOF) of the primary prob-
lem are the DOF of the secondary problem. The motivation
for using the constraint Eq. 7 is actually twofold. If ε is
arbitrarily small (or even equal to 0), the parameter space
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that remains is actually the null space within the parame-
ter space, which can be substantial because of the generally
ill-posed nature of the inverse history-matching problem.
Any changes of the model parameters within that null space
will have no effect on the value of the used quantitative
history-match quality indicator, i.e. the objective function
V . For ε > 0, the corresponding parameter space that sat-
isfies Eq. 7 can be given the interpretation of a parameter
uncertainty set, with a clear statistical interpretation, in the
case of Gaussian noise disturbances on the data. The statisti-
cal uncertainty set then results from a hypothesis test based
on the so-called likelihood ratio test, and is characterized by
level sets of the likelihood function V ( θ). See, e.g. [18] for
the case of nonlinear models and [5] for linear models. This
implies that under appropriate noise conditions, we can, for
every value of ε > 0, connect a probability level to the
parameter uncertainty set defined by Eq. 7 and thus account
for the variability of the history-matched parameters in the
subsequent secondary economic optimization problem.

3 Methodology

In [23], the primary optimization problem was attacked
using a gradient-based search algorithm. (Note that in
that study the optimization variables were the inputs u,
while here they are the model parameters θ .) The gra-
dients were obtained using a system of adjoint equa-
tions which was solved backwards in time once, regard-
less of the number of optimization parameters. (See [11]
for an overview of adjoint-based optimization in porous
media flow and [12] for the specific implementation
used in this study.) Subsequently, the secondary opti-
mization problem was also attacked using a gradient-
based search algorithm. However, the secondary problem
was executed with the addition of projecting the search
direction onto a second-order approximation of the null
space with respect to the optimality constraint defined
in Eq. (7). The second-order approximation was explic-
itly determined through a forward difference scheme using
first-order information obtained with the adjoint. Unfor-
tunately, using this approach, the number of forward and
backward simulations is proportional to the number of
optimization parameters. Hence, for the assimilation of pro-
duction data, this method is in most cases computationally
infeasible.

In [23], also an alternative method was introduced to
solve the hierarchical optimization problem without explic-
itly calculating the null space with respect to Eq. (7). It uses
an ‘on-off’ type weighted objective function with weighting
functions �1 and �2:

W = �1(V ) · V + �2(V ) · J (8)

where �1 and �2 are ‘switching’ functions of V and J that
take on values of 1 and 0 (‘on’ and ‘off’) or vice versa,

�1 (V ) =
{
1 if V − Vmin > ε

0 if V − Vmin ≤ ε
,

�2 (V ) =
{
0 if V − Vmin > ε

1 if V − Vmin ≤ ε
(9)

Here, ε is the threshold value as defined in inequality con-
straint Eq. (7). The gradient of W with respect to the model
parameters θ for iteration n + 1 is then simply,

∂W

∂θ

∣∣∣∣
n+1

= �1 (Vn) · ∂V

∂θ

∣∣∣∣
n+1

+ �2 (Vn) · ∂J

∂θ

∣∣∣∣
n+1

(10)

Solving the secondary optimization problem sequentially,
using W as defined in Eq. (8), gives improving directions
for either V or J . With each iteration, the value of J either
increases while the value of V decreases or the other way
around, as the solution moves to and from the feasible
region with respect to inequality constraint Eq. (7). If there
exist redundant DOF with respect to the primary problem,
improvement of J is possible while satisfying Eq. (7) and
convergence of the hierarchical optimization will occur in a
‘zigzag’ fashion, as schematically represented in Fig. 1.

To improve convergence speed, as presented above and
in [23], a small adaptation to the switching algorithm can
be made. By projecting the gradient of secondary objec-
tive function J onto the first-order approximation of the
null space of the primary objective function V , the resulting
update of θ will keep V closer to Vmin. Mathematically this
becomes

∂J̃

∂θ
= ∂J

∂θ
P⊥ = ∂J

∂θ

(
I − P| |

) = ∂J

∂θ

(
I −

∂V
∂θ

T ∂V
∂θ

∂V
∂θ

∂V
∂θ

T

)
,

(11)

where we use the convention that the derivative of a scalar
with respect to a vector is a row vector. P| | is a matrix that
projects ∂J/∂θ on ∂V/∂θ , and (∂J/∂θ)P⊥ is the orthogo-
nally complementary projection which ensures that the step
towards the secondary objective function is taken in a direc-
tion (near-)parallel to the ‘ridge’ in the primary objective
function. Inserting Eq. (11) in Eq. (8) gives an alternative
switching search direction d for solving the hierarchical
optimization problem

dn+1 = �1 (Vn) · ∂V

∂θ

∣∣∣∣
n+1

+�2 (Vn) · ∂J

∂θ

∣∣∣∣
n+1

⎛
⎝I −

∂V
∂θ

∣∣T
n+1

∂V
∂θ

∣∣
n+1

∂V
∂θ

∣∣
n+1

∂V
∂θ

∣∣T
n+1

⎞
⎠ .(12)

The switching algorithm using the projected gradient d
was used in the following example to illustrate the perfor-
mance of the method.
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Fig. 1 Schematic
representation of the iterative
process of solving a hierarchical
optimization problem using a
weighted objective function, as
described by Eq. 8. The process
converges towards a final
solution in a ‘zigzag’ fashion,
moving into and out of the
feasible region bounded by the
optimal solutions of the primary
objective function. (After [23])

4 Primary and secondary objective functions

Two different reservoir models are used in this paper with
the goal of determining lower and upper bounds on the
expected economic performance over the remaining life of
the field by changing the permeability field, while the model
stays compliant with historic data over the history-matching
period. Consequently, the primary objective function, V ( θ),
is defined as the data mismatch between observations and
simulated data:

V (θ) = (d − h (θ))T P−1
v (d − h (θ)) , (13)

where θ is a vector of unknown model parameters, d is a
vector of data (measurements), h is a vector-valued function
that relates the model parameters to the model outputs (i.e.
the simulated data) and Pv is a covariance matrix of data
errors.

The secondary objective function,J , is of an economic
type, generally the NPV,

J =
K∑

k=1

⎛
⎜⎜⎜⎜⎝

Nprod∑
j=1

[
rwp · (

ywp,j
)
k

+ ro · (
yo,j

)
k

]−Ninj∑
j=1

[
rwi ·

(
ywi,j

)
k

]

(1 + b)
tk
τt

�tk

⎞
⎟⎟⎟⎟⎠,

(14)

where ywp,j is the water production rate of well j ; yo,j is the
oil production rate of well j ; ywi,j is the water injection rate
of well j ; rwi, rwp and ro are water injection costs, water
production costs and oil revenues respectively; �tk is the
time interval of time step k in days; b is the discount rate
for a reference time τt; and Ninj and Nprod are the number of
injection and production wells.

5 Egg model example

In this first example, initially presented by [22], we con-
sider a three-dimensional oil reservoir model, introduced
for a different purpose in [21]. The reservoir model con-
sists of 18,553 active grid blocks, as depicted in Fig. 2,
and has dimensions of 480 × 480 × 28 m. Its geological
structure involves a network of fossilized meandering chan-
nels of high permeability. The average reservoir pressure
is 40.0 MPa. All remaining geological and fluid proper-
ties used in this example are presented in Table 1. The
reservoir model contains eight injection wells and four pro-
duction wells. The near-wellbore flow is modelled using a
Peaceman well model.

During the first 1.5 years of production from the reser-
voir, the bottomhole pressures of the producers are kept at
a constant value of 39.5 MPa. During that time, the injec-
tion rates of all eight injectors are prescribed to fluctuate
monthly with a uniform probability distribution around an
average value of 5.52 × 10−4 m3/s (300 bbl/day) and a

Fig. 2 Three-dimensional oil reservoir model with eight injection and
four production wells, after [21]. Its geological structure involves a
network of fossilized meandering channels of high permeability in a
low-permeability background
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Table 1 Geological and fluid
properties for the example Symbol Variable Value Units

ϕ Porosity 0.20 –

ρo Oil density 800 kg/m3

ρw Water density 1000 kg/m3

co Oil compressibility 1.00 × 10−10 1/Pa

cw Water compressibility 1.00 × 10−10 1/Pa

μo Dynamic oil viscosity 5.00 × 10−3 Pa s

μw Dynamic water viscosity 1.00 × 10−3 Pa s

pc Capillary pressure Pa

maximal offset ±9.2 × 10−4 m3/s (50 bbl/day). Monthly
production measurements are taken of the flowing bottom-
hole pressures of the eight injectors and the oil and water
rates of the four producers, on top of which no noise is
superimposed. Thus, the total number of measurements is
288.

In this example, historic data are available over the
first 1.5 years of production and lower and upper bounds
on expected economic performance are determined over
the remaining life of the field—from 1.5 to 6.0 years—
by changing model properties (grid block permeabilities),
while the model stays compliant with historic data over the
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Fig. 3 Measured production data of the first 1.5 years of production from the (synthetic) 3D reservoir, along with the simulated production data
originating from the lower− and upper−bound models
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Fig. 4 Permeability fields of
the lower−bound 3D reservoir
model (a) and upper−bound 3D
reservoir model (b) determined
after the first 1.5 years of
production

first 1.5 years of production. In this example, the water
injection costs rwi, the water production costs rwp and the
oil revenues ro are assumed constant at values of 0 $/m3,
−1 $/m3 and 9 $/m3 respectively. The discount rate, b, in
this example is zero. The upper and lower bounds of the
NPV can only be determined for a given (fixed) control

strategy. In this example, a reactive control approach is used
that is evaluated on a field level. All injection wells are
assumed to continuously operate on their average injection
rate of 5.52 × 10−4 m3/s and the production wells on their
fixed bottomhole pressure of 39.5 MPa. The instant that the
field watercut exceeds 0.90, all wells are shut-in. Note that
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Fig. 5 Measured production data of first 1.5 years of production from the (synthetic) 3D reservoir, along with the simulated production data for
the remaining 4.5 years of production until the end of the field’s life, originating from the lower- and upper-bound models
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Fig. 6 NPV over time for the
lower- and upper-bound
reservoir models. The plot on
the left shows both the historic
(first 1.5 years) and future (from
1.5 to 6 years) increases in NPV
over time. The plot on the right
side only shows the incremental
NPV for the remaining (future)
4.5 years of production
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this threshold is related to the ratio between oil revenues ro
and water production costs rwp. To determine the history-
matched models that provide the lower and upper bounds on
the NPV for the remaining producing life, two hierarchical
optimization procedures are initiated. They terminate when
the feasible updates no longer result in a significant change
in the NPV. Figure 3 depicts the measured production data,
along with the simulated production data originating from
the final lower- and upper-bound models resulting from the
hierarchical optimization method. It shows that the errors
between measured and simulated bottomhole pressures of
the injectors and fractional flow rates of the producers are
very small for both the lower- and upper-bound models.
Thus, the condition that the updated models maintain a good
history match is met. However, in Fig. 4, it can be observed
that the permeability fields of both models are quite differ-
ent. These differences have a large impact on the predicted
production data given the assumed reactive production strat-
egy, as can be observed in Fig. 5. Moreover, the change
in permeability in the near-well areas around the injectors
has a strong effect on the pressure response of the injectors.
Finally, Fig. 6 shows the actual lower and upper bounds on
the predicted NPV over time, in terms of the NPV for the
entire producing reservoir life (6 years) and in terms of the
incremental NPV for just the remaining (future) producing
reservoir life (4.5 years). It can be observed that the upper
and lower bounds of the incremental NPV are 63 % above
and below their average value.

6 Brugge model example

In the second experiment, we use data from the Brugge
benchmark workshop organized in 2009 [16, 17]. In the
original benchmark study, the ‘truth’ case used to gen-
erate the data was not disclosed, and therefore, in this
work, we use a new ‘truth’ honouring all well logs, geo-
logical descriptions and distributions of geological model

parameters, porosity/permeability relations and the geolog-
ical structure of the Brugge field. Figure 7 depicts the new
‘true’ Brugge permeability field, which is used to generate
synthetic data. Blue and red bars in Fig. 7 represent injectors
and producers respectively. The fluid properties and Corey
exponents used in this example are given in Table 2.

The reservoir model consists of 60,048 active grid blocks
and has dimensions of 3 km × 10 km × 80 m. It con-
tains 11 injection wells located near the rim of the oil-water
contact at a depth of 1678 m from the surface and 20 pro-
duction wells, as depicted in Fig. 7. Wells are located in
the grid block centres, and we use a standard Peaceman
well inflow model. During the first 10 years of produc-
tion (the history-matching period), all production wells are
constrained to a minimum pressure of 4.9 MPa and a max-
imum liquid rate of 3.7 × 10−3 m3/s and all injection wells
operate at a constant water flow rate of 7.4 × 103 m3/s.
Moreover, production wells are shut-in individually if the
water fraction in the produced liquid is above 90 %. After
the history-matching period (10 years), closed wells are
reopened. Wells are drilled according to the time scheme
presented in the Brugge workshop [17].

Fig. 7 Permeability field with 11 injection wells and 20 production
wells. The blue surface indicates the oil-water contact
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Table 2 Fluid properties and
Corey exponents for the
Brugge field example

Symbol Variable Value Units

ρo Oil density 897 kg/m3

ρw Water density 1000.28 kg/m3

co Oil compressibility 10.3 × 10−10 1/Pa

cw Water compressibility 4.35 × 10−10 1/Pa

μo Dynamic oil viscosity 1.29 × 10−3 Pa s

μw Dynamic water viscosity 0.32 × 10−3 Pa s

Swc Connate water saturation 0.266 –

Sor Residual oil saturation 0.15 –

k0rw End point water rel perm 0.6 –

k0ro End point oil rel perm 0.4 –

nw Water Corey exponent 3 –

no Oil Corey exponent 5 –

6.1 Historical data

In this example, historical data are available over the first
10 years of production and lower and upper bounds on
expected economic performance are determined over the
remaining life of the field—from 10 to 30 years—by chang-
ing the permeability field, while the model stays compliant
with historic data over the first 10 years of production.
Time-lapse seismic data as well as production data are
used as historic data. Production data consist of periodic
measurements of water and oil rates in the producers. Inde-
pendent measurement errors are generated from Gaussian
distributions with zero mean and standard deviations equal
to 10 % of the original measurements. Negative produc-
tion rates, after the addition of noise, are reset to zero.
Because the measurement errors are independent, the error
covariance matrix is diagonal.

6.2 Multi-objective optimization settings

Using Eq. (13) as the primary objective function and
Eq. (14) as the secondary objective function, two hier-
archical optimization procedures are conducted to deter-
mine the history-matched models that provide the lower
and upper bounds on the NPV for the remaining produc-
ing life. The procedures are terminated when the feasible
updates no longer result in significant changes in objective
function value. The starting point for the assisted history-
matching process (primary objective function) is selected
randomly out of 104 available prior models in the Brugge
data set. The prior model is iteratively conditioned to
historical data by adjusting the horizontal grid block per-
meability values. In this experiment, the water injection
costs rwi, the water production costs rwp and the oil rev-
enues ro are assumed constant at values of 5 $/bbl, −5
$/bbl and 80 $/bbl respectively. The discount rate, b, is set
to 10 %.

6.3 Results: history matching based on production data

In this example, history matching is performed based on
production data. We constrain the search space of the sec-
ondary problem by choosing the threshold value of Eq. (7)
as 0.5 % of the minimum of the primary objective function.
Figure 8 depicts the historical data and the lower and upper
bounds of water production in the first eight producers as
an example of the typical ranges of the bounds. The history-
matching and forecasting periods are separated by a dashed
line. Blue and red colours represent the lower and upper
bounds of oil and water production. Figure 9 depicts the
injection pressures in the first four injectors. Unlike in the
results for the previous example, depicted in Fig. 5, there is
no jump in the pressures at the beginning of the forecasting
period because they have already reached their maximum
allowable values. Figure 10 depicts the historical data and
the lower and upper bounds for the cumulative oil and water
production of the entire field.

As can be seen in Fig. 10, the lower-bound and upper-
bound models produce the same history but different fore-
cast. Moreover, Fig. 11 depicts the economic performance
(NPV) of the upper- and lower-bound models over time
for the entire production life, including the history and the
prediction. In this experiment, the incremental NPV of the
upper-bound model is 19.5 % higher than the incremental
NPV of the lower-bound model.

Figure 12 shows the differences between the lower- and
upper-bound permeability fields for all nine layers of the
field. It can be observed in Fig. 10 that the permeability
fields of both models are different, especially in the pro-
ducing layers. These differences have an impact on the
predicted production data while they result in the same pro-
duction history, as can be observed in Fig. 8. We note that
although the permeability values away from the wells are
more likely to be in the null space (i.e. to have room for vari-
ation), they also have less of an effect on the output in the



Comput Geosci (2016) 20:1061–1073 1069

Fig. 8 Historical and predicted
water production over 30 years
of production for the first eight
producers for the Brugge field
example

wells. Apparently, the optimization algorithm did not pro-
duce significant changes in these values because that would
not have changed the resulting NPV. Computation of these
results required 200 pairs of forward and backward (adjoint)
simulations, where each pair took, on average, 786 s.

6.4 Effect of data type

In the previous section, we obtained lower- and upper-bound
models based on production data. In order to investigate
the effect of data type on the upper- and lower-bound
models, two more experiments are conducted based on dif-
ferent data types. In the first experiment, the upper- and
lower-bound models are obtained based on interpreted time-

lapse seismic data (saturation maps) and production data.
The saturation maps are generated by simulating the ‘truth’
and adding independent measurement errors by sampling
from a Gaussian distribution with zero mean and standard
deviations equal to 10 % of the simulated saturation values.
As before, we constrain the search space of the secondary
problem by choosing the threshold value of Eq. (7) as 0.5 %
of the minimum of the primary objective function. The sec-
ond experiment involves assimilation of both time-lapse
seismic and production data while also prior information
is added to the primary objective function as a regulariza-
tion term. Figure 13 shows the incremental NPV differ-
ences between the lower- and upper-bound models obtained
using different data types. As can be seen in Fig. 13,



1070 Comput Geosci (2016) 20:1061–1073

Fig. 9 Historical and predicted
injection pressures over 30 years
of production for the first four
injectors for the Brugge field
example

the incremental NPV difference decreases by adding more
information.

6.5 Effect of threshold value

In this section, we investigate the effect of the threshold
value, ε, in Eq. (7). We constrain the search space of the
secondary problem to different extents by choosing a range
of threshold values varying between 0.15 and 1.5 % of
the minimum of the primary objective function. Interpreted
time-lapse seismic data (saturation maps) and production
data formed the historical data, and two hierarchical multi-
objective optimizations were conducted to find the lower
and upper bounds for the reservoir model for different
threshold values. Fig. 14 shows the incremental NPV differ-
ence between the upper- and the lower-bound models versus
the threshold value ε.

Figure 15 depicts how the primary and secondary objec-
tive functions change for different values of ε. Figures 14
and 15 show that as the threshold value in Eq. (7) increases,
the difference between the lower and upper model values

of the incremental NPV increases also. However, the effect
is not very large and even for the lowest threshold value
(ε = 0.15 %), a difference of approximately 17 % in
incremental NPV is obtained.

We note that the lower and upper bounds have been
obtained by a gradient-based optimization technique which
may have resulted in local rather than global optima. Lower
lower bounds and higher upper bounds may therefore exist.

We also note that both the red and the blue curves
can be interpreted as parts of (approximate) Pareto curves.
Points on a Pareto curve are at the boundary of the feasi-
ble set of solutions in the bi-objective space, and recently,
several studies have been performed to characterize full
Pareto curves for bi-objective flooding optimization; see,
e.g. [13]. Such a curve gives the decision maker the opportu-
nity to select between competing objectives, i.e. to achieve
a large value of the secondary objective function at the
price of a strong drop in the primary objective function
value or a somewhat smaller secondary objective function
value without losing much of the primary objective function
value.

Fig. 10 Historical and predicted
cumulative oil production (left)
and water production (right)
over 30 years of production
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Fig. 11 NPV over time for the lower- and upper-bound reservoir mod-
els. The plot on the left shows both the historic (first 10 years) and
future (from 10 to 30 years) increases in NPV over time. The plot

on the right side only shows the incremental NPV for the remaining
(future) 20 years of production. Note that the right figure is a blown-up
version of a part of the left one

7 Discussion

In the current paper, we used grid block permeabilities
as history-matching parameters. However, the proposed
method could equally well be applied using other param-
eters, e.g. porosities, fault multipliers or aquifer strength.
Moreover, other data types than the production data and
interpreted time-lapse seismic that we used could be
assimilated. We note that the use of gradients with respect
to the history-matching parameters is an important ingredi-
ent in our method. This implies that we need a technique to

compute those gradients. We used an adjoint method, which
is computationally very efficient. However, it is, in theory,
also possible to implement our method using approximate
gradients obtained with, e.g. the simultaneous perturbation
stochastic approximation (SPSA) technique (see [19]) or
ensemble optimization (EnOpt) (see [3] for the basics of the
method and [8] for an implementation in hierarchical opti-
mization). The latter (EnOpt) approach also allows for the
inclusion of uncertainty in the reservoir models; see [9].

We note that our method has theoretical links to the
use of level sets to relax the primary objective function

Fig. 12 Difference between the
lower- and upper-bound
permeability fields. All
permeability values are
expressed as the natural
logarithm of permeability in mD
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Fig. 13 Difference between the upper-bound and lower-bound incre-
mental NPV values for models obtained based on different data
types

constraint in hierarchical optimization as discussed in the
last paragraph of Section 2. Moreover, we note that other
weak-constrained optimization methods could be applied
to solve the hierarchical optimization problem. The cur-
rent implementation has shown to be robust in various
applications using both adjoint-based and ensemble-based
techniques [4, 8, 23].

The determination of lower and upper bounds of future
production using different types of data, as performed in the
Brugge example, can be interpreted as a means to assess
the cost-effectiveness of acquiring different data types to
reduce the uncertainty in the expected NPV. It is tempting
to interpret this as a way to assess the value of information
(VOI) of those measurements, but because we do not know
the statistical properties of the forecasted NPV, we cannot
draw conclusions about the change in expected value of
those forecasts and therefore our method does not truly pro-
vide the VOI. (For detailed information about the concept
of VOI, see [2, 6])

Fig. 14 Incremental NPV difference between the upper-bound and
lower-bound models for different epsilon values

Fig. 15 Secondary objective function value versus its corresponding
primary objective function value, both expressed as incremental NPV

7.1 Conclusions

In this paper, we presented a hierarchical optimization
method to determine lower and upper bounds on predicted
production from history-matched models. We conclude that:

• The nonuniqueness of history-matched models implies
that future production can only be predicted within
bounds.

• The nonuniqueness implies the presence of remaining
degrees of freedom after history matching (i.e. after
solving the primary optimization problem) which can
be used to determine lower and upper bounds on future
production through solving two secondary optimization
problems.

• The method proposed in our paper provides a way
to gain more insight in the possible economic con-
sequences of the lack of information in historic data.
These consequences can be represented by total produc-
tion, ultimate recovery, (incremental) NPV or any other
economic measure.

• The method is not limited to historic production data.
Alternative data sources, e.g. time-lapse seismic data,
can be used to determine the impact on the predicted
economic performance.

• Introducing more data sources, e.g. time-lapse seismic
or prior information, results in smaller differences in
economic performance (incremental NPV) between the
lower- and upper-bound models.
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