
Technische Universiteit Delft
Faculteit Elektrotechniek, Wiskunde en Informatica

Delft Institute of Applied Mathematics

Iterative Methods for Solving the

Schrödinger Equation on a Rectangular

Scattering Region

Verslag ten behoeve van het
Delft Institute of Applied Mathematics

als onderdeel ter verkrijging

van de graad van

BACHELOR OF SCIENCE
in

TECHNISCHE WISKUNDE

door

ANNE MARKENSTEIJN

Delft, Nederland
Mei 2014

Copyright c© 2014 door Anne Markensteijn. Alle rechten voorbehouden.

2

BSc verslag TECHNISCHE WISKUNDE

“Iterative Methods for Solving the Schrödinger Equation on a Rectangular
Scattering Region”

ANNE MARKENSTEIJN

Technische Universiteit Delft

Begeleiders

Dr. A. R. Akhmerov
Dr. N. V. Budko
Dr. M. T. Wimmer

Overige commissieleden

Prof. dr. ir. A. W. Heemink Dr. B. van den Dries

Dr. Y. M. Blanter

Mei, 2014 Delft

Abstract

In this bachelor thesis, we demonstrate the application of iterative methods to the
solution of the Schrödinger equation defined in a rectangular mesoscopic scattering
region. We find that the Induced Dimension Reduction method (IDR(s)) is the best
iterative method for large systems whereas the General Minimalized Residual method
(GMRES) is the best method for small systems, out of the four tried methods: GM-
RES, restarted GMRES (GMRES(l)), the BiConjugate Gradient Stabilized method
(BiCGStab) and IDR(s). We also show that, although preconditioning can improve
the convergence behaviour of GMRES, the preconditioner proposed in this thesis, which
is similar to a shifted Laplacian preconditioner, is not optimal. Furthermore, we ob-
serve that the dependence of the number of iterations N on the spatial extent of the
domain, is related to the spatial decay factor of the corresponding Green’s function.
We also find that N is very small if the energy of the system is chosen to be outside
the bandwidth of the spectrum of the Hamiltonian, and we show that this is due to
the fact that the system matrix becomes diagonally dominant. Finally we show that
introducing a random potential into the system results in an increase of the number
of iterations with respect to a clean system for a system in the diffusive or in the bal-
listic regime, and we find that the number of iterations required to reach convergence
becomes constant when the system enters the localized regime.

Contents

1 Introduction 2

2 System 3

3 Spectral Analysis 7

4 Iterative methods 11
4.1 GMRES . 11
4.2 Restarted GMRES . 12
4.3 BiCGStab . 13
4.4 Preconditioning . 16
4.5 IDR(s) . 21

5 Performance of iterative methods for a clean system 24
5.1 System Size . 24
5.2 Energy . 25

6 Performance of iterative methods for a disordered system 29

7 Conclusions and Discussion 33

Appendices 35

Appendix A Python Code 35

Appendix B Matlab Code 44

1

1 Introduction

Numerical analysis is a widely used method to solve the Schrödinger equation in a
mesoscopic tight binding model of different geometries. These systems are now mainly
solved by using direct methods, which solve a linear system of equations in a finite
sequence of operations, and in the absence of rounding errors these methods will result
in the exact solution. The main problem with direct methods is that they use a lot of
memory to compute the required operations.

In this bachelor thesis, we will investigate the use of iterative methods to solve for
a part of the Green’s function corresponding to the Schrödinger equation defined in
a rectangular scattering region. Iterative methods solve the system by approximating
the solution, so that with every iteration, the approximation comes closer to the exact
solution. In general, the operations used to compute the approximate solution require
less memory than the operations used by a direct method. Because they require less
memory, these methods can be used to solve systems that are too big for direct methods.

In order to investigate the application of iterative methods to solve the Schrödinger
equation in a tight binding model, we will consider a rectangular scattering region with
two leads attached to it. We will first derive a linear system of equations, in Section
2, to solve for a part of the Green’s function corresponding to this scattering region.
In Section 3 we will analyse the spectra of all the matrices that make up the system
matrix of our problem. Using the properties found from the spectral analysis, we will
apply four different iterative methods in Section 4. We will consider the Generalized
Minimal Residual method (GMRES) in Section 4.1, restarted GMRES (GMRES(l)) in
Section 4.2, the Biconjugate Gradient Stabilized methods (BiCGStab) in Section 4.3
and finally we will consider the Induced Dimension Reduction method (IDR(s)) in Sec-
tion 4.5. To accelerate the convergence of GMRES, we will consider the application of a
preconditioning matrix in Section 4.4. Furthermore, we will compare the performance
of these different iterative methods in Section 5. Finally, we will introduce a random
potential into our scattering region resulting in a disordered system and discuss the
performance of iterative methods for a disorered system in section 6.

2

2 System

As mentioned in the introduction, we consider a square quantum billiard, which consist
of two infinite leads connected to one conductor, see Figure 1. The leads are assumed
to be ballistic conductors [1] (i.e. conductors with no scattering). This means that
waves can enter freely from the leads into the conductor, and after the waves have
scattered inside the conductor they can leave again through one of the leads. Because
the scattering only takes place inside the conductor and not in the leads, the conductor
is also referred to as the scattering region. In general, the electrons inside the scattering
region obey the Schrödinger equation [1]:

εΨ = HopΨ + S (1)

In which ε is the energy of the wave function Ψ, S is a source term representing a wave
coming in from one of the leads and Hop is the Hamiltonian operator

Hop =
−~2∇2

2m
+ U(r) (2)

with e the electronic charge (−1.6 · 10−19C), m is the effective mass, ~ = h
2π in which

h is Planck’s constant (6.63 · 10−34Js) and U is the confining potential.
The formal solution of this problem can be written as:

Ψ = GS (3)

where G is the corresponding Green’s function.

G = [ε−Hop]
−1 (4)

Until the boundary conditions are prescribed, this problem is not uniquely solvable.
We choose to have Dirichlet boundary conditions Ψ = 0 on the sides of the scattering
region without leads, and open boundaries on the sides of the scattering region that are
attached to the leads, see Figure 1. There is a unique solution that satisfies both the

Figure 1: The scattering region (black) with the boundary conditions and part of the infinite leads (red).

Dirichlet boundary conditions and the open boundary conditons; the retarted Green’s
function GR. In a one dimensional case, the retarded Green’s function corresponds to
two waves going from the point of excitation to minus and plus infinity. We incorporate

3

the boundary conditions into the equation itself, which is done by adding an infinites-
imal (positive) imaginary part η to the energy [1]. If we insert the imaginary part, we
obtain the following retarded Green’s function (since only the retarded Green’s func-
tion is considered, GR is simply denoted by G and will be referred to as the Green’s
function):

G = [ε−Hop + iη]−1 (5)

In order to calculate the Green’s function, we write equation 5 as a differential equation
for the Green’s function [1],

[ε−Hop(r) + iη]G(r; r’) = δ(r− r’) (6)

in which r is an arbitrary point inside the scattering region and r’ is the excitation
point.
We solve this differential equation by discretizing the spatial coordinates to lattice
points (see Figure 2), which turns the Green’s function and the Hamiltonian operator
into matrices

G(r; r’)→ G(i, j) (7)

Hop → H (8)

where the indices i and j represent points on the discrete lattice and H represents the
matrix notation of the differential operator Hop. Equation 5 then becomes a matrix

Figure 2: Discretized representations of the system with a width of 10 lattice points, and a length of 30 lattice points. The
black points represent the scattering region and the red points represent the leads.

equation
[(ε+ iη)I −H]G = I (9)

with I the identity matrix. To be able to solve for G, we must have the matrix repre-
sentation H of Hop. In order to make such a representation, a two dimensional case is
considered. The Hamiltonian operator (see equation 2) then becomes:

Hop = − ~2

2m
∇2 + U(x, y) (10)

4

To obtain the matrix representation, we let Hop work on a arbitrary function f(x, y).
We then make a uniform discrete lattice in which the points are located at x = k∆x
and y = l∆x with k, l ∈ Z. This gives:

[Hopf]x=k∆x,y=l∆x =

[
− ~2

2m
∇2f

]
x=k∆x,y=l∆x

+ Uk,lfk,l (11)

with fk,l = f(x = k∆x, y = l∆x) and Uk,l = U(x = k∆x, y = l∆x). To approximate
the second derivatives of f , we use the finite difference method. Assuming ∆x is small
enough, the derivatives can be approximated by (see [3]):

∂2f

∂x2
|x=k∆x,y=l∆x =

1

(∆x)2
∆2

0,xfk,l +O((∆)2)

∂2f

∂y2
|x=k∆x,y=l∆x =

1

(∆x)2
∆2

0,yfk,l +O((∆)2)

in which ∆2
0,x is the central difference operator in the x-direction and in which ∆2

0,y is
the central difference operator in the y-direction. If we substitute these approximations
in equation 11 we get:

[Hopf]x=k∆x,y=l∆x = (Uk,l + 4t)fk,l − tfk−1,l − tfk+1,l − tfk,l−1 − tfk,l+1 (12)

where we defined t ≡ ~2
2m(∆x)2

. From this expression, a matrix representation for the

two dimensional Hamiltonian operator can be obtained. We get a matrix H in which
all the elements are either 4t+U , −t or 0; all diagonal elements hγ,γ are equal to 4t+U
and an off-diagonal element hγ,δ equals −t if a lattice point (iγ , jγ) and another lat-
tice point (iδ, jδ) are either horizontal or vertical neighbours, otherwise an off-diagonal
element equals 0. Since being neighbours is a commutative relation [3](if (iγ , jγ) is a
neighbour of (iδ, jδ), then (iδ, jδ) is a neighbour of (iγ , jγ)) we have that hγ,δ = hδ,γ for
all γ, δ = 1, 2, . . . , n and therefore H is a symmetric matrix.

Even though we now have a matrix representation of the Hamiltonian operator, we
still cannot get the Green’s function by simply inverting [(ε− iη)IH] because this ma-
trix has infinite size. Truncating the matrix at some point is not a solution, because
than you’re solving a closed system with reflecting boundaries instead of the system
with open boundaries that we are interested in. In order to overcome this problem,
we are going to divide the overall Green’s function into four submatrices; one subma-
trix Gl ∈ C∞×∞ for the leads, one submatrix Gs ∈ Cn×n for the scattering region,
where n is the number of lattice points in the scattering region, and two submatrices
Gls ∈ C∞×n and Gsl ∈ Cn×∞ for the coupling between the leads and the scattering
region, which turns equation 9 into [1]:[

Gl Gls
Gsl Gs

] [
(ε+ iη)I −Hl Tl

THl εI −Hs

]
= I (13)

in which the matrix [(ε + iη)I − Hl] represents the leads, [εI − Hs] represents the
scattering region and the matrix Tl ∈ C∞×n is the coupling matrix between the leads

5

and the scattering region (We use (...)H to denote the conjugate transpose). This
coupling matrix is only non-zero if point li in the leads is adjacent to point i in the
scattering region, and for these adjacent points Tl has value t. Since we are only
interested in the part of the Green’s function inside the scattering region, we are going
to derive an explicit expression for Gs. From equation 13 we obtain:

[(ε+ iη)I −Hl]Gls + [Tl]Gs = 0 (14)

and
[εI −Hs]Gs + [THl]Gls = I (15)

From equation 14 we get
Gls = −FlTlGs (16)

with Fl = [(ε + iη)I − Hl]
−1 the Green’s function for the isolated semi-infinite leads

[1](since the overall Green’s function was the retarded function, Fl is also the retarded
function). If we now substitute equation 16 into equation 15, we obtain

[Hs − εI + THl FlTl]Gs = −I (17)

This gives the Green’s function for the entire scattering region without the infinite
leads, but we are only interested in part of the scattering region. In particular, we
are interested in the points of the scattering region which are adjacent to points in
the leads (the black points next to a red point in Figure 2). To get the part of the
Green’s function we are interested in, we define a matrix PL ∈ Cn×m, with n again the
number of lattice points in the scattering region and m the number of lattice points in
the scattering region that are next to a lattice point in one of the leads. The entries
of PL are zero, except for the entries (y, z) of PL for which the corresponding lattice
point (i, j) in the scattering region is adjacent to a point (li, lj) in one of the leads,
those entries have value −1. Since PL essentially is a matrix which only contains some
columns of −I (only those we are interested in), we can rewrite the matrix equation
to obtain the part of the Green’s function we are interested in:

[Hs − εI + THl FlTl]G = PL (18)

where G is that part of the overall scattering Green’s function Gs we are interested
in. Using the same matrix PL we can rewrite Tl as Tl = T ′lP

H
L , with Tl ∈ C∞×m.

Substituting this in equation 18 and defining the self-energy matrix HE ≡ T ′lFlT ′Hl we
obtain :

[Hs − εI + PLHEP
H
L]G = PL (19)

We use this equation to determine G, the part of the Green’s function we are interested
in. From now on, we will write this equation as a linear system

Ax = b (20)

with A = [Hs− εI +PLHEP
H
L], x column j of matrix G and b column j of matrix PL.

6

3 Spectral Analysis

In order to choose the right iterative method to solve this system and to be able to
apply preconditioning, it is necessary to know the spectrum and the properties of the
individual matrices and of the total system matrix A of equation 19. To be able to say
something about the spectra and properties, we first define the matrix Γ ≡ i(HE−HH

E)
and show that Γ must be positive semidefinite. We will not give a thorough proof of
this, but rather give a feeling of why Γ must be positive semidefinite.

Since the matrices Hs and HE must keep the physical meaning of Hamiltonians, some
constraints are imposed on the eigenvectors. For example, each eigenvector Ψ of a
Hamiltonian H must remain normalisable at all times, therefore they must obey:

∂|Ψ|2

∂t
≤ 0 (21)

Using |Ψ|2 = ΨHΨ and the product rule, we can write this as

∂|Ψ|2

∂t
=
∂ΨH

∂t
Ψ + ΨH ∂Ψ

∂t
(22)

We now rewrite the general time dependent Schrödinger equation to:

∂Ψ

∂t
=

1

i~
HΨ =

−i
~
HΨ (23)

where H is the effective Hamiltonian. In our system we have:

H = Hs + PLHEP
H
L (24)

We can use the rewritten of the time dependent Schrödinger equation to obtain:

∂ΨH

∂t
= (

∂Ψ

∂t
)H = (

−i
~
HΨ)H =

+i

~
ΨHHH (25)

Substituting the rewritten time dependent Schrödinger equation (equation 23) and
equation 25 into the product rule (equation 22) we get:

∂|Ψ|2

∂t
=

(
i

~
ΨHHH

)
Ψ + ΨH

(
−i
~
HΨ

)
(26)

As mentioned before, equation 21 must hold for all wave functions. So simplifying
above expression and using the constraint from equation 21 gives:

−iΨH(H −HH)Ψ ≤ 0 ∀ Ψ (27)

or
ΨHi(H −HH)Ψ ≥ 0 ∀ Ψ (28)

Using the effective Hamiltonian of our system (see equation 24) and using the fact that
the system Hamiltonian Hs is real and symmetric, we get

i(H −HH) = i(Hs + PLHEP
H
L − (Hs + PLHEP

H
L)H) = PLi(HE −HH

E)PHL = PLΓPHL
(29)

7

Substituting this in equation 28 gives

ΨHPLΓPHL Ψ ≥ 0 ∀ Ψ (30)

Since this is true for al Ψ, it follows that Γ is positive semidefinite.

Now that we have shown that Γ is positive semidefinite, we can use this to obtain
constraints on the spectrum of the system matrix and on the spectra of the separate
matrices of the system matrix. First look at the self-energy matrix HE , which is a
square complex m × m matrix, where m is the number of lattice points which are
attached to a lead. Since Γ is positive semidefinite, we have

xHΓx ≥ 0 ∀ x ∈ Cm (31)

Since equation 31 holds for all x, we can choose x such that it is an eigenvector of HE ,
i.e. HEx = λx with λ an eigenvalue of HE , to get:

xHΓx = ixH(HE −HH
E)x = ixHHEx− ixHHH

E x = ixHλx− ixHλx ≥ 0

where λ denotes the complex conjugate of λ. Using that xHx = |x|2 this simplifies to

xHΓx = iλ|x|2 − iλ|x|2 ≥ 0

Since λ is a complex number, we can write it as λ = λ′+ iλ′′ where λ′ denotes the real
part of λ and λ′′ denotes the complex part of λ. Using this notation, we obtain

xHΓx = i[λ′ + iλ′′ − (λ′ + iλ′′)]|x|2 = 2 · i2 · λ′′|x|2 = −2λ′′|x|2 ≥ 0

But since |x|2 ≥ 0, we must have λ′′ ≤ 0. Therefore the spectrum of HE lies in the
lower half plane, see Figure 3.

Figure 3: Spectrum of HE for a system with W = 30, L = 60, t = 1 and ε = 2.

Looking at the anti-hermitian part of M ≡ PLHEP
H
L , which is a n × n complex

8

matrix, with n the number of lattice points, something similar can be shown.
First we rewrite the anti-hermitian part:

i

2
(M −MH) =

i

2
(PLHEP

H
L − PLHH

E P
H
L) =

i

2
PL(HE −HH

E)PHL =
1

2
PLΓPHL

Then we choose y such that PHL y = x, or yHPL = xH , to obtain:

i

2
yH(M −MH)y =

1

2
yHPLΓPLy =

1

2
xHΓx

But we know that xHΓx ≥ 0 for all x, which means that i
2y

H(M −MH)y ≥ 0 for all
y. So we now choose an y such that it is an eigenvector of M , i.e. My = λy with λ an
eigenvalue of M . Using the same simplifications that were used when looking at HE

gives:
i

2
yH(M −MH)y =

1

2
· (−2) · λ′′|y|2 = −λ′′|y|2 ≥ 0

Since |y|2 ≥ 0, we must have λ′′ ≤ 0. Therefore the spectrum of M lies in the lower half
plane, see Figure 4. Comparing the spectrum of M (Figure 4) with the spectrum of

Figure 4: Spectrum of PLHEP
H
L for a system with W = 30, L = 60, t = 1 and ε = 2.

HE (Figure 3), we can see that they are identical, expect that the spectrum of M has
an additional zero, which can be explained by the fact that PL is essentially a projector.

Finally, we show that the same boundary holds for the spectrum of the system matrix
A = [Hs − εI + PLHEP

H
L] = [Hs − εI +M]. Since Hs is real and symmetric and ε is

a (real) scalar, we get the following for the anti-hermitian part of A:

i

2
(A−AH) =

i

2
[Hs − εI +M − (HH

s − EIH +MH)] =
i

2
(M −MH)

We have already shown that i
2y

H(M −MH)y ≥ 0 for all y, so i
2y

H(A − AH)y ≥ 0
for all y. Choosing an y such that it is an eigenvector of A, i.e. Ay = λy with λ an
eigenvalue of A, and using the same simplifications as before, we get:

i

2
yH(A−AH)y = −λ′′|y|2 ≥ 0

9

Figure 5: Spectrum of A for a system with W = 30, L = 60, t = 1 and ε = 2.

Since |y|2 ≥ 0, we must have λ′′ ≤ 0. Therefore the spectrum of A lies in the lower
half plane.

In the first part of this section we have shown some boundaries for the imaginary
part of the spectra, but it is also possible to show boundaries for the real part of the
spectra. To obtain these boundaries, we first look at the system Hamiltonian Hs for a
clean system, i.e U ≡ 0. As shown in section 2, the system Hamiltonian for such a sys-
tem has entries 4t on the diagonal, and entries −t or 0 elsewhere. To be more precise,
every row of the Hamiltonian can contain at most four entries −t, since every lattice
point can have at most four neighbours. This means that for Hs we have hii = 4t and:∑

j 6=i
|hij | ≤ 4t (32)

If we now use Gershgorin’s circle theorem, we get:

|λHs − hii| = |λHs − 4t| ≤
∑
j 6=i
|hij | ≤ 4t (33)

Rewriting equation 33 gives the following boundaries for the eigenvalues of the Hamil-
tonian:

0 ≤ λHs ≤ 8t (34)

These boundaries are also called the bandwidth of the system Hamiltonian and they
are shown in Figure 6.

Looking at a part of the system matrix without the self-energy matrix, i.e looking
at [Hs − εI], we can obtain similar boundaries. Since εI is a real diagonal matrix, we
get (again with Gershgorin’s circle theorem) for a clean system:

−ε ≤ λ[Hs−εI] ≤ 8t− ε (35)

Numerical experiments show that the same boundaries hold for the real part of the
eigenvalues of the entire system matrix A, see Figure 5.

10

Figure 6: Spectrum of Hs for a system with W = 30, L = 60, t = 1 and ε = 2.

4 Iterative methods

As mentioned in the introduction, the Schrödinger equation is now mainly solved by
using direct methods. These methods attempt to solve the problem by a finite sequence
of operations in such a way that in the absence of rounding errors it would result in the
exact solution. Iterative methods on the other hand, use an initial guess to generate
successive approximations to a solution. Even in the absence of rounding errors, these
methods would, in general, still not give the exact solution. But iterative methods
are, in general, less expensive, meaning that they are able to solve larger systems than
direct methods. In this section, four different iterative methods are discussed. All four
methods are based on projection methods onto the Krylov subspace:

Considering a general linear system

Ax = b (36)

where A is an n× n matrix and x and b are vectors of length n; a projection method
seeks an approximate solution xm from a m-dimensional subspace x0 + Km of Cnby
using the following condition

b−Axm ⊥ Lm (37)

in which Lm is another m-dimensional subspace of Rn [4]. This condition is called the
Petrov-Galerkin condition. The iterative methods considered in this section use the
Krylov subspace for Km, which is a subspace of the form:

Km(A, v1) = span{v1, Av1, A
2v1, . . . , A

m−1v1} (38)

with v1 a vector of length n.

4.1 GMRES

As we have shown in the sections above, the system matrix A is not symmetric, her-
mitian or normal, and apart from the boundaries we found on the eigenvalues of A,

11

the spectrum is rather spread out. Therefore, we try to solve the system using the
Generalized Minimal Residual Method (GMRES), which is a method that has no re-
quirements for A and which can solve most problems.

GMRES is based on a projection method onto the Krylov subspace. This method
takes Lm = AKm in which Km is the Krylov subspace with v1 = r0/|r0|2, where
r0 = b − Ax0 is the initial residual vector. Taking Lm = AKm results in a method
which minimizes the 2-norm of the residual vector b − Ax over all x ∈ x0 + Km [4].
This norm can also be written as:

|b−Ax|2 = |b−A(x0 + Vmy)|2 = |βe1 −Hmy|2 (39)

with Vm the n×m matrix of the orthogonal basis vectors of Km, y any vector of length
m, β = |r0|2, e1 the first column of the n×n identity matrix and Hm the (m+ 1)×m
Hessenberg matrix with nonzero entries hij obtained when finding an orthogonal basis
for the Krylov subspace (in general, the column vectors of the Krylov subspace are not
orthogonal). For this orthogonalisation process, any orthogonalisation process can be
used, for example Arnoldi or Gram-Schmidt.

The 2-norm of the residual vector (equation 39) is minimized if xm = x0 + Vmym,
where ym = argminy |βe1 −Hmy|2. So GMRES basically works in three steps. First
it determines an orthogonal basis for the Krylov subspace using for example Arnoldi.
During this orthogonalisation process, the matrices Vm and Hm are formed. Secondly,
GMRES computes ym, using the Hm obtained by the orthogonalisation process. Fi-
nally, GMRES uses this ym and the matrix Vm obtained earlier to compute the final
approximation xm. (For the entire derivation and the complete algorithm see [4]).

The convergence of this method for our system is plotted in Figure 7. Since the
the right hand side of the system PL is actually a matrix, the system is solved per
column of PL. This figure shows that the convergence behaviour of GMRES is very
poor, since most of the iterative steps do not decrease the relative residual by much,
it needs a number of iterations almost equal to the system size to reach convergence.
Since GMRES orthogonalises the vector of the Krylov subspace, all these vectors must
be stored. Therefore, GMRES requires a memory storage of approximately O(mn)
with m the number of iterations required and n the system size. For our case we have
m ≈ n and therefore a memory requirement of approximately O(n2).

4.2 Restarted GMRES

Because of the memory requirements, GMRES is rather impractical if the system be-
comes big. One way to solve this, is to use restarted GMRES (GMRES(l)). This
method basically does the same as non-restarted GMRES, except that the algorithm
restarts after l iterations if convergence is not reached. GMRES(l) then sets x0 = xl
and start again until convergence is reached. The advantage of restarting is that instead
of having to save all the vectors of the Krylov subspace, only l vectors are required.
Therefore, the memory requirements for restarted GMRES are reduced to O(ln). One

12

0 100 200 300 400 500 600 700
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

number of iterations

re
la

tiv
e

re
si

du
al

Figure 7: Convergence plot of GMRES for a system of size 1000 (W = 20, L = 50), t = 1, ε = 2 and the tolerance is 10−8.
Each color represents the convergence for one column of PL.

drawback of restarted GMRES is that it does not guarantee convergence if A is not
positive semi-definite, whereas GMRES always convergences in at most n steps [4].
Another difficulty of GMRES(l) is finding the optimal l.

The convergence of this method for our system is plotted in Figure 8. Even tough the
convergence behaviour for GMRES(l) is linear instead of the poor behaviour shown
for GMRES, the number of iterations required is worse (approximately 10 times the
number of iterations required for non-restarted GMRES).

4.3 BiCGStab

As mentioned above, GMRES shows very poor convergence behaviour. Therefore we
try another method, the Biconjugate Gradient Stabilized method (BiCGStab), since
this method is also used to solve systems with non-symmetrical system matrices.
BiCGStab is a Krylov subspace projection process with

Km = span{v1, Av1, . . . , A
m−1v1}

where v1 = r0/||r0||, and

Lm = span{w1, A
Hw1, . . . , (A

H)m−1w1}

with w1 any vector which obeys (v1, w1) = 0, where (x,y) denotes the inner product of
x and y.
BiCGStab is based on the Biconjugate Gradient method (BCG) which uses the same
subspaces Km and Lm (see [4], for the entire derivation of BiCGStab and for the

13

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

number of iterations

re
la

tiv
e

re
si

du
al

Figure 8: Convergence plot of GMRES(l) with l = 10 for a system of size 1000 (W = 20, L = 50), t = 1, ε = 2 and the tolerance
is 10−8. Each color represents the convergence for one column of PL.

complete algorithms of both BiCGStab and BCG). BCG is meant for solving systems
with a nonsymmetric system matrix A, and therefore uses both A and AH . This
means that BCG solves the original system Ax = b, but it implicitly also solves the
dual system AHx∗ = b∗. The BCG method writes the solution vector and the residual
vector of the original system as follows

xj+1 = xj + αjpj

rj+1 = rj − αjApj

with j ≤ m. Here αj is a scalar and pj is a vector which indicates the search direction
for the next residual vector. This search direction is a linear combination of rj and
pj−1:

pj+1 = rj+1 + βjpj (40)

For the dual system there are similar expressions for the residual vector and the search
direction.

r∗j+1 = r∗j − αjAHp∗j
p∗j+1 = r∗j+1 + βjp

∗
j

BCG then requires that the residual vectors are biorthogonal and that the search
directions are biconjugate with respect to A, i.e

(rj , r
∗
i) = 0, for i 6= j

(Apj , p
∗
i) = 0, for i 6= j

14

Applying this constraint to rj and pj and using some simplifications, results in an
expression for both α and β:

αj =
(rj , r

∗
j)

(Apj , p∗j)

βj =
(rj+1, r

∗
j+1)

(rj , r∗j)

So when an initial r0, r∗0, p0 and p∗0 are chosen, these relations can be used to determine
the solution vector xm.
A drawback of the BCG method is that it uses both A and AH and that it is not very
stable. The aim of the BiCGStab method is to solve both of these problems. In order
to do this, BiCGStab uses the fact that the residual vector and the search direction of
the BCG algorithm can be written as

rj = φj(A)r0

pj = πj(A)r0

with φj a polynomial of degree j which satisfies φj(0) = 1 and πj(A) a polynomial of
degree j. In order to stabilize the method and get rid of AH , BiCGStab uses different
expression for both the residual vector and the search direction:

rj = φj(A)ψj(A)r0

pj = ψj(A)πj(A)r0

where φj(A) and πj(A) are the polynomials found from the BCG method and ψj(A) is
a polynomial which is defined recursively at each step with the goal of stabilizing the
method:

ψj+1(t) = (1− ωjt)ψj(t) (41)

where ωj is a scalar. Defining s ≡ rj − αjApj and using these equations results in the
following expressions.

rj+1 = (I − ωjA)sj

pj+1 = rj+1 + βj(I − ωjA)pj

with

ωj =
(Asj , sj)

(Asj , Asj)

αj =
(rj , r

∗
0)

(Apj , r∗0)

βj =
(rj+1, r

∗
0)

(rj , r∗0)
× αj
ωj

The solution vector can be found by using the following expression:

xj+1 = xj + αjpj + ωjsj (42)

15

So in order to solve a linear system of equations, BiCGStab first chooses initial values,
r0 = b− Ax0 , r∗0 is arbitrary and p0 = r0, then it iterates over the above expressions
until convergence is reached. In one iteration, BiCGStab first calculates αj , then sj
and then ωj . Using these values, BiCGStab computes xj+1 and rj+1, after which it
calculates βj . Finally BiCGStab calculates pj+1 and then it starts a new iteration.

The convergence of this method for our system is plotted in Figure 9. This figure
shows that BiCGStab, unlike GMRES, shows almost linear convergence behaviour.
But even though the convergence behaviour of BiCGStab is considerably better than
for GMRES, the number of iterations required for BiCGStab to reach convergence is
approximately 4 times the system size whereas GMRES requires at most a number
of iterations equal to the system size. Comparing BiCGStab to GMRES(l), we can
see that BiCGStab shows similar convergence behaviour to GMRES(l), except that
BiCGStab requires approximately half the number of iterations of GMRES(l). Since

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

number of iterations

re
la

tiv
e

re
si

du
al

Figure 9: Convergence plot of BiCGStab for a system of size 1000 (W = 20, L = 50), t = 1, ε = 2 and the tolerance is 10−8.
Each color represents the convergence for one column of PL.

BiCGStab only has to store xj , pj and rj which are all of size 1× n, it requires O(3n)
of memory. Therefore BiCGStab might be preferred over GMRES for large systems,
despite the large number of iterations.

4.4 Preconditioning

BiCGStab is considered as a way of improving the convergence behaviour. Another
way of doing this for any Krylov based iterative solver is using preconditioning. This
is a method that tries to change the original linear system into one that has the same
solution, but is easier to solve. Changing the system is done by multiplying with a

16

preconditioning matrix M , also called a preconditioner. Instead of trying to solve the
original system, we will try to solve the preconditioned system

M−1Ax = M−1b (43)

The Krylov subspace for the preconditioned system is a subspace of the form

Km = span{M−1v1,M
−1AM−1v1, . . . , (M

−1A)m−1M−1v1} (44)

This means that we require a solution of a linear system with the matrix M , i.e of
Mx = v1, at each step of the iterative solver. In order to make preconditioning worth-
while, we require that this linear system Mx = v1 is solved in a very small number of
iterations [4].

(a) ε = 2− 2i (b) ε = 2 + 2i
Figure 10: Spectrum of A for a system with negative imaginary part (a) and positive imaginary part (b), both with W = 30,
L = 60 and t = 1

Instead of looking at a system with strictly real energy ε, which we have done so
far, we are going to consider a system in which the energy is allowed to be imaginary,
and we can than write this energy as ε = α1 + β1i with α1, β1 ∈ R. Since we now
have an imaginary value for the energy, the boundaries as found in section 3 for the
spectrum of the system matrix A do no longer hold. Numerical experiments (see Figure
10) show the following new boundaries for the real part of the spectrum of A:

α1 ≤ λ′A ≤ 8t− α1 (45)

and the following boundaries for the imaginary part of A:{
λ′′A ≥ −β1, if β1 < 0

λ′′A ≤ −β1, if β1 ≥ 0
(46)

On this more general system, we are going to try a preconditioner of the form

M = Hs + PLHEP
H
L − ε2I (47)

17

which is similar to the shifted Laplacian preconditioner proposed in [2]. Here, ε2 is a
complex scalar which can be written as ε2 = α2 + iβ2 with α2, β2 ∈ R. As shown in [2],
the eigenvalues σ of the preconditioned system matrix, i.e of M−1A, lie in a half-plane

−β1σ
′ + (α1 − α2)σ′′ + β1 ≥ 0 (48)

if β2 = 0. This can be seen in Figure 11. If β2 6= 0 the shape of the spectrum of the

Figure 11: The spectrum of M−1A for system with W = 10, L = 30, t = 1, ε = 2 − i and ε2 = 2|ε|. The red line shows the
edge of the half plane.

preconditioned system also depends on the spectrum of A itself. For λ′′A ≥ 0, i.e for
β1 < 0, the spectrum of M−1A lies inside or on a circle with center c and radius R if
β2 < 0, and the spectrum lies outside or on this circle if β2 > 0 [2]. For the center and
the radius of the circle, the following relation holds:

c =
ε− ε2

ε2 − ε2
=

(
β2 + β1

2β2
,
α2 − α1

2β2

)
(49)

and

R =

∣∣∣∣ ε2 − ε
ε2 − ε2

∣∣∣∣ =

√
(β2 − β1)2 + (α2 − α1)2

(2β2)2
(50)

These two cases can be seen in Figure 12 For λ′′A ≤ 0, i.e for β1 ≥ 0, the spectrum of
M−1A lies inside or on a circle with center c and radius R if β2 > 0, and the spectrum
lies outside or on this circle if β2 < 0 [2]. This is shown in Figure 13.

According to [2], the following holds for the norm of the residual after the k-th it-
erations using GMRES

|rk|2
|r0|2

≤ a
(
R

|c|

)k
(51)

with a a constant. This means that the further away the circle is from the origin and
the smaller the circle is, the better the convergence behaviour. In the case we are most
interested in, which is the case with strictly real E, this causes a problem. For E real
we have β1 = 0 and therefore

|c| = (β2 + β1)2 + (α2 − α1)2

(2β2)2
=
β2

2 + (α2 − α1)2

(2β2)2
(52)

18

Figure 12: Spectra of the preconditioned system with W = 10, L = 30 and t = 1. The red line show the circle with center c
and radius R. The red dot shows the origin.

Figure 13: Spectra of the preconditioned system with W = 10, L = 30 and t = 1.The red line show the circle with center c and
radius R. The red dot shows the origin.

19

Figure 14: Spectra of the preconditioned system with W = 10, L = 30 and t = 1.The red line show the circle with center c and
radius R. The red dot shows the origin.

(a) Unpreconditioned system (b) Preconditioned system
Figure 15: Convergence plots for the unpreconditioned system (a) and the preconditioned system (b) with W = 20, L = 50,
E = 2, t = 1, ε2 = 2i and the tolerance is 10−8. Each color represents the convergence for one column of PL.

and

R =
(β2 − β1)2 + (α2 − α1)2

(2β2)2
=
β2

2 + (α2 − α1)2

(2β2)2
(53)

From this we obtain |c| = R, so the distance from the origin to the centre of the circle
is equal to the radius, which means the origin always lies on the circle (see Figure 14).

Furthermore we can see that R
|c| = 1, so |rk|2|r0|2 ≤ a, which means that the residual norm

does not necessarily get smaller after the k-th iteration. Looking at Figure 15, we can
see that the convergence behaviour is not improved, even though a smaller amount of
iterations is needed. The smaller amount of iterations needed by the preconditioned
system is due to the fact that the spectrum of the preconditioned system is less spread
out than the spectrum of the unpreconditioned system. But since the convergence
behaviour itself does not change, there might be a preconditioner that is better suited
for a system with strictly real energy.

20

(a) Unpreconditioned system (b) Preconditioned system
Figure 16: Convergence plots for the unpreconditioned system (a) and the preconditioned system (b) with W = 20, L = 50,
ε = 2− i, t = 1 , ε2 = −|ε|i and the tolerance is 10−8. Each color represents the convergence for on column of PL.

For a system with imaginary ε and β1β2 > 0, the origin lies outside the circle [2].
In that case, this choice of preconditioner might improve the convergence behaviour.
Looking at Figure 16, we can see that for imaginary values of energy, the precondi-
tioned system show no change in convergence behaviour apart from needing a smaller
amount of iterations to convergence. Therefore this precondioner might also not be
the most optimal choice in the case of imaginary energy.

4.5 IDR(s)

As we have seen, BiCGStab shows better convergence behaviour than GMRES, but
the number of iterations required for BiCGStab is large. Furthermore, the consid-
ered preconditioner does not improve the convergence behaviour of GMRES enough.
Therefore, we try the Induced Dimension Reduction method (IDR(s)). This method
is expected to behave the same as BiCStab or even better if s becomes larger.
IDR(s) is based on generating residuals that are forced to be in subspaces of decreasing
dimension (see [5] for the entire derivations and complete algorithm). These subspaces
are nested such that · · · ⊂ Gj ⊂ Gj−1 ⊂ · · · ⊂ G0 with G0 the full Krylov subspace
Kn(A, v0). They are related to each other by

Gj = (I − ωjA)(S ∩Gj−1) (54)

where S is any fixed subspace of Cn such that G0 and S do not share a nontrivial
invariant subspace of A, and where ωj is a nonzero scalar. Since Gj = {0} for some
j ≤ n, forcing the residual vectors to be in these subspaces Gj ensures that the residual
becomes smaller.
In general, a iterative method that uses Krylov subspaces can be described by the

21

following recursive relations for the solution vector xm and the residual vector rm:

rm+1 = rm − αAvm −
l̂∑
l=1

γl∆rm−l (55)

xm+1 = xm + αvm −
l̂∑
l=1

γl∆xm−l (56)

where α is a scalar, ∆uk = uk+1− uk is the forward difference operator, l̂ is an integer
which is called the depth of the recursion, vm is a vector in Km(A, r0)\Km−1(A, r0)
and γ1, . . . , γl̂ are coefficients. IDR(s) generates residual rm that are forced to be in
the subspaces Gj , with j non-decreasing when m increases. We have rm+1 ∈ Gj+1, if:

rm+1 = (I − ωj+1A)vm = vm − ωj+1Avm (57)

with vm ∈ Gj ∩ S. If we choose

vm = rm −
l̂∑
l=1

γl∆rm−l (58)

we get the following recursion relation for the residual

rm+1 = rm − ωj=1Avm −
l̂∑
l=1

γl∆rm−l (59)

which is in accordance with the recursion relation found for a general iterative method
that uses Krylov subspaces. If we now define S ≡ N(QH), the null-space of a n × s
matrix Q = (q1 q2 . . . qs), where n is the system size and q1, q2, . . . , qs ∈ Cn are linearly
independent vectors, we must have vm ∈ S = N(QH), since vm ∈ S ∩ Gj . Therefore
vm satisfies

QHvm = 0 (60)

From this equation, we can obtain an expression for the coefficients γ1, . . . , γl̂. If we
substitute the expression for vm from equation 58 into equation 60, we obtain:

QHvm = QHrm −
l̂∑
l=1

γlQ
H∆rn−l = 0 (61)

which can be rewritten as a matrix equation:[
QH∆rm−1| QH∆rm−2| . . . | QH∆rm−l̂

]
c = QHrm (62)

where c = (γ1 γ2 . . . γl̂)
T . This matrix equation is an s× l̂ linear system of equations for

the coefficients γ1, . . . , γl̂. Since the vectors q1, q2, . . . , qs ∈ Cn are linearly independent,

this system is uniquely solvable if l̂ = s. This means that in order to calculate the first
vector in Gj+1, i.e. calculate rm+1, we must have s + 1 vectors in Gj (namely, the s

22

0 500 1000 1500
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

number of iterations

re
la

tiv
e

re
si

du
al

Figure 17: Convergence plot of IDR(8) for a system of size 1000 (W = 20, L = 50), t = 1, ε = 2 and the tolerance is 10−8.
Each color represents the convergence for one column of PL.

vectors needed for
[
QH∆rm−1| QH∆rm−2| . . . | QH∆rm−s

]
plus one vector rm for the

right hand side of equation 62).
If we define the following matrices:

∆Rm = [∆rm−1| ∆rm−2| . . . |∆rn−s] (63)

∆Xm = [∆xm−1| ∆xm−2| . . . |∆xn−s] (64)

We can then compute rm+1 ∈ Gj+1 by first calculating c from (QH∆Rm)c = QHrm,
then computing v = rm − ∆Rmc and finally computing rm+1 = v − ωj+1Av. The
solution vector xm + 1 can be obtained from:

xm+1 = xm −∆Xmc+ ωj+1v (65)

So we only need the scalar ωj+1. For the calculation of the first residual in Gj+1, the
scalar ωj+1 may be chosen freely, but it must remain the same for the calculations of

all the other residual vectors in Gj+1. For G0 we choose ω = vHrm
vHv

and for all the other

Gj we choose ω = tHv
tH t

with t = Av.

The convergence of this method for our system is plotted in Figure 17. This figure
shows that IDR(8) has convergence behaviour between that of GMRES and that of
BiCGStab, as expected (see also Figure 18). Since IDR(s) essentially only has to store
∆Rm which has size n×s and ∆Xm which also has size n×s, the memory requirements
for IDR(s) are approximately O(2sn).

23

5 Performance of iterative methods for a clean

system

In order to choose the best iterative method for a system, we will compare the conver-
gence histories of the different methods and look into the dependence for the conver-
gence on the system size and on the energy. Because of the large amount of iterations
needed for restarted GMRES, we will not consider this method. Looking at Figure 18

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of iterations

R
el

at
iv

e
R

es
id

ua
l

gmres
bicgstab
idr(s=1)
idr(s=4)
idr(s=8)

Figure 18: Convergence history of GMRES, BiCGStab and IDR(s) for a system with W = 20, L = 50, ε = 2, t = 1 and the
tolerance is 10−8. The convergence for only one column of PL is shown.

we can see that BiCGStab and IDR(1) show similar convergence behaviour. As s gets
larger, the convergence history of IDR(s) approaches that of GMRES, which requires
the smallest number of iterations. But since the memory requirement for GMRES are
O(n2), and for IDR(s) they are O(2sn), we prefer IDR(s) over GMRES if the system
is large while we prefer GMRES for small systems.

5.1 System Size

In Figure 19, the number of iterations is plotted as a function of the system size for
all methods except GMRES(l). In accordance with Figure 18, we can see in Figure 19
that BiCGStab and IDR(1) require approximately the same amount of iterations and
that the number of iterations needed for IDR(s) approach the number of iterations
needed for GMRES if s gets larger.
If we look at Figure 20b, we can see that the Green’s function is nonzero throughout
the entire scattering region. We therefore expect the number of iterations N to depend
on WL for W � L, see Figure 21. If we look at Figure 22 and Figure 19b, we can

24

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

Length of the system

N
um

be
r

of
 it

er
at

io
ns

gmres
bicgstab
idr(s=1)
idr(s=4)
idr(s=8)

(a) Dependence of iterations on length (W = 10)

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

Width of the system

N
um

be
r

of
 it

er
at

io
ns

gmres
bicgstab
idr(s=1)
idr(s=4)
idr(s=8)

(b) Dependence of iterations on width (L = 10)
Figure 19: Dependence of iterations of different methods on the length (a) and the width (b) of a system with t = 1, ε = 1 and
the tolerance is 10−8.

see that, for W � L, the number of iterations has a shape similar to
√
W . Figure 20a

shows that the Green’s function decays (in the W direction) at a rate of 1√
W

, which

might correspond to the
√
W found from Figure 22 and Figure 19b. This gives:

N ∼

{√
W, if W � L

WL, if W � L
(66)

In other words, the number of iterations shows similar behaviour to the spatial decay
factor of the corresponding Green’s function.

5.2 Energy

In Figure 23, the number of iterations as a function of energy is plotted for all the meth-
ods except GMRES(l). We can see that BiCGStab and IDR(1) require approximately
the same amount of iterations, as was the case for the dependence on the system size.
Also in accordance with the dependence on the system size is that IDR(s) approaches
GMRES as s gets larger. Considering memory requirements, we again prefer IDR(s)
over GMRES for a larger system. Looking at Figure 23, we can see that the number
of iterations is very small if ε < 0 or ε > 8t. In section 3 we found for the system
Hamiltonian the following boundaries

0 ≤ λ′Hs ≤ 8t (67)

If we now take ε to be outside the bandwidth (i.e ε < 0 or ε > 8t) we get that

|aii| = |4t− ε| > 4t =
∑
j 6=i

aij (68)

25

(a) Green’s function for W � L (b) Green’s functions for W � L
Figure 20: The absolute value squared of the solution vectors of Ax = b for a system (a) with W = 50, L = 10 and a system
(b) with W = 10, L = 50. Both systems have t = 1 and ε = 1.

5 10 15 20 25 30 35 40

500

1000

1500

2000

2500

3000

Width

N
um

be
r

of
 it

er
at

io
ns

N vs. W
W<<L

(a) L = 60

80 100 120 140 160 180 200

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
4

Length

N
um

be
r

of
 it

er
at

io
ns

N vs. L
W<<L

(b) W = 60
Figure 21: Fitted curves for the region where W � L and a system with ε = 1 and t = 1. The data points show the convergence
for IDR(8).

26

100 120 140 160 180 200 220 240
5000

6000

7000

8000

9000

10000

11000

N vs. W
W>>L

Figure 22: Fitted curve for the region where W � L and a system with L = 60, ε = 1 and t = 1. The data points show the
convergence for IDR(8).

−2 0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

Energy (E) of the system

N
um

be
r

of
 it

er
at

io
ns

gmres
bicgstab
idr(s=1)
idr(s=4)
idr(s=8)

(a) Real energy

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

400

450

500

Imaginary part of the energy (E) of the system

N
um

be
r

of
 it

er
at

io
ns

gmres
bicgstab
idr(s=1)
idr(s=4)
idr(s=8)

(b) Imaginary energy with ε′ = 1
Figure 23: Dependence of iterations of different methods on the energy of a system with W = 10, L = 30, t = 1 and the
tolerance is 10−8.

27

with aij is an element of the system matrix A on column j and row i. From this we
can conclude that the system matrix A becomes diagonally dominant, which results in
fast convergence.

28

6 Performance of iterative methods for a disor-

dered system

Until now, we have only considered a clean system (i.e U(x, y) ≡ 0). In this section,
we will consider a system with a random potential, which means the system becomes
disordered. For a disordered system, the wavesfunction decay exponentially:

Ψ ∼ e−x/ξ (69)

where x is the coordinate in horizontal direction and ξ is the localization length. If
we consider a general semiconductor, or a general scattering region, we can distinguish
three different types: a ballistic conductor, a diffusive conductor and an insulator. A
ballistic conductor has no scattering, which results in a conductor with zero resistance.
A diffusive conductor shows some scattering (i.e has a finite resistance), but the elec-
trons can still pass through the conductor. In an insulator, the scattering or disorder is
too big for the electrons to pass trough the entire conductor, and we say that the wave
functions become localized. A conductor is said be in the ballistic regime if L � lm
where lmis the mean free path, it is said to be in the localized regime if L� ξ, and a
conductor is said to be in the diffusive regime if it has a length between the mean free
path and the localization length [1]. The following holds for the mean free path and
the for the localization length:

lm ≈ 48

√
ε

U2
(70)

ξ ≈Mlm =
W
√
ε

π
lm (71)

with M = W
√
ε

π the number of transverse modes.

In order to investigate the performance of the iterative methods for a disordered sys-
tem, we consider a disordered system with W = 10 and changing length and solve this
system with IDR(8). We can rewrite the disordered system in the following form:

Ãx = b (72)

in which Ã is the system matrix of the disordered system which is defined as

Ã ≡ Hs + PLHEP
H
L −D (73)

with Hs the Hamiltonian of a clean system, PLHEP
H
L the self-energy matrix of a

clean system and D a diagonal matrix with entries dii, i = 1, . . . , n. These entries are
obtained by drawing from a uniform distribution dii ∈ [ε− U/2, ε+ U/2].
Using the boundaries found in section 3 for the real part of the spectrum of HS −
PLHEP

H
L and using Gershgorin’s circle theorem we can write

|λHS+PLHEP
H
L
− aii| = |λHS−PLHEPHL − 4t| ≤

∑
j 6=i
|aij | ≤ 4t (74)

29

(a) Spectrum of a disordered system (b) Spectrum of a clean system
Figure 24: Spectra of a clean (a) and disordered (b) system, both with W = 20, L = 50, t = 1, ε = 1 and U = 15.

where aij is an element on row i and column j of the matrix HS − PLHEP
H
L . From

this we can obtain a boundary for the spectrum of the disordered system. Notice
that ãij = aij for i 6= j since we only add a diagonal matrix, and therefore for every
i = 1, . . . n we have

|λÃ − ãii| = |λÃ − 4t− dii| ≤
∑
j 6=i
|ãij | ≤ 4t (75)

This gives the following boundaries for the real part of the eigenvalues of Ã:

min
i
{dii} ≤ λ′Ã ≤ 8t+ max

i
{dii} (76)

where λ′ denotes the real part of λ.
Looking at these boundaries (equation 76), we can conclude that the spectrum of the
disordered system is more spread out than the spectrum of a clean system, see also
Figure 24, and we can conclude that this spreading becomes larger for bigger U . We
therefore expect that the number of iterations necessary to solve the disordered system
is larger than the number of iterations required for a clean system, and that the number
of iterations grows if U gets bigger.
But if L � ξ, localization occurs, which results in exponentially decaying wave func-
tions. Therefore the wave function becomes smaller than the tolerance δ of the iterive
method if x becomes bigger than some xl, i.e:

Ψ|xl ∼ e
−xl/ξ = δ (77)

For x ≥ xl we have that Ψ ≤ δ, and therefore the initial vector x0 = 0 of the iterative
method is within the tolerance for this region, and the number of iterations N is equal
to zero. For the entire region where x < xl we have that:

N ∼ cWxl (78)

30

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

3500

Length of the system

N
um

be
r

of
 it

er
at

io
ns

U = 0
U = 5.000000e−001
U = 3.500000e+000
U = 6

Figure 25: Convergence plot of IDR(8) with a tolerance of 10−8 for a disordered system with W = 10, t = 1 and ε = 0.5.
The number of iterations is averaged over 50 realisations of the disorder. The red dotted line shows the expected number of
iterations for U = 3.5

since W � xl (see equation 66), with c a constant that depends on the iterative
method. For GMRES we have that c ≈ 1 since GMRES convergences in at most as
many steps as the system size. Looking at Figure 19a and Figure 19b we can see that
IDR(8) requires approximately 2 times the number of iterations, and therefore c ≈ 2
for IDR(8). If we now rewrite equation 78 and substitute it in equation 77, we get:

e
−N
cWξ ∼ δ (79)

which can be rewritten into an expression for the number of iterations N :

N ∼ −cWξ ln δ (80)

We therefore expect the number of iterations N to become independent of the length
if the system becomes localized.
The dependence of the number of iterations on the length of the system for different
disorders is plotted in Figure 26 and figure 25. In these figures we can see that the
number of iterations grows as the length of the system becomes larger, until a certain
length is reached after which the number of iterations becomes independent of the
length. We can also see that this point is reached sooner for larger values of U , which
corresponds to the fact that the localization length becomes smaller for larger values
of U . Furthermore we can see that a system with disorder in the ballistic and diffusive
regime requires more iterations to solve than a system with zero disorder in the same
regimes, and that the number of iterations required in these regimes is bigger for larger
U . Finally, we can see that equation 80 holds. If we for example look at U = 3.5, we
have a mean free path of lm ≈ 3 and a localization length of ξ ≈ 7, so using equation
80 with δ = 10−8 and c = 2 we obtain the red dotted line shown in Figure 25. In
Table 1 we can see that equation 80 is also a good approximation for the other values
of disorder and tolerance.

31

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

3500

Length of the system

N
um

be
r

of
 it

er
at

io
ns

U = 0
U = 5.000000e−01
U = 3.500000e+00
U = 6

(a)

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

Length of the system

N
um

be
r

of
 it

er
at

io
ns

U = 0
U = 1
U = 2.500000e+00
U = 4

(b)
Figure 26: Convergence plot of IDR(8) with a tolerance of 10−4 for a disordered system with W = 10, t = 1 and ε = 0.5. The
number of iterations is averaged over 50 realisations of the disorder.

U Nt Ne

1 2.8 · 104 -
3.5 2.6 · 103 2.4 · 103

6 8.1 · 102 1.4 · 103

(a) δ = 10−8

U Nt Ne U Nt Ne

0.5 5.6 · 104 - 3.5 1.3 · 103 9 · 102

1 1.4 · 104 - 4 8.3 · 102 8 · 102

2.5 2.2 · 103 1.3 · 103 6 4.1 · 102 5 · 102

(b) δ = 10−4

Table 1: The theoretical number of iterations Nt and the (approximate) number of iterations Ne found with numerical exper-
iments for different values of disorder for a system with W = 10, ε = 0.5, t = 1 and c = 2. Table (a) shows the number of
iterations for a tolerance δ = 10−8 and table (b) shows the number of iterations for a tolerance δ = 10−4

32

7 Conclusions and Discussion

In this Bachelor thesis, we investigated the use of iterative methods to solve a square
quantum billiard problem. Four different methods were used: GMRES, GMRES(l),
BiCGStab and IDR(s). Even though it was possible to solve the system with all four
methods, we have seen that GMRES has a bad convergence history despite requiring
the least amount of iterations and that GMRES(l) and BiCGStab require a large (i.e. a
couple times the system size) number of iterations to reach convergence. Furthermore
we have seen that IDR(1) behaves similar to BiCGStab and that IDR(s) approaches
GMRES for growing s, both in convergence behaviour and in the required number of
iterations. When taking into account the memory requirements of all the methods, we
concluded that IDR(s) is preferred over GMRES for large systems, while GMRES is
the best suited options of these four methods for small systems.

As for a more detailed description of the convergence behaviour of all the methods
in general, we have seen that the number of iterations N shows a linear dependency on
both W and L for a system with W � L and we have seen that N shows a non-linear
dependence on W , namely N ∼

√
W , for a system with W � L. These dependencies

seem to correspond to the spatial decay factor of the corresponding Green’s function
for the same systems. Whether there is an actual relation between the shape of the
solution and the number of iterations N would require further research.
In addition to the dependence of N on the system size, we have seen that the system
matrix becomes diagonally dominant if we choose E outside of the bandwidth of the
Hamiltonian (i.e, outside of 0 ≤ E ≤ 8t). This diagonal dominance results in fast
convergence of all the methods.

In order to improve the convergence behaviour of GMRES, we tried to apply a pre-
conditioner similar to a shifted Laplacian. We have seen that this preconditioner shifts
the spectrum to either a half-plane or to a circle depending on the exact choice of the
preconditioner. For imaginary E, we have seen that the preconditioner can be chosen
such that the origin lies outside the circle, resulting in faster convergence. But since
the convergence behaviour itself is not improved, the choice of a preconditioner similar
to a shifted Laplacian, might not be the optimal choice. Looking at a system with
real E, we have shown that the origin always lies on the circle, which means the con-
vergence behaviour of GMRES can not be improved by this choise of preconditioner,
even though the number of iterations required is somewhat reduced. This reduction in
number of iterations is due to the fact that the spectrum of the preconditioned system
is less spread out than the spectrum of the unpreconditioned system. From this we
can conclude that the preconditioner considered in this thesis does not improve the
convergence behaviour enough. Whether there is a preconditioner that is better suited
for the system considered in this thesis would require further research.

Finally, we considered the convergence behaviour of IDR(8) for a disordered system.
We have shown that a disordered system requires more iterations to solve than a clean
system in the diffusive and in the ballistic regime. Furthermore we have shown that the

33

required number of iterations is larger if the disorder is larger. We have also seen that
the number of iterations becomes independent on L if the system is in the localized
regime, and that the point where the system enters the localized regime is reached
sooner for larger disorders.

34

Appendix A Python Code

For the figures and for the numerical experiments, the following code was used. The
linear system was made in python using the package Kwant, after which the different
matrices of this system were save so that they could later be uploaded to Matlab.

from f u t u r e import d i v i s i o n
import kwant
import matp lo t l i b . pyplot as p l t
import numpy as np
import s c ipy as sp
import s c ipy . spar s e . l i n a l g as s l a
import random
import copy
import time
from s c ipy import i o
from math import s q r t

Make the a c t u a l s c a t t e r i n g reg ion and the l e a d
def MakeSystem (W, L) :

a = 1
t = 1

global sys
l a t = kwant . l a t t i c e . square (a)
sys = kwant . Bui lder ()

sys [l a t . shape ((lambda pos : 0 <= pos [0] < L and 0 <= pos [1] < W) ,
(0 , 0))] = 4 ∗ t
sys [l a t . ne ighbors ()] = −t

l ead = kwant . Bui lder (kwant . TranslationalSymmetry ((−a , 0)))
l ead [l a t . shape ((lambda pos : 0 <= pos [1] < W) , (0 , W/ / 2))] = 3 ∗ t
l ead [l a t . ne ighbors ()] = −t

sys . a t t a c h l e a d (l ead)
sys . a t t a c h l e a d (l ead . reversed ())

kwant . p l o t (sys)
sys = sys . f i n a l i z e d ()

Get the l i n e a r system from the quantum b i l l i a r d
def LinearSystem (e) :

l e a d s i n = [0 , 1]
global l e a d i n f o

35

l i n s y s , l e a d i n f o = kwant . s o l v e r s . d e f a u l t . h idden in s tance .
m a k e l i n e a r s y s (sys , l eads in , energy = e , c h e c k h e r m i t i c i t y

= False , r e a l s p a c e = True)

global l h s
global rhs
global n
global m

#l h s i s a numpy . sparse . csc matr ix , c o n t a i n i n g the l e f t hand
#s i d e o f the system o f e q u a t i o n s .
l h s = l i n s y s . l h s

#rhs i s a l i s t o f matr ices wi th the r i g h t hand s ide , wi th
#each matrix corresponding to one l e a d mentioned in
#‘ i n l e a d s ‘ .
rhs0 = l i n s y s . rhs [0]
rhs1 = l i n s y s . rhs [1]

#You must have the whole rhs to use GMRES (or any o t her
#s o l v e r) so f i r s t g e t f u l l rhs
rhs = sp . spar s e . hstack ((rhs0 , rhs1))
rhs = rhs . todense ()

n = l h s . shape [0]
m = rhs . shape [1]

Get a l l s e p e r a t e matr ices o f the l i n e a r system
def GetMatrices () :

#Create H s
H s = sys . hami l ton ian submatr ix (spar s e = True)

#Create H E
#l e a d i n f o i s a l i s t o f o b j e c t s which c ont a ins one entry f o r
#each l e a d .

HE0 = l e a d i n f o [0]
HE1 = l e a d i n f o [1]

O block = np . z e ro s ((HE0 . shape [0] , HE0 . shape [0]) , dtype =
complex)
HE0 ex = np . hstack ((HE0, O block))

HE1 ex = np . hstack ((O block , HE1))
HE = np . vstack ((HE0 ex , HE1 ex))

36

#Create dense and sparse E
E = e ∗ np . eye (n , dtype = complex)

d iag = e ∗ np . ones (n)
E sparse = sp . spar s e . d ia matr ix (([d iag] , [0]) , shape = (n , n) ,

dtype = complex) . t o c s r ()

#Create dense and sparsePHP
PHP = rhs . dot (HE. dot (rhs . getH ()))

PHP sparse = l h s − H s + E sparse

return H s , HE, E, E sparse , PHP, PHP sparse

Show spectrum of matr ices
def Spectrum (A) : #i t t a k e s a dense matrix

e i g v l = np . l i n a l g . e i g v a l s (A)

p l t . p l o t (e i g v l . r ea l , e i g v l . imag , ’ o ’)
p l t . x l a b e l (’ Real part ’)
p l t . y l a b e l (’ Imaginary part ’)
p l t . show ()

Make l i s t s o f d i f f e r e n t matr ices to upload to Matlab .
(NB. only that part o f the code was run that needed to be
uploaded to Matlab) . ###

L i s t s f o r d i f f e r e n t l e n g t h s
RightHandSide = []
LeftHandSide = []
Length = []

W = 60
e = 1

for L in np . arange (1 , 4 5 , 2) : #(1 ,45 ,2) f o r W >> L , (80 ,220 ,5) f o r W << L
MakeSystem (W, L)
LinearSystem (e)
b = rhs [: , (m−1)]
RightHandSide . extend ([b])
LeftHandSide . extend ([l h s])

Length . extend ([L])

sp . i o . savemat (’ Path to matlab f o l d e r /RightHandSide . mat ’ ,

37

mdict={ ’ RightHandSide ’ : RightHandSide } , oned as = ’ column ’)
sp . i o . savemat (’ Path to matlab f o l d e r / LeftHandSide . mat ’ ,
mdict={ ’ LeftHandSide ’ : LeftHandSide } , oned as = ’ column ’)
sp . i o . savemat (’ Path to matlab f o l d e r /Length . mat ’ ,
mdict={ ’ Length ’ : Length } , oned as = ’ column ’)

L i s t s f o r d i f f e r e n t wid ths
RightHandSide = []
LeftHandSide = []
Width= []

L = 60
e = 1

for W in np . arange (1 0 , 2 5 0 , 1 0) :
MakeSystem (W, L)
LinearSystem (e)
b = rhs [: , (m−1)]
RightHandSide . extend ([b])
LeftHandSide . extend ([l h s])
Width . extend ([W])

sp . i o . savemat (’ Path to matlab f o l d e r /RightHandSide . mat ’ ,
mdict={ ’ RightHandSide ’ : RightHandSide } , oned as = ’ column ’)
sp . i o . savemat (’ Path to matlab f o l d e r / LeftHandSide . mat ’ ,
mdict={ ’ LeftHandSide ’ : LeftHandSide } , oned as = ’ column ’)
sp . i o . savemat (’ Path to matlab f o l d e r /Width . mat ’ ,
mdict={ ’ Width ’ : Width} , oned as = ’ column ’)

L i s t f o r d i f f e r e n t e n e r g i e s
Real E
RightHandSide = []
LeftHandSide = []
Energy = []

L = 30
W = 10

for e in np . arange (−2. , 1 0 . , 0 . 1) : #−10, 10 , 0 .1
E = e
MakeSystem (W, L)
LinearSystem (E)
b = rhs [: , (m−1)]
RightHandSide . extend ([b])
LeftHandSide . extend ([l h s])

38

Energy . extend ([E])

sp . i o . savemat (’ Path to matlab f o l d e r /RightHandSide . mat ’ ,
mdict={ ’ RightHandSide ’ : RightHandSide } , oned as = ’ column ’)
sp . i o . savemat (’ Path to matlab f o l d e r / LeftHandSide . mat ’ ,
mdict={ ’ LeftHandSide ’ : LeftHandSide } , oned as = ’ column ’)
sp . i o . savemat (’ Path to matlab f o l d e r /Energy . mat ’ ,
mdict={ ’ Energy ’ : Energy } , oned as = ’ column ’)

#Imaginary E
RightHandSide = []
LeftHandSide = []
Energy = []

L = 30
W = 10

for e in np . arange (−4. , 4 . , 0 . 1) :
E = complex (1 , e)
MakeSystem (W, L)
LinearSystem (E)
b = rhs [: , (m−1)]
RightHandSide . extend ([b])
LeftHandSide . extend ([l h s])
Energy . extend ([E . imag]) #s i n c e the r e a l par t i s f i x e d ,
#p l o t i t a g a i n s t the imaginary par t .

sp . i o . savemat (’ Path to matlab f o l d e r /RightHandSide . mat ’ ,
mdict={ ’ RightHandSide ’ : RightHandSide } , oned as = ’ column ’)
sp . i o . savemat (’ Path to matlab f o l d e r / LeftHandSide . mat ’ ,
mdict={ ’ LeftHandSide ’ : LeftHandSide } , oned as = ’ column ’)
sp . i o . savemat (’ Path to matlab f o l d e r /Energy . mat ’ ,
mdict={ ’ Energy ’ : Energy } , oned as = ’ column ’)

L i s t s f o r a d i s o r d e r e d system . The d i s o r d e r matrix D i s added
in matlab
RightHandSide = []
HP = []
Length = []

W = 10
e = 0 .5 #make sure t h i s i s a double , not an i n t e g e r

a = np . arange (10 ,100 ,10)
c = np . arange (100 ,560 ,50) #(150 ,500 ,30)

39

Range = np . concatenate ((a , c))

for L in Range :
MakeSystem (W, L)
LinearSystem (e)
H0 , HE, E, E sparse , PHP, PHP sparse = GetMatrices ()
b = rhs [: , (m−1)]
RightHandSide . extend ([b])
HP. extend ([H0−PHP sparse])
Length . extend ([L])

sp . i o . savemat (’ Path to matlab f o l d e r /RightHandSide . mat ’ ,
mdict={ ’ RightHandSide ’ : RightHandSide } , oned as = ’ column ’)
sp . i o . savemat (’ Path to matlab f o l d e r /HP. mat ’ , mdict={ ’HP ’ : HP} ,
oned as = ’ column ’)
sp . i o . savemat (’ Path to matlab f o l d e r /Length . mat ’ ,
mdict={ ’ Length ’ : Length } , oned as = ’ column ’)
sp . i o . savemat (’ Path to matlab f o l d e r /e . mat ’ , mdict={ ’ e ’ : e } ,
oned as = ’ column ’)

P r ec o n d i t i o n i n g
#GMRES
def c a l l b a c k g (rk) :

rho n = np . l i n a l g . norm(rk) / np . l i n a l g . norm(B [: , 0])
global k g
global column rho g
global co lumn i t e r g
column rho g . extend ([rho n])
co lumn i t e r g . extend ([k g])
k g += 1

def GMRES(A, b , to l e rance , m=None) :
i f m i s None :

m = b . shape [1]
s t a r t g = time . c l o ck ()

n = A. shape [0]

global B
B = b

rho g = []
i t e r g = []

global x gmres

40

x gmres = np . z e ro s ((n ,m) , dtype = complex)

global k g
global column rho g
global co lumn i t e r g

for i in xrange (m) :
k g = 0
column rho g = []
c o lumn i t e r g = []
y , i n f o g = s l a . gmres (A, b [: , i] , t o l = to l e rance ,
r e s t a r t = n , c a l l b a c k = c a l l b a c k g)
x gmres [: , i] = y
rho g . extend ([column rho g])
i t e r g . extend ([c o lumn i t e r g])

e l ap s ed g = (time . c l o ck () − s t a r t g) / m
print ” Elapsed time o f GMRES per column i s %r seconds ” % e lap s ed g

f i g = p l t . f i g u r e ()
for i in xrange (m) :

p l t . semi logy (i t e r g [i] [:] , rho g [i] [:] , ’ o ’)
p l t . x l a b e l (’ number o f i t e r a t i o n ’)

p l t . y l a b e l (’ r e l a t i v e r e s i d u a l ’)
p l t . show ()

#Create the c i r c l e
def c i r c l e (phi , a1 , a2 , b1 , b2) :

r = s q r t (((b2−b1)∗∗2+(a2−a1)∗∗2)/(2∗ b2)∗∗2)
cx = (b2+b1)/(2∗ b2)
cy = (a2−a1)/(2∗ b2)
return r ∗np . cos (phi)+cx , r ∗np . s i n (phi)+cy

#Create the l i n e (which i s the boundary o f the h a l f−p lane)
def l (t , a1 , a2 , b1 , b2) :

return (b1 ∗(t −1))/(a1 − a2)
def Precond i t i on ing (e , z , W, L) :

MakeSystem (W, L)
LinearSystem (e)
H s , HE, E, E sparse , PHP, PHP sparse = GetMatrices ()
Spectrum (l h s . todense ())

I = np . eye (n , dtype = complex)

#You have to change t h i s one by hand

41

e2 = ’−|%r | i ’ %e

P1 = H s + PHP − z ∗ I

a1 = e . r e a l
b1 = e . imag
a2 = z . r e a l
b2 = z . imag

P = P1 . g e t I ()
l h s p r e = copy . deepcopy (l h s) #i s sparse
b pre = copy . deepcopy (rhs)
p r e s y s = P. dot (l h s p r e . todense ())

ew = np . l i n a l g . e i g v a l s (p r e s y s)
eigenw = np . l i n a l g . e i g v a l s (l h s p r e . todense ())

t i t l e = ’$E = %r$, $E 2 = %s$ ’ % (e , e2)
i f b2 == 0 :

t = np . arange (−60 ,75 ,0 .1)
f i g = p l t . f i g u r e ()
p l t . p l o t (ew . r ea l , ew . imag , ’ o ’)
p l t . p l o t (t , l (t , a1 , a2 , b1 , b2) , ’ r ’)
f i g . s u p t i t l e (t i t l e)
p l t . x l a b e l (’ r e a l part ’)
p l t . y l a b e l (’ imaginary part ’)
p l t . show ()

else :
f i g = p l t . f i g u r e ()
ax = f i g . add subplot (111 , aspect=’ equal ’)
ph i s=np . arange (0 , 6 . 2 8 , 0 . 0 1)
ax . p l o t (∗ c i r c l e (phis , a1 , a2 , b1 , b2) , c=’ r ’ , l s= ’− ’)
p l t . p l o t (ew . r ea l , ew . imag , ’ o ’)
p l t . p l o t (0 , 0 , ’ or ’)
f i g . s u p t i t l e (t i t l e)
p l t . x l a b e l (’ r e a l part ’)
p l t . y l a b e l (’ imaginary part ’)
p l t . show ()

return P, b pre , l h s p r e

W = 20
L = 50
e = complex (2 , 2)

42

z = complex (0 , −abs (e))
P, b pre , l h s p r e = Precond i t i on ing (e , z ,W, L)

43

Appendix B Matlab Code

Convergence History for different methods:

clc
clear a l l
close a l l

load l h s . mat
load rhs . mat

b = s ize (rhs) ;
m = b (2) ;
n = length (rhs) ;
max it = 10∗n ;
t o l = 1e−8;

% GMRES
for i = 1 :m

[x g , i n f o g , r g , i g , r e s g] = gmres (lhs , rhs (: , i) , n , to l , max it) ;
i t e r g = [0 : 1 : (length (r e s g) −1)] ;
i t g { i } = i t e r g ;
r = r e s g . /norm(rhs (: , i)) ;
rho g { i } = r ;

end

figure
for i = 1 :m

semilogy (i t g { i } , rho g { i })
hold a l l

end
xlabel (’ number o f i t e r a t i o n s ’)
ylabel (’ r e l a t i v e r e s i d u a l ’)

% Restar ted GMRES
r e s t a r t = 10 ;
for i = 1 :m

[x gr , i n f o g r , r g r , i g r , r e s g r] = gmres (lhs , rhs (: , i) ,
r e s t a r t , to l , max it) ;
i t e r g r = [0 : 1 : (length (r e s g r) −1)] ;
i t g r { i } = i t e r g r ;
r = r e s g r . /norm(rhs (: , i)) ;
rho gr { i } = r ;

end

figure

44

for i = 1 :m
semilogy (i t g r { i } , rho gr { i })
hold a l l

end
xlabel (’ number o f i t e r a t i o n s ’)
ylabel (’ r e l a t i v e r e s i d u a l ’)

% BiCGStab
for i = 1 :m

[x b , in fo b , r b , i b , r e s b] = b i cg s tab (lhs , rhs (: , i) , to l , max it) ;
i t e r b = [0 : 1 : (length (r e s b) −1)] ;
i t b { i } = i t e r b ;
r = r e s b . /norm(rhs (: , 8)) ;
rho b { i } = r ;

end

figure
for i = 1 :m

semilogy (i t b { i } , rho b { i })
hold a l l

end
xlabel (’ number o f i t e r a t i o n s ’)
ylabel (’ r e l a t i v e r e s i d u a l ’)

% IDR with 8
for i = 1 :m

[x i a , i n f o i a , r i a , i i a , r e s i a] = i d r s (lhs , rhs (: , i) , 8 ,
to l , max it) ;

i t e r i = [0 : 1 : (length (r e s i a) −1)] . ’ ;
i t i { i } = i t e r i ;
r = (r e s i a . /norm(rhs (: , 8))) . ’ ;
r h o i { i } = r ;

end

figure
for i = 1 :m

semilogy (i t i { i } , r h o i { i })
hold a l l

end
xlabel (’ number o f i t e r a t i o n s ’)
ylabel (’ r e l a t i v e r e s i d u a l ’)

45

Code to make plots of the dependence of the number of iterations on the length, and
the convergence history for the different methods (to get the plots for the dependence
on the width, change ’Length’ with ’Width’):

clc
clear a l l
close a l l

load rhs . mat
load l h s . mat

load RightHandSide . mat
load LeftHandSide . mat
load Length . mat

t o l = 1e−8; % d e f a u l t i s 1e−8
r e s t a r t = 8 ;

%non−r e s t a r t e d gmres
i t e r a t i o n s g = [] ;
t ime g = [] ;
for i = 1 : length (Length)

t ic ;
n = length (RightHandSide{ i }) ;
max it = 10∗n ;
[x g , i n f o g , r g , i g , r e s g] = gmres (LeftHandSide{ i } ,
RightHandSide{ i } , n , to l , max it) ;
i t e r g = [0 : 1 : (length (r e s g) −1)] ;
i t e r a t i o n s g = [i t e r a t i o n s g ; i g (2)] ;
rho g = r e s g . /norm(RightHandSide{ i }) ;
t ime g = [t ime g ; toc] ;

end

%BiCGStab
i t e r a t i o n s b = [] ;
t ime b = [] ;
for i = 1 : length (Length)

t ic ;
n = length (RightHandSide{ i }) ;
max it = 10∗n ;
[x b , in fo b , r b , i b , r e s b] = b i cg s tab (LeftHandSide{ i } ,
RightHandSide{ i } , t o l , max it) ;
i t e r b = [0 : 1 : (length (r e s b) −1)] ;
i t e r a t i o n s b = [i t e r a t i o n s b ; i b] ;
rho b = r e s b . /norm(RightHandSide{ i }) ;
t ime b = [t ime b ; toc] ;

46

end

% IDR with 1
i t e r a t i o n s i a = [] ;
t i m e i a = [] ;
for i = 1 : length (Length)

t ic ;
n = length (RightHandSide{ i }) ;
max it = 10∗n ;
[x i a , i n f o i a , r i a , i i a , r e s i a] = i d r s (LeftHandSide{ i } ,
RightHandSide{ i } , 1 , to l , max it) ;
i t e r i a = [0 : 1 : (length (r e s i a) −1)] . ’ ;
i t e r a t i o n s i a = [i t e r a t i o n s i a ; i i a] ;
r h o i a = (r e s i a . /norm(RightHandSide{ i })) . ’ ;

t i m e i a = [t i m e i a ; toc] ;
end

% IDR with s = 4 (= d e f a u l t)
i t e r a t i o n s i b = [] ;
t i m e i b = [] ;
for i = 1 : length (Length)

t ic ;
n = length (RightHandSide{ i }) ;
max it = 10∗n ;
[x i b , i n f o i b , r i b , i i b , r e s i b] = i d r s (LeftHandSide{ i } ,
RightHandSide{ i } , 4 , to l , max it) ;
i t e r i b = [0 : 1 : (length (r e s i b) −1)] ;
i t e r a t i o n s i b = [i t e r a t i o n s i b ; i i b] ;
r h o i b = r e s i b . /norm(RightHandSide{ i }) ;
t i m e i b = [t i m e i b ; toc] ;

end

% IDR with s = 8
i t e r a t i o n s i c = [] ;
t i m e i c = [] ;
for i = 1 : length (Length)

t ic ;
n = length (RightHandSide{ i }) ;
max it = 10∗n ;
[x i c , i n f o i c , r i c , i i c , r e s i c] = i d r s (LeftHandSide{ i } ,
RightHandSide{ i } , 8 , to l , max it) ;

i t e r i c = [0 : 1 : (length (r e s i c) −1)] ;
i t e r a t i o n s i c = [i t e r a t i o n s i c ; i i c] ;

47

r h o i c = r e s i c . /norm(RightHandSide{ i }) ;
t i m e i c = [t i m e i c ; toc] ;

end

%%% Length %%%

%%% P l o t s %%%
% dependence o f N on Length
f igure
plot (Length , i t e r a t i o n s g , ’−k∗ ’ , Length , i t e r a t i o n s b , ’−b∗ ’ ,
Length , i t e r a t i o n s i a , ’−r ∗ ’ , Length , i t e r a t i o n s i b ,
’−g∗ ’ , Length , i t e r a t i o n s i c , ’−m∗ ’ , ’ MarkerSize ’ , 6 ,
’ LineWidth ’ , 1)
legend (’ gmres ’ , ’ b i cg s tab ’ , ’ i d r (s=1) ’ , ’ i d r (s=4) ’ , ’ i d r (s=8) ’)
xlabel (’ Length o f the system ’)
ylabel (’Number o f i t e r a t i o n s ’)

% convergence h i s t o r y f o r d i f f e r e n t methods
f igure
semilogy (i t e r g . ’ , rho g . ’ , ’ k ’ , i t e r b . ’ , rho b . ’ , ’ b ’ ,
i t e r i a , r h o i a , ’ r ’ , i t e r i b , rho i b , ’ g ’ , i t e r i c ,
r h o i c , ’m’)
legend (’ gmres ’ , ’ b i cg s tab ’ , ’ i d r (s=1) ’ , ’ i d r (s=4) ’ , ’ i d r (s=8) ’)
xlabel (’Number o f i t e r a t i o n s ’)
ylabel (’ Re l a t i v e Res idual ’)

48

Code to make plots of the dependence of the number of iterations on the energy of
the system:

clc
clear a l l
close a l l

load rhs . mat
load l h s . mat
load RightHandSide . mat
load LeftHandSide . mat
load Energy . mat

t o l = 1e−8; % d e f a u l t i s 1e−8
r e s t a r t = 8 ;

%non−r e s t a r t e d gmres
i t e r a t i o n s g = [] ;
t ime g = [] ;
for i = 1 : length (Energy)

t ic ;
n = length (RightHandSide (i , :)) ;
max it = 10∗n ;
[x g , i n f o g , r g , i g , r e s g] = gmres (LeftHandSide{ i } ,
RightHandSide (i , :) . ’ , n , to l , max it) ;
i t e r g = [0 : 1 : (length (r e s g) −1)] ;
i t e r a t i o n s g = [i t e r a t i o n s g ; i g (2)] ;
rho g = r e s g . /norm(rhs (: , 8)) ;
t ime g = [t ime g ; toc] ;

end

%BiCGStab
i t e r a t i o n s b = [] ;
t ime b = [] ;
for i = 1 : length (Energy)

t ic ;
n = length (RightHandSide (i , :)) ;
max it = 10∗n ;
[x b , in fo b , r b , i b , r e s b] = b i cg s tab (LeftHandSide{ i } ,
RightHandSide (i , :) . ’ , t o l , max it) ;
i t e r b = [0 : 1 : (length (r e s b) −1)] ;
i t e r a t i o n s b = [i t e r a t i o n s b ; i b] ;
rho b = r e s b . /norm(rhs (: , 8)) ;
t ime b = [t ime b ; toc] ;

end

49

% IDR with 1
i t e r a t i o n s i a = [] ;
t i m e i a = [] ;
for i = 1 : length (Energy)

t ic ;
n = length (RightHandSide (i , :)) ;
max it = 10∗n ;
[x i a , i n f o i a , r i a , i i a , r e s i a] = i d r s (LeftHandSide{ i } ,
RightHandSide (i , :) . ’ , 1 , to l , max it) ;
i t e r i a = [0 : 1 : (length (r e s i a) −1)] . ’ ;
i t e r a t i o n s i a = [i t e r a t i o n s i a ; i i a] ;
r h o i a = (r e s i a . /norm(rhs (: , 8))) . ’ ;
t i m e i a = [t i m e i a ; toc] ;

end

% IDR with s = 4 (= d e f a u l t)
i t e r a t i o n s i b = [] ;
t i m e i b = [] ;
for i = 1 : length (Energy)

t ic ;
n = length (RightHandSide (i , :)) ;
max it = 10∗n ;
[x i b , i n f o i b , r i b , i i b , r e s i b] = i d r s (LeftHandSide{ i } ,
RightHandSide (i , :) . ’ , 4 , to l , max it) ;
i t e r i b = [0 : 1 : (length (r e s i b) −1)] ;
i t e r a t i o n s i b = [i t e r a t i o n s i b ; i i b] ;
r h o i b = r e s i b . /norm(rhs (: , 8)) ;
t i m e i b = [t i m e i b ; toc] ;

end

% IDR with s = 8
i t e r a t i o n s i c = [] ;
t i m e i c = [] ;
for i = 1 : length (Energy)

t ic ;
n = length (RightHandSide (i , :)) ;
max it = 10∗n ;
[x i c , i n f o i c , r i c , i i c , r e s i c] = i d r s (LeftHandSide{ i } ,
RightHandSide (i , :) . ’ , 8 , to l , max it) ;
i t e r i c = [0 : 1 : (length (r e s i c) −1)] ;
i t e r a t i o n s i c = [i t e r a t i o n s i c ; i i c] ;
r h o i c = r e s i c . /norm(rhs (: , 8)) ;

50

t i m e i c = [t i m e i c ; toc] ;
end

%%% Energy %%%

%%% P l o t s %%%
f igure
plot (Energy , i t e r a t i o n s g , ’−k∗ ’ , Energy , i t e r a t i o n s b , ’−b∗ ’ ,
Energy , i t e r a t i o n s i a , ’−r ∗ ’ , Energy , i t e r a t i o n s i b ,
’−g∗ ’ , Energy , i t e r a t i o n s i c , ’−m∗ ’ , ’ MarkerSize ’ , 6 ,
’ LineWidth ’ , 1)
legend (’ gmres ’ , ’ b i cg s tab ’ , ’ i d r (s=1) ’ , ’ i d r (s=4) ’ , ’ i d r (s=8) ’)
xlabel (’ Imaginary part o f the energy (E) o f the system ’)
ylabel (’Number o f i t e r a t i o n s ’)

51

Code to make plots of the dependence of the number of iterations on the length of
the system for a disordered system:

clc
clear a l l
close a l l

t o l = 1e−8; % d e f a u l t i s 1e−8

%%% Changing l e n g t h f o r f i x e d d i s o r d e r s . Adding the d i s o r d e r in matlab %%%
load Length . mat
load RightHandSide . mat
load HP. mat
load e . mat
U = [0 , 0 . 5 , 3 . 5 , 6] ;
s = s ize (U) ;

%%% IDR with s = 8 %%%
for i = 1 : s (2) %number o f d i f f e r e n t d i s o r d e r s cons idered

a v i t i = [] ;
a v i t g = [] ;
for l = 1 : length (Length) %number o f d i s o r d e r s

i t e r a t i o n s i c = [] ;
i t e r a t i o n s g = [] ;
for k = 1:50 %number o f r e a l i s a t i o n s over which i s averaged

[i , Length (l) , k]
n = length (RightHandSide{ l }) ;
max it = 10∗n ;

d i s o r d e r = diag (un i f rnd (e−U(i)/2 , e+U(i) / 2 , [n , 1])) ;
A = HP{ l } − d i s o r d e r ;
[x i c , i n f o i c , r i c , i i c , r e s i c] = i d r s (A,
RightHandSide{ l } , 8 , to l , max it) ;
i t e r a t i o n s i c = [i t e r a t i o n s i c ; i i c] ;

end
a v i = mean(i t e r a t i o n s i c) ;
a v i t i = [a v i t i , a v i] ;
end
i t i { i } = a v i t i ; ;

LegendinfoU{ i } = sprintf (’U = %d ’ ,U(i)) ;
end

figure
for j = 1 : s (2)

plot (Length , i t i { j } , ’−∗ ’ , ’ MarkerSize ’ , 6 , ’ LineWidth ’ , 1)

52

hold a l l
end
legend (LegendinfoU)
t i t l e (’ Dependence o f convergence o f IDR(8) on lenght o f a
d i s o rde r ed system (t o l = 1e−8, W = 20 , t = 1 , E = 0 . 3 9) ’)
xlabel (’ Length o f the system ’)
ylabel (’Number o f i t e r a t i o n s ’)

53

References

[1] Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press
1995, p.132 - p.149, p.196 - p.200

[2] M. B. Van Gijzen, Y. A. Erlangga, C. Vuik, Spectral analysis of the discrete
Helmholtz operator preconditioned with a shifted Laplacian, SIAM 2007

[3] Iserles, A First Couse in the Numerical Analysis of Differential Equations, Cam-
bridge University Press 1996, p112 - p119

[4] Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company
1996, p.158 - p.159, p.210-p.211, p.215-p.220

[5] P. Sonneveld, M. B. Van Gijzen, IDR(s): A family of simple and fast algorithms
for solving large nonsymmetric systems of linear equations, SIAM 2008

54

