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In monokristallijn silicium is het piézoresistieve effect veel sterker dan
in metalen. Dit komt doordat het kristalrooster van silicium veel sym-
metrischer is en minder goed geleidt.

De deformatiepotentialen van silicium zijn al vijftig jaar het onderwerp
van publicaties. Het waarom hiervan wordt duidelijk zodra men de
potentialen gebruikt voor het voorspellen van metingen.

Leerboeken over de fysica van halfgeleidercomponenten zouden minder
aandacht moeten besteden aan de drift-diffusievergelijkingen en meer
aan de elektrochemische potentiaal.

Transistors hebben met mensen gemeen dat ze beter presteren bij een
beetje stress, maar doorslaan bij teveel.

Als wiskunde net zoveel redundantie bevatte als taal, dan zouden lange
afleidingen veel vaker tot correcte conclusies leiden.

In de politiek kunnen metingen op veel meer manieren worden uit-
gelegd dan in de wetenschap.

Het feit dat er van universitaire docenten geen didactische opleiding .
wordt gevraagd, ontslaat hen niet van de morele verplichting om die
te hebben.

Het geloof in een maakbare samenleving is de laatste twintig jaar omge-
slagen in een geloof in een maakbare levensloop.

Moderne kunst zou minder sceptisch worden bekeken als de makers af
en toe een portret creéerden.

Ons voedsel is goedkoper dan goed voor ons is.

Een leuke eigenschap van computers is dat je er op jonge leeftijd al
nostalgisch over kunt praten.
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. In monocrystalline silicon the piezoresistive effect is much larger than

in metals. Essentially this is because the crystal lattice is more sym-
metric and conducts less well.

The deformation potentials of silicon have been the subject of publi-
cations for fifty years. The reason why becomes clear when one uses
the potentials to predict measurements.

Text books on the physics of semiconductor devices should pay less at-
tention to the drift diffusion equations and more to the electrochemical
potential.

Transistors have in common with human beings that they perform
better under some stress, but break down at high levels.

If mathematics contained as much redundancy as language, long deriva-
tions would more often lead to correct conclusions.

In politics, measurements can be explained in much more ways than
in science.

The fact that university professors are not obliged to have any didactic
training does not release them from the moral obligation to have it.

In the past twenty years, the belief that one can consciously shape one’s
society has changed into the belief that one can consciously shape one’s
life.

Modern art would be considered less sceptically if the makers occa-
sionally created a portrait.

Our food is too cheap for our own good.

A nice property of computers is that one can discuss them nostalgically
already at an early age.
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Chapter 1

Introduction

Since its invention in 1947 the bipolar transistor has caused a revolution in signal
processing. A major force behind this has been the enormous development
of semiconductor technology. Due to this technology the dimensions of the
transistor could shrink by more than a factor ten thousand. As a result, radios
and other electronic equipment could be made much cheaper, more complex and
lighter.

Semiconductor technology has also been employed to improve signal acquisi-
tion. Especially since 1980 this has resulted in micromachined sensors which are
small and inexpensive and which are often integrated with standard electronics.
Examples of this are the micromachined pressure sensors and the accelerometers
used in the air bags of cars.

Technological developments have led to the spectacular improvement of the
MOS transistor. Since 1980 it has taken over the digital signal-processing task
from the bipolar transistor, which has led to an enormous improvement in com-
puters. Nevertheless, the use of the bipolar transistor is still appreciated for
analog signal processing due to its excellent analog characteristics.

1.1 Main characteristic of the bipolar transistor

The most valuable characteristic of a bipolar transistor is its amplification of
a base-emitter voltage Vj. to a collector current I.. For forward bias this is
expressed in terms of the well-known relationship

I.=Igexp (ZZI)}) (1.1)

in which Ig is the saturation current, kg the Boltzmann constant, g the ele-
mentary charge, and T the absolute temperature. This relationship is powerful
due to its exponential nature. In addition, it is valid for many decades of mag-
nitude of I.. Finally, it yields a small-signal transconductance g,,, which can be
manipulated very accurately since it only depends on I. and 7. This can be
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Figure 1.1: Network symbol (a) and ideal equivalent small-signal circuit (b) of
a bipolar (npn) transistor.

seen when Equation 1.1 is inserted into the definition of the transconductance,
gm = 0I./0Vhe. The relationship is often resumed in the network models of
Figure 1.1a and b. They are often used as a first approach in the design of
analog circuits.

A real transistor has characteristics that are, of course, less perfect. These
imperfections include the base current, the Early effect, the base resistance,
and some parasitic capacitances. They are usually modelled by extending Fig-
ure 1.1b to a network like that given in Figure 1.2. Nevertheless, the imper-
fections rarely determine the main functioning of the circuit because in a good
circuit design they are not allowed to become dominant.

1.2 Shifts in characteristics due to stress

Since the beginning of transistor physics it has been known that the current-
voltage relationship not only depends on temperature, but also on mechanical

Figure 1.2: Small-signal equivalent circuit for bipolar transistor including im-
perfections [1].
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Figure 1.3: Equivalent stress distribution in a silicon chip mounted in an open
quad flat package (OQFP). Units: Pa. Finite-element analysis by C. Cotofana
Tomescu (7).

stress [2]. Stress acts on the relationship in Equation 1.1 through the saturation
current Ig. This stress dependence is known as the piezojunction effect. It is
related to the better-known piezoresistance effect [3] and the piezotunnelling
effect [4, 5]. It is nonlinear and very anisotropic, meaning that it depends to a
large extent on the orientation of the stress and current orientation with respect
to the semiconductor crystal. For a stress of 100 MPa it typically changes Is
with five percent, corresponding to a change in V4, of 1.2 mV.

Apart from the saturation current, stress also changes the values of the other
transistor characteristics. In literature, for instance, base currents were reported
that decrease up to a factor five for very high compressive stresses [6]. Changes
in other characteristics have hardly been investigated.

1.3 Consequences for circuits

Stress is often present in integrated circuits as an unwanted by-product of pack-
aging and processing. During the packaging the chip containing the circuit is
glued on a frame and encapsulated in moulded plastic. When the materials
harden and cool down they shrink. This can introduce stresses larger than
100 MPa; see Figure 1.3 and Reference [7]-[10]. During the processing, even
higher stress levels may develop when silicon oxide and nitride layers are formed
on top of the chip. It is especially around LOCOS that stress over 1 GPa can
occur [11, 12]. Unfortunately, the stresses are not constant but may change
during the lifetime of the circuit. These changes are sometimes accompanied by
mechanical damage, but more often by a shift in the electrical characteristics of
the circuit.
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(

T ¢

Figure 1.4: Emitter-coupled pair where the symmetry between the transistors
is disturbed by a mechanical stress X.

The packaging and processing stresses can pose serious problems in analog
circuits where the current-voltage relationship of Equation 1.1 needs to be known
accurately. Good examples of this are found in bandgap temperature sensors,
bandgap voltage references, and DA-converters [13, 14]. The stresses can also
pose problems if they shift the transistor imperfections such as the base current
to completely different values.

The problems can be illustrated by means of a popular subcircuit in analog
electronics, the emitter-coupled pair. This circuit is represented in Figure 1.4.
It should transfer the differential voltage V; to a differential current Iz, which is
the difference between the collector currents of both transistors, I,; — I.o. If Vy
is zero, I; should be zero as well. Normally, this value is obtained by forcing the
base-emitter voltages to reach the same value and by matching the geometry and
temperature as closely as possible. However, if one of the transistors is stressed,
its Is changes and therefore its collector current. This creates an asymmetry
between the transistors, resulting in some offset value for I;. As a result, the
transfer function I (V) changes. It should be noted, however, that the changes
are limited here to even powers in Vy, due to the common bias current I.

1.4 Consequences for sensors

Stress in a transistor is not always undesirable, and it can also be introduced
deliberately to measure some mechanical quantity. This idea has been utilised
in a number of sensors [6], [15]-[18]. A good example of such a sensor is the
"classical’ micromachined accelerometer of Figure 1.5. When the frame of this
device is accelerated, the suspended mass in the middle tends to stay behind
because of its inertia. This causes mechanical stress in the hinges. If the hinges
contain transistors with a constant collector current, the stress is translated into
a change in the base-emitter voltage or the collector current [16].

Most accelerometers today contain resistors instead of transistors in the
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Figure 1.5: Classical micromachined accelerometer. The mass is suspended on
hinges where transistors can be integrated instead of piezoresistors [16].

hinges, or have a capacitive read-out. The transistors, however, have a num-
ber of potential advantages. Just as the classical piezoresistors, they are fully
compatible with the standard processing of electronics. But unlike them they
have:

o A much larger internal resistance, and

e Smaller dimensions of the active area.

The larger internal resistance means that the sensor is less sensitive to the offset
voltage of the amplifier, which is always needed to read out the signal. It also
means that less power is needed to transfer the signal to the amplifier with
equal accuracy. The smaller dimensions enable stress measurements to be more
localised and therefore more precise. In addition, they save expensive chip area.

1.5 Previous research on stress effects

The piezojunction effect was first reported by Hall, Bardeen and Pearson in
1951 in relation to hydrostatic pressure on pn-junctions [2]. In 1962 Rindner
found that the effect is much larger for anisotropic stress [19]. That stress
was caused by pressing a stylus on a point of the pn-junction. The experi-
ments with styli were frequently repeated and extended during the 1960s [20}-
[38]. They were characterized by very high, compressive stresses with a large
gradient [30]. The resulting changes were often spectacular, not only in the
current-voltage relationship, but also where the base current, the breakdown
voltage, and the gencration-recombination currents were concerned [39]-[46].
Much smaller stresses were obtained in 1973 by Monteith and Wortman, who
used cantilever beams instead of styli [47]. They observed that the changes
under tensile stress differ from those under compressive stress.
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The piezojunction effect was first explained in 1951 but only in relation to
hydrostatic pressure [2]. The theory was based on bandgap widening caused
by this isotropic stress. In 1964 the theory was extended by Wortman, Hauser,
and Burger to anisotropic, high stresses in the GPa range [48]. This theory
is based on the stress-induced lifting of degeneration of the band edges. It
predicts a stress response which is independent of the current direction, and is
equal for diodes, npn, and pnp transistors. The theory was further refined in
1967 by Kanda, who considered changes in the effective masses [49] for stresses
over 1 GPa. Afterwards, the theory was modified by the addition of some less
critical features, but those were rarely verified in practice [50]- [52], [18]. To
the author’s knowledge, it has never been extended to include low anisotropic
stresses by considering all changes in the effective masses.

The piezojunction effect has often been applied in the design of mechanical
sensors [53]-[60]. Initially, the sensors were mainly based on the pressing styli.
This made them commercially not very successful because they were difficult to
manufacture, sensitive to thermal expansion, and vulnerable to overload dam-
age [6]. The invention of micromachining, however, has enabled new designs
such as the accelerometer in Figure 1.5. So far, however, the new possibilities
have only seldomly been explored [16]-[18].

1.6 Transistor modelling for design purposes

The description of the piezojunction effect is a part of transistor modelling, and
it should therefore satisfy the same requirements. Transistor models are mainly
used for the design of circuits and sensors. The purpose of such a design is to im-
plement a signal processing function within a number of quality conditions [61].
An accelerometer, for instance, may be designed for a sensitivity of 1 V per g
acceleration with a maximum offset of 0.1 mg and an operating temperature
between -40 and +80 °C.

Electronic designing can be done at three levels [61]. On the highest level,
it is a process of circuit (or sensor) synthesis. This consists of finding the
optimum configuration between all device connections and dimensions with the
same signal processing function. On an intermediate level, designing is a process
of circuit optimisation. This concerns the study of one basic configuration with
a number of variations. On the lowest level, designing involves circuit analysis,
which is the study of one possible configuration.

Circuit design requires adequate models of the constituting components.
The models should at least be able to reproduce the behaviour of the com-
ponent with sufficient accuracy over the relevant working domain. This is not
enough, however, for performing circuit synthesis. Synthesis involves comparing
all possible configurations and therefore requires figures of their quality. These
figures should have a physical meaning. In addition, they should describe the
configuration at a high level of abstraction. They can only be derived from
models which are mathematically simple, contain unique, physical parameters,
and have a well-defined domain of validity.



1.7. SCOPE OF THIS THESIS 7

The requirements for circuit synthesis are only satisfied by analytical mod-
els [61]. Analytical models are characterised by a set of closed, analytical equa-
tions describing the state of the component terminals as a function of the applied
signals. They are based on a priori knowledge of the structure of the component
and on the physical processes inside. A typical example is the Gummel-Poon
model of a bipolar transistor, which has been implemented in SPICE circuit
simulators. The analytical models of the piezojunction effect, however, have
not been very practical so far.

1.7 Scope of this thesis

This thesis presents an analytical model of the piezojunction effect suitable for
circujt and sensor design on all levels. Previous models of the piezojunction
effect were quite successful when it came to predicting the experiments con-
ducted with hydrostatic pressure and stress-inducing styli. However, they were
not designed for the stresses which are currently important: stresses caused by
packaging and processing, and stresses in micromachined mechanical sensors.
Those stresses have the following characteristics:

e They can be tensilc as well as compressive;
e They are often lower than 200 MPa in magnitude;

e They may have any orientation with respect to the axes of the crystal
from which the transistor is fabricated;

e They are generally homogeneous on the scale of a transistor.

The previous models can only be valid in this stress domain if they are ex-
tended. This extension is the first concern of this thesis. The disadvantage of
this approach is that it seriously increases the mathematical complexity of the
model. The second aim is therefore to create a new model on a higher level of
abstraction. The parameters of this model are still based on the physics of the
old model. Even so, they are closely linked to measurable transistor character-
istics. The structure of this model is very similar to that of the piezoresistive
effect, which is well-known and widely used (3]-[63].

The approach of the modelling in this thesis is both theoretical and exper-
imental. The main transistor equation is re-derived from the energy bands of
the material and the structure of the device. All assumptions in this derivation
are critically assessed on their validity under mechanical stress. Experimentally,
the model is verified by fabricating npn and pnp transistors and characterising
them under different bending stresses.

The work presented is restricted to silicon transistors as they are most commonly
applied in analog circuits and sensors. It therefore focuses on their saturation
current at normal, forward bias, and at low-level injection. It neglects the
contribution of the generation and recombination currents. In addition, it is
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restricted to extrinsic silicon at room temperature, where doping atoms are
completely ionised.

1.8 Organisation of this thesis

The thesis starts with a theoretical chapter, followed by a chapter on the ex-
periments. It continues with a discussion of the results, and with some general
conclusions. It ends with four appendices supporting the theory. The deriva-
tions in these appendices can in principle be found in literature. However, they
are quite specialistic and appear in a wide variety of notations and in many
different contexts. Their inclusion in this thesis should therefore enhance the
readability.

The theory chapter discusses the influence of mechanical stress on different levels
of transistor modelling. Each level is described in a separate section, as shown
in Figure 1.6. It arises from the foregoing level through the physics described
in the appendices.

On the first level stress creates a mechanical strain. The relation between
stress and strain is contained in the elasticity theory. On the second level,
strain causes deformations in the electronic band structure of the crystal. This
effect is most important at the extrema of the conduction and valence bands, on
which the attention will be focused. On the third level, the band deformations
change the transport properties of charge carriers, especially the conductivity.
These changes are described with a revised microscopic model, and also with an
entirely new macroscopic model. On the last level, the changing transport prop-
erties cause shifts in the transistor characteristics, in particular in the saturation
current.

The measurements chapter discusses the experiments that were done to verify
the new theory and to extract its parameters. It is divided in sections about the
principle, the measurement set-up, its operation, and the results. The principles
section describes the estimated stress response of the investigated devices, and
the configuration of the measurement equipment. The set-up section discusses
the actual design of the devices and their mounting on a beam carrier. It also
shows the construction of the bending apparatus with which they are stressed.
In addition, it discusses the properties of the source-measurement units. The
results section presents graphs of the stress-induced current changes, for different
crystal orientations. It also presents the extracted model parameters.

The discussion and conclusions chapter compares the measurements with the
theory developed. It indicates how the results could be used by designers of
circuits and sensors. It ends with some suggestions for future research.

The appendices, finally, contain derivations supporting the theory chapter. Ap-
pendix A resumes the definitions of stress, strain, and elasticity. In addition, it
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Stress
Elasticity theory {
—_—
Appendix A .
Strain Appendix A
Band structure of Si — ‘
Appendix B —
Band deformation Section 2.1
Transport theory > ‘
Appendix C -
Change in transport parameters Section 2.2
Transistor modelling - ‘ & 23
Appendix D

Change in transistor characteristics| Section 2.4

Figure 1.6: Structure of the theory chapter. The influence of stress on a tran-
sistor is modelled on different levels. Each level is treated in a separate section
and supported by an appendix.

presents some mathematics on tensor properties. Appendix B derives the band
equations of silicon from the Schrodinger equation with the aid of the kp-theory.
The band equations are used in Appendix C to derive the charge transport in
silicon which is inhomogeneous and anisotropic. The parameters of this general
case are used in Appendix D to model the saturation current of the bipolar
transistor.






Bibliography

(1]

(2]

(6]

[7]

P. R. Gray and R. G. Meyer, Analysis and design of analog integrated
circuits. 3rd ed., Wiley, New York, 1993.

H. H. Hall, J. Bardeen, and G. L. Pearson, The cffects of pressure and

temperature on the resistance of p-n junctions in germanium, Phys. Rev..
84 (1951) 129-132.

Y. Kanda, Piezoresistance effect of silicon, Sensors and Actuators A, 28
(1991) 83-91.

A. P. Friedrich, P. A. Besse, C. M. A. Ashruf, and R. S. Popovic, Charac-
terization of a novel piezo-tunneling strain sensor, Sensors and actuators
A, 66 (1998) 125-130.

A. P. Friedrich, Silicon piezo-tunneling strain sensor, Series in Microsys-
tems, Vol.2, Hartung-Gorre, Konstanz, 1999.

J. Matovic, Z. Djuric, N. Simicic, and A. Vijanic, Piezojunction effect based
pressure sensor, Flectron. Lett., 29 (1993) 565-566.

C. V. B. Cotofana Tomescu, Low-cost sensor packaging, Ph.D. Thesis of
Delft University of Technology, Delft University Press, Delft, The Nether-
lands, 2001.

S. A. Gee, W. F. van den Boogert, and V. R. Akylas, Strain-gauge mapping
of die surace stresses, IEEE Trans. Comp., Hybrids, Manuf. Techn., 12
(1989) 587-593.

Y. Zou, J. C. Suhling, and R. C. Jaeger, Characterization of plastic pack-
ages using (100) silicon stress test chips, Applicat. Experimental Mechanics
Electron. Packag., 22 (1997) 15-21.

B. Nysaether, A. Larsen, B. Liverod, and P. Ohlckers, Measurement of
package-induced stress and thermal zero shift in transfer molded silicon
piczoresistive pressure sensors, J. Micromech. Microeng., 8 (1998) 168-171.

P. Smeys, P. B. Griffin, Z. U. Rek, E. de Wolf, and K. C. Saraswat, Influence
of process-induced stress on device characteristics and its impact on scaled
device performance, IEEE Trans. Electron Devices, 46 (1999) 1245-1252.



12 BIBLIOGRAPHY

[12] H. Miura and Y. Tanizaki, Effect of process-induced mechanical stress on
circuit layout, Proc. Simul. Semicond. Dev. Processes 95, Vol. 6, 1995, pp.
147-150.

(13] G. C. M. Meijer, Integrated circuits and components for bandgap references
and temperature transducers, Ph.D. Thesis, Delft University of Technology,
Delft, The Netherlands, 1982, p.18.

[14] F. Fruett and G. C. M. Meijer, A test structure to characterize the piezo-
junction effect and its influence on silicon temperature sensors, Proc. 13th
Eur. Conf. Solid-State Transducers (Eurosensors XIII), The Hague, The
Netherlands, Sept. 12-15, 1999, pp. 53-56.

[15] Y. Kanda, Y. Kanazawa, T. Terada, and M. Maki, Improved Si piezo-
transistors for mechano-electrical transducers, IEEE Trans. Electron De-
vices., ED-25 (1978) 813-817.

[16] B. Puers, L. Reynaert, W. Snoeys, W. M. C. Sansen, A new uniaxial ac-
celerometer in silicon based on the piezojunction effect, IEEE Trans. El.
Dev., ED-35 (1988) 764-770.

[17] B. Puers and W. M. C. Sansen, New mechanical sensors in silicon by mi-
cromachining piezojunction transistors, Dig. 3rd International Conference
on Solid-State Sensors and Actuators (Transducers’87), Tokyo, 1987, pp.
324-327.

[18] R. Schellin and R. Mohr, A monolithically-integrated transistor micro-
phone: modelling and theoretical behaviour, Sensors and Actuators A,
37-38 (1993) 666-673.

[19] W. Rindner, Resistance of elastically deformed shallow p-n junctions, J.
Appl. Phys., 33 (1962) 2479-80.

[20} W. Rindner and I. Braun, Resistance of elastically deformed shallow p-n
junctions, 1I., J. Appl. Phys., 34 (1963) 1958-1970.

[21] Y. Matukura, Anisotropic stress effect of silicon pn junctions, Japan. J.
Appl. Phys., 8 (1964) 256-261.

[22] Y. Matukura, Some factor influencing on the anisotropic stress effect of pn
junctions, Japan. J. Appl. Phys., 3 (1964) 516-520.

[23] K. Matsuo, Electric pulse response of P-N junctions under anisotropic
stresses, J. Phys. Soc. Japan, 19 (1964) 1490-1491.

[24] R. Edwards, Some effects of localized stress on silicon planar transistors,
IEEE Trans. Electron Devices, 11 (1964) 286-294.

[25] W. Touchy, Untersuchungen ueber Druckempfindlichkeit von Si-
Transistorsystemen, Z. Angew. Phys., 16 (1964) 430-434.



BIBLIOGRAPHY 13

[26]
[27]
(28]

[29]

[30]
[31]
[32]

[33]

34
35
36
37]
38
30
40
a1

[42]

T. Imai, M. Uchida, H. Sato and A. Kobayashi, Effect of uniaxial stress on
germanium p-n junctions, Japan. J. Appl. Phys., 4 (1965) 102-113.

T. Imai and M. Uchida, Effect of uniaxial stress on germanium p-n junctions
(I1), Japan. J. Appl. Phys., 4 (1965) 409-414.

Y. Matukura, Uniaxial stress effect of Ge p-n junctions, Japan. J. Appl.
Phys., 4 (1965) 309.

W. Rindner, G. Doering, and R. Wonson, Structural and operational char-
acteristics of piezo-transistors and allied devices, Solid-State Electron., 8
(1965) 227-240.

K. Bulthuis, The cffects of local pressure on silicon p-n junctions, Philips
Res. Repts., 20 (1965) 415-431.

K. Bulthuis, The effect of local pressure on germanium p-n and p-s-n struc-
tures, Philips Res. Repts., 21 (1966) 85-103.

K. Bulthuis, Effect of local pressure on germanium p-n junctions, J. Appl.
Phys., 37 (1966) 2066-2068.

A. L. Polyakova and V. V. Shklovskaya-Kordi, Influence of deformation
on the properties of silicon p-n junctions, Sov. Phys.-Solid State, 6 (1966)
163-168.

R. H. Mattson, L. D. Yau, and J. R. DuBois, Incremental stress effects in
transistors, Solid-St. Electron., 10 (1967) 241-251.

K. Bulthuis, Effect of uniaxial pressure along the main crystallographic
axes for silicon and germanium, Philips Res. Repts., 23 (1968) 25-47.

A. A. Mahmoud, C. Calabrese, and J. R. Tudor, Stress effects on n-p-n
transistor parameters, Proc. IEEE, 59 (1971) 1264-1265.

Z. Djuric, The effect of localised deformation upon the common emitter
transistor current gain, Solid-State Electron., 14 (1971) 627-637.

G. Kaszynski and W. Ortmeyer, Uber die Wechseldruckempfindlichkeit von
Piezodioden und Piezotransistoren, Fernmeldetechnik, 13 (1973) 205-210.

A. Goetzberger and R. H. Finch, Lowering the breakdown voltage of silicon
p-n junctions by stress, J. Appl. Phys., 35 (1964) 1851-1854.

W. Rindner, Breakdown voltages and currents in mechanically stressed Ge
and Si diodes, Appl. Phys. Lett., 6 (1965) 225-226.

J. R. Hauser, An approximation for generation-recombination current in
P-N junctions, Proc. IEEE, 53 (1965) 743-744.

Y. Matukura, Uniaxial stress effect on Ge grown junctions, Japan. J. Appl.
Phys., 4 (1965) 632-638.



14 BIBLIOGRAPHY

[43] J. J. Wortman and J. R. Hauser, Effect of mechanical stress on p-n junc-
tion device characteristics. II. Generation-recombination current, , J. Appl.
Phys., 37 (1966) 3527-3530.

[44] J. R. Hauser and J.J. Wortman, Some effects of mechanical stress on the
breakdown voltage of p-n junctions, J. Appl. Phys., 37 (1966) 3884-3892.

[45] R. Birebent et J.-M. Simon, Interprétation des effets de la pression sur la
tension de claquage des diodes a effet Zener, C. R. Acad. Sc. Paris, Série
B, 263 (1966) 1252-1253.

[46] H. Kressel and A. Elsea, Effect of generation-recombination centers on the
stress-dependence of Si p-n junction characteristics, Solid-St. Electron., 10
(1967) 213-224.

[47] L. K. Monteith and J. J. Wortman, Characterization of p-n junctions under
the influence of a time varying mechanical strain, Solid-St. Electron., 16
(1973) 229-237.

[48] J. J. Wortman, J. R. Hauser, and R. M. Burger, Effect of mechanical stress
on p-n junction device characteristics, J. Appl. Phys., 35 (1964) 2122-2131.

[49] Y. Kanda, Effect of stress on germanium and silicon p-n junctions, Japan.
J. Appl. Phys., 6 (1967) 475-486.

[50] Y. Kanda, Effect of stress on germanium and silicon p-n junctions II. Non-
exhausted condition, Japan. J. Appl. Phys., 7 (1968) 1464-1472.

[51] Y. Kanda, Effect of compressive stress on silicon bipolar devices, J. Appl.
Phys., 44 (1973) 389-393.

[52] W. Wlodarski and B. Moeschke, The effect of hydrostatic pressure on the
characteristics of the forward biased p-n junctions, Electron Technol., 13
(83) (1980) 3-42.

[63] M. E. Sikorski, Transistor Microphones, J. Audio Eng. Soc., 13 (1965)
207-217.

[54] W. H. Legat and L. K. Russell, A silicon p-n junction transducer, Solid-St.
Electron., 8 (1965) 709-714.

[65] F. Krieger and H.-N. Toussaint, A piezo-mesh-diode pressure transducer,
Proc. IEEE, 55 (1967) 1234-1235.

[56] O. Briinnert, R. Karmann, und P. Lohse, Uber ein Mikrophon mit druck-
gesteuertem pn-Ubergang, NTZ, 20 (1967) 76-79.

[57] J. J. Wortman and L. K. Monteith , Semiconductor mechanical sensors,
IEEE Trans. Electron Devices., ED-16 (1969) 855-860.



BIBLIOGRAPHY 15

[58]

[59]

[60]

[61]

[62]

(63]

W. Wlodarski and J. Pintara, Application of the semiconductor p-n junc-
tion to measurements of rapidly varying pressures, Bull. Acad. Pol. Sci.
Ser. Sci. Tech., 21 (1973) 393-401.

D. P. Jones, S. V. Ellam, H. Riddle, and B. W. Watson, The measurement
of air flow in a forced expiration using a pressure-sensitive transistor, Med.
€ Biol. Eng., 18 (1975) 71-77.

W. Sansen, P. Vandeloo and B. Puers, A force transducer based on stress
effects in bipolar transistors, Sensors and Actuators, 3 (1982) 343-354.

M. G. Middelhock, The identification of analytical device models, Ph. D.
Thesis of the Delft University of Technology, Delft University Press, Delft,
The Netherlands, 1992.

A. Belu-Marian, E. Candet and A. Devenyi, Piezoresistive sensors, in:
Thin film resistive sensors, C. Ciureanu and S. Middelhoek ed., IOP Pub-
lishing, Bristol, 1992.

S. Middelhoek and S. A. Audet, Silicon Sensors, Ch. 3, Academic Press,
London, 1989.






Chapter 2

Theory of Stress-Induced
Changes

The effect of mechanical stress on the electrical characteristics of semiconduc-
tor devices comprises several transduction steps. These consecutive steps are
outlined in Section 1.8 and Figure 1.6. First, the stress generates a mechanical
strain, which changes the energy bands of the material. Then, the bands modify
the parameters of charge transport. Finally, the transport parameters shift the
electrical terminal characteristics of resistors, diodes, and transistors.

In this chapter the successive transduction steps are modelled in detail.
Where possible, these models are expressed as explicit analytical equations.
Compared to data fitting models, for example, analytical models provide much
more insight in the physical processes [1]. They are also more compact and can
be evaluated rapidly. Finally, they have interface parameters with a physical
meaning. As a result, the model equations can be used in the next transduction
step: a model with a higher level of abstraction. This leads to parameters which
can directly be verified by measuring voltages and currents.

2.1 Deformation of the energy bands

In solid-state physics it is fundamental that the conduction electrons of a crystal
behave as quantum-mechanical waves subject to the periodic boundary condi-
tion [2, 3]. This means that the electron wave functions adapt the symmetry of
the lattice. It also means that the wave numbers of the electrons are compatible
with the interatomic distances of the crystal lattice, as sketched in Figure 2.1.a.

When the crystal is mechanically stressed, the interatomic distances are
strained. This transduction is mathematically described in Appendix A. The
resulting strain changes the periods of the electron waves, as shown in Fig-
ure 2.1.b. In most cases, it also reduces the symmetry of the wave functions to
less symmetric states.
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Figure 2.1: Periodic boundary condition in a crystal with a square symmetry
without strain (a) and in the presence of strain (b). The electron waves have the
periodicity of the crystal as well as its symmetry. The strain therefore changes
the interatomic distance a; and the wave numbers of the electrons.

The wave description of electrons is far too complex if large numbers of electrons
are involved. In this case the description is often replaced by energy bands, in
which the electrons can be considered as (semi-)classical particles. These bands
represent the energy of independent electrons in a material as a function of the
wave vector. They are also called band structure, band diagrams, or dispersion
relations. Their exact calculation has occupied specialists for over fifty years
(see e.g. Reference [4] and [5]).

However, for the modelling of most semiconductor properties it is sufficient
to know only the small parts of the band structure where moveable charge is
located. These parts are located around the minima of the conduction bands
and the maxima of the valence bands, which are also called the band edges.
The edges are separated by a bandgap Eg, as shown in Figure 2.2.a. The edges
are also characterised by the curvature or effective mass. Their mathematical
description is found in Appendix B.

In this section it is derived how the band edges are changed by mechanical
stress. It will be shown that the stress shifts the band edges and deforms their
curvature. In addition, it will be shown that stress can break the symmetry of
the edges. In this case, the edges are no longer at the same level, which means
that the bandgap is no longer uniquely defined. This is shown in Figure 2.2.b.
It has a strong influence on the electrical properties of the material. For that
reason, the classical definition of the bandgap will be reconsidered, just as the
band edge diagram as a function of position.
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Figure 2.2: (a) Schematic band structure of silicon in the stress-free and (b)
in the stressed case. The conduction band edges on top are separated by an
energy gap E¢ from the valence band edges on the bottom. They are partially
filled with electrons and holes, respectively. The application of stress shifts and
deforms the edges. This lifts their degeneracy, resulting in different gaps.

2.1.1 The kp method for deformed cubic crystals

The shape of the energy bands around the edges can be mathematically de-
termined by the kp method. This method is explained in Appendix B for the
unstressed case and is worked out for silicon and germanium. It is based on
perturbation theory and the symmetry properties of the semiconductor crys-
tal. The theory requires a set of unperturbed orthogonal states, for which the
electron wave functions ¥, (x) of the band maximum or minimum are cho-
sen. These functions are supposed to be perturbed by a wave vector slightly off
the extremum, by the magnetic coupling between the spin and orbital angular
momenta, and by the strain.

The kp method was extended to deformed crystals by the formulation of
the deformation potential theory. For the conduction bands this theory was
proposed by Bardeen and Shockley [9] and further developed by Herring and
Vogt [10, 51]. For the more complicated case of the valence bands it was initiated
by Adams [11]. It was completed simultanuously by Pikus and Bir [6], and by
Kleiner and Roth [7]. The formulation of Pikus and Bir is used in the following
two sections.

The deformation potential theory consists of three major steps. Firstly,
the strain perturbation Hamiltonian is defined. Secondly, the symmetry of the
Hamiltonian matrix clements is evaluated and, finally, the secular determinant
is solved. This results in a set of n energy eigenvalues E,,, depending on the wave
number k and the strain e;;. These eigenvalues form the band equations around
the band edges. They contain matrix elements which are material parameters
and can be found in literature.
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2.1.2 The strain Hamiltonian

The influence of strain on a crystal is to change its periodicity, and thereby the
periodicity of the electron eigenfunctions. As a result, the functions ¥, of the
strained crystal have another period than those of the unstrained crystal, ¥,,.
It is therefore impossible to express the 1/, as a linear combination of the ¥,
although this is required by perturbation theory.

The periodicity can be restored by transforming the coordinate system of
the strained crystal into that of the unstrained crystal. Any position vector
is then expressed in terms of the strain tensor e;; and the unstrained vector ;
(see Appendix A):

i = (8ij + ei5) 7 (2.1)

where §;; is the Kronecker delta and where the Einstein convention has been used
to indicate the summation of the terms with dummy subscripts. In the follow-
ing, vectors will be indicated by both boldface symbols and subscript notation.
Boldface symbols are more compact, whereas subscripts provide more insight
when vectors are combined with tensors. The transformation from strained
to unstrained coordinates has consequences for the electron functions, the full
Hamiltonian, and the Hamiltonian on the basis of modulating functions used in
the kp method.

Transformation of the electron functions

The electron functions can always be written as a Bloch function ¢/, (x'),
where the accents indicate the coordinates of the strained crystal lattice. The
Bloch function is by definition the product of a plane wave and a modulating
function with the periodicity of the lattice u;,,:

Yo () = XX uly (') (2.2)

The position vector x’ = x} in this equation can be transformed to the un-
strained system with the aid of Equation 2.1. This yields:

Yo () = M Cutes)mayl (8 + i) :)
{
= e'hiti ui:kj (), €ij)

= Y (%) (2.3)
which is true if the wave vector k in the unstrained system is equal to:
k-j = ((%j + eij) k: (2.4)

and if the wave vector in the index of the modulating function follows that of
the plane wave.
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Transformation of the full Hamiltonian

The electron functions v/, (x’) are the eigenfuctions of the full Hamiltonian in

the strained crystal H' (x'). This Hamiltonian can also be transformed to the
axes system of the unstrained crystal. For this purpose it is written as:

2 7
p (X)+

f_‘[/ N —
() 2myg

U (x') (2.5)
in which p? is the square of the strained momentum operator D}, mg is the free
electron mass, and U’ is the potential of the electron in the strained crystal. The
momentum and its square are transformed by using their defining functions,
which contain the position vector 2/:

5] Oox; O
5 = —in-L = —ir9% 9 (s eV .
75 i oz m@a:; oz, (655 — €i5) Dj (2.6)

ﬁz = f)\2 - 2§,’]’)\j6i]‘ (27)

The second-order terms in strain have been neglected here. The potential energy
U’ (x'), in addition, can be transformed by using a first-order Taylor expansion:

UI (mi) = U/ ((5” + eij).’L'j) =U (IL‘J) + Uij (.’IJJ) 62] (28)

in which the tensor U;; (x;) is defined as the first-order derivative of the potential
with respect to strain, at zero strain:

Usj (z;) = ——= (2.9)

(’.,;j=0

The full Hamiltonian H’ can therefore be expressed in unstrained coordinates
as a combinaton of the regular Hamiltonian H and a strain perturbation Hamil-
tonian H,:

H' (x') ¢l = (ﬁ+ ﬁe) (%) Yrx (2.10)
in which:
~_ P

H=—"—+4U 2.11
oo+ (2.11)

. 1 ..
He = ——pipjei; + Uyjei; (212)

mo

It should be noticed that the influence of spin-orbit coupling has not been
taken into account here. In silicon, however, the coupling is small enough to be
considered as a separate perturbation. Under this assumption it is calculated
in Appendix B. Moreover, it appears that its inclusion does not significantly
change the shape of the following equations [6, 8]. It will therefore be added to
the results in Section 2.1.5.
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Transformation of the modulating function Hamiltonian

The transformation from strained to unstrained coordinates is finally applied to
H ! (x’), which is the Hamiltonian defined on a basis of the modulating parts
Uy, (x) of Bloch functions. In the unstrained case the transition to the basis

of modulating functions yields an extra kp-Hamiltonian Hkp, as shown in in
Appendix B. For the strained case the transition yields some extra Hamiltonians,
which can be shown by similar steps. The full Hamiltonian of Equation 2.10
is therefore operated on the Bloch function of Equation 2.2, after which the
plane wave part is removed. Then, the wave vector ko of the band extremum is
introduced. This yields:

-FAI; (x') Unky = (ﬁo + Hoe + ﬁkf, + ﬁkf,e) (%) U, (2.13)

in which I:TO is the Hamiltonian of the unperturbed electrons on the basis of
Uy, (X), and Hoe, Hyp, and Hyp. are perturbations on the same basis. More
specificly, fIOE is the strain Hamiltonian, ﬁkf, is the kp-Hamiltonian, and ﬁkﬁe
is the influence of strain on the kp-Hamiltonian. They are given, respectively,

by:

Hoy = 215—2 +U+ —k? ‘,-1-22—}“3 (2.14)
mﬁwim@ﬁmﬁpﬁﬁ%m (2.15)
Hg = ;r% (ki — k) D (2.16)

Hige = —mio (ki — k?) €i;p; (2.17)

Usually, however, it is allowed to neglect higher-order terms and only retain the
terms which are quadratic in k, linear in e;;, and linear in both k and e;;. To
a good approximation, Equation 2.13 can therefore be written as:

H, (<) ey = (Ho + He + Hi ) (%) i, (2.18)
in which IT:AIe is the strain Hamiltonian of Equation 2.12.

2.1.3 Strain matrix elements

The perturbation Hamiltonians of the preceding section can be used to evaluate
the matrix elements of the secular determinant in the case of strain. In Ap-
pendix B, Section B.3, this determinant is found in its most general form. To
the second order in k it is equal to:

Z Hpy,
det 1nn + mb f; E.:L(smn =0 (2.19)
b#m, n bb
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where E;, is the cnergy E, reduced with the amount (h*/2mg) (k* — k3). The

matrix element H,,, is in the present case equal to the mean value of H,,

the Hamiltonian with respect to the functions w,,x, and u,x,, which are two
modulating functions of electrons in the band extrema of the unstrained crystal.
This means that H,,, is defined as:

Hpn = | u o H wp,dx = (m| H' |n 2.20
mko ' u 0 u

In Equation 2.19, the functions denoted by m and n correspond to the degener-
ate band edges for which a description is to be found. The functions b, however,
correspond to the bands which lie relatively far away and are of no particular
interest.

First-order elements

The first-order elements H,,, can be evaluated by using Equation 2.18 and
writing:

Hpn = HY,, + H¥® + HE, (2.21)

The first term here is equal to the energy eigenvalue Ey when m = n, because the
Umk, are the orthogonal eigenfunctions of the Hamiltonian of the unperturbed
electrons I?Io. The second term vanishes because its integrand is odd in x. This
is the result of the oddness of the momentum operator p; = —ihd/dx;, and the
fact that the degenerate band edges have eigenfunctions m,n with the same
parity, odd or even. The third term, however, should be retained. With the aid
of Equation 2.12 this matrix element of H, can be defined as:

1 . &
Hy,, = (m| - g PiPi + Uij |n) e (2.22)

— omn

=&y Cij = He (223)
where E7}" is called the first-order deformation potential tensor [9, 10] and H,
is defined as the strain matrix, with the dimensions m x n. An entire first-order
element can therefore be written as:

H,... = Eobmn + E;’J-’"eij (224)

Second-order elements

In contrast to the first-order elements, the product of second-order elements
H,,,Hpy, is essentially the same as in the absence of strain. To derive this, H,,s
is again expanded into its components with the aid of Equation 2.18. The first

term of this expansion is HY,,. It vanishes because the functions b are unequal

to m by definition, whereas they are all eigenfunctions of ﬁo. The product
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H,.sHypy, therefore only consists of the remaining terms, the matrix elements of
the kp- and strain Hamiltonians:

mb

HppHypn = HSHI® + H*P He + HE HYP + HE W HE, (2.25)

The first term of this expression is equal to that of the kp method in the
absence of strain, and leads to the inverse effective mass tensors M;; and D;7™
(see Appendix B, Section B.5 and B.6). The last term can be neglected because
it is only quadratic in strain. The second and third term vanish if the crystal
has a centre of inversion, such as silicon. This can be shown as follows.

Inversion symmetry implies that the matrix elements remain invariant when
the position vector x is replaced by its inverse —x in the integrand. For the
strain matrix element HY,, it should therefore be true that:

* |
Hio = ey [t 0) (=10 U ) () e ()
1
= €5 /“:nko (—x) (—m—opipj + Uz‘j) (—%) upk, (—x) dx (2.26)

The momentum operator p; is odd in x, whereas the strain e;; and the strain
derivative of the potential U;; are even. The above equation is therefore only
true if the functions m and b have the same parity, odd or even, or if the integral
vanishes. For the kp matrix element, on the other hand, the inversion symmetry
implies that:

5 k
Kk ~
HP = ;n—;)k,- /ugko (%) i (X) Unk, (x)dx
h ' ~
= —m—oki / upy, (—%) i (—%) Unk, (—X%) dx (2.27)
This is only true if the modulating functions b and n have opposite parity, or if
the integral vanishes. In the product H, , H, ,lf: the functions m and n represent
the same degenerate band edge and are of equal parity. If the function b also
has that parity, the element H;f’ will vanish. However, if it has the opposite
parity, the element H,, was seen to vanish. The product will therefore vanish
in any case. As a result, the entire product of second-order elements H,,, Hpp

in Equation 2.25 reduces to:
HpppHon = H® HYP (2.28)

which is the same expression as in the unstrained case.

2.1.4 Conduction band equations

The second-order description of the conduction band near the band edge can
now be found by using that the edge is nondegenerate at ko. This can be seen
from Figure 2.3.a and it means that the indices m and n can only be 1. It is
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Figure 2.3: Energy bands of stress-free silicon in the first Brillouin zone: (a)
Complete energy vs. wave vector diagram F (k) for different directions. Fq is
the gap between the valence and the conduction bands; (b) Equi-energy surfaces
of the six conduction band edges in k-space. After Madelung [12].

combined with the expressions of the nonzero matrix elements of the secular
determinant of Equation 2.19. This yields the equation:

B Hkﬁka’
Eco+Eje+ ), 5—F H—Ec=0 (2.29)
b#Fm,n ¢ o

where the reduced energy E! has been called the reduced conduction band
energy Ef, and where the unperturbed energy Ej has been called the conduction
band edge E¢. As aresult of the symmetry of the silicon crystal, the conduction
band has six equivalent edges throughout the first Brillouin zone, as shown in
Figure 2.3.b. They are located along the <100>directions and are indicated
in the following by the superscript m, m € {1,2..6}. The conduction band
equations can be rewritten in analogy to the strain-free case of Appendix B,
Equation B.26. This gives:
h2
E¢ (k) = Egp + Efjei; + 5M1-_1;‘kikj, i,7 € {1,2,3} (2.30)

where ]l-[,-';‘ is the inverse effective mass tensor of the conduction band and where
the wave vector k; is measured from the band edge at k{j*.

Symmetry of the deformation potential tensor

In analogy to the inverse effective mass tensors M7, the deformation potential
—-m

tensors 277 of the silicon conduction band contain only two independent, nonzero
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Table 2.1: Deformation potentials of silicon according to different authors. All

potentials are given in eV, except a which is given in mg .

1

ST (Ea+Z2./3—a) a b d Ref.
1.1 10.5 2.5 2.1 —-2.33 —4.75 [5]
1.03 847 1.79 2.06 -2.27 -3.69 [14]
1.13 9.2 1.72 246 —2.35 —532 [15, 16]
21 -15 -34 [17]
8.1 1.6 214 -51 [i§]
8.6 1.5 ~2.10 -4.85 [19]
86.8 -1.36 —3.09 |20, 21]

elements. These elements can be derived by applying the symmetry properties
of the crystal to the tensor, as shown in Appendix B, Section B.5. For a band
edge along the [100] direction this yields:

= 0 0 mt 0 0
E;=0 8 0 |; Mi=| 0 m*' 0 (2.31)
0 0 E 0 0 m;!

where =; and =Z; are the longitudinal and transverse deformation potentials,
respectively, and m; and m; the longitudinal and transverse effective masses.
It is more common, however, to use the constants of Herring and Vogt [10, 13]
who defined the dilational deformation potential Z4 and the shear deformation
potential =,;:

(1]

a= 7 (B3 + Ei3) (2.32)

1

BN = DO =

w == (28], — E}; — Eis) (2.33)
Numerical values of these potentials are available from measurements as well as
from more fundamental calculations. Examples of these are given in Table 2.1.

It should be noted that they show a rather large spread.

Shifts of the band edges

The effect of the strain term in Equation 2.30 is to generate an additional energy
term independent of k. This term can therefore be considered as a shift AEZ,
of the band edge E7:
Ejjei; = AEG, (ei;) (2.34)
The strain-induced energy shift is generally different for the various conduc-
tion band edges. If K" is a unit vector in k-space pointing to k{’, the energy
shift of an arbitrary band m can be expressed as [10]:
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AEZ, = (E4bi; + SKMK™) €5 (2.35)

It can be scen from this cquation that the shifts are equal for the pairs of bands
which are opposite in k-space. Band 1 is therefore equal to Band 4, Band 2 is
equal to Band 5, and Band 3 is equal to Band 6, even under stress.

It is interesting to consider the shifts of the conduction band edges of silicon for
three special types of strain. These types correspond to similar types of stress;
see Appendix A.

Pure dilatation, firstly, is the strain for which all diagonal elements of e;;
are equal to a magnitude e and all off-diagonal elements are zero. In that case,
Equation 2.35 predicts that all band edges are shifted with the same amount
(324 + Z4) e. The result is that all equi-energy surfaces in Figure 2.4.a are
equally enlargened.

Uniaxial strain along the [001]-axis, secondly, corresponds to a strain tensor
with only one nonzero element, ez3. Its effect on the band edges in that direction
is different from the effect on the edges in the perpendicular directions:

(Eq+Zu) ess = AES, (2.36)
Zgess = AEL, = AE%, (2.37)

As a result, strain shifts the conduction band edges to different levels, which
was already sketched in Figure 2.2. This is equivalent to the picture that the
equi-energy surfaces of the [001}-edges are much more enlargened than the other
edges, which is sketched in Figure 2.4.

Shear strain, finally, is described by a tensor with off-diagonal elements only.
Such a strain has no influence on the band edge energies of silicon, as can be
seen from Equation 2.35.

Deformation of the equi-energy surfaces

The conduction band expression of Equation 2.30 suggests that strain only shifts
the band edges, and that shear strain has no influence. Experiments and theory
have shown, however, that this is not entirely true for silicon [21, 22, 23]. Shear
strain does have some influence, which becomes apparant through a modification
of the inverse effective mass tensor.

The cause of the mass changes is that the minima of the conduction band,
A1, are relatively close to a higher-lying band, Ay/. This is shown in Figure 2.5.
The figure also shows that both bands touch each other at the points X at the
zone boundary, which is a result of the cubic symmetry of the crystal. Therefore,
the electron wave functions of A; and Ay are coupled, and determine each
other’s curvature. This coupling is still perceptible at the minima of A; at k{*.

When the crystal is subjected to a orthorhombic distortion ey3, the degener-
acy is lifted at X in the [100]-direction. The two bands split with an amount 2E},
as shown in Figure 2.5.b. The coupling between the wave functions is thereby
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Figure 2.4: Equi-energy surfaces of the conduction band edges of silicon in the
first Brillouin zone; (a) in the absence of strain; (b) in the presence of uniaxial
strain along the [001]-axis.

partially removed. This results in a change of the curvature, and therefore in
a modification of the effective mass. For a minimum in the [100]-direction, this
can be described by the following inverse effective mass tensor:

m;! 0 0
ng (ekl) = 0 m{l 20e93 (238)
0 2ae3 my; 1

where « is a proportionality constant. The value of & has been measured with
the aid of cyclotron resonance and was found to be (86.8 £ 5.0) mgy* [21]. The
minima in other directions are not affected by the strain es3, but are sensitive
to shear perpendicular to their longitudinal axis.

The introduction of off-diagonal elements in the effective mass tensor means
that the principal axes of the mass ellipsoid no longer coincide with the crystal
axes. Instead, the transverse axes are turned over m/4. Moreover, they are
different from each other, which is illustrated in Figure 2.6.

2.1.5 Valence band equations

The second-order description of the valence bands is found by supposing that
the edges are threefold degenerate at kg in the unperturbed case. This is worked
out in Appendix B, Section B.6. The eigenfunction indices m and n therefore
range between 1 and 3. Also for this case a collection can be made of the nonzero
matrix elements entering the secular determinant of Equation 2.19. The result
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Figure 2.5: Degeneracy of the conduction band A; with the band Ay at the
point X: (a) Complete band diagram of the first Brillouin zone; (b) Detail of
the degeneracy at the zone boundary, as well as its lifting with an energy 2E; by
a shear strain epg [21].

is:
B Hkp kp
det |=7"e;; + Z —mb b (E! — Eo)$mn| =0 (2.39)
b#m,n ” — Hy

With the aid of the inverse effective mass tensor D:;"‘ this can also be written
in a form showing the mathematical similarity between the strain- and the wave

vector-dependent parts:
det [ mnell Dl.’lmklkJ - (E'u - EO) 61u71,] =0 (240)

where E, is the unreduced energy eigenvalue. This, finally, can be written in a
more abstract matrix notation:

det [He + ka) - E(Sm,n] =0 (241)

where F is an abbreviation of the energy difference F,, — Ey. The matrix H, is
called the strain Hamiltonian matrix.

It is seen in Section B.7, however, that the valence bands are also consider-
ably influenced by the spin-orbit coupling. This coupling doubles the number
of eigenfunctions to six, and therefore doubles the rank of H, and Hyp. More-
over, it adds a first-order perturbation term to the Hamiltonian. The coupling
has no apparent influence, however, on the kp and strain perturbation terms.
Its effect on the secular determinant of Equation 2.41 is to add the spin-orbit
matrix Hgo, derived in Section B.7:

det [HEX“ +HY + Hso — E6m,,] -0 (2.42)
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Figure 2.6: Cross section of three perpendicular conduction band ellipsoids un-
der a shear strain eg;. The ellipsoids are projected onto the kzks-plane. The
strain changes the transverse axes of the ellipsoid in the ki-direction, whereas
it leaves unchanged the perpendicular ellipsoids [23].

0 —i03 109
Hgo = %9 63 0  —ioy (2.43)
—iG, 6, O

where Agg is the spin-orbit splitting energy and the &; are the Pauli matrices.
The rank of the matrices H, and Hyg is explicitly indicated here. The matrices
are obtained from the corresponding 3 x 3 matrices by multiplying each element
with the 2 x 2 unity matrix I.

Symmetry of the deformation potential tensor

The strain Hamiltonian matrix is considerably simplified by subjecting its de-
formation potential tensor Z77" to the symmetry properties of the crystal. For
this purpose it is noticed that Z77" in Equation 2.40 appears mathematically in
the same way as the effective mass tensor Dj}". They therefore obey the same
symmetry properties, which are developed for D" in Appendix B, Section B.6.

i
This yields the following kp matrix:

Hyp = D" kik; (2.44)
Lk + M (k3 + k3) Nk ko Nk;ks
Nkiks Nkoks LKk3 + M (k} +k3)
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Table 2.2: Other definitions of the deformation potentials appearing in litera-
ture.

This work (6] (7] [24] (25]
I a+2b DYy—3iD, (d+2d3)/V3
m a—b DYy+:D, (di—ds)/V3
n V3d -2D V/3/2ds
=4 d\/V3-d3}/)V6 E,-Ey/3

=, V3/2d3 Es

where L, M, and N are the valence band parameters. It also yields the following
strain matrix:

H, = 5'e, (2.45)
le11 + m (e22 + e33) nejo neis
= nejs leas + m (e11 + es3) negs
neys negs legs +m (e11 + eg2)

where [, m, and n are called the first-order deformation potentials of the valence
bands. These potentials are defined as:

—_ =1 —_ =11 _ =12 | =21
l=271, m=E3, n=Z13+Z57; (2.46)

Often, they appear in literature as linear combinations of the parameters a, b,
and d, or as a combination of DY, D, and D). Their conversion is given in
Table 2.2, whereas numerical values are shown in Table 2.1. It should be noted
that the conversion between the symbols is prone to mistakes, especially when
the strain is defined as the so-called ’engineering strain’ or ’conventional strain’,
instead of the usual ’tensor strain’ (see Appendix A of Reference [20]).

Solution of the secular determinant

The solutions of the secular determinant in Equation 2.42 represent the valence
bands in the presence of strain. In other words, they are the eigenvalues of the
matrix H = H%*6 4 Hﬁgﬁ + Hso [26]:

h11 hia — u?g hiz + 185
H=| hi2o+ 16{3 hoo hos — Z(’J'\'l (2.47)
h13 - 13’2 }7«23 + 2811 h33

of which the elements are new 2 x 2 submatrices. In this Hamiltonian matrix the
; denote the reduced Pauli matrices and are equal to 5;As0/3. The diagonal
elements h;; are defined by:

hi; = [Lk? + M (k? + k,%) +le;; +m (ejj + ekk)] i DY (248)
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Figure 2.7: Valence band dispersion relations of Si in the [100]- and [110}-
directions: (a) in the absence of stress, and (b) in the presence of 200 MPa
uniaxial compressive stress along the [100]-direction. FE is the energy, k the
wave number, and a the atomic constant. HH, LH, and SO indicate the heavy-
hole, light-hole, and split-off bands, respectively.

in which (i, 4, k) is a cyclic permutation of (1,2,3). Finally, the off-diagonal
elements h;; are defined as:

hij = (Nkik; + nei;) I, i (2.49)

The eigenvalues of H are given by the same expressions as in Appendix B,
Section B.8 [26, 27, 28]. They are called the heavy-hole band E¥H (k;, e;;), the
light hole band EYH (k;, e;;), and the split-off band E‘S,O (ki, eij), respectively.

When the valence band functions are plotted the influence of stress and
strain becomes immediately apparent, for instance in Figure 2.7. The most
striking feature of this figure is the splitting of the degenerate band edges. This
was to be expected from the fact that the strain destroys the cubic symmetry of
the crystal, which makes the degeneracy no longer necessary. Another feature
is that the shapes of the bands are deformed.

Shifts of the band edges

The splitting of the valence band edges is plotted in Figure 2.8 as a function
of uniaxial stress. It is interesting to see that the heavy- and light-hole band
edges do not cross each other at the origin. Instead, they repel each other,
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Figure 2.8: Edges of the valence bands E{;, as a function of a uniaxial stress
along the [100]-axis. The edge of the heavy-hole band is indicated by ‘HH’, that
of the light-hole band by ‘LH’, and that of the split-off band by ‘SO’.

(b) ()

Figure 2.9: Schematic of the shifting of the valence band edges EY}, as a result
of a strain e. (a): pure dilatation, (b): normal uniaxial strain, (c): pure shear.
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Figure 2.10: Valence band equi-energy surfaces for different stresses, at 1 meV
below the band edge. Left: heavy-hole band; Right: light-hole band. (a): stress-
free case, (b): 20 MPa shear stress in the [110]-direction, (c): -50 MPa normal
stress in the [100]-direction.
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bend rather sharply, and take over each other’s trajectory. This effect is due to
the quantum-mechanical interaction between the states of the bands, which is
allowed due to the equal parity and quantum number of the states [29, 30].

The shifting of the band edges can be studied more in detail to find the
role of the different deformation potentials. This is done by analysing the band
functions ERH, ELH and E$© at k = 0. Three special strains are again con-
sidered: pure dilatation, normal uniaxial strain, and shear strain. Their effects
are sketched in Figure 2.9.

Pure dilatation appears to cause a rigid shift of all band edges with an
amount 3ae, where a is the deformation potential (I +2m) /3, and e the mag-
nitude of the dilatation. It does not cause any edge splitting. The reason for
this is that it leaves intact the cubic symmetry of the crystal.

A normal uniaxial strain e also causes a rigid shift of all band edges, with an
amount ae. More important, however, is that it splits the edges of the heavy-
and light-hole bands with an amount 2 |be|, where b is the deformation potential
(I — m) /3. An interesting feature of the splitting is the absolute value function.
As a result, the heavy-hole band always stays above the light-hole band, whether
the strain is positive or negative. The splitting is linear in e for strains well
below Ago/3b. Usually, this is the case because the limit corresponds to 6 me
(millistrain) and a stress of about 1 GPa. This is four times higher than the
range considered in this thesis.

Pure shear strain, finally, also splits the edges of the heavy- and light-hole
bands. This splitting amounts to 2|de|, where d is the deformation potential
n/v/3. The linearity of the splitting holds for e < Ago/3d. The rigid shift of
all edges is negligible under the same condition.

Deformation of the equi-energy surfaces

The strain not only shifts the valence band edges, but also deforms their equi-
energy surfaces. Examples of this are given in Figure 2.10. The deformation
of the valence band surfaces is strong, much stronger than for the conduction
bands. The reason is that in the absence of strain the valence bands are very
close to each other and thereby influence each other’s shape. As a result, the
equi-energy surfaces are warped instead of spherical. In the presence of strain,
however, the bands are split, which partially decouples them and decreases the
warping. For very high strains, the bands are even completely decoupled and
have ellipsoidal equi-energy surfaces, just as the conduction bands.

Another interesting phenomenon is that for specific orientations, strain seems
to press the light-hole band through the heavy-hole band. This is shown in
Figure 2.7.b, for k between 0 and 0.25 x 27/a in the [100]-direction. Within
this interval, the heavy- and light-hole bands have interchanged their shape
with respect to the strain-free case. The transition with the shape outside
the interval is sharp, with a discontinuous derivative. This is a result of the
quantummechanical origin of the bands.

The deformation of the equi-energy surfaces appears to be the main cause
of the piezoresistive effect for holes. The piezoresistive effect for electrons, on
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Figure 2.11: Schematic representation of the different bandgaps Ej}* that may
arise in silicon when it is subject to stress.

the contrary, is dominated by the shifts of their conduction band edges.

2.1.6 Bandgap definitions

In the preceeding sections it was seen that anisotropic stress lifts the degeneracy
of the band edges. This makes it difficult to speak about ‘the’ bandgap of silicon,
although this is a widely employed concept in electronics and in charge transport
theory.

Usually, the bandgap E¢ is defined as the energy necessary to excite an
electron from the maximum of the heavy- and light-hole valence bands to one
of the six equivalent minima of the conduction band. The gap with the split-off
band is generally neglected.

Stress, however, yields three different minima and three different maxima,
if the split-off band is also considered. This gives nine different gaps, which is
illustrated in Figure 2.11. It is therefore necessary to specify the gaps with the
band coefficients m and w.

2.1.7 Band edge diagrams

In the calculation of charge transport the band edge energies often need to be
known as a function of the position, such as in Section 2.2 and Appendix C.
These functions can be represented graphically in a band edge diagram, of which
an example is shown in Figure 2.12. The course of the edges is determined by
both the crystal potential and the external fields of force, such as stress and the
electrostatic potential ¢. The band edges need to be related to this potential
by means of a reference energy level.

In stressed material the reference energy level cannot be chosen in the way
adapted in most textbooks. There, the reference is usually defined by the ‘in-
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Figure 2.12: Band edge structure of a nonhomogeneous semiconductor as a
function of position x. Indicated are the local vacuum level E;, the edge E¢Y; of
conduction band m, and the edge E}}, of valence band u. After Marshak and
Van Vliet [31].

trinsic level’, which is calculated from the bandgap and the effective densities
of states of the bands. It was shown in the previous section, however, that the
bandgap is not unique under stress. The situation becomes even worse when the
stress is inhomogeneous and the edges vary with position even in the absence
of an electrostatic potential.

For stressed material it is therefore much better to choose the reference as
the energy of an electron in vacuum. This approach is also used to describe
heterojunctions, heavily doped regions, and non-isothermal conditions. As a
result, the other quantities in the band edge diagram also need to be redefined.
This is done here according to Marshak and Van Vliet [31] and relates the energy
bands to the electrostatic potential:

e F;, represents the energy of an clectron at rest, free from the crystal
potential, and on a position where the electrostatic potential ¢ is by defi-
nition zero.

e ¢ (x) is the electrostatic potential and is forced on the crystal from both
external sources and internal space charge. It is a continuous function of
the position x.

e E;(x) is called the local vacuum level. It represents the energy of an
electron at rest, free from the crystal potential, but with an electric field
energy q¢ (x). It is therefore suitable to serve as a reference level in charge
transport calculations. Since ¢ (x) is continuous, E; (x) is continuous as
well.
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Figure 2.13: Kinetic energy of electrons W and holes W' which are moving
through the bands m and u of a semiconductor. The energy is continuously
increased by the gradients in the band edges, and is decreased from time to
time by scattering events.

e x™(x) is the electron affinity of conduction band m. It is the energy
necessary to free an electron from the conduction band edge EZ, to the
local vacuum level Ej (x).

e EZ (x) is the energy of the conduction band edge m, thus at the minimum

™ in k-space. Partially, it depends on the electrostatic potential and

partially on the crystal potential. It represents the total potential energy
of an electron in that band on that position.

e EZ*(x) is the bandgap between the conduction band m and the valence
band u. It is equal to the energy that needs to be supplied to create an
electron-hole pair.

e E¥,(x), finally, is the edge of valence band v and represents the total
potential energy of a hole in that band on that position.

With the aid of those definitions it is possible to define a Hamiltonian oper-
ator describing the total energy of electrons and holes in a band. By inspection
of Figure 2.12 the local potential energy can be written as:

Ego (x) = Ero — X™ (x) — g6 (x) (2.50)
Eyo (x) = Eo — X" (x) — EG* (x) — q¢ (x) (2.51)

Due to their velocity, electrons and holes also have a kinetic energy, denoted
by Wi*(k,x) and Wj'(k,x), respectively. The kinetic energy of an electron
is increased continuously by the gradient in the band edge. However, it is
decreased from time to time by scattering on phonons, ionised impurities, and
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lattice imperfections. This is sketched in Figure 2.13. Therefore, the total energy
of electrons and holes in a band is equal to:

Eg (x,k) = EJ, (x) + W) (x.k) = H (2.52)
EY (x,k) = B (x) — W (x.k) = H}! (2.53)

where H¥ is the semiclassical Hamiltonian for the conduction band m, and H{
is the Hamiltonian for the valence band u.

2.2 Microscopic changes in charge transport

The stress-induced changes in the energy bands must have consequences for the
easc with which charge carriers can be transported through the material. The
equations for this transport can be derived in essentially the same way as for un-
stressed material (see e.g. [2, 33]). Within the derivation, however, care should
be taken not to assume that the material is isotropic or homogeneous. Instead,
one should use the definition of the bandgaps and the band edge structure of
Section 2.1.6 and 2.1.7 [31]. This is worked out in Appendix C, while the results
are applied throughout the following sections.

This section starts with an overview of the models from which charge trans-
port can be calculated, and the assumptions on which they are based. Then it
presents equations for charge concentration under stress. It develops the con-
ductivity in terms of band parameters, which is in fact the most important
transport parameter for the piezojunction effect. Finally, it discusses the stress
effects on auxiliary parameters, such as the pn-product, the carrier lifetime, and
the dielectric constant.

2.2.1 Awvailable transport models

For the description of electron and hole transport, models of different complexity
and precision exist. Four possible models are given in Figure 2.14 [34]. Each
model arises from the preceding one and includes additional assumptions. It
is useful to be aware of them to know the limits of the validity of a model’s
predictions.

Quantum transport theory

The most fundamental theory on electron and hole motion is the quantum trans-
port theory. In this theory, electrons are considered as wave functions moving
in the periodic potential of the crystal lattice, their motion being determined
by the Schrodinger equation. However, if the lattice is much larger than the De
Broglie wavelength, it can contain a huge number of electrons which all inter-
act with each other. It is therefore impossible to describe the motion of each
electron separately.




40 CHAPTER 2. THEORY OF STRESS-INDUCED CHANGES

Quantum transport theory

AN

Semiclassical transport model

AN

Drift-diffusion equations

N

Regional approach

> Assumptions

Figure 2.14: Models of charge carrier transport in semiconductors. Each model
arises from the previous one and includes further assumptions [34].

Semiclassical transport model

The large number of electrons makes a statistical description necessary, which is
provided by the semiclassical transport model. In this model, the electron wave
functions are considered as particles. These particles have an effective mass m*
and a crystal momentum hk centred around some fikg. It is supposed that:

o The electrons remain in the same band m of the material.

o Their energy is determined by the band equation E™ (k) (see Section 2.1
and Appendix B).

e They move, between collisions, according to the classical equations of mo-
tion.

e They have a distribution of momentum given by Fermi-Dirac statistics.

The development of the distribution in time and space is given by the Boltz-
mann transport equation (see Appendix C.2). By using this equation a number
of additional assumptions is made:

e Quantum effects can be neglected;
o Electrons and holes form a gas of free and independent particles;

o The fields and concentration gradients only vary slowly with respect to
the mean path between two collisions;

o Collisions are instantaneous;
o The electric field is low enough for scattering being independent of it.

Unfortunately, the exact distribution function is very difficult to calculate
and the result is not practical for the description of transistor behaviour. It may
serve, nevertheless, as a starting point for the derivation of simpler equations:
the drift-diffusion equations.
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Drift-diffusion equations

The drift-diffusion or Shockley equations can be derived from a first-order per-
turbation of the distribution function, as shown in Appendix C. They give the
current density vectors of electrons and holes J" and JP, respectively, as a func-
tion of the electric field F°! and the gradients in the concentrations n and p with
respect to the position x. Conventionally, the equations are written as:

J* = gnu"F + ¢D"Vn (2.54)
J° = qpuPF! — qDPVp (2.5%)

where ¢ is the elementary charge, P are the electron and hole mobilities,
respectively, and D"P are the electron and hole diffusion constants. The equa-
tions have widely been applied for the design of semiconductor devices because
they enable accurate modelling of their most important properties. In addition,
they are remarkably successful in incorporation quantum phenomenon such as
band-to-band tunnelling.

To derive both the drift-diffusion equations and expressions for u*, u?, D",
and DP the semiclassical transport model is used in combination with a number
of further assumptions. Most of them can be justified quite easily:

e The material has a homogeneous temperature;

The scattering of electrons and holes is elastic;

The mean time between two collisions 7 only depends on the wave vector
k through the encrgy E: 7 [E (k)];

The scattering hardly changes the shape of the distribution function;

o The spatial variation of 7 is small compared to the mean free path.

Unfortunately, the equations are also based on assumptions which in general
are invalid under stress:

e The semiconductor is isotropic;
e The semiconductor is homogeneous.

Finally, they are based on some assumptions we often prefer not to make even
in the case of unstressed material:

o The material is nondegenerate;
e The energy bands E (k) are parabolic.

As a result of the above limitations the conventional drift-diffusion equations
should be amended. This is done in Appendix C, while the results are resumed
in Section 2.2.3.
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Regional approach

The simplest transport model of Figure 2.14 is the regional approach, often used
for manual calculations of semiconductor device behaviour. In this approach
a device is considered to be built up of one-dimensional regions, which are
assumed to be either quasi-neutral (zero field) or depleted (zero free carrier
concentration). This allows for each region an analytical solution of the drift-
diffusion equation, after which the solutions of all regions can be combined by
requiring continuity at the interfaces.

The regional approach provides insight in many aspects of the device be-
haviour while it is remarkably precise in view of the large number of assumptions
it contains. It leads to the compact analytical models desired in circuit design,
such as the current-voltage relation derived in Appendix D. In particular, it
leads to the model of transistor behaviour under stress presented in Section 2.4.

2.2.2 Charge carrier concentrations

The concentration of charge carriers in a band is important for the transport
properties of the material. A high concentration facilitates the charge transport
and increases the conductivity. It is, however, also important to know the
concentration in one band relative to that in other bands. The reason is that
each band imposes a specific effective mass to its charge carriers. This mass
contributes more to the average mass with respect to all bands if the band is
filled to a higher level. Mathematically, the concentration gives an expression
for the Fermi level which can be used to calculated the conductivity.

General expressions

It was argued in Appendix C that the concentration of electrons in a band
depends on its density of states and also on the distribution of electrons across
those states. In the relaxation time approximation the distribution is assumed
to be given by Fermi-Dirac statistics, even outside thermodynamic equilibrium.
In that case, the electron concentration n™ due to a band m and the hole
concentration p* due to a band u are given by:

) = ./c % [1 e (Een = );»‘)B—TEFn (X))} i (2:56)
P (x) = /p 4% [1 o (EF,, (x)k; TE;‘, (k, x))] ! 257)

where the integrals are taken over the first Brillouin zone, E% and EY;, are the
band dispersion relations, kg is the Boltzmann constant and 7' the absolute
temperature. Er, and Epp, are the electron and hole quasi Fermi levels. They
represent the total concentration of a carrier type, summed over all bands, and
not necessarily in thermal equilibrium. In equilibrium, however, Er,, and Ep,
are equal.
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Figure 2.15: Changes in a conduction band which influence the electron con-
centration. The concentration is represented by the size of the gray area. (a)
Original situation, (b) shift of the quasi-Fermi level, (c) shift of the band edge,
(d) deformation of the curvature.

The concentration in a band is influenced by mechanical stress through the
band equation as well as through the (quasi-)Fermi level. It was shown in
Section 2.1 that this may deform the band and shift it with respect to the Fermi
level. This is illustrated in Figure 2.15. The average effect over all bands is
reflected by the Fermi level, which therefore also shifts with stress. This Fermi
level shift depends on whether the charge carrier is a majority or a minority in
the material, which will be developed in Section 2.3.1.

Expressions for nondegenerate material

The mathematical analysis of the concentrations under stress is much simplified
when the material considered is nondegenerate, i.e. when the distance between
the bands and the quasi Fermi levels is larger than 2.3 kgT. For silicon this
means that the doping concentration is less than 10'® cm™ and that the carrier
concentrations due to injection remain below that value (low-level injection).
Neither of these assumptions is very restrictive for the treatment of the piezo-
junction effect. In that case the Fermi-Dirac statistics differ less than ten percent
from Maxwell-Boltzmann statistics, meaning that Equation 2.56 and 2.57 can
be replaced by:

n™ (X) = /C :ld;rl% exp (EFR (x)k_ng‘l (k7 x)) (258)
dk EY (k,x) - E
Pt (x) = /CZW—Bexp( v k)BT Fp (x)) (2.59)

For nondegenerate material it is customary to introduce the concept of the
effective density of states (DOS). According to Appendix C, Section C.1.3 the
effective densities of states of a conduction band m and a valence band u are
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defined as:

o dk —Wr (k,x) v dk Wy (k,x)
N& = /C e exp( kT ), Ny = /C 1 P (W— (2.60)

where W) and W} are the electron and hole kinetic energies. These energies are
defined as the total energy minus the energy of the band edge (see Section 2.1.4).

The effective density of states N7 is a measure of the volume of conduction
band m and only depends on its shape. When it is used to express the electron
concentration, it separates the influence of the shape from that of the band
edge EZ%) and the quasi Fermi level Er,. For the hole concentration a similar
separation is made, yielding:

n™ (x) = NZ (x) exp (EF" (XL;TEE% (x)) (2.61)
P (%) = N (x) exp (E bl b (")) (2.62)

The separation is useful in the stress-free case and in the description of the
conduction bands under stress. However, it appears to be confusing in the
description of the valence bands under stress, as will be shown in the following.
It is therefore useful to introduce the concept of the available density of states.

Definition of the ‘available density of states’

The available density of states is a new quantity with a meaning similar to that
of the effective density of states. For a conduction band m and a valence band
u the available densities of states F&* and Fy} are defined as:

& (x) = : f_::% exp (Lgﬁfﬁc—)) = exp (i};’};%f—)) n™(x) (2.63)
Fy (x) = i % exp (%) = exp (%) p* (x) (2.64)

The available DOS include both the shape and the level of the band. They
relate the quasi-Fermi levels to the concentration in the bands. However, they
do not explicitely incorporate the energy of the band edges. Together with the
quasi Fermi levels they entirely determine the charge carrier concentration due
to the band. In nondegenerate material, the total electron concentration n and
hole concentration p are therefore given by:

6
n(x) = exp (EZZ;X)) Fo(x), Fo(x)=) FF(x) (2.65)

3

p(x) = exp (ZEI;P_T(X)> F(x), FRE=Y REX (2.66)
u=1
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where F and Fy are defined as the total available densily of states of the
conduction and valence bands, respectively. It should be noted that the ratio of
the different Fy} is equal to the ratio of the contributions of each valence band
to the total hole concentration.

Strictly speaking, the definition of the available densities of states is unnec-
essary for the calculations in the following. It will appear, however, that it has
three important advantages over the effective density of states:

e [t allows a very compact description of the piezojunction effect;

e It shows the tight relationship between the piezojunction and the piezore-
sistive effects;

e It does not reflect any quantum effects under the influence of stress.

Changes through band edge shifts

Mechanical stress influences the charge carrier concentrations most directly by
shifting the levels of the band edges. Those shifts were described in Section 2.1.4
by means of the deformation potential theory. Usually they are in the order of
meV for the stress range considered.

According to Equation 2.61, a stress X;; shifts a conduction band edge
with AEZ, and thereby changes the electron concentration of band m with the
following factor:

(X)) exp (%) (2.67)

n™ (x,0) kgT

For small stresses this change is linear. Over the stress range considered, how-
ever, n™ can change between -50 to +100%, which means that the first-order
approach should be abandoned. Similar changes occur in the hole concentra-
tions and the valence band edges. However, for those bands the edge shifts are
tightly coupled to the changes in the effective DOS.

Changes through variations in the effective densities of states

Stress not only influences the charge carrier concentrations through band edge
shifts, but also through the effective densities of states. For the stress range
considered this influence is small for the conduction bands. However, it is highly
significant for the valence bands. For both bands it is calculated by evaluating
the integrals of Equation 2.60.

Conduction bands The conduction band density of states can be evaluated
analytically. The method of this evaluation is in principle the same as in Ap-
pendix C.1.4, but requires a few modifications. It was seen in Section 2.1.4 that
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the kinetic energy W} for an electron in a band along the k;-axis is given by:

Wy =

= (M (ki = kD) + Y Mikik; (2.68)

4,5=2,3
where its effective mass tensor M}j is equal to:

mi_1 0 0
Mi=| 0 m' 20e (2.69)
0 2093 my 1

and depends on the strain e;;. Because of the off-diagonal terms in M}J it is
not directly possible to apply a Herring transformation and switch to spherical
coordinates. The mass tensor should therefore first be diagonalised to Mpy,;:

Milj = aikﬁklaﬂ (270)

where a;; is a orthogonal transformation matrix of which the columns are the
orthonormalised eigenvectors of M,-lj, and where Mj,; has the eigenvalues of Milj
on its main diagonal. Those eigenvalues are:

1 1 1
A =—, A=— —20€e3, A=—+2ae3 (2.71)
my my my
The transformation a;; can also be applied to the wave vector, yielding a new
orthogonal basis: ¢ = a;; (k; — k7). The energy of Equation C.15 can then be
written as:

1 R~ 2
Wn = ?A"fkqu (272)

This equation allows the Herring transformation x; = IT[?/ 0.

The definition of the DOS in Equation 2.60 also contains the infenitesimal
volume element dk. This element remains unchanged by the diagonalisation
to the basis q. The reason is that a;; is a unitary transformation, having a
Jacobian determinant equal to one. On the contrary, the volume element is
changed by the Herring transformation to the variable k. This means that it
can be written as:

~1y 1 3
dk = det (ai;) " dg = det (Mf) di = (mke)? dr (2.73)
where m} is defined as the density of states effective mass of the band. This
mass is given by:

1 mymeny
My = 3 ————————s 2.74
@ 1 — (2aexsmy)’ (2.74)
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Table 2.3: Total effective density of states of the valence bands Ny, density-
of-states effective mass m};,, and intrinsic carrier concentration n;o, calculated
with the valence band parameters of different authors. The values of the lower
two rows have been found by Green and serve as a reference. The calculational
accuracy was (0.1 percent.

Ny mh, (mo) o Source of parameters
(10" cm™?) (10*° cm—3)

1.872 0.822 0.787 Stickler e.a. [39, 43]
2.060 0.877 0.827 Dexter e.a. [40]

2.269 0.935 0.873 Fischetti and Laux [5]
2.777 1.070 0.972 Hensel [41]

3.10 1.15 1.07 Green, theory [45]
2.9(7) 1.10(18) - Green, experiments [45]

The remainder of the cvaluation is the same as in Appendix C.1.4, leading to
the following expression for the DOS of Band 1:

1 3/2
1 myekpT (x)
Ne=2 (-——W (2.75)

The above effective density of states can be evaluated numerically with the
values of Table 2.1 and B.2. In the strain-free case it yields 4.48 x 10'® cm—3
at T = 300 K. The total density of states of all six bands is therefore 2.75 x
10'? em~3, which is close to the literature valuc of 2.86 x 10'® cm™3 [45].

In the case of nonzero strain the change in N} is only of second order. In
addition, it remains inferior to 0.06%, because the strain does not exceed 0.2%
for the stress range considered. As a result, the change in effective density of
states has much less effect on the electron concentration than the band edge
shifts.

Valence bands For the valence bands the density of states integrals of Equa-
tion 2.60 are too complex to be evaluated analytically. This evaluation was
therefore done by numerical means. For this purpose, the integrand was im-
plemented in Fortran 90 [35] and integrated over the wave vector space using a
triple Romberg integration routine [36, 37, 38]. A schematic flow chart of this
program is given at the end of this chapter. The evaluation time was 11 s on
a personal computer with a Pentium II-400 MHz processor and for a numerical
accuracy better than 0.1%.

The results of the evaluation are given in Table 2.3 for the input parameters
of different authors. They include the total DOS Ny at zero stress, which is
the sum of the densities of states of the different bands Ny. The results also
include the values of the total DOS effective mass m},, and the pn product nZ.
The latter quantity depends on the effective DOS of both the valence and the
conduction bands, as will be explained in Section 2.2.4.
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Figure 2.16: Changes in the effective densities of states of the valence bands of
silicon calculated as a function of uniaxial stress in the [100] direction of the
crystal. The band parameters for those calculations were taken from Hensel
[41], and the deformation potentials from Friedel [14]. T = 296 K.

The results in the table vary with about 30%, depending on which set of band
parameters is used. Nevertheless, the values obtained are comparable with the
theoretical and experimental values reported by Green in a review article [45].
Green’s values are best approached by the band parameter set of Hensel [41].

The same numerical routines can be used to calculate the stress-induced changes
in the Ny of the different bands change under stress. Typical curves of those
changes are shown in Figure 2.16. They are almost linear for the heavy and
light hole band , and up to 20% in magnitude for the considered stress domain.
As a result, they influence the hole concentrations with an amount comparable
to the effect of the band edge shifts [42, 43, 44]. The curve of the split-off band
DOS, however, only changes with a negligible amount.

The curves in Figure 2.16 show some unnatural behaviour: they have a sharp
peak in the origin. A closer analysis learns that this peak results from the shifts
of the band edges. A similar peak was seen already in Figure 2.8 where the
band edges are plotted as a function of stress. This peak could be attributed to
the quantum-mechanical interaction between the heavy- and light-hole states.
As pointed out in Section 2.2.1, such quantum effects are rather unwelcome at
this stage of modelling of charge transport.

All peaks cancel each other when the hole concentration p* is calculated
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Figure 2.17: Relative changes in the available densities of states of the three
valence bands, as a function of normal uniaxial stress. The band parameters
for the calculations were taken from Hensel [41], and the deformation potentials
from Friedel [14]. T = 296 K.

with the aid of Equation 2.62. This can be understood from the expression of
p" in Equation 2.59 where the band edge is not explicitly present. Apparently,
the peaks arise from the separation of this equation into a shape- and an edge-
dependent part. For this reason the effective density of states concept obscures
the understanding of the influence of stress on the hole concentration.

Changes through variations in the available densities of states

Quantum-mechanical effects such as the peaks in the effective DOS are avoided
by using the concept of the available density of states Fy, defined previously in
this section. Its numerical evaluation yields three interesting results.

The first interesting result is the ratio between the different Fy, which is
equal to the ratio of the hole concentrations provided by the bands. The total
Fy equals 2.57 x 10'? cm™3 in the stress-free case, at 296 K and with the band
parameters of Hensel [41]. The heavy-hole band contributes 88% to this number,
the light-hole band 11%, and the split-off band 1%.

The second interesting result is the behaviour of the different Fy under
stress. This is plotted in Figure 2.17 for the case of normal uniaxial stress and
in Figure 2.18 for pure shear stress. It can be seen that the plots do not show
any sharp peaks, in contrast to the plots of the effective densities of states. It
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Figure 2.18: Relative changes in the available densities of states of the three
valence bands, as a function of pure shear stress. The band parameters for the
calculations were taken from Hensel [41], and the deformation potentials from
Friedel [14]. T = 296 K.

can also be seen that the available densities of states change up to 10% in the
stress range considered. For normal stress they increase with increasing stress,
whereas for pure shear they vary almost parabolically with the extrema in the
origin. Finally, it can be seen that the changes are unequal for the different
bands. This modifies the ratio between the charge carrier concentrations of the
bands. More precisely stated: stress always increases the percentage of heavy
holes in the total concentration.

The third interesting result of the numerical evaluation is the stress-induced
change in the total available density of states Fy. This change represents the
shifting of the Fermi level AEF, due to a stress X, as can be derived from
Equation 2.64 and 2.66:

FoX) _ o (Epp (X) — Ery (0)) ~ AEr (X) (2.76)

Fy (0) kT kgT

The latter equality is valid if the shift is small compared to the thermal energy,
which is generally the case in this work. The changes in Fy are very near to the
changes in F/!! depicted in Figure 2.17 and 2.18 because the heavy-hole band
contains most of the holes.
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2.2.3 Electrical conductivity

Electrical conductivity is the transport property on which the characteristics of
resistors and transistors depend most directly. It is also the stress dependence
of the conductivity which leads to the piezoresistive and piezojunction effects.

The conductivity relates the electrical current density at a point to its driving
forces. Usually, this relation is given by the drift-diffusion equations. However,
since these equations rely on the assumptions of isotropy and homogeneity, they
are invalid in stressed silicon. Their derivation should therefore be reconsidered,
which is done in Appendix C. It yields equations for the electron and hole
current density in terms of the band parameters, which can be expressed in two
forms. In the most general form, the currents are expressed as functions of the
gradients in the quasi Fermi levels. In the other form, the currents are given by
the drif-diffusion equations cxtended with some new terms.

General expressions

In its first form the electron current density vector J™ due to the conduction
band m is expressed as a function of the gradient in the electron quasi Fermi
level Ef,, with respect to the position x = z;. Similarly, the hole current density
vector J! due to the valence band u is a function of the gradient in the hole
quasi Fermi level Ep,. It was derived in Appendix C that:

aEF'n,
q8TJ

OEF,

Ji" (%) = 0} (%) (x) Jit (x) = 03 (x) ey (x) (2.77)

In those equations g is the unit charge, o7 is the contribution of the conduction
band m to the total conductivity tensor of the matecrial, whereas o} is the
contribution of the valence band u to the total conductivity. The subscript
notation applied here is explained in Appendix A. The band conductivities are

related to the energy bands EZ and E}: by the integrals

2 m P m
m __ T dk OEZ (k,x) OEE (k,x) 0fn (EZ, EFn)
Oij (x) = “h2 / T3Tm (k,x) ok, ak‘j ang’ (2.78)
2 u u u
u — q dk 6E¥ (k> X) 3E\, (k, X) afp (Evv EFp)
ol (x) = ) /C o (k,x) ok ok BT (2.79)

in which 7,,, and 7, are the electron and hole rclaxation times of band m and
u, respectively, and f, and f, are the Fermi-Dirac distribution functions in
nonequilibrium.

The relations of Equation 2.77 arc especially useful for analytical determina-
tion of device characteristics using the regional approach (see Section 2.2.1 and
Appendix D). Together with the device geometry they form a boundary value
problem [46, 47]. The solution of this problem includes the difference between
the quasi Fermi levels of the device terminals, which is nothing more than the
applied voltage.
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Figure 2.19: Current vector J; as the result of a gradient in the quasi-Fermi
level F; in the case of a mobility tensor with off-diagonal components. J; can
be split into the vectors J,, and J) which are parallel and perpendicular to F},
respectively.

Symmetry properties of the conductivity tensors

It is worth noting that the conductivities in the previous section are represented
as tensors. This means for example that the direction of the current density
need not necessarily be parallel to the gradient in the quasi Fermi level, see
Figure 2.19. It is a result of a fundamental postulate of crystal physics, known
as Neumann’s principle [48]:

The symmetry elements of any physical property of a crystal must
include the symmetry elements of the point group of the crystal.

In the absence of stress, silicon is a cubic crystal. It has the symmetry elements
given in Appendix B.4, which means that its properties are isotropic and can
be represented by a single number. In the presence of stress, however, the cubic
symmetry is usually perturbed. The property tensors therefore have no longer
equal numbers on their diagonal, and off-diagonal elements appear. In that case
the full tensor notation should be retained.

Expressions for nondegenerate material; mobility

In analogy to the charge carrier concentration, the mathematical analysis of the
conductivity is considerably simplified when the material is nondegenerate. In
that case the Maxwell-Boltzmannn distribution function may be applied and
Equation 2.78 and 2.79 reduce to:

o = exp (EZ;(TX)) a7 (%) (2.80)

2 m m m
g dk  OET OET —EP
my= 1 [ & 2.81
Gij () = T /047&7 ok; ok; P\ kT (2.81)
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0;; = exp (%ﬁ;’}—(x)> (2.82)
G (%) = hZLBT A “aa ok, (kBT (2:83)

in which G}} and G} are defined as the parts of the conductivities which are
mdependenh of the quasi Fermi levels.

For semiconductors it is customary to split the conductivity into a charge
carrier concentration and a mobility (see Appendix C.2.3). The mobility repre-
sents the scattering per charge carrier. For a conduction band m and a valence
band u the respective mobilities u!? " and 4 are defined as:

ol (x) o (x)
M (x I R 1," X)) = W
Hij (x) " () i (x) " ()

(2.84)

In a semiconductor the mobility is a much more constant parameter than the
conductivity because the concentration may vary considerably. In nondegen-
crate material the mobility is even the part of the conduction which is inde-
pendent from the quasi Fermi level, which can be concluded from combining
Equation C.41 with Equation 2.81 and 2.65:

m 1 Gln u 1 G’:L
Hij = q Fm ’ Hij = E F\',‘i (2.85)

It is useful to also define the ‘average’ mobilities py; and u of the electrons
and holes, respectively. These quantities are g;enerally referred to in literature
as ‘the’ mobility of a charge carrier in a material. They are defined by the
weighted average of the separate band mobilities:

00 _ T

nox) =~ = 2.86
of (%) S p
phi(x) = L = 1= Ty (2.87)

gp(x) T2 pe

Stress-induced changes through the electron mobility

The conductivity of electrons is influenced by mechanical stress, which can be
connected to the band edge shifts and band deformations. By definition, the
conductivity in Equation C.41 depend on the electron concentration n™ and the
mobility 4} of the considered band. The stress influence on the concentrations

n™ was alrcady discussed in Section 2.2.2. It was shown to act mainly through
the shifts in the band edges.

If the concentration in a band m increases, it also increases the weight of the
corresponding mobility within the average mobility of Equation 2.86. If the elec-
trons in this band are ‘light’ for a particular field direction, their corresponding
mobility is high, and the average mobility will increase.
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For a separate conduction band m the band mobility also changes under the
influence of a stress Xy;. It can be calculated from FE&' and G7}, according to
Equation 2.85. The former quantity was evaluated in Section 2.2.2, whereas the
latter can be found by solving the integral of Equation 2.80. For this purpose
use is made of the energy band equations of Equation 2.30 or C.15.

Apart from the energy bands, the integral of Equation 2.80 contains the electron
relaxation time 7,,,. As shown in Appendix C.2.3, the relaxation time 7, (k,x)
is often described by a small power of the kinetic energy s:

m (k §
o (W (k) = 78 () (6 2) (289
kgT
where s = —1/2 to 0 for nondegenerate doping levels. The description should be

treated with care because of the underlying assumptions. It firstly assumes that
an electron after scattering has a completely arbitrary direction (relaxation time
approximation) [2, 49]. This is not probable since the bands are anisotropic.
Secondly, it assumes that the probability of intervalley scattering is independent
of the energy level [50, 51, 10]. This is not true, and the levels vary with stress.
Nevertheless, the description is often quite successful, especially in predicting
the first-order piezoresistive coefficients, which will be discussed later [28, 42].

After the substitution of the relaxation time, the integrals of Equation 2.80
can be calculated by combining a diagonalisation and a Herring transforma-
tion as in Section 2.2.2 and Appendix C.2.3. This yields the mobility u}j of a
conduction band ellipsoid along the k; axis:

-1
0 0
4q7? 4qr0 | ™ .
1 n 1 n 1
/.l/” = ij = 0 m, 20623 (289)
3ﬁ 3ﬁ 0 20623 m,'_'l

The mobilities ]} of the other bands are calculated in a similar way.

The equation shows that the diagonal elements of the mobility tensors are
strain-independent. The off-diagonal elements, however, are nonzero in the
presence of strain, and depend linearly on strain and therefore on stress. With
a maximum strain of 0.1% they can become as large as 7% of the element along
the longitudinal axis.

Equation 2.86 and 2.89 lead to two conclusions about the influence of stress
on the average electron mobility. Firstly, the diagonal elements of the average
mobility are only changed when the ratio between the concentrations in the
different bands is changed. This changes the weigth of the contribution of each
band, expressed in Equation 2.86. Secondly, the off-diagonal elements of the
average mobility is changed because the mobilities of the bands are modified by
stress. It appears in practice that the influence on the main diagonal elements
is about five times larger than the influence on the off-diagonal elements.

The influence of stress on the average mobility tensor elements has been
resumed in Figure 2.20. It can be seen that a normal uniaxial stress X;; has a
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Figure 2.20: Calculated changes in the tensor elements of the average electron
mobility as the result of a normal uniaxial stress X;; and a pure shear stress
X23. Only the nonzero changes are plotted. The changes are normalised with
respect to the trace of the zero-stress mobility tensor 7. The band parameters
were taken from Hensel [41], and the deformation potentials from Friedel [14].
T =29 K.

large influence on the mobility in the stress direction, uf,, of about 20% on the
stress range considered. This influence is approximately linear. The same stress
has a smaller and opposite influence on the mobility elements perpendicular
to it, p3, and p33. It has no influence on the off-diagonal mobility elements.
However, a pure shear stress Xo3 does influence those elements, but only by
a few percent. The shear stress does not influence the main diagonal mobility
elements.

Stress-induced changes through the hole mobility

The influence of a stress Xj; on the hole mobility can be evaluated numerically
only, by using Equation 2.87 and 2.85. Rearranging these equations yields:

3 )
18
W2, (Xig) = L Zum G (2.90)

o3
q Zu:l F\i;




56 CHAPTER 2. THEORY OF STRESS-INDUCED CHANGES

25%
20% AN
15% \\
10% | N

5% \

13,
n\i- 0% =_=L__'=.'—-"l :— —"1;—-
< 5%
-10% 4 ——11 normal N
-15% 4 - - - 22, 33 normal N
20% | —11, 22, 33 shear \\
-— 23 shear \
-25% ‘ T ]

200 -100 O 100 200
X (MPa)

Figure 2.21: Calculated changes in the tensor elements of the average hole
mobility as the result of a normal uniaxial stress X;; and a pure shear stress
X33. Only the nonzero changes are plotted. The changes are normalised with
respect to the trace of the zero-stress mobility tensor Zz. The band parameters
were taken from Hensel [41], and the deformation potentials from Friedel [14].
T =296 K.

The quantities G}; and Fy can be expressed in terms of the energy bands by
using Equation 2.83 and 2.64.

. q dk _ OE} OEY EY

U (X)) = et | T, Y 2.
G (Xa) = 534, Jo 23 ™ Bk 0k; O \kaT (291)

iy oy [ dk E} [
F¥ (Xy) = /c 5 &P < kBT) (2.92)

The above integrals were numerically solved by using the energy bands of
Equation B.77 to B.79 in combination with the matrix elements of Equation 2.48
and 2.49. The derivatives were calculated analytically. The method of solution
was the same as in Section 2.2.2. Each solution took approximately ten minutes
of computing time.

The results of the calculations are shown in Figure 2.21. They show that
a pure shear stress X3 has a large influence on the off-diagonal element phq
of the mobility tensor: 23% on the considered stress range. This influence is
approximately linear. The influence on the main diagonal elements is small:
only a few percent, and of second order only. A normal uniaxial stress X;; also
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has only a small influence on the mobility tensor. It changes only the main
diagonal mobility elements, with a few percent on the stress range considered.
The changes are approximately parabolic.

Generalised drift-diffusion equations

The electron and hole currents are a function of the quasi Fermi levels, but
can also be described by the drift-diffusion equations. In the drift-diffusion
equations, the gradients in the quasi Fermi level are split up into several driving
fields. These ficlds are the sources of either drift or diffusion of the charge
carriers. In Appendix C they are derived for the generalised band edge structure
of Section 2.1.7. This yields:

_ 9 10x" kpT ( d d
mo_gm |90 2 — {7 Inn™ — ——InNZ :
J" =aj; [ dz; ¢ 0g, + p (dwj nn iz, In NC)] (2.93)
o[ 20 100 10m
i i) (9:(2]' q 51?_,‘ q 8;17]-

kT (d ., d . ..

where —0¢/0z; is the gradient in the electrostatic potential and equal to the
electrostatic field. The symbol x™ indicates the electron affinity, EZ" the
bandgap between the conduction band m and the valence band u, and NZ
and Ny} are the effective densities of states of those bands, respectively.

There are three important differences between these equations and the con-
ventional ones of Equation 2.54 and 2.55:

e The current densities are now defined for each band separately. The total
current density is the sum of the contributions of each band, which are
generally different.

e The current densities are now a function of a mobility tensor instead of a
mobility scalar.

e The current densities are no longer determined by the electrostatic field
and the concentration gradients only, but also by the gradients in x™,
EZ&*, N& and Nyi. This means, for instance, that holes tend to move in
the direction of an increasing effective density of states.

Changes in the electron affinity due to mechanical stress have rarely been
investigated. Some experiments indicate that they can be neglected compared
to the band gap changes [52, 53].

The generalised drift-diffusion equations can be applied in all calculations
of device characteristics where the classical drift-diffusion equations are used
in the absence of stress. An important application could be found in Poisson
solvers. These programs contain a physical model of the device consisting of
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the drift-diffusion equations and the Poisson equation. They divide the device
into regions with the aid of a mesh. Then they solve the equations with a finite-
element method to find all local current densities, potentials, and charge carrier
concentrations. A Poisson solver with stress as an input variable has already
been developed [54], but does not yet incorporate an accurate transport model.

2.2.4 Auxiliary relations

The behaviour of semiconductor devices is mainly determined by the charge
transport equations, but often some auxiliary relations are needed to calculate
it completely. These relations include the pn product, the continuity equations,
and the Poisson equation, and are discussed in Appendix C.3. Each of them con-
tains parameters which are influenced by stress. These influences are discussed
in the following.

pn product in thermodynamic equilibrium

The pn product in thermodynamic equilibrium,also called the intrinsic carrier
concentration, is a doping-independent material constant in the case of nonde-
generacy. It is often used to calculate the minority charge carrier concentration
across a junction [55], and thereby enters the expression of the transistor collec-
tor current (see Appendix D). It is highly sensitive to the absolute temperature,
a property that is often applied in temperature sensors [56, 57]. In addition, it
can provide useful information on the band structure of the material when it is
determined experimentally [31].

As argued in Appendix C.3.1, the pn product in stressed material can be
defined in three ways because of the inequality of the bands. Firstly, it can
apply to only one conduction band m and one valence band u. With the aid of
Equation 2.61, 2.62, 2.63, and 2.64 it can be written as:

u m
(uig)* = s = Ng Ny exp (T9 28 ) — ppRy (205)
B

This expression strongly depends on mechanical stress through the band edges
and the densities of states, as was shown in the preceding sections. Secondly, the
pn product can be defined for one conducion band with respect to all valence
bands, or vice versa:

njg)? = ng Zpo =N¢ ZNve P(T> g (2.96)

u=1

6
Ex _ Em
(n%)* =p Z = Ny Z NE& exp (%) = FyIc (2.97)

m=1

These expressions are used in Section 2.4 for the calculation of the piezojunction
effect. Thirdly, the pn product can be defined for all conduction and valence
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Figure 2.22: Changes in the pn product of silicon, calculated for normal uniaxial
stress and for pure shear stress. The band parameters were taken from Hensel
[41], and the deformation potentials from Friedel [14]. T = 296 K.

bands together, which corresponds to its classical definition:

3 u Ty
n% =n ——ZN’"N“ Evo — By = Fo F 2.98
lig = NP = c {Vy €Xp kT =rclv (2.98)

u=1

The stress sensitivity of this overall pn product can be calculated with the
use of the equations for F; and Fy given in Section 2.2.2. The changes in F¢: are
known in analytical form, while those in Fy need to be calculated numerically.
This has been done for a normal uniaxial stress X;; and a pure shear stress
X3, and the results are displayed in Figure 2.22.

The figure has several intcresting features. Firstly, it shows that the overall
pn product is highly sensitive to stress, as could be expected from its dependence
on the bandgaps and band curvatures. This sensitivity is in the same order of
magnitude as that of the average mobilities shown in Figure 2.20 and 2.21 ,
for the considered stress range. It is much larger for normal stress than for
shear stress. In addition, it results in curves which are approximately parabolic
in this range. The curve for shear stress is symmetric around the origin and
corresponds to a first-order sensitivity which is zero.
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Lifetime

The lifetime of minority charge carriers appears in the continuity equations of
charge transport, as described in Appendix C.3.2. In transistors it determines
the base current and the collector current in very low forward bias.

The concept of lifetime can be quite complicated in practice. Its value de-
pends on the operation of the device in which it is measured, and on the mea-
surement technique itself [58]. In addition, there is a difference between bulk and
surface lifetime. There is also a difference between the lifetimes of generation
and recombination processes. Finally, recombination occurs through different
mechanisms, of which the Shockley-Read-Hall and the Auger mechanisms are
the most important in silicon.

It is therefore not surprising that lifetime changes through mechanical stress
are not very well known. Surface recombination is generally supposed to be
independent of stress [59, 60]. Bulk recombination in forward-biased diodes is
supposed to be insensitive to hydrostatic pressure, at least compared to the
stress sensitivity of the conductivity [61].

In some experiments, however, bulk recombination has been shown to change
considerably under uniaxial stress [59, 60, 62]. These changes amount to a
few percent for compressive stresses of 200 MPa, and vary between -85 and
300% for 1 GPa. They depend on the doping type and the stress orientation.
Partially, they can be explained from the Shockley-Read-Hall model by changes
in the energy bands and shifts of the levels of the recombination centres. The
remaining changes are attributed to the capture cross-sections of the centres.

However, the material in the cited experiments is quite different from that
used in transistors. Its doping is much lower, meaning that Auger recombination
can be neglected. Even more important is that the concentration of recombina-
tion centres is probably much higher than the majority concentration. In that
case the recombination strongly depends on the shifts of the energy levels, which
can normally be neglected [63].

In theory, it is quite probable that lifetimes depend on stress even at low
concentration of recombination centres. In Appendix C.3.2 it is shown that
Shockley-Read-Hall recombination at low-injection conditions depends on the
thermal velocity of electrons. This velocity depends on the energy bands, which
change with stress. In addition, the capture cross sections and the Auger co-
efficients can be derived from the quantummechanical behaviour of electrons.
They depend on the transition probabilities between electron wave functions,
which were shown to change under stress in Section 2.1.

Dielectric constant

The dielectric constant of silicon appears in the Poisson equation, relating the
space charge to the electric field (see Appendix C.3.3). It is important for the
calculation of junction capacitances, the drain current of MOS transistors, and
also for the refraction index of optoelectronic devices.
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The ‘constant’ indeed hardly varies with the frequency of the electric field
from zero up to the near infrared [65, 64]. In this spectrum silicon is transpar-
ent. At higher frequencies, photons of the field have enough energy to create
electron-hole pairs. This increases the absorption very rapidly, and therefore the
imaginary part of the dielectric constant. Through the Kramers-Kronig rela-
tions it also changes the real part of the constant, equivalent with the refractive
index [68].

Stress influences the dielectric constant of silicon in two respects. Firstly, it
causes anisotropy, making the silicon birefringent. The reason for this is that
stress breaks the crystal symmetry. In that case Neumann's principle says that
the constant is no longer a scalar but a second-order tensor €;; (see Section 2.2.3).
Secondly, stress changes the coeflicients of ¢;;. This is called the photoelastic,
elastooptic, or piezooptic effect [68]. It has been modelled extensively, especially
for optical frequencies {64, 66, 67]. At those frequencies the cffects are quite
large. For lower frequencies, however, the changes are much smaller: in the
order of 107!? Pa~!. As a result, they can be neglected in most electrical
devices since they are a factor 10% lower than the changes in the conductivity.

2.3 Macroscopic changes in charge transport

In the previous section the current densities were expressed in terms of charge
carrier concentrations and mobilities of separate energy bands. From a the-
oretical point of view this is convenient, but in experimental situations it is
preferable to use a phenomenological description. Such a description relates the
total current density to observable, macroscopic quantities such as the applied
voltage and the stress. It contains parameters which are material properties,
such as the conductivity, the piezoresistive coefficients, and the piezojunction
coeflicients.

This section starts with the phenomenological definition of conductivity and
explains how it is related to the microscopic definition. Then it describes the
concept of piezoconductance. This concept is related to the piezoresistive and
piezojunction effects. The symmetry of these effects is discussed, yielding the
tensor elements with which they are described. Finally, these elements are
calculated from the microscopic definition. Some of them are the piezoresistive
coefficients and are well-known from literature. Their calculation constitutes a
check of the models presented.

2.3.1 Phenomenological definition of conductivity
Ohm’s law

Macroscopically, the conductivity of a material is defined by Ohm’s law, dc-
scribing the electric current generated by applying a voltage. More precisely, it
describes the incremental change in the current due to an infinitesimal incre-
ment of the voltage difference. The increments, however, are generally consid-
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ered equal to the variables themselves because the relation is linear up to high
electric fields (in silicon some kV/cm [69]). To avoid the effects of the mate-
rial geometry, Ohm’s law is often written in its local form, relating the current
density as a result of an infinitesimal voltage difference per unit length:

Ji (%) = 035 (%) gg ) (2.99)

Here, J; is the current density vector, o;; the conductivity tensor, and oV /ox;
the voltage gradient. This gradient need not necessarily be parallel to the cur-
rent.

Coupling with the quasi Fermi levels and the energy bands

Ohm'’s law can be coupled with the microscopic conductivity by using the def-
inition of the voltage. Originally, the voltage is defined as the difference in the
electrochemical potentials, or quasi Fermi levels, of the charge carriers involved.
These charge carriers consist of electrons and holes. It is therefore possible to
write Ohm's law as:

 OEp, Yo
Ji= SR =0 qoz; % qax:

(2.100)

This can be split up further into the contributions of each conduction band m
and valence band u:

6
oy = Z o3, oy = Zo}‘j (2.101)
m=1

which are worked out in microscopic terms in Section 2.2.3.

It is stressed here that the conductivity is not defined with respect to the
electrostatic field, as done in many textbooks. It is, on the contrary, defined with
respect to the Fermi level gradient. As outlined in Section 2.2.3, this gradient
contains the electrostatic field and the other fields causing a current, such as
the gradient in the electron concentration.

Coupling with the mobility and the pn product

It was seen in the previous section that the conductivities in the microscopic def-
initions depend on the quasi Fermi levels or the concentration of the free charge
carriers. The hole conductivity, for instance, could be written for nondegenerate
material as:

—Ep,
P _ P _ 4 P
o = qppl; = qFv exp ( TnT ) Py (2.102)

where Fy was defined in Equation 2.66 as the total valence band available
density of states and ;L,f’j the average hole mobility. Either the concentration
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or the quasi Fermi level Ef, should therefore be found in order to make a link
between the macroscopic and the microscopic descriptions.

In practice, the charge carrier concentration is often fixed by the doping
concentration. The reason is that the material is generally extrinsic. This
means that the concentration of the doping atoms is much higher than the pn
product of charge carricrs, whereas the temperature is high enough to ionise
all the atoms. In such a material, a p-type doping concentration N, is equal
to the hole concentration p in thermodynamic equilibrium or at low-injection
conditions:

—E
Ny=p=cxp ( kB;") Fy (2.103)

In this case, where the holes are the majority charge carriers, the hole conduc-
tivity can be found by combining Equation 2.102 and 2.103:

ofi" = gNaps, (2.104)
Things change, however, when the holes are the minority charge carriers. In
that case the doping concentration N does not fix the hole concentration, but

only the electron concentration n and the electron quasi Fermi level Eg,,:

Np=n=exp (%) Fo (2.105)
B

Fortunately, the quasi Fermi levels of electrons and holes are equal at thermo-
dynamic equilibrium: Er, = E,. For this special case, Equation 2.105 can be
combined with Equation 2.102 to yield the minority hole conductivity:

,mi q q 2
ot = N—DFCFV““ = N_Dnioﬂfj (2.106)
In this equation, n%, is the classical pn product defined in Equation 2.98. The
minority conductivity now entirely consists of parameters which can be evalu-
ated in the presence of stress, as done in the previous section.

The above equations can be generalised to the conductivity of any type of
charge carrier, n or p. They apply to a specific position x. The result is that
the majority conductivity can be written as:

o1 () = gNonag (%) u% (x) (2.107)
where Ny,,; is the majority doping concentration. The minority conductivity,
on the other hand, is given by:

min

ol (x) = ﬁ (x) 4" (x) (2.108)

These equations will be useful in the calculation of the piezoresistive and piezo-
junction effects.
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2.3.2 Piezoconductance
Necessity of the concept

In the previous two equations the conductivities were modelled as a function
of the doping concentration, the mobility, and the pn product. The latter
two quantities directly depend on the shapes of the energy bands and can be
calculated for material with and without mechanical stress.

The model, however, is not very practically manageable when the response
of various stresses needs to be calculated. This is firstly the result of the pn
product and the mobility of the valence bands which need to be calculated
numerically for each stress value and orientation. As a result, it seriously slows
down iterative processes such as the optimisation of the stress sensitivity or the
identification of model parameters from measurements.

The model is also impractical because it is difficult to verify with experi-
mental data presented in this work. These data are only available for linear and
quadratic parts of the curves which are a function of stress. As a result, it is
hard to identify the band parameters and to validate the model structure, which
consists of more complicated functions than linear and quadratic polynomials.

The problems are usually overcome by expanding the stress dependence of the
conductivity into a MacLaurin series. This is suggested by the measurements,
but also by the theory in the preceeding section. It was shown there for electrons
that the conductivity of a band depends on the mobility, which depends on stress
through some linear and quadratic terms. In addition, it depends on the band
population, which depends on the bandgaps and is thereby exponential in stress.

The series ezpansion of the conductivity is much easier to evaluate than its
original equation. Once the first- and second-order derivatives are known, the
influence of a new stress tensor can be calculated in a fraction of a second. The
calculation is simplified even further by using the a priori knowledge about the
material. This drastically reduces the number of derivatives required.

The use of a series expansion can overcome the lack of experiments at high
stress levels by neglecting higher-order terms. The lower-order terms alone arc
enough to describe all situations at the stress range considered. In addition,
these terms can be derived from the original microscopic model of the conduc-
tivity by differentiation.

The stress-derivatives of the conductivity are called the piezoconductive ten-
sors of the first, second, etc. order. They are closely related to the well-known
piezoresistive coefficients. It will appear, however, that they are also related
to the piezojunction coefficiens describing the stress-induced changes in the be-
haviour of bipolar transistors.

Mathematical formulation

The piezoconductance can be formulated mathematically by defining the con-
ductivity in the macroscopic way of the previous section. Only one charge carrier
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type is considered for simplicity, and the gradient in the quasi Fermi level is ab-
breviated by the field F;. An increment in this field, dF}, yields the following
increment in the current density dJ;:

dJ,’ = O'inFj (2109)

The conductivity in this equation depends on the actual field F; and the stress
tensor Xjy. It is fixed to the reference state at (F;, Xiy) = (0,0) by expanding
dJ; into a MacLaurin serics [70, 71]. Up to the third order this yields:

dJ;
dFj + m
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For crystals with a centre of symmetry such as silicon all tensors of odd rank are
zero (48, 72]. In addition, the applied field is low enough to neglect the terms
nonlinear in Fj. As a result, the MacLaurin series reduces to:

_ o
 OF
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The partial derivatives in this expression are generally defined as:

8Jz _ 0 .
B—F} . = 0;;, first-order stress-free conductivity (2.110)
2 7.
51%—(%(71 . = II;j1, first-order piezoconductive tensor (2.111)
1 0% J;
3 m-x—’:l]m . = IIijkimn, second-order piczoconductive tensor (2.112)

With zero as the reference, the increments are equal to the variables themselves.
Therefore the previous expressions can be combined to yield the low-field con-
ductivity expanded to the second order in stress:

Tij = U?j + Hijlekl + Hijklr71nA¥I\'IX7n'n (2113)

By a further extension of the series it is possible to define higher-order ten-
sors [50, 73, 74, 75]. The above expansion, however, is sufficiently accurate for
most practical purposes on the stress range considered (—200 to 200 MPa). In
addition, the determination of higher-order tensors from either theory or exper-
iments is complicated and vulnerable to variations in the input data.
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2.3.3 Piezoresistive and piezojunction effects
General expressions

Starting from the concept of piezoconductance, both the piezoresistive and
piezojunction effects can now be defined. For this purpose it is firstly neces-
sary to define resistance as the inverse of conductance. This means that the
resistivity tensor p;; satisfies the relation:

0ijPjk = 6ik (2114)

where 6;; is the second-order unity tensor. Secondly, it should be noted that
resistance can be defined for majority as well as for minority charge carriers in
a semiconductor device.

The piezoresistive effect can now be defined as the sensitivity of the majority
resistance to mechanical stress. This definition is broader than usual [50]. It
covers, however, the same phenomenon, namely the stress-induced change in
the value of a resistor, which will be shown in the next section.

The piezojunction effect, on the other hand, can be defined as the the sen-
sitivity of the minority resistance to stress. This definition is new. It will be
shown in the next section that it covers the stress-induced change in the satu-
ration current of a bipolar transistor, with which it is usually associated.

Just as the piezoconductance, the piezoresistive and piezojunction effects
can be described by MacLaurin series in stress. Up to the second order this
yields:

P;I}aj = P?}maj + Tk Xkt + Tijkimn Xkt Xmn (2.115)
plil}in = P?jmm + Cijlekl + CijklmnXlemn (2116)

in which 7%, and 7;jximn are the piezoresistive tensors of first and second order,
respectively. The elements of those tensors are called the piezoresistive coeffi-
cients. Likewise, the parameters (;;x; and (;jrimn can be called the piezojunction
tensors. Their elements are called the piezojunction coefficients.

Equivalent effects

Piezoconductance is equivalent to the concepts of elastoconductance and elas-
toresistance, which are also encountered in literature [51, 50]. The prefix ’elasto-’
stands for the influence of mechanical strain, whereas 'piezo-’ stands for that
of stress. In silicon, however, the strain e;; and stress X;; are related to each
other in a unique way. This relation is highly linear up to the fracture stress:

€ij = Sijri Xk (2.117)

where S;;x; is the compliance tensor (see Appendix A).




2.3. MACROSCOPIC CHANGES IN CHARGE TRANSPORT 67

Reduced-index notation

Equation 2.115, 2.116 and 2.117 yield a very large number of terms when fully
written down. It is therefore customary to write their tensors in a reduced
notation. This reduction takes advantage of all possible symmetries of the stress,
the resistivity, the equations, and the material {48, 75, 76, 50].

The first symmetry is that of the stress and the resistivity. For a body
which is not accelerated the stress tensor is symmetric with respect to its main
diagonal; see Appendix A. This reduces the number of independent tensor com-
ponents from nine to six. The resistivity tensor is also symmetric, which appears
from its microscopic definition in Equation 2.78 and 2.79. This makes it possible
to take the tensor subscripts in pairs and convert them to single values. In this
procedure the following rule is used:

11—1; 22—-2;33—3; 2332 —4; 13-31 —»5; 12-21 -6 (2.118)

although other conversion rules occur in literature {77, 8]. The result of this
operation is that a stress tensor Xj; reduces to a six-vector X p, and a resistivity
tensor p;; reduces to a six-vector po. Care should be taken with the strain,
however, which reduces from e;; to ep/2 if i # j. This factor two in the shear
elements is present for historical reasons and has already led to much confusion.

The second symmetry to be exploited is that products like X; X,,,,, are equal
to XmnXki. The subscripts in an accompanying tensor as m;jkimn can therefore
be interchanged as well, and equivalent terms can be taken together. This leads
to the following reduction in which distinction is made between main-diagonal
and off-diagonal subscrips [28, 70]:

Piezoresistive Piezojunction Compliance Conditions

TOP = Tiijj /P Cop = Giij; /P Sop = Suj; ONPe{l,2,3}
Top = 2k /P Cop = 2Cijki/P Sop =28Siju OV P e {4,5,6}
ToP = 2Tijki1/P Cop = 2(ijk/P Sop = 4S8i;k1 O NP €{4,5,6}
TOPQ = Tijkkil/P Corq = Gijkku/P PAQ€{]1,2,3}
TOPQ = 2Mijkimn/P  COPQ = 2Cijkimn/P PvQ e {4,5,6}
ToPQ = ATijkimn/P _CoPQ = 4Cijkimn /P PAQ € {4,5,6}

The tensors in this table are normalised with the mean unstressed resistivity
value p, which is defined as the trace of the resistivity matrix of the associated
charge carrier: p =Tr(p{;) /3. As a result of the reductions, the MacLaurin
series of Equation 2.115 and 2.116 can be abbreviated as:

mal — p(())’maj +mopXp + mopeXpXg

. in 0,P,Qc{1.6 2.119
PN = pi™™ + CopXp + CoreXpXo } Qe {16} ( )

and the stress-strain relation as ep = SopXp.

The third kind of symmetry is that of the atomic lattice of the material [8].
In Section 2.2.3 Neumann’s principle was presented, which implies that the
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physical properties of monocrystalline silicon must at least have the symmetry
elements of the cubic point group of the crystal. In practice this means that
the property tensors are as symmetric as the corresponding products of the
indices [48]. The element (213, for instance, should transform like the product
x3x1x3. This function is even in z2 and odd in z; and z3.

When some of the symmetries of Appendix B.4 are applied to the piezore-
sistive and piezojunction tensors, it can be shown that the zero-stress resistivity
p?j is isotropic. As a result, it can be written as pd;;. The same applies of course
to the zero-stress conductivity of;, which reduces to é;;.

In addition, the cubic symmetry strongly reduces the number of first-order
coefficients. It can be shown that among the 36 elements of mop, (op and Spp
only three constants per tensor are independent. They are called:

M1 = TEO 06{1,2,3}
19 = TWOP O/\PE{I,Q,:‘;},O#P
T =n00 OE€ {4,5,6}

0=mop otherwise

For (pop and Spp the reduction is similar.

Finally, the cubic symmetry elements dramatically limits the number of
second-order coefficients. When they are applied to the 216 coefficients of
mopq and (opgq, it appears that only nine of them are independent. These
are called [50]:

m11 = 7Tooo O € {1,2,3}
T192 = TOPP O/\PG{I,2,3}, O#P
T112 = TOOP OAP€{1,2,3},O¢P
T123 = TOPQ OANPe{1,2,3},0#P#Q
T144 = TOPP 06{1,2,3},P€{4,5,6},P—O=3
T166 = TOPP 06{1,2,3},P€{4,5,6},P—O;é3
T414 = TOPO OG{4,5,6},P€{1,2,3},O—P=3
Te16 = TOPO OE{4,5,6},P€{1,2,3},0—P7é3
Tas6 = TOPQ O/\PE{4,5,6},O7£P7£Q

0 =mopgy otherwise

The coefficients of the second-order piezojunction tensor (opg reduce in the
same way.

With the use of the reduced-index notation it is possible to find convenient
relations between the piezoresistive and piezojunction tensors on the one hand,
and the piezoconductive tensors on the other. For this purpose the expansions
of Equation 2.113, 2.115, and 2.116 are inserted into the definition ;0,1 = 6.
By a comparison of equal powers in stress it appears that:

maj

mop =-TI5},  mopq = ~Tgpy + Moplng (2.120)
Cop =-TBE, C(oro = —TIHE, + IHRIBS (2.121)
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where II; 1, and I1;xzn, have been reduced in the same way as the other tensors.

2.3.4 Evaluation of the first-order coefficients

The independent cocflicients of the piezoresistive and piezojunction tensors can
be calculated in terms of band parameters. If the models presented are correct,
their numerical values must correspond to the measured behaviour presented in
literature and in the next chapter. Especially the coefficients of the first-order
are interesting. They give a first approach in practice and are also the least
sensitive to inaccuracies in the modelling, such as the neglect of anisotropy in
the intervalley scattering [51, 50]. The coeflicients can be calculated analyt-
ically for the electron piezoresistive effect. However, the coeflicients for the
hole piezoresistive and the piezojunction effect contain integrals that should be
solved numerically.

General expressions

The first-order coefficients can be found by relating them to the conductivity,
which was already expressed in microscopic quantities. This is done by replacing
the piezoconductive coefficients in Equation 2.113 by the expressions of Equa-
tion 2.120 and 2.121 and by differentiating the conductivity after stress. In the
reduced-index notation this yields:

ai 1 (')a'(n)mj
Top =~ _Hr(gl:‘] = -—Emaj 120.¢ (2122)
P lxp=0
. 1 QoBin
- = —Jpmin — _ _ Q 2.123
Cop OP Fuin 6XP Xp=0 ( )

It has already been noted that the coefficients are defined at zero field. In
the following, it will also be assumed that the material is in thermodynamic
equilibrium, to avoid ambiguity. In addition, it will be assumed that the material
is nondegenerate. These assumptions often hold in practice, and facilitate the
evaluation of the coefficients considerably.

Under these assumptions it is possible to write the piezocoefficients as func-
tions of the mobility and the pn product. Using Equation 2.107 and 2.108, this

yields:

1 9 maj

Top = — (_ .—5;(() ) (2.124)
/J“maj P Xp=0

Cop = — <__1 o™ | 1 a"?o)
‘ Emin 6XP n%O BXP Xp=0

where  is the trace of the mobility matrix: 7 =Tr(u,;) /3. The above equations
reveal some interesting features of the piezoresistive and piezojunction effects:

(2.125)

e The mathematical formulation is very similar;




70 CHAPTER 2. THEORY OF STRESS-INDUCED CHANGES

Table 2.4: First-order piezoresistive coefficients as calculated from band param-
eters of different authors, determined from experiments, and found in literature,
in 10-11 Pa~1,

This work Literature
[14] [5] [15,16] exp.| [80] [50]  [43] [78]
[41] (41] exp. exp. calc. calc.
. | —781 —96.8  —84.8 —=1022 -7 = =
m, | 39.0 484 42.4 ~| 534 39 - -
| —94 —94 —9.4 - | -136 -14 - -
| 42 34 38 18 66 -6 535 8
my | —69 —6.9 -7.7 2.5 -1.1 1 -2.68 -2
Thy 91.5 116.6 131.9 1184 138.1 112 103.20 140

e The piezoresistive coefficients are equal to the changes in the majority
mobility;

e The piezojunction effect depend on the changes in the minority mobility
and in the pn product. It therefore depends on both the minority and the
majority bands;

o The shear piezojunction coefficient is equal to the shear piezoresistive co-
efficient for both electrons and holes.

The latter feature is the result of the fact that the pn product is insensitive to
shear stress in the first order, as shown by Figure 2.22. The equatlons for w44
and (44 thereby reduce to the same expression.

Analytical evaluation

The first-order piezoresistive coeflicients for n-type material can be evaluated
analytically from Equation 2.124, since pg is known in closed form from Sec-
tion 2.2. This yields the following expressions for the three independent first-
order piezoresistive coefficients:

2 =, me — Ny

== S —_— 2.12
17 3% T( e (2.126)
1= —-my
no__ _ u
™2 = T35, o S - 512)m Tom (2.127)
memy

= —~aSyy—————— 2.12
a4 oa my + 2my ( 8)

It can be seen that the coefficients are functions of the electron effective masses,
the deformation potentials, the compliance coefficients, and the temperature.
The expressions agree with those found in literature [51, 10, 22, 23, 79]. When
numerical values are inserted they yield coefficients near to those found from
experiments (see Table 3.4).
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Table 2.5: First-order piezojunction coefficients, in 107!! Pa~!, as calculated
from band parameters of different authors and compared with experimental
values from this thesis and from Fruett [81]-[83]. Indirectly determined values
are indicated between square brackets.

Coeffic. Calculated Experimental
[14, 41] (5] [15, 16, 41] | Chapter 3 Fruett
K¢ —447 —54.0 —522 | —415+31 -
(T2 63.0 81.8 65.6 434+1.5 45.5
n —54.1 —63.4 —61.6 | [-28.4 4 3.0] -
¢y, -94  —9.4 —94 | [13.1+43 -
¢ = -63.4 —-79.8 —~104.9 | —89.0+3.3 [-87.4]
cb, 170 26.5 15.5 13.8+£1.3 14.3
¢ 28.1 36.8 27.0 [30.8 £ 2.6] 8.9
N 91.5 116.6 131.9 | [119.8 +4.2) 96.3

Numerical evaluation

The remaining first-order piezocoefficients can be found by similar derivations
followed by a numerical integration over the wave vector space. This was done
with similar FORTRAN procedures as in Section 2.2.2, where the effective den-
sities of states were calculated. The derivatives after stress were calculated
analytically. This procedure is straightforward in principle, but very elaborate
in practice and prone to mistakes. Fortunately, some of the calculations could
be verified by a comparison with literature results. Starting from the same in-
put parameters, the same piezoresistive coefficients for holes were obtained as
Ohmura in his numerical calculations [42, 43].

For the final calculations different sets of more recent band parameters were
used, given in Table B.2 and 2.1. The valence band scattering parameter s was
chosen equal to —0.2. This resulted in the sets of first-order coefficients given in
Table 3.4 and 2.5. It can be seen that they approach the measurement values,
but also that they are very sensitive to the band parameters used. This will be
further discussed in Chapter 4.

2.3.5 Interpretation of the piezocoefficients

The first-order piezocoefficients differ in sign and magnitude because they are
caused by different energy band effects. These effects were discussed in Sec-
tion 2.1 and are resumed in Figure 2.23. They include changes in the bandgaps,
leading to population changes and redistribution of the charge carriers. They
also include changes in the band shape, leading to modifications in the effective
mass and the density of states. Population redistribution and effective mass
changes lead to modifications in the average mobility of a charge carrier type.
Changes in the effective density of states and in the population can modify
the total concentration of the carriers through the pn product, but only if this
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(@) (b)

Figure 2.23: Schematic changes in the energy bands of silicon due to stress, and
their effects on the charge carrier population.

concentration is not determined by the doping.

Piezoresistive effect for electrons

The piezoresistive effect for electrons is dominated by charge redistribution.
This redisribution is the result of an unequal shift of the six conduction band
edges. Electrons in higher bands scatter to lower-lying ones, which have another
mobility effective mass in that current direction [84]. This changes the average
mobility. It was seen before that the band edges only shift due to normal
stresses. As a result, the largest piezoresistive coefficients for electrons are the
normal coefficients 77, and 7},.

For a small part, the piezoresistive effect for electrons is also caused by
band deformation. This deformation is only caused by shear stress and is not
accompanied by shifts of the band edges. It leads to a shear piezoresistive
coefficient 7}, which is smaller than the normal coefficients.

Theoretical evaluations of higher-order piezoresistive coefficients have not
been very successful yet. Probably, they are of limited validity because the
model neglects the anisotropy of the intervalley scattering [51, 50]. Higher-
order evaluations are also complicated by the fact that the effective masses m;
and m; are independent of stress only to the first order [85, 22, 21]. Finally,
they are very sensitive to minor variations in the band parameters on which
they are based.

Piezoresistive effect for holes

The piezoresistive effect for holes is dominated by changes in the off-diagonal
mobility elements. These changes are caused by the shifts in the valence band
edges as well as by the changes in the curvature, which are closely related.
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The principal cause of the hole piezoresistance has long remained unclear [84].
This probably resulted from the complicated mathematical description, which
requires numerical means to be evaluated [43, 73, 44].

The hole piezoresistance is large for shear stress and small for normal stress.
This reaction is opposite to the piezoresistance of electrons. The contrast is
sometimes employed to design sensors which are optimally sensitive to both
types of stress [77].

Piezojunction effect for electrons

The piezojunction effect for electrons is not only determined by the mobility
of the conduction bands, but also by the pn product, which involves both the
conduction and the valence bands. The hole concentration in the valence bands
is set by the doping. The shape of the bands, however, changes with stress. To
keep the concentration constant, the Fermi level must change. This Fermi level
also determines the number of electrons which are thermally excited over the
bandgap and take part in the minority conduction.

The electron piezojunction coefficients are in the same order of magnitude
as the electron piezoresistive coefficients. However, the normal coeflicient (}; is
less pronounced than 77,. This means that it is attenuated by a change in the
pn product, as can be seen in Equation 2.124 and 2.125. The shear coefficient

14 1s small and near to the shear piezoresistive coefficient 7},. This was already
expected and discussed after Equation 2.125, because the sensitivity of the pn
product to shear stress is zero in the first order. It should be noted that the
mentioned experimental value of (}, is probably not very exact and less precise
than indicated, as will be discussed in Section 3.4.3 and Chapter 4.

Piezojunction effect for holes

The piezojunction effect for holes is determined by the valence band mobility
as well as by the pn product. The hole piezojunction coefficients for normal
stress are not as small as in the piezoresistive case. This is again the result of
the attenuating effect of the pn product, in which the shifts of the conduction
band edges play a role.

However, the coefficient for shear stress (}, is large and is very close to the
hole piezoresistive coefficient . Just as for the electrons, this was already
expected from Equation 2.124 and 2.125. It can also be explained by the weak
reaction of the conduction bands to shear stress. This stress does not shift
the band edges, meaning that there is no changing band gap from the side of
the conduction bands. The result is that the shear coefficient is completely
determined by the valence bands, just as in the case of the piezoresistive effect.
This yields similar coefficients.
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2.4 Modification of device characteristics

In the previous section the piezoresistive and piezojunction effects were defined
with respect to the conductivity of the semiconductor. However, these effects
only become observable through their influence on a device. Not surprisingly,
the piezoresistive effect dominates the stress-dependent behaviour of resistors,
whereas the piezojunction effect is responsible for that of bipolar transistors.
The resistor behaviour under stress is a well-known topic [84, 86]. It is briefly
treated here because it has many parallels with the stress influence on the tran-
sistor.

In this section the stress dependence of the device characteristics is described
in analytical models. For this purpose, use is made of the regional approach of
charge transport, discussed in Section 2.2.1. This approach is usually applied
to derive the transistor saturation current in the absence of stress, as shown
in Appendix D. The derivation there follows the method of Gummel and Moll-
Ross [87, 88]. This method is elegant from both a mathematical and a physical
viewpoint. It is also suitable to include the effects of stress. It leads to the theo-
retical characteristics of some resistors and transistors which are experimentally
determined in the following chapter.

2.4.1 General assumptions

The analytical modelling of resistors and transistors requires some general as-
sumptions concerning the geometry, the operating conditions, and the material.
They are discussed in Section 2.2.1 and Appendix D. The most important ones
are:

e The regional approach. Semiconductor regions are considered to be either
quasi-neutral or filled with space charge. In the quasi-neutral regions the
space charge is negligible and the gradient in the quasi Fermi level is small.

¢ Homogeneous stress throughout the active region of the device. This is
not strictly necessary, but it simplifies calculations.

o The one-dimensional approach. Gradients in the quasi Fermi level are
supposed to be oriented in one direction only. The current component
along this direction is constant throughout the device and determines the
device behaviour.

o Nondegenerate material in the active region of the device. As a result,
some important device characteristics can be calculated analytically.

e Extrinsic material. The doping of a region is large enough for one type of
charge carrier being dominant.

o Low-level injection. The concentration of injected charge carriers remains
inferior to the majority concentration in the region.
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z=0 z l; z=1L

Figure 2.24: Schematic of a p-type silicon resistor, supporting a current Iz with
a density Jr as a result of the applied voltage Vi.

e Normal bias conditions. The applied bias voltages and current are such
that the device functions in the normal, forward mode.

2.4.2 Resistors

Most semiconductor resistors can be represented as a rectangular slab of ma-
terial with contacts on both ends, as drawn in Figure 2.24. When a voltage
VR is applied over the contacts, a current Ip starts to flow with a density Jg.
The I will be written here in terms of the resistor geometry, charge transport
parameters, and mechanical stress.

Current-voltage characteristic

In the case of p-type doping the current is almost entirely supported by holes.
The current density vector J; at an arbitrary place in the resistor is therefore
given by Equation 2.7T7:

8EFp p.maj a-E‘F‘p
P = u =P 7P 2 2
J, ;U” o = (2.129)

where the sum runs over all valence bands. The gradient in the quasi Fermi
level is now supposed to be along the long side of the resistor, in the direction of
the unit vector [;, defined in the same axes system as o;;. The current density
Jr is the current component along that direction. It can be expressed as the
inner product:

JR =LJ = l_o_p,maj (‘)El"p =1 p,maj aIEFp
=bhdg = 7

=Ll.o" 2.130
¥ qazj 1101] qdz ( )

where z is the variable of length between the contacts.
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This relation is integrated over z up to the length L to establish the relation
with the applied voltage:

/ JRdz—/ liljo f’J“‘aJaEF"d (2.131)

The current density and the conductivity are supposed to be constant over z and
can be placed outside the integral. In addition, the integral can be evaluated
to:

]‘ ma
Jr = qu ol (Epp (L) — Epp (0)) (2.132)

The difference in quasi Fermi levels is by definition equal to the voltage mul-
tiplied by the unit charge, ¢Vr. By integration over the contact area A (at
z =0 or z = L) an expression for the total resistor current I is found. Not
surprisingly, it is equal to Ohm’s law, but with the resistance R expressed as a
tensor summation. In general, also including n-type material, it can be written
as:

1 A maJ

Vr
I = —, _———
R R —lilo

= = Thilio} (2.133)

Stress-induced changes

In the case a mechanical stress Xy, is applied to this resistor, the above current
changes with the following factor:

Ir(0) _ R(Xw) _ (A/L)(0) Uloi" (0)
Ir (Xx)  R(0) (A/L)(Xkl)liljU;?dJ(Xkl)

(2.134)

The piezoresistive part of this factor is dominant and can be calculated from
the theory in Section 2.3.1. This has been done for a specific case which is
also characterised experimentally in the following chapter. It concerns a rosette
of three p-type resistors which is subjected to an in-plane uniaxial stress in
the [130] crystal direction. The resistors are oriented in the [100]-, [110]-, and
[010}-directions. The calculations were performed numerically with the band
parameters of Hensel [41] and the deformation potentials of Friedel [14]. The
calculation time was two hours. They resulted in the resistance changes in
Figure 2.25 which are plotted as a function of the stress magnitude. The cal-
culations were repeated with the parameters of Fischetti and Laux [5]. This
yielded equally flat curves for the [100]- and [010]-resistors, but a curve for the
[110]-resistor which was 25% steeper.

The current changes can be calculated much quicker with the piezoresistive
and compliance coefficients given in the previous section. By recalling Equa-
tion 2.114 and 2.115, the piczoresistive part of this can be written to the second
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Figure 2.25: Calculated resistance changes as a function of stress of the p-type
rosette resistors described in Chapter 3.

order in stress as:
liljo ;™ (0)
lile';?aJ (Xkl)

Tij Tijklmn
=1+ ziljijl%lxkfz +1il; p{’,ﬁf‘aj X5 X (2.135)

The piezoresistive coefficients in this equation, Tijki a0d jkimn, can be tran-
scribed to the reduced-index notation of Section 2.3.3. Measured values of the
first-order coefficients can be looked up in e.g. Table 3.4, whereas the second-
order coefficients can be found in Reference [50]. For a stress range of £250 MPa
the second-order effect is relatively small compared to that of the piezojunction
effect. This is difficult to deduce from the numerical values of the coefficients,
but appears very clearly when graphs of both effects are compared, e.g. those
of Figure 3.22 and 3.31.

The geometrical part of the current changes can be calculated with the stress-
strain relation of Equation 2.114: e;; = Sij1uXwi. To the first order in stress
this yields:

(A/L)(0) .
——————=1-€e]; — € t+e€ 2.136
(A/L) (Xkl) 11 22 33 ( )
=1 — (aiia1; + aza2;5 — agias;) Sijr X
where a;; is the transformation matrix relating the crystal axes x; to the axes
system with the z-axis parallel to /;. In the stress range of £250 MPa the
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Figure 2.26: One-dimensional schematic of a bipolar npn transistor in forward
bias. The main current I. flows from the emitter e via the base b to the collector
C and has a constant density J.. It is driven by the base-emitter voltage Vp..

geometry changes the resistance with 0.3 percent at most. As a result, it can
often be neglected compared to the piezoresistive effect. The stress also changes
the product /;l; in Equation 2.135. This yields a small additional term quadratic
in stress which can often be neglected.

Anisotropy

The piezoresistive effect is highly anisotropic. This means that the stress-
induced resistance change strongly depends on the orientation of the current
and the stress with respect to the crystal axes. The only exception is the first-
order resistance change due to a current parallel to a uniaxial stress in one of
the {111} planes.

The anisotropy is often represented graphically with the aid of polar plots
introduced by Kanda [79, 89, 90, 84, 70]. The principle of those plots is discussed
in the next section for the case of the piezojunction effect.

2.4.3 Bipolar transistors

The main behaviour of most bipolar transistors can be derived from the one-
dimensional device of Figure 2.26. This is done in detail in Appendix D. If this
npn device is biased in forward, a collector current I, is generated by the base-
emitter voltage Vie. The relation between I, and Vj. will be developed here in
terms of geometry, charge transport parameters, and mechanical stress.

Current-voltage characteristic

It was seen in Appendix D that the collector current I, is given by the equation:

Ve
I, = Isexp (ZB’T) (2.137)
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in which Ig is the saturation current. This saturation current depends on the
properties of the base region only. More exactly, it depends on the base proper-
ties experienced by the minority charge carriers, since it is the minorities in the
base which determine the main current in the transistor. Under the assumptions
of Section 2.4.1, Is can be written as:

Is = kpT }:zguz(nmf (2.138)

where the sum runs over the energy bands m of the minorities. The symbol A
is the area of the emitter-base junction, W is the effective base width, N4 is the
doping concentration of the majorities in the base, and /; is the direction vector
of the current. In addition, p;} is the mobility tensor of the minorities in band
m, while nj is the pn-product in thermodynamic equilibrium of band m with
respect to all opposite bands (see Section 2.2.4).

The saturation current can be expressed in terms of minority conductivity,
defined in Section 2.3.3. For this purpose the pn-product njj is rewritten using
the assumption of extrinsic material. The total majority concentration in that
case is equal to the doping concentration N 4:

nly = ngt Zpo =ngy'N, (2.139)

In addition, the mobility and the concentration of band m are combined to the

minority conductivity tensor in thermodynamic equilibrium a;‘;m

qZ (nm,uzg)mm = J?J‘-i“ (2.140)
m
This means that the Ig of Equation 2.138 is equal to:

keT A | pmin (2.141)

Is = W' 7045

This expression is quite similar to that of the inverse resistance of a resistor,
described by Equation 2.133. The only differences are the factor kgT'/q and the
use of the minority conduction instead of the majority conduction.

Stress-induced changes

The collector current of the bipolar transistor changes when a mechanical stress
is applied. The change is schematically drawn in Figure 2.27, where it is indi-
cated to be relatively small. It is shown in the following that this is the case for
the stress range studied in this work (up to 200 MPa). It is also shown there
that the change can be both positive and negative, depending on the current
orientation, the stress orientation, and the sign of the stress.
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Figure 2.27: Schematic of the change AJ. in the main electron current density
J. of an npn transistor as a result of stress.

The collector current change is the result of the influence of the mechanical
stress tensor X}; on the saturation current Is. It changes the saturation current
current with the following factor:

Is(0) _ (4/W)(©0) lloz"(0)

Is (Xw)  (A/W) (Xut) Liljon™ (Xur)

(2.142)

This is very similar to the stress-induced changes in a resistor current, as can
be seen from a comparison with Equation 2.134. The differences are that the
resistor length is replaced by the base width, and the majority conductivity by
the minority conductivity.

As a result, the collector current changes can be calculated from the theory
in Section 2.3.1. In that section the minority conductivity is related to the
pn product and the minority mobility, of which the stress dependences were
calculated in terms of the energy bands in Section 2.2. The calculations have
been made for eight specific cases which are characterised experimentally in the
following chapter. They concern four npn and four pnp transistors with the
collector currents in different directions and subjected to uniaxial stresses in
various orientations. The calculations were again performed numerically with
the band parameters of Hensel [41] and the deformation potentials of Friedel [14].
They resulted in the plots of Figure 2.28 to 2.31. The calculations were repeated
with the parameters of Fischetti and Laux [5]. This resulted in plots of similar
shapes, but 30% larger in scale.

The plots show a strongly anisotropic behaviour, depending on both the
stress and the current orientation. In addition, they show large differences
between npn and pnp transistors. The current changes are in the same order of
magnitude as the piezoresistive effect, on the stress range considered. However,
they are considerably less linear. The nonlinearity is mainly second-order in
this stress range, as shown by the parabolic least-squares fits.

The collector current changes can also be expanded into a series with the aid
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Figure 2.28: Calculated saturation current changes of an npn and a pnp tran-
sistor as a function of uniaxial stress, for the current and stress orientation
indicated. The points are connected with a second-order least-squares fit.
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Figure 2.29: Calculated saturation current changes of an npn and a pnp tran-
sistor as a function of uniaxial stress, for the current and stress orientation
indicated. The points are connected with a second-order least-squares fit.
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Figure 2.30: Calculated saturation current changes of an npn and a pnp tran-
sistor as a function of uniaxial stress, for the current and stress orientation
indicated. The points are connected with a second-order least-squares fit.
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Figure 2.31: Calculated saturation current changes of an npn and a pnp tran-
sistor as a function of uniaxial stress, for the current and stress orientation
indicated. The points are connected with a second-order least-squares fit.
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Figure 2.32: Lateral transistors under uniaxial stress. (a): the stress is longitu-
dinal or transverse to the current directions. (b): the current direction is fixed
to the [110] direction.

of the piezojunction coeflicients. Using Equation 2.114 and 2.116 this yields:

liljcr;‘;i“ (0)
liljoﬁin (Xkl)

=1+ p%,ﬁfn X + Lil; C;{)’f;’;jj‘ X1 Xmn (2.143)

The coeflicients in this equation are known from theory and experiment and
can be found in Table 2.5 and 3.3. The geometrical part of the collector current
changes is exactly equal to that of the resistor current. It is given by Equa-
tion 2.136, where L should be replaced by W. In most cases it is negligible.

Anisotropy

In analogy to the piezoresistive effect, the piezojunction effect is very anisotropic.
Its magnitude and sign depend strongly on the orientation of both the current
and the stress with respect to the crystal axes of silicon. If these orientations are
free to be modified they are an excellent way to optimize the stress sensitivity
for a specific application.

The optimization of the stress sensitivity is facilitated by using a graphical
representation. Such representations can be applied in the design of piezoresis-
tors [90, 86, 84]. Generally, they consist of a polar plot indicating the first-order
sensitivity of a resistor to uniaxial stress as a function of stress and current
direction in a specific crystal plane. Such polar plots are given here for the
case of a bipolar transistor. They are based on Equation 2.143 and the first-
order piezojunction coefficients in Table 2.5, determined from the experiments
described in the next chapter.

The graphical representation of anisotropy has the inherent limitation that
it can only describe a very small section of all possible current and stress orien-
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Table 2.6: Sensitivity to in-plane uniaxial stress of the saturation current of a
transistor for orientations in which it is isotropic, in 107! Pa—!.

Wafer plane Current or. Stress or. npn pnp
{100} Vertical Transverse -43.4 -13.8
{111} Vertical Transverse -15.1 205
{111} Lateral Longitudinal -17.6 -82.9
{111} Lateral Transverse -28.2 4.0

tations. This need not be a large problem because the orientations are already
limited in practice for technology reasons. Stress, for instance, generally occurs
in the plane of the wafer only.

Configuration of the graphs In the following the anisotropy graphs are
shown for the most common transistors. These are vertically or laterally fab-
ricated in either {100} or {111} wafers, as explained in Appendix D. They are
subject to a uniaxial stress in the wafer plane; see Figure 2.32. If the stress
is more complex, it can usually be considered as a superposition of uniaxial
stresses. Their first-order electrical effects can be read from the graphical rep-
resentation, and can be added to find the total effect.

The graphs only describe the directions between 0 and 180 degrees because
of the crystal symmetry. The stress sensitivities are positive in the upper halves,
while they are negative sensitivities in the lower halves. The graphs are plotted
for both npn and pnp transistors.

Vertical transistors The most important transistors in circuit design are
vertical. In vertical transistors the main current is flowing through the base in a
direction normal to the wafer surface. The base of such transistors can be very
thin, making them much faster than lateral transistors.

The stress sensitivity of vertical transistors is quite special. If they are
fabricated on {100} or {111} wafers, the first-order sensitivity to in-plane stress
is wsotropic. This means that the sensitivity is independent of the angle of
the uniaxial stress in the wafer plane. This is mainly the result of the cubic
symmetry of the unstressed silicon. After some manipulation of Equation 2.143
the sensitivity to a uniaxial stress X can be written as:

5(9} (i%?) (¢) = —Ci2, stress in a {100} plane (2.144)

1
—3 (C11 +2¢12 — Caa) , stress in a {111} plane

These expressions can be evaluated by inserting the values of Table 2.5. The
results are shown in Table 2.6.




2.4. MODIFICATION OF DEVICE CHARACTERISTICS 85

90° 9
_-~”'o1of
oot o P e
‘_'> ........
80m T D R RNy
~T100)- s e T foo)
ST A 240 N T
. . o N s
: '60 ’,/ : \\\ ‘l
: ‘\;8_0_,”' "~‘~__,"
A pad longitudinal Mol
X107 Pa ----transverse | X107 Pa

Figure 2.33: Sensitivity to longitudinal and transverse stress of lateral bipolar
transistors in a {100} crystal plane, when the plane is rotated. Left: npn; Right:
np.

Lateral transistors; longitudinal and transverse sensitivity Lateral
transistors are not as fast as vertical ones, but are available in many IC pro-
cesses. The main current in those transistors is flowing through the base in a
direction parallel to the wafer surface. This means that during the IC design
the current direction is free to be chosen within the wafer plane.

The stress sensitivity of lateral transistors is very anisotropic and can there-
fore be tuned for specific needs. A traditional way of defining the anisotropy
is to consider the sensitivity to stress parallel and perpendicular to the current
direction as a function of that direction [90]. This configuration is sketched in
Figure 2.32.a. It yields the longitudinal and transverse sensitivities, respec-
tively. For the (001) plane they are plotted in Figure 2.33. Among other
things, the figurc shows that the lateral sensitivity of pnp transistors is very
high in <110>directions, while their transverse sensitivity is zero near the
<100>directions.

A special case arises for the {111} planes, where the sensitivities are again
isotropic. Manipulation of Equation 2.143 learns that they are given by:

P (IS (X)

1
3% \ I3 (0) ) (p) = ~3 (11 + €12 + C44) longitudinal (2.145)

1
i (€11 + 5C12 — C44) transverse (2.146)

Their numerical values are given in Table 2.6.
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Figure 2.34: Stress sensitivity of lateral bipolar transistors in a standard [110]
orientation as a function of the uniaxial stress direction in the (001) crystal
plane. The stress is rotated while the transistor is fixed on the wafer. Left:
npn; Right: pnp.

Lateral transistors; sensitivity in standard orientation It often occurs
that the stresses have an arbitrary orientation in the wafer plane, but that the
transistor orientation is fixed. This situation is sketched in Figure 2.32.b. In
many IC processes the transistors must be oriented along either the horizontal or
the vertical die edge. This corresponds to a direction parallel or perpendicular
to the wafer flat, which is equivalent to a <110>direction in the crystal axes
system.

The stress sensitivities of such lateral transistors are plotted in Figure 2.34
and 2.35. They appear to be largest for pnp transistors. For both transistor
types they are very anisotropic, and often reduce to zero for a specific stress
direction.

2.5 Conclusions

In this chapter the effects of mechanical stress on the characteristics of transis-
tors and resistors were calculated from first principles. These calculations were
performed in several steps, which were implemented in a computer program. In
order to give a brief overview of the calculations the main steps are given in
Figure 2.36.

Stress deforms the silicon crystal and thereby the period of the electron wave
functions. This shifts and deforms the band edges and lifts their degeneracy.
These processes can be described with the aid of the deformation potential
theory. They modify the bandgap and change the effective mass of the charge
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Figure 2.35: Stress sensitivity of lateral bipolar transistors in a standard [110]
orientation as a function of the uniaxial stress direction in the (ﬁl) crystal
plane. The stress is rotated while the transistor is fixed on the wafer. Left:
npn, Right: pnp.

carriers.

The band modifications change the concentration, the mobility, and therefore
the electrical conductivity of the charge carriers. These changes are generally
different for each band. The change of the total, macroscopic conductivity is
therefore a weighted sum of the contributions of the individual bands. It can
be divided into changes in the average mobility and changes in the pn product.
Both changes are of comparable magnitude on the stress range.

If the stress is sufficiently small, the conductivity change can be described
by a series expansion. This expansion can be evaluated rapidly and gives a good
description of the experimental observations. The coefficients of the expansion
are called the piezoresistive coefficients when they describe the conductivity of
majority charge carriers. For minority charge carriers they are called the piezo-
junction coeflicients. All coefficients are tensor properties of the material, and
must therefore have the symmetry of the crystal of which the material consists.
They can be calculated from the band changes, but can also be determined from
experiments.

The conductivity of majorities determines the resistance of a resistor, whereas
the minority conductivity sets the saturation current of a bipolar transistor. The
stress effects on those characteristics can therefore be described with the piezore-
sistive and piezojunction coefficients, respectively. Theoretically, the effects are
tightly coupled. The resistance changes depend on the stress-induced changes
in the bands of the majority charge carriers, whereas the saturation current
changes depend on the changes in the conduction and the valence bands to-
gether. For specific orientations, they can be calculated numerically. The effects
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Stress tensor

Compliance *

Stress-strain relations
Eq. A.17

Band parameters Strain *
Scattering par.

Energy band equations + derivatives after wave vector and stress

Deformation pot. Eq. 2.30, 2.35, 2.38, B.77-79, 2.48, 2.86

Electron and hole energies, * Scattering, + derivatives

Integration over wave vector space
Eq. 2.63, 2.64, 2.80, 2.82

Available DOSes, * G-parameters, + derivatives

Summation, weighted averages
Eq. 2.65, 2.66, 2.98, 2.85, 2.86, 2.87

pn product, * Mobilities, + derivatives
Doping conc.

Conductivity and piezocoefficient definitions
Eq. 2.107, 2.108, 2.124, 2.125

Conductivity * Piezocoefficients
Current direction

|_» Saturation current and resistance definitions
Eq. 2.133, 2.136, 2.141

v

Changes in transistor and resistor characteristics

Figure 2.36: Flow chart of the computer program used to calculate the stress
induced changes in the characteristics of transistors and resistors. The piezo-
junction and piezoresistive coefficients were obtained at an input stress of zero.
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arc very anisotropic with the stress and current orientations. The anisotropy of

the first-order coefficients can be represented in polar plots.
In the following chapter measurements are presented to verify the theory

and determine the piezocoefficients experimentally.
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Chapter 3

Measurements of
Stress-induced Changes

The macroscopic model of the piezojunction effect is of practical use only if
it is supported by measurements. Measurements can validate the structure
of the model and yield numerical values of its parameters. These parameters
can subsequently be compared with those derived from the more fundamental
microscopic model.

The measurements in this chapter describe the influence of mechanical stress
on the relation between the base-emitter voltage and the collector current. In
addition, they describe the stress-induced changes in resistors. These resistance
changes have also been described in literature and can therefore validate the
transistor measurements. All devices lie in different crystal planes. In addition,
they are subjected to uniaxial stress which ranges from -200 to 4200 MPa and
has different orientations with respect to the crystal axes. Finally, the devices
are normally biased.

3.1 Principle of the measurement set-up

The piezojunction and piezoresistive effects can be characterized experimentally
when the following basic elements are present:

e Devices, preferably accompanied by a model structure,
e A generator of mechanical stress, and
e Electrical measurement equipment.

The principles of these elements are discussed in this section, whereas their
implementation is treated in the following section.
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3.1.1 Devices and their stress dependence

The experimental devices should satisfy the assumptions made in the theory
(see Section 2.4.1). These assumptions are not very restrictive: they can be met
quite well with standard technology and measurement equipment. In this case
the devices can be modelled with the following model structure.

Transistors

In Scction 2.4.3 it was shown that at a constant base-emitter voltage, the collec-
tor current of a transistor /.. is particularly influenced by a stress X;; through
the minority conductivity a“““

L.(0) Lol (0)

~ ko 3.1
I (Xw)  Lljos™ (Xi) (31

where [; is the direction vector of the current. This influence is relatively small
in the stress domain considered and is sufficiently described by a second-order
power series:

liljo3;™ (0) Cijkl

l,-lja;‘;i“ (Xkl) =1+ 1-7 0 min

Xy + Ll ———C”klmnszan (3.2)

0 min

The (ijri and (ijkimn here are the first- and second-order piezojunction tensors.
These tensors contain 810 coefficients in total. In Section 2.3.3 it was shown,
however, that this number is reduced to only 12 by knowledge about the device
operation and the material symmetry.

The first aim of the measurements is to verify whether this drastlc reduc-
tion of coefficients is indeed allowed. The second aim is to extract them. For
this purpose it is useful to rewrite Equation 3.2 as an explicit function of the
three independent first-order piezojunction coefficients ¢}, the nine second-order
coefficients ¢!, and the stress magnitude X:

LO) . Z ai(i X + Z b; ¢l x? (3.3)

j=1

The factors a; and b; are vector constants which contain all information about
the orientation of the stress and the current. For the following experiments
they are known in advance. The stress magnitude X is varied during the mea-
surements. Finally, the ratio of the collector currents with and without stress
is measured. Since Equation 3.3 contains nine unknown (}', it requires at least
nine different experiments to find them all. This can be done by varying the
orientations of the stress and the current.

Our experiments were performed for six different orientations. This gives
a good indication about the model structure, but does not enable the deter-
mination of all coefficients. The current in the experiments was in either the
[001], the [T10], or the [111] direction of the crystal. This was done by making
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Figure 3.1: Orientations of the current and the uniaxial stress used in the ex-
periments. Above: with respect to the crystal axes. Below: with respect to
the employed silicon wafers. The currents are directed out of the wafer planes,
which are drawn in grey in the upper figures. The vector b points in the direc-

tion [(vV6—1), (\/6+ 1),2].

vertical transistors in different silicon wafers, as illustrated by Figure 3.1. The
stress was chosen to be uniaxial and in the plane of the wafer. In each wafer it
could be directed along two vectors ¢;, as shown by Figure 3.1. The tensor of
this stress is equal to X;; = qrqX. The six experiments yield a system of six
equations in the form of Equation 3.3. This system can be written in matrix
form as:

3 9
Li=1+) A X+ BuGlX?  i€{1,2,.,6} (3.4)
3=1 k=1

where I; contains the six ratios of I, (0) /I. (X), and the matrices A and B
contain the different a; and b;, respectively.

Since it 1s impossible to resolve all twelve piezocoefficients from this system,
it is better to combine them into linear combinations that can be found. These
combinations are denoted by a quote: ¢’ and ¢j". They are given by the vectors
of the row space of A and B [1]. For the orientations given in Figure 3.1 they
are:

G — 4616 + 2Ca14 + 2C450
= [ 2‘1; — Gaa ] L= Eiz + 3C166 — Ca14 — Case (3.5)
C123 + 5C1aa
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As a result, Equation 3.4 reduces to:

2 4
L=1+> ALCX+) BLGVX%  ie{l.6} (3.6)
J=1 k=1

where the matrix A’ consists of the first two columns of A, and B’ of the first
four columns of B. They are equal to:

0 6 0 0 36 0

0 6 0 0 18 18

,124 ,141688
A=clg 3|’ B=309 18 9 o (3.7

2 4 6 12 12 6

2 4 6 12 12 6

The unknown piezocoefficients can be extracted if measurements yield a
series of N different data points (X, A;j,Blfk,Ii). In that case Equation 3.6
expands to a system of N linear equations in six unknowns. This system can
be solved by a least-squares method, such as the one described in Section 3.3.3.

The extraction can be made more accurate by correcting the data points for
the geometrical effect. This effect concerns the stress-induced changes in the
base width and the junction area, as discussed in Section 2.4.3. The changes
can be calculated with the aid of Equation 2.136, the orientation of the current
and the stress, and the values of the compliance coefficients (see Appendix A).
Their effect on the current changes is generally small: in the order of 0.3% for
the stress domain considered.

Resistors

Although the experiments are mainly concerned with transistors, also a set
of resistors was characterized under stress. This allows the extraction of the
first-order piezoresistive coefficients of p-type silicon. These coefficients can be
compared with those found in literature, which enables a benchmarking of the
measurement set-up.

Like the transistor, the stress-induced changes in the resistor can be de-
scribed by the independent piezoresistive coefficients. These changes, however,
are much more linear than those in the transistor collector current. When geo-
metrical effects are neglected and the voltage difference is fixed, the changes in
the resistance are given by:

R(X) . v .
m =1 + ;Ci'ﬂ'ix (38)

where 7 is the vector with the piezoresistive coefficients 7)), 712, and m44. The
c; are again constants depending on the orientation of the stress and the current.
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Figure 3.2: Lay-out of the three-element rosette. Left: orientation of the resis-
tors with respect to each other. Right: Orientation of the rosette with respect
to the wafer and the crystal axes.

The piezocoeflicients can be found from mecasurements if at least three differ-
ent orientations of stress and current are considered. This is possible by making
a rosette of three resistors in the (001) crystal plane and subjecting them to one
uniaxial stress in that plane, as shown in Figure 3.2 [2, 3, 4]. The advantage of
such a rosette is that three current directions can be characterized at the same
moment, with closely matched resistors, and at almost the same temperature.
If only first-order coefficients are required, measurements at only one stress level
are in principle sufficient.

The measured normalised resistances R; are linear combinations of the =;.
Equation 3.8 can therefore be extended to the system:

Ri=1+ OijoXv i,] € {13 213} (39)

This system can be solved again by collecting a series of measured points
(X,Cij, Ri (X)) and applying a least-squares method as in Section 3.3.3. It can
also be corrected for geometrical changes. If only one stress value is available,
it can also be solved by inverting the system:

This has the disadvantage that measurement errors are not averaged and that
nonlinearities pass unnoticed. However, it calculates the m; very quickly and is
easily programmed.

The system can only be inverted, of course, if C' is invertible. It can be
proved that for the rosette of Figure 3.2 this is always possible, unless the
uniaxial stress is directed along a (100) or a (110) direction [5]. This is valid for
any orientation of the rosette in the (001) plane. For this reason, the stress in the
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Figure 3.3: Principle of bending a cantilever beam. The beam is clamped on
the left-hand side and deflected at the right-hand side over a distance 6,. This
requires a force P. The transistors and resistors are located at the surface of
the beam at the point ;.

resistor experiments is chosen along the [130] direction. The rosette orientation
is chosen along the [100] direction (thus 7 = 0) to minimise the propagation of
measurement errors [5]. In that case, C and C~! are given by:

L [r 90 [ =3 0o 2
C=g5155 31 (J-1=ﬁ 27 0 -3 (3.11)
9 10 —40 80 —40

Rosettes along n = 63° and n = 27° are added to verify the principle.

3.1.2 Stress generation

The transistors were subject to mechanical stress by integrating them into a
beam and bending the beam as a cantilever. This method is illustrated in
Figure 3.3. It is well-known and represents a number of advantages with respect
to other methods, such as four-point bending, needle pressure, uniaxial pressure,
or hydrostatic pressure:

o The stress domain is interesting: it ranges from -250 MPa to +250 MPa,
and can be compressive as well as tensile by changing the direction of
deflection;

o The stress orientation can be varied by cutting the beam in different ways
from the silicon crystal. In this manner both normal and shear stresses
can be generated (see Figure 3.4);

o The stress in the transistors is uniquely determined by the bending. This is
the result of the cantilever being a determinate structure [6]. In addition,
it is possible because the clamp is at some distance from the transistors.
This means that stresses from the clamp itself are negligible by Saint-
Venant’s principle [6];
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Figure 3.4: Variation of the stress orientation by cutting the beam from a crystal
under different angles with respect to the crystal axes. Above: Situations before
stressing. The long sides of the beam are either cut along the shortest vector
between two atoms, or under an oblique angle. Below: Situation with uniaxial
stress along the beam. The stress changes the interatomic distances (normal
stress), but can also distort the angles (shear stress).

e The stress is high where the deflection is small. This means that the
stressed transistors can be connected electrically with bonding wires, which
only support small deflections.

The bending configuration has the disadvantage that it can only generate stresses
in the plane of the beam. Another disadvantage of bending is that high, com-
pressive stresses are impossible. The reason is that bending simultanuously
generates compressive and tensile stresses of the same magnitude. This limits
the magnitude because tensile stress in silicon lead much faster to fracture than
compressive stress.

The stress in a thin cantilever beam is principally caused by the bending
moment M resulting from a deflection 6, with a force P at the tip. It is directed
along the length of the beam. As sketched in the cross section of Figure 3.5,
it is highest at the surface, zero inside, and opposite of sign at the opposite
surface. It is zero at the tip, but increases linearly along the beam and reaches
a maximum at the clamp. This can be expressed in the equation [6]:

_3Ew(l-x)
2B

in which X is the stress magnitude at the upper surface of the beam at a distance
x from the clamp, E is Young’s modulus along the stress direction, w the beam
thickness, and [ the length. E is a function of the compliance cocfficients Sz,
and the direction vector of the beam with respect to the crystal axes ¢;; see
Appendix A. This can be written as the tensor sum:

X 5o (3.12)

1
o 9 areqQSijkl (3.13)
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Figure 3.5: Distribution of stress X (y) through a cross section of the cantilever
beam for an infenitesimal beam segment between x and = + Ax. The stress is
generated by the bending moment M.

The above beam equation is inaccurate in two respects. Firstly, it is the
linear approach of a more general expression which cannot be written in a closed
form. It can be quite accurate, however, if the deflection is small with respect
to the length. In the experiments described here the deflection/length ratio did
not exceed 7%, resulting in an error of less than 1% [6]. Secondly, the equation
neglects shear stresses. In the present case, however, this modifies the results
with less than 0.1% because the beams are long [6, 7].

3.1.3 Electrical characterization

The electrical measurements should determine the stress-induced variations in
the current-voltage characteristics of the devices. These characteristics should
be measured in forward bias, which, in the case of bipolar transistors, covers a
current domain of many decades. They should also be measured in DC condi-
tions. For transistors the main characteristic is determined by the saturation
current Is. This parameter should therefore be extracted from the measure-
ments with sufficient accuracy. Other parameters are less important and include
the DC current gain 3 and the Early voltage V4. They should be considered,
but only qualitatively. For resistors, the main characteristic is, of course, the
resistance.

Bipolar transistors

The transistors were characterised according to the following strategy. First,
it was determined where the exponential model of the collector current I, as a
function of the base-emitter voltage Vj. was the most valid. Then V;,. was fixed
and I. was measured as a function of stress.

For this purpose the transistors were connected to source-measurement units
(SMUs) according to the scheme of Figure 3.6. The V. was swept between 0.3
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Figure 3.6: Electrical connections to measure the bipolar transistor T, under a
stress X. The transistor T,. serves as a reference. The voltages of the base and
the collector are set, while the currents are measured by the source-measurement
units (SMUs). The voltage of the substrates is set with a separate voltage source
which is not shown.

to 0.8 V to measure I, and the base current I, from the lowest possible value
up to the high-injection region. This was repeated for different collector-emitter
voltages V. and also for different stress magnitudes X.

The advantage of biasing through Vj, is that both V;,. and V,. can be varied
with the SMUs, and that both I, and I, can be measured. This would be
complicated if the transistors are biased through I, because the SMUs have
always one terminal connected to ground internally. Biasing through V4. has
the disadvantage that it is relatively inaccurate. Any error in Vj, is amplified
forty times when it reaches I.. This error, however, can be neglected for a
number of reasons. Firstly, it does not influence the stress sensitivity, which is
independent of I. over many decades. Secondly, it is partially suppressed by
making differential measurements. Thirdly, it results in an offset which is smaller
than the stress-induced changes, and which can be removed mathematically.
Finally, its noise and drift components appear to be small compared to the
measurement resolution.

The differential measurement of Figure 3.6 does not only reduce noise, but
is also very effective in suppressing the effects of thermal drift. During the
measurements the temperature of the transistor changes by variations in the
room temperature and self-heating. Even if those changes are a fraction of a
degree they influence the collector current by the same amount as the mechan-
ical stress [8, 9]. This can be compensated by simultaneous measurements on
an unstressed reference transistor which is thermally coupled to the stressed
transistor. Differences between the transistors result in an offset, but this can
be filtered out mathematically.

The capacitors in Figure 3.6 serve to avoid oscillations caused by parasitic
impedances in the connecting wires. In addition, they suppress noise injected
on the high-ohmic collector terminals.
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Figure 3.7: Schematic of the total measurement set-up for characterising tran-
sistors and resistors while bending them.

Resistors

The resistors were characterised by following a similar strategy. First, they were
measured over a range of bias voltages. Then the voltage was kept constant and
the current variations were measured as a function of stress.

These measurements had a much lower sensitivity to voltage and temper-
ature fluctuations than the transistor measurements. Nevertheless, they were
also performed with unstressed reference devices to improve the accuracy.

3.2 Implementation of the measurement set-up

As shown in the previous section, the measurement set-up requires various com-
ponents. It is discussed here how they can be implemented in practice, which
are their limitations, and how they are connected in the total system.

3.2.1 Overview

The total measurement set-up is is schematically drawn in Figure 3.7, and shown
in Figure 3.8. Its core is formed by a device under test (DUT), which is inte-
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Figure 3.8: Total measurement set-up. 1) Block with beams inside, 2) Box
with electrical connections, 3) Stepper motor, 4) Motor driver, 5) SMUs, 6)
Temperature read-out, 7) Voltmeter, 8) Power supply of temperature read-out,
9) Four storage boxes with devices, 10) Optical table for mechanical stability.

grated in a silicon beam. One end of the beam is clamped in a hollow aluminium
block. The other end is deflected by a shaft, which can be retracted by a stepper
motor. The devices are biased and measured electrically by source-measurement
units. The temperature of the block is measured by a platinum Pt-100 resistor.
This resistor is biased and linearised by a read-out circuit, which transfers its
signal to a voltmeter.

All parts of the set-up are controlled by a personal computer through an
TEEE-488 bus. The control software has been written HP-VEE.

As mentioned above, the measurements were differential. This means that
the stressed transistor was characterised in the same time as an unstressed ref-
erence transistor. In this way it was possible to suppress noise and compensate
for thermal drift, while introducing only a minor offset. As a result, it was not
necessary to apply techniques such as synchronous detection. It should be noted
that the reference device is not shown in Figure 3.7.

3.2.2 Devices under test

The silicon devices were designed according to standard layouts. It was some-
times necessary, however, to position them under an oblique angle with respect
to the wafer flat. In addition, they had to be accompanied by special marks to
saw the wafers into beams along other oblique angles.
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Figure 3.9: Schematic cross sections of the characterized transistors. Above:
vertical npn. Below: vertical substrate pnp.

Lay-out of the transistors

The transistors used are both of the npn and the pnp types. They were designed
with the masks available in the DIMES01 process. This is a standard bipolar
process of the Delft University of Technology using 4-inch wafers with a thickness
of 525 pm. (see Reference [10] and Appendix D). The cross sections of the
devices are shown in Figure 3.9. The npn transistor is based on the standard
BW type, which has a base with a width of 0.1 zm and a doping of 3x10'7 cm 3.
The pnp transistor is a new design. It uses the substrate as the collector, the
p+ WP implantation as the emitter and the 3.5 um epitaxial layer as the base.
This results in a base width of 2 pm and a base doping of 6 x 10'% cm™3. In
both transistor types the doping of the base is low enough for assuming that
the material is nondegenerate.

The collector current should be driven through the base in a well-defined di-
rection. This is achieved by making the transistors vertical, and avoiding edge
effects and current spreading as much as possible. The dimensions of the emitter
were therefore chosen large compared to the base width.

The emitter dimensions are restrained, however, by the resistance of the base
layer. This parasitic series resistance causes current crowding: a voltage drop
between the base region at the periphery of the emitter and the regions further
away, right beneath the emitter implantation. As a result, the periphery expe-
riences a higher base-emitter voltage and therefore generates a larger collector
current density. At large base currents the influence of the periphery becomes
dominant and deteriorates the transistor performance.

A compromise was found by choosing emitter strips of 5§ x 100 pm for the
npns and 20 x 100 um for the pnps. In that case the base resistance reduces
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Figure 3.10: Photograph of a vertical npn on an oblique beam. It is connected
with metal lines and bond pads in standard orientations.

the current density with 50% at maximum when the total current reaches the
maximum value allowed in the bond wires (10 mA). The current density in that
case is equal to 500 A cm™2, which is five times below the density where high
injection starts in the standard BW transistor.

The chosen emitter dimensions lead to a ratio between the junction width
and the base width of 50 for the npn transistors, and 10 for the pnps. The
latter ratio is quite low. Unfortunately, the resulting edge effects appear to be
the major source of uncertainty in the extraction of the piezojunction coefficients
from the pnps.

The transistors are assumed to be free of process-induced stress. This stress
certainly occurs on the interface of the oxide and the silicon. It has been shown,
however, that it is much lower in the silicon than in the oxide, and small com-
pared to the stress applied through the bending [7].

Lay-out of the resistors

The resistors were given a standard lay-out, as shown in Figure 3.2. They
were designed as a p-type implantation in the epitaxial layer, which is the same
BW implantation as used for the intrinsic base of the npn transistors. It was
expected, however, that the peak concentration of this implantation would make
the material slightly degenerate near the surface.
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Therefore some pinch resistors were added. They were designed with the
same implantation, but with a shallow n+ emitter layer on top. In this way
only the tail of the p-type implantation is conducting and has the same well-
defined doping level as the base of the npn transistors. It was estimated that the
cross effects between pinching and the piezoresistance are small. These effects
could consist of a stress-induced increase in the deplation layer width, which
would change the cross section of the resistor and influence its resistance.

The resistors were given such dimensions that they could be modelled conve-
nienly. To be sure of the current direction, the resistors were made rectangular,
without curves. They were made long enough to neglect the resistance of the
clubheads and the connections. The length was kept smaller than 100 pm for
reasons of available chip area. The width was maximised within those limits to
improve the matching between the resistors. As a result, the BW resistors were
designed to have a value of 1.6 k2, and the pinch resistors 55 k2.

The resistors were grouped in three-element rosettes, as shown in Figure 3.2.
They were positioned on {100} wafers with the first resistor directed along the
[100] direction (n = 0 rad).

Wiring and bond pads

Although some devices were positioned in nonstandard orientations, this had to
be avoided as much as possible. This was necessary for the pattern generator,
which severely slows down on oblique mask patterns. It was therefore decided
to use standard orientations for metal lines and bond pads. This resulted in
many zig-zag patterns, such as shown in Figure 3.10.

Beam design

The silicon devices had to be part of a cantilever beam, which posed two prob-
lems to the mask design.

Firstly, the beams had to be much longer than the standard reticle of 1x1 cm.
This follows from the requirements in Section 3.1.2 that the deflection should be
small compared to the beam length, but that it should be accurately known at
the same time. The beam length was therefore set at 66.5 mm, with a free end
of 37.5 mm. This end was deflected up to 2.50 mm. The beam width was chosen
between 1.4 mm and 1.5 mm and adjusted to fit a whole number of beams into
one reticle. The thickness was equal to thickness of the wafer: 0.525 mm. The
devices were positioned on the beam at a distance between 4 mm and 6 mm
from the clamp.

It was not possible to design such beams with full-wafer masks. Instead, the
beams were composed by repeating a reticle with the standard size of 1x1 cm.
On this reticle, the boundaries of the beams were indicated with metal markers.
These markers served to align the sawing machine, after which the length, width,
and repeat count of the beams could be programmed. Other’'markers were added
to position the beam with respect to the clamp.
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Figure 3.11: Mask set of the reticle with transistors. The reticle can be sawn
into beams in three ways, indicated by the lines and the numbers. Compare
with Figure 3.1.

Secondly, the beams had to be directed in other orientations than the stan-
dard sawing lanes. These directions were shown already in Figure 3.1. It was
impossible, however, to rotate the masks with respect to the wafer flat. As a
solution, the mask set was made suitable for three different beamn orientations.
In this way all wafers could be processed in the same way, whereas the saw-
ing direction could be chosen for each wafer separately. The result is shown in
Figure 3.11.

The orientation of the beams in the crystal is known only within certain
limits, which are determined by the tolerance of the wafers. These should be
specified by the supplier. For the case of {100} and {111} wafers they are
prescribed by the SEMI M1 standard. This standard allows for a misorientation
of £1°. This is far too small to be a significant source of error in the present
measurements.

Processing

The transistors and resistors were fabricated in the DIMESO1 process, which
is a standard bipolar process of the Delft University of Technology [10]. The
fabrication was slightly complicated because {110} and {111} wafers were used
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in combination with standard {100} wafers.

In the first place this led to different oxidation rates and therefore to mod-
ified oxide thicknesses. As a result, the alignment marks were invisible to the
wafer stepper and had to be refabricated. In addition, the oxide after the an-
neal/oxidation step was too thick and had to be etched back by 30%.

In the second place the different wafer orientations led to variations in the
thickness of the epitaxial layer. This was corrected by adjusting the deposition
time.

Finally, the nonstandard orientations led to sheet resistances which were
slightly out of the specifications. The sheet resistance of some pinch resistors,
for instance was 40% too low. Probably, this was caused by the dependence of
the diffusion speed on the crystal orientation.

All wafers, nevertheless, yielded a large number of working devices. These
included test transistors with gains between 57 and 92 for the npn transistors,
and gains between 63 and 103 for the pnp transistors. The base doping of the
npn devices was determined by C-V measurements. It yielded concentrations
of (3+1) x 10'7 cm™3 and a quite flat doping profile compared to the general
transistor profile depicted in Figure D.3. It also yielded base widths between
85 and 130 nm. The base doping of the npn transistors was calculated from
the epilayer sheet resistance and thickness and yielded a concentration of 6 x
10'® cm—3.

3.2.3 Beam carrier

The silicon beams had to be placed on a carrier in which they can be clamped
mechanically and connected electrically. In addition, they had to be protected
from accidental touching. These requirements led to the beam carrier design
shown in Figure 3.12 and 3.13.

Clamping

The beams were clamped between a stack of epoxy-resin plates reinforced with
glass fibre, the same material as used for printed-circuit boards. The beams
were aligned in long slots that were milled to a depth of 0.50 mm. This is
slightly below the wafer thickness. As a result, the beams slightly emerge from
the surface of the plate and can be clamped more strongly by external pressure
on the stack.

The stack was glued together and screwed to an aluminium protection cap.
This cap covers the fragile area where the beams are wire bonded. In addition,
it protects the beam ends when they are posed on a table by its two protuding
fingers.

On the free tip of the beams a small PVC cylinder was placed of 3.0 mm in
diameter. This cylinder fits into the notch within the retractable shaft used to
deflect the beam, as shown in Figure 3.7. It allows the tip to be deflected while
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Figure 3.12: Assembled beam carriers with and without black aluminium pro-
tection cap. The beams with the cylinder on the tip are bent whereas the others
serve as a reference.

its vertical distance to the shaft remains constant. It may move freely, however,
in the horizontal direction.

For an optimum accuracy the thickness of the beams was determined by
measuring spare beams of cach wafer with a micrometre screw. The resulting
values have an error interval of about § pm, which does not lead to a dominant
error in the measurement results. In addition, the free length of cach beam was
controlled by aligning the marks on the beam with the edge of the epoxy plates.
If this is done under a microscope, it is possible to obtain an error of less than
0.1 mm on a total length of 37.50 mm.

Although the above method of clamping worked, a number of problems re-
mained. The most important was that the beams could be fixed in a slightly
tilted position with respect to their longitudinal axis. As a result, the deflection
of the tip also caused torsion. This torsion could be estimated by measuring
the play between the cylinder and the notch. It amounted to up to 21 MPa
for a tilt angle of 1.1° and was thereby a significant source of error. Another
problem was that one epoxy plate is covered with an anti-soldering mask. This
prevents a good adhesion of many types of glue. It was solved by using Loctite
4105. This is a toughened cyanoacrilate-based adhesive which is designed to
bond large components on epoxy printed-circuit boards. It sometimes occured
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Figure 3.13: Exploded view of the beam carrier. The two silicon beams are
clamped in a stack of fiber-reinforced epoxy plates. One of the plates is a
printed-circuit board containing the electrical connections and some electronic
parts. The beams are protected by an aluminium cap with two fingers.
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Figure 3.14: Clamping of a beam and wire-bonding to the PCB. The beam
floats 1 mm above the PCB surface. The latter contains gilded bonding pads
(top, right) and decoupling capacitors (bottom, left).

that some slots were too deep, meaning that the top of the beams were not
supported. This problem revealed itself rapidly through the strange shape of
the measured curves. Finally, the clamping between the epoxy plates could not
be completely rigid because the elastic modulus of this material is about ten
times inferior to that of silicon. However, the influence of this effect could not
be observed when the clamping was prestressed by tightening the screws.

Printed circuit board

The stack clamping the beams also contains a printed-circuit board (PCB) which
connects the devices electrically. For this purpose the board protrudes from the
stack one millimetre below the beams. This protruding end is 1 centimetre long
and contains pads to wire-bond the devices. It is shown if Figure 3.12 and 3.14.
The end also hosts the decoupling capacitors of Figure 3.6. The opposite end
of the PCB contains a DIN 41612 connector with 64 gilded pins.

The PCBs were fabricated by the printed-circuits group of the Delft Uni-
versity of Technology. They consist of a 1.6 mm epoxy core, supporting copper
traces on both sides with a thickness of 18 ym. The traces were gilded on the
place of the wire-bonding to obtain a good adhesion. They were plated with a
lead-tin alloy where components should be soldered. On the remaining places
they were covered with an anti-soldering mask.
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Initially, the PCBs suffered from some problems, which were solved in a
new design. The most important was that they were too difficult to wire-bond,
which severely decreased the yield. This was partially due to the large number
of the bonding pads, 88. It was also caused by the small width of the pads of
0.2 mm, with a spacing of another 0.2 mm. As a result, the loose ends of the
bonding wires easily caused short circuits. The problem was solved by reducing
the number of the pads to 14, and by doubling the dimensions of the pads.

Another problem was oscillation of the transistor circuit due to parasitic
impedances of the connecting wires. For suppressing them a number of measures
was taken on the PCB:

e The width of the copper traces was doubled, and the distance between
them was increased.

o Decoupling capacitors were added on high-impedance points close to the
bonding pads.

e Placeholders were created to add pre-amplifyers and more capacitors.
This, however, appeared to be unnecessary in the end.

Finally, it was a problem that the measurement set-up evolved, whereas
the connections on PCB could hardly be changed. Their flexibility was greatly
enhanced, however, by wiring each bonding pad directly to the DIN connector.
In this way each pad could be addressed separately. Moreover, these wires were
connected to soldering pads to add new links and electronic parts if necessary.

Wire bonding

The silicon devices were connected to the PCB by wire-bonding. This connec-
tion is flexible enough to follow the movements of the beam, whereas it does
not introduce additional stress. The disadvantage of the wire-bonding was its
difficult realisation, which made it the decisive step for the yield.

The first difficulty was that the devices had to be supported during the
bonding. This was required to counterbalance the force of the wedge bonding
machine and to avoid that its ultrasonic vibration led to resonance. The beams
were therefore supported by a specially designed fork, which fills the gap between
the beams and the PCB. Often, however, this was not enough because the width
of the gap was slightly different for each device. This was solved by increasing
the thickness of the fork teeth with pieces of adhesive tape.

The second difficulty were short circuits caused by bonding wires which were
touching the edge of the silicon beam. This resulted from the position of the
silicon with respect to the bonding pads of the package. In a normal package,
the silicon lies below the pads, but in this case it lied 1.5 mm above the pads.
The wires thereby arrived at the silicon surface in an almost horizontal direction
and often touched the edge. Once this was recognised, it could be solved by
inverting the bonding order. This means that now, the wire was firstly attached
to the silicon and then to the PCB. In this way the wire could be curved around
the edge of the silicon, as shown in Figure 3.14.
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Figure 3.15: Schematic view of the bending apparatus.

Figure 3.16: Cross section of the bending apparatus showing the position of the
beam carrier and the automatic microscrew.
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3.2.4 Bending apparatus

The beam carriers were placed in a bending apparatus which was specially de-
signed to deflect the beams in a very controlled manner. This apparatus should
therefore be stiff. In addition, it should protect the devices from temperature
variations, light, and electric and magnetic interference.

For those reasons the apparatus was based on a thick aluminium block with
a cavity inside. Its principle is sketched again in Figure 3.15, whereas its actual
construction is shown in Figure 3.16 and 3.17. The block measures 11x10x9 cm.
Inside its wall the beam carriers are clamped. The tips of the beams are deflected
by a microscrew.

Clamping of the beam carriers

A beam carrier can be mounted in the block by removing the clamp and inserting
the carrier into a special cavity. The shape of the cavity is tapered, which
prevents the beams from breaking by being shifted too far into the block. The
carrier is attached with two M4-screws. It is covered by the clamp, which
is constructed in such way that the force of its M6-screws is transferred to
the clamped ends of the silicon beams. It was verified that this force did not
influence the measurements.

Retractable shaft

The tip of a silicon beam can be deflected by the retractable shaft. This shaft
has a cavity of 3 mm in diameter to grip the small cylinder fixed on the beam
tip (see Figure 3.15 and the previous section). The grip has a play of, typically,
0.11 mm. It was determined for each beam separately by moving the shaft
around the zero-deflection point and measuring the current changes in the silicon
devices. This yields curves with a ’dead move’, such as shown in Figure 3.18.
The move could be determined with an accuracy of 20 pm.

The movement of the shaft is controlled by a microscrew and ranges from
-2.5 mm to +2.5 mm. In a first approach, the screw was a hand-driven Mitutoyo
micrometre with a resolution of 1 yum. Later, it was replaced by an automatic
Melles-Griot Nanomover II (see Figure 3.7). This system contains a microscrew
driven by a stepper motor. It has an accuracy of 1 um and a repeatability of
0.1 gm, which is largely sufficient in view of the other sources of uncertainty.

The retractable shaft had to be connected to the shaft of the micrometre
screw, but was not allowed to rotate with the latter. This was solved by sepa-
rating the shafts with a steel ball. They were pressed against each other by a
spring.

Thermal stability

The transistor measurements had to be performed in an environment with a
high thermal stability. This became clear after some measurements in which
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Figure 3.17: Bending apparatus with several parts opened. 1) Aluminium block,
2) Beam carrier, 3) Clamp, 4) Microscrew, 5) Stepper motor, 6) Box with triaxial
connectors, 7) Lid of the connector box.

the collector currents were as much changed by the ambient temperature as by
the mechanical stress. Such a measurement is shown in Figure 3.19.

For this reason the principle of differential measurement was applied, which
was already discussed in Section 3.1.3. In this way the stress sensitivity can be
separated from the temperature sensitivity. The temperature variations should
nevertheless be slow and remain within certain limits to avoid the effects of cross-
sensitivity. Recent work by Fabiano Fruett has shown that the stress sensitivity
slightly decreases with a temperature increase AT, with a factor exp (vAT)
in the range from -10°C to 110°C [11, 12]. The constant v was found to be
—1.8x 1072 °C~! for the orientation considered. It therefore changes the results
with less than 1% even when the temperature changes 5°C.

The differential measurement requires a tight thermal coupling between the
stressed and the reference devices, whereas the slow temperature variation re-
quires a large heat capacity. These properties were indeed obtained by placing
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Figure 3.18: Measurement of a typical play between the beam tip and the
retractable shaft. The shaft is moved around the zero-bending point of the
beam. At the same time, the changes are measured of the collector current of a
transistor on the beam.

the devices in the cavity of the aluminium block. This block has a large heat
conduction and thereby avoids temperature gradients. It limits heat convection
by protecting the devices from outside air streams. Finally, it emits heat ra-
diation which is isotropic inside the cavity due to the resemblance to a black
body [13]. This black-body action is enhanced by blackening the cavity walls.

The temperature of the block was constantly measured by the Pt-100 plat-
inum resistor inside its wall. This resistor was of a cylindrical, wire-wound type
with a length of 25 mm and corresponds to the DIN43760 norm. It was biased
with 2.1 mA by an RS Platinum resistance instrumentation lineariser, deliver-
ing 1 mV °C~! at its output. This voltage was measured with an HP 34401A
multimeter. The absolute accuracy of these temperature measurements was
estimated at 0.4 °C.

The thermal stability of this set-up was tested in two steps. Firstly, the ab-
solute temperature was monitored as a function of time after switching on all
equipment and the climate control of the room. This created a step response
with a maximum after 2.5 hours, an overshoot of about 0.3 °C, and a thermal
stability within 1.0 °C afterwards.

Secondly, the collector currents of a transistor pair were monitored together
with the Pt-100 resistance during a complete measurement cycle of 90 minutes.
In this period the stepper motor was driven, but without actually stressing the
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Figure 3.19: Change in the collector currents due to ambient temperature vari-
ations in one measurement cycle. Both transistors remain unstressed here while
the microscrew is moving. The drawn line is a prediction based on temperature
measurements by the Pt-100 and the bandgap equation of Ref. [8].

beams. The results are shown in Figure 3.19. It indeed appears that the cur-
rents change with a considerable amount, about 4%, due to a variation of the
ambient temperature of 0.47 °C. The difference between the two currents, how-
ever, remains very constant. Moreover, it appears that the current changes are
closely correlated to the temperature measured by the Pt-100. Those temper-
atures can also be used to predict the current changes theoretically. For this
purpose the following equation can be used [8, 9, 14]:

(3.14)

Al T\" q(Vgo = Voe) T —Tpy
== exp
I Ty kT T

where the subscript ’0’ indicates the situation at the time t = #;, and where
n = 3.72 and Vg = 1.166 V. These predictions even lead to a curve which
follows the measurements closely.

It can therefore be concluded that the temperature variations are slow, and
that the temperature differences are very small between the stressed transistor,
the reference transistor, and the Pt-100.
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Electrical connections and shielding

The electrical connections of the bending apparatus should fulfil at least four
requirements. They should:

e Offer a mechanical attachment to the wires of the source-measurement
units which is robust and reliable;

e Keep the wires to the beam carrier as short as possible to avoid oscillations;
e Enable a flexible addressing of the connector pins of the beam carrier;
e Shield the internal wires from electrical interference.

This was obtained by designing an aluminium connection box, which is
screwed to the bending block. It is shown in Figure 3.8 and 3.17. On the out-
side, it contains triaxial sockets and screwholes to directly attach the quadraxial
wires of the source-measurement units. On the inside, it has a number of short
coaxial wires leading to small crimp terminals with which the pins of the beam
carrier can be addressed.

The electrical shielding and guarding of the SMUs is continued inside the box
as far as possible. The box and the block are grounded through the shielding
of the SMU cables. They are anodised with an isolating layer, but electrically
re-connected to each other by blanking some screw holes. The force and the
sense line of each SMU are kept separated down to the crimp terminals. They
are also guarded down to this point.

Measurements showed that the connections were effective. They did not
reveal any oscillations, in contrast to earlier measurements with longer cables.
In addition, they did not show noise, current leakage or thermal voltage outside
the specifications of the SMUs.

Possible extensions

The construction of the measurement set-up allows a number of extensions. Its
core is mounted on an optical base plate, offering space and screwholes for extra
equipment, as shown in Figure 3.17.

This could include a dynamic excitation of the beam. In combination with
coherent detection this is an efficient way to suppress noise, drift, and offset. The
excitation could be realised, for instance, by forcing the beams into vibration
by a pulsed air stream, a magnetic coil, or the rotation of an asymmetric wheel.

The core of the set-up could also be placed in a climate chamber. In this
way the ambient temperature can be controlled more precisely, or varied over a
wide range to measure its influence on the piezojunction effect. For this reason
the core has been kept rather compact (50x40x16 cm).

3.2.5 Source-measurement units

The source-measurement units (SMUs) in the set-up are made by Hewlett-
Packard and united in the HP 4142B Modular DC Source/Monitor. They were
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used to force a voltage and sense the resulting current. The voltages applied
to the basc-emitter junctions varied between -0.8 and +0.8 V and fell in the
2 V-range of the SMUs. The collector-emitter voltages were varied between
between -0.8 to 4.2 V and used the 20 V range. The resulting currents varied
roughly between 1 pA and 10 mA. They were measured at the mecasurement
ranges between 1 nA and 10 mA, which have a spacing of a decade.

The accuracy of the SMUs depends on the measurement range, but is typ-
ically 0.05%. This is close to the full-scale output resolution of 0.02%, which
determines the quantisation noise. This noise source is the dominant one, es-
pecially if the measurements are averaged. To ensurc the accuracy of the mea-
surements, the SNUs were calibrated shortly before.

3.3 Operation of the measurement set-up

The measurement sct-up was operated in three steps, discussed in this section.
Firstly, the devices were excited and their response recorded. Secondly, the
data from this procedure were processed to calculate intermediate results and
add the error intervals. Thirdly, the data and the errors were used to extract
information: the validity of the device model and its unknown parameters.

3.3.1 Measurement procedure

Before the measurements, the set-up was given time to warm up. It was usually
switched on at the same moment as the climate control of the room. Subse-
quently, the signal of the Pt-100 was monitored until a stable temperature was
reached, after three to four hours (see Section 3.2.4).

After the temperature stabilisation, the Gummel plots of the transistors
were measured to reveal if the set-up was working correctly. This was done by
stepping the base-emitter voltage from 0.3 to 0.8 V and measuring the collector
and base currents. This voltage range was limited on the one side by the leakage
currents, and on the other side by the maximum allowed current in the bonding
wires.

Next, a measurement was performed to determine the ‘dead move’ of the
device under test. A typical result of such a measurement was shown in Fig-
ure 3.18. It was done by stepping the microscrew over a small range in which the
dead zone was expected and by measuring the changes in the device currents.

Finally, the bending measurements were performed. These measurements
consisted of three nested cycles. For a specific bending and collector voltage
the Gummel plots of the transistors were measured. This cycle was performed
for collector voltages between 0.2 and 4.2 V and for different bendings with
deflections of the beam tips between -2.5 and 2.5 mm. For the pnp transistors
a slightly different procedure was followed, because they showed a high leakage
between the collector and the base. Their collector voltage was therefore kept
equal to the base voltage. The entire procedure took about 90 minutes for npn
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transistors, and 20 minutes for the pnps. During this time, 6318 and 2091 data
points were collected, respectively.

3.3.2 Data processing

The data from the measurement set-up had to be processed before their entrance
into the parameter extraction program. For this processing a program was
written in FORTRAN 90. This program performed different operations:

1. It converted the deflections of the beam tips into a mechanical stress with
the aid of Equation 3.12. For this purpose it was supplied with a file
containing information on the specific beam: the dimensions, the dead
move, and the crystal orientation.

2. It selected the measurement points with the same base-emitter voltage
Vie. This was necessary because the parameter extraction program could
handle only a limited amount of points. The absolute value of V4. was
chosen around 0.6 V because at this point it obeyed the best to the ideal
model of the collector current: I, = I's exp (qVhe/kpT).

3. It calculated the ratio I; between the I, of the reference and the stressed
transistors. The ratio was corrected for offset by using the information of
the zero-stress points. It was needed in combination with Equation 3.6 to
calculate the piezojunction coefficients.

4. Tt calculated the influence of the geometrical effect on the current changes.

5. It added to each measurement point i the factors A; and Bj;. These
factors also appear in Equation 3.6 and contain the information about the
orientation of the stress and the current in the transistor considered.

6. It added an error interval to each value in a measurement point. This
interval was based on the a priori knowledge about the accuracy of the
measurement set-up. The accuracy depends on many different factors,
discussed in the preceding sections.

3.3.3 Model identification

After the processing, the data points were used to identify the model developed
in Section 3.1.1. This was done with the use of the program ParX, developed
by M. G. Middelhoek [15]. It relies on the following principles.

Relation between the measurements and the device models

Measurements can only give a limited view of the entire behaviour of a device.
This behaviour is observed by measuring data points, which by nature cover
only a finite number of situations. In addition, the observations are limited to
the interface of the device, which means that the internal physical processes
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remain hidden. It is possible, for example, to measure the collector current of a
transistor, but not to observe the distribution of electrons in the base.

The internal mechanisms in a device can be described, however, by using a
model. Such a model consists of a set of equations and a collection of parameters.
The equations are often based on a priori knowledge about the device, which
makes the model analytical in the sense of Section 1.6. The equations of the
piezojunction effect, for instance, are based on the symmetry of silicon crystal
and the construction of the transistor. In fact, the equations form a hypothesis
about the device behaviour.

The parameters of the model may be known a priori. However, they may
also be cxtracted from the observations if the model equations arc sufficiently
accurate. This parameter extraction is referred to as the identification of the
model, and if it succeeds, it confirms the model hypothesis.

Method of the identification

Models are generally identified by using the least-squares method {1, 15, 16, 17].
This method chooses a parameter set which minimizes the distances between the
measured points and the modelling curve. The remaining distance is a measure
of the success of the identification.

This distance will never be zero, however, because of the errors. On the one
hand, these errors are caused by imperfections in the measurements. On the
other hand, they arise from the limitations of the model, which is necessarily a
simplification of the reality. All errors result in an uncertainty of the extracted
parameters.

For the calculation of the uncertainty it is necessary to specify the errors of all
variables in the model equations. Ideally, an error is spccified by its probability
density function, or at least by its mean value and standard deviation. In
practice, however, this information is rarely available. The program ParX avoids
this problem by only requiring an error interval. This interval is a closed domain,
centred at the observation, in which the true value is expected to lie.

Definition of the accuracy

Although ParX is based on the least-squares method, it differs from conventional
programs in the way it obtains the required accuracy. It uses the fact that
analytical models have a limited domain of validity. The piezojunction model,
for instance, is only valid when the transistor is biased in forward. It also uses
the fact that, in general, the domain of validity is not sharply limited. The
forward-bias region, for instance, changes only gradually into the high-injection
region if the collector current is increased. Analytical models therefore fit the
measurements better if the domain is restricted.

As a result, ParX can improve the accuracy of the identification by discard-
ing measurements at the boundaries of the validity domain. The number of
discarded measurements can be chosen by the user in the form of an overall
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accuracy limit. The program then yields the best parameter set, the error inter-
vals of the parameters, and the domain in which these numbers are valid. This
combination is quite valuable and unique.

ParX may abort the identification if too many measurements are discarded,
or if the error intervals become too large. The abortion indicates that either the
model equations or the measurements are too inaccurate.

3.4 Measurement results

The measurements have led to three important types of results. Firstly, they
yielded the DC parameters at zero stress, which are an indication of the correct
operation of the devices. Secondly, they provided the stress-induced changes in
the saturation current and the resistance for different current and stress orien-
tations. Finally, they yielded the piezojunction and piezoresistive coeflicients
employed in the model of Section 3.1.1.

3.4.1 Zero-stress operation

The transistors in forward bias showed the DC behaviour which was expected
from the analysis in Section 3.2.2. This can be concluded from the Gummel plots
and the current gain shown in Figure 3.20 and 3.21, which were measured at zero
stress. The plots are quite similar for wafers of different orientation, and very
similar for transistors on adjacent beams. It should be noted that the pair of npn
transistors match so closely that the data points of the separate transistors can
hardly be distinguished. It should also be noted that the deviating points at the
right of those plots are artefacts of the current limitation in the measurement
set-up.

The plots could be identified using ParX and a simple transistor model [15,
18]. The parameters of this model are the saturation current /g, the transistor
temperature 73, the maximum current gain (y, the forward Early voltage Var,
and the reverse Early voltage V4g. Their values are given in Table 3.1.

The values in this table are close to the standard values of the DIMESO1
process [10]. The transistor temperatures T}, however, are a few degrees higher
than the T, measured by the Pt-100. They also show more spread. This is
probably due to the approximative nature of the model.

npn transistors

The plots are especially successful for the npn transistors. Their collector cur-
rent I, varies exponentially with the base-emitter voltage Vj. over almost eight
decades of current. This range is limited on the lower side by leakage currents
due to the finite insulating resistance of the set-up (around 100 G§2). On the up-
per side it is limited by the maximum current allowed in the bonding wires. Just
before the maximum current is reached, the effect of current crowding becomes
visible.
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Figure 3.20: Gummel plots (left) and DC current gain as a function of the
collector current (right) of a pair of npn transistors.
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Figure 3.21: Gummel plots (left) and DC current gain as a function of the
collector current (right) of a pair of pnp transistors.
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Table 3.1: Extracted transistor parameters. The transistors were different
between the boundaries indicated. The parameters of each transistor sepa-
rately could be extracted with the typical accuracy in the fourth and seventh
column. This is valid for the domain 0.54 < V,. < 0.66 V for npns and
—0.65 < Vi < —0.57 V for pnps. T; is the extracted transistor temperature,

and 75 is the temperature measured by the Pt-100.

Parameter npn pnp

(unit) min. max. typ. ace. | min. max. typ. acc.
Is (fA) 1 3 0.2% 2 6 0.4%
T: (K) 295.7 303.5 0.1% 300.7 308.2 0.1%
Tz (K) 294.5 297.6 0.2% 294.4 296.8 0.2%
Bo 80 117 1% 63 148 0.5%
Var (V) 44 66 10% 200 - -
Var (V) 3.1 5.7 20% 10 - -

pnp transistors

The plots for the vertical pnp transistors are somewhat less successful, but are
still exponential over five decades of current. Their Igand By have the values
expected. The current range is limited on the lower side by a parasitic shunt
resistance between the base and the emitter of about 100 k2. This resistance
was caused by a mistake in the mask design, by which the separation diffusion
between the base and the surrounding epitaxial layer was left out. As a result,
the voltage between the collector and the base had to be kept as small as possible.
In addition, the Early voltage could not be determined. On the upper side of the
range, I, is limited by the base resistance, which happens close to the current
predicted.

p-type resistors

The resistors also showed the zero-stress behaviour expected. The BW resistors
measured 1.4 kQ and the pinch resistors 47 k2. The matching between the
resistors was within 2%. The resistance of the BW resistors does not show
a dependence on the bias voltage, in contrast to the resistance of the pinch
resistors. This pinching is relatively small (5% V~!) at the bias voltage of
05V.

3.4.2 Stress-induced transistor changes

When mechanical stress was applied to the transistors, their saturation current
changed with a non-negligible amount. This piezojunction effect, however, was
invisible on the scale of the zero-stress Gummel plots. It is therefore plotted
differently in Figure 3.22 to 3.27. The plots show data of one base-emitter
voltage of 0.6 V, and eigth different collector-emitter voltages between 0.2 and
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4.2 V in the case of the npns. These data are compared with the model curves
discussed in the following section. The plots have some remarkable features:

1. The points in these plots can be fit very well by parabolic curves.

2. The curves are asymmetric around the origin, and sometimes have a min-
imum away from this point.

3. The changes are very dependent on the orientation of both the current
and the stress.

4. The changes depend on the transistor type: npn or pnp.
5. The changes are independent of the collector-emitter voltage V...

6. The changes are quite repeatable between different samples.

In addition, the piezojunction effect shows to be independent from the bias
voltage Vie, as long as this bias is in the forward, low-injection region. This
point is illustrated by Figure 3.28. The independence from V.. appears from
Figure 3.22 to 3.27, where the points of different V.. cannot be distinguished
from each other.

The base currents show similar changes with stress, as shown in Figure 3.29.
The changes are less pronounced, however, and show a slight decrease with
decreasing bias currents.

3.4.3 Piezojunction coefficients

The identification of the model was quite successful. ParX could match Equa-
tion 3.4 to the measured data points in Figure 3.22 to 3.27 in an iterative
process. The matching process yielded the theoretical curves shown in the same
figures. It also yielded the unknown set of piezojunction coefficients as well as
their accuracy, as shown in Table 3.2.

In some figures the matching curve follow one set of data points rather
than another. This is the result of the data identification method of ParX,
which considers the data of all six figures at once. A particular data set can
therefore deviate from the overall ‘average’ indicated by the curves, and defined
by the data of all transistor orientations and the system of polynomial series of
Equation 3.4. If this deviation is too large, data points of the set are recognised
as wrongly measured or out of the domain of validity of the model. They are
therefore discarded. The percentage of discarded data points can be varied by
the choice of the overall accuracy limit (see Section 3.3.3).

Although most coeflicients are only obtained within a linear combination, it is
possible to split them a little further. For this purpose literature results were
used describing saturation current changes as the result of hydrostatic pressure
(19, 20, 21]. In these references the junction voltage was measured as a function
of the pressure, for constant current and temperature. This function was found
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Figure 3.22: Saturation current changes as a function of uniaxial stress, for
different npn and pnp transistors and for the orientations indicated. The plot
shows both the measured values and the model curves corresponding to the
extracted piezojunction coefficients.
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Figure 3.23: As Figure 3.22, but for another stress orientation.
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Figure 3.24: Saturation current changes as a function of uniaxial stress, for
different npn and pnp transistors and for the orientations indicated. The plot
shows both the measured values and the model curves corresponding to the
extracted piezojunction coefficients.
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Figure 3.25: As Figure 3.24, but for another stress orientation.
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Figure 3.26: Saturation current changes as a function of uniaxial stress, for
different npn and pnp transistors and for the orientations indicated. The plot
shows both the measured values and the model curves corresponding to the
extracted piezojunction coefficients.
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Figure 3.27: As Figure 3.26, but for stress along the vector b (see Figure 3.1).
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Figure 3.28: Relative changes in the collector current of an npn transistor as a
function of the deflection of the beam end. The changes have been plotted for
different Vj.. The zero-stress currents are noted in the legend.
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Figure 3.29: Relative changes in the base current of an npn transistor as a
function of the deflection of the beam end. The changes have been plotted for
different V.. The zero-stress currents are noted in the legend.
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Table 3.2: First- and second-order piezojunction coefficients as extracted from
the measurements. R.c. stands for 'Reduced coefficients’.

R.c. Linear combination Electrons Holes
First order (x10711 Pa™')

Y G =G —4154+31 —89.0+3.3
Y G 434415 138+ 1.3
Second order (x10~18 Pa=?)
¢V G — 4Cere + 2Ca1a +2Gse —1.5+1.0 —1.7+1.3
GV Gire + 3o — Cara — Case 0.30+043  0.99+0.53
ar G 1294021 —1.21+0.23
GV Gzt 3Cias 0.54+0.30 —0.11+0.29

to be linear up to 3.7 GPa (!) pressure. It means that the saturation current of
the devices increases exponentially with this type of stress:

Is (X) _ qanX
s exp (— *pT ) (3.15)

where X is the stress magnitude of the hydrostatic pressure and a; the hydro-
static sensitivity. This sensitivity ap is (1.500 £ 0.005) x 10~!! VPa~! according
to Jayaraman e.a. [19], 1.50 x 107! VPa~! according to Loatc e.a. [20], and
1.44 to 1.65 x 107! VPa~! according to Wlodarski and Moeschke [21]. The
latter two values were obtained at pressure ranges of 60 and 100 MPa, respec-
tively.

The above equation can be compared to the power expansion of Section 3.1.1
for the case of hydrostatic pressure. This yields an extra equation to the system
of six in Equation 3.4:

Ir =14 (Ci1 +2Ci2) X + (Ciun + 412 + 2122 + 2Ci23) X2 (3.16)

As a result, ¢V and ¢}V in Table 3.2 can be split up in the quantities of Table 3.3.
The literature on hydrostatic pressure seems to be quite reliable for holes, but
far less reliable for electrons. This point will be discussed further in Section 4.3.

3.4.4 Stress-induced resistor changes

The application of stress to the p-type resistors resulted in resistance changes
which were more or less expected from literature. Some of them are shown in
Figure 3.30 and 3.31. They have the following characteristics:

1. The resistance changes in the considered stress range are quite linear.
2. The changes are very dependent on the current orientation.

3. The changes are repeatable between different samples.
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Table 3.3: First- and second-order piczojunction coefficients as extracted from
both measurements and literature. R.c. stands for 'Reduced coefficients’.

R.c. Linear combination Electrons Holes
First order (x10~11 Pa~T)
7 (o —28.44+3.0 30.8 + 2.6
Y (e 434+15 138413
¢ Ca 131+43 1198442
Second order (x107T8 Pa~?)
A" G — 416 + 2014 + 2Case ~15+1.0  —-17+13
A G + $Cies — Cara — Case 0.30+0.43  0.99+0.53
Y o ~1.294021 —1.21+0.23
Y Crag — Cres + 2¢s16 + Cara + Case 1.6+1.0 03+1.3
G Craa + 2Cie6 — 4Co16 — 2Ca14 — 2Cas6 —21421 —0.7+26

4. The resistance changes of the BW resistors are somewhat lower than those
of the pinch resistors in the same orientation.

3.4.5 Piezoresistive coefficients

The first-order stress-sensitivity of the resistors was used to calculate the piezore-
sistive coefficients in the way described in Section 3.1.1. The results are shown
in Table 3.4. They are close to the coefficients found by other authors. The
largest coefficient is 744 and is higher for the pinch resistors than for the BW-
resistors. This can be explained by the higher doping concentration of the latter
(see Section 3.2.2).

Some remarks can be made about the accuracy of the calculated coefficients.
Firstly, the accuracy cannot be determined in a consistent way because the
coefficients were extracted with the inversion method of Equation 3.10. This
method is simpler than the one employed for the piezojunction coefficients.
Secondly, the coefficient 74} varies slightly between the samples, and between
rosettes of different orientation (at most 7%). It is also quite consistent with
literature values. However, the other coefficients seem to vary wildly. This can
be explained from the difference in magnitude between the coefficients, and the
fact that the coefficients are linearly related to the measurements and each other
and the measurements (see Equation 3.10). A small error in a measurement
value will therefore result in errors in 7} and 7} which are approximately
equal in an absolute sense, but very different in a relative sense. A further
theoretical analysis of the propagation of errors is given in Reference [5].

In the following chapter it will be discussed how these cocflicients are related
to the findings on the piezojunction effect.
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Figure 3.30: Relative change in the resistance of three p-type pinch resistors
in the (001)-plane as a result of uniaxial stress along the [130]-direction. The

resistors are oriented as in Figure 3.2, with n = 0.
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Figure 3.31: Relative change in the resistance of three p-type pinch resistors
in the (001)-plane as a result of uniaxial stress along the [130]-direction. The
resistors are oriented as in Figure 3.2, with n = 63°.
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Table 3.4: First-order piezoresistive coeflicients for holes as determined from the
experiments, and compared with some experimental literature values. See also
Table 3.4 for theoretical predictions.

Coefficient Experiments | Literature
(107" Pa~!) | Pinch BW | [23] [24]

0 18 —-11| 66 —6
™, 25 12| —-1.1 1
5, 1184 995 | 1381 112

3.5 Conclusions

Several experiments were set-up to validate the models of the piezojunction ef-
fect developed in Chapter 2. For this purpose the saturation currents of npn and
pnp transistors were determined for different values of uniaxial stress. The tran-
sistors as well as the stress had different orientations. In addition, the resistance
changes of some resistors were determined to benchmark the experiments.

The stress was generated by sawing the wafers with the transistors in long,
thin strips, and bending these as a cantilever. For this purpose a special appa-
ratus was developed. While the strips were being stressed, source-measurement
units measured the Gummel plots of the transistors and the resistances of the
resistors.

The measurements showed saturation currents which varied up to 12% for
the stress range considered. The variations were almost parabolical with the
stress magnitude, and strongly depended on the transistor type and the stress
and current orientation.

All measurement data were succesfully identified with the model equations.
This yielded a set of piezojunction coefficients with acceptable error intervals.
Unfortunately, some coefficients could not be determined because of the limited
set of orientations considered. The resistor measurements yielded more linear
curves and piezoresistive coefficients which correspond well with literature val-
ues.
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Chapter 4

Discussion and Conclusions

In Chapter 2 and 3 the central question of this thesis is discussed: how can
the saturation current of a silicon bipolar transistor be modelled as a function
of mechanical stress if this stress is lower than 200 MPa and may have any
orientation?

The answer is a model which depends on one material parameter in particu-
lar: the conductivity of minority charge carriers in thermodynamic equilibrium.
The stress dependence of this minority conductivity was shown to be the main
factor contributing to the piezojunction effect. It was modelled in three stages:

e By enhancing a microscopic model that calculates the changes in the con-
ductivity from the deformation of the crystal and the variations in the
energy band structure;

e By developing a new, macroscopic model which is based on a polynomial
series and which is restricted by the symmetry properties of silicon. This
model is considerably faster to evaluate than the microscopic model;

e By performing bending experiments on transistors, in which the collec-
tor current is measured as a function of the current direction, the stress
magnitude, the stress orientation, and the base-emitter voltage.

In all stages, the piezojunction effect was found to resemble the piezoresistive
effect. This effect, describing the conductivity of majority charge carriers, has
been described for many years and served as a reference point for the results.

A comparison between the results of the modelling stages shows a good
agreement. Data points from the bending experiments are accurately followed
by curves from the macroscopic model and enable the extraction of the model
parameters. The curves could also be predicted from the microscopic model.
Finally, the parameters of the macroscopic model can analytically be expressed
in terms of the microscopic model.

The following sections discuss the validity of the models and the experimental
observations. They also sketch the new opportunities for the design of circuits
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and sensors in which stress plays a role. Finally, some open questions and idecas
for future research are presented.

4.1 Validity of the microscopic model

The microscopic model relates the piezojunction effect to stress-induced events
at the atomic level. The model predicts conductivity changes which can be
compared with the experimental results. It thereby makes a large number of
assumptions which limit the domain of validity. Compared to previous models,
however, it has a number of advantages.

Structure of the model

The microscopic model is based on the configuration of a single conduction
electron forming a standing wave with the periodicity of the crystal lattice. This
lattice deforms when a mechanical stress is applied. As a result, the periodicity
of the wave function is changed and in general also its symmetry. This modifies
the energy eigenvalues of the electrons, corresponding to the energy bands. In
particular, it changes the levels and curvatures of the band edges around the
forbidden gap. These edges are responsible for the electrical conduction. Any
symmetry changes result in a lifting of the degeneracy of the edges. The lifting
of the degeneracy requires that the classical concept of the bandgap is redefined.
In addition, it requires a modern definition of the band edge diagram used in
the calculation of charge transport.

The changes in the band structure can be translated into changes of the
conductivity and the electron concentration. For this purpose electrons are con-
sidered as semi-classical particles and fields as first-order perturbations. They
can therefore be described by the semiclassical transport model, from which the
drift-diffusion equations are rederived. The resulting conductivity is anisotropic
in the presence of stress and should be written as a tensor. In addition, it
should be formulated separately for each band. The conductivity tensor relates
the current density to the gradient in the quasi Fermi level. Eventually, this
gradient can be split up into different terms, yielding the classical drift-diffusion
equations extended with gradients in the electron affinity, the effective density
of states, and the bandgap.

Limitations of the model

The proposed microscopic model depends on a whole series of simplifications
and assumptions which limit its working range and decrease its accuracy. It is
striking, for example, on how many occasions the electrons are supposed to be
independent:

e In a Schrédinger equation where interaction with othér electrons only oc-
curs through some average field;
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e In Fermi-Dirac statistics, applicable when electrons form a dilute gas;

¢ In Maxwell-Boltzmann statistics, applicable when the electron concentra-
tion is small compared to the concentration of the states and the Pauli
exclusion principle becomes insignificant;

o In the relaxation time approximation, where the scattering of an electron
does not perturb the distribution function.

Inevitably, these assumptions were violated to some degree in the experiments,
where the doping concentration in the base was 3 x 10'" em ™ and the concen-
tration in some resistors was cven higher.

In addition, there are other causes for differences between the model predic-
tions and measured curves:

e The relaxation time approximation, in which the information of an elec-
tron in nonequilibrium is lost by just one collision.

Uncertainties in the literature values for the band parameters and the
deformation potentials, which were often only mecasured at temperatures
of a few Kelvin;

The high sensitivity of the model to variations in the input parameters;

The uncertainties in the measurements themselves.

Predictions of the experimental effects

The microscopic model predicts many aspects of the piezojunction and the
piezoresistive effects. The conductivity shows the same parabolic dependences
on stress as the measurements, which can be seen in Figure 4.1. The curves
are different for tensile stress and for compressive stress and sometimes have a
minimum on the stress range considered. The curves are clearly different for
electrons and holes. In addition, they show a strong anisotropic behaviour be-
cause they vary strongly with the current and stress orientations with respect
to the crystal axes. Finally, they are more linear for majority charge carriers
than for minority charge carriers, which is shown by Figure 4.2.

There arc also some clear differences between the microscopic model and the
measurements. The scale of the predicted curves is 50 to 100% larger, depending
on which set of input parameters is used. In addition, the nonlinearities are
larger than measured. Finally, the predicted piezocoefficients deviate from the
measured cocfficients, although they remain in the same order of magnitude (sce
Table 2.5 and 3.4). A similar phenomenon may be found in the literature on
piezoresistive coeflicients, where many different values occur.
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Figure 4.1: Comparison between predicted and measured saturation current
changes of npn and pnp transistors as a function of a uniaxial sress, for the
current and stress orientations indicated. The figure resumes Figure 2.28 to 2.31,
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Figure 4.2: Comparison between predicted and measured resistance changes as
a function of a uniaxial stress, for three p-type resistors of different orientations.
The figure resumes Figure 2.25 and 3.30.

Comparison with previous models

The microscopic model presented in this thesis is the first to describe the piezo-
junction effect for stress of any orientation, with a compressive or tensile nature,
and with a magnitude below 200 MPa. This is why it differs from the models
of Wortman, Wlodarski, and Kanda [1]-[4].

The model of Wortman, Hauser, and Burger [1] attributes the changes in
the saturation current entirely to the stress-induced shifts of the band edges.
The effective masses and the effective densities of states are supposed to be con-
stant. Therefore, it supposes that only the intrinsic carrier concentration varies
to a certain extent, in contrast to the mobility. As a result, it predicts an equal
piezojunction effect for npn and pnp transistors, and an independence of the cur-
rent direction. Clearly, these predictions are contradicted by the experimental
results of this work. However, they were supported by many experiments during
the 1960’s, cited in Chapter 1. This can be explained by the fact that these
experiments were performed with a pressing stylus, introducing high stresses be-
tween 1 and 10 GPa. In this range the changes in the effective masses saturate
and are also overwhelmed by the effects of the shifting band edges.

The model of Wliodarski and Moeschke [2] also limits itself to band edge
shifts and the resulting changes in the intrinsic concentration. In this model,
however, the stress is assumed to be hydrostatic. This maintains the symme-
try of the semiconductor crystal and therefore hardly influences the effective
masses. However, the hydrostatic assumption limits of course the applicability
of the model. It was experimentally verified by the authors for pressures up to
100 MPa.

The Kanda models [3],[4] are more sophisticated because they include the
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shifts in the band edges as well as the changes in the effective masses. The
mass changes are supposed to modify the effective densities of states and the
mobilities. At low stress values the mobilities are also supposed to vary with
the first-order piezoresistive coefficients, available from experiments. However,
the mass changes of the valence bands could only be calculated in the limiting
case where the bands are completely decoupled and their description is relatively
simple. This means that the validity of the model is restricted to very high stress
levels of more than 1 GPa. The Kanda models were partially validated by a
comparison with curves from the Wortman model and with some experiments
from literature.

The microscopic model presented in this work is valid for stresses with a
magnitude below 200 MPa, with an arbitrary orientation and sign. It describes
the changes in the conductivity as a whole, taking into account the band edge
shifts and the effective mass changes at the same time. Especially for the va-
lence bands this makes a considerable difference. The model can predict the
piezojunction effect numerically because of the analytic equations of the va-
lence bands. These equations were derived after the Kanda models were pub-
lished [5,[6]. The predictions have also become feasible because of the dramatic
increase in computing power. However, the numerical effort needed for the
microscopic model may still be a drawback in electronic design, where a truly
analytical model is needed (see Section 1.6). It is therefore useful that the model
can be abstracted to the macroscopic model.

4.2 Validity of the macroscopic model

The macroscopic model relates the piezojunction effect to equations suggested
by measurements. Its analytic structure allows very rapid calculations but intro-
duces some limitations to the domain of validity. The model can be connected
to the microscopic model because its quantities have a physical significance. It
thereby provides a valuable opportunity to verify the microscopic model against
experimental observations.

Structure and limitations of the model

The macroscopic model describes the piezojunction effect through the stress-
induced changes in the observable variables of a transistor: the collector current
and the base-cmitter voltage. These changes are small and are described with
a quadratic tensor series. This allows a very rapid calculation but limits the
validity to the observed stress and current range. In addition, it requires a very
large number of polynomial coefficients.

To give the model a practical significance, more a priori knowledge has to
be introduced. For this purpose the collector current was modelled according
to the Gummel approach. Under the assumptions of low-level injection and for-
ward bias, the current is proportional to the saturation current. The saturation
current in turn is proportional to the minority conductivity in thermodynamic
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equilibrium. This conductivity is supposed to be the dominant source of stress-
induced changes. In that case, the changes are independent from the collector
current, which was indeed observed experimentally.

The minority conductivity is a material property, just as the better-known
conductivity of majority charge carriers. According to Neumann’s principle.
the properties of crystalline materials have all the symmetry elements of the
crystal. The same principle applies to the first- and second-order derivatives
of the conductivity at zero stress, which are the coefficients of the polynomial
tensor series.

The symmetry elements of silicon reduce the number of independent coeffi-
cients to three for the first-order tensor, and nine for the second-order tensor.
This gives the series a particularly simple shape. The coeflicients of the major-
ity conductivity arc defined as the well-known piezoresistive coefficients. The
coeflicients of the minority conductivity are for the first time defined in this
thesis and are called the piczojunction coefficients.

Correspondence with the microscopic model and the measurements

The connection of the collector current to the minority conductivity relates the
macroscopic model to the microscopic model. In the microscopic model, the mi-
nority as well as the majority conductivity can be calculated under the assump-
tion of extrinsic material. This also enables the calculation of their derivatives
in stress: the piezojunction and piezoresistive coefficients, respectively.

The minority conductivity depends on both the conduction bands and the
valence bands. It therefore partially depends on the forbidden band gap. In
this respect it differs from the majority conductivity, which only depends on
the bands of the majority charge carriers.

There are good reasons to believe that the link with the microscopic model
is correct. The previous section already showed that the calculated first-order
coefficients approach the measured coefficients. They are not very precise, but
this can be attributed to the assumptions of the model and the uncertainties in
the input variables. In addition, the model predicts that the first-order shear
coefficients of the piezojunction effect are equal to those of the piezoresistive
effect. The measured values are very close to this prediction.

There is another good reason to believe that the macroscopic model describes
the measurements quite accurately. The model equation is given a very spe-
cific shape by the symmetry requirements. Nevertheless, the equation matches
the curves of six differently oriented transistors with onc and the same set of
coefficients and with a reasonable accuracy, as shown by Figure 4.1, and by
Figure 3.22 to 3.27. This is true for both the npn and the pnp transistors.

Predictions of the device characteristics

The polynomial of the macroscopic model can be rapidly evaluated once the
piezojunction coefficients are known. This makes it ideal to predict changes
in the device characteristics with various current and stress orientations. For
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the first time, the orientations can be explored systematically, as done in Sec-
tion 2.4.3. The resulting polar plots give a good picture of the orientational
dependence of the effect. They are similar to the plots of the piezoresistive
effect presented by Kanda [11]. Such plots can be used for optimising the ori-
entation of a transistor for a particular task.

Because of its simplicity, the macroscopic model can easily be identified with
the data of new measurements. This yields new values for the piezojunction
coefficients. Generally, the model identification requires intensive calculations,
such as those in the least-squares method. It is therefore an advantage that the
model equations themselves can rapidly be evaluated.

4.3 Validity of the measurements

Compared to the models, the measurements show the piezojunction effect more
directly as it occurs in the applications: sensors and circuits. At the same time
the measurements can validate the predictions of the microscopic model and
provide the piezocoefficients of the macroscopic model. Measurements invariably
have an uncertainty interval. This interval is the result of many causes, of which
the most important ones will be discussed.

Correspondence between the measurements and the device models

The measurements on the transistors yield zero-stress characteristics which can
be explained well with the Gummel approach. The Gummel plots of Figure 3.20
and 3.21 show a normal behaviour over many decades of collector current, al-
though the minimum current of the pnp transistors is somewhat limited by
leakage. The plots were reproducible for different devices of the same run. In
addition, they enable an accurate determination of the main parameters of the
Gummel model: the saturation current and the temperature.

In the experiments under stress, the piezojunction effect is quite close to the
predictions of the macroscopic model:

e Very different curves of transistors of different orientations can be fit with
a single series expansion having a cubic symmetry and a reduced number
of coefficients;

e The coefficients of the series are found with a reasonable accuracy, espe-
cially the first-order coefficients;

e The effect is found to be independent of the bias current and the collector-
emitter voltage in the forward bias range;

o The effect is reproducible for different transistors of the same orientation.

In addition, the measurements correspond to predictions from the micro-
scopic model. The data points follow curves that have the same shape and
anisotropy as the model curves. They are much more parabolic than the curves
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of the piezoresistive effect. Finally, they yield shear piczojunction coefficients
which are close to the shear coefficients of the piezoresistive effect.

Accuracy of the piezocoefficients

The accuracy of the piczojunction coefficients is calculated from the error inter-
vals of the input data and the match with the model equation (See Table 3.2).
However, it can also be estimated from a comparison with information from the
literature.

The piezojunction coeflicients have not only been determined in this thesis,
but also by F. Fruett [7]-[9]. His values are shown in Table 2.5 and are close to
the values of this thesis. Fruett’s values are based on measurements on wafers
produced with the same IC process, but performed with a different measurement
set-up.

The accuracy of the measurements can also be estimated from the measure-
ments of the p-type piezoresistive effect. The latter measurements have yielded
piezoresistive coeflicients which are comparable with the values found in liter-
ature, as can be seen in Table 3.4. The coefficients in the pinch resistors were
found to be larger than those in the BW resistors. This was expected in advance
because of the lower doping concentration under the pinch diffusion. It should
be noted that piezoresistive coefficients in the literature show a large spread.
Partially, this spread is related to the doping level and the temperature [10, 11].
Another part of the spread may be related to the measurement accuracy, which
is rarely discussed in literature.

In Section 3.4.3 the experimental values of the piezojunction coefficients have
been combined with values of hydrostatic pressure found in the literature to
separate the values of {;; and (44. This separation is reliable only to a certain
extent.

On the one hand, the hydrostatic values were obtained with a better accuracy
than the coefficients in this thesis. In addition, they are not perturbed from
possible alignment errors with respect to the crystal axes because the hydrostatic
pressure maintains the isotropy of the crystal.

On the other hand, the values were only obtained for holes, after which
it was assumed that electrons react equally. Only one measurement has been
performed with an npn transistor, and the pressure steps in this measurement
(250 MPa) were as large as the entire stress range in this thesis [12]. In addi-
tion, the values were obtained from p*n diodes, not from pnp transistors. In
fact, transistors and diodes share the same expression for the saturation cur-
rent, except that the base width should be replaced by the diffusion length [13].
Stress-induced base width changes can generally be neglected. Diodes and tran-
sistors therefore have a comparable stress behaviour only if lifetime changes can
also be neglected. It was seen in Section 2.2.4 that this is probable, but not at
all proven.

The validity of the separation can be further estimated by the prediction
of the microscopic model that (44 is equal to m44. A comparison of Table 2.5
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and 3.4 shows an excellent match for holes. The 744 is within the error interval of
(14, and deviates only 1.2% from the largest piezocoefficient. The comparison is
less ideal for electrons, because the (44 deviates as much as 35% from the largest
piezocoefficient. However, it was already argued that the hydrostatic data for
electrons is less reliable. In addition, the n-type piezoresistive coeflicients have
not been measured for this work and were taken from the literature.

Sources of the measurement uncertainty

The experimental determination of the piezojunction effect is quite elaborate
and requires knowledge of many parameters. Each of those parameters in-
troduces some error, uncertainty or deviation from the model, as discussed in
Section 3.2. These uncertainties have been systematically explored, and are
believed to be small compared to the parameters themselves. Nevertheless,
some uncertainties are dominant and limit the performance of the measurement
set-up.

The main causes of uncertainty are related to the orientation of stress and
current. One of those is the parasitic torsion introduced when the beams are
glued on a nonideal surface. This torsion dominates the uncertainty for the
piezojunction coefficients of electrons. Another uncertainty is caused by the
spreading of the current around the edges of the base. This spreading is not
taken into account in the analytical model of the current direction. It probably
dominates the uncertainty of the piezojunction coefficients of holes. Finally,
there is some uncertainty about the orientation of the wafer and the saw lanes
with respect to the crystal axes.

There are more causes of uncertainty, but in Section 3.2 they are estimated
to be small. For instance, there is some uncertainty in the geometry of the
measurement set-up. The dimensions of the beams are not exactly known,
and deflection of the beam tip also has a limited accuracy. In addition, the
clamping is not perfect because the silicon is more rigid than the surrounding
fiber reinforced epoxy.

There is also some uncertainty concerning the electrical measurements. The
source-measurement units are not perfect. The leads to the stress-sensitive
parts have some parasitic resistance. In addition, the leads may pick up electric
and magnetic interference. If these errors have a random, they can rapidly be
recognised as noise and repeatability problems. However, Figure 3.22 to 3.27
show that the random errors are not very large and are probably smaller than
the systematic errors.

Finally, the uncertainty may be increased by unwanted temperature varia-
tions. These variations influence the magnitude of the piezojunction effect, but
could also cause an imbalance between the stressed and the reference transis-
tor. In addition, the variations could create thermoelectric voltages in the leads.
However, their influence was not perceptible in practice.




4.4. OPPORTUNITIES FOR ELECTRONIC DESIGNERS 153

4.4 Opportunities for electronic designers

Much of the work in this thesis has improved the understanding of the piezo-
junction effect, which can be used for the design of sensors and circuits. From a
design point of view, the best applicable result is the macroscopic model. The
possibilities of this model arc discussed in the present section.

General use of the macroscopic model

The macroscopic model of the piezojunction effect is suitable for the most gen-
eral level of design: circuit synthesis. It is based on analytical equations and
has the following features:

o It reproduces the behaviour of the device over the relevant working do-
main;

e It is mathematically simple and is easily invertible;
e It contains unique parameters which are physically interpretable.

In addition, the structure of the model is very similar to that of the well-known
piezoresistive effect.

Since the anisotropy of the piezojunction effect cannot be ignored, sensor and
circuit designers should know the primary cause of the effect: the mechanical
stress in their particular situation. If this information is not available, they
will at least like to know the order of magnitude of the stress and its dominant
orientation.

With this knowledge the magnitude of the piezojunction effect can be in-
fluenced. For this purpose designers have scveral degrees of freedom at their
disposal. These include the position of the transistors on the chip, the choice
for an npn or a pnp transistor, and the choice for a vertical or a lateral transis-
tor. Sometimes they also include the orientation of the transistor in the wafer
plane, and the crystal orientation of the wafer itself.

The piezojunction effect in the most common situations is described in Sec-
tion 2.4.3. The section especially discusses the anisotropy of the first-order
stress sensitivity. This learns that on {100} wafers, vertical npn transistors are
three times more sensitive to in-plane stress than pnp transistors, for any stress
orientation. Lateral pnp transistors, however, are five times more sensitive than
lateral npn transistors under those conditions. The latter sensitivity is very
anisotropic and has a maximum when the current flows in the direction of the
wafer flat and the stress is perpendicular.

The strategy of choosing the optimum configuration for bipolar transistors
is quite similar to the strategy used for resistors and MOS transistors. A main
difference is that bipolar transistors can be vertical with respect to the wafer
plane. In addition, their stress response is less linear. More information is given
by Fruett [9], Belu-Marian [14], and Jaeger [15].
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Circuit design

In circuit design, unwanted stress may be expected from packaging and process-
ing. An idea of this stress is given in Section 1.3, together with some references.
Packaging and processing stress is typically oriented in the plane of the wafer,
and in the order of 100 MPa. Near LOCOS and trench isolations the stress can
be much larger but it usually decays over a few microns. For a specific design it
is useful, of course, to find more detailed information about the packaging and
processing stress.

Once the stress is known, the maximum piezojunction effect can be estimated
with the macroscopic model of this thesis. For 100 MPa stress the effect can
amount to a 6% change in the saturation current, which is equivalent to a change
in the base-emitter voltage of 1.5 mV.

If the maximum piezojunction effect is too large to be acceptable, it can be
minimised with the strategies described before. It can also be compensated,
for example by placing transistors of a differential pair or a current mirror on
positions on the chip with an equal stress. However, the effect should not be
compensated with a method in which the absolute values of the piezojunction
coefficients are required. It was seen already that these values are not precisely
known, and may vary with the IC process. An example of such a less-suited
method is the compensation of an npn transistor with the stress sensitivity of
a pnp.

The stress effects on circuits could be calculated more accurately if the
macroscopic model were integrated in a circuit simulator such as SPICE. The
main problem for such an integration would be that the stress tensor would
need to be known for each transistor and each resistor separately. This would
require a map of the stress distribution on the chip, and the position of each
component. Such a map demands a good mechanical characterisation of the
fabrication process, yielding the stresses in the different layers and around LO-
COS islands and trench isolations. These stresses can e.g. be determined from
the curvature of the wafer, the deformation of micromachined structures, the
change in resistor values, or by finite element calculations [15]-{20].

Sensor design

It has already been stated in the Introduction that the piezojunction-based
sensor is a good candidate that can replace the piezoresistors in pressure sensors,
accelerometers, and other sensors in the mechanical domain. It has a similar
sensitivity and anisotropy, but a much better suited internal resistance. In
addition, a transistor can be smaller than a resistor, in particular its stress-
sensitive region. Only its nonlinearity is larger, and its fabrication requires
more masks.

Just like piezoresistors, transistors are preferably incorporated in a Wheat-
stone bridge [14]. Such a bridge, or half bridge, uses a differential measurement
to compensate for temperature effects, fabrication-related offset, and electrical
interference. It can be biased through either the base-emitter voltage or the
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Figure 4.3: Examples of transistor pairs in half bridge circuits which can be used
as stress sensors. One of the transistors is stressed, whereas the other serves as
a reference. (a) Differential pair, (b) current mirror, (c¢) translinear circuit.

emitter current. In the first case the stress is translated to a collector current
change, and in the second case to a base-emitter voltage change. Some half
bridges with these features are shown in Figure 4.3.

4.5 Possible future work

A well-known feature of research is that it is never finished: one answer generates
many new questions. The research presented here leaves questions which mainly
fall into one of the following categories:

o How can the accuracy of the theory and the measurements be improved?
e What are the remaining values of the coefficients of the new model?

e How will the new model work in practice?

Improvement of the microscopic model

The microscopic model of the piezojunction effect in this thesis is elaborate and
could be improved on several points.

The first point concerns the employed model of electron scattering. This
model is based on the relaxation time approximation (see Appendix C.1) which
almost certainly overestimates the efficiency of a scattering event to restore the
thermodynamic equilibrium [21]. In addition, the model describes various causes
of scattering with a simple power of the energy. However, any improvement of
the model directly increases its complexity and requires much more computing
power. Such improvements have been the subject of some dedicated studies,
aimed at the description of strained-layer transistors [6)-[23]. These transistors
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have become attractive because the minority conductivity in their bases is in-
creased by strain, and therefore the cut-off frequency is increased as well [24].
The employed strain levels, however, are more than ten times higher than those
in this thesis.

The second point of improvement could be found in the use of Fermi-Dirac
statistics instead of Maxwell-Boltzmann statistics. This approach would have
the disadvantage that the Fermi level can no longer be determined analytically.
As a result, the evaluation time of the model would be multiplied with the
number of steps of the newly required iteration.

A third point of improvement concerns the input parameters of the numer-
ical predictions. These band parameters and deformation potentials have been
determined by others and vary from author to author. The predictions in this
thesis were seen to be very sensitive to these variations. Probably, more accurate
parameters will lead to better predictions.

Improvement of the macroscopic model

Especially the improvement of the macroscopic model will require more exper-
imental work. In the first place, measurements should be set up to find the
piezojunction coefficient (;; independently from (44 and (;2. This requires the
application of a stress with a component parallel to the current direction. The
actual bending stress should therefore be replaced by, for instance, hydrostatic
pressure.

In the second place, the piezojunction coefficients should be determined un-
der other circumstances. Such circumstances include different IC processes, but
also variations in doping and temperature. The piezoresistive effect was seen to
be quite sensitive to those variations.

In the third place, models should be made of the influences of stress on sec-
ondary parameters of the transistor, such as the current amplification, the base
resistance, the Early voltage, and the junction capacitances. These influences
are probably not very significant. However, their modelling would allow a clearer
picture of the influence on the primary parameter: the saturation current.

Improvement of the measurement set-up

It would be interesting to see how an improvement of the measurement set-
up would reduce the uncertainty in the piezojunction coefficients. For the npn
transistors this uncertainty is dominated by a parasitic torsion that occurs when
the beam is bent. One can reduce the torsion by aligning the beam better while
it is attached to the clamp. In addition, it can be reduced by replacing the
cylinder on the deflected end by a small sphere.

For the pnp transistors the uncertainty is dominated by the edge effects in
the base, through which the direction of the current is influenced. These can be
reduced by making the area of the base-emitter junction larger with respect to
the base width. As a penalty the exponential behaviour of the collector current
will be limited to lower base-emitter voltages. This need not be a problem
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because the collector currents can be measurcd accurately over a very wide
range.

A higher accuracy could further be obtained by temperature stabilisation,
biasing through the current instead of the voltage, and the use of coherent
detection. The latter principle greatly reduces the influence of noise and drift. It
requires, however, a dynamic deflection of the beam tip and thereby complicates
the measurement set-up. In addition, the stress values could be calibrated by
relating the displacement of the beam tip to the required force.

Finally, the set-up would be greatly improved if the bcam carriers had a
simpler construction. In the version described in Section 3.2.3, the carriers are
difficult to assemble and very vulnerable during wire bonding. The yield of the
assembly step was only 50%. In a new version, the bond pads on the beam
carrier should lie higher than the beams. In addition, the beams should be
directly attached to the printed circuit board to which they are wire bonded.
Finally, they should be supported better during the bonding to avoid vibrations.

Implementation in device simulators

The last few years have seen a large development in the field of device simula-
tors. These simulators predict the behaviour of a transistor or a sensor from
its structure, external sources, and the local laws of the material behaviour.
This behaviour often concerns different physical domains and may include the
electrical conduction, the elasticity, and the thermal conduction. The laws are
described by differential equations, which are gencrally solved by a finite-element
method. This thesis provides equations to finally implement the stress depen-
dence of the minority conductivity in a useful way.

Design of sensors based on the piezojunction effect

It was shown in the preceding section that the work of the piezojunction effect
can be improved on different points. However, before making these improve-
ments it seems advisable to gain more experience with the models. This will
sort out the points of which the improvement which will be the most effective.
More experience with the models could very well be gained in the design pro-
cess of a mechanical sensor. Except for the experience, the sensor could also be
interesting for its competitive properties, especially when it is made with mi-
cromachining techniques. The response of such a sensor can be predicted now,
so it must be a pleasure to design it.

4.6 Conclusions

The piezojunction effect has been modelled in this thesis for moderate stress
levels of any orientation with respect to the silicon crystal. This modelling
starts at the atomic level and ends with the current-voltage characteristics of a
transistor. Compared to previous models, it includes some refinements which
are essential for the stress range considered. In addition, the model has been
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abstracted to a new, macroscopic model. This macroscopic model closely de-
scribes the measurements, performed to characterise the effect experimentally.
The new model is very suitable for the design of sensors and circuits, where
optimum orientations of the current and stress have to be chosen.
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Appendix A

Stress, Strain, and
Elasticity Tensors

The concepts of stress and strain arc at the base of the models of the piezojunc-
tion and piczoresistive effects, and are therefore applied throughout this thesis.
They are widely used in mechanical and civil engineering, but are not neces-
sarily known in electronics. In addition, they require a description in tensors,
especially for crystals, and this is not a very popular topic of mathematics.

This appendix therefore resumes the basic theory on stress, strain, and elas-
ticity in crystals. It also discusses some mathematical properties of their tensor
description.

A.1 Stress definitions

A body in which one part exerts a force on neighbouring parts is said to be in a
state of stress [1]. The force acts on a surface of the body. Stress is defined as the
force per unit area [2]. The surface as well as the force have an orientation that
can be resolved in three independent Cartesian components. This is illustrated
in Figure A.l.a, where an infinitesimal unit cube of the body has been drawn
with all possible forces on the visible surfaces. As a result, the stress can be
represented by nine numbers, united in the stress tensor Xy;. The subscripts k
and ! may take the values 1, 2, or 3, and represent the independent directions
Z1, T2, and z3. In most cases the stress can be represented by only six numbers.
This happens when the acceleration of the body is zero. The surface forces then
balance each other to prevent translation and rotation and keep the body in
statical equilibrium. In that case the stress tensor X}, is symmetrical.

In the description of stress some more definitions are used. If the force on
a surface is normal to the surface, the stress component is said to be normal
This is the case with X171, X992, and X33. If it acts in the plane of the surface it
is called shear stress, which is the case with X5, Xs3, etc. A stress component
is defined as positive if the outer normal of the surface and the associated force
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Figure A.1: (a) Components of mechanical stress X;; acting on a unit cube in
a stressed body; Two-dimensional view of special stress states and their effect
on the shape of the cube: (b) Hydrostatic stress; (¢) Uniaxial stress; (d) Pure

shear stress.

point both in a positive or both in a negative direction. Normal stresses are
therefore positive if they create tension in the body, and negative if they create
compression.

A special state of stress arises if all normal components are equal and neg-
ative, and all shear components are zero. This is called hydrostatic stress, and
is shown in Figure A.1.b. The state in which only one normal component is
present is called uniazial stress, and is shown in Figure A.l1.c. Finally, the state
in which only shear components are present is calles pure shear stress, and is

shown in Figure A.1.d.

A.2 Strain definitions

Stress in a body generally leads to a displacement of a point with respect to its
position in a stress-free situation [3]. If this displacement concerns the entire
body it is called a rigid-body motion. However, if it is different for two points
on the body it must include a deformation, which is called strain.

Strain can be divided, in analogy to stress, into normal and shear compo-
nents. Normal strain is defined as the change in the length of a line segment
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Figure A.2: Strain of a unit square in a body due to the application of stress.
The point P is displaced to P*, but with another amount than Q in its motion

to Q.

divided by its original length, as a result of the displacement. Shear strain is
defined as the angular change between two line segments which were originally
perpendicular.

Normal and shear strain can be specified mathematically with the aid of
Figure A.2. This figure represents a unit square inside a body which is displaced.
The displacement moves point P with a vector u; to the position P’. In addition,
it moves point @ with a vector u; to position Q'. The difference between v/ and
u; is the differential displacement Aw;, consisting of the deformation and some
rigid-body rotation. It is the sum of the deformations Au;; and Au;s of the
perpendicular line segments Ax; and Az,. For a small square, the deformation
may be represented by a first-order Taylor expansion:

Aur = Aus + Augs = 29 Az, + P AL, (A.1)
0 ()’I.‘Q
Ouy duz .
Aug = A’llg] + AU22 = d —Azx xry + O A (AZ)
)

If the deformation is small enough, it can be used to find an expression for the
strain components ¢;;. Starting from its definition, the small deformation of the
sides of a cube, the normal strain e;; can be written as:

Axy — A _Auyy %
Ary, T Az 0n

(A.3)

€1 =
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The shear strain e;», in addition, is the average rotation of the sides of the unit
square:

1
€19 = § (6, + 92)

= l arctan ;Aum—— -+ arctan ——&——
T2 ; Az + Auyy Azy + Augo

~ 1 (3’11.2 + 8‘U1> (A4)

T2\ 81 Oy

This can be repeated for the other orientations, which yields the complete strain
tensor e;;. The deformed sides of a unit cube Az} may therefore be expressed
in terms of the undeformed sides as:

3
Az} = Z (6ij + eij) Az (A.5)
j=1

where §;; is the Kronecker delta.

A.3 Tensor properties

Stress and strain are both described by second-rank tensors. Before describing
the relation between them, it is useful to discuss tensor notation and some of
their mathematical properties.

A.3.1 Einstein summation convention

The notation of tensor equations is simplified by the use of the Finstein sum-
mation convention, also called the dummy subscript notation [1]. If two vectors
p and q are related by a matrix T, the components of p are generally given by
the sums:

3 3 3
= ZTU‘IJ y P2 = ZTZij y, D3 = T35q; (A.6)
j=1 j=1 j=1
This can be written more compactly as:
3
pi=3 Tiyg , i€{1,2,3} (A7)
j=1

It is also possible to leave out the summation sign:

pi =Tiq;, t€{1,2,3} (A.8)

This is an example of the Einstein convention, which can be formulated in
general as follows:
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Figure A.3: Directions of the current density and the clectric field in an
anisotropic material. The current density vector J; can be resolved in a parallel
and a perpendicular component with respect to the field vector Fj.

If o letter subscript occurs twice in the same term, summation with
respect to that subscript is to be automatically understood.

Subscripts of this kind are called dummy subscripts. Subscripts occurring only
once in a term are called free subscripts. The same free subscript should appear
in every term of a tensor equation, and on both sides of the ’= sign. Since they
may take any of the values 1, 2, or 3, they can describe a whole vector. A vector
p is therefore frequently written as p;.

A.3.2 Scalar description in an anisotropic case

It often occurs that a tensor quantity is spoken of as a scalar, although the
material is anisotropic. In stressed silicon, for instance, one sometimes speaks
about 'the’ conductivity ¢ in a particular direction. What is usually meant is
the longitudinal conductivity, which is the ratio of the current component along
the field J,, and the magnitude of the field F'. This is illustrated in Figure A.3.
If the field direction is indicated by the unit vector [;, the field vector is equal
to l;F'. Meanwhile, the current component J,, is given by the inner product of
l; with the current vector J;. The relation between the current and field vectors
is given by the conductivity tensor o;;. This yields:

_-H_/_lzi_lla'”FJ _lZO'LJlJF
“F F  F =~ F

which is a scalar quantity. In the same way it is possible to derive ’the’ Young’s
modulus, discussed in Section A.4.

= l,’le’ij (Ag)

A.3.3 Transformation of axes

Vectors and tensors are specified with respect to particular axes, but sometimes
need to be rewritten with respect to other axes. This requires a orthogonal trans-
formation (1, 4]. The transformation changes the old mutually perpendicular
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Figure A.4: Orthogonal transformation of the axes system z; to the system z;.
The angles of x5 with respect to the z;-axes are indicated.

set of axes z; to a new orthogonal set z; with the same origin; see Figure A.4. It
is represented by the matrix a;;, which consists of the direction cosines between
the axes of the new set z; and those of the old set z;:

T; = ai;T;
=cos (z},z;)z; , i,5€{1,2,3} (A.10)

Geometrically, a;; is the projection of z; on z;. Its rows are the vectors x;
expressed in the old set, x;. Its columns, however, are the vectors x; expressed
in the new axes set z}. As a result, a;; is a unitary matrir, which means that
the transpose of a;; is equal to its inverse:

aji = a;jl (All)

The transformation matrix can be used to write any tensor property with
respect to the new axes. For this purpose the following multiplications are to be
applied to a vector p;, a second-rank tensor T;;, and a fourth-rank tensor Sz

Pi = aijp;
T;; = airajiTi (A.12)

!
ijkl = QimQjnQkollp Snznop

A.3.4 Principal values

The appearance of a tensor depends on the chosen axes. A second-rank tensor
can nevertheless be represented in a unique way by its principal values. These
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principal values are the eigenvalues of the tensor matrix, whereas the accompa-
nying eigenvectors point in directions which are called the principal azes of the
tensor. With respect to the principal axes the tensor is a diagonal matrix with
the eigenvalues on the main diagonal.

The tensor T;;, for example, may have the following shape with respect to
the axes x;:

5
T,;=1| V3
0

V3 0
7 0 (A.13)
0 12

When 7;; is diagonalised, the eigenvalues 4, 8, and 12 are found, as well as the

following normalised eigenvectors 2/ [4]:

V3 R 0

== -1 1], 2h= 3 V3 |, 2y=10 (A.14)
0 0 1

These eigenvectors can be used to construct the transformation matrix a; e
transforming z; to the principal axes of T;;:

—x)— 1 V3 -1 0
az] - _-T‘lz_ - 5 1 \/3 0 (A15)
—ah— o 0 2

The application of a;; to T;; indeed yields a diagonal matrix Tz'J with the eigen-
values on the main diagonal:

T!

4 0 0
ij = aikaleki = 8 (8) 0 (A16)

2

—

A.4 Elasticity

If a body is deformed by mechanical stress and the stress is then removed, it usu-
ally returns to its old shape if the deformation was not too large. This response
is called elastic. It often obeys Hooke’s law, stating that the amount strain is
linearly proportional to the stress magnitude for sufficiently small stresses.

Monocrystalline silicon and germanium are very elastic and obey Hooke’s law
closely up to the fracture stress. However, this elasticity is anisotropic because
of the crystalline material structure [1, 5]. This means that Hooke’s law should
be written in its most general form, by using the fourth-rank elastic compliance
tensor Sk

ei; = Sijat X (A.17)
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Alternatively it can be written inversely, expressing the stress as a function of
strain through a tensor Cjjx;. This tensor is called the elastic stiffness.

The number of terms in the equation is 81, but can fortunately be reduced
by using the symmetries of the stress and the cubic crystal. This is discussed
more in detail in Section 2.3.3. It appears that only three coefficients of S;;x; are
nonzero and independent: Sjy11, S1122, and Si212, defined with respect to the
crystal axes. These coefficients are known from experiments to a good accuracy
[5, 7, 6].

The general law of Hooke can be used to define Young’s modulus of the
material in a specific direction [5]. Young’s modulus F is defined as the uniaxial
stress in a direction divided by the deformation in the same direction. If this
direction is chosen as the z’-axis, E can be written as:

14
p=2u__ 1 (A.18)
€11 St

It should be noted that the compliance coeflicient S7;;; can be related to the
axes of the crystal with the aid of Equation A.12.

A.5 Conclusions

Stress is defined as the force per unit area inside a body. Strain is a measure
of the deformation of the body. Both quantities are represented by second-
order tensors, of which the appearance depends on the set of axes in which
they are defined. If the body is linearly elastic, the relation between stress and
strain is given by the compliance coefficients. In crystalline materials such as
silicon the compliance is anisotropic and needs to be described by a fourth-rank
tensor. The complexity of this tensor can be greatly reduced by using symmetry
considerations.
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Appendix B

Band Structure of Cubic
Semiconductors

The band structure of a solid describes the energy of an electron in the solid
as a function of its wave vector. Together with the Fermi-Dirac statistics it
determines the entire electron behaviour [1]. It replaces the description of the
electron as a quantummechanical wave by that of a (semi)classical particle. As
a result, the wave vector k can be considered as the electron momentum and
the band structure F, (k) as its equations of motion. These equations are also
known as ‘energy bands’, ‘dispersion relations’, or ‘band equations’.

The band structure determines many properties of the solid, and in particu-
lar the electrical conductivity. The conductivity is to be mathematically derived
in Appendix C. The band structure therefore needs to be known as a set of an-
alytic equations. These equations are found here for the cubic semiconductors
silicon and germanium.

The band theory starts from the assumption that a solid is a large single molecule
in which the electrons are not bound to individual atoms but can move freely.
Moreover, it is assumed that:

e The solid is a perfectly periodic crystal lattice;
e The sites of the crystal have fixed equilibrium positions;

e The influence of all electrons on a single electron is described through
some average periodic field.

On the basis of these assumptions various methods have been developed for
actually calculating band structures [1, 2]. These have resulted in quite reliable
pictures of the bands of many materials. Those of silicon and germanium are
shown in Figure B.1.

Most methods for calculating bands are not very practical to determine the
conductivity of semiconductors. They are very complex but yield on the other
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Figure B.1: Band structure of silicon and germanium. Energy E vs. wave
number & in different directions of the first Brillouin zone. F¢ is the bandgap.
For silicon the spin-orbit splitting is imperceptible on this scale. After Madelung
[13].

hand more information than necessary. Actually, the conductivity is determined
by the few energy bands which are partially filled: the valence and the conduc-
tion bands. More specificly, it is determined by the extremal points of those
bands, where some electrons are missing from a full band or just populate a
band which is further empty. It is therefore sufficient to only describe the band
structure around these extrema. A useful description of the band extrema is
given by the kp method. It will be discussed here, on the base of the information
found in Reference (1, 3, 4, 5, 6], and [7].

B.1 Overview of the kp-method

The kp-method yields analytical equations of the semiconductor band extrema.
For the conduction band they describe the well-known ellipsoids, whereas for the
valence band they describe more complicated warped spheres. The equations
rely on experimental knowledge of the material: the band gaps, the effective
masses at the extrema, and the symmetry of the semiconductor crystal. They
can be easily adapted to include the effects of strain, as shown in Section 2.1.
The main idea of the kp-method is to consider electrons in the band ex-
trema as eigenstates of the Hamiltonian operator. However, electrons with a
wavevector k slightly off the extrema are seen as perturbed states. These states
are inserted into the Schrodinger equation, after which the eigenvalues can be
found by perturbation theory. This yields a characteristic equation with many
unknown matrix elements. The number of those elements is strongly reduced,
however, by using the symmetry properties of the crystal. The remaining matrix
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elements can be determined from experiments. They enter into the character-
istic determinant, of which the evaluation yields the explicit equations of the
energy bands.

B.2 The kp Hamiltonian

As a first step in the kp method, the Hamiltonian is determined for electrons
with wavevectors slightly off the extremal energies.

The state of an clectron in band n of a crystal can in general be written as a
Bloch function, cousisting of a plane wave and a periodic modulating function
Unpk:

Ynk (X) = eikxuuk (X) (Bl)

where x is the position vector and k the wave vector. This can be inserted into
the stationary one-clectron Schrédinger equation:

a2

Hpi (x) = (21:770 +U (X)) Unk (X) = Ey, (k) Yk (X) (B.2)
in which H is the Hamiltonian, p is the momentum operator —ihV, mq the free
electron mass, U (x) the potential of the periodic crystal, and E,, (k) the total
energy.

Equation B.2 can also be written in terms of the modulating function only.
The momentum operator is therefore applied to the Bloch function. In general,
a product of functions f and g is differentiated as V?(fg) = gV2f +2Vf-Vg+
fV2g. Applied to this case, it yields:

( f)2 h h2 ],\.2

P A PR
2myg +U)+ my p+ 2my

) Unk (X) = B, (k) upk (%) (B.3)

If there is information about the band extremum at k = kg, it is useful to
expand k into k + ko — kg. This yields:

Hottne (%) = (ffo n ka,) Unkq (%) = E, (k) iy (X) (B.4)

where H « i the Hamiltonian on the basis of the modulating functions, Hy the
Hamiltonian at ko, Hyp is defined as the kp Hamiltonian, and E! is a reduced
energy. They are given by:

) 2.2

2 P h . h°kG
Hy = — T —kq- B.5
0 2mg +U () + mo opt 2my (B.5)

N h R
Hip = —(k—ko) D (B.6)
mo
nd h? 2 2 g

bn (k) = Eﬂ (k) - (k - ]\0) (B7)

2my

If k is relatively close to ky, ﬁk;—, is small and can be mathematically considered

as a perturbation on Ho. This allows us to use perturbation theory and find the
energy eigenvalues as a function of k.




174 APPENDIX B. BAND STRUCTURE OF CUBIC SEMICONDUCTORS

B.3 Loéwdin perturbation theory

The perturbation theory for bands around an extremum needs to be of second-
order and time-independent. In addition, it must include degenerate cases be-
cause the valence bands of silicon are degenerate in their maximum. There is
a variant of this theory which is especially transparent for this situation and
which has been formulated by Lowdin [8].

Applied to the kp method, it starts by expanding the modulating function
u;k (x) of a Bloch state j at k into a linear combination of N orthonormal
functions unk, at ko:

U,Jk Z CnUnkg (B.S)

The coefficients ¢, are the Fourier coefficients of the expansion. The functions
Unk, are exact or approximate eigenstates of the Hamiltonian I:Io and are sup-
posed to be known.

The linear combination u;i is inserted into the Schrodinger equation for
modulating functions, Equation B.4, multiplied by the complex conjugate u;,,
and integrated over x. This yields the system of linear equations:

N
> (Hmn — Ejbmn) ca =0 (B.9)

n=1

where n ranges over all N states. The H,,,, are matrix elements and are defined
by the following integrals:

H,n = / mkoHuunkodx = (m| H, |n) (B.10)

where IAI,,, is the full Hamiltonian on the basis of the u,k,.

The N states are now divided into two classes. The states which should be
described fall in class A, and are supposed to be degenerate or to lie close to
each other at kg. All other states form class B and are separated by relatively
large energies from the states in class A. This is visualised in Figure B.2.
Equation B.9 can therefore also be divided in two classes. If also the diagonal
elements are written separately, it reads as:

(E Hmm (fm = Z Hynen + z Hyncn (Bll)

n#m n#Em

The Fourier coefficients ¢,,, can be written more compactly by defining the off-
diagonal matrix elements hy,,,:

Hmn (1 - 6mn)

(B.12)
E; - Hm.m

/ tmn =
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(1]

Figure B.2: Division of electron states into two classes. Class A contains one
or more states with cnergy levels E), close to each other. For these levels a
mathematical description is sought. Class B contains all other states, having
energy levels far from those of class A. Their actual description is unimportant.

where 6,,, is the Kronecker delta. The ¢,, then reduce to:

A B
Cm = z hmncn + Z hmn Cn (B13)

The sum over B can be brought under the sum over A by an iterative substitu-
tion of the ¢, in the sum over B by Equation B.13 itself:

Cm = Z binn + Z hmbhbn + Z hmbhb(‘h(‘n + - Cn (B14)
n#Em b.c
b#c

It is now useful to expand the h;; in this equation into their original quantities,

and to take them together in the new matrix U2, :

r an mbechn.
U1én Hmn + —mb b + - (815)
PO RPCE e
b;é(

With this notation, the Fourier coefficients can be compactly written as a sum
over the states in A only:

A ua

mn H"m 67”"

Zmn T SmnTmn, o (B.16)
n E; H’f",’l",

Cm =
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C3 C32

Figure B.3: Wigner-Seitz primitive cell of a face-centered cubic lattice type
(left), and the different kinds of symmetry axes of the cubic point group O
(right).

If m is chosen within class A, the ¢, on the left-hand side of this equation can
be brought under the summation sign. After multiplication with (E; - Hmm)
this yields:

A
Z (Uvﬁn - E;(Smn) cn=0, meEA (B17)

n

The result of the manipulations is that now, only a limited system of A
equations need be solved instead of the infinite system of N equations in Equa-
tion B.9. The states in A can be chosen in such way that they correspond to
the conduction or the valence bands. These bands are contained by the energics
E’. According to Equation B.17, they form the eigenvalues of the matrix ua .
They can be found by forming the secular determinant and solving:

det (Ui, — E}bmn) =0 (B.18)

The elements of U are still to be evaluated.

B.4 Cubic symmetry

The evaluation of matrix elements in the kp method is much simplified by some
symmetry considerations from group theory [3, 6]. It is a well-known fact that
silicon and germanium crystals have monatomic lattices with tetrahedral bonds.
The Bravais lattice of the crystal is therefore a face-centeréd cubic with a two-
point basis (sce Figure B.3). This means that its Wigner-Seitz primitive cell
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Table B.1: Symmetry operations of the cubic point group O. The effect on
a point (z1,z2,x3) = (123) is indicated between the parantheses and includes
interchanges and negations of its components.

Class Symmetry operations
E 51 (123)
3C,3C S, (132),5 (321),5 (213)
Ss (132), 56(321), ; (213)
3C3 Ss (123), S, (12 3),510 (123)
4Cy,4C3 S (312), Su( 31), S14 (312), S14 (231)
Sis (231), S16 (312) , S17 (231), Sis (312)
(213) , 5oy (321
(132)

6C5 Shg (213), 920 (213
Sao (321) , Sz (132

has the symmetry of the full cubic group Oy. The group contains the following
syminetry elements:

e Rotations around three fourfold axes joining the centres of opposite faces
(3Cy, 3C? and 3C3);

e Rotations around four threefold axes along the diagonals of the cube (4@’3
and 4C%);

¢ Rotations around six twofold axes joining the centres of opposite edges

(6C2).
e Inversion (I).

This means that crystals with the full cubic symmetry are transformed into
themselves by any of the 24 operations mentioned in Table B.1, and by their
inverses.

The symmetry properties of the crystal lattice also applies to the energy bands
of the electrons. To support this, two arguments are required.

The first argument is that for a Bloch state ¢,k (x), a transformation of the
crystal lattice corresponds to a similar transformation of the reciprokal lattice.
This can be seen by by subjecting the definition of the state to an arbitrary
transformation @ of the direct space of the crystal:

APk (X) = P (@x) = exp (1k-a%) upy (@x) (B.19)

The inner product k-ax represents the angle between two vectors, and is inde-
pendent on the axes system in which these vectors are defined. The product is
therefore invariant under the transformation, as well as under its inverse a~!.
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It can therefore be expanded as:

Yk (@x) = exp (i@~ k@™ 'ax) un (ax)
= exp (ia—lk . x) ul e (%) (B.20)

= Ppa- 1k (X)

where u,,, (x) is another modulating function.

The second argument is that the Hamiltonian H is invariant under symime-
try transformations of the crystal S. The Hamiltonian contains the Laplace
operator V2 and the potential energy U (x). The operator V? is defined as
an inner product of two vectors: V2 = V - V. It depends on x, but not on
the coordinate system. The scalar U (x) is the periodic potential of the crystal
lattice and therefore possesses all the lattice symmetry. The entire Hamiltonian
therefore transforms as the crystal.

The above arguments can now be applied to the Schrodinger equation for
an electron state i,,x. Transforming this equation with the crystal symmetry S
yields:

A (§r) Yk (§x) = Ep (k) ¥ (§x)
H (%) 9,51, (%) = By (k) 9,51 (X) (B.21)

This means that if ¥,k (x) is an eigenstate of the Hamiltonian, the transformed

state §zpnk (x) is also an eigenstate, corresponding to the same energy. On the
other hand, the transformed state must satisfy its ‘own’ Schrédinger equation:

ﬁ (X) ¢H§Alk (X) =E, (g_lk) wn§v1k (X) (B22)
A comparison with the former equation learns that:
E;(k)=E, (§‘1k) (B.23)

This means that the energy bands in the reciprokal space have the symmetr
properties of the crystal in the direct space.

B.5 Conduction band equations

In Figure B.1 it can be seen that the conduction band of silicon has a minimum
along the [100]-direction at about 85% of the distance to the boundary of the
first Brillouin zone. Due to the cubic symmetry of the crystal, this minimum
exists in all six {100}-directions. The conduction band of germanium has a
minimum along the eight {111}-directions at the zone boundary.

For a minimum located at kg, the energy in the vicinity may be found with
perturbative approximation of Equation B.17. Class A consists in that case
of the conduction band in its extremum, which is nondegenerate and therefore
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associated with only one state ujk,. As a result, the subscripts m and n are
equal to 1, and Ej is equal to E¢, the conduction band away from the minimum.
Equation B.17 therefore reduces to:

Us = EL, (B.24)

The matrix clement USC can be worked out with the aid of Equation B.15 and
the split-up Hauultomdn of Equation B.4. It should be noted that u;k, is the
eigenfunction of Ho with the energy eigenvalue E¢g. This energy is usually
called the band edge. To the second order this yields:

(1] s )]
E- (k) = Eco+ (1| Hip | 1) +24—~
o1 (Ec - )

(B.25)

Since the energy is in a minimum at ky, it should apply that Vi E, (k) = 0.
This means that the first-order term (1| Hyp |1) is zero.

The second-order term can be worked out by inserting the expression for Flkr,
from Equation B.6 and by adding the difference between EJ, and E¢, given by
Equation B.7. This turns Equation B.25 into the dispersion relation:

Ec (k)= Eco + 2 ]\f(,ﬁk' / a,fB e {1,2,3} (B.26)

where k!, are the elements of the vector k — ko and M, the elements of the
inverse effective mass tensor. In this relation the Einstein convention has been
used so that a summation with respect to the subscripts a and 3 is to be
understood (see Section A.3.1). The inverse mass tensor is defined by

AL Ses 1 B pltp% + piiptt
af = — — (B.27)
my  myg b1 Ecy — E K

where pl? is the a-component of the vector integral (1| p |b). It should be noted
that Ef, has been replaced here by E¢g. This is allowed when the ‘perturbation’
by k is small on the scale of the band gaps.

Equation B.26 represcnts the electron energy in the crystal as a function of its
wave vector k. For an electron in free space the energy would be given by:
h*k? A% ¢

ap
= = ——k.,k B.2
2my 2 my A ( 8)

By comparing the equations it appears that an electron in a crystal has an
energy shifted by Eqg and a wave vector shifted by kg. It also has a ‘mass’
that differs from the free-electron mass by the ‘interaction’ with other electron
states.
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Figure B.4: Ellipsoid representing the equi-energy surfaces of the second-order
description of the conduction band minima. m; and m; are the longitudinal and
transverse effective masses, respectively.

The inverse effective mass tensor can also be written as a function of the
band energy E¢ (k). For this purpose it is differentiated twice with respect to
k. This yields:

1 0%E¢

Mt = 12 Bkadksly,

(B.29)

which is useful in calculations on electron transport.

Like other second-order tensors which are symmetrical, the inverse effective
mass tensor M,z can be represented graphically in the form of an ellipsoid [9].
This ellipsoid represents the points in k-space with the same electron energy.
The principal values and the principal axes of the ellipsoid can be found by
diagonalising the matrix of M,g. If the coordinate axes are chosen to coincide
with the principal axes, the mass tensor is given by:

mit 0 0
Muys=1] 0 mt 0 (B.30)
0 0 m?

where the x,-axis is chosen in the direction of kg, the position of the minimum in
k-space. The quantities m; and m, are called the longitudinal and the transver-
sal effective mass, respectively. They have been determined quite accurately by
cyclotron experiments and can be found in literature; see Table B.2.

Using the above tensor, Equation B.26 reduces to the following conduction
band dispersion relation:

}2 ki — k 2 -2 -2
Eo (k) = Eqg+ 1= | KL =koa)” | K5 +hy

B.31
2 ny my ( )
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Figure B.5: Schematic of the conduction band equi-energy surfaces drawn in the
first Brillouin zone. Left: silicon; right: germanium. I', X, and L are particular
points in k-space.

This equation can be represented by ellipsoids of equal energy as sketched in
Figure B.4.

Since the position of the band minima is degenerate in k-space, there are m
equivalent minima, each centred around its own kZ', with a dispersion relation
EZ (k) and with its own principal axes. Equation B.31 applies to each of those
minima. To combine those equations, each should be transformed to the crys-
tal axes system, according to Section A.3.3. In this way, different EZ (k) are
obtained. Together, they form the well-known ’cigars’ of Figure B.5.

The equivalent minima lie on symmetry axes of the crystal. As a result, the
principal axes of the ellipsoids of silicon coincide with the main crystal axes of
this material. To prove this, the minimum in the [100]-direction at k} is con-
sidered. It is supposed to be described by the effective-mass of Equation B.26,
in which the coordinates ko are defined in the crystal axes system. Now the
crystal is subjected to symmetry transformation Sg (1%), defined in Table B.1
and implying a rotation over 7 around a twofold symmetry axis. The crystal
remains invariant under this transformation, whereas the vector k} remains in
place. It means that Equation B.26 is still describing the same encrgy, although
k5 is replaced by —kj. This is possible only if the off-diagonal element M}, of
the inverse effective mass tensor M ({ﬁ changes sign under the transformation:

Ss (123) M}, = — M, (B.32)

when ]\Iéﬁ is defined in the crystal axes system. The tensor was defined in
b1

)

Equation B.27 and depends on the momentumn matrix elements pl’ and p
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Table B.2: Band parameters of silicon and germanium. All values result from
experiments, except for the first values of L, M, and N which have been calcu-
lated. The band gaps Eg apply to 300 K and 291 K, respectively. See Ref. [10]for
a discussion.

Quantity Unit Si value Ref. Ge value Ref.

m mo 0.9163(4) [11] 1.57(3) [13]
my mo 0.1905(1) [11] 0.0807(8) [13]
L 2 —5.53 14 —30.53 [14]
2mo  —5.641(4) [12] —30.34(12) [15]

52 -3.64 [14] —4.64 [14]

Imo  -3.607(2)  [12] —4.90(6) [15]

N 52 -8.32 [14)  —33.64 (14]
2mo  —8.676(6)  [12]  —34.14(12)  [15]

Ec eV 1.1242 [13) 0.664 [13]
Aso eV 0.0441(3) [13] 0.289(5) [16]

a € {1,2}. In general, such an element can be written as:

py = —ih / ¥1 (x) 6%% (x) dx (B.33)

Its integrand is composed of even and odd functions. Since the element does
not vanish, the entire integrand is even. It is therefore insensitive to inversions
of the coordinate axes resulting from the transformation Sg (123) This means
that:

Ss (123) Miy = M}, (B.34)

which is in correspondence with Equation B.32 if and only if M{, is zero. Similar
arguments can be used to show that the other diagonal elements vanish. The
mass tensor of silicon is therefore diagonal in the crystal axes system, meaning
that those axes are also the principal axes of the effective mass tensor.

Symmetry arguments can also be used to prove that MJ, and Mj; are equal
to each other and different from M{, for the minimum at k{. For this purpose,
the crystal is rotated over 7 around the [011]-axis (transormation Sas (132))
and then inverted. By this transformation, the crystal is turned into itself and
the [100]-direction remains on the same place. Equation B.26 is therefore still
describing the same energy, although k, and ks are interchanged. This means
that the transverse mass M., is equal to MJ1;. None of the symmetry operations
of Table B.1, however, can equal it to the longitudinal mass My;.

B.6 Valence band equations without spin

The extrema of the valence bands are more difficult to describe than those of the
conduction bands because of their degeneracy. This is the result of their location
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around k = 0, which is the point in reciprokal space with the full symmetry of
the crystal. The degeneracy leads to a system of three energy equations and a
3 x 3 secular determinant, if the spin-orbit coupling is not included.

This section first presents a suitable form for the valence band states. Then
their secular determinant is developed and simplified by means of the crystal
symmetry. It will be explicitly solved in Section B.8 after the inclusion of spin-
orbit coupling.

The valence band electrons are responsible for the chemical bonding between
the atoms of the crystal. These electrons can be found in the outer shell of the
clectron configuration of the atom, which is only partially filled. The outer shells
of independent silicon and germanium atoms have two s- and two p-clectrons.
which is noted as s%p®. In a crystal lattice, the atoms form the well-known
tetrahedral bonds. They do this by sharing cach of the outer electrons with
a neighbouring atom. This, however, requires that onc of the s-electrons is
promoted to a p-orbital because of the Pauli exclusion principle. As a result,
the tetrahedral bonds can be described as linear combinations of one s- and
three p-electron states: sp3.

It appears that the valence band modulating functions in the maximum at
k = 0 are linear combinations of the three available p-states [1]. These states
Y¥n.0 have some very useful symmetry properties. They can be split up into
a part depending on the direction in space, and a part depending only on the
position radius r:

Y10 (x) = 22230 (r); Y20 (X) =z3210(r); ¥30(X)=x1220(r) (B.35)

With this information it is possible to evaluate the matrix elements and deter-
mine the shape of the different valence bands.

Just as the conduction bands, the valence bands E}. can be found with the
perturbation approach of Section B.3. For this purpose the secular determinant
is written again on a base of modulating functions. It thereby makes no dif-
ference if the three modulating functions of the valence bands at the maximum
are replaced by the set of p-states v, 0. To the second order, this yields:

B
HIL H T
det Hmn + Z E.,—,f_é)-;

bEmn Y

—Ebmn | =0; myne{l,23} (B.36)

in which E}, is the reduced band energy for band u in the sense of Equation B.7.

The matrix elements in this equation can be evaluated by splitting the Hamil-
tonian H as in Equation B.4 into a part Hy for which the p-states ¢, o are the
eigenfunctions, and into a perturbation Hyp. For the first-order elements H,,,,,
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this yields:
Hyp = (mt I:IO + ﬁkﬁ |n>
* 3 h * A
— [ oot odxt ke [ b0t (B.37)
= Eﬂ‘smn
The left-hand integral is equal to the eigenenergy Ep of Hy. The right-hand
integral vanishes when the ¥, o of Equation B.35 are inserted because its inte-

grand always odd in one of the coordinates. For the second-order elements in
Equation B.36 it applies that:

* r h * ~
Hyy = / i oonodxt -k / A (B.38)

:—k mb. m€{1,2,3},b€B
my -

where B is the class of states with energies far from the valence bands. The
left-hand integral is zero since m # b and both states are eigenstates of Ho. The
right-hand integral, however, does not necessarily vanish.

Rewriting the secular determinant with the above information gives:

p2 B (k ) pmb) (k ) pmb)
det —n_‘l,_g b;;n,n EO _ Eb - (Etll. - EO) 6mn =0 (B39)

where the E! in the denominator has been replaced by the unperturbed energy
Ey. This is possible if the energy shift due to the kp ‘perturbation’ is much
smaller than the interband distances Ey — Ep. The inner products within the
equation can be rewritten as sums in ky, k2, and k3. For this purpose, also the
ko within the reduced energy E!, are taken into account (see Equation B.7):

det [DIkaks — (Eu — E0) 6mn] =0, o, 8 € {1,2,3} (B.40)

in which the Einstein convention is used to indicate the summation of the terms
with respect to the free subscripts a and 3. The tensor D2 in this equation is
of the fourth rank, and is defined in analogy to the inverse effective mass tensor
M, of Equation B.27:

h? RN pmtply
M= ——Smnbap + —3 e B.41
BT ome ™ ap + m3 b;ézm:n Es— E, ( )

where p® is the subscript notation of the vector of matrix elements p"’. The
second-rank tensor D''kqky is the result of the kp Hamiltonian Hkp only and
is called the kp matrix Hyp. The energy difference E,, — Ej is the hole energy
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with respect to the band edge and is abbreviated to E. Therefore, Equation B.40
can be written in short as the eigenvalue problem:

det (ka) - E(Smn) =0 (B42)

The kp matrix can be considerably simplified by applying the symmetry of the
crystal to the tensor D7))". Many of its components are either zero or mutually
dependend. To show this, the different band energies Ej in the denominator
of Equation B.41 can be replaced by a single level Eg. This does not alter
the shape of the final expression, but simplifies the calculations [1]. Due to the
completeness of the ¢y ¢ the tensor then reduces to:
mn __ ? : . hZ <7rlli)\(‘li)\/j !n> A
a3 = %brrlrlb(wd + 7?7,% Eo— Eg (B43)

Now the different tensor elements can be evaluated with the aid of the wave
functions of Equation B.35 and the fact that the momentum operator can be
written as Po = —ihds, where J, is defined for brevity as the nabla operator
0/0x,.

Firstly, the element D11 is considered. It contains the following integral:

<1| P1P3 |1> = —h2 / (¢ (’I“) 1‘2.’1.?3)* 8183 (¢ (T) .’1721?3) dx (B44)

Since the crystal has cubic symmetry, the energy contribution of the element
should be invariant under a rotation of 7 radians around the z-axis (transfor-
mation Ss (1%) of Table B.1). Applying this to Equation B.44, however, yields
Ss (1| pips 1) = — (1} p1p3 |1). This is only possible if the element is zero. A
similar argument can be given for the element D}? that also vanishes by the
transformation Ss (123), and for D13 which is forced to zero by Sy (123).

Secondly, D1} is considered. This diagonal element is nonzero because the
integrand of

(1 pipy 1) = —R? / (¢ (r) z2z3)™ 0101 (¢ () Taws) dx (B.45)

is invariant under any transformation of the cubic group of Table B.1. Thercfore
it is defined as the constant L, which is usually determined by experiment:

72 12 B 16,61

pui="_ NPk B.46
=5 + m2 ; ( )

Thirdly, the element D1} is considered, which is determined by the integral:

(1 p2p2 |1) = —52/(¢ (r) x223)" 0202 (¢ (7) T223) dX (B.47)
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This element is equally nonzero. However, it differs structurally from (1| p1p; |1)
because it contains the variable 2 in both in the operator and the eigenfunc-
tions. Therefore it is defined as the constant M:

B2 B2 B plbpb]
11 A 2 M2 —
Dy, = omg T m2 2 B =M (B.48)

Finally, the off-diagonal element D} is investigated and found to be nonzero.
It is combined with its counterpart D}? into the symmetric constant N:

B b

D2 4 pl2 — E pi°% + psto?
12 LY E, - E

0 b£1 0 b

I

N (B.49)

The remaining tensor elements can be obtained by using the fact that the
Xi-, T2, and xrz-axes are equivalent in the case of cubic symmetry. It therefore
applies that:

L=Dy = Dzz = Dij

M= D22 - 33 - D33 - 11 - Dll - %g (B~50)
N = D}} + D3 = D% +D32—D13+D
= D}; + D3 = DE + D33 = D} + Dj} (B.51)

The total kp matrix D7 kokg can therefore be written as:

Hiyp = D™ koks (B.52)
LK2 + M (K} + k3) Nkiks Nkik3
Nkiks Nkzks Lk3 + M (K + k3)

The valence band parameters L, M, and N appear in literature with slightly
different definitions. They also appear as linear combinations of other param-
eters, usually A, B, and C, or the Luttinger parameters v;, 72, and v3. This
should be kept in mind when numerical values are needed. An overview of the
definitions is given in Table B.3.

The above kp matrix can be inserted into the secular determinant of Equa-
tion B.42 to find the three eigenvalues F, and thereby the valence band equations
E}.. These equations are a function of k and are therefore dispersion relations.
At k = O they are indeed threefold degenerate. It appears, however, that this is
not completely true in reality because the effects of spin-orbit coupling should
be included.

B.7 Effects of spin-orbit coupling

Up to present, it has been neglected that each electron has either a positive
or negative spin. Spin adds a magnetic moment to the electron. This moment
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Table B.3: Different definitions of the valence band parameters L, M, and N
appearing in literature.

Ref. L M N

1] L (A+2B-1) £ (A-B-1) £ * \/9B? 1 3C?
3] A+2B A-B V3D
(4,117  A+2B- 3 A-B- £ V9BZ +3C?
[18] h%A h’B r2C
[18] 2,,,0 (71 + 4’7 ) 2,,,0 (’71 2'7‘2) 2,,,06'73

interacts with the magnetic field created by the orbital angular momentum of the
electron, and increases its potential energy. The interaction can be represented
by adding a spin-orbit term Hso to the spin-free Hamiltonian Hy: [5, 7]:

Ay = (B + Hso) v = By (B.53)
I h n ASO ~
vy = ——— D) -6 = —L .6 .

Here, ¢; is the velocity of light, L is the orbital angular momentum operator,
and & is the vector of Pauli matrices, consisting of [19]:

alg[? é],@:[? Bi},&gz[é _01} (B.55)

The constant Ago is called the spin-orbit splitting energy. It depends on the
material and increases with the weight of the constituting atoms. Silicon and
germanium are relatively light, so the spin-orbit coupling in those materials is
sufficiently small to be taken into account as a perturbation.

The spin-orbit somewhat shifts the band edges and thereby has a more per-
ceptible effect on the valence bands than on the conduction bands. The reason
is that it partially lifts the degeneracy of the valence band edges, which has a
strong effect the band shapes. The conduction band edges are nondegenerate,
however, and therefore retain their shape. In the following it will be described
how the spin-orbit coupling influences the valence band states and their secular
determinant.

The inclusion of spin doubles the number of valence band wave functions to six.
It also doubles the number of p-states of which the bands are constructed. In
Equation B.35 these states ;o (x) were described as xjxi¢ (r). They can be
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replaced by a new orthogonal set of states including the spinor functions x©:
W () = o0 () X+ = 2306 (1) [é] i#j#kand (B.56)
Uy (x) = Pio () X~ = 25006 (r) m ijk € {1,2,3} (B.57)

where the plus and minus indicate that the spin points up- or downwards, re-
spectively.

The appearance of the spin-orbit Hamiltonian Hgo is slightly different when
it is placed on a basis of modulating functions uik This is the result of the
differentiating momentum operator within Equation B.54. Applied to the defi-
nition of the Bloch function, this yields:

Hsoufy = [VU x (p+hk)] - ugy (B.58)

h
4mdc?
where the term ik is new, compared to the operator for the full wave function.
The new term is generally neglected, however, because the crystal momentum
|hk| is much smaller than the average electron momentum |[p|. It can also
be retained, which adds a small term to P, but leaves the shape of the band
equations unchanged. In both cases the spin-orbit Hamiltonian is equal for both
Bloch and modulating functions.

The doubling of the number of wave functions also doubles the rank of the
secular determinant in Equation B.36:

1" H 771 .
det | Hpp + Z b Bl bmn | =05 myne{l,2,.6} (B.59)
b#m,n u be

An arbitrary matrix element in this determinant now obtains the following
shape:

g> : i,7 € {1,2,3} (B.60)

—_ el _ a
Hom = HyY = (9 Srern )

H() + Hkp + Hb()

The first two terms of this element can be reduced to the spinless case in Equa-
tion B.37, becaus the inclusion of spin does not change the eigenvalues of Hoand
Hyp. These terms can therefore be written as:

(o o+ o] w) = (0o

where 1; ¢ are the original p-states and I, is the 2x2 identity matrix [20].
The first-order elements of the secular determinant are especially determined
by the spin-orbit Hamiltonian Hgo. After all, it was seen in Equation B.37 that

Ho + f':’kf:.\ ¢j,0> “(I2)np (B.61)
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the ﬁlbt order elements of HO equal the unperturbed energy E), whereas those
of Hkp are zero. The elements of Hg so can be evaluated by writing them as:

(v

3
H-S()‘ ‘I’Xj> =\ Z <1/)1',.()}(n |(/7\o€0pq8p[]aq| 1/"’,)'.0,\',‘5> ) aaﬂ € {172}

opg=1

= A3 (0400 leopa@pU B4l ¥1.0) o)y (B.62)

opyg

where ) is equal to —ih?/4m3c?, 0; is defined as the gradient 8/0x;. The
€opq 1s the complete antisymmetric tensor. It represents the cross product of
Equation B.54 and gives rise to a sum of six terms. The spin superscrips a3
now take the values ‘1’ or ‘2’ instead of 4+’ or *-’. This shows that the effect of
the two spinors x® and \*” is to sclect an clement [a, 3] of the Pauli matrix ,.
The next step in the evaluation is to expand the spinless part of the matrix
elements into integrals and examine their symmetry. Within the integrands, the
gradient operator d, works on the spherically symmetric part of the wavefunc-
tion ¢ (). This yields:
x x
o0(r) = 20N 2 g (8.63)
When this is inserted, it appears that the diagonal elements [m,m] are odd
in two coordinates and therefore vanish. The off-diagonal elements, however,
contain even terms and are nonzero. This happens when ¢ = o and j = p. If
(1,7, k) is an even permutation of (1,2, 3), the elements are equal to:

Y (Wi0ledUdk| ¢50) (Gi)ag

ijk

2
= @)y [ 50" )y |00 0, U, (1+%0.) ot @on
= (¢i,0|0:U8; — 0;Udi| ¥j,0) (Uk)u;; (B.65)

XL Tk

For an odd permutation of (¢, j, k) the sign is reversed. In the latter cquation
it is possible to recognise a commutation of the potential gradient ;U = VU
and the momentum operator p; = p. They correspond to the total time deriva-
tives of momentum and position, respectively. The first-order spin-orbit matrix
elements of Equation B.62 can therefore be written as:

: Aso - o
(¢ |frso| W) = Fi=52 Bu)ey » i #K (B.66)

in which Ago is the spin-orbit splitting energy, defined as:

3h
Aso = Ly 23 ($io|[VU,B)_|%j0) , i#J (B.67)

The second-order elements of the secular determinant need not to be changed
with respect to the spinless case. They only need to contain the influence
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of I:ka,, because I:Iso has already been taken into account in the first order.
They yield the new kp matrix Hf(;f,ﬁ, resulting from scaling Hyp in the way of
Equation B.61.

The secular determinant can now be written in matrix notation, in analogy

to Equation B.42:

det [Hggﬁ +Hgo — Ea} =0 (B.68)
The spin-orbit matrix Hgo is generated by Equation B.66 and reads:
A 0 —iog 0,
Hgo = % 63 0  —igy (B.69)
—i0y 10y 0

The energy Ago is equal to the splitting of the band edges. This can be derived
from inserting k = 0 into Equation B.68 and calculating the energy eigenval-
ues. Two band edges are shifted upwards with Agp/3 and are still degenerate,
while one is lowered with an amount 2Ago/3. The splitting energy has been
determined experimentally. The resulting values for silicon and germanium are
shown in Table B.2.

B.8 Valence band equations including spin

The valence band dispersion relations can now be calculated analytically by
solving the eigenvalue determinant of Equation B.68, i.e. finding the energy
eigenvalues of the matrix H = Hy3° + Hgo [20):

hi1 hio — Z&é his + z&{,
hiz — l&é has + 28{ hs3

Each element in this matrix is a 2 x 2 matrix itself. The ] stand for 5;A50/3,
and the diagonal elements h;; for:

hii = [LK7 + M (K2 + k7)] I (B.71)

in which (4, j, k) is a cyclic permutation of (1,2,3). The off-diagonal elements
are:

hz’j = Nk-iijQ , 14 (B.72)

The secular equation is found by Gaussian elimination, during which care
must be taken to multiply the operators from the correct side. It may be used
that 5;5; = I, and that 5,5; = +i5} for even and odd permutations of (i, j, k),
respectively. This results in two decoupled cubic equations from which the Pauli
matrices have disappeared:

<

E¥4+pE* 4+ qE+r=0 (B.73)
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Its coefficients p, q, and r are real, and are given by:

p=—(h11 + haz + hs3) (B.74)
q = hithoa + hashsz + haszhy
L (Aso\’
- (}112 + h33 + h31) -3 3 (B75)
r = —hithaohgs — 2hyohashsy + hithas + hashgy + hashys + (B.76)
Acr) 2 A 3
+ (h11 + hoo + ha3) ( ;O) +2 < ;O>

This cubic secular equation should have three real solutions. one for each
band. These yicld the valence band dispersion relations (21, 22]:

EM (k) = Eg +2/Q cos (%) - %’ (B.77)

ELY (k) = B, +2/Q cos (@ ;2”> - 7—:; (B.78)
SO p @ + 27 P

ES° (k) = Eo +2/Q cos 3 -3 (B.79)

where HH stands for ‘heavy-hole band’, LH for ‘light-hole band’, and SO for
‘split-off band’. The angle © is defined as:

© = arccos _—R
/Q3

in which the quantities Q and R are defined as:

1

Q=3 (p* - 3q) (B.80)
1

R= 5 (2p° — 9pq + 27r) (B.81)

The degenerate edge of the heavy and light hole bands is often defined as the
zero-energy level. Since it is positioned at k = 0, it can be described as:
E¥N(0) = EYM (0) = Evo = Eo + % =0 (B.82)
The bands are plotted in Fig. B.6 for values of k around 0. It can be seen
that the bands are quite anisotropic and not quadratic, especially the HH-band.
The labels HH and LH correspond to the steepness of the respective bands,
which is inversely proportional to the effective masses. SO refers to the spin-
orbit splitting by which the top of this band lies Ago (44 meV) below the other
two bands.
The bands can also be represented by surfaces of equal energy in k-space.
For different energies they are plotted in Figure B.7, B.8 and B.9. Two energy
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Figure B.6: Valence band dispersion relations of Si in the [100}- and [110]-
directions, as obtained with the kp-method. E is the energy, k the wave number,
and a the atomic constant.

ranges are of special interest. Near the HH- and LH-band edges the influence of
the SO-band is relatively weak and the shapes of the surfaces only arises from
the interaction between the HH- and the LH-bands. Closer to Ago the SO-band
also interacts, which has a strong influence on the band shapes. At a distance
of some Agg the bands start to decouple, which means that their equi-energy
surfaces approach the spheres of the free-electron case. Similar figures have been
published by Hinckley [7, 23] and Dijkstra [24].

B.9 Conclusions

The energy bands of silicon and germanium can be approached near the bandgap
with the kp method. This method yields dispersion relations which are ex-
pressed in measurable quantities such as the effective masses. For this purpose
it employs the symmetry properties of the semiconductor crystal. The disper-
sion relation of the conduction band shows minima at different places in k-space
which are nondegenerate and can be described by a parabolic equation. Graph-
ically, they can be represented by ellipsoids of equal energy. The dispersion
relations of the valence bands are triply degenerate at the origin and therefore
strongly influence each other. They are partially decoupled by the spin-orbit
effect. Mathematically, they can be described in a closed form by the solution of
a cubic secular equation. Graphically, they are represented by warped spherical
surfaces, of which the degree of warping depends on the energy considered.
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Figure B.7: Equi-energy surfaces of the heavy-hole band at 1 meV (left) and 44

meV (right) under the band edge. Not on scale.
Figure B.8: Equi-energy surfaces of the light-hole band at 1 meV (left) and 44

meV (right) under the band edge. Not on scale.




194 APPENDIX B. BAND STRUCTURE OF CUBIC SEMICONDUCTORS

Figure B.9: Equi-energy surfaces of the split—off hole band at 45 meV (left) and
88 meV (right) under the HH band edge. Not on scale.
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Appendix C

Charge Transport in
Stressed Silicon

The electron and hole currents in a semiconductor can be derived from its
quantummechanical behaviour, as was argued in Section 2.2.1. For this purpose,
a description of the energy bands is needed together with a statistical approach
and the Boltzmann equation. Such a derivation is described in most textbooks
on solid state and semiconductor physics [1, 2, 3]. In most of them, however, it is
made with some assumptions that are unwelcome in the study of semiconductors
under mechanical stress. These assumptions include:

e Isotropic material,
e Homogencous material, and

e Parabolic edges of the energy bands.

In this appendix the transport of charge carriers is calculated without making
these assumptions. Many other assumptions, however, still hold under stress.
They are mentioned in Section 2.2.1 and are used in the following. The deriva-
tions lead to general expressions for the charge carrier concentrations and the
conductivities in terms of band structure parameters. These are used to find
the mobility tensors, and a set of generalised drift-diffusion equations. Finally,
the derivations lead to generalised expressions for some auxiliary relations such
as the Poisson equation.

The following derivations are based on the band descriptions of Appendix B,
as well as on the generalised band edge diagram of Section 2.1.7. In addition,
they consequently apply the Boltzmann distribution function and the density
of states concept to each band separately. Much in this appendix is based on
the excellent work of Marshak and Van Vliet [4].
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C.1 Charge concentration in nonequilibrium

The number of electrons in an energy band depends on how much of them have
the energy required, and how much states are available. Since those numbers
are considerable, the energy of the electrons can be described by a distribution
function and the available states by a density of states function. The shape of the
distribution function is estimated by making the relaxation time approximation.
The density of states function is deduced from the band dispersion relations.
Often, its average over all energies is calculated and called the effective density
of states, which can also be expressed in a density of states effective mass.

C.1.1 The relaxation time approximation

In the semiclassical model the behaviour of an electron is specified by its position
x and wave vector k. The distribution of its momentum is given by a function
fn (%,k,t) which can also be considered as the probability of finding a particle
of a momentum hk at a specific position x and time ¢.

The shape of the distribution can be estimated by making the relazation
time approzimation ([1], Ch.13). In this approximation, electrons in a con-
duction band m collide with the atomic lattice with a chance dt/m, (x,k) per
infinitesimal time interval dt, where 7,, (x,k) is the mean time between two
collisions, called relaxation time. It is assumed that:

1. The distribution after the collision does not depend on the distribution
before.

2. The collisions do not influence the shape of the local distribution in ther-
modynamic equilibrium.

The first of those assumptions is illustrated in Figure C.1.

The distribution in this equilibrium is given by Fermi-Dirac statistics because
the wave functions of electrons are antisymmetric [5]. The distribution function
fn can therefore be written as:

E (k,x) ~ Epp (X))] ! (C.1)

o) = £ () = |1 exp (FL0

in which kp is the Boltzmann constant, T (x) the local temperature, and Eg,, (x)
the electron quasi Fermi level or electrochemical potential. It should be noted
that f, depends on k only through the electron energy E. For quasi Fermi
levels lying more than 2.3 kT under E the distribution can be approached by
Maxwell-Boltzmann statistics with less than 10% error:

Ep, (x) — E(k,x)
kT () ) (©2)

S (k,x) >~ exp (

The materials for which this is true are called nondegenerate. For silicon it
applies when the doping concentration is approximately less than 10'® atoms
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(a) (b)

Figure C.1: Illustration of the relaxation time approximation and a counterex-
ample. An electron with wave vector k scatters and may be sent in any direction.
(a) All directions are equally likely. (b) There is a most likely direction which
depends on the direction of incidence.

per cm®. Maxwell-Boltzmann statistics considerably simplify the analytical cal-
culations in the following.

For holes the distribution function f,, is the chance of not finding an electron,
which means that f, =1 — f,. By using the hole quasi Fermi level Ep,(x ) it
is written as:

fo (k%) = [1 + exp (EFP (%) — E(k,x))] -1

kT (x)
~ ox E(k,x) — Epp (x)
~enp (SR ) (©9)

where the latter is, of course, only true for nondegenerate material.
In thermodynamic equilibrium the quasi Fermi levels Er, and Ep, need to

be equal to a value Er. In that case the distribution functions are indicated as
0 d fO
n an f[’ *

C.1.2 Concentration integrals

The behaviour of conduction electrons in a semiconductor is not only determined
by its momentum distribution, but also by the shape of the band in which it
resides. Because of the Pauli exclusion principle, only a limited number of
electrons is allowed in a band on a specific energy interval dE. For an energy
E in band m this number is represented by the density of states g% (E,x) ([1],
p.143):

dk

LS (E - E? (k,x)) (C.4)

m
E -
9c ( ,X) Je 473

where the integral is over any primitive cell, where ¢ is the Dirac delta function,
and where EZ% (k, x) represents the shape of conduction band m. For this shape
explicit expressions are found in Section 2.1 and Appendix B.
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05 10

(b)

Figure C.2: Schematic calculation of the electron concentration in a conduction
band. (a) Density of states as a function of energy E, given by the valence band
(gv), the doping (gp), and the conduction band (g¢). (b) Fermi-Dirac distri-
bution for electrons. (c) Electron population of the conduction band, resulting
from the multiplication of a and b. The gray area is the total concentration n.
The hole population is merely given for comparison.

For holes in a band u, the density of states is defined similarly:
u dk 173
gy (B,x) = | —6(E-Ey (kx)) (C.5)
C an
where E} (k,x) gives the dispersion relation of band u.

The actual concentration of electrons due to band m is given by the number of
quantum states around F, multiplied by the probability those states are filled,
and integrated over all possible energies (see Figure C.2). This yields:

e e [ roon (RSB o

Equally, the hole concentration due to band u is given by:

puszpgmzfc{Hexp(Epp(xI)g;(%% (k,x)>]_1£f§ 1)

As said before, the quasi Fermi levels Efr, and Ep, are equal in thermodynamic
equilibrium. In other situations they are no more than matching parameters
used to obtain the correct total concentrations of charge carriers.

C.1.3 Effective density of states

In semiconductor device analysis it is often useful to express a carrier concen-
tration due to a band into an effective density of states and the energy of the
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band edge. The effective density of states expresses the amount of charge car-
riers a band can contain, from its edge level up to infinite energy. Its concept,
however, is usually defined for homogeneous, isotropic, non-degenerate semicon-
ductors with parabolic bands. To use it beyond those assumptions, it has to be
redefined and provided with a nonideality factor.

For this purpose the expression for the total electron energy in conduction
band m is recalled from Equation 2.52: EZ (k,x) = EZ, (x)+ W, (k,x), where
EZ is the energy of the band edge and W) the kinetic energy. Also, it is
assumed that the density of states of a band below its cdge energy is zero. Then,
in analogy with the classical expression, the local density of states N2 (x) is
defined as:

™ i m m Wm T
NE ) = [ oo ( e )> aw; ()
Using this definition, the electron concentration n' can be rewritten as:
IN (,}lﬂ’ ) Nﬂl ( ) A’nl (77"]’ 7’771 (x) = EF“ (x) (WO (x) (C.g)

where n™ represents the difference between the band edge and the quasi Fermi
level, and where the nonideality factor K™ (n™,x) is given by:

an (nnz ) / (W’I’I:n’ )dI/ o 1
0 1+exp (%"‘%’") I5° 98 W x) exp (324 ) awe

(C.10)

This factor approaches unity for nondegenerate conditions. In that case, the
concentration is equal to:

™ (™, %) 2 N2 (x) exp (%%) (©.11)

Likewise, the local, effective density of states of a valence band u can be
defined as:

o0 _Wu
Ny} (x) :./0 gv (W', x) exp (k T(x )>dW“ (C.12)
Then, the hole concentration p* can be written for nondegenerate conditions
as:
u _ u E‘Lj'o (X) - EFI) (X)
() = Ny (e (oG (©19)

C.1.4 Density of states mass

It is customary to relate N and N to the local effective density-of-state
masses my and mY,. They are defined as:

s 3/2 3/2
m o — o (M (%) kpT (%) w on o [T (X) kBT (x)
(C.14)
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The origin of those expressions lies in the analytical evaluation of Equation C.8
for the case of a parabolic energy band. For a conduction band m, for instance,
we can combine Equation B.26 and 2.52 to find:

2 N
Wit = TS My (ki 9) () (C.15)
ij

where M;; is the inverse-effective mass tensor. Since this tensor can be written
in a diagonal form, the equation can be written in spherical coordinates by
applying the Herring transformation [6, 7] :

ki = M2 (ks — k?) (C.16)
This yields:
m h’2 2 h2 2
VVn = -2' zj:ﬁj = ?H (Cl?)

where & is a radius defined as k% = k2 + k2 + k2. Applying the transformation
to the infinitesimal volume element dk gives:

1\ -1 1
dk = det (M,.g) dk = (mymemy)? dr (C.18)

where it has been used that two diagonal elements of M{JTI are equal to the
inverse transverse mass m; and one to the longitudinal mass m;. The element
can also be written in spherical coordinates (k, ¢, 8):

dk = (m7=)? k? sin Odrdpdf (C.19)

in which mjj;, = (mlmtmt)l/ 3 is defined as the density of states effective mass.
This expression can be inserted into the definition of N in Equation C.8. From
Equation C.17 the x? can now be replaced by W™, and W™ can be normalised
to ¢ = W/ (kgT). This yields:

m LT % oo
% /O ¢} exp (~C) d¢ (C.20)

The integral is recognised as the Gamma function of order 3/2, I'(3/2), and
is equal to \/7/2 [8]. Inserting this value in Equation C.20 gives the relation
between N and mj;, of Equation C.14.

Ng =

It should be noted that for the valence bands the density of states masses cannot
be expressed in such a simple function of the effective mass tensor elements.
Instead, the integral of Equation C.12 needs to be evaluated numerically, after
which the mass is calculated from Equation C.14.
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C.2 Charge transport equations

It was mentioned in Section 2.2.1 that the current densities as a function of the
applied fields can be derived from the semiclassical transport model. This is
done by solving the Boltzmann equation for a first-order perturbation caused
by external fields. The resulting distribution is a measure of the mean clectron
velocity, to which the current density is proportional. This current density can
be expressed in a gradient of the quasi Fermi level and in the conductivity of
the material. The conductivity can be split up into a carrier concentration and
a mobility, which can sometimes be evaluated analytically in terms of band
parameters. In addition, the gradient of the quasi Fermi level can be split
up into band edge parameters, resulting in a generalised form of the classical
drift-diffusion equations.

C.2.1 Solution of the Boltzmann equation

The semiclassical transport model describes the development in time of the
clectron distribution function f,, by means of the Boltzmann transport equation:

%fn (5, kot) = Soofn (3, ko) (c.21)

where §s,, is an operator representing the scattering of the electrons. Both sides
of this equation can be worked out to find a more explicit expression.
On the left hand side the total temporal derivative can be developed as:
_ Bfn a.fn dr; afniiﬁ

d .
Ef"(x’k’t)_ 8t | Ox; dt + ok; dt (C22)

Some of those terms can be substituted using Hamilton’s (classical) equations
of motion in which the momentum p has been substituted by the crystal mo-
mentum fk:

dr; 10H

i ok (C.29)
dk;  10H

& - hom (C.24)

where v; is the electron velocity. For an electron in the conduction band m the
Hamiltonian H is equal to its total energy and can be substituted by E& (x,k)
of Equation 2.52.

On the right hand side of the Boltzmann equation it is assumed that the
distribution function is perturbed by the external fields only to linear order. It
is also assumed that the scattering is described by the relaxation time approx-
imation mentioned in Section C.1. Finally it is assumed that the relaxation
time 7,, (x, k) of band m depends on k only through the electron kinetic energy
W™ (k,x) which is part of its total energy EZ (see Equation 2.52). This means
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that a collision obliterates any information about the direction of the electron
velocity. In that case the scattering operator can be written as:

S o _ fn fo _ __le;.
Sse= - (xW ] - (C.25)

where f0 is the local Fermi-Dirac distribution in equilibrium and 1 is its per-
turbation due to the fields.
Inserting the above expressions in Equation C.21, the transport equation for
an electron in band m becomes:
Ofn, 10 Ofn OEZ 10f, OEZ  f}

ot T hoz Ok,  hok; Oz, 1 (C.26)

It is now assumed that the currents are stationary. This means that the per-
turbation can be written as:

8f, OEZ  df, OET
1_ ok C
fn = n (ax, ok;  Ok; Ox ) (C.27)

In a similar way the distribution of holes can be approached. The pertur-
bation f; in the hole distribution function f, due to external fields appears to
be:

1 _Tu (0 0By 0fy OEy
fp - (ax, aki Bk,- Bx.; (C~28)
where EY = Ep (x,k) is the dispersion relation of valence band u, 7, =

Tu (x,W}) its relaxation time, and W the hole kinetic energy.

C.2.2 Current density and conductivity

Once the distribution function is known in terms of statistical and band func-
tions it is possible to derive the electron current density as a function of the
quasi Fermi level.

The electron current density vector due to a band m is determined by the
concentration of electrons n™, their mean velocity (v*), and their charge ¢. It
is therefore defined as:

I = —qnp (v (C.29)

In the semiclassical model the fraction of the electrons with a velocity v™ (F)
is given by the distribution function f,, (E (k)). Therefore (v} can be written
as the average:

(o) = = /0 g ()l (B) fa (E) dE

n m

_ L / K o () o (E2) (C.30)

nm 047{-3 t
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where the density of states function of Equation C.4 was inserted. In the pre-
ceding section, f, was split up into an equilibrium and a perturbation term:
o = fO+ f}. In addition, the velocity was given by the Hamiltonian expression
of Equation C.23. When this is used in Equation C.30, J/" can be rewritten as:

T R R Ly .
J, - h\/(v 47.(.3 a]\.”_ (fn_*'fn)— th 47{‘3 Bki n (L(') (031)

because the current density in equilibrium is zero.
The distribution function can be eliminated from this equation by firstly
replacing f} by Equation C.27:

= q dk OEE'J (% 8E"7" %OEE’J)

T ﬁ CHT" (9}\, d.’L‘, 0’%, - d]\_, 0.’17_,'

(C.32)

Secondly, it was assumed in the relaxation time approximation that the shape
of f, is equal to that of the Fermi-Dirac distribution function. The gradients
of f, can therefore be calculated by applying the chain rule to Equation C.1,
which yields:

8fn. — dfn 3EE’~’ _ 6EFn _ Eg,'l - EFn. _0_T (C 33)
dz; OER | Ox; dz; T dz; '
Ofn _ Ofn OEE
ok; _ OEZ ok, (C.34)
Inserting these in Equation C.32 results in:
m o__ __(]_ d_k 0 g?l 8Eg‘l 8EF‘IL ET("L " EF’n QI_ af'n =
Ji' N h2 / 473 n ()k, ()I\J 01‘1 + T a.LJ BEgJ (030)

where 0f,,/OE can simply be evaluated from Equation C.1. It is seen that J*
is driven by the gradients in both the quasi Fermi level and the temperature.
The above expression therefore leads to the so-called hydrodynamic equations
which enable the modelling of the purely electric as well as the thermoelectric
effects in the material.

In the following, however, it is assumed that the thermoelectric effects are
negligible by supposing isothermal conditions. It yields the equation:

OFE Fn
qOx;
¢ [ dk OEZ OEZ Ofn

T2 ) amd [T ok; Ok, aEg} (x)
where the tensor 077 is defined as the electrical conductivity due to band m.
The gradient in the quasi Fermi level was left outside the integral since it does

not depend on the wave number. In the case of nondegenerate material f,, can
be replaced by the Maxwell-Boltzmann distribution giving:

2 T ™m
N dk [ OEm OEY Epn — EZ
oi (X) = T / 43 [T ok; 0k; P\ kT () (C38)

It (%) = aij (%)

(x) (C.36)

ajf (x) =

(C.37)
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From the above equations it appears that the driving force behind the current
is the gradient in the quasi Fermi level. The current is influenced by the material
characteristics EZ (k,x) and 7, (EZ, x). It is also influenced by parameters that
can be adjusted from outside: T and Ef,, the latter being equivalent to the
electron concentration.

Similar expressions can be derived for holes in band u:

aEF%’ (x) (C.39)

qo;
2 Pay Al 0 u
u ~ q ﬂ ()EV aEjV EV — EFI’
o5 %) = fakaT / 43 [T” % ok P\ her )| (C40)

C.2.3 Mobility

The conductivity is not always an ideal parameter to characterise the electrical
properties of a semiconductor. The reason for this is its strong dependency on
the quasi Fermi level, which is easily modified from outside by injecting charge
carriers. Therefore the concept of mobility was introduced. For electrons in
band m and holes in band u it is defined as:

T (x) = 0% ()

0’;{? (EFnyx)
gn™ (Eme) '

o3 (EFp,x)

qp* (Epp, x) (4D

ﬂ:? (EF'n.ax) = /1';1:7' (EFpax) =
An evaluation of 4} with the aid of Equation C.6 and C.37 learns that it is a ma-
terial constant. It is independent of Eg,,, but only in the case of nondegenerate
material.

For this nondegenerate case and for parabolic bands the mobility can be

evaluated analytically. Equation C.38 is therefore first rewritten as:

m _ q2 x Epn — g}O ﬁT BW:Ln aW’TLn P _W;n
%5 = 2T P ksT )] 4x3 " ok, Ok, kpT
J

) (C.42)

where it has been used that EF = Efy + W". The expression for n™ in

Equation C.9 permits to write:

N 1 dk [ oW oW —wm ,
M5 (%) = T T NZ (%) / 4 [T” ok ok; P\ kpT (x) (C43)

The relaxation time is supposed to depend only on the electron kinetic energy
W™ (see Section C.1) and is usually approached by some power law in s:

wm(k ¢
o (1, 2) = 7, ) (220 ) (C.a1)
kgT
where s is approximately equal to —1/2 for nondegenerate silicon [3].
The derivatives W /Ok; are obtained from Equation C.15. If the principal

axes of the inverse effective mass tensor M;; are perpendicular to the coordinate
axes, M;; is diagonal and W /Ok; is equal to h*M;; (k; — k?).
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The integral is now calculated further along the lines pointed out in Sec-
tion C.1.4. This means that a Herring transformation is applied to normalise
the wave vector k; to x;. Then the integration is performed over the solid angle.
The remaining integrand contains a factor x;x; which is nonzero only if i = j
due to the symmetry of the integrand. In addition, it is equal to #?/3 due to
the normalisation of the vector components. Now ~? is replaced by the energy
W which is then normalised with kgT to ¢. The result is:

2270 (A:BT)% 3 < 3
M= (my')? My stie —()d C.45
wy = DR s [ Hewgac o)

The integral can be recognised as the Gamma function I' (s + 5/2) and is equal
to 1 for s = —1/2 [8]. The effective density of states of a parabolic band was
known already from Equation C.14. Together with the values for Aly; this yields
the diagonal mobility tensor:

1.0
| = 4q7—n o
WO 3ymmyg Y
where the choice for the longitudinal mass mn; or the transversal mass m; depends

on whether the current direction i is parallel or perpendicular to the axis of
revolution of band m.

(C.46)

C.2.4 Generalised drift-diffusion equations

In Section C.2.2 and C.2.3 the electron and hole current densities were derived
as a function of the quasi Fermi levels:

JM = nmym aE‘Fn

8EF,
T e (C.47)
i 17 dl‘l i

,u"i] 617j

However, sometimes it is convenient to separate them into a drift and a diffusion
part. This will enable a comparison with the classical drift-diffusion equations
valid for isotropic, homogeneous material. For this purpose the gradient in the
quasi Fermi level dEF,, /3x; should be developed.

This is possible by taking the gradient of the nonequilibrium electron con-
centration n™ (n™, x), given by Equation C.9, where n™ was an abbreviation of
the energy difference Ep,, — Ef%. The gradient of n™ can formally be written
as:

dn™ On™ On™  d'n™
dz; Conpm Ox; dz;

(C.48)

where d"n/dz; is defined as the gradient of n™ after all variables except after

n™. When o™ is replaced by Er,, — Ef%), a rearrangement of terms gives:
OEr, _ OE, 4 on™\ "t dn™ _[on™ —L gnpm (C.49)
ox; ox; onm dx; onm dx; )
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The gradient in the band edge 0E,/0x; can be expressed as a function of
the electrostatic drift field FJ‘?l by differentiating the expression found in Sec-
tion 2.1.7:

OEZ,  ox™ O¢

oz;  dx; qa—:cj

(C.50)

where x™ is the electron affinity of conduction band m. The gradient of the
electrostatic potential ¢ is by definition equal to —Ff‘.

Combining the above information with Equation C.47, the electron current den-
sity can be written as:
. " ¢ dn™ orm
J?’I. — m 1" —- . r D7" - m m n 0.51

where D[ is the diffusion tensor, defined by the generalised Einstein relation:

m m,. m 8nm _l
gD} = n"u; (W) (C.52)

and where I';, describes the inhomogeneity of the material. Its gradient is defined
as:

(C.53)

ary _ (9n™\ ! dinm
81’j N o™ dz;

In combination with Equation C.52 it reveals the diffusive nature of the last
term of Equation C.51:

m 7) gy T
m, m 61-‘11 _ ’(7}(1 n

't = !
He) bz, U

(C.54)

A similar derivation can be made for the hole current density J*. The results
are:

™ dp OEm dp* are
JE=plut -2 g2 — =6 ) — gD 4 e P C.55
=P ( oz, qaxj oz, ) qDj; az, + P oz, (C.55)

where E%* was the bandgap between the valence band u and the conduction
band m. The hole diffusion tensor D} and the additional hole diffusion function
o', /0x; are defined as:

v oww (0PN BT opu\ T anpe .
qDj; = p" 5 (571—”) ' bz, (8—777; dz; (C.56)

The n* in those expressions is equal to E{, — Epp.

The generalised Einstein relation and the additional diffusion functions oIy /0x;
and 9"} /0z; can be much simplified when the material is nondegenerate. It
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was shown in Section C.1 that in that case the electron concentration can be
written as:

n™ = N exp (kﬂ——T) (C.57)
B

As a result, its derivatives are equal to:

on™ n™ dn™  dInNF

Onm o kBT ’ dl’, dl‘j

(C.58)

When also the definitions of mobility in Equation C.41 are used, it is possible
to write the generalised drift-diffusion equations for electrons and holes as:

8¢ 19x™ kT [ d d

m_— g™ — [ —Inn™ — — InNZ .

’ [ dz; q0r; ¢ (dv’ﬂj BT (’)] (G:59)
- m 1 Emu

J¢ = ot [_%_lax __6 G

dz; qOzx; q Oy

— { ——Inp* — —/—1 ] R
. ( y np ’ nNV)] (C.60)

The gradient —0¢/0x; is equal to the electrostatic field F;’l. If the material is
isotropic and homogeneous, it can be verified that the equations reduce to the
classical case of Equation 2.54 and 2.55.

C.3 Auxiliary relations

The current density equations are generally accompanied by a number of aux-
iliary relations in order to solve some unknown parameters. These relations
include the pn product, the continuity equations, and the Poisson equations.
Their appearance changes in the presence of mechanical stress.

C.3.1 The pn product

The pn product is often used as a boundary condition to calculate the minority
carrier concentration just behind a junction [9]. In addition, it is a material
constant in thermodynamic equilibrium for the case of nondegenerate material.
It can be determined experimentally and used to characterise the band structure.
Although the concept is also applicable to highly doped material [4], it is worked
out here only for the nondegenerate case. Even then it can be defined in three
different ways.

Firstly, the pn product can be defined for one conduction band m and one
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valence band u. With the aid of Equation C.9 and C.13 it can be written as:

(ri™)* (x) = 2™ (%) p* (x)

E n E 4
— (i) ) exp (P02 ) ) (c61)
mu m ATU E‘% — ETCnO
where : (n2%)? (x) = NE N exp | =X0 €0 ) (x) (C.62)
kgT

Here, (71{8") is the pn product of the bands m and u in thermodynamic equi-
librium and is independent of the quasi Fermi levels.

Secondly, the pn product can be defined for one conduction band m with
respect to all valence bands u:

( m) =" (X Zp (X
= (n)? (x) exp (%YF—F) () (C.63)

where : (nl2)?( ZNV (Ev—(l":;iﬂ%) (x) (C.64)

where the equilibrium product (n}{,‘)2 is again independent of the quasi Fermi
levels. In a similar way the pn product can be defined with respect to one
conduction band m and all valence bands u.

Finally, the pn product can be defined for all conduction bands and all
valence bands:

— Z Z n™ (X) pu (x)

m u

. Er, — Ep,
= %y () exp (—F—Aﬁi) ) (C.65)
where : n% (x Z Z Ng (x X) exp (EVL]%%“—CQ) (x) (C.66)
'B

m w

This definition is equal to the intrinsic carrier concentration that is traditionally
used to describe stress-free material. It turns out, however, that it is not very
practical to calculate the characteristics of stressed devices.

C.3.2 Continuity equations

The continuity equations describe how much charge is flowing to and from a
specific point. They state that electrons and holes are either generated, stay
in the same band, or recombines with each other. They therefore describe the
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changes in the concentrations in time. This can be formulated as:

an™ . . 1~ agm

i ) =Gl (x) - R} (x)+5; e ® (C.67)
W Wiy Lo O ;
o (%) =G, (%)~ R} (%) EZ Be (x) (C.68)

where G and G, are the local generation rates and R}* and R} the recombi-
nation rates of the conduction band m and the valence band u.

Both the generation and the recombination of electron-hole pairs can be
described by lifetimes. The generation and recombination lifetimes of bulk ma-
terials are quite different, the former being up to 100 times higher [10].

Generation and recombination can occur through different mechanisms. In
silicon with free carrier concentrations up to 5x10'® cm =2 the most important
mechanism is that of Shockley, Read, and Hall [11]. It occurs through deep-level
impurities, causing states around the middle of the forbidden band. Under the
assumptions that:

e The system is in steady state,

e The number of traps is small compared to the majority carrier concentra-
tion, and

e The injected minority concentration does not exceed the doping level (low-
level injection),

the recombination rates of the minorities R,, and R, can be written as:

m m 73 {3

i Ri=2_10 (C.69)
TSRH TSRO

where ng* and p are the electron and hole concentrations in thermal equilib-

rium.

The 75k and 7¢ry are the electron and hole Shockley-Read-Hall lifetimes of
bands m and u, respectively. They are related to the crystal defects and to the
doping concentration. Therefore they are quite technology-dependent. Their
value begins to decrease at concentrations greater than 1017 cm=3. Often, it is
assumed that they are equal for all bands of a type. They can be written as a
function of the impurity concentration N, the thermal velocity of the carrier
Uth, and the capture cross section of the impurity . This yields:

1 ) v 1
Tn vthNT ' 71)Ul,h, NT

T

TSRH = (C?O)

TSRH

At high frec carrier concentrations the generation and recombination is dom-
inated by the Auger mechanism. This creates electron-hole pairs by the impact
of a hot electron, or annihilates a pair by the inverse mechanism. The associated
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lifetimes depend on the Auger coefficients C,, and C),, and on the square of the
majority carrier concentration. For low-level injection they can be written as:

1 1

Trug = Cpp(z)Q TAug = Cnn2 (C.11)

Both the SRH and the Auger lifetimes have been determined experimentally
on many occasions [10]. They can also be derived from quantummechanical
considerations, where photons and phonons perturb the electron eigenfunctions
[12, 13].

C.3.3 The Poisson equation

The Poisson equation relates the total space charge concentration p™ to the
electric field F*', and is especially useful for calculating device behaviour with
a finite-element method. Under low frequency conditions it reads:

V- (0, F') = ot (C.72)

where ¢¢ is the electrical permittivity of vacuum and ¢, is the dielectric con-
stant of the material. The field is related to the electrostatic potential ¢ as
Fe!= —V¢.The space charge is given by the sum of the free carrier concen-
trations and the ionized doping atom concentration N, and Ng. Therefore
Equation C.72 can also be written as:

- V2 + Ve, - Vo = ei (Z n™ =Y p*+ Ny - Ng) (C.73)
0 m u

Normally, the material is isotropic and homogeneous, so that ¢, is a scalar and

its gradient is zero. In a stressed material, however, it is generally a tensor and

when the stress in inhomogeneous, its gradient is nonzero.

C.4 Conclusions

Even for anisotropic, inhomogeneous material with degenerate bands the current
density is proportional to the conductivity and the gradient in the quasi Fermi
level, as described by Equation C.36 and C.39. For nondegenerate material it
is practical to split the conductivity into a carrier concentration and a mobility
representing the influence of the material. Sometimes it is also practical to split
the quasi Fermi level gradient into a drift and a diffusion component. It then
appears that the currents are not only driven by the electrostatic field and the
concentration gradient, but also by gradients in the effective density of states,
the band gap, andithe electron affinity. The inhomogeneity behind those forces
also leads to an extra term in the Poisson equation.
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Appendix D

Current through a Bipolar
Transistor

Probably the most important characteristic of a bipolar transistor is the expo-
nential relation between the collector current I.. and the base-emitter voltage
Vie in forward bias. This relation is usually written as:

IC:ISCXP(ZZI;) (D.1)
in which Ig is the saturation current, ¢ the elementary charge, kg the Boltzmann
constant, and T the absolute temperature. In practice, this relation appears to
be accurate over many decades of current. It can be influenced by mechanical
stress only through Is. Other transistor characteristics arc determined by the
forward current gain, the Early voltage, the base transit time, and the depletion
layer capacitances. Their changes with stress, however, are far less important
for the transistor behaviour in a circuit. Therefore they are not modelled here.

In this appendix the saturation current is analytically modelled in terms of
transport parameters. For this purpose the Gummel-Poon model is followed
[1]-[4]. Although it considers a device of only onc dimension, it has proven
to be remarkably accurate. It has the advantage over the simpler Ebers-Moll
model [5] that it allows many parameters to vary with position: the doping, the
mobility, and the intrinsic carrier concentration. For this reason it can be used
to model the effects of inhomogeneous stress.

The appendix starts by discussing the one-directional abstraction of the
transistor geometry. Then it presents assumptions about its construction and
its operating conditions. It derives the current densities in the base, and relates
them to the voltage differences between the transistor terminals. Finally, it
derives the collector current in the form of Equation D.1, and the saturation
current in terms of geometry and transport parameters.
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p-substrate

Figure D.1: 3D schematics of conventional bipolar transistors. (a) Vertical npn.
DN: collector plug, BN: buried layer, BW: intrinsic basis, WP: extrinsic basis,
WN: emitter, DP: isolation. (b) Lateral pnp. DN: base plug, WP: collector and
emitter.

D.1 The one-dimensional approximation

A vertical npn transistor is often constructed as the one shown in Figure D.1.a.
Its collector is formed by a homogeneous epitaxial layer on a p-type substrate.
This epi-layer has a donor concentration of about 10'® em~2 and is contacted
by a highly-doped buried layer and a deep collector plug. In the epi-collector
an intrinsic base has been implanted with an acceptor concentration of about
10'7 ¢cm~2 in the active region. It is contacted with a higher doped extrinsic
base. In the intrinsic base the emitter has been implanted with a donor concen-
tration of approximately 10 cm~3. Around the collector, base, and emitter a
ring with a high acceptor concentration has been diffused in order to isolate the
transistor from other devices.

In the same fabrication process a pnp-transistor is usually constructed lat-
erally, as in Figure D.1.b. Now the epi-layer serves as the base and two donor
implantations as the collector and emitter.

The three-dimensional structures of Figure D.1 can be better modelled when




D.2. ASSUMPTIONS 217
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Figure D.2: 21) schematic of a vertical npn transistor (a) and a lateral pnp
transistor (b). The main flows of the charge carriers arc indicated with arrows.
The metal connection e is the emitter, b the base, and ¢ the collector.

they are simplified to the two-dimensional cross-sections of Figure D.2. This con-
siderably reduces the time of calculations needed. It also introduces some minor
errors due to the neglect of edge effects and the spreading of the collector cur-
rent [3].

The figure also shows the direction of the main charge carrier flows in the
transistors if they arc biased in forward. The main current direction in the
base is perpendicular to the substrate surface for the vertical transistor. For
the lateral pnp, however, it is directed along the surface. This difference plays
a role when the response to mechanical stress is considered.

The two-dimensional structure can only be modelled analytically if it is reduced
to the one-dimensional cross-section in Figure D.3. Again, the edge-cffects are
neglected. Figure D.3.a represents the effective doping profile of the vertical
npn for a cross section through the emitter. Figure D.3.b sketches the electrical
connections in forward bias. It also indicates the principal current Hows inside
the transistor. The collector current I, mainly consists of electrons crossing
the emitter-base junction due to the positive Vi.. They diffusc through the
base as minority charge carriers. Finally, they are collected at the collector-
base junction. The base current I mainly consists of holes injected in the base
which are able to cross the base-emitter junction. Since the emitter doping is
much higher than that of the base, I; is much smaller than /.. Figure D.3.c,
finally, sketches the band edge diagram throughout the transistor and indicates
the quasi Fermi levels in forward bias.

D.2 Assumptions

The Gummel approach for deriving the collecor current makes some assumptions
about the transistor construction and the operating conditions:
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Figure D.3: 1D simplification of a vertical npn transistor in forward bias. (a)
Profile of effective doping for a line through the emitter, (b) Flow of the main
currents, (c) Band edge diagram and quasi-Fermi levels. The dashed vertical
lines indicate the boundaries of the depletion layers.




D.3. CURRENT DENSITIES IN THE BASE 219

e The base material is nondegenerate, making Maxwell-Boltzmann statistics
applicable;

e The bias voltages are low enough to neglect avalanche multiplication:;

e The minority concentration in the basc is less than the doping concentra-
tion (low-level injection);

e The base is wide enough to neglect the effects of velocity saturation (see
the comment in the following);

e The recombination in the basc and space charge regions is negligible;
e The forward current amplification factor 8¢ is much higher than one;

e The majority current in the base flowing into the collector is small com-
pared to the minority current.

D.3 Current densities in the base

The last two assumptions in the previous section imply that the collector current
is dominated by the minority current injected from the emitter into the base.
This current will be derived here for the case of an npn transistor.

In the base, at a position x in the quasi-neutral region, an electron current is
flowing in band m with a density J (x). In its most general form this current
density can be written as (sce Equation C.36 and C.41):

8EF!L
6xj

T () = n™ () el (%)

(x) (D.2)
where n' is the contribution of the band to the non-equilibrium electron con-
centration in the base, and ;LZ’ is the mobility tensor of the band. EFp, is the
quasi Fermi level for electrons.

For nondegencrate conditions the electron concentration n™ can be replaced

by the exponential expression of Equation C.9 and C.11:

Ern (x) = B¢ (%)
kT

n'™ (x) = N& (x) exp ( (D.3)
in which N* is the effective density of states of the conduction band m, E%,
its edge energy, kp the Boltzmann constant and T the absolute temperature.
The quasi Fermi level can be related to the potential in the base by multiplying
both sides of Equation D.2 by the total hole concentration p. Since low-level

injection is assumed, p is approximately equal to the local doping concentration
Na:

P00 = Na (9 = 07 ey (L= ZR0) g
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where the sum runs over all u valence bands and where the symbols have an
equivalent meaning as in Equation D.3. Inserting this into Equation D.2 gives:

EFn. - EFp dEFn
kBT dl‘j

JIN s = (n)? u exp ( (D5)

m

where (n%)z = (nm)2 (x) is the pn-product of conduction band m with respect
to all valence bands (see Section C.3.1). The subscript 0" indicates the situa-
tion of thermodynamic equilibrium.

The Fermi level gradient is applied in the z-direction along a unit vector [;,
which itself is defined in the axes system of the mobility tensor. The resulting
current vector has only one interesting component: the one crossing the junction
and therefore along ;. The magnitude of this component J™ is equal to the
inner product J™!;. The vectorial equation D.5 can therefore be rewritten in
scalar form. With some rearrangements this yields:

ﬂA_ = ex (EFn. - EFI’) dEF-n‘
(n)? Ll ksT dz

(D.6)

D.4 Relation with the terminal voltages

The above expression for the local current density can be transformed to an
equation for the complete device by integrating z over the effective base width
W (see Figure D.3). Because of the one-dimensional approximation and the
negligible recombination, J™ does not change over the base width and is inde-
pendent of z. It is therefore equal to the current density J* flowing over the
base-collector junction. It can be placed outside the integral, yielding:

Jm /W N2 4o /Wexp<EF" “EFP) dBrn g, (D.7)
CJo Wun () Jo ksT dz

Now, the quasi Fermi level of holes EF, is also assumed to be constant over
the base width, at least in comparison with Ep,. This is firstly the result of
the assumption of low-level injection. Under such injection the concentration
of electrons remains inferior to the concentration of the doping. Secondly, it is
the result of the assumption of high, current gain, meaning that the electron
current through the base is much higher than the hole current. Finally, it is
the result of the hole mobility being nearly equal to the electron mobility. The
consideration of Equation D.2 now learns that for keeping all currents flowing,
the Fermi gradient of the electrons need to be much larger than that of the
holes.

The above equation will hardly change if the space charge regions are in-
cluded within the integration interval. This is best seen at the left-hand side.
Firstly, the depleted regions contribute little to the total number of holes. The
reason is that they are mostly thin compared to the effective base width W.
In addition, they have a low hole concentration compared to the quasi-neutral
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base because of the high internal field. Secondly, the values of pi and (n;’(’)
are quite independent of the material and region type. Therefore Equat.ion D.7
can be written in a good approximation as:

w -1 Frn(ze)
N iz Epn — Eb
Jm = / — A / exp | =22 Y 4Ep,  (D.8)
o Ll (nig)” JEpa(z.) kT

where E%. p 18 the constant value of Er,,.

The quasi Fermi levels at the space charge boundaries apply to the local
majority charge carriers. They can therefore be related to the voltages applied
to the transistor. By definition it is true that:

1, 1
Vie = 5 (EF,, (3‘) E,,p) . V= 5 ( “Fp = Epy (z )) (DQ)

where V. and V., are the voltages over the base-emitter and collector-base
Jjunctions, respectively. This means that:

b‘Fn(ze)
Epn — E® —
/ exp (—f T Fp) dEg, = —kgT [exp (Z‘j’;) — exp (——Li‘;ib)J

Ern(ze)
(D.10)

The voltages are equal to those between the device terminals if the ohmic volt-
age drop inside each transistor region is negligible with respect to the junction
voltages.

The first term on the right-hand side of Equation D.10 represents the cnergy
of the electrons flowing forward from the emitter into the base, while the second
term represents the reverse flow from the collector. This reverse flow is gener-
ally undesirable and should be suppressed. It starts being negligible when V.
exceeds 200 mV. This is a quite reasonable condition in the practice of analog
circuit design.

As a result, Equation D.8 is simplified to:

qVee
"= D.11
7 = =g e (L) (D.11)
where JI' is the saturation current density due to band m:
w N ) -1
JI = kgT / —— (x de) (D.12)
o Ll (x) (ng (x))

It should be noted that cvery parameter under the integral sign may be a func-
tion of position, meaning that the expression of JZ* is valid for inhomogeneous
and anisotropic base material.

In the above derivation the effects of velocity saturation have been neglected.
This saturation may occur in the space charge regions where the clectric field
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is so high that the electron velocity reaches a saturation value. Inclusion of the
effect would result in an additional integral [1, 3, 7]. The effect of this integral
may be represented by an increase in the effective base width. This increase
amounts 20 nm at maximum. For most transistors this is still negligible.

D.5 Collector and saturation current

In order to find the total collector current density the contributions of all bands
should be summed. In addition, the current density should be integrated over
the junction area A. Finally, the sign should be reversed since, conventionally,
the collector current /.. is considered positive when it enters the terminal. This
yields:

: Vhe
1. = Is (x) exp (q ’ ) (D.13)
where Ig is the saturation current, given by:

Is=Y / T2 (x) dady (D.14)
m A
Often it is not too far from the truth to assume that u} and nj in the
base are independent of the exact position. If in addition the doping profile is
assumed to be uniform, Equation D.14 reduces to:

A m m 2
IS = kBT—m zﬂ;liljuij (niO) (D15)

The equation can be reduced even further if the material is isotropic, which is
the case in stress-free silicon. The mobility is then equal to the scalar average
value ;" and the pn-product equal to n%. By applying the Einstein relation of
Equation C.52, p" can also be expressed in an average diffusion constant D".
The saturation current can then be written as:

A D" ”?0
W Ngu

Is=gq (D.16)

which is the expression appearing in most textbooks on the subject [5].

D.6 Conclusions

Under some reasonable assumptions, the collector current of a bipolar transistor
* can be related to the exponent of the base-emitter voltage. This relation contains
a linear dependence on the saturation current, which is a transistor parameter.
It can be expressed in terms of the geometry, the mobility tensor, and the pn-
product in thermodynamic equilibrium. In its evaluation, care should be taken
to correctly sum the contributions of the different energy bands and the various
tensor components.
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Summary

This thesis presents a new model of the piezojunction effect in silicon. The
model can be used to design better mechanical sensors or more robust elec-
tronic circuits. Although it is derived from fundamental thcory, it describes the
behaviour of bipolar transistors under mechanical stress with a set of practically
manageable equations. The model has been validated with experiments.

Silicon bipolar transistors are very important components of analogue electronic
circuits. Their main electrical characteristic is determined by the saturation
current, which is influenced by mechanical stress. This influence is called the
piezojunction effect. It is closely related to the well-known piezoresistive effect.

Stress often appears in integrated circuits, where it is an unwanted by-
product of the processing and packaging. Through the piezojunction effect
stress can cause offset, which is especially a problem in bandgap references. On
the other hand, stress is used in micromachined sensors to measure mechanical
quantities such as pressure or acceleration. Often, to detect stress, resistors
called strain gauges are used. However, stress could also be detected by tran-
sistors, which have a much a better source resistance and a smaller active area.
This would increase the accuracy of the sensors and decrease their size and
power consumption.

In the present practice of circuit and sensor design the piezojunction effect is
rarely considered. The reason is that an adequate model of the cffect is missing.
Previous models are only accurate for very high stresses (over 1 GPa), or for
specific stress orientations. The new model in this thesis applies to stresses of
any orientation and with moderate magnitudes (up to 200 MPa).

The piezojunction effect in bipolar transistors depends on one key quantity:
the conductivity of minority charge carriers in the base. The stress sensitivity
of this conductivity can be deduced from the strain, that is, a deformation
of the semiconductor crystal lattice. This deformation changes the periods of
the electron wave functions and often perturbs their symmetry. As a result, the
energy bands of the semiconductor are shifted, split, and deformed. This greatly
influences the electron conductivity and thereby on the transistor saturation
current. The influence on the saturation current was numerically calculated
from deformation potentials found in literature.
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The numerical calculations agree with the changes observed in measure-
ments. However, they are complex, contain some time-consuming integrations,
and are sensitive to parameter variations. Therefore, they are impractical for
design purposes. For those reasons we introduced the macroscopic model.

The macroscopic model describes the stress dependence of the minority con-
ductivity with a polynomial tensor series. The coefficients of this series are called
the piezojunction coefficients. This description is very similar to the model of
the majority conductivity, in which the stress sensitivity is described by the
piezoresistive coefficients. Both types of coeflicients form tensors of material
constants. This fact, combined with the crystal symmetry, greatly limits the
number of coefficients that need to be determined and gives the expansion a
particularly simple shape. The coeflicients were calculated numerically in terms
of the energy bands and the deformation potentials.

The model has been validated by experiments in which transistors were char-
acterised under different stresses. For this purpose, vertical npn and pnp tran-
sistors were fabricated in wafers with different crystal orientations. The wafers
were sawn into long, thin beams. These were bent as cantilever beams by a
newly designed apparatus. During this bending the transistors were charac-
terised electrically by measuring the Gummel plots.

After analysis of the measurements the different saturation currents could
be plotted as a function of the applied stress. The data points lie by good
approximation on parabolic curves, which have different shapes for tensile and
compressive stress. The curves depend greatly on the orientations of the stress
and the current. In addition, they differ significantly for npn and pnp transis-
tors.

Despite the anisotropy, all curves can be described by one polynomial ten-
sor series with cubic symmetry. This confirms the validity of the macroscopic
model. In addition, the description provides numerical values for the piezojunc-
tion coeflicients with a good accuracy.

The accuracy of the measurement set-up was mainly limited by the spreading
of the current in the base of the transistors and by parasitic torsion of the beams.
The validity of the results is supported by coeflicients reported by other authors.
It is also supported by a characterisation of the well-known piezoresistive effect
for which the same set-up was used.

This work probably provides the first accurate model of the piezojunction effect
at moderate stress levels. The model is based on fundamental physical prin-
ciples, but it is sufficiently practical for application in the design of sensors or
circuits. The model also shows many parallels with the piezoresistive effect.

Further improvements can be expected when the model is provided with
Fermi-Dirac statistics and a better description of electron scattering. In addi-
tion, it could be improved by more experiments to find the missing piezojunction
coeflicients and to determine the other coeflicients more accurately. However,
the model will prove its practical use most clearly in the design of an actual
mechanical sensor.




Samenvatting

Dit proefschrift presenteert een nieuw model van het pi¢zojunctie-effect in sili-
cium. Het model kan worden gebruikt voor het ontwerpen van betere me-
chanische sensoren en robuustere elektronische schakelingen. Hoewel het model
is afgeleid van een fundamentele theorie, beschrijft het het gedrag van bipo-
laire transistors onder mechanische spanning met enkele praktisch hanteerbare
vergelijkingen. Het model is gevalidcerd met experimenten.

Bipolaire transistors van silicium zijn zeer belangrijke componenten van analoge
elektronische schakelingen. Hun voornaamste elektrische karakteristiek wordt
bepaald door de verzadigingsstroom, die beinvloed wordt door mechanische
spanning. Deze invloed wordt het pigzojunctie-effect genoemd. Het is sterk
gerelateerd aan het bekende pitzowcerstands-effect.

Mechanische spanning treedt vaak op in geintegreerde schakelingen, waar ze
een ongewild bijproduct is van de fabricage en verpakking. Via het piézojunctie-
effect kan zc offset veroorzaken, wat vooral een probleem is in bandgap-referenties.
De spanning kan daarentegen ook benut worden in sensoren gemaakt met be-
hulp van microbewerking om mechanische grootheden te meten zoals druk of
versnelling. Gewoonlijk wordt deze spanning gedetecteerd door weerstanden
die rekstrookjes worden genoemd. Echter, ze kan ook worden gedetecteerd door
transistors, die een veel betere bronweerstand hebben en een kleiner actief op-
pervlak. Dit zou de nauwkeurigheid van de sensoren vergroten en hun omvang
en vermogensdissipatie verkleinen.

In de huidige ontwerpen van schakelingen en sensoren wordt het piézojunctie-
effect zelden gebruikt of onderzocht. De reden hiervoor is een gebrek aan een
geschikt model. Vroegere modellen zijn alleen nauwkeurig voor zeer hoge span-
ningen (meer dan 1 GPa), of voor specifieke ori¢ntaties van de spanning. Het
nieuwe model in dit proefschrift beschrijft spanningen met een willekeurige orién-
tatie en een gematigde grootte (tot 200 MPa).

Het piézojunctie-effect in bipolaire transistors hangt af van één grootheid in
het bijzonder: de geleiding van minderheidsladingsdragers in de basis. De span-
ningsgevocligheid van deze geleiding kan afgeleid worden uit de rek, ofwel de ver-
vorming van het kristalrooster van de halfgeleider. Deze vervorming verandert
de periode van de elektron-golffuncties en verbreekt gewoonlijk hun symmetrie.
Hierdoor worden de encrgicbanden van de halfgeleider verschoven, gesplitst en
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vervormd. Dit heeft grote invloed op de geleiding van elektronen en daardoor op
de verzadigingsstroom van de transistor. De invloed op de verzadigingsstroom
is numeriek berekend vanuit de deformatiepotentialen uit de literatuur.

De numerieke berekeningen komen overeen met de veranderingen die zijn
waargenomen in de metingen. Ze zijn echter complex, bevatten integraties die
veel tijd kosten en zijn gevoelig voor variaties in de ingangsvariabelen. Ze zijn
daarom onpraktisch voor ontwerp-doeleinden. Vanwege deze redenen wordt het
macroscopische model geintroduceerd.

Het macroscopische model beschrijft de spanningsafhankelijkheid van de
minderhedengeleiding met een polynomische tensorreeks. De coéfficiénten van
deze recks worden de piézojunctie-coéflicienten genoemd. Deze beschrijving ver-
toont veel gelijkenis met het model van de meerderhedengeleiding, waar de span-
ningsafhankelijkheid wordt beschreven met de piézoweerstands-coéfficienten. Bei-
de types coéfficiénten vormen tensoren van materiaalconstanten. Dit feit, gecom-
bineerd met de kristalsymmetrie, reduceert het aantal coéfliciénten dat bepaald
hoeft te worden sterk en geeft de reeks een bijzonder simpele vorm. De coéf-
ficiénten zijn numeriek berekend in termen van de energiebanden en de defor-
matiepotentialen.

Het model is gevalideerd met experimenten waarin transistors zijn gekarak-
teriseerd onder verschillende mechanische spanningen. Hiervoor zijn verticale
npn- en pnp-transistors gefabriceerd in plakken met verschillende kristalorién-
taties. De plakken zijn in lange, dunne stroken gezaagd. Deze stroken zijn
gebogen als uitkragende liggers met behulp van een speciaal ontworpen appa-
raat. De buiging resulteerde in goed gedefinieerde spanningen in de transistors,
die elektrisch werden gekarakteriseerd door de Gummelplots te meten.

Na analyse van de Gummelplots konden de verschillende verzadigingsstromen
geplot worden als functie van de mechanische spanning. De datapunten liggen
in goede benadering op parabolische curves, die verschillend van vorm zijn voor
trek- en duwspanning. De curves zijn erg athankelijk van de oriéntatie van zowel
de spanning als de stroom. Bovendien tonen ze grote verschillen tussen npn- en
pnp-transistors.

Ondanks de anisotropie worden alle plots beschreven door één polynomi-
sche tensorrecks met kubische symmetrie. Dit bevestigt de juistheid van de
vergelijkingen en de aannames van het macroscopische model. Daarnaast levert
de beschrijving numerieke waarden van de piézojunctie-coéfliciénten op met een
behoorlijke nauwkeurigheid.

De nauwkeurigheid van de meetopstelling werd voornamelijk beperkt door de
spreiding van de stroom in de basis van de transistors en door parasitaire torsie
in de stroken. De geldigheid van de resultaten wordt bevestigd door coéfliciénten
die door andere auteurs zijn gerapporteerd. Ze wordt ook onderstecund door de
karakterisering met dezelfde opstelling van het bekende pigzoweerstands-eftect.

Dit werk bevat waarschijnlijk het eerste nauwkeurige model van het piézojunctie-
effect voor gematigde spanningsniveaus. Dit model is gebaseerd op funda-
mentele fysische principes, maar is praktisch genoeg om te worden gebruikt
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voor het ontwerpen van sensoren en schakelingen. Het model laat daarnaast
vele parallellen zien met het piezoweerstandseffect.

Indien het model verbeterd moet worden, zou het kunnen worden voorzien
van Fermi-Dirac-statistick en een betere beschrijving van de verstrooiing van
elektronen. Daarnaast zou het verbeterd kunnen worden door meer experi-
menten. Hierdoor kunnen de nu ontbrekende piézojunctie-coéflicienten worden
gevonden en de andere nauwkeuriger worden bepaald. Echter, het model zal
zijn praktische nut het duidelijkst bewijzen wanneer men er ecn mechanische
sensor mee ontwerpt.















The current-voltage charactenstics of bipolar transistors are very sensitive
to mechamical stress. This sensitivity 1s caused by the prezojunction effect
The effect can be used for strain gauges in micromachined mechanical
sensors. On the other hand. it should be avoided in integrated circuits
where stress arnises from packagmg or processing and leads to offset.

This work describes the piezojunction effect in silicon from theoretical
models as well as from experimental results. It introduces a new.
analytical model of the effect. The new model is founded on sohd-state
physics. but can easily be related to measurements and 1s applicable to
the design of sensors or circuits

The work will be of interest to researchers and engineers in the fields of
semiconductor device physics. silicon sensors. and analogue circuts.
Especially. 1t 1s intended for those interested in the following questions:
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