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Abstract

Today’s leading projections of climate change predicate on atmospheric General Circulation Models (GCMs).
Since the atmosphere consists of a staggering range of scales that impact global trends, but computational
constraints prevent many of these scales from being directly represented in numerical simulations, GCMs
require “parameterisations” - models for the influence of unresolved processes on the resolved scales. State-
of-the-art parameterisations are commonly based on combinations of phenomenological arguments and
physics, and are of considerably lower fidelity than the resolved simulation. In particular, the parameter-
isation of low-altitude stratocumulus clouds that result from small-scale processes in sub-tropical marine
boundary layers is widely considered the largest source of uncertainty that remains in contemporary GCMs’
prediction of the temperature response to a global increase in CO2.

Improvements in the capacity of machine learning algorithms and the increasing availability of high-
fidelity datasets from global satellite data and local Large Eddy Simulations (LES) have identified data-driven
parameterisations as a high-potential option to break the deadlock. However, early contributions in this field
still rely on inconsistent multiscale model formulations and are plagued by instability. To sketch a clearer
picture on the sources of the accuracy and instability of data-driven parameterisations, this work proposes a
framework in which no assumptions on the model form are made, building on a recent MSc thesis by Michel
Robijns at the TU Delft. It uses Artificial Neural Networks (ANNs) to infer exact projections of the unresolved
scales processes on the resolved degrees of freedom. These “interaction terms” naturally arise from Varia-
tional Multiscale (VMS) model formulations. The resulting VMM-ANN framework limits error to the data-
driven interaction term approximations, offering explicit insight into their functioning.

The model is assessed in the context of a statistically stationary convective boundary layer turbulence
problem, which is further reduced to a one-dimensional, forced inviscid Burgers’ equation. Simple, feedfor-
ward ANNs with relatively local input stencils that are trained on error-free data a priori to inserting them in
forward simulations (offline) are capable of predicting the interaction terms of this problem much better than
traditional, algebraic VMS closures in offline settings at various levels of discretisation; they also generalise
well to uncorrelated instances of the turbulence. However, this performance does not translate to simula-
tions of forward problems. It is shown that the model suffers from instability due to i) ill-posed nonlinear
solution procedures and ii) self-inflicted error accumulation. These correspond to two dimensions of for-
ward simulations that are not accounted for by offline training on error-free data. The first instability mode
can in some situations be dealt with by reformulating the VMM-ANN model architecture; the second is con-
jectured to demand training strategies that account for the self-induced errors. Finally, despite scaling well,
the framework is still found to be computationally expensive compared to a state-of-the-art model. In all,
appreciable challenges therefore remain in order to capitalise on the promise offered by ANNs to improve the
parameterisation of clouds in GCMs in particular and turbulence in general.
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number of samples used for ANN training, for FS2. For the present problem, the time cost of
running a forward problem with 1024 elements is included as a dashed line. . . . . . . . . . . . . 83

7.2 Average impact on J on the validation columns of varying the neurons/layer (subplots), learning
rate (bar assemblies) and dropout (hue) in the ranges reported in Table 7.1. The extent of black
bars denotes bootstrapped 95% confidence intervals, though the sampling rate is sufficiently
low that these should be treated with care. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3 Average impact on J on the validation columns of varying the optimiser between RMSProp,
NAdam and Adam, for ReLU, ELU and Sigmoid activation functions. The black bars denotes
bootstrapped 95% confidence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4 Training history on training and validation data and R2 correlation on validation data (upper
row) and test data (lower row) of each of the three interaction terms for the best set of hyperpa-
rameters, with FS3 as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.5 Comparison of time-averaged spatial distributions of the L2 norms of the interaction terms,
as predicted by exact, ANN and algebraic models, at h/hD ALES = 6 and ∆t/∆tD ALES = 2, over
16 columns from a different DALES simulation than was trained on. The ANN is the best FS3
model in Table 7.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.6 Contours of R2 of an array of ANNs (top) and algebraic models (bottom) over a range of h and
∆t . The ANNs use FS4 and the hyperparameters from Table 7.3, each trained and tested on data
sampled with a different combination of h and ∆t . All ANNs are trained on an equal number
of samples, corresponding to the dimensions of the coarsest discretisation, randomly selected
from 8x8 columns. They are evaluated on 16 different, full, uncorrelated columns from the same
DALES simulation. Contour lines of constant Courant number C are superimposed. . . . . . . . 88

7.7 Amplitude distribution with kz of exact (circles), algebraic (squares) and ANN (pluses) predic-
tions of the interaction terms at three levels of spatial discretisation, averaged over time, for a
test column. ∆t/∆tD ALES = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



List of Figures xiii

7.8 Amplitude distribution with kz of exact (filled circles) and ANN (pluses) predictions of the in-
teraction terms at three levels of temporal discretisation, averaged over space for a test column,
and with kt of the time derivative term at the two coarsest levels of ∆t . h/hD ALES = 6. . . . . . . 89

7.9 Highest w (wmax ) that can impact Î n+1
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Introduction

1.1. Background
Atmospheric General Circulation Models (GCMs) are an essential component of the Earth System Models
(ESMs)s that establish the world’s leading predictions on climate change [172]. However, intercomparison
studies of existing GCMs exhibit a large spread in their predictions of atmospheric CO2 concentration at
which a 2 K temperature rise with respect to preindustrial times, agreed upon in the 2015 Paris Agreement
[190], is reached [27]. In high-emission scenario simulations, this uncertainty means some models predict
the threshold will be crossed in 2040; others predict it will be around 2060 [221]. These extremes mandate
vastly different optimal policy approaches, with societal cost of the uncertainty estimated at $10 trillion [99].

The largest contributor to this uncertainty concerns the response of cumulus and stratocumulus clouds to
warming [67]. Such clouds have a rather large impact on top-of-the-atmosphere radiative balance [27]. How-
ever, the turbulent scales in the Atmospheric Boundary Layer (ABL) that drive the evolution of such clouds lie
far below the resolutions that computational limits will allow GCMs to resolve in the coming decades. Hence,
clouds are currently approximated with phenomenologically informed unresolved scales models, “parame-
terisations", of considerably lower fidelity than the resolved simulation.

In recent years, improvements in the capacity of machine learning frameworks [143], coupled with the
increasing availability of high-fidelity datasets from global satellite data [144] and local Large Eddy Simulation
(LES) of clouds [70], highlight that the deadlock might be broken by data-driven parameterisations [220].
In particular, Artificial Neural Networks (ANNs) have successfully closed state-of-the art GCMs in the last
year [29, 205]. However, ensuring that an ANN adheres to the laws of physics and therefore returns stable,
generalisable simulations remains a challenge [79]. Additionally, embedding machine learning frameworks
in GCMs does not resolve the conceptual inconsistencies of state of the art GCM formulations. These prevent
the correct interaction between the smaller scales of clouds and the larger scales of climate [161], an issue
that is expected to move centre-stage as the resolutions of GCMs increase in the coming decades [160].

Recently, fluid flow solvers closed by ANN unresolved scales models in a manner that imposed no a priori
model assumptions showed promise to begin resolving these issues in the context of simple, 1D problems
[209]. Rather than advancing ill-posed models for the unresolved processes themselves, which in turn inform
approximate, phenomenological closures for the resolved scales, this approach proposes to concentrate di-
rectly on the potentially better-posed unresolved processes that project onto the resolved scales, and bypass
those that do not. These processes can be encapsulated in “interaction terms”, which arise directly from the
decomposition of the problem’s governing equations into their resolved and unresolved scales spaces.

Variational Multiscale (VMS) formulations of spectral and finite element methods form a particularly nat-
ural and intuitive modelling framework for expressing these interactions [109]. The VMS framework sub-
sumes the model and discretisation errors introduced to the resolved scales simulation by the unresolved
scales under the interaction terms, where they belong. It demonstrates rather clearly that if the interaction
terms were exactly predicted, exact, discrete solutions of the problem could be attained. Therefore, the frame-
work forms a natural point of departure for assessing the capabilities of ANNs as unresolved scales models for
the interaction terms themselves. In turn, such models have no inherent limitations on how well the resolved
scales can be represented and are only constrained by an ANN’s ability to learn the interaction terms from
large sets of relevant data that satisfy the underlying, governing equations.
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2 1. Introduction

In this context, the contribution of this work is twofold. First, the study aims to test the absolute limits
of the capabilities of ANNs as unresolved scales models when all model assumptions are removed and they
are free to predict fully consistent interaction terms. It will assess the degree to which such interaction terms
are predictable and whether the predictions generalise to previously unseen situations, for a model problem
with a large range of multiscale dynamics that span long time periods and are discretised at coarse resolu-
tions. This stands in contrast to initial studies in this direction, which only considered sinusoidal solutions
[209] or rapidly decaying turbulence [21] at comparatively fine resolutions. Second, this work will attempt
to extend and deepen the understanding of the performance, limitations and opportunities of these uncon-
strained ANN closures, by investigating the numerical behaviour of Variational Multiscale Method (VMM)-
ANN models in highly simplified settings and assessing their fundamental properties and performance in
more complex situations. While this study is oriented towards atmospheric turbulence and is conducted
within the VMS framework, it is likely that its conclusions generalise to other multiscale problems with com-
plex, nonlinear scale interaction, such as turbulent flows in engineering applications, and to other discrete
modelling frameworks than the VMMs in which the ANNs are here contained.

1.2. Research Objective and Research Questions
The research objective of this work is succinctly put,

“To investigate the well-posedness, generalisability, and computational cost of machine-learned approxi-
mations of the exact interaction terms of a VMM, for proxies of the atmospheric model equations at relevant
levels of discretisation, in offline and online settings.”

Three main Research Questions (RQs) and their subquestions follow from this research objective.

RQ1 What are the characteristic scales, spatial distributions and relevance to the global problem of the am-
plitudes of the interaction terms of a VMS formulation for the model problem, over a range of time and
space discretisation levels?

RQ2 What is the ability of feed-forward ANNs trained on error-free data to make generalised offline predic-
tions of the model problem’s exact interaction terms, compared to state-of-the-art models?

RQ2.1 Which combinations of ANN input variables, output variables and architecture ensure that the
ANN accurately represents the interaction terms?

RQ2.2 To what extent can an ANN predict the interaction terms over a range of increasingly coarse space
and time discretisations?

RQ3 To what extent does an ANN’s generalised offline predictive ability at coarse resolutions translate to
online simulations?

RQ3.1 What are sources of the stability issues encountered by Robijns in [209]?

RQ3.2 To what extent can stability issues be abated by alternative formulations of the VMM-ANN model?

RQ3.3 What is the model’s computational cost compared to higher-fidelity simulations and algebraically
stabilised VMM?

The research objective and research questions will be unpacked after a treatment of the literature that
motivates their formulation, in Section 3.6.1.

1.3. Thesis Outline
The thesis is divided into three parts. First, two literature chapters more broadly develop the motivation
for the study and the proposed model. Chapter 2 gives an overview over state of the art techniques for at-
mospheric modelling and poses criteria for a new generation of models. Chapter 3 builds upon this basis,
arguing that consistent, data-driven multiscale modelling frameworks in general and VMM-ANNs in partic-
ular appear interesting candidates to begin meeting the criteria. Second, Chapter 4 identifies and describes
an appropriate model problem for the numerical experiments that facilitate answering the research ques-
tions and Chapter 5 outlines the methodology that was developed to conduct the experiments. Finally, four
chapters of results and discussion aim to answer the research questions in turn. Chapter 6 characterises ex-
act interaction terms, Chapter 7 investigates aspects of offline machine learning of those interaction terms,
Chapter 8 treats the numerical model’s properties in simple settings and Chapter 9 covers its performance in
a more realistic setting of 1D turbulence. Conclusions and recommendations are presented in Chapter 10.



2
Atmospheric Modelling

Accurate modelling of the atmosphere is essential to the utility of ESMs as predictors of large-scale dynamics
of the earth system [172, 199]. However, posing direct numerical approximations of the fundamental laws of
physics that govern the dynamic evolution of the atmosphere is extremely challenging, both in terms of estab-
lishing the laws that govern its interior [27] and spatio-temporal boundaries [80, 132, 193] as well as solving
the resulting computational problems [221]. Contemporary numerical models of the atmosphere therefore
necessarily predicate on sets of assumptions and approximations that ensure their tractability, but introduce
errors. This chapter aims to give an overview over these models along with their central assumptions, ap-
proximations, and abilities, in order to establish a set of criteria for improving them.

The chapter opens by formulating the mathematical model of the atmosphere relevant to this study, be-
fore briefly characterising the dynamics it entails. Next, Section 2.2 and Section 2.3 will introduce the two
main approaches traditionally taken to discretise the governing equations, GCMs and Cloud-Resolving Model
(CRM)s, present their assumptions and approximations and discuss the resulting implications. In the emerg-
ing context, Section 2.4 discusses hybrid, multiscale approaches that attempt to leverage the advantages of
each model class. Since these models embody the state of the art, they form a natural point of departure for
posing criteria that future models must adhere to. This basis will be built upon in the subsequent chapters of
this work.

2.1. Problem Formulation
Accurate modelling of the atmosphere is challenged by many of its particular features. First, the atmosphere’s
interfaces with other components of the earth system, primarily the hydrosphere, cryosphere, lithosphere,
biosphere, and space [80], impose spatially and temporally varying boundary conditions on the simulation
domain that are subject to the uncertainties in the models of these complex systems [132, 172]. Similar un-
certainty exists in the initial conditions that atmospheric models are launched from [193]. Next, atmospheric
models must represent the dynamics of interactions between aerosols and cloud moisture, both physically
and chemically, at the molecular level. This is far beyond the capability of modern computing, and widely
regarded as one of the major uncertainties in numerical simulations of climate response to anthropogenic
emissions [27]. Finally, atmospheric motion exists on a truly massive range of scales, spanning more than ten
decades in both spatial (from 10−5 −105m) and temporal (from 10−6 −105s) dimensions [131, 161] (To avoid
common confusions elaborated on in [164], this text reserves the term ”scales” for sizes of natural phenom-
ena, grid cells and spatial and temporal modes building up a phenomenon, while ”size” is used for physical
dimensions). It is successfully simulating this scale range by tackling the challenges it imposes on a numerical
model that lies at the foundation of this work.

2.1.1. Mathematical Model
The central problem in this regard is to find a suitable discretised model of the problem dynamics’ governing
equations, the Navier-Stokes equations for a stratified flow on a rotating sphere, described in terms of its local

velocity vector ui , density ρ, pressure p and potential temperature θ= p
1
γ

ρ , where γ is a reference ratio of dry
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specific heats:
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St
∂θ

∂t
+ui

∂θ

∂xi
= Sθ (2.1c)

Equations such as Eq. (2.1) are referred to as conservation equations, transport equations, evolution equa-
tions or prognostic equations in the fluid dynamics, atmospheric dynamics and turbulence modelling com-
munities. This text will reserve the term “conservation equations” for equation sets that directly reflect the
basic conservation laws of nature, while “evolution equations” will be adopted for equations that describe the
time-evolution of a quantity. Here, the conservation equations are non-dimensionalised such that the steady
inertial term is of O(1). This is achieved by employing a reference pressure, density, velocity, length and time
to compute p, ρ, ui and θ. The Froude number Fr is the ratio of inertial to buoyant phenomena, the Mach
number Ma the ratio of inertial to pressure-driven phenomena, the Rossby number Ro the ratio of inertial
to Earth-rotational phenomena, the Strouhal number St the ratio of unsteady to steady inertial phenomena
and the Reynolds number Re the ratio of inertial to viscous phenomena (these are defined in equation form
in Eq. (A.2) in Appendix A). δi j is the Kroenecker delta, εi j k is the Levi-Civita symbol and Sθ is a generic heat
source. Conservation equations for various species of moisture and aerosols that influence the dynamic field
quantities are readily added to this system to extend their representation to moist or chemical processes. Al-
though these are of considerable importance, they do not affect the basic conclusions of this work and will
therefore not be actively considered in this study.

Eq. (2.1) allows the evolution of a deterministic chaos in the form of turbulence that is extremely sensitive
to its initial conditions across a wide range of scales [150–152]. In an extreme form, one might hypothesise
that atmospheric dynamics are driven by all scales, leading one to consider situations such as the famous
butterfly effect [61]. If its illustration of an arbitrary, very small scale that has the potential to affect very large
scales is accurate, the deterministic predictability of the atmosphere should in fact probably be seriously
questioned [12]. Not only would solving such problems numerically reach far beyond the computational
resources that are expected to be available within the coming century [221], it would also be extremely chal-
lenging to find sufficiently accurate initial conditions for such simulations.

Therefore, the fundamental assumption that underlies any tractable model of the atmosphere’s large
scales is that the model remains well-posed when the simulated scale range is necessarily truncated by a
discretisation [202]. It is therefore made here at the outset of the document, and presupposes all subsequent
discussion.

2.1.2. Energy Spectrum of Atmospheric Turbulence
The chaotic appearance of the turbulence that emerges from Eq. (2.1) can be somewhat organised by statisti-
cal analysis. Commonly, such analysis considers the distribution of covariances of the field variables over the
spatial Fourier modes k j that construct the solution to Eq. (2.1). For summed correlations of equal velocity
field components ui , this is an energy measure E :

E(k j ) = 1

2
〈û∗

i (k j , t )ûi (k j , t )〉 (2.2)

Where ûi denotes the Fourier-transformed ui , û∗
i is ûi ’s complex conjugate and 〈·〉 implies averaging over

the temporal dimension. Nastrom and Gage [180, 181] famously report power spectra (ui E) with horizontal,
spatial wavenumber kh observed in the upper troposphere, reproduced in Fig. 2.1.

These observed spectra support the existence of a continuous atmospheric energy spectrum and oppose
the hypothesis of a spectral gap in energy at intermediate wavenumber (as put forward e.g. in chapter 2 of
[236]). However, the chaos of instantaneous observation gives way to two distinct regions of modes: A region
at lower kh (larger scales) with an approximate slope of −3 and a region at higher kh (smaller scales) with a
slope of −5/3.

Several theories of various forms of turbulence have attempted to describe this spectrum, with varying
degrees of success. Combinations of k−3 and k−5/3 spectra appear in inverse cascades of 2D turbulence [134],
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Figure 2.1: Nastrom-Gage spectra of the variance in power of zonal velocity (left), meridional velocity (centre) and poten-
tial temperature (right), from GASP aircraft data [180].

which could suggest the largest scales, which are often seen as quasi-2D, are forced by smaller scales [38].
Most observations and computations, however, indicate that a forward cascade is more likely (e.g. [245]).

A theory of forward cascading turbulence with a k−5/3 spectrum readily exists in the context of 3D Ho-
mogenous Isotropic Turbulence (HIT) [195]. Such theory assumes energy injection concentrated at large, in-
tegral scales and dissipation concentrated at small scales, where Re in Eq. (2.1) is sufficiently small for viscous
dissipation to draw the kinetic energy from the flow. Kolmogorov identified these latter spatial (η), temporal
(τη) and velocity (uη) scales by dimensional analysis:

η=
(
ν3

εt

) 1
4

(2.3a) uη = (εtν)
1
4 (2.3b) τη =

(
ν

εt

) 1
2

(2.3c)

Where ν is kinematic viscosity and εt the dissipation rate of turbulence. When large-scale productive and
small-scale dissipative forces balance and there is little stratification, they are separated by an “inertial” range
of scales where energy is merely transferred between modes by the non-local wavenumber interactions that
may be identified through the Fourier transform of the nonlinear, convective term in Eq. (2.1). In combination
with Eq. (2.3), Kolmogorov deduced that this inertial range should decay with an exponent of−5/3 [195]. Such
models of energy spectra proficiently describe the situations that will be encountered later in this work.

However, it is rather remarkable that a k−5/3 spectrum is observed in Fig. 2.1, since this range of atmo-
spheric turbulence is neither isotropic, homogeneous nor inertial, and many other processes than viscosity
drain and add energy to the flow [160]. Rather, it appears to be predominantly anisotropic and inhomo-
geneous in the vertical coordinate [147] and is characterised by strong, intermittent, temporally unequi-
librated and backscattering energy injection with non-local interactions, for instance from gravity waves
[153, 160, 203] or, at larger scales, baroclinic instability [12, 161, 252]. Hence, there is no theoretical consensus
on what a physics-grounded, low-order model of this spectrum should be [147, 245]. Therefore, discretised
solutions of Eq. (2.1) may yet be the best available tool to correctly capture the dynamics that compose Fig. 2.1
and the trends in its largest scales, even if such simulations must still capture an appreciable range of smaller
scales to correctly predict these trends.

The scales defined by Eq. (2.3) are commonly associated with scales smaller than those in Fig. 2.1 [195]. In
this context, the figure visually shows that a Direct Numerical Simulation (DNS) that captures the processes
in the atmosphere down to these Kolmogorov scales must resolve a truly vast range of scales. To keep the
computation of such discrete models tractable, it is necessary to augment them with an approximation for
the scales that are not directly represented by the discretisation: An unresolved scales model. Such a model
introduces assumptions, approximations and errors beyond those of the discretisation. It is an open question
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which approaches to i) discretising Eq. (2.1) and ii) posing accompanying unresolved scales models yield the
highest accuracy per degree of freedom [221]. Current methods lie spread over an interval that ranges from
high-resolution, small in size and high in accuracy, to low-resolution, large in size and large in error; no
models are currently equipped to simulate the range of scales in Fig. 2.1 in its entirety. The following sections
aim to acquaint the reader with three traditional modelling approaches that sit on either end and in the
middle of this interval. They will describe the assumptions and uncertainties these models must make and
discuss how their respective drawbacks might inform a new generation of model frameworks.

These sections address the reader that is unfamiliar with the models and their qualities. Their treatment
is therefore both introductory and high-level, merely aiming to develop the arguments that motivate the
proposition of a new model in this study. Hence, these sections might not be of sufficient interest for each
reader to cover in detail; such readers might skip directly ahead to Section 2.6.

2.2. General circulation models
GCMs are the class of models that aim at “numerically integrating the equations of fluid motion to simulate
the evolution, maintenance, and variations of the [...] time-averaged, planetary scale motion representing the
atmosphere’s long-term statistical behavior” [171]. While the class denotation GCM comprises both oceanic
and atmospheric circulation models in many texts, it will be reserved for atmospheric circulation models, as
these are the primary focus here.

A GCM is the top-down approach to numerical modelling of the atmosphere: Given a certain measure
of computing power, its primary requirement is to return stable, long-term (O(1−10) years) simulations of
the atmosphere, demanding concessions in discretisation resolution and modelling fidelity. This section will
review the modelling approach, assumptions and approximations of the models that result from this trade-off
and discuss their advantages and disadvantages.

2.2.1. Modelling Approach
To run long, stable calculations, GCMs feature relatively coarse grids. State of the art GCMs contain O(107)
grid cells, resulting in horizontal spacings of O(101 −102) km [85, 160, 220, 221] and vertical spacings in the
boundary layer of O(10−1) km [85] that exponentially increase over 30-60 layers [171]. This reserves O(108)
cells to discretise the oceans [220]. State of the art GCMs can explicitly resolve synoptic-scale processes or
larger (see Appendix A for descriptions of these characteristic scales) [171]. This implies that internal gravity
waves and small-scale processes cannot be directly resolved. Therefore, it is convenient to choose a mathe-
matical model that does not include these processes. Such equation sets comprise variations of the Hydro-
static Primitive Equations (HPEs), derived in Appendix A.2, which are commonly chosen.

The HPEs retain fully compressible equations in the horizontal direction for length scales larger than the
density scale height hsc [131], while the vertical momentum equation is commonly reduced to hydrostatic
balance [253]. This is justified by recognising that the characteristic length and time scales of global vertical
motion are around 10−3 and 101 times the characteristic scales of planetary-scale horizontal motion. This
shallow-atmosphere approximation permits the omission of the time-varying component of vertical velocity
w [253, 254]. This explicitly filters both vertical acoustic and internal waves by ignoring vertical mean velocity,
allowing coarser, stable time discretisations.

2.2.2. Applications
Mechoso and Arakawa draw attention to two main applications of GCMs: i) Predictions of weather and cli-
mate and ii) climate system sensitivity and variabilitiy analysis. The former concerns itself with running
ensembles of global simulations from a set of uncertain initial conditions. High resolutions and short time
steps currently allow global weather forecasts of a week with greater than 60% correlation to observations,
while lower resolution and longer time step simulations have documented several successful subseaonsal
predictions [171]. Most Numerical Weather Prediction (NWP) models today are based on models such as
these [74].

The second application aims to better understand the climate system and its variability. Typically, such
investigations run a control GCM until a “quasi-equilibrium” state is reached. A parameter in the simulation
is then perturbed, for instance greenhouse gas concentration. The model is then rerun and compared to
the unperturbed case. This is the common attitude to anthropogenic climate change assessments [27, 172].
More recently, this approach has been taken to investigate the sensitivity of the climate system to increased
concentrations of stratospheric sulphuric aerosols [194, 242].
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2.2.3. Assumptions and Approximations
GCMs directly represent only the dynamics of large scales of the conservation equations. These equations
themselves only apply to part of the processes in the models’ domains. Hence, GCMs rely rather heavily on
assumptions and approximations associated with the impact of the processes they cannot represent. These
are modelled by so-called parameterisations: Models informed by a mixture of physical, phenomenological
and statistical arguments for processes that live below the resolved grid scales, are not yet fully understood,
or both [101]. Fig. 2.2 is an example illustration of these processes.

Figure 2.2: Climate system processes and their interactions [171].

A typical GCM contains parameterisations for almost all processes in Fig. 2.2: Radiation [171], plane-
tary boundary layer processes [236], drag and momentum fluxes induced by orographic gravity waves [239],
boundary conditions for moisture at the land surface, the influence of vegetation [171] and the dynamic and
radiative effects of chemical and aerosol-related processes [175]. While all these processes are important,
cloud processes (interchangeable with moist convection in most texts) form an especially crucial part of this
interaction cycle. Arakawa emphasises that on the synoptic scales, clouds couple i) dynamic and hydro-
logical processes through condensation, evaporation and redistribution of sensible and latent heat and ii)
radiational, hydrological and dynamical processes by reflecting, absorbing and emitting radiation [12]. Fur-
thermore, they influence ground-hydrological processes through precipitation and the atmosphere-ocean
interface by interacting with the atmospheric boundary layer.

The appropriate parameterisation of clouds in general and cumulus clouds in particular is therefore
broadly considered a primary driver for GCM performance [12, 61, 85, 86]. Arakawa defines cloud param-
eterisation as “the problem of formulating the statistical effects of moist convection to obtain a closed system
for predicting weather and climate” [12]. To close the GCMs properly, the paper establishes six minimum
target outputs of cloud parameterisations: i) cloud heating integrated over a vertical grid column, ii) vertical
distributions of θ = θ(z) and specific humidity q = q(z), iii) mass transport of momentum, temperature, mois-
ture or generic aerosols by unresolved moist convection and the resulting impacts on atmospheric chemistry,
planetary boundary layer interactions and the formation of liquid water and ice in the cloud (so-called cloud
microphysics), iv) interactions with radiation on the unresolved and resolved scales, v) interactions between
resolved and unresolved scale momentum and vi) stochastic effects that recognise the epistemic uncertainty
of cloud parameterisation.

Historically, most cloud parameterisations rely on the assumption that the unresolved scales are in “quasi-
equilibrium” [12, 71], such that the unresolved variable can be determined directly from other known quanti-
ties, independently from their history. Such variables are often referred to as diagnostic or deterministic vari-
ables. The quasi-equilibrium assumption is similar to the quasi-steady subscale assumption, which relies on
the representative time scales of the processes below the grid resolution all being much smaller than the time
step of the numerical model, such that on average, all unresolved scale phenomena have adjusted to the large
scale conditions imposed on them. This is the explicit basis for early schemes such as the moist-convective
adjustment scheme [163] and the celebrated Arakawa-Schubert parameterisation [14], upon which many
modern models still build [178].
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2.2.4. Discussion
The major advantage of GCMs is their ability to simulate, with relatively high fidelity, the atmosphere at
climate-scale. They serve as the major informant for policy decisions regarding climate change projections
[27, 172], as they are the current generation’s unquestionable benchmark for predicting phenomena on such
a scale. However, the assumptions required to close GCMs place important limitations on their utility. The
drawbacks that follow can be broadly divided into those associated with the mathematical, physical and nu-
merical modelling stages.

First, the HPEs underpinning most GCMs assume that the phenomena that can be resolved on the grid
resolution of the simulation are such that the shallow atmosphere assumption is valid. However, horizontal
grid spacings are expected to drop below O(10) km in the coming decade, such that organised Meso-β-scale
motion and deep convective clouds can be directly resolved by the model [221]. It is unreasonable to assume
that the vertical velocity field can be diagnosed from hydrostatic equilibrium for such simulations [221]. In
fact, use of the HPEs may cause numerical instabilities, because the horizontal perturbation pressure force is
not hydrostatically balanced by the perturbation density field, leading to the generation of spurious, unstable
modes [202]. This highlights the importance of posing non-hydrostatic models that are valid also for small-
scale motion in the future [213].

Second, the physical modelling of the various parameterisation schemes introduces several problems.
First, these parameterisations artificially separate processes on the unresolved scales level and are often in-
consistent with respect to their discretisation, such that the modified equations do not reduce to the model
equations as the grid resolution is increased [12]. Second, tuning their large number of free parameters i)
unavoidably injects a dose of human subjectivity in the eventual model [101], ii) may give rise to strong, un-
expected sensitivities of climate system response [261] and iii) makes their uncertainty difficult to quantify
[220].

However, there is consensus in the community that the most concerning impact of parameterisation is its
influence over the predictive quality of GCM solutions [12, 27, 118, 220]. Section 2.2.3 identified moist con-
vection as an especially essential process that largely depends on dynamics that occur below the grid scale,
but impacts the global circulation. The deficiencies of the parameterisations that attempt to capture these dy-
namics then yield GCMs that are unable to satisfactorily model clouds and contain substantial climate-scale
uncertainties as a result [220, 221].

This is particularly true for low stratocumulus clouds. These cool the surface and lower troposphere,
as their albedo is high, but their cloud tops are low [95]. For this reason, their accurate representation is
vital for calculations of top-of-the-atmosphere radiative balance, upon which climate change assessments
pivot. Stratocumulus clouds develop from turbulent updrafts that entrain the stable, free atmosphere into the
atmospheric boundary layer. This entrainment takes place in the sharp cloud-top temperature inversion and
essentially drives the cloud top height, the thickness of the cloud and much of its temporal evolution. Hence,
it is key to many of its radiative and moist properties [57, 236] (this will be discussed further in Chapter 4).
However, simulating these turbulent updrafts requires up to an order of magnitude higher vertical resolution
than commonly achieved by GCMs [31], and up to three orders of magnitude higher horizontal resolution
[221]. Therefore, they are currently placed entirely in the hands of the parameterisation schemes.

As GCM cloud simulations increase in resolution, they increasingly demand direct parameterisation of
the microphysics that govern cloud behaviour at the smallest scales to be integrated in the moist convection
parameterisation [82]. This includes simulation of a multitude of processes that are not necessarily well-
understood, such as the growth of cloud droplets through condensation, growth of ice crystals through depo-
sition, freezing and autoconversion of droplets, aggregation of ice crystals, depletion of cloud ice and droplets
through snow and rain, evaporation of cloud water and sublimation and melting of ice and snow [171]. Their
interaction with the cloud dynamics parameterisation, themselves subject to strong assumptions, yields a
“parameterization squared conundrum, that is, parametrized microphysics in parametrized clouds” [85].

The implications of this deficiency are illustrated by Fig. 2.3. It shows how Equilibrium Climate Sensitivity
(ECS) (the global surface temperature increase of a climate in equilibrium after a doubling of CO2 concentra-
tions), evaluated by a set of state-of-the-art GCMs, is scattered between 2-5 K [221]. This uncertainty range
in turn corresponds to an interval of CO2 concentrations of 480-600 ppm (parts per million) at which the
average surface temperature difference with respect to preindustrial levels exceeds the 2 K threshold agreed
upon in the 2015 Paris Agreement [190]. Under a high-emission scenario where no greenhouse gas emission
reductions are implemented, these concentrations will be reached between 2040-2060 [220]. The extremes
of this uncertainty interval mandate a completely different set of optimal policies to approach the problem,
an uncertainty that is estimated to cost global society in excess of 10 trillion 2015 USD [99] in the coming
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Figure 2.3: CO2 concentration at which 2 K global temperature rise with respect to pre-industrial levels is reached as a
function of ECS−1 [221]. The circles represent climate models, in order of ascending ECS [33]. The spread in allowable
CO2 concentration corresponds to the spread in time, represented on the right axis, when the 2 K barrier will be broken.

decade if it is not reduced. By far the largest contribution to this uncertainty margin is the unknown response
of low stratocumulus clouds over sea to warming [27, 67]: If there are more such clouds in a warmer climate,
the 2 K threshold will be crossed later, if there are fewer, the barrier will be broken earlier. There is therefore
unquestionably a need to improve parameterisation strategies for moist convective processes that exist far
below the grid size, but play a central role in the climate system.

State of the art parameterisations are also criticised for their reliance on the quasi-equilibrium assump-
tion. As the GCMs’ horizontal grid resolution will approach O(10km) in the coming decade, their time steps
will come down in proportion. Just as deep convection then demands unsteadiness in the vertical direction to
be accounted for in the governing equations, it is also likely that convective events will begin spanning multi-
ple time steps [61]. The quasi-equilibrium assumption will then increasingly break down, such that unsteady
unresolved scale models will be required.

A third point of criticism on GCMs pertains to their numerical models, in particular the measures taken
to ensure the numerical stability of the GCM. Commonly, this is done by introducing artificial diffusion-
like terms based on eddy-viscosity or hyper-viscosity assumptions (see [113] for an extensive review). Un-
steady models in engineering turbulence may use arguments such as scale separation and characteristics
such as turbulence isotropy and homogeneity on sufficiently small scales to assign physical meaning to eddy-
viscosity models when a discretisation’s cutoff wavelength resides in an inertial subrange [195]. However, Sec-
tion 2.1.2 discussed how none of these arguments or characteristics are especially relevant for atmospheric
turbulence. Still, GCM developers have traditionally rather focussed on minimising the harm done by these
models at the resolved scales and on damping modes that could destabilise the simulation [113] than on for-
mulating accurate models for unresolved turbulence directly. Since better turbulence closure models exist
[168] and measurably improve the simulations [92], this is an area where improvements are still often found
(e.g. [228]).

In all, it is clear that lacking mathematical, physical and numerical modelling assumptions lie at the foun-
dation of the challenges faced by GCMs. A range of models exist that attempt to remedy these deficiencies
by directly simulating the processes that GCMs parameterise. To demonstrate that these models are limited
in their own sense and that the future of climate modelling likely still demands GCMs, these models will be
reviewed presently.

2.3. Global Cloud-Resolving Models
CRMs refer to the class of models “whose grid-spacing is fine enough to allow explicit simulations of individ-
ual clouds, throughout their whole life cycle or over part of it [92].” CRMs are often referred to in literature
as Cloud Ensemble Model (CEM)s or Cloud System-Resolving Model (CSRM)s; this text adopts the first. In
the atmospheric sciences, one traditionally further distinguishes CRMs from LES, with the former target-
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ing phenomena of larger physical extent such as deep convection [92] and the latter the phenomena that
could be simulated down to an inertial subrange, such as atmospheric boundary layers [235]. However, the
overwhelming similarity between the approaches has practically reduced the differences to whether finer
(< O(100) m) or coarser (< O(1) km) grids are being targeted. Hence, this text will mostly treat CRMs as the
main class of models, but it implicitly covers almost all aspects of atmospheric LES while doing so.

While sharing many elements with their GCM cousins, the motivation-oriented definition given above in-
dicates that its approach to atmospheric modelling is very much the opposite of that of GCMs. It is a bottom-
up approach to numerical modelling, orienting its computing resources towards simulating the physical pro-
cesses with as high fidelity as possible, trading off spatial and temporal coverage of the simulation. This
section discusses the modelling approach, applications, approximations, advantages and disadvantages of
CRMs in similar fashion as for GCMs, and presents contrasts and similarities between the approaches that
are relevant to the rest of the text.

2.3.1. Modelling Approach
Specific small-scale phenomena such as updraft core velocity in deep convective clouds (which is essen-
tial for cloud microphysics and microphysics-dynamics interactions) display numerical convergence around
100m horizontal grid resolutions [124], while the simulation of cloud-top entrainment, which is vital for real-
istic simulations of low clouds [31], requires vertical grid-spacings of the order 25m [192]. These resolutions
are several orders of magnitude lower than those achieved by GCMs. However, they are overambitious even
for practical applications of Global Cloud-Resolving Model (GCRM)s, where recent developments such as mi-
grating CRM codes to multicore processors have allowed numerical weather predictions over an area with the
size of the Netherlands at 100m horizontal grid spacing [215], while the highest resolution GCRM simulation
to date ran a 12 hour case of the global atmosphere at 870 m horizontal grid spacing [176]. This global simu-
lation contained 6.8 ·1010 grid cells and required full use of RIKEN’s K-computer, which at the time held the
best LINPACK benchmark performance in the world: 8.162 petaflops [37]. More commonly, GCRMs contain
up to O(109) grid cells [85], with time steps of approximately 10s [203].

At these grid spacings, motion of the order hsc can be directly resolved (see Table A.2), such that vertical
accelerations, even in the form of fluctuations around a hydrostatic mean state, must be calculated [85, 92].
Hence, nonhydrostatic mathematical models form the basis of CRMs, varying from anelastic models for deep
convection [137] and Boussinesq-approximated equation sets for boundary layer simulations [97], to the full
compressible Euler equations necessary for global simulations [138, 213]. In addition, evolution equations
are included for various moist species, usually at least comprising specific humidity (or water vapour ratio)
and several hydrometeors, for instance liquid cloud water and ice and various forms of precipitation [92].

2.3.2. Applications
CRMs have traditionally had two major areas of application [92]. The first category of studies attempts to
better understand the dynamics of clouds by resolving a large range of turbulent dynamics and studying how
these interact with microphysical and radiative thermodynamical processes to govern moist convection, an
area that remains poorly understood [92]. This category involves careful studies of deep convection [124],
boundary layer processes [227, 247], organised meso-β-scale convection ([92] and references therein) and
initial studies on cloud feedback to climate sensitivity [30].

The second category involves developing modelling strategies that will improve weather and climate pre-
dictions. This involves model intercomparisons of a single case with different LES or CRM models, which
are usually developed independently [97], in order to validate them, ascertain their consistency and highlight
structural strengths and shortcomings [70]. Once this is established, the models may serve as inspiration for
and verification of GCM parameterisations [92].

2.3.3. Assumptions and Approximations
The assumptions and approximations underlying CRMs come significantly closer to the numerical and phys-
ical approximations encountered in engineering flows than those encountered in GCMs. As for GCMs, these
assumptions and approximations primarily concern what cannot be resolved by the discretisation. However,
only parameterisations of radiation, microphysics, and turbulence are normally required [203], because a
much larger range of scales is directly resolved compared to GCMs.

CRMs solve evolution equations for a priori separated hydrometeor species and their size distributions,
with microphysics parameterisations governing the various sources and sinks that drive the conversion of
one species into another. This still invokes many assumptions on hydrometeor formation, conversion to



2.4. Superparameterisation: The Multiscale Modelling Approach 11

other species and dissipation. However, attempting to directly simulate the concentration of these species
already much improves the parameterisation squared conundrum between radiation and microphysics, in
spite of similar simple radiation schemes being employed as in GCMs. An excellent, more in-depth overview
over the radiative and microphysics parameterisations that close CRMs is given by Guichard and Couvreux
[92].

Approximating the unresolved turbulent dynamics also remains a defining challenge of CRMs and espe-
cially LES. As for GCMs, the most common approach to this end is to formulate an artificial diffusion-like
model, both for finite volume methods and spectral and finite element approaches [7, 97, 121, 165, 213]. It is
traditionally argued that this is a convenient formulation, since it robustly and cheaply drains sufficient tur-
bulent energy from the resolved simulation to sustain a stable simulation [145, 229]. In state-of-the art LES
codes, the original, algebraic schemes have mostly given way to methods that pose one or multiple evolution
equations for turbulence kinetic energy E and its derivatives, which contain interactions with the resolved
moist convection, its parameterisation as well as radiation [59, 97].

2.3.4. Discussion
High-resolution CRMs are without doubt the highest fidelity models of the atmosphere that exist [92]. This
is their great advantage over GCMs: Their higher resolution, lower number of approximations and increased
consistency with respect to the processes they simulate make them the ideal for a unified framework for
atmospheric simulation.

This is most prevalent in the much improved representation of moist convection by GCRMs that cur-
tail the accuracy of climate predictions of GCMs. Because the turbulent processes in the atmosphere are
highly energetic, anisotropic and interactive with respect to radiative and microphysical effects in such a
way that intermittent backscatter of energy between continuous scales can directly force large-scale trends,
GCRMs predict intra-seasonally varying climate phenomena driven by deep convection much better than
GCMs [176, 243]. They also depict convective cloud processes with much less variability between models in
model intercomparison projects [70, 92]. In fact, it is often argued that GCRMs that directly resolve phenom-
ena all the way down to stratocumulus clouds and even further down the scale range in Fig. 2.1 may be the
only way to properly simulate global atmospheric flow [160, 203]. The endgame of such argumentation is the
hope that GCRMs will replace GCMs as the primary framework for global atmospheric simulations up to the
climate scale [12, 203].

12 hour simulations of the entire atmosphere at sub-kilometer resolution are without doubt impressive
[176]. However, along with LES simulations that highlight that another order of magnitude in grid resolution
must be gained before one can reasonably begin resolving low clouds [124], they also immediately point
to the intractability of GCRMs for long-term climate simulations. Schneider et al. estimate that computing
power must increase by a factor 1011 compared to the state of the art to achieve direct resolution of low clouds
in these models [221]. Even under the very naïve assumption that computing power will continue doubling
every 1.2 years, with every added FLOP devoted to perfectly scaling grid resolution, this would only become
possible around 2060. By that time, the climate system will itself have unveiled its sensitivity to the emission
experiment humanity is conducting on it [27, 221]. This sentiment is uniformly corroborated throughout the
climate system modelling community [160, 214, 220].

Finally, even this picture may be overly optimistic. Early visions of global LES often suggest employing
a single CPU per grid column, which at GCM resolution would demand O(106) horizontal “tiles” [85]. The
large amount of CPU interfacing required between these cells at runtime renders the computational scaling
of CRMs very inefficient [60, 85]. Similarly, the storage of a field quantity on a grid with 109 cells exceeds 1 TB
for a single time step, requiring online post-processing to contain the storage requirements [203]. The state
of the art has already encountered the limit at which adding CPUs is becoming energy inefficient, such that a
priority in the field is porting existing codes to GPUs [7, 60]. This will likely demand a more specific focus on
developing numerical methods that are conducive to “massively parallel” discretisation [85].

2.4. Superparameterisation: The Multiscale Modelling Approach
From the previous two sections, three specific characteristics emerge that might improve the GCM and GCRM
approaches to atmospheric modelling. First, such models should employ non-hydrostatic equations that re-
main valid for the entirety of scales that meaningfully impact the resolved-scale atmospheric trends, includ-
ing deep and shallow convection. Second, they should aim at running at the computational cost of GCMs,
given the intractability of GCRMs for long-term global atmospheric simulations. Third, the impact of unre-
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solved moist convection on the resolved scales should be strongly inspired by the lessons learned from CRMs
to improve the consistency and fidelity of traditional parameterisations.

A promising avenue that leads in this direction is a hybrid strategy that harnesses both the cheapness of a
GCM and the accuracy of CRMs on the scales associated with moist convection. Such a framework emerged
in the late 90s through research on deep convective phenomena in the tropics. At the time, these were among
the largest-scale moist convective systems that remained unresolved by GCMs [221], but were suffering from
their traditional hydrostatic equations and quasi-steady, ensemble-averaging parameterisations. Simultane-
ously, CRM predictions over spatial domains of similar horizontal extent as GCM grid cells, driven by bound-
ary conditions extracted from GCM simulations, began to show good resemblance to experimentally gath-
ered evidence [87]. Based on these observations, it became apparent that a multiscale modelling framework
that employs a conventional GCM, but replaces the traditional parameterisation with local CRMs, might offer
substantial benefits for a GCM’s accuracy. Such a framework emerged in 1999 as Cloud-Resolving Convec-
tion Parameterisation (CRCP), later referred to as the Multiscale Modelling Framework (MMF) or SP in the
atmospheric modelling literature [83, 86].

This section will review SP. It will place it in the framework of Heterogeneous Multiscale Methods (HMMs),
highlight the improvements that SP offers and identify four areas where further progress might be made.
Based on these, a set of requirements for improved multiscale GCMs is defined. From this discussion, the
next chapter will propose a novel modelling framework as an alternative to SP, and establish the additional
conditions under which such a model could be beneficial.

2.4.1. Heterogeneous Multiscale Methods
Multiscale modelling arises in a great number of fields, ranging from Car-Parrinello molecular dynamics to
composite material analysis and fluid flow simulations [8]. Hence, it might not be surprising that relatively
general frameworks have been proposed to understand the fundamentals of such models. An abstract, gen-
eralised umbrella for these exists in the mathematical literature as HMMs [251].

HMMs refer to all methods that fall under a mathematical framework that systematically describes mul-
tiscale modelling, valid across disciplines [8, 251]. Therefore, it is instructive to introduce its principles here.
Its goal is to capture “macro-scale” behaviour (similar to large-scale behaviour of the atmosphere) at a lower
cost than employing a “micro-scale” model throughout the domain one attempts to simulate, by making ei-
ther of two compromises: i) Extracting only the “gross behaviour” of the micro-scale model or ii) exploiting
scale separations or self-similarities in the solutions of the mathematical models [158, 251]. While ideas in
these directions have coexisted in many fields for decades, the HMM formulation ties them all up to these
underlying principles.

HMMs engage a compression operator Q, which compresses the exact solution into a reduced number
of states uD =Qu and a reconstruction operator R, which, if exact, reconstructs the full solution u =RuD ,
i.e. the identity Q (R(uD )) = uD holds. HMM assumes an incomplete macroscale model exists as Eq. (2.4a),
where D(u) denotes the model’s missing part due to its reduced dimensionality. HMM then evaluates the
microscale model only where it is needed to find D(u) on the macroscale. The microscale model Eq. (2.4b)
is therefore subject to the constraint d(uD ) that makes it reproduce the macrostate of interest: l (u,d(uD )). A
coupled multiscale model ensues:

L(uD ,D(u)) = 0 (2.4a)

l (u,d(uD )) = 0 (2.4b)

2.4.2. Modelling Approach
Interpreted as a HMM, the premise of SP is to consider a traditional GCM as the macroscale model and replace
its entire parameterisation suite with a CRM that operates as a microscale model within a single grid column
of the GCM (these will be referred to as the outer and inner models respectively). The CRM can be any of
those discussed in Section 2.3 and therefore couples radiation, microphysics and convection on the scales
it resolves [83]. It traditionally operates on a 2D grid on a longitude-height plane in the column, sharing
vertical grid nodes with the outer model, but retaining sufficient horizontal resolution for CRMs to function
adequately [123]. It is run in several sub-time steps within a single time step of the outer GCM, forced by
the (constant) GCM tendency on the outer scales. Each CRM is traditionally contained in the grid column
of the GCM by imposing periodic boundary conditions on the horizontal edges of the CRM grid, allowing a
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fully parallel computation of the unresolved scales model within a single time step of the GCM. In all, this
approach reduces its computational cost by up to three orders of magnitude, compared to a GCRM [85].

Grabowski originally presents the coupling between outer and inner models by considering an evolution
equation in conservative form of a generic variable χ, advected with velocity u and forced by linear terms f
(for instance, a pressure gradient, Coriolis force, buoyancy or phase change) around an ambient density ρ0

[87]. It is given by Eq. (2.5):

∂
(
ρ0χ

)
∂t

+ ∂

∂x j

(
ρ0u jχ

)= ρ0 f (2.5)

Explicitly decomposing these variables into a “large-scale” and a “small-scale” portion (which will corre-
spond to the resolved and unresolved scale portions) yields:

χ=χ+χ′ (2.6a)

u = u +u′ (2.6b)

f = f + f ′ (2.6c)

Such that the evolution equation can be written as:

∂
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︸ ︷︷ ︸

iii

(2.7)

The terms grouped under i represent the interactions of large-scale dynamics, those grouped under ii the
interactions of small-scale dynamics, and the terms under iii the interactions of small-scale and large-scale
dynamics. Under an explicit assumption of scale separation, Grabowski proposes that when averaged over a
large enough horizontal area, the interactions between small-scale perturbations and large-scale perturba-
tions is comparatively small [87]. This would justify setting term iii to 0, which is discussed at some length in
Section 2.5.1 and Section 2.5.4. The notation Fχ

SS is now introduced to define:

Fχ

SS = ρ0 f ′− ∂
(
ρ0χ

′)
∂t

− ∂

∂x j

(
ρ0u′

jχ
′
)

(2.8)

From this, two equations can be written in terms of the large-scale and small-scale variables explicitly,
coupled to each other through Fχ

SS :

∂
(
ρ0χ

)
∂t

+ ∂

∂x j

(
ρ0u jχ

)= ρ0 f +Fχ

SS (2.9a)

∂
(
ρ0χ

′)
∂t

+ ∂

∂x j

(
ρ0u′

jχ
′
)
= ρ0 f ′−Fχ

SS (2.9b)

In the context of SP, Eq. (2.9a) is an example of the equation sets that are solved by the GCM. They will
only account for large-scale phenomena, and defer processes such as latent heat release, phase changes, sur-
face fluxes, radiative transfer and cloud microphysics to Eq. (2.9b), which feeds the overall impact this has on
the large-scale variables back through Fχ

SS [86]. The original proposal for SP casts the general form Eq. (2.9)
as a set of “anelastic equations”. These equations are scale-dependent, but non-hydrostatic; the interested
reader is referred to Appendix A.1 for their derivation from Eq. (2.1). The anelastic equations are augmented
with three species of moisture. This results in seven large scale and small scale anelastic equations for moist

dynamics, such that χ = [
ui ,θ, qv , qc , qp

]T , where qv , qc and qp are the mixing ratios of water vapour, con-
densed water and precipitation (condensed water that falls relative to the flow) [83]. The equations and their
development are included in Appendix A.3.

The equations are numerically coupled in a two-phase time-stepping procedure to advance the solution
from time level t n to t n+1 = t n +∆t :

1. The large-scale equations are solved to estimate χn+1. This provides equations for the large-to-small

scale forcings Fχ′
SS . It is common to relax the momentum coupling, whereas thermal coupling is usually

immediate [83].
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2. With these source terms, the small-scale equations are propagated on the small-scale grid to estimate
χ′n+1. This requires several interior time steps smaller than that of the outer simulation to maintain

stability on the smaller grid, where Fχ′
SS is kept constant. By averaging the resulting small-scale state

over a large-scale grid cell, this yields updated estimates for the small-to-large scale forcing Fχ

SS . Both
large-scale and small-scale fields are then available for the next time step.

2.4.3. Applications
SP has garnered acclaim within the atmospheric modelling community [12]. This stems from three main
advances that largely meet all the criteria for improved atmospheric models presented at the outset of this
section.

First, it poses the most unified framework for integrating physics at the scales where it matters so far seen
[85]. The framework is flexible in which microphysics and radiation schemes, as well as phenomenological
source terms, are to be employed in the small-scales equations. The large-scale equations are kept consistent
and free of subjectively-tuned, uncertain closures.

Second, from the perspective of traditional GCMs, SP provides a significant fidelity increase compared
to classical parameterisation schemes, by actually attempting to resolve the parameterisation (hence the
original, slightly self-conflicting name “cloud-resolving convection parameterisation”). This remedies the
“parameterisation squared” problem [85] and allows SP to benefit from the advantages that CRMs hold in
convection modelling.

Third, it achieves this at a significantly reduced cost compared to GCRMs by leveraging the scale separa-
tion assumption, which to the highest possible degree decouples the large-scale and small-scale equations.
This allows solving the relatively cheap large-scale model on its own in each time step and solving each grid
column’s embedded CRM in fully parallel fashion [85], making the model conducive to massively parallel
High-Performance Computing (HPC) architectures that do not require the CPU interfacing of GCRMs.

For all these reasons, SP has been extensively applied since its development and it has improved the sim-
ulation of many phenomena. Extensive reviews of these can for instance be found in [85, 160] and references
therein.

2.4.4. Assumptions and Approximations
The main modelling assumption underpinning the original SP formulation is that of scale separation. This
manifests itself in four ways. First, as discussed above, the model’s definition assumes that the direct in-
teraction between unresolved (“small-scale”) variables and resolved (“large-scale”) variables is small when
averaging over a large enough area [87]. A large area in this sense is denoted by a length scale of O(102) km,
such that the small scales incorporate both cloud system convection and meso-β-scale dynamics [160]. At
the time of its conception, this length scale was commensurable with the resolution achieved by state of the
art GCMs, such that the assumption was generally considered reasonable when it was properly applied [84].

Second, the scale separation assumption contends that it is reasonable to expect the temporal and spatial
extents of the unresolved scales to be small in comparison to the resolved scales. Hence, it assumes that it is
sufficient to predict the unresolved scale quantity averaged over a GCM grid cell, as discussed in Section 2.2.3.
Similarly, it assumes that the time-scales of individual, unresolved events are sufficiently small that the large-
scale and small-scale velocity fields relax to each other with a time-scale comparable to the large-scale time
step, while the large and small-scale thermodynamic fields are estimated to converge immediately [83].

The third assumption pertains to the periodic boundary conditions applied at each grid column’s hori-
zontal boundaries. Such boundary conditions assume the perfect locality of each individual CRM to its own
grid column. In terms of scale separation, the small-scales are assumed to be sufficiently small that they are
local to each large-scale grid cell, such that all large-scale advection occurs only at the large scales.

Finally, the scale separation assumption often is interpreted to be strong enough that the large-scale
model may solve HP equations, while the small-scale model turns to anelastic [85] or pseudo-incompressible
equations [137, 138].

As these points form the foundation upon which SP is built, their validity will be discussed in the following
sections.

2.5. Four Improvement Areas for SP
Despite being a substantial leap forward, traditional SP has several flaws that have ushered in new research.
In particular, its original formulation is still somewhat lacking in four areas. The following subsections will
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review these shortcomings and place them in the larger context of the direction in which global atmospheric
model development appears to be headed, to outline model strategies that might help remedy them.

2.5.1. Model Consistency
So far, the discussion on SP has colloquially employed the terms “small scale” and “large scale”, without being
rigorous about what is small and large. This is because the original derivation of SP is not very rigorous in its
treatment of these terms. In fact, none of the early publications on the development of SP provide any math-
ematical justification of the terms that should be included in the model or under which circumstances the
scale separation assumption is valid [83, 86, 87]. Its particular form is instead based on empirical observation
and ad hoc arguments that follow from this [160].

For instance, the use of periodic boundary conditions in each column’s grid cell demands that the mean
vertical large-scale velocity is 0 in order to conserve mass [84], which is therefore promptly assumed without
justifying why the adoption of periodic boundary conditions was an appropriate choice in the first place.
Similarly, it was assumed that term iii in Eq. (2.7) is 0 if the column’s spatial extent is sufficiently large, without
indicating how large is large enough.

Practically speaking, the lack of a formal framework to assess the validity of the assumptions underpin-
ning the method means that changing the model’s grid resolution might yield unpleasant surprises. This is
especially true for the grid-dependent scale separation assumptions introduced in Section 2.4.4. Additionally,
the early instances of SP only featured a 2D CRM in each grid column, aligned with Earth’s latitude bands, as
this is the plane in which tropical convection primarily is observed [87]. This is obviously artificial, and leads
to formulation intricacies that have proven difficult to handle naturally for 3D simulations on a rotating earth
[85].

Several studies in the last decade have remedied these deficiencies. First, it was ascertained that replacing
the 2D CRMs with 3D models removes the problems introduced by the former [122]. More generally, Majda
[158] formally developed the SP framework by using the method of multiscale asymptotics [259], which is
briefly outlined in Appendix A. The main points of Majda’s derivation are presented here, since they expose
SP’s underlying assumptions somewhat better.

Letting the small parameter ε denote the ratio of two scales and substituting this into the system’s gov-
erning equations creates a hierarchy of equations at various orders. Majda considers the model in its limited
area mode, which only cover parts of the globe. For these models, the resolved scales are O(102) km (meso-β-
scales) and the unresolved scales are O(101) km, such that ε=O(10−1) [158]. This is likely a good proxy for the
labour division of global models in the coming decade [221]. Similar relations exist between characteristic
time scales of the motion on these spatial scales, typically ranging from 2 hr at the meso-β scale and 15 min
at the microscale, such that the relations also hold for velocities. Defining

Xi = εxi (2.10a) T = εt (2.10b)

for the horizontal coordinate and for time then separates the scales. An ansatz for asymptotic expansions
can be constructed from this:

uh,i = uh,i (εx, z,εt )+εuh1,i (εx, z, t )+u′
h,i (εx,x, z,εt , t )+O(ε2) (2.11)

In Eq. (2.11), the horizontal velocity is decomposed in a large-scale mean (uh,i ), a large-scale fluctuation
of O(ε) (uh1,i ) and a small-scale perturbation u′

h,i . The former two both depend only on Xi and T , while the
latter also depends on xi and t . Similar decompositions are proposed for the wet thermodynamic fields and
are inserted in the governing equations. To give an idea of the procedure, consider how this reformulates the
averaged continuity equation from Eq. (2.1) (uh denotes horizontal velocities, w the vertical velocity):
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uh, j +

∂

∂z
w = 0 (2.12a)

∂

∂x j
uh, j +ε

∂

∂X j
uh, j +

∂

∂z
w = 0 (2.12b)

∂

∂x j

(
uh,i +εuh1,i +u′

h,i

)
+ε ∂

∂X j
uh, j

(
uh,i +εuh1,i +u′

h,i

)
+ ∂

∂z

(
w +εw1 +w ′)= 0 (2.12c)
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Due to the scale separation, · quantities do not depend on xi and terms such as
∂uh,i
∂xi

= 0. Hierarchical
reordering of Eq. (2.12c) at the various orders of ε then yields:

ε0 :
∂

∂z
w = 0 (2.13a)

ε1 :
∂

∂x j
uh, j +

∂

∂z
w1 = 0 (2.13b)

ε2 :
∂

∂X j
uh1, j = 0 (2.13c)

First, Eq. (2.13) clarifies that to leading order, continuity reduces to the self-consistent constraint that
w = 0 by a systematic analysis. This implies that on the meso-β-scales, the vertical velocity has a leading-
order term of O(ε1), while the horizontal velocities have a leading order of O(ε0), which is corroborated by
observations [160].

Subjecting the momentum, thermodynamic and moisture equations to similar treatments likewise ex-
tracts their respective leading-order components. From this, the leading order vertical momentum balance
is hydrostatic, whereas the averaged horizontal equation reduces to:

∂uh,i

∂t
=− ∂

∂z

(
w ′u′

h,i

)
(2.14)

Let < · > denote a time-averaged quantity. If Eq. (2.14) and its thermodynamic and moisture counterparts
are bounded in time, i.e. 〈 ∂u

∂t 〉 = 0, then in an averaged sense:〈
− ∂

∂z

(
w ′u′

h,i

)〉
= ε〈Si 〉(εx, z,T ) (2.15)

Eq. (2.15) captures the essence of formally derived SP: The local, resolved-scale, space-time-averaged
leading order terms must be balanced by source terms of O(ε). For Eq. (2.15), this implies that the vertical
flux of horizontal momentum on the scales resolved by the GCM must be sufficiently small. Practically, this
means that the space-time fraction of deep convection (the most vigorous unresolved-scale phenomenon
on the meso-β scale) on the GCM-resolved scales can only be small or spatiotemporally decorrelated [158].
Similar constraints again exist for the thermodynamic and moisture equations.

The small-scale equations are derived by subtracting the leading-order terms from the original equa-
tions. Contrary to the original derivation, this does not assume that all interactions between resolved and
unresolved scales are zero, but it retains the horizontal derivatives of large-scale values in the small scale
equations [160]. In Limited Area Models (LAMs), these terms are critical for representing several important
eddy instability types, such as the baroclinic instability [90]. They are, however, precluded from Eqs. (2.9a)
and (2.9b), once again highlighting the need of this formal treatment.

The introduction of multiscale asymptotics to more formally define SP therefore confirms original ad
hoc assumptions, highlights the model’s regime of validity and improves its predicitive ability. In a bid to
generalise the approach to SP in a more meticulous manner, Majda therefore suggests a four-step approach
to systematic SP [160]:

1. Formulation of multiscale method

2. Definition of small-scale model

3. Justified error introduction and subsequent model simplification

4. A posteriori validations of the SP approximations, particularly focussing on the capability of capturing
multiscale interactions

These criteria will therefore be employed as guidelines for the following chapters, which propose and
implement further improved multiscale formulations.
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2.5.2. Low Cloud Simulation Accuracy
While SP substantially enhances the accurate simulation of deep convection, it still is unable to properly
represent low clouds [192]. As discussed in Section 2.2.4, the uncertainty of the response of marine boundary
layer low clouds to warming is arguably the largest outstanding uncertainty in the atmospheric component
of climate and earth system models [67, 221]. Simultaneously, SP is becoming increasingly important for
assessing the role of clouds in a warmer climate [15, 32]. It is at present not fully clear if SP is proficient
enough for this responsibility, mandating rapid improvement.

The persistence of the low cloud simulation problem even for SP comes from the tradeoff that SP makes
between computational cost and accuracy: The resolution of the embedded CRMs is simply not high enough
to properly resolve the portions of the atmospheric boundary layer’s turbulence that forms cumulus and
stratocumulus clouds [192]. The models share the coarse vertical grid resolution of the outer GCM, employing
30-50 stretched layers with a spacing in the boundary layer of O(10−1) km [85]. Consequently, they cannot
simulate stratocumulus cloud-top entrainment much better than traditional GCMs.

Similarly, the horizontal resolution of CRMs in global-size SP is typically still O(100) km [160]. This also
cannot properly resolve the horizontal extent of individual clouds, which are typically O(10−1) km [236]. As a
result of the CRM’s coarseness, the models produce unrealistically low levels of cloud turbulence in the sub-
tropics [192]. In this portion of the Hadley circulation, dry, descending air (“subsidence”) balances the bound-
ary layer turbulence to yield coherent, stable stratocumulus decks. However, the lack of accurate boundary
layer turbulence in SP and other GCMs means that the presence of low clouds is “too little in the cool sub-
tropical ocean regions in which stratocumulus clouds prevail” [258], leading to overprediction of ocean ir-
radiation and temperature [234]. On the larger scales, the mispredictions manifest themselves in so-called
“model biases”, which are systemic mispredictions of the global climate [179].

Several studies have attempted to improve the boundary layer turbulence representation of SP over the
last few years, broadly divided into two categories. The first attempts to improve the CRM’s turbulence clo-
sure models to better represent their unresolved portions [228]. Such higher-order closure schemes improve
the vertical structure of boundary layer clouds and subsequently their radiative balance [41, 258]. However,
fourth-order models double the computational expense of the total simulation. More importantly, they re-
main philosophically similar to traditional GCM parameterisations, posing intricate closure relations with
many uncertain, tunable parameters that prohibit the numerical convergence of the approach [258] and ren-
der the correlation between turbulence and microphysics especially sensitive [192].

The second strategy is to resolve the eddies directly in the superparameterisation. This could be through
increasing the resolution of the CRM in the boundary layer such that the eddies fall within the resolved por-
tion of the 2D CRM [192], or by directly employing high-fidelity 3D models such as LES [61, 85, 115, 221].
The original publication on high-resolution 2D CRM models increased the resolution of the SP-Community
Atmosphere Model (CAM) to 250 × 20 m, and coined this Ultraparameterisation (UP) [192]. This managed
to improve the vertical boundary layer depth and stratocumulus structure by allowing stronger, more real-
istic boundary layer turbulence to balance subtropical subsidence. In turn, this yielded better estimates of
liquid water content in the offshore diurnal cycle. Nevertheless, UP also suffers from misrepresentation of
cloud thickness and albedo, an issue that is currently not fully understood. It is potentially a limitation of the
2D nature of the CRM, as subtropical stratocumulus clouds are much less directionally aligned than tropical
convection [85].

The second approach was advocated by Grabowski [85] and very recently implemented [115], by coupling
Dutch Atmospheric Large Eddy Simulation (DALES) [97] to the European Centre for Medium-Range Weather
Forecasts (ECMWF)’s OpenIFS GCM [19]. Tests over an area representing the Netherlands over a diurnal
cycle display promise that the stratocumulus deck is much better predicted with such a model than with the
original model, based on a sparse vertical measurement profile.

Operationalising these models for climate simulations might therefore demand extension of the 2D CRMs
in UP to 3D, while the current, high-fidelity 3D approach must be upscaled a from LAM to a GCM. However,
these computations already run at exascale computing cost [192], which will make the extensions very diffi-
cult in the near future if they are to be achieved by a conventional resolution increase or scaling. This brings
the discussion to the third drawback of SP: Its high computational cost.

2.5.3. Computational Cost
The bulk of the computational cost of SP is carried by evaluating the inner CRMs [160, 205]. Given SP’s lack
of low-cloud representation and the anticipated push to remedy this through high-resolution models, the
computational cost of these CRMs might only become more of a hard limit in the future. However, recent
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research has suggested that representing all scales below the large-scale model’s grid resolution might also
not be necessary when the large-scale model becomes fine enough to simulate much of the meso-β-scales
directly [159]. The concern of the small-scale CRMs is then mainly to simulate accurately the moist convective
modes that drive the large-scale simulation [160]. The large-scale grid-resolutions required to resolve the
meso-β-scales in climate-scale computations will become increasingly standard for classical, cheaper GCMs
in the coming decade [221]. Therefore, if the cost of the CRMs in SP can be reduced and reinvested in the
outer model’s grid resolution, the overall model accuracy may actually increase, as more scales are allowed to
consistently interact within the outer model.

Pursuits of CRM cost reduction have been successfully investigated in traditional LAMs, which already
operate at the grid resolutions of future GCMs. The first such study proposed Sparse Superparameterisation
(SSP) [257]. This model runs the inner CRM in a fractional subdomain of the outer model’s grid cell for a frac-
tion of the outer model’s time step. Similar reductions of the integrated CRM time step could later be achieved
by mean state acceleration [117]. While obviously an artificial construct, reducing the space-time dimensions
by a factor 1

3 will yield an efficiency gain of almost an order of magnitude for a 2D CRM. Nevertheless, pat-
tern correlations with original, high-resolution versions of the model have been observed to remain over 0.75
[257]. The cost reduction is even more significant if the spatiotemporal extent of 3D CRMs is reduced by the
same order. Such reductions similarly appear to have only little impact on the solution accuracy [115]. This is
very encouraging, because it suggests that these models have arrived at a resolution stage where they could
be represented by even cheaper, systematic models based on deterministic or stochastic arguments [160]. It
might then not be necessary to run full 3D LES; if there are finite sets of scales at this level that dominate the
unresolved scale projection onto the resolved scales, it might only be necessary to appropriately model these.
This motivates one to focus only on representing these impactful scales’ projections, rather than the full set
of unresolved scales. Substituting the CRMs for such models would permit further resolution increases of the
outer model, or push the cost of SP down to the order of conventional GCMs.

2.5.4. Scale Separation
As introduced in Sections 2.4.4 and 2.5.1, the validity of the SP formulation hinges on the validity of the under-
lying scale separation assumption. The implications of this assumption are threefold: First, the spatiotem-
poral average of the outer model characteristic scale’s fluctuating dynamics must be sufficiently small that it
can be balanced by source terms at the inner model’s characteristic scale (see Eq. (2.15)). Second, the terms
predicted by the inner model may be represented in an averaged sense on the outer model’s grid and will
adjust to the large-scale state within an outer model time step. Third, the largest scales in the inner model
are assumed to be sufficiently local that they only interact with neighbouring outer model cells through the
scales represented by the outer model, facilitating the use of periodic boundary conditions and parallelised
computation for the inner models.

Practically speaking, the assumption has been observed to work well when the outer model only resolves
scales larger than the synoptic scale (100-200 km grid cells), which was state of the art when SP was first devel-
oped [123]. In this situation, most meso-β-scale dynamics, which are highly anisotropic and organised along
scales up to O(102) km [102], are deferred to the CRM. The cross-interactions between the GCM and CRM
(term iii in Eq. (2.9)) will then be small, while the effects of pure, unresolved scales effects on the resolved
scales dominate (terms ii in Eq. (2.9)), justifying the original model assumptions. However, introducing the
grid scale break somewhere in the middle of the meso-β-scales (15-100 km grid cells) means that an organ-
ised convective meso-β-scale system cannot i) interact fully with itself, as it is missing the direct interactions
between its resolved and unresolved scales contributions (term iii in Eq. (2.9)), or ii) coherently propagate
quantities from one outer model grid cell to another, as those quantities are assumed to be fully local to a
grid cell. It has been repeatedly observed that this leads to their misrepresentation [84, 115, 119]. Similar
arguments pertain to the time step of the model [160]. As current GCMs operate with cells in the 50-100 km
range, this could curtail the performance of the model.

Therefore, it is crucial to further assess the validity of the scale separation argument as the grid reso-
lutions of GCMs reduce. Classical GCMs will increasingly resolve the meso-β-scales on their grids [221] if
cheap parameterisations are employed [220]. Hence, it is interesting that the model reestablishes its accu-
racy somewhat when the outer model of LAM SP is allowed to simulate down to below the meso-β-scales
(10-50 km grid cells), such that organised meso-β-scale convection can be consistently represented on the
resolved scales [84, 85]. The time step is in such situations also less (O(102) s) than the typical lifetime of a
single convective meso-β-scale event (O(103) s) [36]. Could this be a physical scale break that might be ex-
ploited? If so, these are the circumstances where SP algorithms might actually be made cheaper [257]. In
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turn, that might facilitate representing the meso-β scales fully on the outer model’s grids in global SP.
Each of the implications of the scale separation assumption can be analysed in this context. First, as

highlighted in Section 2.5.1, the vertical flux of horizontal momentum must be small to satisfy the asymptotic
analysis, such that the spatiotemporal fraction of deep convection within an outer model grid cell and time
step must also be small, or at least decorrelated [158]. As the grid spacing reduces, this increasingly breaks
down [159, 161]. Hence, models constructed with this approximation are prevented from describing “the in-
teraction between scales immediately above and immediately below the grid scale” [160], i.e the importance
of term iii in Eq. (2.9) reappears. This dismisses the question posed above and mirrors Fig. 2.1’s evidence for
the non-existence of a meaningful gap in the atmospheric energy spectrum: The inaccuracies from intro-
ducing a scale break quickly rematerialise when the break migrates further down the scale range below the
meso-β scales and different scales begin contributing to term iii in Eq. (2.9).

Second, the effects of scale separation materialise in SP’s ensemble averaging and time relaxation. Once
the outer model’s grid resolution and time step approach the sizes of single convective events, these assump-
tions break down: The ensemble gives a spatially fluctuating response to the mean state and individual con-
vective events can span several time steps [61, 161], requiring consistent temporal coupling.

Third, the periodic CRM domains can prohibit small-scale instabilities from developing properly, causing
mispredictions of their impact on the outer model’s scales [161]. One could avoid this by embedding large,
open, finite domains in the columns, though no studies employ these outside 1D test problems [88, 160].

In all, it is therefore unclear whether SP and other traditional HMMs are suitable models for GCMs oper-
ating at increasingly high resolution. While these methods gain their computational advantages by exploiting
wide scale separations, self-similarities and quasi-steady time equilibration of the small scale models [55, 73,
251], they cannot do so for small scales that intermittently backscatter evolving, highly energetic vortices,
jets, waves and latent heat release to the large scales, without statistical equilibration [158–160, 220, 248].
Similarly, traditional GCM parameterisations based on ensemble averaging and quasi-equilibrium will also
have to navigate this hurdle, as touched upon in Section 2.2.4. This generalises the challenge beyond SP.

2.6. Summary and Outlook
In summary, this chapter has discussed the appreciable challenge of modelling the atmospheric dynamic
scale range. It has identified parameterisation of low clouds as a primary issue for GCMs. While this could
be remedied by non-hydrostatic GCRMs that directly represent the convection, these models will remain too
computationally expensive for service. Therefore, improved models must engage non-hydrostatic equations,
run at the cost of GCMs, but attempt to incorporate the accuracy of CRMs as best they can.

The chapter presented SP as an atmospheric multiscale method that broadly achieves these goals, ren-
dering it the best currently available candidate for improving our current estimates of the future of Earth’s
climate. However, the method was originally very loosely and informally defined, is still unable to adequately
represent low clouds, is limited by the computational cost of its CRM inner models and suffers from the con-
sequences of its underlying scale separation assumption. While the first point has been addressed by the
introduction of multiscale asymptotics as a formal framework to pose the method in, the remaining three
points are likely to shift increasingly into focus as the resolution of GCMs increases in the coming decade.

In the light of these four challenges, four criteria for future-proof, improved climate-scale multiscale mod-
els of the atmosphere may be formulated as extensions to those that first ushered in the multiscale models:

1. The models must rest on a firm, consistent, mathematical foundation to assess their ranges of validity.

2. They must represent low clouds in an improved manner with less degrees of freedom than GCRMs.

3. They must fully and consistently couple the resolved scales model to the most impactful scales below
it, to circumvent increasingly invalid scale separation assumptions at higher GCM grid resolutions.

4. They should be closed by high-fidelity inspired unresolved scales models that aim to capture all phe-
nomena below the resolved scales that contribute to intermittent, highly energetic, non-equilibrated
backscatter to the resolved scales.

These requirements form the conclusion of this chapter and provide the direct motivation for the remain-
der of this thesis. Proceeding along Majda’s proposed four-step approach for systematic SP, the next chapter
will formulate a multiscale method and a small-scale method, which have the potential to improve the four
points presented above. The subsequent chapters will seek to validate the model’s approximations and assess
the model’s capability to represent multiscale interactions, as well as its stability.





3
A Variational Multiscale and Machine

Learning Modelling Framework

The set of requirements for improved multiscale atmospheric models outlined at the end of the previous
chapter poses two clear directions that will be treated presently. First, models derived within the framework
of multiscale asymptotics explicitly predicate on the scale separation assumption. Hence, they are vulnerable
when this assumption breaks down. There are, however, multiscale modelling frameworks that may be con-
sistently derived on a firm mathematical basis without imposing any scale separation assumptions. For this
reason, Section 3.2 will introduce such Variational Multiscale (VMS) formulations, outline their derivations
and traditional closure approximations, and briefly review the scope of their application to atmospheric flow
simulation. Section 3.3 scrutinises them against the set of requirements presented in Section 2.6.

The second important finding of Chapter 2 is that any unresolved scales model must handle moderate to
no scale separation. As a consequence, the unresolved scales model must predict intermittent, highly ener-
getic backscatter and cannot be in statistical equilibrium with the resolved scales. The success of an improved
formulation of the GCM will therefore hinge on a convincing model for the unresolved scales. Section 3.4 will
propose that such an unresolved scales model might derive from the data of scale-consistent simulations and
observations, and Section 3.5 will nominate ANNs as especially promising candidates. This will result in the
formulation of an entirely novel model that attempts to meet all requirements considered here in Section 3.6,
which will outline a roadmap for its initial testing in the second part of this thesis. Readers that are famil-
iar with VMS and data-driven parameterisation could skip straight to this section. However, all readers are
encouraged to read Section 3.1, which offers a conceptual overview over the proposed modelling framework.

3.1. Conceptual Modelling Framework
A conceptual illustration of a modelling framework that attempts to meet the criteria posed in Section 2.6 is
presented in Fig. 3.1, with its contrasts to classical parameterisation and SP. Classical parameterisations pose
process-level parameterisations based on the resolved solution field u for each component of their unre-
solved mechanisms, interface these parameterisations and use the combined estimates to pose source terms
Î that enter the evolution equations of the resolved scales. SP replaces the individual parameterisations and
their interfacing by solving scale-separated inner evolution equations, which again yield estimates for source
terms that affect the resolved-scales at the next time level.

What is proposed here, however, is to acknowledge that one can only really measure what one resolves.
Taking this perspective, the only aspect of interest of the unresolved scales is correctly representing their
impact on the resolved scales. In the language of the HMMs introduced in Section 2.4.1, one would only
be interested in representing the missing portion of the macroscale model. Hence, this study proposes to
i) avoid individual, process-level parameterisations and scale separation entirely, by reanalysing the conser-
vation equations of the problem and isolating the exact “interaction terms” I that couple the resolved and
unresolved scales, ii) directly propose models for I – Î – rather than the unresolved scales variables them-
selves and iii) solve for the resolved scales in conjunction with the unresolved scales’ impact on them.

Conceptually, this proposal is very general and not particularly new: It is very similar to the first steps of
traditional LES and CRM formulations reviewed in Section 2.3. The resolved-scales model’s role in this figure
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Figure 3.1: Conceptual overview of the unresolved scales and resolved-scales coupling in a classical parameterisation, a
SP and the approach taken here.

would then be to meet criteria 1 and 3 from Section 2.6. They must find mathematical formulations of Î that
fully and consistently couple the resolved and unresolved scales of the discretised model. Hence, any set
of numerical approximations that respect these criteria are suitable outer model candidates, be they finite
difference, finite volume or finite-element oriented.

In this work, this conceptual model is interpreted in terms of the VMS formulation of finite element and
spectral methods, as will be extensively outlined below. This model is chosen because i) it lies very close to SP
in terms of modelling philosophy, ii) it is essentially an LES and therefore comparable to those models also
and iii) it is explicitly clear in where modelling and discretisation errors enter the equations, which cleanly
facilitates the inclusion of high-fidelity models for Î . However, by appropriately modifying the analysis and
resolved-unresolved scales interactions, similar methods such as filtered finite volume discretisations could
be used as a resolved-scales model.

The notable difference between the proposed model and classical LES lies in their division of their work.
While Section 2.3 established that such models are intractable for global computation when they must resolve
the scales that drive shallow convective processes and satisfy criterion 2 from Section 2.6, there is nothing
inherently limiting in their formulation if improved, scale-consistent unresolved scales models are used to
close them at a coarser level of discretisation.

Therefore, the main novelty in this framework is the approach it takes to requirement 4 from Section 2.6:
It attempts to leverage machine learning to condition fully coupled models for the unified physics of the un-
resolved scales on data from models and observations that satisfy the governing equations of the problem. If
such closure schemes have sufficient skill at coarse resolutions, and manageable computational cost, models
could be posed that meet all criteria in Section 2.6. It is the assessment of such models that is the central
topic of this work. In the light of the above discussion, the study’s conclusions are likely to translate to any
numerical, scale-consistent resolved-scales model that facilitates the exact representation of I , such that the
thesis also applies to traditional atmospheric or engineering finite volume approaches to turbulent flows.

3.2. Variational Multiscale Methods
The VMS framework is an alternative approach to multiscale modelling, grounded in the field of stabilised
spectral and finite element discretisations for fluid dynamical problems. In this context, its development was
motivated by the failure of traditional Galerkin methods for problems comprising multiscale phenomena
[109]. Such discretisations tend to produce spurious, high frequency oscillations in their representations of
advective phenomena that can destabilise computations, in a similar manner as central-difference type dis-
cretisations [116]. Schemes that address this issue are therefore traditionally called “stabilisation schemes” in
the finite element community. While stabilisation could be achieved with artificial viscosity-type models, it
was soon discovered that a more steerable technique was modifying the weighting functions of the Galerkin
methods. For instance, biasing the weighting functions in the upwind direction with so-called “bubble func-



3.2. Variational Multiscale Methods 23

tions” gives the discretisation an increasing character of first order, numerically diffusive methods [16], but
prevents the excessive cross-wind diffusion associated with artificial viscosity methods [104]. However, these
“streamline-upwind” methods are still inconsistent, a drawback that was amended by introducing perturba-
tions to the stabilisation term that were proportional to the residual of the resolved-scales equations. This
idea gave rise to two popular residual-driven methods: Streamline-upwind Petrov-Galerkin (SUPG) methods
for advection-diffusion equations [34] and its generalisation to problems where the basis functions are not
piecewise-linear and the simulated process not predominantly advective, Galerkin/Least Squares (GLS) [106].
Petrov-Galerkin methods stand in contrast to Bubnov-Galerkin methods, where the weighting functions and
basis functions are the same. These ideas were further conceptually generalised throughout the 90s, when
Hughes cast the problem on a multiscale form [105], leading to the framework considered here.

3.2.1. Modelling Approach
The VMS formulation arises relatively naturally when one considers the decomposition of a field u as a linear
superposition of an infinite number of orthogonal modes φi with amplitude ai (see Eq. (3.1)). If one requires
kK modes for a DNS (kK denoting the wavenumber of the Kolmogorov length scale defined in Eq. (2.3a)), but
employs a grid where kc< kK modes can be resolved, this implies that a natural way of separating which por-
tions of u can be resolved directly and which must be approximated is the application of a linear projection
operator that decomposes u into the resolved solution u and the unresolved solution u′: u = u +u′:

u =
∞∑
i

ai (t )φi (x) ≈
i=kc∑
i=0

ai (t )φi (x)+
i=kK∑

i=kc+1
ai (t )φi (x) = u +u′ (3.1)

It is immediately clear from this definition that u′ is formally infinite-dimensional for nonlinear problems,
and that it is significant up to kK at least. Furthermore, its content depends on where u is truncated. In
multiscale LES, the goal is then to find approximations for u′ that facilitate the accurate computation of u,
rather than u itself. Assuming one chooses a set of kc bases to construct u, this may be achieved by variational
methods, setting this loose argumentation on a solid mathematical foundation.

Consider, for this discussion, a differential operator L for a general Partial Differential Equation (PDE) of
second order, valid on domain Ω∈ Rd , where d ≥ 1 is the number of spatial dimensions. When this domain
is bounded by a smooth boundary ΓΩ on which a Dirichlet condition is imposed, one may represent the
abstract, continuous, boundary value problem as: Find u ∈Ω such that Eq. (3.2) is satisfied, where f ∈Ω is a
generic forcing and gΓ∈Ω is a generic Dirichlet boundary condition:

Lu = f , u ∈Ω (3.2a)

u = gΓ, u ∈ ΓΩ (3.2b)

Galerkin methods consider weak forms (sometimes referred to as variational forms in literature [110])
of the continuous model equations, which are tested with trial solutions u and weighting functions ψ. u
and ψ must span the trial solution space S ∈ H 1(Ω) and weighting function space V ∈ H 1(Ω), respectively,
where H 1(Ω) is the Sobolev space of square integrable functions with square integrable derivatives (i.e. for
an arbitrary f (x),

∫
Ω

(
f 2 + f 2

x

)<∞). Assuming that:

u = gΓ on ΓΩ ∀u ∈S (3.3a)

ψ= 0 on ΓΩ ∀ψ ∈V (3.3b)

The weak counterpart to Eq. (3.2) is: Find u ∈S such that for all ψ in V :∫
Ω
ψ

(
Lu − f

)
dΩ= (

ψ,Lu − f
)
Ω = 0 (3.4)

Where compact notation (·, ·)Ω is introduced for symmetric, bilinear forms [109]. The central idea of the
VMS formulation is to split the infinite-dimensional spaces S and V according to the linear decomposition
of u presented in Eq. (3.1), i.e. at the level of the discretisation:

S =S+S ′ (3.5a)

V =V +V ′ (3.5b)
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Such that u = u ∈S +u′ ∈S ′ and ψ=ψ ∈V +ψ′ ∈V ′, where S and V are the spaces resolved by a discreti-
sation and S ′ and V ′ are infinite dimensional. More precisely, the space decomposition can be expressed in
terms of the projectorsΠS andΠV , that map u and ψ onto S and V :

u =ΠSu (3.6a) ψ=ΠVψ (3.6b)

The projectors on S ′ and V ′ are then necessarily:

Π′
S = i d −ΠS (3.7a) Π′

V = i d −ΠV (3.7b)

Where i d denotes identity [109].
Note that one may read ΠS as a linear version of the HMM reduction operator Q, allowing the interpre-

tation of the VMS framework as a linear sub-framework of HMM. In fact, the two approaches are equivalent
if the HMM is expressed in a variational form, the resolved scale spaces S and V correspond to the HMM’s
coarse space, ΠS =Q and the same models are employed for the unresolved scales [186]. This conceptually
connects VMS to SP.

The linearity of the VMS projection is particularly insightful, however, as it reveals that one must pose a
linearly independent set of resolved and unresolved scales weak forms if the problem is to be solved exactly:(

ψ,L
(
u +u′))

Ω = (
ψ, f

)
Ω (3.8a)(

ψ′,L
(
u +u′))

Ω = (
ψ′, f

)
Ω (3.8b)

If Eq. (3.8a) is discretised with a Finite Element Method (FEM),Ωwill be subdivided in nel finite elements,
each spanning the subdomainsΩe , bounded by element interfaces Γe . S and V then refer to a finite element
space, characterised for instance by piecewise linear basis functions, such that S ,V ∈ C 0

(∑nel
e Ωe

)∩ H 1(Ω).
For such a discretisation, u and ψ are smooth within elements, but discontinuous in their slope on element
interfaces. For a Bubnov-Galerkin method, ψ additionally represents the method’s bases, such that V = S .
This is illustrated in Fig. 3.2:

e e e e e e e

x

u
i

u
u′

Figure 3.2: Nodal projection of u onto piecewise linear bases ψi over finite elements with domain Ωe and boundary Γe ,
to construct u. This projection defines u′ as illustrated.

Fig. 3.2 assumes u is projected onto a piecewise linear basis in a manner that is nodally exact. However,
it is also possible to employ projections that aim to minimise the L2 norm between u and u either locally or
globally [48, 50]. In this work, a nodally exact formulation such as presented in Fig. 3.2 is assumed, as it tends
to promote the locality of the unresolved scales, although the argumentation is extendable to L2 projection-
type discretisations if the appropriate adjustments are made (see [53] for a discussion). Furthermore, the
piecewise linear bases illustrated by Fig. 3.2 will be employed throughout this thesis. While higher-order
bases exist and might have benefits, these rapidly increase the expense of the method and, unless treated to
explicitly represent unresolved processes, do not offer significantly broader insight on the conclusions drawn
in subsequent chapters.

3.2.2. Model Equations
Section 2.6 concludes that it is likely necessary to let numerical models of the atmosphere depart from non-
hydrostatic equations. Therefore, this thesis interprets L as the operator for the Euler equations on a rotating
sphere (Eq. (2.1) without momentum diffusion). To cast these equations in VMS form, weighting and solution
functions are chosen in terms of density, velocity and potential temperature, diagnosing pressure through an
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equation of state: ψ = [
ψρ ,ψui ,ψθ

]
and u = [

ρ,ui ,θ
]
. This yields the following weak forms, where the time

direction is yet to be discretised:

A
(
ψ,u

)= 0 (3.9a)

B1
(
ψ,u

)+B2
(
ψ,u,u

)= 0 (3.9b)

C1
(
ψ,u

)+C2
(
ψ,u,u

)= 0 (3.9c)

With: 

A
(
ψ,u

)= (
ψρ ,

∂ρ

∂t

)
Ω

−
nel∑
e=1

(
∂ψρ

∂x j
,ρu j

)
Ωe

B1
(
ψ,u

)= (
ψui ,

∂ui

∂t

)
Ω

−
nel∑
e=1

(
∂ψui

∂xi
,
(
ρθγ

))
Ωe

− (
ψui , gθδi ,3

)
Ω+ (

ψui ,2εi j kΩe, j uk
)
Ω

B2
(
ψ,u,u

)=−
nel∑
e=1

(
∂ψui

∂x j
,ρui ,u j

)
Ωe

C1
(
ψ,u

)= (
ψθ,

∂θ

∂t

)
Ω

C2
(
ψ,u,u

)=−
nel∑
e=1

(
∂ψθ

∂x j
,u j ,θ

)
Ωe

Where the trilinear forms B (·, ·, ·) are bilinear forms with a third multiplying variable in the integral. To
reduce the derivative order to which u′ must be approximated once the scales are split, Eq. (3.9) has been
integrated by parts [53, 110]. For a second-order equation, this will yield non-vanishing boundary terms in
Eq. (3.8a) to account for jumps in u′

x . As the second order terms associated with molecular viscosity do not
participate in the Euler equations, however, these will be ignored in this study. This greatly simplifies the
terms that must be carried along (they are commonly neglected at a later stage when u′ is approximated
locally [110]; the reader is referred to e.g. [53, 109] for texts where they are kept in the derivation). Summation
over elements indicates how integration by parts is performed on a per-element basis.

It is now possible to split the scales according to the VMS decomposition Eq. (3.8). This gives rise to the
following resolved-scales equations, which due to their linearity can be expanded and rearranged according
to Eq. (3.10):

A
(
ψ,u

)︸ ︷︷ ︸
i

+ A
(
ψ,u′)︸ ︷︷ ︸

iii

= 0 (3.10a)

B1
(
ψ,u

)+B2
(
ψ,u,u

)︸ ︷︷ ︸
i

+B2
(
ψ,u,u′)+B2

(
ψ,u′,u

)︸ ︷︷ ︸
ii

+B1
(
ψ,u′)+B2

(
ψ,u′,u′)︸ ︷︷ ︸

iii

= 0 (3.10b)

C1
(
ψ,u

)+C2
(
ψ,u,u

)︸ ︷︷ ︸
i

+C2
(
ψ,u,u′)+C2

(
ψ,u′,u

)︸ ︷︷ ︸
ii

+C1
(
ψ,u′)+C2

(
ψ,u′,u′)︸ ︷︷ ︸

iii

= 0 (3.10c)

Eq. (3.10) contains three types of terms: i) The traditional Galerkin terms of unstabilised methods, ii)
terms that represent the “cross” interactions between resolved and unresolved scales as they project on the
resolved scales and iii) terms of pure unresolved scale projections onto the resolved scales. When projected
onto an orthogonal basis, as for spectral methods, the linear portions of iii (A

(
ψ,u′), B1

(
ψ,u′) and C1

(
ψ,u′)

in Eq. (3.10)) will disappear. However, for the non-orthogonal, piecewise linear finite element bases consid-
ered here, even these will contribute to couple the unresolved scales to the resolved scales.

The terms collected in brackets ii and iii exactly represent the impact of the unresolved scales u′ on set of
resolved scales u in the finite element space V . Hence, these terms are the exact interaction terms of the dis-
cretisation, I , introduced in Section 3.1. Traditional Galerkin methods ignore these interaction terms, while
traditional SP sets the terms in ii to 0 and only models the terms in iii with its inner CRMs. These are terms
Majda proposes to keep and they appear in the asymptotic derivation of SP [160]. The VMS framework also
retains all these terms. However, in contrast to any SP formulation, its focus is to find models of u′ that opti-
mally allow the representation of u, not u itself. Eq. (3.10) shows that this is achieved when the projections of
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the terms that comprise u′ ontoV are modelled correctly, mathematically mirroring the conceptual approach
outlined in Section 3.1. One can now write the unresolved scales equations as Eq. (3.11):

A
(
ψ′,u′)=−A

(
ψ′,u

)
=

(
ψ′,−Rs,c

)
(3.11a)

B1
(
ψ′,u′)+B2

(
ψ′,u,u′)+B2

(
ψ′,u′,u

)+B2
(
ψ′,u′,u′)=−(

B1
(
ψ′,u

)+B2
(
ψ′,u,u

))
=

(
ψ′,−Rs,m,i

)
(3.11b)

C1
(
ψ′,u′)+C2

(
ψ′,u′,u′)+C2

(
ψ′,u,u′)+C2

(
ψ′,u′,u

)=−(
C1

(
ψ′,u

)+C2
(
ψ′,u,u

))
=

(
ψ′,−Rs,h

)
(3.11c)

They reveal that in S ′, the direct unresolved and cross terms (left-hand sides in Eq. (3.11)), are forced by

the negative projection of the strong residual of the resolved scales Rs =
[
Rs,c ,Rs,m,i ,Rs,h

]
onto the unre-

solved scales basis, which may provide some weaponry with which to attack the approximation of u′.

3.2.3. Assumptions and Approximations
Even though Eq. (3.10) already exists in a finite space and therefore may be thought of as a discretisation, it
remains an exact representation of Eq. (3.2) if Eq. (3.11) is exactly solved, in the sense that it might reconstruct
correct projections of u, e.g. the nodally exact projection presented in Fig. 3.2. Still, the infinite-dimensional
u′ appears in Eq. (3.10). Hence, approximations must necessarily be made to reduce its effects to a manage-
able scope. However, splitting the scales before making approximations allows those approximations to be
introduced to the portion of the problem that a discrete model will need to neglect: Eq. (3.11).

It is the goal of traditional VMS to solve Eq. (3.11) for u′ approximately. This can be done directly for linear
PDEs [105]. However, the presence of the nonlinear terms in Eq. (3.11b) and Eq. (3.11c) clearly clouds the
picture. Scovazzi developed an appropriate analysis technique to interpret this [222], proposing to write an
infinite asymptotic series expansion for u′ in terms of Rs . This is reasonable if Rs is small, which Eq. (3.11)
would lead one to expect to be true when i) Eq. (3.10) has provided a good estimate for u and ii) u makes up
the larger part of u. u′ is then small as a result, and the asymptotic series would be:

u′ =
∞∑

n=1
εn u′n (3.12)

In this context, ε= ‖Rs‖2, even if this is not the natural norm of the space in which the equations will be
approximately inverted [222]. By separating Eq. (3.11b) and Eq. (3.11c) into their linear and nonlinear terms
of u′ and inserting the expansion Eq. (3.12), one may write these two equations in terms of the perturbation
series. This procedure is identical for Eq. (3.11b) and Eq. (3.11c). Therefore, for compactness, consider the
following version of the unresolved scales equations:

∞∑
n=1

εnDu
(
ψ′,u′

n

)+ ∞∑
n=2

εn
n−1∑
j=1

D2

(
ψ′,u′

j ,u′
n− j

)
= ε(

ψ′,R̂s
)

(3.13)

Where:

Du
(
ψ′,u′

n

)= [
B1

(
ψ′,u′)+B2

(
ψ′,u,u′)+B2

(
ψ′,u′,u

)
C1

(
ψ′,u′)+C2

(
ψ′,u,u′)+C2

(
ψ′,u′,u

)]

D2
(
ψ′,u′,u′)= [

B2
(
ψ′,u′,u′)

C2
(
ψ′,u′,u′)

]

R̂s =


Rs,m,i

||Rs,m,i ||
Rs,h

||Rs,h ||
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Similar to the asymptotic treatment of SP, this reveals a hierarchy of problems in ε by equating problems
of equal order. However, this hierarchy can here be interpreted as a cascade of linear problems, forced by the
sum of asymptotic interaction terms up to each level in the cascade:

Du
(
ψ′,u′

1

)= R̂s , n = 1 (3.14a)

Du
(
ψ′,u′

n

)=−
n−1∑
j=1

D2

(
ψ′,u′

j ,u′
n− j

)
, n > 1 (3.14b)

On this form, each of the bilinear operators Du (·, ·) can be separately inverted to estimate each of the
perturbation series terms’ contributions to u′. The inversion of each linear problem in the cascade can now
be achieved, by means of Green’s functions. This can be understood by i) replacing the Right Hand Side (RHS)
of each of the problems in Eq. (3.14) with a matching sequence of operators Fn , ii) ensuring the integration
by parts is carried out such that Du

(
ψ′,u′

n

)= (
L∗ψ′,u′

n

)
to isolate u′ from any derivatives and iii) projecting

the equations onto (V ′)∗, the dual space of V ′. At each level of the hierarchy, this leaves one to solve problems
that are linear in u′ when u and u′ from previous levels in the hierarchy are known. With the notation of this
paragraph, this can be written abstractly as:(

L∗ψ′,u′
n

)= (
ψ′,Fn

)
(3.15)

Because summation over elements is still implied, the Green’s function problem to solve these can be
posed separately in every single element, as u′ = 0 on the element boundaries when the problem is solved
exactly [53, 103, 107]. Thus, in

(
V ′)∗, the Green’s functions are “element Green’s functions”, which solve the

problem:

L∗g ′
e (x , y) = δd (x − y), g ′

e ∈Ωe (3.16a)

g ′
e (x , y) = 0, g ′

e ∈ Γe (3.16b)

Where δd denotes Dirac’s delta peak forcing. If the infinite-dimensional g ′′′
e is known exactly, substituting

it forψ′ in Eq. (3.15) then allows solving for u′
n in V ′ in every element:

u′
n(y) =−

∫
Ωe

g ′
e (x,y)Fn(x)dΩ (3.17)

In turn, this would yield expressions to be inserted in Eq. (3.12) for an estimate of u′, which finally would
yield expressions to be inserted in terms ii and iii in Eq. (3.10), closing these equations. For some homoge-
neous, linear PDEs and extensions thereof, g ′′′

e can be derived exactly [93]. This is not generally possible for
forced, nonlinear PDEs such as those in the cascade of linear problems emerging from the Euler equations
[133, 222], though they can be computed by hierarchical refinement in the polynomial order of the basis [109].
Nevertheless, entering a proposition such as Eq. (3.17) in the resolved scales equations is relatively costly, as
it demands negotiating one integral to compute u′ at every integrated point in the integrals in Eq. (3.10).
Therefore, approximations of the element Green’s function are almost always necessary.

Fundamentally, these derivations then highlight the two properties of the unresolved scales equations
that really require approximation:

1. Their nonlinearities, requiring an infinite perturbation series to write them as an infinite cascade of
linear problems.

2. Their Green’s functions for the linearised equations.

The design of unresolved scales models that spring from these approximations give rise to various VMMs
that are instances of the VMS framework. They commonly begin by truncating the perturbation series to treat
the nonlinearities. In conjunction with approximations of element Green’s function at each level included in
the perturbation series, this allows the design of an array of models.
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3.2.4. Traditional VMS Closure Schemes
The most common unresolved scales models for solving both compressible and incompressible versions of
the Navier-Stokes equations with VMMs stem from traditional stabilised methods [34, 106, 226]. These in-
clude only the first term of the perturbation series, fully linearising the unresolved scales equations. Second,
they argue that when the resolved-scales basis is piecewise linear and u′ = 0 on the element boundaries, el-
ement integrals that feature derivatives of the bases are essentially averaging operators on u′, such that it is
sufficient to correctly find an average element Green’s function, τ [105] (similar justifications for the func-
tional form of τ can be found with various approaches, e.g. those outlined in [47, 75, 105, 197]). Inserting
these in Eq. (3.17) and using Eq. (3.14) and Eq. (3.12) truncated at n = 1 then gives rise to traditional “alge-
braic” closure methods:

u′ ≈−τR (3.18)

Where τ can be derived exactly for several problems [109] and is approximated for many others [187].
Such approximations will be discussed in the context they appear in later in this thesis.

Three additional approximations are made by models on Eq. (3.18)’s form. First, they ignore the time
derivatives of u′, since the semi-discrete forms considered here do not march the unresolved scales model in
time. This is a similar “quasi-steady” unresolved scales assumption as traditionally posed for GCMs, and must
therefore be amended. This can be achieved with Codina’s various Dynamic Subscales (DSS) approaches, that
solve Ordinary Differential Equation (ODE) versions of Eq. (3.18) [48, 51, 52]:

∂u′′′

∂t
+τ−1u′ ≈−R (3.19)

Second, in Eq. (3.18) and Eq. (3.19), R is not projected onto an orthogonal complement space of V , even
though it is assumed that u′ is. This yields non-zero projections of the linear unresolved scale terms onto the
resolved scales, such as the unresolved scales’ time derivatives, exacerbating their neglect. It can be amended
by Codina’s Orthogonal Subscales (OSS) approach [48, 49], which first computes the portion of R that is not
represented on the resolved scales R−ΠVR and uses this quantity in favour of R in Eq. (3.18) or Eq. (3.19).
Finally, it is common to decouple the computation of τ associated with each of the PDEs from the other unre-
solved scales scale equations. This is justified when the unresolved scales variables are only weakly coupled.

In spite of its drawbacks, Eq. (3.18) already yields an improved accuracy per degree of freedom for many
classes of problems, compared to traditional, ad-hoc closure schemes [10]. Three additional advantages to
this formulation can be identified. First, models of τ can be designed such that the stability of its time march
is guaranteed [198, 226, 238]. Second, u′ is driven by the residual of the resolved scales and will therefore
be zero exactly when the resolved-scales space is sufficiently inclusive to model all terms in it. Third, extra
terms of the perturbation series, with their respective Green’s function approximations, can readily be added
to Eq. (3.18) [182, 222] for cases when the fully linear assumption is inadequate.

3.2.5. Applications
While the application of VMMs to LES simulation of the incompressible Navier-Stokes equations is relatively
well-developed and has touched a broad number of problems [53], VMMs for the Euler equations with an un-
resolved scales model were introduced more recently by Rispoli [206], following initial steps by Koobus and
Farhat [133]. They engage unresolved scales models such as Eq. (3.18), where τ stems from element Green’s
functions for the full Navier-Stokes equations in the limit where Re → ∞. In particular, τ is here approxi-
mated by the largest eigenvalue in streamwise direction (u+cs ) of the wave-propagating portions of the Euler
equations, extended to all three dimensions under the assumption that it is isotropic [206]. More recently,
this VMS model was extended to atmospheric flow simulations. In particular, Marras et al. successfully solve
an array of test cases based on non-hydrostatic, stratified, dry and moist convective versions of the Euler
equations for the use in CRMs [165–167]. They achieve this without shock-capturing schemes and in spite of
linearising the pressure-temperature interactions, neglecting several interaction terms in the resolved scales
equations and using a particularly precarious time march. However, VMS formulations have yet to be posed
at the scales of a GCM, despite various aspects of their formulation potentially being advantageous to such
models. The next section aims to draw attention to these aspects and contrast them with SP, to confirm that
they appropriately meet the requirements from Section 2.6.
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3.3. Potential of VMS Formulations as an Improved GCM
To be a meaningful upgrade from state of the art SP, a VMM must hold immediate improvement potential in
the three first requirements presented in Section 2.6, which correspond to the traditional weaknesses of SP.
To also satisfy the fourth requirement, it must additionally be conducive to the inclusion of novel unresolved
scales models that meet requirement four. Based on the theoretical development of VMS above, this section
will review these points in turn.

3.3.1. Model consistency
Viewing the multiscale formulation in the framework of VMS holds three conceptual advantages with practi-
cal implications. First, its a priori separation of the resolved and unresolved scales means that all interaction
terms between the resolved and unresolved scales are present in both the resolved and unresolved scale equa-
tions. Therefore, the framework entirely avoids the ad-hoc nature of the original SP “formalism” [87], but also
does not need additional constructions to represent large-scale variables on the small-scale grid, which are
precluded even by the asymptotic multiscale derivation [88].

Second, the method is comparatively clear and flexible compared to SP, as interaction terms can be read-
ily removed from the framework in situations where scale separation or the quasi-steadiness of the small
scales can be assumed. The impact of neglecting the terms in question could be immediately quantified be-
cause they exist explicitly in all simulated equations, rather than as an unknown fraction of a single forcing
term that couples the multiscale equations. As the models are increasingly headed into territory where scale
separation breaks down, this might be a valuable asset of the model that traditional SP does not possess.

Finally, VMS associates the necessity of scale separation directly with its underlying reason: Its separation
of u into a resolved-scales space with a discrete number of variables S and an infinite-dimensional unre-
solved complement space S ′ illustrates that both discretisation and modelling errors derive from grappling
with this infinite-dimensional space. Encouraging residual-driven closure formulations, this allows the mod-
els to be consistent with respect to both the grid resolution and the unresolved scales model. The residual-
driven property stands in contrast to the traditional GCM formulation, where the parameterisation is tradi-
tionally independent of the number of modes included in the simulation [12], and SP, which will always sim-
ulate turbulent feedback from the unresolved scales [88, 89, 258]. This leads to inconsistencies when the grid
size is not uniform or when stable flow regions (such as the stratosphere) are encountered. Residual-driven
VMMs, however, inherently satisfy the consistency requirement for improved atmospheric models presented
in Section 2.6.

3.3.2. Low Cloud Accuracy and Computational Cost
Improving the representation of low clouds will fall to the small-scale model of either a VMS or SP formulation
and is therefore less dependent on the framework it is formulated in, assuming that framework manages to
backscatter their resolved-scale impacts effectively. As discussed in the next subsections, it is likely that the
VMS formulation is more malleable to this end than SP, while specific closure schemes will be the topic of the
next section.

Similarly, the computational cost at which VMS codes could resolve clouds is likely a function of its un-
resolved scales model, rather than the explicit model formulation. Unresolved scales representations based
on element-averaged Green’s functions (see Section 3.2.3) assume that the unresolved scales are fully local
in similar fashion as SP’s small-scale model. Such models are therefore equally favourable for running on
massively parallel architectures as SP and likely to similarly enjoy the benefits of the development of GPU
computing as advertised for SP [85]. However, as will be discussed in Section 7.3, higher-fidelity closures are
likely to benefit from non-local information. As long as this non-locality does not exceed the information re-
quired by the resolved scales model to construct its spatial derivatives, this will not add an extra cost penalty.
In such cases, direct comparisons of the computational cost of SP’s CRMs and the unresolved scales models
introduced in the following section will be necessary.

3.3.3. Scale Separation
Majda contends that when “intermittent strongly unstable fluctuations and only moderate scale separation
without statistical equilibration” dominate, “more traditional numerical closure methods such as HMM can-
not be applied” [160], reflecting the conclusion of Section 2.5.4. One might therefore be tempted to con-
clude that VMS, as a subclass of HMM, is not a suitable framework for global-scale atmospheric modelling.
However, this criticism misses the point that HMMs are in fact not limited to only simulating processes with
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explicit scale separation [251].
This was shown in Section 3.2.1. The formal linear projection of the full problem onto a finite-dimensional

resolved-scales space and an infinite-dimensional unresolved scales space yields two equation sets in two
variables that are exact. This implies that if the unresolved scales quantity u′ can be exactly represented
from Eq. (3.11), the resolved scales equations Eq. (3.10) are exact in a discrete sense [109]. Hence, while the
formulation cannot capitalise on the scale separation assumption to increase its simulation speed, no model
assumptions have yet been made.

The formulation’s limitations only arise once a tractable model is derived from the exact, nonlinear, infinite-
dimensional unresolved scales equations. Indeed, element-averaging of unresolved scales projections in a
VMM is essentially equivalent to averaging predictions from SP’s inner-model over the outer model’s cells
[167]. Similarly, it is common to assume that the unresolved scales are quasi-steady [39, 53]. However, it is
not necessary to pursue this route.

In all, one can actually readily retrieve a weak formulation for SP from the VMS framework by considering
three sets of scales: Large scales ui that correspond to the GCM-scales of SP, small scales ũi corresponding to
the CRM-scales of SP and unresolved scales u′

i . Again, these could be consistently projected onto three sets
of solution spaces, as can their weighting functions:

S =S+ S̃+S ′ (3.20a) V =V + Ṽ +V ′ (3.20b)

ui = ui + ũi +u′
i (3.21a) ψ=ψ+ ψ̃+ψ′ (3.21b)

This would yield a set of three consistently coupled, exact, discretised equations of similar form as Eq. (3.8),
where the goal is to find ui ∈V , ũi ∈ Ṽ and u′ ∈V ′, such that:

(
ψ,L

(
u + ũ +u′))

Ω = (
ψ, f

)
Ω ∀ψ ∈V (3.22a)(

ψ̃,L
(
u + ũ +u′))

Ω = (
ψ̃, f

)
Ω ∀ψ̃ ∈ Ṽ (3.22b)(

ψ′,L
(
u + ũ +u′))

Ω = (
ψ′, f

)
Ω ∀ψ′ ∈V ′ (3.22c)

In this three-scale approach, Eq. (3.22a) corresponds to SP’s outer model equations Eq. (2.9a), Eq. (3.22b)
to SP’s inner model equations Eq. (2.9b) and Eq. (3.22c) still consistently makes the reader aware of an infinite-
dimensional unresolved scales space below the CRM’s resolution. However, while explicit scale separation
underpins Eq. (2.9a) and Eq. (2.9b), all interaction terms between Eq. (3.22a) and Eq. (3.22b) of the discretised
equations follow naturally from the VMS decomposition, and can all be carried along on the discretisation.
There is no need to introduce “point approximation” formalisms [160] to represent large-scale variables on
small-scale grids: These are here well-defined as prolongation operators inherent to the framework [141]. If
the cross-terms in the discretised equations are explicitly set to 0 and the appropriate terms inserted for the
generic operator L and forcing f , weak forms of the traditional SP equations Eq. (2.9a) and Eq. (2.9b) can be
recovered.

This type of decomposition highlights a flexibility of the VMS framework that would allow it to rather
naturally enforce the scale separation assumption to various degrees, when this is desired. While it may not
exploit the HMM-type benefits that usually drive one to employ VMMs, it therefore offers an upgrade over
the more rigid SP formulation in this regard.

3.3.4. Potential High-fidelity Closure Integration
This discussion has aimed to show that VMMs might hold some conceptual advantages over traditional SP
and are likely at least equally proficient in all other areas. Yet, the discussion of SP made explicitly clear that
the model’s eventual performance will likely be dominated by the unresolved scales formulation that closes
it. Therefore, the most important question of all might be how conducive models such as SP and VMMs are
to the integration of high-fidelity closure models.

Section 3.2.4 showed that within the VMS framework, approximations are only really necessary for the
nonlinear terms in Eq. (3.11) and for the Green’s functions that invert linearised problems at each level of an
asymptotic expansion for u′. While truncating the expansion beyond its linear term is successful for many
fluid-dynamical applications, it is unlikely that such algebraic unresolved scales models will suffice when
they must simulate the large, strongly interactive, backscattering extent of unresolved scales encountered by
GCMs [160]. Similarly, assuming that the unresolved scales contributions of each variable is uncoupled from
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the others is restrictive for a GCM; especially for moist atmospheric processes and their model equations, the
unresolved scales interaction of moisture variables, microphysics, radiation and turbulence has a defining
character for the large-scale flow. For these reasons, it will be necessary to find an improved unresolved
scales model for the VMS formulation of atmospheric-scale flow.

First and most naïvely, one could attempt to formulate more optimal representations of τ’s model coef-
ficients within the confines of the algebraic model. Much research exists in this vein already [22, 68, 197]
which shows promise for extracting more performance from the formulation, while remaining relatively ro-
bust [136]. However, Eq. (3.12) shows that in the presence of strong nonlinearity, as will be the case for atmo-
spheric problems, these fully linearised models are likely insufficient.

Logically, an improved model could be based on including more terms in the perturbation series Eq. (3.12)
and formulating models for each of the perturbation series’ coefficients from Eq. (3.14). Such approaches
measurably improve the fidelity of traditional algebraic closure when conditioned on DNS data [182], and
if these models are posed for the entire remainder of the scale range, they have the advantages of additional
modelling only acting as corrections to well-understood linear theory and retaining the residual-driven prop-
erty. If posed as an OSS model, the impact of the unresolved scales time derivatives in semi-discrete formu-
lations would furthermore drop, such that if the model is inferred well enough, it only needs to assume that
the asymptotic formulation is an appropriate one.

However, it is unclear if the perturbation series approach to writing u′ is valid for GCMs. That formulation
predicates on u′ being small compared to u, i.e. that most of the problem’s energy resides in the large, resolved
scales. If this is not the case, it is unlikely that the perturbation series, expanded in Rs , will converge. In fact
if it would, one could solve the Navier-Stokes equations analytically with such an approach [222]. A GCM’s
kc lies far above an inertial subrange. Hence, it is questionable whether a perturbation series approach holds
water for such models.

Therefore, the higher-level analysis in Section 3.2.2 will form the basis for the novel models posed here. It
identifies the terms that must be predicted by such a model: The interaction terms grouped under ii and iii
in Eq. (3.10), and the large-scale variables that these may be informed by, the strong residuals of Eq. (3.11).
This is subtly different from the perturbation series approach. In fact, here the assumption is not that the
unresolved scales can themselves be approximated from the resolved-scales, only that one can approximate
the projections of the unresolved scales that contribute to the evolution of the resolved scales. Since these
quantities are integrated to only vary in the resolved finite element space, it seems more likely that they
are predictable than highly fluctuating, direct representations of u′ itself. Despite the lack of an explicitly
residual-driven framework to ensure the consistency of such models, they appear to hold significant poten-
tial to reconstruct the exact resolved scales when closed by data-driven models of the interaction terms for a
forced Burgers’ problem [209].

In contrast, SP is limited by ignoring several of these terms during derivation and has to bring them back
with provisional arguments. Thus, the consistency and flexibility of VMMs to include and exclude terms
where their impact does and does not matter make them an ideal testbed for experimenting with new, higher-
order closure schemes, rendering such models at worst a clearer, more consistent version of traditional SP.

3.3.5. Conclusion
Returning to SP’s HMM roots and casting the model in the form of a VMS may yield advantages in the model’s
formulation that might be advantageous when it can no longer rely on the scale separation assumption. The
framework encourages a unified treatment of discretisation and modelling errors, is similarly conducive to
massively parallel computation as SP, does not require a scale-separation assumption in integrating its unre-
solved scales models, and provides clear directions for developing higher-fidelity closures. These arguments
motivate this study to use VMS formulations as an alternative large-scale model to a traditional GCM.

This VMM will be closed by direct models for the interaction terms in Eq. (3.10). That choice in turn fun-
damentally removes many of the modelling and analysis traits that are specific to VMMs and generalises the
comparison to SP conducted here to one with any numerical framework that can be consistently decomposed
into a resolved and an unresolved scales space with interaction terms that contain the full unresolved scales
contribution to the resolved scales. Conceptually, this again reveals that the model framework introduced in
Section 3.1 attempts to be nothing but a scale-consistent numerical model, whose proficiency will hinge on
its model for the interaction terms.

Since the data-driven approach to estimate these terms in [209] appears to hold promise, and this fits
within a larger, promising shift towards data-driven unresolved scales modelling in the fluid dynamics and
atmospheric modelling community, it will be pursued here also.
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3.4. Data-driven Unresolved Scales Modelling
Data-driven reduced-order models may capture the essence of a dynamical problem at lower computational
cost than discretised PDEs [154], yet they are versatile enough to be considered universal function approxima-
tors [100], such that given enough data, they have no inherent limitations. Although they are well-established
in both the fluid dynamics [155] and atmospheric modelling [196] communities, improvements in the ca-
pacity of statistical machine learning frameworks [143], coupled with the increasing availability of large,
high-fidelity datasets from global satellite data [144] and local LES [70] increasingly offer promise that data-
driven parameterisations can break the unresolved scales modelling deadlock that is currently hampering
the prediction of low clouds in climate in particular [29, 63, 79, 88, 126, 188, 205] and turbulence in general
[39, 42, 139, 246, 255].

Nevertheless, it remains likely that discretised PDEs will form the core of such models for the foreseeable
future, rather than being completely substituted for data-driven models [220]. Data-driven models have no
inherent awareness of the governing equations they must satisfy unless trained to a sufficient level. Hence,
they will likely require time to mature to the fidelity of traditional numerical models, although efforts in this
direction are already underway [127, 255]. Since Section 2.6 identified GCMs’ unresolved scales models as
the area with the highest improvement potential for high-accuracy, low-degree-of-freedom models, it is here
considered most promising to investigate the use of data-driven models to this end.

In terms of the second and fourth criterion posed by Section 2.6, data-driven models are particularly
suitable. All models considered here are by definition inspired by high-fidelity unresolved scales models
when taught by high-fidelity simulations and are significantly cheaper to run than the CRMs employed by
traditional SP. Furthermore, they can be kept grid-consistent by being made aware of grid resolution. If data
is available over the entire range of scales that is traditionally neglected, they also have the potential to capture
all phenomena that meaningfully contribute at the resolved scales. Yet, even data-driven models are unable
to represent the scale continuum if they are taught by models that assume an underlying scale gap. Hence,
the only manner in which they can fully satisfy criterion four is if they are taught by actual observations or by
GCRMs [79]. Since GCRMs can currently only operate over time windows much shorter than the climate scale,
it is highly questionable whether a statistical model driven by GCRM data can be made aware of phenomena
on that scale. However, many dedicated weather satellites have now been operational for over a decade [144].
These are increasingly providing climate-scale datasets that can be targeted for training as an alternative [220,
221]. Additionally, data-driven unresolved scales models must face many more direct challenges associated
with their fundamentals before facing scale continuity. These challenges will be the topic of subsequent
chapters.

The following sections will establish that an array of such models exists, and select an approach that, when
used to predict the interaction terms in Eq. (3.10), appears particularly promising to engage the challenges
posed by Section 2.6: Consistency, accuracy, cost and capability to represent the range of unresolved scales
without assuming scale separation. From this discussion, a novel modelling approach for scale-consistent
atmospheric modelling emerges: A VMM-ANN.

3.4.1. Classes of Data-driven Unresolved Scales Models
Existing data-driven unresolved scales models can be broadly divided into three partially overlapping classes:
Modal reduced order models, stochastic unresolved scales models and statistical learning models. These are
very briefly discussed here, to motivate the choice of the latter class for the remainder of this study.

Modal ReducedOrderModels
First, modal Reduced-Order Models (ROMs) here refer to unresolved scales models that simulate a trun-
cated set of modes that are based on an existing dataset. The most celebrated and famous of these is the
Proper Orthogonal Decomposition (POD), which decomposes an “ensemble of signals”, which here is a high-
dimensional simulated or experimental dataset, into a set of modal bases [23]. As a data-assimilation tool
in oceanographic [72, 156] and atmospheric [56] studies, the POD’s attractiveness stems from the fact that it
will return a set of modes that are i) orthonormal, making it a “safe haven” of linearity in the nonlinear sea
of turbulence, ii) the best possible approximation of the signal in the L2 norm and iii) phenomenologically
interpretable [23, 139]. This set of modes can then be used to construct a reduced-order model of the sys-
tem, which could be embedded as an energy-optimal unresolved scales model in a higher fidelity model that
itself only resolves a truncated set of modes [250]. In the context of a three-scale VMS that is further closed
by an optimal algebraic unresolved scale model, this approach is very effective for approximating the small



3.5. Artificial Neural Networks 33

scales present in wall layers even when only very few modes are considered, despite the unsteady nature of
the problem [39, 40].

Several drawbacks to this approach exist: Optimality in the L2 norm is not guaranteed for simulations that
differ from the data that informed the original decomposition [42], the most energetic, truncated modes from
the POD are not the most interesting ones for atmospheric application [202], and the necessity to truncate
the number of modes is in direct conflict with the requirement here to pose an unresolved scales model for
the entire unresolved scale range. While recent advances have provided tools to remedy the first two of these
problems by goal-orienting the ROM’s selected modes towards the phenomena one is actually interested in
reproducing [35], they still suffer from the last drawback and are observed to not always find the globally
optimal decomposition [42].

Stochastic Unresolved ScalesModels
Research into systematic stochastic unresolved scales models for atmospheric applications has become in-
creasingly popular over the last decade, as they i) could potentially increase GCM accuracy per degree of
freedom once they reach O(101) km resolutions [160, 257], ii) can statistically match correct backscatter in
shallow scale spectra [88, 89, 159, 161], iii) offer a straightforward extension of existing schemes to include
statistics on the unresolved scales’ variability [63], iv) are particularly well-positioned to leverage data as-
similation techniques and benefit from the machine-learning revolution [220] and v) generally strike good
balances between their costliness and accuracy [120, 125, 126]. A well-funded consortium is currently devel-
oping a largely data-driven GCM based on a variety of these closures [220].

This has led to the proposal of several interesting methods, a.o. the use of Conditional Markov Chains
(CMCs) to infer closure properties of GCMs from high-resolution LES [61–63], Markov chain lattices to infer
clouds states [120, 125, 126] or Ornstein-Uhlenbeck processes to replace the small scales of a scale-separated
model [55, 248]. While all offer improvements and promise in their own regard, these models are restricted,
as they are only very loosely and indirectly physics-informed [64, 160, 248]. Moreover, inferring classical clo-
sure schemes, cloud states or the small scales directly is philosophically different from attempting to predict
the interaction terms directly; it is unclear whether these approaches are sufficiently general for this more
challenging task.

More advanced models that attempt to remedy this are the diffusion forecast, a nonlinear method to
approximate a set of bases that form spectral Galerkin representations of solutions to the Fokker-Planck PDEs
[24, 54, 94] and Stochastic Superparameterisation, which replaces SP’s nonlinear small-scale equations with
quasi-linear equations, in which the non-linear convective terms are substituted for a Gaussian source [88,
91]. While both methods again represent significant steps forward, the first of these is subject to the same
drawbacks as the POD and the second will always produce turbulence, also in stable regimes [89]. Moreover,
replacing the exact interaction terms in Eq. (3.10) with linearised stochastic forcings from an approximate
model limits the potential of the method already at the model formulation stage. Hence, it is not considered
further in this work.

Statistical LearningMethods
The highest untapped potential for research therefore is found in the field of statistical learning algorithms
that have enriched the traditional approach over the last years. These have permeated the atmospheric mod-
elling community in the last year and appear to show strong promise. First Random Forests (RFs) [28, 96]
manage to reconstruct several classical parameterisation schemes with impressive accuracy and robustness
[188]. However, this is superseded by the potential displayed by ANNs, which in short time have claimed a
central role in the field [25, 29, 66, 135, 204, 205, 217]. They are therefore introduced separately in the follow-
ing section.

3.5. Artificial Neural Networks
No method embodies the recent advances in machine learning as powerfully as deep learning with ANNs.
Although they have existed in some form for almost four decades [77], they have benefited especially from
the availability of very large datasets and the continued growth of computing power [139]. ANNs have enjoyed
a rapid rise to prominence and currently dominate the skill metrics in the fields of computer vision and data
mining [143].

It is today expected that deep, sophisticated ANN architectures will have a similarly transformative im-
pact on the modelling of “high-dimensional, complex systems” [139], such as those characterised by turbu-
lence. This is because ANNs excel in situations where i) a relation between input and output is present, ii)
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the relation is nonlinear and/or not fully known, but iii) large datasets conducive to training as well as the
computational power to conduct that training are present. ANNs are universal function approximators [100],
such that they can approach such problems without having to make a priori assumptions on the structure of
the input-output relationship [21].

3.5.1. Brief Introduction
The simplest form of an ANN consists of individual “neurons” or “nodes”, organised in “layers”, which are
densely or sparsely interconnected with one another [183]. An example of a dense architecture is sketched in
Fig. 3.3, which displays an ANN with 8 input nodes, a “hidden” layer with 10 nodes and an output layer with
3 nodes.

Figure 3.3: Schematic representation of an ANN with an input layer with 8 nodes, a single, densely connected hidden
layer with 10 nodes and an output layer with 3 nodes.

The n + 1st layer in the network accepts an input vector xn
j , which in hidden or output layers are the

outputs of nth layer’s neurons. The output vector of the layer, xn+1
i can be computed by first connecting

it to the previous layer, linearly superimposing the products of the xn
j inputs in each neuron with a weight

ωn
i j . The individual connections with which these are associated are indicated in Fig. 3.3. Second, a “bias”

bn+1
i is added in each neuron and third, the output vector is constructed by passing the resulting value, the

“activation” zn+1
i , through a non-linear “activation function” σ:

xn+1
i =σ

(
ωn

i j xn
j +bn+1

i

)
(3.23)

By repeating this construction for several layers, a Deep Neural Network (DNN) is formed. Its function
evaluations are therefore a series of full matrix-vector products (ωn

i j xn
j ) and other matrix manipulations.

Its training is conducted by methods rooted in Stochastic Gradient Descent (SGD). By the ANN’s intent,
its output is a function of some known data. The quality of the ANN’s prediction with respect to that data
may be captured by a “loss function” J . This can, but does not need to be the L2 norm error of the output
state [183]. The ANN is trained by minimising J with respect to the network’s free parameters: Its weights
and biases. Under the assumption that J is convex, this is achieved when ∂J

∂zn
i
= 0. Because the ANN consists

of a recursive application of the known Eq. (3.23), the derivatives of the loss with respect to the weights and
biases can readily be computed from the chain rule of calculus, offering a cheap method to compute ∂J

∂zn
i

by
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“backpropagating” through each of the network’s layers [210]:

∂J

∂zn
i

=ωn+1
j i

∂J

∂zn+1
i

δi k
∂σ

∂zn
k

(3.24)

Sequential application of Eq. (3.24) then returns the gradients to the individual weights and biases by
invoking Eq. (3.23) and the chain rule once more:

∂J

∂ωn
i j

= ∂J

∂zn
i

xn−1
j (3.25a)

∂J

∂bn
i

= ∂J

∂zn
i

(3.25b)

This is sufficient information for a first order optimisation scheme to step the weights and biases along
the computed gradient directions with a factor αl . In the t +1st training step, this updates the weights and
biases as follows:

ωnt+1

i j =ωnt

i j −αl
∂J

∂ωn
i j

t+1

(3.26a)

bnt+1

i = bnt

i j −αl
∂J

∂ωn
i j

t+1

(3.26b)

The gradient descent steps are commonly performed sequentially on “batches” of a dataset, until the full
set of training examples has been covered. A number of such “epochs” is commonly performed in a single
training.

To gauge the progress and success of the training of an ANN as it cycles over training epochs, metrics of the
model’s prediction accuracy or loss are commonly tracked throughout this process. To prevent the network
from “overfitting” its data (the optimisation of the ANN’s weights and biases to reproduce specific, detailed
patterns of the data that do not necessarily generalise to the underlying process they attempt to represent
[211]), a common approach is to split the available dataset into training data, validation data and test data,
with holdout and/or cross validation [170, 183]. Commonly, the dataset is first split into a set used during
the training stage and a test set that will never be encountered during training, but is reserved for tests of
the finalised model. Then, the first set is split into training data used in each training cycle over the ANN’s
samples, and validation data, used to tune the model’s “hyperparameters” (free parameters). One commonly
tracks progress during a training run with this validation data, to highlight the success or failure of ANNs to
learn the desired data at an early stage [211].

Various subtle modifications can improve the learning of ANNs. One can manipulate the training strategy,
the network architecture or the hyperparameters, all with potential benefits to improve the model’s accuracy
and reduce its risk of overfitting. These are succinctly and comprehensively discussed in [143] and [183, 211]
respectively and will be elaborated upon when necessary in the following chapters.

3.5.2. State of the Art in Fluid and Atmospheric Dynamics
DNNs today form an active research topic in the field of fluid dynamics [139]. Convolutional Neural Networks
(CNNs) have been successfully applied to solving the pressure Poisson problem in divergence-free versions
of the Navier Stokes equations [244], while hybrid convolutional-recurrent ANNs have been successfully em-
ployed to predict an arbitrary number of future states of the velocity or pressure given a time history in the
context of multi-phase flows [255] and simplified representations of wall-bounded flows [232]. Simpler archi-
tectures have successfully modelled liquid splashes [246] and served as closure models for Reynolds Averaged
Navier Stokes models, which Ling et al. managed to do in a rotationally Galilean invariant manner [148].

Finally, as is the focus here, ANNs have served as unresolved scales models in LES simulations, having
learned Bardina’s scale similarity model [212], the cross and Reynolds stresses of HIT in the context of finite
volume discretisations [21, 256], unresolved scales flame surface-density [142] and the approximate decon-
volution method [170]. In the context of VMS, they have been used in several recent MSc theses at the TU
Delft to optimise estimates of the free parameters of Shakib’s τ [226] for the one-dimensional Burgers’ equa-
tion [22, 68], in the spirit of the first approach to improved modelling discussed in Section 3.3.4. These show
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promise to yield better predictions than the classical model, especially when extended by DSS and OSS ver-
sions of the problem [136]. However, as noted previously, this is likely insufficiently general for the problem
considered here, and is therefore not considered further.

Most relevant to this work is a recent MSc thesis study, conducted by Michel Robijns, which investigated
in detail a VMM closed by interaction terms directly predicted by dense ANN architectures for a 1D Burgers’
problem [209]. The study confirms that ANNs can learn these interaction terms well, generalise to new prob-
lems and outperform traditional algebraic VMS closure models at similar accuracy in “online”1 simulations
for a range of sinusoidal forcing terms. This highlights the potential of ANNs to close VMMs in the context
of simple problems, though the methodology remains untested for actual turbulence, run at time and space
discretisations that are more relevant for GCMs.

In the atmospheric community, Schneider et al. [220] note that teaching ANNs outside the structure of
the governing equations might limit their predictive ability outside their training scope compared to unstruc-
tured parameterisations. This was indeed a feature of early investigations on the topic [135], which tested en-
sembles of ANNs, trained from CRMs, as stochastic closures in single-column models and simplified climate
models. However, two studies conducted in the past year have firmly established the high potential held by
ANN closures.

First, Brenowitz and Bretherton train ANNs with a single hidden layer to estimate the residual source
terms of total water and liquid water static energy in a coarse-grained LAM simulation [29]. Minimising the
accumulated error of the source terms over several time steps, these models reproduce the terms well and
prevent divergence of the online simulation. However, the model does not ensure non-negative precipitation
or top-of-the-atmopshere radiative balance, such that ad-hoc cutoffs are necessary. Second, Rasp et al. train
dense, deep, feed-forward ANNs to directly replace the CRMs in the SP [205]. With this deep architecture and
large datasets, the study manages to run stable online simulations with encouraging results; they represent
the improved deep convective features of SP with respect to traditional GCMs very well. The model outper-
forms the traditional GCM, while speeding up the SP’s inner model computation by a factor 8 and the total
model (including training) by a factor 4. However, these predictions do not generalise well. Increasing the Sea
Surface Temperature (SST) of the simplified aqua-planet setup in which the model ran by four degrees ren-
ders the model substantially worse than that of a classically parameterised GCM. This might be an inherent
limitation as long as the constraints of physics are not imposed on the ANNs.

3.5.3. The challenges and opportunities of ANNs as atmospheric models
Recent reviews on the topic single out three concrete, major challenges for the future incorporation of ANNs
as atmospheric unresolved scales models [66, 79]:

1. Ensuring sufficient generalisability ouside their training scope, by harnessing existing knowledge.

2. Capturing variability as well as mean states, following modern stochastic parameterisations.

3. Conserving energy and moisture to guarantee stable simulations.

Since one of the premises of improved unresolved scales models is that they should improve accuracy
per unit computational cost, one might add as a fourth challenge that ANN unresolved scales models must
manage to achieve their stability and generalisability without relying on ever-increasing datasets; they must
remain cheaper than simulating the unresolved scales directly.

In spite of these challenges, it might be advantageous to turn to ANNs rather than modal unresolved scales
models. ANNs are generally thought to be better suited for multiscale feature extraction, handling transfor-
mations and to represent invariance [139, 148] than modal decompositions. Furthermore, a linear, single-
layer ANN, trained to reconstruct a set of superimposed linear combinations, reduces to the POD when the
loss function is the state error in the L2 norm [17, 174]. Hence, one might view the POD as a subset of the more
general function space spanned by nonlinear ANNs, which can possess more richness as a consequence. Cor-
respondingly, changing the cost function of an ANN to equation-constrained, goal-oriented versions might
yield similar advantages over Goal-Oriented Reduced Order Models (GOROMs).

Such Physics-Informed Neural Networks (PINNs) have recently been proposed by regularising their cost
function with the residual of the PDE they attempt to model, and show promise in learning the PDEs of

1The term “online” will be reserved for forward-in-time simulations of the space-time discretisation where the unresolved scales model is
repeatedly evaluated in conjunction with the rest of the model, while “offline” simulations refer to simple evaluations of the unresolved
scales model outside the context of a time march of the complete model
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simple [200, 201] and complex flow problems [127]. It is therefore currently thought that grounding ANNs
more firmly in physics may improve also the extent to which they generalise to new, unknown situations that
must still adhere to the same physical principles, providing a direction that might satisfy the first challenge.

Correspondingly, it is possible to extend an ANN to a stochastic model form. Ensembles of slightly differ-
ently trained ANNs [135] and Bayesian Neural Networkss (BNNs) with Probability Density Functions (PDFs)
over each of the model’s weights and biases [157] provide points of departure for such an approach. To for-
mulate tractable models, one might turn to variational inference methods that optimise an assumed fit of the
underlying PDFs [98, 129, 191] or dropout techniques that deactivate any given neuron in the network and its
connections with a prescribed probability during both training and forward sweep to yield the equivalent to
deep Gaussian processes [78, 260]. With such extensions, ANNs appear at least as capable as the traditional
stochastic methods discussed above to meet the second challenge.

While constraining ANNs with physics during training is commendable, it does not guarantee that the
models’ predictions will satisfy those constraints, especially when subjected to data that is far removed from
their training envelope. To contain deviations of the model to undesired regimes, one might therefore be
inclined to impose constraints on the model based on prescribed trends of e.g. the energy evolution during
online running, as proposed by Robijns [209]. However, while this could be successful for problems where
the large-scale statistics are known, it is at direct odds with the goal of any model: It should correctly predict
these large-scale statistical trends, rather than reproduce known ones.

Without such explicit constraints, an ANN is not guaranteed to be conservative and the model is not guar-
anteed to remain stable. While Rasp et al. managed to conserve energy [205], the traditional SP by which this
model was taught retains artificial diffusion terms that likely lower the difficulty of achieving such stability.
In contrast, fluid dynamics ANN models that targeted exact reconstructions of the entire flowfield [255] or
the unresolved scales flowfield [21] remain unstable without further intervention. Even Robijns encounters
instabilities in online simulations, arising from inexact ANN predictions of the exact interaction terms [209].
Hence, an atmospheric, 3D model that must handle significant backscatter may encounter similar instabili-
ties without further online stability insurance. However, the mechanisms that drive such instabilities remain
uninvestigated. Hence, potential cures could well be identified by exploring the construction of the models
in more detail.

In fact, the net could be cast somewhat wider than the stability considered in these initial studies. The
models that emerge from combining ANNs with numerical methods are not only subject to the physical as-
pects of that modelling, but also to their numerical component. Therefore, one should demand that such
models satisfy all fundamental requirements traditionally imposed on the wider class of numerical models.
In this context, a model’s stability must account for the discretisation, which is defined to be stable if the
numerical solution for a given number of degrees of freedom derives from a well-posed problem. In turn, a
problem is well-posed if it has a solution, that solution is unique and the solution responds proportionally to
small perturbations in the input data [111], allowing the unique solution to be continually found. This aspect
of combining ANNs with standard numerical models has not received any attention in literature.

This is somewhat surprising, since well-posedness is a non-trivial aspect of the problem at hand. For
instance, finding u′ as a direct function of u is an ill-posed problem: Since S ′ is infinite, a single state of u
presumably can give rise to many states of u′. The interaction terms Î depend directly on u′, but only appear
on the well-posed resolved scales. Hence, it is unclear whether finding these interaction terms is also ill-
posed, or whether they can be uniquely determined from features of the resolved scales, such as the strong
residual or a time history.

Finally, even if the ANNs are proficient at learning these terms exactly, their inclusion in forward problems
might give rise to new, unexpected manifestations of ill-posedness once they become involved in nonlinear
solution procedures and are subject to their own model errors. All these aspects are relevant to the model’s
performance, but their impact is so far lacking from the literature.

3.6. A VMM-ANN
One overarching difference between ANN unresolved scales models and the other data-driven unresolved
scales models emerges from this discussion. While ANN atmospheric unresolved scales models clearly have
both large challenges and opportunities, the extent to which the challenges will be prohibitive or the oppor-
tunities will outshine the potential of other methods is largely unknown at the moment. The limitations of all
other models are much easier to identify, because their fundamentals are better understood or because they
have been investigated for some time. ANNs’ statistical properties are in contrast not well understood [211];
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neither are therefore their limits. Simultaneously, only a small number of very recent studies have so far been
conducted on their application to atmospheric unresolved scales modelling. These have been exploratory in
nature, yet have immediately underscored the ultimate promise of the method by conducting experiments at
global scale.

An avalanche of research inspired by this success is now underway [25, 185, 204, 217]. However, the cur-
rent literature misses insight into which aspects of atmospheric ANN unresolved scales models drive their
performance. Therefore, these studies should be informed by a proper, systematic assessment of how well
ANNs perform when nearly all assumptions on model structure are removed. To facilitate these insights, Sec-
tion 3.3.4 and Section 3.5.3 introduced how a VMM is a particularly suitable model to embed the ANN in. The
VMS structure yields a term-by-term decomposition of exact unresolved scales projections that can be learnt
directly by an ANN, facilitating immediate investigation of which terms are well-predicted and which are not,
where instabilities are sourced, what the skills and weaknesses of the ANN formulation are or whether the
formulation is at all well-posed. This stands in contrast to implementations in the context of SP [29, 205].
To judge ANN unresolved scales models on their merit, it is therefore natural to begin studying them in the
context a VMS framework.

In all, ANN unresolved scales models have demonstrated considerable ability compared to other data-
driven parameterisations, while immediate potential for further improvement can be identified. Yet, they
lack rigorous study on their driving parameters. Finally, they fit naturally within the VMS framework. For all
these reasons, they are the most interesting data-driven unresolved scales model for this study. The future
atmospheric model that meets all criteria established in Section 2.6 and will form the basis of the study will
therefore be a VMM-ANN.

All the uncertainties that cloud the current judgement on an ANN unresolved scales model’s potential
also encourage taking a step back from the eventual global flow problem that a GCM targets, since the range
of scales of the problem makes it exceptionally difficult to assess. Hence, if one is interested in understanding
the potential of the model, it is prudent to incrementally build it up from the simplest, most well-understood,
yet relevant problem. Therefore, this study will consider the VMM-ANN in the context of a highly simplified
model problem. Describing a model problem that is suitable to this end will therefore be the goal of the next
chapter.

3.6.1. Outlook
The discussions in this chapter finally set the context for unpacking the research objective and research ques-
tions that were posed at the outset of the document. From these, a roadmap for the remainder of this thesis
emerges that closely follows the systematic procedure for multiscale model development proposed by Majda
[160].

ResearchObjective
The VMM-ANN formulation outlined in this chapter offers two advantages over the state of the art. First,
the framework removes all modelling assumptions and pushes the ANNs to the highest possible level they
could operate at as unresolved scales models, allowing the complete model to theoretically meet all require-
ments from Section 2.6. Second, the formulation offers clarity for studying the model’s properties in more
detail. In the scope of this project, this allows filling three notable research gaps that emerge from the above
review. First, to the best of the author’s knowledge, no studies other than [21, 209] have systematically studied
ANNs as direct models for exact interaction terms, while no study has assessed the ability of ANNs to predict
the terms for turbulent atmospheric dynamics at levels of discretisation that are sufficiently coarse to in-
form on their ability to close global models. More broadly, no studies establish whether learning interaction
terms with ANNs and running numerical simulations with the ANN predictions embedded are well-posed
problems, or which aspects of the models govern this. Finally, another crucial performance attribute of such
models – computational cost – has therefore also not been assessed for proxies of atmospheric turbulence.
The synthesis of these three gaps defines the concrete research objective of this thesis:

“To investigate the well-posedness, generalisability, and computational cost of machine-learned approxi-
mations of the exact interaction terms of a VMM, for proxies of the atmospheric model equations at relevant
levels of discretisation, in offline and online settings.”

RQ1
What are the characteristic scales, spatial distributions and relevance to the global problem of the amplitudes of
the interaction terms of a VMS formulation for the model problem, over a range of time and space discretisation
levels?



3.6. A VMM-ANN 39

A characterisation of the turbulent dynamics of the model problem is mandatory to understand i) the
spatial statistics and modal distributions that build up the terms that the ANNs must learn, ii) which resolu-
tions are sufficiently coarse that the interaction terms must capture the impact of true, physical, unresolved
turbulence, iii) the attributes of the problem that do and do not translate to the global problem and iv) which
features of the problem are likely to drive the models themselves.

To make these assessments, high-fidelity data of the model problem must be available and the interaction
terms must be identified from the data at several levels of discretisation. The framework developed to this
end is outlined in Sections 5.2 and 5.3, while the analysis that attempts to answer the research question is
conducted in Chapter 6.

RQ2
What is the ability of feed-forward ANNs trained on error-free data to make generalised offline predictions of
the model problem’s exact interaction terms, compared to state-of-the-art models?

Armed with this knowledge, one may begin assessing the extent to which the ANNs can learn interaction
terms derived from high-fidelity simulations of the model problem turbulence as a function of resolved scales
variables. This assessment is conducted in terms of an ANN’s ability to predict interaction term examples that
are uncorrelated from those the model has been trained on in an offline setting, given error-free input data.
This ability is termed “generalised offline predictive ability" from here on. The RQ is treated in Chapter 7.

RQ2.1
Which combinations of ANN input variables, output variables and architecture ensure that the ANN accurately
represents the interaction terms?

First, the study will aim to establish i) the extent to which the models are capable of generalising their
interaction terms predictions outside their training envelope when instantaneously fed error-free data, in
accordance with the first general challenge for ANNs from Section 3.5.3, ii) which hyperparameters govern
their learning, iii) which features of the resolved-scales flow their predictive skill responds most favourably to
and iv) how they compare to state-of-the-art algebraic VMM closures.

Section 5.4.1 outlines the machine learning framework let loose on the high-fidelity data, while the first
part of Chapter 7 answers the various components of the RQ.

RQ2.2
To what extent can an ANN predict the interaction terms over a range of increasingly coarse space and time
discretisations?

To assess whether ANN unresolved scales models can really meet requirements 2 and 4 from Section 2.6,
the study will next attempt to ascertain whether the predictive ability of the ANN drops off as resolutions be-
come coarse. “Coarse” will in this work be used to describe discretisation levels that require the interaction
terms to capture an appreciable extent of physical, unresolved-scales turbulence; these levels follow from
answering RQ1. In answering RQ2.2, the study will i) assess the predictability over a range of spatio-temporal
discretisations, ii) discuss how the ANNs err and how this changes with discretisation, iii) identify driving
parameters for the terms’ predictability and iv) examine the implications this has for solving forward prob-
lems with ANNs embedded as the unresolved scales model. These topics are treated in the second part of
Chapter 7.

RQ3
To what extent does an ANN’s generalised offline predictive ability at coarse resolutions translate to online sim-
ulations?

The real motivation of the study is, of course, to establish whether more accurate forward simulations of a
deterministic chaos can be conducted with the VMM-ANN. However, Section 3.5.3 outlined that many early
studies have grappled with instability in their online simulations [21, 29, 135, 209]. Therefore, the third topic
of the thesis is to assess the extent to which the characteristics and abilities displayed by the ANNs in offline
settings translate to online simulations. This part of the work aims to identify the impact of aspects that
distinguish the online problem from its offline counterpart, in a bid to i) better understand whether these
underpin the observed instabilities and ii) find model configurations that better lend themselves to robust
simulations. The investigation is conducted through methodology outlined in Section 5.5, and broken down
into three sub-questions that are addressed in Chapters 8 and 9.

RQ3.1
What are sources of the stability issues encountered by Robijns in [209]?
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Section 3.5.3’s final remark introduces the two factors that are different between offline training and on-
line simulations: The ANNs’ lack of exposure to examples that encapsulate the effects of i) the iterative solver
of the nonlinear problems and ii) the errors that the ANNs themselves are likely to induce in a time march.
These might lie at the root of the problems encountered by Robijns. In this light, RQ3.1 attempts to establish
causes of the instabilities.

In particular, this part of the study aims to establish if the models are well-posed and therefore stable.
As is common for numerical methods of nonlinear problems, the requirement is here relaxed to practical
well-posedness: The problems that are solved can be non-unique, but only to the degree that the model
never finds a spurious solution in practice. The model should possess this property regardless of the ANN’s
accuracy. Hence, the research question will study the model’s stability in a highly simplified setting without
significant ANN prediction error, but at coarser discretisation than considered by Robijns [209].

RQ3.2
To what extent can stability issues be abated by alternative formulations of the VMM-ANN model?

The study next builds on the understanding that results from analysing RQ3.1 to search for model config-
urations that possess improved stability characteristics. This search can focus on configurations of the model
or on the ANNs themselves. Here, the first approach is taken, to i) show that conventional model improve-
ments are likely insufficient to contain the ANNs’ unstable proclivities and ii) outline directions for the future
developement of successful models. To comprehensively answer RQ3.2, it is considered in the context of both
a simple, understandable problem in the second part of Chapter 8 and the more complex, but realistic model
problem in the first part of Chapter 9.

RQ3.3
What is the model’s computational cost compared to higher-fidelity simulations and algebraically stabilised
VMM?

Finally, forward simulations of the model problem are gauged on a metric that strongly contributes to
their potential: Computational cost.This is compared to algebraic VMS closures and the exact model problem
over a range of discretisations at the end of the thesis, to assess whether the complete model has potential to
satisfy criteria 2 and 4 from Section 2.6.

3.6.2. Verification and Validation
The coming chapters will venture to implement the VMM-ANN model and thoroughly assess and discuss
its proficiencies and drawbacks with respect to state of the art models. This discussion overlaps with many
aspects of validation studies, which generally aim to gauge whether the right model of reality has been de-
veloped and to quantify and understand all error sources of the model with respect to that reality [111, 207].
However, for such discussions to be meaningful, the first criterion to be met by the modeller is that the model
presented here is implemented correctly. Therefore, a verification effort that measures the errors and uncer-
tainties in the output of the numerical model must first be conducted.

It is not so trivial to unentangle the traditional interpretation of verification and validation for the pro-
posed method. Verification is commonly associated with investigating errors introduced by the discretisa-
tion, while validation also assesses modelling errors. However, because Eq. (3.10) is exact, modelling errors
are only introduced after discretisation, yielding VMS’ unified representation of discretisation and modelling
errors. Since the only reason the eventual model will not be exact is because the ANNs that will be employed
to model the closure terms of Eq. (3.10) are not perfect models of reality, this is in the author’s opinion best
described as “modelling error” that must be treated by validation. Therefore, the assessment of the model’s
uniqueness and stability, normally associated with solution verification, is here considered part of the vali-
dation effort. The term verification will therefore be reserved for code verification - efforts to assess whether
the ideas presented here have actually been correctly implemented.
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Simplified Test Cases

To judge whether the conjectured improvements of the VMM-ANN model proposed in the previous chapter
materialise, it must be subjected to a quantitative assessment. However, given the complexity of the global
problem, Section 3.6 identifies that the assessment should begin in the context of highly simplified, yet rele-
vant test cases as a proof of concept. From this point of departure, the VMM-ANN can be incrementally and
systematically extended to build up the necessary understanding to judge its potential as a GCM.

This chapter outlines several simplified test cases that are common in the field in Section 4.1, before
Section 4.2 settles on a case that is especially qualified for this study and details its most important aspects.
Subsequently, Section 4.3 simplifies this test even further to arrive at a 1D, forced inviscid Burgers’ problem
that forms a bridge between the work of Robijns [209] and more complicated problems. Finally, Section 4.4
introduces an even simpler problem that will be used extensively to verify the model and give insight in its
functioning.

4.1. Simplified Test Cases for Atmospheric Modelling
While many physical processes are not yet sufficiently represented in climate simulations, the previous chap-
ters have highlighted that the inability to represent the impact of unresolved dynamics in GCMs is particularly
detrimental. Hence, if the merit of atmospheric unresolved scales models is to be gauged in simplified test
cases, these must at least feature a turbulent spectrum reminiscent of that encountered in the atmosphere
[161]. Often, moisture, radiation and chemistry are added as subsequent modelling steps [166, 167].

Many test cases that comprise simplified versions of atmospheric turbulence therefore exist. For instance,
Grooms and Majda investigate the merit of stochastic SP in a problem of 1D dispersive wave turbulence with
shallow spectral decay [88], while the various formulations of Lorenz models [150, 152] embody an entire
class of simplified deterministic, chaotic dynamic systems [94] that have been used for early model tests of
several methods [24, 55, 63, 73].

An alternative approach is to attempt to capture an actual physical phenomenon on a reduced set of
scales. This has as an advantage for a model under development that one may test the actual equations the
eventual model will solve in a simplified sense, if a high-fidelity solution of the problem is readily available.
This approach will be taken here.

For problems driven by buoyant convection in a stratified environment, such as convective cloud forma-
tion, a common test case is a bubble of warm air, rising into a large and small domain [208]. 2D versions of
this model have been broadly used to verify dynamical cores of non-hydrostatic GCMs [9] and also existing
VMS models [167]. Kelly tests a quasi-2D version of the problem [121], while fully 3D simulations are often
conducted as a final step [7, 166].

4.2. Statistically Stationary Convective Boundary Layer
While the models presented above are a suitable testbed for VMM-ANNs, this study has particularly stressed
the need to improve the simulation of stratocumulus clouds that top the atmospheric boundary layer. Since
this is a phenomenon that occurs on the smallest scales of the atmospheric turbulence spectrum, it is a nat-
ural area to begin testing the proposed model: If the model cannot capture the simplest form of boundary
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layer turbulence when all scales above it are not present, it will not improve moist convective parameterisa-
tion when they are.

Furthermore, a data-driven unresolved scales model will require data to learn from. For a global model,
scale-continuous data could be sourced from observations or GCRM data. The most natural downscaled
analogue of a GCRM is an LES, which is especially proficient in simulating boundary layer turbulence [92].
Hence, using an atmospheric boundary layer simulation as the test case in this study permits the use of LES
to readily generate large quantities of high-fidelity training, validation and test data to train, verify and vali-
date the VMM-ANN model. In turn, using LES as the high-fidelity model keeps the VMM-ANN conceptually
similar to how it would approximate and learn from global, scale-consistent models.

The models presented above predict a mean state that evolves in time. However, convenient measures
of turbulent statistics are often time-averaged. Therefore, a simulation that is statistically stationary in time
is a particularly interesting starting point for validation studies. The large stratocumulus cloud decks of the
sub-tropics that are susceptible to GCM and SP misprediction effectively behave as statistically stationary
turbulent boundary layers on the time scales of days [236]. Hence, a statistically stationary atmospheric
boundary layer test case is also especially relevant to the low-cloud parameterisation problem.

There are several other advantages to the statistically stationary CBL. First, it incorporates a sufficient
range of scales that an increasingly coarse simulation allows an ANN to demonstrate its proficiency in a realis-
tic setting [247]. Second, the CBL is an extensively researched topic [146, 231, 236, 240] with well-understood
governing dynamics, for which LES has been extensively validated [70, 247]. Third, statistically stationary
Boussinesq equation simulations are not an overly large departure from what has already been successfully
modelled by traditional VMMs [167] or by a VMM-ANN model [209]. For all these reasons, this test case will
be considered in this project as the performance yardstick of the model. The test case will be simulated by
refined LES runs, generating a ground truth dataset to train ANNs on and to validate the model against.

4.2.1. Mathematical Model
The model will be governed by the Boussinesq equations in a large, horizontal domain, which are derived
from Eq. (2.1) in Appendix A.1, without Coriolis forces:

∂u j

∂x j
= 0 (4.1a)

∂ui

∂t
+ ∂

∂x j

(
u j ui

)+ ∂π

∂xi
+ g

θ′′

θ0
δi 3 = 0 (4.1b)

∂θ
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+ ∂

∂x j

(
θu j

)= Sθ (4.1c)

The Boussinesq equations result from four assumptions, that are commonly only met in an atmospheric
boundary layer experiencing shallow convection [202], i.e. at the smallest of atmospheric scales. First, all
thermodynamic variables may only deviate slightly from their reference values, such that density, pressure
and potential temperature fluctuations

[
ρ′′, p ′′,θ′′

]
from a reference state

[
ρ0, p0,θ0

]
, defined as

ρ′′ = ρ−ρ0 (4.2a) p ′′ = p −p0 (4.2b) θ′′ = θ−θ0 (4.2c)

are relevant unknowns. Second, θ
′′
θ0

>> p ′′
p0

and ρ′′
ρ0

>> p ′′
p0

[131, 202] such that ρ′′ can be expressed only in

terms of π = p ′′
ρ0

and θ′′ and can be removed from the equations. Third, processes associated with advective
and internal wave dynamics must be of equal magnitude and of sufficiently large time scale that they are far
removed from processes at the time scales of the speed of sound cs . This means the inertial and gravity terms
balance, but sound waves may be ignored. Finally, the “aspect ratio” of the motions, or the ratio of character-
istic vertical and horizontal length scales, must be sufficiently small. This justifies neglect of time-variations
in the density fluctuations in Eq. (2.1a), while maintaining their influence in the gravity term in Eq. (2.1b),
where they influence potential temperature fluctuations. A more rigorous treatment of this discussion is in-
cluded in Appendix A.1.

4.2.2. Free, Dry Boundary Layer Turbulence
A Reynolds averaging, denoted here by 〈·〉, of the dry Boussinesq equations will introduce the Reynolds stress
tensor in the mean momentum equations and turbulent potential temperature flux (or simply heat flux) in
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the thermodynamic equation. One may derive exact transport equations for these variables, which facilitates
a characterisation of the dynamics that drive the boundary layer turbulence1. The most commonly analysed
variable is the turbulent kinetic energy E = 1

2 〈u′′
i u′′

i 〉, first encountered in Section 2.1.2, as it is a measure of
turbulent intensity. The evolution equation for E , which follows directly from the Reynolds stress equations
of the Boussinesq problem, is Eq. (4.3):
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The proposed test case allows several simplifications to be made to Eq. (4.3) [236]. Therefore, a short
introduction to each term follows: Term i represents storage and might be neglected if the timescales of the
turbulence are sufficiently short that the layer instantaneously adjusts over a length scale associated with the
layer depth. This will not be assumed, as the layer is commonly too deep for such approximations [146].
Term ii represents advection of the turbulence with a mean flow and is zero in the absence of such mean flow.
No horizontal mean flow will be imposed on the proposed model, while no vertical mean flow follows from
the boundary conditions of the simulation (see Section 5.2.1). Therefore, this term will be neglected in the
proposed, simple model.

Terms iii and iv are the main sources of turbulence production. In meteorological jargon, term iii denotes
buoyant or free production (or consumption) of E . It is commonly associated with the diurnal cycle over
land. When radiative solar influx on a surface raises the surface’s potential temperature over that of the air
layer directly above it, a positive vertical heat flux w ′′θ′′ develops from the product of vertical velocity fluctu-
ations w ′′ and θ′′. In its temporally averaged form, this is written as 〈w ′′θ′′〉. Eq. (4.3) reveals this as a source
of E , allowing turbulence to develop. This is not the standard state of the lower troposphere, which is com-
monly characterised by a stable potential temperature gradient [169]. When 〈w ′′θ′′〉 < 0, air parcels are forced
back to any starting height they are displaced from; a stable situation ensues that consumes turbulence. In
boundary layer meteorology, term iii is sufficiently important that it is common to normalise all other terms
in Eq. (4.3) with it. Since the term only acts in vertical direction, it is the main driver of anisotropy in the CBL
[236]. In the test case considered here, a uniform 〈w ′′θ′′〉 > 0 will be imposed on the lower boundary to drive
the turbulence, resulting in a horizontally homogeneous and isotropic situation.

Term iv denotes inertial, or forced production by mean wind shear. It is often dominant only in horizontal
direction at the very surface, where roughness induces a full “surface” layer. The term is often the only source
of boundary layer turbulence at night. Commonly, shear due to mean vertical motion is insignificant in all
situations but deep convection. As term ii, term iv is exactly zero for the proposed test case. This situation is
called “free turbulence”, which is distinguished from “forced turbulence”, when the production is dominated
by term iv.

Term v is termed flux divergence. Its role is heuristically to redistribute E through the layer. For a case
where periodic boundary conditions may be assumed, this is made explicit by the fact that its integral over
the boundary layer height is zero. As discussed in Section 5.2.1, such conditions are applied to this test case.

Term vi is a pressure correlation term. It is often small and difficult to measure in observational exper-
iments, and is therefore regularly lumped with other unknowns to form a single residual term when one
analyses datasets. Pressure fluctuations might also be associated with internal or acoustic waves. Such waves
occur at the top of the layer, which is by definition neutrally stable, but excited by penetrating dynamic ther-
mal structures.

The final term in Eq. (4.3) is dissipation: Molecular-level diffusion of turbulence to heat at the Kolmogorov
scales. In boundary layer modelling, this is commonly treated to the LES assumption: If one filters the flow-
field in the inertial subrange of the turbulent energy spectrum, εt is directly related to the resolved-scale
turbulence through a net forward energy cascade. Such an assumption is imposed also for the Boussinesq
equations, which do not themselves possess a diffusion term. The resulting balance therefore simplifies to:
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∂t
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′′
i θ

′′〉− ∂

∂x j
〈u′′
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i π〉−εt (4.4)

Meteorological interpretation of such equations is often phenomenological. In this spirit, consider the
following explanation of the development of a CBL that is averaged over a large, horizontal area and schema-

1Similar equations can be derived and analysis be conducted for moisture variables if they are included in the model. See chapter 4 in
[236] for derivations and a comprehensive discussion.
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tised in Fig. 4.1. When buoyant thermals, engendered by the heat flux at the surface, rise into a stable at-
mosphere with positive temperature gradient, they will become negatively buoyant [169, 236]. However, a
turbulent “air parcel” will carry over its residual momentum and overshoot into this stable region; this is
called “penetrative convection” [58] and results in dome-type turbulent structures. The atmosphere in these
overshooting regions is stable and diffusion of the momentum only happens relatively slowly. Hence, the
momentum “sinks” back into the convective layer, transporting with it “sheets” of warm air from the sta-
ble atmosphere that rapidly mix into the convective layer. Such entrainment results in a growing, well-mixed
layer of relatively constant potential temperature and neutral stability. It is capped by a temperature inversion
where θ rises very rapidly with altitude, before transitioning into the free atmosphere. The vertical coordinate
at which the entrainment occurs is therefore termed the inversion height zi , which represents the boundary
layer top (or cloud top in the case of the cloud-topped boundary layer). Note that no vertical mean motion is
necessary for the layer to develop in time; it is purely driven by the entrainment. This is shown in the leftmost
subfigure of Fig. 4.1.
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Figure 4.1: Profiles of the mean variables in a statistically stationary, free CBL with vertical coordinate z/zi . From left to
right: Mean potential temperature 〈θ〉, mean horizontal fluctuating momentum fluxes 〈u′′u′′〉 and 〈v ′′v ′′〉, mean vertical
fluctuating momentum flux 〈w ′′w ′′〉 and mean vertical heat flux 〈w ′′θ′′〉.

Several other aspects of this figure are instructive. First, note that both components of the horizontal mo-
mentum statistics are of equal magnitude. This highlights the horizontal isotropy of the proposed simulation.
Furthermore, horizontal statistics have a vertical gradient only in the near-wall region and at the inversion,
above which they reduce to 0. Conversely, the vertical momentum statistics peak around z

zi
≈ 0.3. Through

term V in Eq. (4.4), these contribute to turbulence production when z
zi

> 0.3 and to its dissipation when
z
zi

< 0.3. In the literature, this is again commonly explained phenomenologically: The vertical momentum
of rising thermals reduces through dilution with free atmospheric air, drag, and the warming and stabilising
effect of the mixed layer top [236]. Finally and most importantly, turbulent heat flux reduces nearly linearly
throughout the height of the layer, as depicted in the rightmost subfigure. To entrain air at the top of the
layer, a certain amount of energy must be spent, yielding a negative turbulent heat flux towards the inversion
height [240].

4.2.3. Statistically Stationary Model
While the turbulent profiles discussed so far are self-similar [231], they are not stationary in time. As long as a
positive surface heat flux 〈w ′′θ′′〉s is imposed, the inversion height will keep growing. This is clearly visualised
by considering a bulk model of the well-mixed CBL as proposed by Van Driel and Jonker [247] and sketched in
Fig. 4.2. Van Driel and Jonker pose linear ODEs for the temporal evolution of zi and the temperature inversion
∆〈θ〉. Through analytical stability analysis, they find that despite imposing 〈w ′′θ′′〉s > 0 at the surface, zi in
their model has stable stationary points when a uniform, radiative sink Sθ = 〈w ′′θ′′〉e is imposed. Sθ can be
interpreted as a large-scale subsidence velocity ws multiplied with the potential temperature gradient of the
stable, free atmosphere above the layer Γs . Since this model shows surprisingly good agreement with high-
fidelity LES for the development of zi and ∆〈θ〉, its findings prescribe an appropriate Sθ that will be inserted
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in Eq. (4.1c) to guarantee the statistically stationary nature also of the LES model that will solve Eq. (4.1) for
this study. The derivation of the mixed layer model and its stationary points that inform the prescription of
Sθ are included in Appendix B.
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Figure 4.2: A statistically stationary CBL can be attained by balancing the surface heat flux that produces free turbulence,
〈w ′′θ′′〉s with a radiative sink Sθ = Γs ws .

4.3. Forced Inviscid Burgers’ Problem
The Boussinesq problem consists of three spatial dimensions and a temporal dimension. It features five
conservation equations [236]. However, previous work has verified and validated the VMM-ANN’s capability
in the context of a forced Burgers’ equation, as a first 1D stepping stone for simulating turbulence [209].
Therefore, to ensure that the model can be understood, verified and validated at each stage of complexity, it is
also sensible for this study to depart from a single equation in a single unknown. Compared to Robijns’ initial
study, the Boussinesq test case will i) subject the model to a significantly more realistic turbulent forcing and
ii) challenge it to consider much coarser time and space discretisations. Therefore, such a 1D test case seems
a particularly logical bridge from Robijns’ initial tests to the prediction of the full 3D turbulence that the CBL
simulation develops.

4.3.1. Dimensionality Reduction
The vertical momentum equation is singled out as the best candidate for dimensionality reduction for two
reasons. First, the momentum equations are targeted since they are the only equations that feature a nonlin-
ear term that contributes to turbulent effects in a single variable. Second, as discussed in Section 4.2.2, the
problem’s turbulence is anisotropic in the vertical direction, such that w is the single variable that generates
the most pronounced vertical statistics (see Fig. 4.1).

Therefore, the vertical momentum equation in Eq. (4.1) is rewritten on the form of an inviscid Burgers’
equation:

∂w

∂t
+ ∂

∂z
(w w) = f (4.5a)

f =− ∂

∂x
(uw)− ∂

∂y
(v w)− ∂π

∂z
− g

θ0
(θ−θ0) (4.5b)

While obviously a significant simplification, this problem fundamentally contains the two most important
aspects of the original problem: i) The prediction of a nonlinear convective term that allows shocks and
energy transfer among a wide range of scales, punctuated by intermittent backscatter from high frequency
to low frequency modes [173], and ii) the requirement to evolve these modes in time in a fully consistent
manner. These aspects are challenged by the physical, turbulent forcing.

4.3.2. VMS Problem
A VMS model is readily posed for Eq. (4.5) by following the procedure outlined in Section 3.2.1. The weak
form of the equation, tested with the problem’s basis ψ in the domain Ω and in the infinite-dimensional
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space V is presented in Eq. (4.6), where it is assumed that the basis ψ respects the Dirichlet impermeability
conditions of the original problem (this and the other boundary conditions that close the 3D simulation are
further discussed with DALES itself in Section 5.2.1). Solving Eq. (4.6) will give the solution w in the likewise
infinite-dimensional solution space S .(

ψ,
∂w

∂t

)
Ω

+
(
ψ,

∂

∂z
(w w)

)
Ω

= (
ψ, f

)
Ω (4.6)

The scale decompositionψ=ψ+ψ′ and w = w+w ′ into the respective spacesV+V ′ andS+S ′ then yields
the resolved and unresolved scales equations. w is still constructed by projecting w onto a piecewise linear
finite element basis ψ in a nodal manner, so integration by parts can be performed on the convective term
without carrying along element boundary terms. In this work, a semi-discrete Bubnov-Galerkin discretisation
will be employed, such that S =V and

w =
i=nel+1∑

i=0
ai (t )ψi (z) (4.7)

Where ψ0 and ψnel+1 will be weighted by homogeneous amplitudes to reflect the enforcement of the

strong Dirichlet condition. The goal of the method is then to find the amplitudes ai (t ) to construct w ∈ S ,
satisfying Eq. (4.8a), leaving the influence of w ′ ∈ S ′, formally satisfying Eq. (4.8b), on Eq. (4.8a) subject to
modelling:

(
ψ,

∂w

∂t

)
Ω

−
(
∂ψ

∂z
, w2

)
Ω︸ ︷︷ ︸

Galerkin terms

+
(
ψ,

∂w ′

∂t

)
Ω︸ ︷︷ ︸

w ′
t projection

−
(
∂ψ

∂z
,2w w ′

)
Ω︸ ︷︷ ︸

Cross term

−
(
∂ψ

∂z
, w ′2

)
Ω︸ ︷︷ ︸

Reynolds term

= (
ψ, f

)
Ω︸ ︷︷ ︸

Boussinesq forcing

, ∀ψ ∈V (4.8a)

(
ψ′,

∂w

∂t

)
Ω

−
(
∂ψ′

∂z
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+
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∂t
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Ω

−
(
∂ψ′

∂z
,2w w ′

)
Ω

−
(
∂ψ′

∂z
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)
Ω

= (
ψ′, f

)
Ω , ∀ψ′ ∈V ′ (4.8b)

The following chapters will attempt to model the three terms that close Eq. (4.8a) directly, through the
use of ANNs that are directly informed by the resolved scales. Therefore, these interaction terms are given
introductions below along with a brief motivation for the relevance of their inclusion in the model:(

ψ, ∂w ′
∂t

)
Ω

Since the chosen finite element basis is not orthogonal to the unresolved scales space, lin-

ear terms of w ′ will have a nonzero projection on the resolved scales. The only such term in
Eq. (4.8a) is the projection of the unresolved scales’ time derivative ∂w ′

∂t = w ′
t . Its “projection”

along the time direction can be interpreted by viewing the finite-difference discretisation of
the semi-discrete system that results from Eq. (4.8a) as a collocation scheme with a Dirac ba-
sis at the discrete time levels. While this is a somewhat inelegant formulation of this term,
semi-discrete methods are significantly cheaper than space-time discretisations, whose ma-
trices grow rapidly with degrees of freedom, while the main motivation for this project is the
potential to save cost. The term’s correct representation meets the criterion that future GCMs’
unresolved scales models cannot rely on these being quasi-steady over the time steps of the
resolved-scale model. Therefore, assessing its characteristics, predictability and impact in for-
ward simulations is crucial.(

∂ψ
∂z ,2w w ′

)
Ω

This term is traditionally labelled “cross stress” in the LES [249] and VMS-LES community [107,

222]. If w is interpreted as a spectral superposition of modes (as in Eq. (3.1)), this term repre-
sents the direct, non-local interactions between modes of sufficiently low wavenumber to be
resolved and modes of such high wavenumber that they cannot be resolved, in the space of
modes that can be resolved. As ignoring this term precluded the representation of several im-
portant phenomena on the resolved scales of SP, its character, predictability and impact will
also be carefully assessed in the following chapters
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(
∂ψ
∂z , w ′2

)
Ω

This “Reynolds stress” term is the last classical unresolved scales turbulent impact on the re-

solved scales. In a spectral sense, it represents pure interaction between modes of wavenum-
bers that exceed the grid cutoff, yet combine to form modes of a wavenumber that can be re-
solved. Since this is also traditionally significant [87], it will be analysed at a similar level as the
other terms in the coming chapters.

In spite of its benefits, it is important to pause here to summarise the limits of this model problem. Con-
trary to the requirements of a global problem, it has i) used a mathematical model that only remains valid
for shallow convection at very small scales, ii) ignored moist and radiative processes, iii) assumed a statisti-
cally stationary state and iv) reduced the problem to a 1D proxy. Hence, this problem is much too simple to
systematically lay bare all the challenges the global problem faces. This might mean that the model is pro-
ficient for simple problems, but not necessarily suitable for more complex simulations. There is precedence
for such development: While Dorrestijn concludes that CMCs are skilled at inferring turbulent fluxes to pre-
dict shallow convection [63], they were not as proficient for deep convection or in GCMs [64]. The latter study
also finds that training the CMCs on global data is better than training them locally, such that eventual global
models might not be able to exploit local high-resolution simulations to be successful, as suggested in [220].

The present study does not reject these challenges. In fact, its initial investigation in Chapter 6 attempts
to outline in more detail the manner in which the model problem’s turbulent characteristics differ from the
larger-scale problem. However, with these limits in mind, the study will merely attempt to ascertain whether
the model can successfully handle this most simple of situations before moving to more complex cases.

4.4. Manufactured Solution Problem
As discussed in Section 3.6.2, the first step in the process to assess the VMM-ANN is to verify that the ideas
put forward here are implemented correctly. Subsequently, the model’s properties can be validated. As a
reflection of the somewhat cloudy distinction between verification and validation in this project, a technique
commonly associated with verification, the Method of Manufactured Solutions (MMS), will play a significant
role in all these studies.

The MMS takes the inverse approach of solving the PDE of interest [207]. It prescribes a known solution
for the PDE and its boundary and initial conditions and substitutes this in the PDE, yielding a forcing that is
consistent with the “manufactured” solution. For the propagation of the Left Hand Side (LHS) of Eq. (4.5), the
following manufactured solution is chosen:

w = wS +w A(cz + sin(ωw z z))
(
ct + sin2(ωw t t )

)
, z ∈ [0,1], t > 0 (4.9)

Where the coefficient values are summarised in Table 4.1. Eq. (4.9) represents the evolution of a standing
wave in space with solely positive values. This is an appropriate manufactured solution, because such a
wave cannot be exactly represented by a piecewise linear basis, while it remains well-defined and smooth
throughout the domain it is tested on. A representation of its evolution over a half period is included in
Fig. 4.3.

Coefficient Value
wS 0.1
w A 0.1
cz 0.0
ct 0.0
ωw z π

ωw t 0.5

Table 4.1: Coefficients to describe the manufactured
solution for w in Eq. (4.9) and the resulting source
term S(z, t ) in Eq. (4.10).
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Figure 4.3: Evolution of the manufactured solution for w in
Eq. (4.9) with the coefficients in Table 4.1, normalised with
w A , over a half period of its oscillation.
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Inserting Eq. (4.9) in the LHS of Eq. (4.5) results in the following source term S:

S(z, t ) = 2w A(cz + sin(ωw z z))sin(ωw t t )ωw t cos(ωw t t )+
2(wS +w A(cz + sin(ωw z z))(ct + sin(ωw t t )2))w Aωw z cos(ωw z z)(ct + sin(ωw t t )2) (4.10)

The problem that must satisfy the manufactured solution both in the interior and at the spatio-temporal
boundaries is then:

∂w

∂t
+ ∂

∂z
(w w) = S(z, t ), z ∈]0,1[, t > 0 (4.11)

w = uA , z = 0, z = 1 (4.12)

w = 0, t = 0 (4.13)

Where the boundary and initial conditions are consistent with Eq. (4.9).
Traditionally, manufactured solution problems serve two purposes: To point out obvious implementation

errors and to verify that various numerical discretisations are of the expected order [111]. Here, it is addition-
ally extensively used in the validation process, as a simplest possible case that can highlight the model’s sta-
bility characteristics. This problem will therefore return in each of the following chapters, fulfilling a slightly
different role every time.
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Methodology

Section 4.3 introduced the 1D Boussinesq-forced Burgers’ problem as this study’s model problem. This chap-
ter aims to cover the theory behind and setup of the numerical experiments that translate this particular
model problem’s formulation into results that facilitate answering the study’s research questions. Since these
aim to provide insight into the functioning of the model as much as they aim to maximise performance, the
methodology outlined in this chapter is often chosen for its clarity rather than for merely maximising the per-
formance of the algorithms. At every stage in the chapter, the implementation of the methodology is verified
in the context of the manufactured solution problem introduced in Section 4.4.

The chapter is a rather lengthy, dense and detailed review of the methodology and its verification. This
is in the interest of i) fully documenting the novel model and ii) ensuring verification is carried out properly
so that uncertainty regarding the model’s implementation will not cloud the results of failing models in the
following chapters. To keep the chapter somewhat workable, several sections and algorithms of somewhat
lesser impact have been deferred to Appendix C. However, readers might still find the reading experience
more pleasant if they skip sections here that appear of limited immediate interest and rather return to them
if discussions in the subsequent four chapters are found unclear.

5.1. Model Framework
The model framework broadly consists of four stages, illustrated by Fig. 5.1. First, data is drawn from the high-
fidelity DALES simulations and formatted to appropriately drive the 1D Boussinesq-forced Burgers’ problem.
This is treated in Section 5.2.2. Second, “identification problems” are solved that compute exact versions of
the interaction terms from coarsely discretised versions of the data. The procedure to solve these problems is
explained in Section 5.3; its results will be the subject of Chapter 6 and provide the basis for answering RQ1.
Third, a machine learning stage is encountered, in which ANNs are trained to represent the interaction terms
and are evaluated on their performance. This is described in Section 5.4, while the results of this stage are
treated in Chapter 7 to answer RQ2. Finally, forward problems are solved with ANNs embedded in a VMS
framework. The aspects of this framework that were developed for this study are discussed in Section 5.5.
In turn, the results that flow from the forward portion of the framework form the basis for answering RQ3 in
Chapter 8 and Chapter 9.7/20/2019 Untitled Diagram.drawio
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Figure 5.1: High-level framework of the VMM-ANN.
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5.2. Data Generation
A data-driven unresolved scales model requires data to fit on and test against. The procedure for generating
and preparing this data for the 1D forced Burgers’ problem introduced in Section 4.3 is presented in Fig. 5.2.
First, the statistically stationary CBL case elaborated on in the previous chapter will be simulated with a high-
fidelity LES code, resulting in dense datasets of [ui ,π,θ] in space and time that are approximate solutions to
Eq. (4.1). This is explained in Section 5.2.1. Next, Section 5.2.2 will outline the reduction of the problem’s di-
mensionality and illustrate how force terms are constructed to fit the Burgers’ problem. Finally, the approach
is verified in Section 5.2.3. 7/19/2019 ThesisDiagram.xml
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[ , π, θ] (x, y, z, t)ui
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Figure 5.2: Flowchart of the data generation procedure. The LES was run externally (grey background), while the subse-
quent data processing steps were performed locally with Python (green background).

5.2.1. LES Model of the CBL
The model used to run high-fidelity simulations of the dry, statistically stationary CBL is DALES. DALES is
a state of the art atmospheric LES code developed by a collaborating group of researchers at various insti-
tutes in the Netherlands and Germany [97] that has been extensively validated with observations and other
atmospheric LES frameworks [70].

Heus et al. comprehensively introduce the model [97]. It is a finite-volume code that runs on a staggered
grid, with velocity components located at the directional cell boundaries and scalars placed at the cell centres.
It is only designed to solve the Boussinesq equations. The model solves filtered transport equations for ui ,
liquid water potential temperature θl , π, specific humidities of total water and rain water, rain droplet num-
ber concentration and up to 100 passive scalars. These equations may contain source terms for microphysics,
radiation, chemistry, large-scale forcing and relaxation. For the dry CBL, the moist transport variables and
source terms are all ignored, bypassing the complexities and uncertainties of these models, while a sink Sθ is
added to the θ-equation as described in Section 4.2.3.

DALES solely models unresolved scales turbulence through eddy viscosity models. It has two methods
for determining the required eddy viscosity coefficients: The conventional Smagorinsky model [229] and
a one-equation approach that models and solves Eq. (4.3) [59]. The latter is default and requires several
parameterisations. While most of these are necessary to handle moisture, it is most important to note the
model for dissipation for the CBL:

εt ∝ E
3
2

min

(
h,cN

E
1
2

N

) (5.1)

Where N is the Brunt-Väisälä frequency1, h the grid spacing and cN is a calibrated constant. The profiles
presented in Fig. 4.1 are in fact DALES profiles for the statistically stationary convective boundary layer that
have been subjected to this turbulence closure. The turbulent velocity statistics subfigures in Fig. 5.3 display
that the model does not drain sufficient levels of turbulent energy without this closure:

1Brunt-Väisälä frequency N =
√

g
θ

dθ
d z : The angular frequency at which a displaced parcel of air will oscillate in a statically stable envi-

ronment [131, 169, 236]. It can be more generally interpreted as the eigenfrequency of the ordinary differential equation that emerges
when the momentum equation in z reduces to a buoyancy-driven unsteadiness around an often hydrostatic reference condition. If N

is real, or alternatively dθ
d z > 0, oscillating solutions such as gravity waves ensue (i.e. the atmosphere is statically stable). If it is not real,

or dθ
d z < 0, instabilities grow exponentially, resulting in a statically unstable state) [236]
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Figure 5.3: Reprint of the mean variables in a statistically stationary, free CBL with vertical coordinate z presented in
Fig. 4.1. The blue lines include the effects of the unresolved scales and surface models; the orange lines represent the
profiles constructed from the filtered variables.

The DALES fields extracted for training the ANN model are the filtered quantities that result in these over-
predicted statistics. Combined with the fact that even an LES closed by artificial diffusion unresolved scales
models may make significant errors in these profiles compared to a DNS, this is clearly not ideal. However,
these filtered LES quantities will still be treated as ground truth for the VMM-ANN model. This can be justified
by the fact that the VMM-ANN will only be gauged at discretisation levels that are much coarser than those
DALES ran with, such that the large errors in the near-wall field will not strongly manifest themselves. It is
then reasonable to expect that the errors in the LES compared to a DNS are of little influence when assessing
the new model.

DALES imposes a no-slip condition at the lower boundary, where z = 0 (Eq. (5.2a)). However, it does
not resolve the flow down to the actual geometry of the surface or the associated relevant scales, requiring
a “surface model” to represent the fluxes of scalars, such as heat, between the bottom boundary and the
fluid. Here, the vertical heat flux 〈w ′′θ′′〉 is the only such interaction. It is imposed by the surface model to
ensure that the heat flux profile in the rightmost subfigure in 5.3 more faithfully extends down to the surface
boundary2:

z = 0 : ui = 0 (5.2a) wθ = (wθ)s (5.2b)

DALES expects periodic boundary conditions to be imposed on the domain sides. No mean horizontal
wind is prescribed. This has two implications. First, it allows the use of both spatially and temporally uncor-
related samples to be used to train the data-driven unresolved scales model of the same statistical turbulence.
Second, it constrains 〈w〉 = 0 throughout the domain, since continuity of mean velocity requires that ∂〈w〉

∂z = 0
and the surface boundary is impermeable. At the domain’s top, where z = Lz , Neumann conditions on hori-
zontal velocity are demanded, impermeability is enforced, and the heat flux is kept constant:

z = Lz :
∂u1,2

∂z
= 0 (5.3a) w = 0 (5.3b) ∂〈w ′′θ′′〉

∂z
= cst (5.3c)

Since penetrative convection produces gravity waves at zi that are only lightly damped [169], it is common
to impose an additional momentum sink that gradually activates above the inversion height. This prevents
the gravity waves from reflecting off the domain boundary’s ceiling and artificially dominating the free at-
mosphere above the inversion. Such a “sponge layer” is standard in DALES, but since the convection in this
problem is both stable and very shallow, it is turned off.

A DALES simulation is initialised with random fluctuations of velocity in an otherwise stably stratified en-

2For the VMS formulation, it is possible to impose the heat flux boundary condition that drives the 3D problem weakly [112], which
may carry additional advantages in modelling the surface layer in an integrated sense. However, as the 1D problem considered here is
merely a reflection of how the heat flux impacts the evolution of vertical momentum through the forcing f , f will drive the turbulence of
the problem and Dirichlet conditions will be imposed on w at the boundary. These Dirichlet conditions could also have been imposed
weakly, as further discussed in Chapter 10
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vironment. This allows the surface-driven turbulence to develop naturally, but it also means that a “spinup”
time is necessary to allow the simulation to attain its statistically steady state. In [247], it is suggested that one
hour is sufficient for the convective CBL at hand. Fig. 5.4 confirms this is a reasonable assumption: The spa-
tially averaged vertical velocity statistics profiles beyond this point enter the (admittedly arbitrarily chosen)
region sketched out by a single standard deviation from the mean of all realisations of the profile in the last
3 hours of simulation. Therefore, statistics will be averaged over the time span beyond the first hour of the
simulation.

Time stepping is handled by a third order Runge-Kutta scheme, where the time step is adaptively con-
strained by the maximum Courant number C in the domain, while interpolation can be performed with a
range of schemes, varying from common central differencing to nearly monotonic 5th order schemes, de-
pending on the accuracy desired for each variable. Here, the second order scheme is used.

The parameters that permit the DALES simulation of the statistically stationary CBL are summarised in
Table 5.1. In all, ten such runs are performed, all with a slightly different initial fluctuation field. This means
that while all runs in this ensemble are statistically equivalent, they will provide individually different training
examples for the machine learning stage that are uncorrelated from each other.

Parameter Value
Domain size [Nx ×Ny ×Nz ] 128×128×96
Grid cell size [hx ×hy ×hz ] 40m×40m×20m
Simulation time [hr] 6
Spin-up time [hr] 1
Average time step [s] 10
Lapse rate Γs [Km−1] 0.005
Subsidence ws [ms−1] 0.015
Surface heat flux 〈w ′′θ′′〉s [Kms−1] 0.06
Average inversion height zi0 [m] 1000

Table 5.1: DALES settings and characteristics for the CBL model
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5.2.2. 1D Burgers’ Problem
The dimensionality reduction of the DALES field is achieved by extracting individual “columns” of data in the
vertical coordinate from the netCDF binary files that contain the simulation results. This maintains the time
dimension of the problem, but splits each 3D simulation into 128×128 columns in [z, t ], each associated with
a different horizontal coordinate. These individual, reduced datasets are stored on disk and are manipulated
in two stages.

First, to reduce the vertical momentum equation of the Boussinesq problem that gave rise to these fields
to a Burgers’ problem, the forcing f as presented in Eq. (4.5) must be constructed. However, in reality the forc-
ing will have to correspond to DALES’ approximation of the momentum equation Eq. (4.1b). In particular, as
DALES solves filtered equations where the unresolved scales are approximated by an eddy viscosity model,
this introduces a diffusion term, which is not present in the force term as it was introduced in Eq. (4.5b).
Hence, the forcing term that will be used to drive the actual Burgers’ problem Eq. (4.5a) is somewhat differ-
ent than presented in Chapter 4. The eddy-viscosity term can, however, implicitly accounted for in the by
constructing f only from the LHS of the Burgers’ equation Eq. (4.5a):

f = ∂wD ALES

∂t
+ ∂

∂z

(
w2

D ALES

)
(5.4)

As this also bypasses the necessity to reproduce DALES’ discretisation of each of the terms in Eq. (4.5b)
and only requires loading a dense vertical velocity flowfield wD ALES in computer memory, this approach is

taken here. The problem therefore reduces to posing suitable models for ∂wD ALES
∂t and ∂

∂z

(
w2

D ALES

)
.

Second, the data is sampled only every 6th time step of the LES simulation (∆tD ALES = 6∆tDN S ), in order
to avoid any spurious oscillations developed by its Runge-Kutta time march. This means that temporal dy-
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namics of shorter time scales than 6∆tDN S cannot be captured; neither can therefore their impact on the LES
solution. In general, the simulations that will be run here will be sampled at an even coarser level, such that
it will often be assumed that neglecting the LES time scales below 6∆tDN S does not yield an unreasonable w
and f . Exceptions will be addressed where they occur.

To construct the forcing anywhere in the spatio-temporal 1D domain of the Boussinesq-forced Burgers’
problem, the discrete, sampled w in any column of the DALES data must be made a continuous function of
z and t from its nodal definition at zi and t n :

wn
i → w(z, t ) (5.5)

To achieve this, w(z, t ) is defined as a set of bi-cubic Hermite splines, following the methodology outlined
in Appendix C.1. One final time, it is argued that the coarseness of the eventual simulations generally justifies
using these splines as ground truth, as the ANN will be taught at space and time scales larger than these
definitions. Therefore, it is assumed that the ANNs are learning characteristics of the actual underlying data,
not merely the coefficients of local splines, unless otherwise stated.

This continuous version of w(z, t ) is now used to generate the necessary derivatives to construct the force
term. While it is possible to compute these derivatives analytically from the splines, they have here been
constructed with first order backwards finite difference schemes:

f (z, t ) ≈ w(z, t )−w(z, t −∆tDN S )

∆tDN S
+ w(z, t )2 −w(z −hDN S , t )2

hDN S
(5.6)

Where hDN S = 10−8, ∆tDN S = 10−8.

5.2.3. Verification
The essential results of the data generation procedure are the splined w(z, t ) and its finite-difference based
forcing f (z, t ). Therefore, a verification of these terms is presented in Fig. 5.5. Fig. 5.5a illustrates the sampled
wD ALES at an arbitrary section of the space-time surface, and a dense reconstruction of the four bi-cubic
splines required to extract a value in the centre square. The figure shows that these splines coincide with the
points, as required, and displays their C 1 continuity, as expected.

Fig. 5.5b contains the order of accuracy test of the finite difference implementations that compose Eq. (5.6)
with respect to the manufactured solution Eq. (4.9) over a range of fairly refined h and ∆t . Located in their
asymptotic regions, their L2 errors averaged over 1200 time steps and 4 elements converge at the expected
order of 1. The chosen hDN S and ∆tDN S lie at the bottom end of the asymptotic region, to minimise the error
in this term. This leaves the framework verified.
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Figure 5.5: Verification of data extraction procedure

5.3. Identification Problem
The first meaningful stage of data manipulation is identifying the exact interaction terms of a coarsely dis-
cretised solution to the forced Burgers’ problem. This is achieved by an application that leverages the code
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framework “Mex”, written in C++ on top of the open source finite element library MFEM [2] and the large
linear system-handling library HyPre [1]. Mex consists of a set of classes developed and maintained in-house
at the aerodynamics group by Dr. Steven Hulshoff, and features almost all required tools for rapidly setting
up and efficiently solving time-varying PDEs based on finite-element or spectral discretisations. Its mod-
ular, class-based structure allows for a relatively user-friendly implementation experience, where much of
the numerical heavy lifting is handled by the backend and users are mainly subjected to the frontend im-
plementation of their PDE of interest. It manages this while retaining sufficient generality that no essential
limitations to its setup were found during the relatively adventurous excursions from regular finite element
implementations attempted in this study. Several Mex implementations are outlined in more detail in Sec-
tion 5.5, which describes the implementation of the forward problem. Here, the getURTerms app used to
solve the identification problem is considered.

Section 5.3.1 aims to describe how Mex was leveraged to solve the identification problem. Its goal is to
take individual columns of w , f and ∂w

∂t from the DALES simulations and construct instances of the weak
form terms that solve the variational Burgers’ problem Eq. (4.6), given an exact nodal projection of w onto
a piecewise linear finite element basis, w . Later, it will be the goal of forward simulations to reconstruct
this nodal projection w based on estimates of the interaction terms extracted here. This section outlines the
general approach of the implementation and discusses the implications of several design choices introduced
at this stage. It is verified in Section 5.3.2.

5.3.1. Approach
Fig. 5.6 outlines the general structure of solving the identification problem. It begins by importing a column’s
continuous w , f and ∂w

∂t fields as outlined above. It then steps through a time loop, which at most covers the
time span of the LES simulation. At each of the time steps in this loop, the identification problem is solved to
construct the weak form terms of Eq. (4.8a).7/19/2019 ThesisDiagram (1).xml
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Figure 5.6: Flowchart of the identification problem Mex app getURTerms. It is fully implemented in Mex (red back-
ground).

Time marching is handled by the main application. Each time step commences with a nodal projection of
w(z, t ) onto the spatial discretisation’s finite element basis to construct an “exact” solution w of less degrees of
freedom than the original problem. Practically speaking, w consists of a vector of amplitudes ai that weights
each of basesψ defined by the chosen finite element space. Note that ∂w ′

∂t depends on the chosen time march.
Therefore, the training data is computed for the same time march to be used in forward simulations (this time
march will be presented in Section 5.5.5).

Assembly of the weak forms is handled by a DomainIntegrator object. This object contains almost all
necessary functions and variables for assembling weak forms, as well as access to a finite element database,
where several relevant quantities associated with the finite element space are stored. Only two loops that
construct the weak forms are therefore implemented here: A loop over elements and a nested loop over Inte-
gration Point (IP)s.
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The former loop considers one finite element at a time. It prepares all properties associated with that
element, such as its active ai and ψ, and integrates the weak forms over the element’s domain. Each weak
form is built as a sum over the domain where its weighting function is non-zero, for this study always two
elements:

(
ψ, ·)Ω =

i=1∑
i=0

(
ψ, ·)Ωe,i

(5.7)

Therefore, the variable to be predicted by the ANN can be either the per-element contribution to a weak
form or the full weak form. Since the latter is somewhat easier to interpret and results in less cluttered codes,
this unconventional approach is considered here. However, it precludes computing the contribution of the
interaction terms to the resolved-scales energy balance: Such balances require the element-wise contribu-
tions to the weak forms, rather than the full weak forms (see e.g. Appendix B of [209] for a derivation). The
implications of not being able to compute these balances are discussed in Section 8.2.

The nested loop in Fig. 5.6 performs most of the work. It must perform quadrature approximations to
construct the integral weak form terms:

(
ψ, ·)Ωe

≈
ni p∑
i p

Wi pψi p (·)i p (5.8)

Where Wi p are weights at the integration points of the quadrature scheme and ni p are the number of in-
tegration points in an element. These two parameters govern the quadrature’s standard integration rule: A
sufficient number of points are chosen that exact integrals can be computed of a polynomial which order
is equivalent to the highest degree polynomial that can be found by the basis functions multiplications that
build up the various terms in the weak form in the element. The weights follow from the definition of that
polynomial and the transformation properties of the element in assembly problems. However, the exact in-
teraction terms multiply w ′, which fluctuate to a much higher degree than w(ψ). Therefore, a relatively high
number of integration points (3 h

hDN S
) is required to satisfactorily determine these interaction terms, increas-

ing the computation time somewhat.
To perform the quadrature, w ′ and ∂w ′

∂t are computed at each IP, for the i th weak form, at the nth time
level through their definitions:

w ′n
i ,i p = w(zi p , t n)−wn

i (5.9a)

∂w ′

∂t

n

i ,i p
= ∂w

∂t
(zi p , t n)− ∂w

∂t

n

i
(5.9b)

This procedure facilitates the computation of each of the interaction terms. Other terms that are to be
used as input features to the machine learning stage as a function of the defined discretisation are also con-
structed in this app. These will be discussed further in Section 5.4.

5.3.2. Verification
The implementation of the getURterms app is verified in two stages. The first, outlined here, confirms that
the individual weak form terms are implemented in such a manner that they close the full weak residual
exactly, i.e.

Rw =
(
ψ,

∂w

∂t

)
Ω

−
(
∂ψ

∂z
, w2

)
Ω

+
(
ψ,

∂w ′

∂t

)
Ω

−
(
∂ψ

∂z
,2w w ′

)
Ω

−
(
∂ψ

∂z
, w ′2

)
Ω

− (
ψ, f

)
Ω = 0, ∀ψ ∈V (5.10)

The requirement that Rw = 0 can be confirmed by considering the terms that build up the manufactured
solution individually, as well as their sum. This is done in Fig. 5.7 for several time instances over an oscillation
period of the problem.

The budget for Rw closes up to 10−7 for all instances in space and time. Since the major balance is be-
tween the externally computed

(
ψ, f

)
and the terms constructed separately by the app, this indicates that the

implementation is likely correct. However, this can only be fully verified once the interaction terms are in-
serted back into forward simulations and these manage to reproduce the correct w . This is considered under
the verification of the implementation of the forward problem in Section 5.5.6.
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Figure 5.7: Individual terms and weak residual that build up the weak form for the manufactured solution problem on the
domain 0 < z < 1, 0 < t < 6, discretised with h = 0.25, ∆t = 1.

5.4. Machine Learning
The input features and exact interaction terms that result from solving the identification problem for a certain
discretisation constitute a structured dataset. The function that maps the input features into interaction
terms can then be approximated by a machine learning model. As introduced and discussed in Section 3.4
and Section 3.5, this model will be an ANN within the context of this study. The approach taken here to
train ANNs to evaluate their impact on the study’s RQs is outlined in the following sections: Section 5.4.1
gives a general description of the approach, before Sections 5.4.2 and 5.4.3 discuss the input feature sets and
architectures considered here. Finally, Section 5.4.4 describes the validation strategy, before Section 5.4.5
conducts a verification.

5.4.1. Approach
Two broad distinctions can be made in how the model is fit to the data. The first approach only solves the
identification problem once and trains the ANN a priori to its inclusion in the forward problem. The second
performs the training of the ANN in conjunction with forward simulations of the problem, where each online
prediction made by the ANN is followed by solving an identification problem and performing a step of ANN
training. Such “online training” is commonly iterative, such that a number of predictions and training steps
are performed for each weak form at each time step [136]. This allows the ANN to explore the spaces it would
naturally enter in a simulation due to its inherent inferiority. It also extends the richness of the input feature
dataset to which the ANN is subjected during training. However, since there is only a single correct set of
interaction terms at every weak form and time step, each of these different, “wrong” features would still match
a single output, which risks overconstraining the problem more than necessary. Furthermore, this adds a
significant time penalty to the training phase, while confining the training to code frameworks that can easily
be matched with Mex, such as OpenNN [4].

A priori training of the ANNs based on direct output from an identification problem, on the other hand,
facilitates the use of well-developed, flexible Python-based frameworks for the design of ANN architecture
and hyperparameter tuning, while only their forward passes must be evaluated online in the C++ solver. On-
line training is therefore not considered in the scope of this project. However, training with samples that have
been generated by solving the forward problem a posteriori is considered in Section 8.3.5, and the potential
of full, online training is revisited in Section 9.3.

Instead, the ANNs are trained before they are embedded in the forward problems, by exploiting the open
source Python library Keras [44] as an API to Google’s TensorFlow backend [6]. Keras is chosen for its flexi-
bility, built-in capability to handle large input datasets and immediate suitability to run with the version of
TensorFlow that was pre-installed on the hardware available in this project to leverage two NVIDIA Quadro
K2200 CUDA-compatible graphics cards.

Fig. 5.8 illustrates the entire machine learning stage. It begins by selecting a set of input features that
the ANN will attempt to map to the interaction terms, along with a discretisation to run the problem with.
Subsequently, a tensor grid of data columns that will be part of the training phase is selected by specifying a
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Figure 5.8: Flowchart of the machine learning stage’s implementation. It is mostly comprised of a Python implementation
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constant spacing ∆x between the columns that is a multiple of the DALES simulation’s horizontal lengths Lx

and Ly . The columns are extracted on this grid:

w(z, t ) j k = w(z, t ) j ⊗w(z, t )k , j ∈ [∆x, ...,Lx ] , k ∈ [
∆x, ...,Ly

]
(5.11)

Each of the columns is subsequently propagated through getURTerms to compute their input feature
and interaction term distributions. As the datasets that ensue rapidly outsize the memory of the hardware
at hand, they are pre-processed before training. First, they are converted to binary files that can be quickly
loaded. Second, each input feature or interaction term F in the total set of columns is normalised to the
domain [−0.5,0.5] with their respective minimum and maximum values encountered in the set:

Fn = F −Fmi n

Fmax −Fmi n
−0.5 (5.12)

Heuristically, normalising the input features aims to prevent any single weight in the ANN from becoming
very large as a result of a some inputs being numerically much larger than others. Models with large weights
tend to become unstable or rapidly saturated during training [183], such that input mapping to an O(1) space
is almost universal practice [26].

Similarly, large differences in ANN output, which form the basis of the method’s loss function, may yield
large gradients of that function. This can cause dramatic changes to the weights and also promote instabilities
during training. Furthermore, this project’s goal is to assess to which extent all interaction terms can be
learned at various levels of discretisation. However, Chapter 6 will show that their magnitudes will vary as
their discretisation changes. By always normalising them to the same domain, their individual contribution
to the loss function is given equal weight in all scenarios.

The pre-processing stage is finalised by the implementation of custom DataGenerator classes in Keras,
which organise samples into batches that are loaded onto the two graphics cards in cyclic fashion. Next,
the ANN model is defined and trained, as will be discussed in the following two sections, before the trained
models are stored as binaries. Separate programs then allow testing the trained models on a set of data from
an arbitrary simulation of the identification problem. This framework allows assessing the generalisability of
the problem. Finally, the ANN’s weight matrices, bias vectors, structure and activation functions are stored
separately for models that are to be embedded in forward simulations, such that they can be accessed from
Mex.

5.4.2. Input Features
As discussed in Section 3.5, ANNs excel in situations where a relationship between desired outputs and a set
of input features can be identified, but the direct evaluation of that relationship is unknown or impractical.
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The discussions in Section 3.2 have established the theoretical link between the interaction terms and their
resolved-scales drivers through the VMS analysis, setting the stage for this discussion.

To investigate RQ2.1, various ranges of input features are tested offline. The choice of these “feature sets”
is motivated in the following paragraphs. They are summarised in Table 5.2, while several of the individual
terms that compose the feature sets are positioned at multiple relevant spatio-temporal locations on a so-
called “stencil”, shown in Fig. 5.9 along with their labelling logic.

The first input feature set consists purely of parameters that immediately follow from the VMS analysis.
First, Section 3.2.4 shows that in many traditional LES settings, a decent model can be developed by assuming

w ′ ∝Rm
s , where m is often only 1. Although it is unclear to what extent the expansion in Rm

s holds as the
simulations become increasingly coarse, the unresolved scales equations from where the w ′ contributions
to the interaction terms derive will always be forced by Rs . Therefore, Rs is the first feature upon which the
ANN will depend.

However, Rs is defined at point-wise instances, while the interaction terms are integrals. Therefore, a first
approximation to Rs ’s effect on the element-integrated scale is attained by simply integrating it over single
elements:

Rs,I =
∫
Ωe

Rs d z (5.13)

A more sophisticated approach could attempt to fit a curve through individually evaluated points ofRs , of
which the defining parameters could be ANN inputs. However, this has not been attempted here in the inter-
est of keeping the ANN implementation straightforward. Assessing the effects of such improved formulations
is thus left as a recommendation for future studies.

Next, the cross term explicitly depends on w at the new time level t n+1 directly. All other terms depend
on this wn+1 implicitly through its influence on w ′ in the cross terms of the unresolved scales equations.

Therefore, wn+1 is also included. Similarly, ∂w
∂t

n+1
directly influences the unresolved scales time derivative

projection. It is the final contribution to this feature set.
Robijns investigated the spatial locality of the input features [209], finding accuracy gains in the prediction

of the interaction terms when extending the feature set’s stencil to cover information from elements adjacent
to the element under consideration. Therefore, this study will also consider such extended stencils of the
input features. However, as Robijns predicted element-wise contributions to the weak forms rather than the
weak forms themselves, the stencil extension is implemented somewhat differently here. For the i th weak
form test, the feature set consists of i) Rs,I integrated over the two adjacent elements where the weak form
is non-zero and ii) w and ∂w

∂t that correspond to the adjacent weak forms. Their positions on the space-time
stencil are illustrated at Fig. 5.9’s t n+1 level.

This completes feature set 1 (FS1). It closely mirrors the feature set considered by Robijns, with the ex-
ception that the strong residual is included explicitly, rather than relying on the ANN to construct internal
representations of such a term through a specified forcing.

Two categories of input features may now be distinguished: Those that depend on the problem’s unknown
wn+1 and those that do not. This is of importance for integration of the ANNs in online simulations, where the
nonlinear weak equations must be solved with an iterative procedure. w will vary throughout that procedure,
requiring these inputs to be continually available and to yield well-behaved convergence. Therefore, while
feature sets in the first category are more clearly related to the VMS formulation, feature sets and models in
the second category will also be considered.

The “explicit” feature sets in the second category are only based on a time history. Two versions could be
considered: i) sets that consider all features at previous time levels and ii) sets that only extend some of the

features backwards in time. For FS2, only w and ∂w
∂t are considered at t n , since including Rn

s,I is not found to

add capability. Finally, the known force term at the current time level f n+1 is independent of wn+1 and can
still be used. The forcing is integrated over an element in a similar manner as for Rs,I in Eq. (5.13), resulting
in f n+1

I as displayed in Fig. 5.9. This term completes the second feature set.
Next, adding a time history to FS1 might be both beneficial for its learning and for maintaining its stability

[29]. Furthermore, the minimum information that theoretically needs to be available to construct the high-
est frequency wave in temporal direction, the 2∆t wave, is information from at least two time history steps.
Therefore, FS3 extends FS1 by adding wn,n−1 to the input set. Since the time marches considered here will
explicitly base themselves on time histories of w at t n , t n−1, it is somewhat redundant to consider ∂w

∂t at these
time levels in addition to w . Therefore, the time derivative terms remain unchanged.
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Finally, other features might further enhance the relation between input and output. Such features could
include the Galerkin terms Rwg in Eq. (4.8a), or their history:

Rwg =
[(
ψ,

∂w

∂t

)
Ω

,

(
∂ψ

∂z
, w2

)
Ω

]
(5.14)

These features are added to FS3 at the current time level and only locally, resulting in FS4.
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Feature set Features Note

FS1
[
∂w
∂t

n+1

i−1,i ,i+1, wn+1
i−1,i ,i+1,Rn+1

s,I i
,Rn+1

s,I i+1

]
Base stencil

FS2
[
∂w
∂t

n,n−1

i−1,i ,i+1, wn
i−1,i ,i+1, f n+1

I ,i , f n+1
I ,i+1

]
Explicit stencil

FS3
[
∂w
∂t

n+1

i−1,i ,i+1, wn−1,n,n+1
i−1,i ,i+1 ,Rn+1

s,I i
,Rn+1

s,I i+1

]
Time-history stencil

FS4
[
∂w
∂t

n+1

i−1,i ,i+1, wn−1,n,n+1
i−1,i ,i+1 ,Rn+1

s,I i
,Rn+1

s,I i+1
,Rn+1

wgi

]
Added feature stencil

Table 5.2: Feature sets used to define the ANN models’ input. FS1 is an interpretation of Robijns’ extended stencil [209],
FS2 does not depend on unknowns at a new time level and FS3 extends FS1 backwards in time.

5.4.3. Architecture
A broad variety of ANN architectures exist. The strength of this property is the ability to design tailored ANN
models that effectively treat a wide array of problems [183]. The drawback is that a large number of design
choices must be made at this stage, without a systematic set of guidelines to ensure that globally optimal
architectures are achieved. While this is not dissimilar to the tuning of free parameters in GCM parameteri-
sations, it does not detract from the conceptual advantages ANNs hold over such models: It should in theory
already be possible to model any function with a single-layer ANN with enough neurons [100].

Turbulence, though inherently non-local, is often predicted in an unresolved scales sense by various as-
sumptions on the locality of those scales. In the spirit of such assumptions, CNNs and Recurrent Neural
Networkss (RNNs) might manage to capture local spatially and temporally varying features that are specific
to the spatio-temporal domain under consideration here. However, in the interest of maintaining clarity in
the approach, this study confines itself to dense, fully connected architectures such as presented in Fig. 3.3
that themselves are evaluated locally. The implications of this choice are extensively discussed in Chapter 7.

The network’s loss function J is a comparatively important aspect of physics-oriented applications of
ANNs. As discussed in Section 3.5.3, a broad range of studies show that “regularising” state output of an ANN
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with physics-informed soft constraints can significantly improve their fidelity and behaviour when they are
embedded in numerical methods [25, 127, 200]. Lumping the bases and the individual strong PDE terms they
weight in integrated predictions of the interaction terms prevents the application of Raissi’s physics-informed
approach [200] or Zhang’s extension thereof to weighted basis structures [260]. However, an attractive feature
of learning direct weak form interaction terms is that the method is inherently physics-informed: For a given
set of resolved-scales information, minimising the ANN output state’s L2 error minimises the error in I =[(
ψ, ∂w ′

∂t

)
Ω

,
(
∂ψ
∂z ,2w w ′

)
Ω

,
(
∂ψ
∂z , w ′w ′

)
Ω

]
. When the Galerkin terms are correctly predicted, this is equivalent

to minimising the exact weak residual as defined in Eq. (5.10). Therefore, the loss function that is employed
throughout this study is merely the average L2 error of the interaction terms:

J = 1

3(nel −1)n∆t nc

nc∑
c=0

n∆t∑
n=0

nel∑
i=1

t=2∑
t=0

(
Ît ,i ,n,c − It ,i ,n,c

)2
(5.15)

Where c denotes summation over the nc columns of the training, n∆t refers to the number of time steps
in a column and nel −1 is the number of weak form tests associated with the degrees of freedom at each time
level. Î is the ANN approximation of I .

While J is presented as a relevant measure of ANN training performance, it clearly scales with the absolute
order of magnitude of Î . Hence, a more general metric to assess how well various ANNs predict the terms
they attempt to learn in different settings is the coefficient of determination for a linear fit between exact and
predicted values, R2. In the following chapters, this will therefore often be quoted as a main metric of ANN
prediction skill alongside J .

Several other hyperparameters are aggregated into the model. Most obviously, the number of layers and
number of neurons per layer are kept variable. Next, two classical tools to prevent overfitting will be carried
along: A dropout probability [233] that applies to every neuron and a regularisation parameterλL2 that multi-
plies an L2 weight regularising term [183]. Finally, the learning rate αl , the activation function, the optimiser,
the number of epochs and the mini-batch size are variable. Of these, the chosen set activation functions and
optimisers demand a brief elaboration.

Three activation functions will be considered: Sigmoids, defined by Eq. (5.16), Rectified Linear Units (Re-
LUs), defined by Eq. (5.17) and Exponential Linear Units (ELUs), defined by Eq. (5.18).

σs (z) = 1

1+e−z (5.16) σr (x) =
{

ax x ≥ 0

0 x < 0
(5.17) σe (x) =

{
ax x ≥ 0

a
(
ez −1

)
x < 0

(5.18)

The latter two functions’ gradients are constant for positive activations. This avoids the vanishing gra-
dient problem associated with multi-layer networks of sigmoid activations. These functions’ derivatives are
< 1 and tend to zero for large positive or negative activations, meaning that sequential application of the
backpropagation equation Eq. (3.24) through a network’s layers will decay the weights’ and biases’ gradients
with exponent −nl yr , preventing much progress to be made in learning for earlier layers. ReLUs, however,
only pass positive activations. It has been observed that learning can be sped up by employing activation
functions that do not return to zero for negative activations, and further by reducing the non-zero activations
to a constant, deactivated state [46]. ELUs describe such states. Hence, these three choices span a relatively
broad range of available options without increasing the size of the hyperparameter space prohibitively.

Three optimisers will also be considered. The first of these is RMSProp [241]. Its goal is to prevent large
differences in the weights’ magnitudes, which hampers finding an appropriate, global learning rate for the
algorithm. This can be achieved by normalising individual gradients with their magnitudes and increas-
ing or reducing the individual weight’s learning rate by assessing whether it has been negative in consecutive
steps. For an SGD method consisting of mini-batched gradient updates, each with a different gradient magni-
tude, this “Rprop” method can be adapted by normalising the gradients with a running average over multiple
batches of the gradient’s root-mean-square. This changes the weight update equation Eq. (3.25a) to:

ωnt+1

i j =ωnt −αl

∂J
∂ωi j

nt+1

√
β〈

(
∂J
∂ωn

i j

)2

〉t + (
1−β)(

∂J
∂ωn

i j

)2t+1
(5.19)

Where β is an adjustable relaxation parameter. While RMSProp effectively controls how far down a di-
rection an update can proceed, one might also attempt to improve the estimate of the gradient direction
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with respect to the global optimum in all parameters. So-called “momentum”-based approaches offer such
improvements, by replacing the gradient in Eq. (3.25a) with a history of gradients, where each term in the
history is scaled by a decay factor µ, e.g.:

ωnt+1

i j =ωnt −αl

(
µ
∂J

∂ωi j

nt

+ ∂J

∂ωi j

nt+1)
(5.20)

Combining such momentum approaches with RMSProp yields the “adaptive moment estimation” method
Adam [128], which is extremely popular (note that the normalisation of Adam is somewhat more intricate

than Eq. (5.19); this is not elaborated on here). Adam computes ∂J
∂ωi j

nt+1

based on the current state. However,

one might also add −αlµ
∂J
∂ωi j

nt

to ωnt

i j before computing ∂J
∂ωi j

nt+1

. This “Nesterov accelerated gradient” has

theoretical benefits [237] and often improves performance further when built on top of Adam [65]. Therefore,
such a “NAdam” scheme is also considered.

Common approaches to “optimise” high-dimensional hyperparameter set outlined above are downsam-
pled grid searches. A vast array of sampling strategies, such as random selection, Latin Hypercube, or a Sobol
sequence can be attempted, all of which are more systematic than trial-and-error and cheaper than full grid
searches. In this work, the tool Talos is used to this end [5], working directly on top of the Keras models to
perform a hyperparameter optimisation for a pre-selected dataset.

5.4.4. Validation Approach
To ensure the ANN is not overfitting its data, a strong validation approach must be in place. As introduced
in Section 3.5.1, it is common to do so with holdout and/or cross-validation strategies. Following common
practice, a holdout strategy is pursued in this work for the relatively large datasets (> 105 samples) encoun-
tered for the computation of the interaction terms from many columns of data [211]. However, when training
on columns of data that derive from the same DALES simulation, there is a risk of holding out columns of
data that are strongly correlated to the columns that were trained on. Testing the trained model with such
data may give overly optimistic interpretations of the model’s generalisability. Therefore, the horizontal cor-
relation length Lc of the vertical turbulence is established according to Eq. (5.21) [195]:

Lc =
∫ Lx

2

0
C (δx)dδx (5.21a)

C (δx) = 1

w(x, y, z, t )2 w(x, y, z, t )w(x +δx, y, z, t ) (5.21b)

Under the assumption that the turbulence is horizontally isotropic, traversing along x to establish C is
equivalent to sampling along any other horizontal direction. This can be verified by evaluating Eq. (5.21b) in
the domain at various δx and δy and ascertaining that it is approximately constant at equal r =

√
δx2 +δy2,

as is illustrated at z
zi

= 0.6 in Fig. 5.10.
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While the horizontal isotropy is expected, Fig. 5.11 shows that Lc itself varies markedly throughout the
domain, reaching its maximum Lc = 59.9m at z

zi
= 0.6, as indicated by the broken line. This corresponds

to at least four columns’ worth of spacing. It is then reasonable to treat data separated by more than four
columns as validation data for hyperparameter tuning and test data for generalisation studies. Once ∆x in
the tensor grid sampling falls below 4 columns, a subset of columns from a differently initialised simulation
of the statistically equivalent turbulence is considered for validation and testing purposes. In all cases, a
minimum of 16 uncorrelated columns of data are used in both the validation and test sets, to ensure that a
representative subset of the entire turbulent spectrum is sampled.

Note that even this validation strategy is not yet sufficient to gauge how well the models here generalise
to statistically different situations, which is generally the largest problem encountered by ANN unresolved
scales models in SP [25, 205]. However, learning any turbulence problem’s statistics from individual exam-
ples is already a formidable challenge that should be tackled before problems with different statistics are
introduced. As this framework has not yet passed the first test, it is prudent to ensure its skill in this regard
before proceeding to the more challenging second test.

With this framework in place, J is evaluated on the validation set at the end of each epoch during training.
To further prevent overfitting, an Early Stopping (ES) constraint is coupled to this evaluation. Based on a
few trial runs for each problem, appropriate tolerances are set on J ’s minimum required improvement over
a specified number of epochs and on the number of epochs the training is allowed to continue for after the
threshold has been crossed [183].

5.4.5. Verification
The verification of the machine learning phase builds upon the verification of the identification problem
presented in Section 5.3.2. The machine learning phase is verified by stepping through each of the steps in
Fig. 5.8 with the manufactured solution problem. This problem is sufficiently simple that one would expect
most ANNs to learn it almost perfectly. Therefore, the exact interaction terms of the manufactured solution
problem are extracted from getURTerms, along with the features that define FS3. These correspond to the
interaction terms considered in the verification of getURTerms in Section 5.3.2. The features and interaction
terms are normalised according to Eq. (5.12).

Next, an ANN described by the parameters in Table 5.3 is trained on this data. For the verification problem,
only a single run of getURTerms is performed. Hence, despite the efforts outlined above to find uncorrelated
validation and test data, this problem employs cross-validation [211]: A different portion of the same training
dataset is used as validation data in each epoch of the training, while a priori randomly extracted examples
of the data are used for testing after training.

This is a somewhat abusive treatment of the traditional intention of a test set, as its individual samples are
highly correlated to samples that feature in the training. Therefore, such training and testing of the problem
cannot be ascertained to generalise well to situations outside its training domain. However, the intent of this
training is also not to construct models that generalise outside the manufactured solution problem. There-
fore, this practice is considered appropriate to verify the implementation of the training framework. It is also
considered appropriate for assessing the basic impact of the ANN on the model form of the VMM-ANN, when
only evaluated within the scope of the manufactured solution problem. Therefore, this implementation will
return in Chapter 8.

Fig. 5.12 and Fig. 5.13 confirm the implementation. The simple manufactured solution converges mono-
tonically over approximately 500 epochs, before ES ends the run. The training and validation losses follow
each other closely, indicating that the network continues learning the interaction terms of the manufactured
solution throughout the training. This is confirmed by testing the trained model on the previously unseen
test data, shown in Fig. 5.13. In fact, plotting each of the normalised exact interaction terms against their cor-
responding ANN prediction reveals that the problem can be learned almost exactly. Here, R2 approximates 1
up to 5 significant figures, without much hyperparameter tuning.
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Parameter Value
Feature set FS3
Number of examples 3600
Layers [256,256]
Activation ReLU
Testing fraction 0.2
Validation fraction 0.16
Dropout 0.0
λL2 1·10−6

αl 1·10−4

ES tolerance 1 ·10−7

ES patience 50

Table 5.3: Parameters defining the veri-
fication ANN and its training.
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Figure 5.13: ”Skill metric” R2 of the trained ANN, evaluated on test data according to simple cross validation.

5.5. Forward Problem
The final step of the modelling framework is simulating forward problems with a VMM closed by an ANN
as the unresolved scales model. This framework will facilitate answering RQ3 and is broadly laid out in the
following sections. It is constructed by overhauling an existing Mex app intended to run LES approximations
of the incompressible Navier-Stokes equations (INS) to a suitable form for running ANN-embedded simula-
tions. A general introduction to the framework is given in Section 5.5.1, before Sections 5.5.2 to 5.5.5 cover the
new or refurbished objects that define the new model along with their verification. Finally, a set of reference
solutions to be used for comparison in the following chapters is introduced.

5.5.1. Approach
As introduced in Section 4.3, a semi-discrete approach is taken here to solve the forced Burgers’ problem
Eq. (4.8a). Hence, the spatial discretisation precedes the time discretisation. The spatial weak form terms
may then first be integrated by quadrature, such that a system of coupled, nonlinear ODEs results. The only

unknowns in this system are functions of the nodal solution amplitudes ai (t ) and their time derivatives ∂ai
∂t :

Mi j
∂ai

∂t
=N

(
ai j ,

∂ai j

∂t

)
(5.22)

Two design choices must be made to solve Eq. (5.22): First, a finite-difference based time discretisation

must be posed, which relates ∂ai
∂t to the fully discrete unknowns at t n+1, an+1

i . This reduces Eq. (5.22) to a
nonlinear system of algebraic equations for an+1

i . For the Burgers’ problem, this is an equation for the weak
residual Rn+1

wi
, which will have the following dependence on a:

Rn+1
wi

(
∂t (an+1

i−1,i ,i+1), an+1
i−1,i ,i+1, an+12

i−1,i ,i+1, Î (an+1
i−1,i ,i+1)

)
= 0 (5.23)

∂t (a) is a general finite difference operator to compute the time derivative. The square terms in a result
from the nonlinear convective term. Together with the ANN-predicted interaction terms Î , these constitute
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the nonlinearity in the problem. Note that Î is not a function of a when the explicit feature set (FS2) is used
to predict the interaction terms, in which case it also does not contribute to the problem’s nonlinearity. In
this project, Eq. (5.23) is solved with Newton’s method, which will be frequently encountered in the following
sections. The method expands Rwi to first order from a guessed state ap

i and requires the approximation to
satisfy the original problem:

Rw (ai ) ≈Rw (ap
i )+ ∂Rw (ap

i )

∂a j
∆ap

j = 0 (5.24)

Solving the approximation Eq. (5.24) gives the blueprint for a corrector scheme to the prediction that in
each Corrector Pass (CP) i) solves a linear system for a set of perturbations∆ap

j to the current prediction along

the gradient direction defined by the Jacobian matrix
∂Rw (a

p
i )

∂a j
(Eq. (5.25a)) and ii) updates the predicted state

with the resulting ∆ap
i (Eq. (5.25b)).

∂Rw (ap
i )

∂a j
∆ap

j =−Rw (ap
i ) (5.25a)

ap+1
i = ap

i +∆ap
i (5.25b)

Assuming that Rw (ap
i ) resides in a basin of attraction which contains the root Rw (ai ) = 0, that the Jaco-

bian matrix
∂Rw (a

p
i )

∂a j
can be correctly predicted and that sufficiently small steps∆ap

i are taken, this procedure

will not only drive Rw (ap
i ) to zero, but also converge to the desired root of Rw (ai ) that solves Eq. (5.23) [219].

Therefore, it will in theory yield the correct degrees of freedom an+1
i and solution wn+1. This discussion gives

rise to the general solution procedure illustrated by Fig. 5.14.7/19/2019 ThesisDiagram (3).xml
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A simulation is initialised with a database of parameters that define the finite element model, such as the
time march, finite element discretisation, unresolved scales model, force term and linear solver. After this
initialisation, the (homogeneous) initial condition is projected onto the finite element space.

Next, the simulation steps through a time loop spanning the period for which the forcing is defined; this
forcing derives directly from the data generation procedure described in Section 5.2.2. At each time level, a

“same” predictor [114] gives an initial guess for wn+1
i and ∂w

∂t
n+1

i ; this predictor merely assumes wn+1
i ≈ wn

i

and ∂w
∂t

n+1

i ≈ ∂w
∂t

n

i . This provides an initial condition for the Newton procedure’s corrector passes in Eq. (5.25).

At each time level, the iterative solution procedure must then be engaged. First,
∂Rw (a

p
i )

∂a j
and Rw (ap

i ) are

constructed. This is done by first assembling their respective Galerkin term contributions, before forward
passes of the ANN evaluate Î to complete the linear system Eq. (5.25a). Eq. (5.25a) itself is solved with an
iterative General Minimised Residual (GMRES) method. This Krylov subspace method is attractive because
it guarantees minimisation of the linear system’s residual (not to be confused with the weak residual) in the
L2 norm and scales better than direct solvers for very large linear systems [141]. Although the systems en-
countered in this work never exceed O(102)×O(102) degrees of freedom, sizes for which direct methods are
generally faster, the iterative method is retained in case the computation would be scaled. The method’s op-
timality obligates storing a growing number of residual vectors in memory. To contain this memory growth,
the Krylov space is limited to 50 vectors. The system solve itself is allowed to run at most 100 iterations. How-
ever, it never encounters this limit for any cases in this study and converges to the specified tolerance on the
residual’s L2 norm of 10−10. Potential preconditioning of the method is discussed in Section 5.5.4.

Finally, solution amplitudes are updated. Unless the L2 norm of the weak residual vector ||Rwi ||2 has con-
verged to the relatively strict tolerance of 10−10, another corrector pass is taken in which the above assemblies
and system solves must be performed again. When convergence is reached, the time level is finally updated
and the entire procedure repeated.

5.5.2. Weak Residual Assembly
The weak residual vector Rwi is assembled within another DomainIntegrator object. However, while it fea-
tures similar loops over elements and integration points as the method that solves the identification problem,
several aspects of the weak residual assembly are different. These are covered here, aided by Algorithm 1.

Algorithm 1 Weak Residual Assembly

1: for i=0,1,...,nel −1 do . Element loop
2: Prepare local element and element vector
3: if i=0 then
4: Assemble global strong residual vector Rs,I i

5: for ip=0,1,...,nI P −1 do . Integration point loop
6: Load current guess of w , ∂w

∂t and known f
7: Add IP contribution to Galerkin terms of Rwi

8: if Îτ are needed then
9: Add IP contribution to Îτ,i

10: if sgsType=exact then .Unresolved scales model
11: Add exact Ii from getURTerms to Rwi

12: else if sgsType=algebraic then
13: Add Îτ,i to Rwi

14: else if sgsType=ANN then
15: Assemble input feature vector from chosen FS
16: Evaluate ANN
17: Add ANN Îi to Rwi

18: Store Îi , w

The routine’s loop over elements begins by transforming the weak forms to a master element, on which
the assembly is performed [111]. This is not strictly necessary and does not add much benefit when solving
1D problems on a structured grid, but will be advantageous for higher-dimensional problems that might
operate on unstructured grids. Therefore, this “isoparametric” implementation is maintained.

The Galerkin terms are assembled using the quadrature scheme outlined in Section 5.3.1. While the iden-
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tification problem required a high number of IPs to ensure that the highly fluctuating interaction terms’ in-
tegrals were well-predicted, here it is sufficient to use 3 IPs. This reflects that the polynomials that must

be spatially integrated in this work are quadratics: They are products of linear basis functions,
(
ψ, ∂w

∂t

)
, and

products of a linear basis function’s derivative and a linear basis function squared,
(
∂ψ
∂z , w2

)
.

The interaction terms are added after the quadrature loop, since they are direct predictions from the ANN.
Therefore, they do not contribute to the quadrature or its integration order. This is potentially advantageous,
since the quadrature can be a time-consuming element of the solution procedure of several classes of prob-
lems [218] and in higher dimensions. However, as forward passes of the ANNs demand the evaluation of sev-
eral matrix-vector products, this will in fact render the assembly more expensive in cases where large ANN
architectures are employed. This is further discussed in Section 9.4.

The interaction terms are processed in three stages. First, the necessary data to construct a feature set
is gleaned from the integration database or constructed in position. Integrated strong residuals are globally
computed before an element loop and are thus stored in memory, while solution amplitudes and their deriva-
tives are accessed from pointers to their underlying solution vectors. Features that additionally require the
evaluation of an algebraic unresolved scales model, such as those in FS4, require quadrature. They are there-
fore assembled in the IP loop and are computed and stored locally, i.e. in the current and previous element in
a loop. Feature sets FS2-4 require information from two previous time levels to evaluate the ANN. As this data
is not yet accessible in the first two time steps of a simulation, the routine bypasses the ANN evaluation for
the interaction terms until the third time step. Instead, exact interaction terms are used from a corresponding
getURTerms simulation, which pre-runs the forward problem simulation.

Second, the ANN is evaluated by accessing a custom SubModel class that is described in Section 5.5.3. Fi-
nally, this makes the interaction terms available, which are added to the relevant index in the element vector.
As for the identification problem, this is done somewhat differently from what is conventional: Fully inte-
grated weak forms are added to a single row in the weak residual vector, rather than element contributions to
each of the rows in the residual vector that are non-zero within an element.

While the DomainIntegrator is primarily written to embed direct ANN predictions of the interaction
terms, three other versions of the interaction terms can be added within the framework. First, as alluded to
above, exact terms from pre-run getURTerms simulations can be included for verification purposes. Second,
algebraic estimates of the spatial interaction terms can be separately constructed and added in similar fash-
ion. Finally, explicit ANN models as well as hybrid models that switch between algebraic and ANN closure
online are implemented; these will be discussed in more detail in Section 8.3.6 and Section 8.3.7, respec-
tively. The DomainIntegrator is finalised by several storage routines that facilitate the post-processing of
predicted Î , Rw and w .

The implementation is again verified with the manufactured solution problem, reduced to very few de-
grees of freedom. At least two such degrees of freedom are required to separately test the handling of ei-
ther boundary condition. Simultaneously, this number is sufficiently low that it is cheap to evaluate ||Rw ||2
over a grid of the two unknown amplitudes a1 and a2 that can be visualised on a response surface. Three
such response surfaces are shown in Fig. 5.15. They are constructed with exact interaction terms from the
getURTerms simulation and the weak residual assembly routine outlined above. It is assumed for these re-
sponse surfaces that the time derivative component of Rw is constructed with an implicit Euler scheme, i.e.:

∂w

∂t
≈ wn+1 −wn

∆t
(5.26)

Where the implicitness of the scheme with respect to the unknown wn+1 is inherent to the predictor-
corrector framework outlined at the start of this section.

Three notable conclusions can be drawn from Fig. 5.15. First, with the exact interaction terms in the vec-
tor, ||Rwi ||2 only has a single root over the ranges of a1 and a2 considered here, resulting in a map around this
state. Second, this root is reached at a combination of a1 and a2 that corresponds exactly to the known, ex-
act values of the manufactured solution, at three separate time steps that approximately span the amplitude
range of the manufactured solution. This confirms the implementation of the weak residual assembly frame-
work. Finally, this also completes the verification of the identification problem discussed in Section 5.3.2,
which is here shown to predict interaction terms that reconstruct the manufactured solution exactly.

Clearly, the above verification only applies to the implementation of the general assembly routine and
not yet to that of the ANN. These aspects of the code are, however, verified with the remainder of the ANN
implementation in Section 5.5.3.
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Figure 5.15: Contours of ||Rw ||2 over a range of its two degrees of freedom a1 and a2 at time levels t = 6, t = 7.5 and t = 9,
approximating the extents of the manufacture solution’s amplitude. The exact values of a1 and a2 of the manufactured
solution are denoted by a square.

5.5.3. ANN Evaluation
Since no online training of the ANN is performed, only forward ANN passes need to be evaluated for the
forward problem. Interesting C++ libraries exist that specialise in forward evaluations of Keras models (e.g.
[3]). However, to bypass the maintenance associated with rapidly updating external libraries, it is chosen to
implement the forward passes of the ANN internally in Mex.

This is done in a dedicated SubModel class, which loads a trained and stored ANN’s activation function,
shape, normalisation parameters, weight matrices and bias vectors at the outset of a Mex run. Its evaluation
function is called during assembly of the weak residual and Jacobian. The function normalises the input fea-
tures and passes them through the network layers. In each layer, the activation is computed by i) multiplying
a weight matrix and an input vector and ii) adding a bias vector. Activation functions, which are included as
class methods, translate the activations to inputs to the next layer. Finally, the output is denormalised. If de-
sired, it can then be limited to specified ranges (see Section 8.3.3). The procedure is recapped in Algorithm 2.

Algorithm 2 ANN Evaluation

1: Normalise input features x0
i

2: if Limited then
3: Limit input

4: for n=0,1,...,nl yr s −1 do
5: Evaluate zn+1

i =ωn+1
i j xn

j +bn+1
i

6: Pass through activation function xn+1
i = a(zn+1

i )

7: if Limited then
8: Limit output

9: Denormalise output

The ANN evaluation is verified for each feature set. By pushing the same known features through a verified
Keras ANN and the implementation discussed here, Table 5.4 emerges. The errors in this table are on average
O(10−7), which is considered sufficient here for accepting the model as verified.(

ψ, ∂w ′
∂t

)
Ω

(
∂ψ
∂z ,2w w ′

)
Ω

(
∂ψ
∂z , w ′2

)
Ω

Feature set Keras Mex Keras Mex Keras Mex
FS1 1.82094·10−3 1.82095·10−3 2.82051·10−3 2.82050·10−3 2.32685·10−6 2.32795·10−6

FS2 1.81692·10−3 1.81694·10−3 2.82273·10−3 2.82272·10−3 2.34188·10−6 2.35256·10−6

FS3 3.19377·10−3 3.19378·10−3 6.32167·10−3 6.32166·10−3 7.94026·10−6 7.95026·10−6

FS4 1.45625·10−4 1.45625·10−4 6.65156·10−4 6.65148·10−4 8.7817·10−6 8.7854·10−6

Table 5.4: Denormalised output of an ANN evaluated in Keras and Mex, for randomly chosen samples of each feature set.
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5.5.4. Jacobian Assembly
The implementation of the weak residual must naturally be an exact representation of the problem one in-

tends to solve. In contrast, the Jacobian
∂Rwi
∂a j

in most cases only needs to be approximated, since every CP

estimates ∆ai and not ai itself. The weak residuals of many traditional VMMs for the Navier-Stokes equa-
tions and Burgers’ problems are commonly at most quadratic in their unknowns (see Eq. (5.23)), since their
unresolved scales models are also frequently at most quadratic [226]. More complex models possess added
nonlinearity [238], but all these models are sufficiently smooth that the Newton procedure Eq. (5.25) usu-
ally converges in very few iterations, even with rough approximations of the Jacobian that are infrequently
updated. As Jacobian assembly is at least as expensive as assembling the weak residual, it is then justifiable
to subject the linear GMRES solver to an expensive ILU preconditioner, such that subsequent linear system
solves are cheap [141, 224] and the overall Newton procedure takes less computation time.

However, Section 8.1 will identify that including highly nonlinear ANNs may make Rwi a much more
complicated function of its degrees of freedom, for which the Jacobian must be accurate and updated fre-
quently to successfully navigate w through the nonlinear space. In the interest of attempting to find these
correct solutions, higher-fidelity estimates of the Jacobian that are frequently updated are investigated here.
Therefore, it is also not justified to apply preconditioning.

The Jacobian of the Burgers’ problem is written out in Eq. (5.27):

∂Rwi

∂a j
=

(
ψi ,

∂

∂a j

(
∂w

∂t

))
Ω

−
(
∂ψi

∂z
,
∂

∂a j

(
w2))

Ω

+

∂

∂a j

((
ψi ,

∂w ′

∂t

)
Ω

)
− ∂

∂a j

((
∂ψi

∂z
,2w w ′

)
Ω

)
− ∂

∂a j

((
∂ψi

∂z
, w ′2

)
Ω

)
(5.27a)

w =
nw f∑
j=0

ψ j a j (5.27b)

The locality of the bases employed in this study ensures that only two weighting functions ψ are non-
zero in every element, such that two weak equation tests (neq = 2) differentiated to two unknown a in every
element (nw f = 2) contribute to the global matrix. Therefore, a 2×2 element matrix must be assembled in
every element, which can be inserted into the global system in an overlapping fashion. An algorithmic outline
that describes this implementation is included in Appendix C.2.

Once again, the Galerkin terms and interaction terms require different treatment. Whereas the Jacobian
contributions of the Galerkin terms can be directly estimated, those from the unresolved scales cannot, due
to their dependence on an unknown w ′. Here, two levels of complexity in the Jacobian estimate of the inter-
action terms are considered. The first is a simplified version of the derivatives of the interaction terms from
the algebraic unresolved scales model described in Section 5.5.6. It is defined by Eq. (5.28).

∂

∂a j

((
ψi ,

∂w ′

∂t

)
Ω

)
≈ 0 (5.28a)

∂

∂a j

((
∂ψi

∂z
,2w w ′

)
Ω

)
≈−

(
∂ψi

∂z
,2
∂w

∂a j
τRs

)
Ω

−
(
∂ψi

∂z
,2wτ

∂Rs

∂a j

)
Ω

(5.28b)

∂

∂a j

((
∂ψi

∂z
, w ′2

)
Ω

)
≈

(
∂ψi

∂z
,2τRs

∂Rs

∂a j

)
Ω

(5.28c)

∂Rs

∂a j
= ∂

∂a j

(
∂w

∂t
+ ∂w2

∂z

)
(5.28d)

Where the three main assumptions are that i) the contribution from
(
ψi , ∂w ′

∂t

)
Ω

is zero, since it is neglected

by the traditional algebraic model, ii) the algebraic model provides a reasonable approximation to the con-
vective unresolved scales projections and iii) the dependence of τ on w is sufficiently insignificant that it can
be ignored.
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A more commensurate Jacobian approximation for ANN interaction term models can be constructed by

differentiating the ANN’s output with respect to its relevant inputs: ∂Î
∂a j

. Such an approximation would in-

clude a model for the time derivative and benefit from the potentially improved accuracy of the ANN’s esti-
mate for the interaction terms.

∂Î
∂a j

can be computed for all implicit feature sets in Table 5.2. Sampling wn+1 and ∂w
∂t

n+1
at the element

boundaries (where ψ= 1) directly reduces them to the desired a and ∂a
∂t . Computing

∂Rsi
∂a j

is somewhat more

involved. Its assembly is therefore defined in algorithmic form (see Algorithm 4 in Appendix C.2), though it
can still be compiled. Hence, a direct functional relationship exists between Î and the features of this study,

paving the way for computing ∂Î
∂a j

. The explicit feature set is reconsidered in Section 8.3.6.

As the ANNs considered here are continuous, differentiable functions of their input variables3, ∂Î
∂a j

could

in theory be computed by automatic differentiation [20]. However, not many C++ frameworks for automatic
differentiation of a specified ANN exist. Furthermore, it would be nontrivial to couple these frameworks to
Mex. Hence, it is likely that that an automatic differentiation procedure would have to be implemented.
Although such an implementation is relatively straightforward (it comes close to backpropagation), it would
require a finite difference counterpart to be available for verification. Therefore, this study has taken the finite

difference approach to computing ∂Î
∂a j

, although this option is clearly less satisfying.

The implementation of this Jacobian requires several steps of rather involved methodology that do not
contribute to the present discussion. Hence, the interested reader is referred to Appendix C.2 for a more
detailed outline of the algorithm.

Verification of the algorithm is conducted in two stages. First, perturbed variables are hand-checked on
their correctness. Second, the Jacobian implementation itself can be checked by comparing the predicted

finite difference approximations for ∂Î
∂a j

to finite differences based on the weak residual assembly, which was

outlined and verified in Section 5.5.2. These reference finite differences can be constructed by perturbing the
relevant input ai to the weak residual assembly routine. The approach is cumbersome and manual, and is
therefore carried out only at a few points. The results at one of these points is presented in Table 5.5.

Element Jacobian term Assembly routine result Perturbed Rw result
∂
∂a1

(
Î1

)
0.060185 0.060195

∂
∂a2

(
Î1

)
0.189449 0.188754

∂
∂a1

(
Î2

)
-0.118429 -0.118517

Table 5.5: Finite difference approximations of the element Jacobian terms in the second element of a 3-element imple-
mentation of the manufactured solution from the point a1 = a2 = 0.17965. ∆t = 2, h = 1

3 and δa = 1 ·10−5

The table shows that the results agree up to O(10−3). This is considered sufficient to proceed. Note that
adding unconstrained terms from the ANNs to the Jacobian has the potential to negatively affect its condi-
tioning. Still, no adverse impact from this was experienced in this study.

5.5.5. Time Marching
The last module that is modified for this work is the time march. Three algorithms are considered. The first
of these is a Generalised Alpha (GA) scheme for the Navier-Stokes equations [45, 114]. It is formulated to
achieve second-order accuracy with an adjustable amplification factor for high-frequency modes, such that
these can be damped at will. However, it does so by carrying out the iterative solution procedure for a time
step’s degrees of freedom at an intermediate level t n+α f and their time derivatives at t n+αm . In the framework
put forward here, this would require the prediction of “wrong” interaction terms at these time levels that only
become correct once they are transformed to t n+1. This is both questionable practice and unclear. Hence,
in the interest of maintaining clarity in the approach, time stepping schemes that require intermediate time
levels (including Runge-Kutta schemes) are left out from the study.

Rather, two backwards finite difference stencils are implemented. The first is the implicit Euler scheme
presented in Eq. (5.26). However, as this scheme is first order and highly dissipative [111], it is found insuf-

3 Technically, this is not true when discontinuous activation functions such as ReLUs are employed. For these functions, ∂a
∂x (x = 0) is

undefined (see Eq. (5.17)). However, this is commonly overcome by assuming ∂a
∂x (x = 0) = 0, which turns out to have surprisingly little

practical impact [81].
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ficient for simulations with practically useful time steps. It is therefore only used here to initialise a Second
Order Backwards (SOB) scheme:

∂w

∂t
≈ 3wn+1 −4wn +wn−1

2∆t
(5.29)

All these time marches are monolithic and do not exploit the structure of the equations. The implemen-
tation of a Poisson solver might therefore feature in extensions of the framework to multiple dimensions,
though it is not considered for the simple Burgers’ problem.

To aid convergence in the presence of strong nonlinearities, an adaptive relaxation scheme has been im-
plemented [11, 219]. This is described in some detail in Appendix C.3. The full implementation of the SOB
time march is summarised in Algorithm 3.

Algorithm 3 Time March

1: for n=0,1,...,n∆t do . Time loop
2: if n <= 1 then
3: Set time march coefficients to implicit Euler
4: else
5: Set time march coefficients to SOB
6: Update wn , wn−1

7: “Same” predictor for wn+1, ∂w
∂t

n+1

8: while ||∆ai ||2 < tol do

9: Update
∂Rwi
∂a j

and Rwi

10: Solve for ∆ai

11: Compute relaxation parameter λr

12: Update wn+1, ∂w
∂t

n+1

It is straightforward to verify the implementation of the time march, as it can be directly subjected to an
order of accuracy test with the manufactured solution. It is tested with the algebraic unresolved scales model
elaborated on in Section 5.5.6, which is known to behave consistently [226]. This results in Fig. 5.16, where the
first order convergence of the implicit Euler scheme and the second order convergence of the SOB scheme
are shown alongside the GA scheme’s convergence.
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O( t) IE, slope = 0.9
O( t2) SOB, slope = 1.96
O( t2) GA, slope = 1.97

Figure 5.16: Order of accuracy test for the Implicit Euler (IE), Second Order Backwards (SOB) and Generalised Alpha (GA)
time marches with the manufactured solution described in Section 4.4.

The GA scheme displays impressive error performance, even compared to the SOB scheme. The first order
scheme is also verified, allowing its use as a startup method for the second order time march.

5.5.6. Reference solutions
In the following chapters, the VMM-ANN will be frequently compared to two VMMs with other unresolved
scales models: An exact model for the interaction terms and an algebraic model. The exact model is attained
by running the entire forward simulation with the exact interaction terms from the identification problem.
This returns piecewise linear, nodally exact versions of w and, in a single column, corresponding vertical
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statistics 〈w2〉. Spatial distributions of these quantities for the Boussinesq-forced Burgers’ problem are shown
in Fig. 5.17a for various h. It is the first clear illustration in this work of the ideas put forward in Chapter 3:
While coarser resolutions result in less capture of detail, the structure of large, resolved scales might still be
represented very accurately if the interaction terms can be represented exactly.

To facilitate comparisons against state of the art approximations of the interaction terms, a conventional
algebraic unresolved scales model will be used. Its τ is the nonlinear algebraic unresolved scales model pro-
posed by Taylor, Hughes and Zarins for the Navier-Stokes equations [238]. Here, it is reduced to apply only to
the Burgers’ problem:

w ′ =−τRs (5.30a)

τ= 1

(2J−1
t w)2 + ( 2

∆t

)2 (5.30b)

J−1
t = ∂ξ

∂z = h−1 is the inverse Jacobian of the isoparametric finite element transformation from global
coordinates z to the assembly’s master element’s coordinates ξ [111, 197]. The model is in this context es-
sentially a modification of Shakib’s original proposal [226] for problems where Re→∞, which informally and
incompletely attempts to account for the time discretisation [52]. Eq. (5.30) is also the algebraic model that
was used to verify the time marches in Section 5.5.5, and the model that will be used to compute the simple
Jacobian presented in Section 5.5.4.

Using this algebraic model as the closure for the Boussinesq-forced Burgers’ problem results in the set of
solutions and statistics presented in Fig. 5.17b. The figure demonstrates that while such models can almost
exactly reproduce the DNS statistics of the problem up to h

hDN S
= 3, linearised Green’s function approxima-

tions increasingly break down as the scales of unresolved turbulence become increasingly large. Addressing
these aspects is the VMM-ANN’s aim.

Finally, the VMM-ANN would ideally be compared against SP-like simulations, to assess the potential of
scale-consistent unresolved scales models with respect to models that introduce explicit scale breaks. How-
ever, the scope of implementing such a SP falls outside this work. The focus will rather lie with the perfor-
mance of the model within the spectrum of the VMS framework, before extending the analyses.

5.5.7. Verification of full VMM-ANN
With all individual modules of the forward simulation explained and verified, it is possible to verify the com-
plete model. This will be done in this section, using the manufactured solution problem. If the near-perfect
ANN presented in Section 5.4.5 is employed to predict Î for a forward problem with the same discretisation
as it was trained on, and the ANN implementation is correct, it can be expected to return very close to nodally
exact representations of the solution. This must again be treated only as a verification and says nothing about
ANN’s ability to generalise to other problems. Space-time plots of the forward problem’s predictions of w and
the interaction terms that underpin it are shown in Fig. 5.18, with measures of absolute (EL2 ) and relative
(1−R2) error of the quantities compared to offline predictions included in Table 5.6.

Table 5.6 shows that in terms of the average L2 error EL2 and R2, the forward, “online” predictions of the
interaction terms are nearly as good as their “offline” counterparts presented in Section 5.4.5. This results in
impressively small errors in the predicted w , verifying the ability of the VMM-ANN to predict Î and w for this
simple problem.

This is visually corroborated by Fig. 5.18; it shows how the oscillating solutions of the problem can be
faithfully reproduced. The small errors that do occur manifest themselves around the extrema of the solution,
where the ANNs are often operating in a range where they have little data to interpolate on. However, they
almost always recover in a subsequent time step. This error mode will be revisited in Section 8.2.

This confirms Robijns’ finding that near-perfect ANN predictions of the interaction terms in an offline
sense are capable of navigating the dynamic, iterative time march in which it is let loose here [209], at least
for simple problems where the ANN is mostly required to interpolate in its training space. It maintains this
skill over 120 time steps, yielding a promising point of departure for the relatively long turbulence simulations
in upcoming chapters.

This concludes the methodology that underpins the VMM-ANN modelling framework and finally allows
assessments to be made on its ability in the context of the research questions. This will be therefore be the
topic of the last four chapters of this thesis.
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Figure 5.17: Discrete, instantaneous solutions of the Boussinesq-forced Burgers’ problem at h
hDN S

= [3,6,12] and single-

column time-averaged statistics. All runs are with ∆t
∆tDN S

= 2, t f = 6 hr and averaging is only over the last 5 hrs.

Online Offline
Term 1−R2 EL2 1−R2 EL2(
ψ, ∂w ′

∂t

)
2.28 ·10−5 6.58 ·10−6 4.78 ·10−6 3.16 ·10−6(

∂ψ
∂z ,2w w ′

)
2.55 ·10−5 2.08 ·10−6 6.40 ·10−6 2.58 ·10−6(

∂ψ
∂z , w ′2

)
4.07 ·10−5 3.87 ·10−8 8.87 ·10−6 2.75 ·10−8

w 5.38 ·10−6 5.47 ·10−5 - -

Table 5.6: R2 coefficient of determination and EL2 for online VMM-ANN predictions of the components of Î and w ,
compared to their offline counterparts.
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Figure 5.18: Space-time plots of the manufactured problem’s solution and interaction terms predicted by the VMM-ANN
(left), the exact model (right) and their difference (centre), for simulations where h = 0.25, ∆t = 1.





6
Exact Projections of Interaction Terms

A rather uncommon feature of the developed framework is that it starts with a post-processing step of a
high-fidelity simulation: Solving an identification problem for the interaction terms (see Section 5.3). In a
broad sense, this allows visualising and analysing “exact” versions of these numerical constructions. While
turbulent transfer decompositions in a multiscale sense have received plenty of attention in literature (see
e.g. [108]), these numerical interaction terms have not. Therefore, their analysis might be interesting in its
own right.

However, here the primary motivation for studying the interaction terms is to characterise their contri-
butions to the resolved scales. This facilitates an assessment of the spatial distribution of the Galerkin and
interaction terms, how the terms balance the momentum at various levels of discretisation, which scales
in the problem define the unresolved scales projections and how the assumptions of traditional VMS and SP
models hold up for the model problem. From these results, the study will establish the relevance of the model
problem to the global problem and determine the discretisations where the relevance is most distinct. The
analysis is conducted over the spatial dimension in Section 6.2 and in the spatial and temporal frequency
domains in Section 6.3. The chapter starts, however, with a quick look at the energy spectra of the problem in
Section 6.1.

6.1. Energy Spectra of the Model Problem
Section 2.1.2 showed that atmospheric turbulence at the resolution of a GCM is not associated with an inertial
subrange in horizontal wavenumbers. In contrast, the model problem’s turbulence is in vertical wavenum-
bers of scales that are much smaller than those in Fig. 2.1. Therefore this model problem is expected to
contain relatively few characteristics that translate directly to the richness of the Nastrom-Gage spectrum.

To investigate the model problem’s 1D spectrum, its distribution of turbulence kinetic energy E is com-
puted through Eq. (2.2), by employing an energy-neutral Fourier transform 1 and plotted in Fig. 6.1 at different
discretisation levels against spatial wavenumbers kz and temporal wavenumbers kt .

Since the vertical turbulence is anisotropic (as shown in Fig. 4.1), energy spectra of the atmospheric
boundary layer with vertical wavenumbers are rather uncommon [43]. However, the spectrum’s upper end
in Fig. 6.1a still decays with a −5/3 exponent. It is tempting to note the similarity of this number to the
Nastrom-Gage spectrum’s lower end, which similarly decays with this exponent. However, while that spec-
trum emerged in spite of significant anisotropy and a non-existent inertial range, the 3D boundary layer
turbulence that underpins Fig. 6.1a’s distribution does contain an inertial range in the horizontal dimension
[177], which is seen to transfer to the weakly anisotropic vertical dimension of this problem [195]. Hence,
Fig. 6.1a appears to be much more in line with a traditional 1D instance of a Kolmogorov spectrum.

This is further illustrated by the second portion of the model problem’s spectrum, which decays rapidly.
Rather than being a significant expression of anisotropy, such as the k−3 range in Fig. 2.1, this is a range
where the velocity field becomes increasingly smooth, as energy is dissipated from its modes. There are

1By the application of Parseval’s theorem to the Discrete Fourier Transform (DFT),
∑n−1

n=0 (x(n))2 = 1
N

∑n−1
k=0 (X (k))2, where X (k) is the

Fourier transform of x(n) for a signal with length N . As N changes between discretisation levels, a consistent comparison of energy in
equal modes at different discretisation will require energy to be conserved in the forward transform, and therefore scaling by 1

N during
this stage.

75
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Figure 6.1: Discrete, averaged energy spectra of a single column of the forced Boussinesq problem for projections on
grids that are 3, 6 and 12 times the vertical spacing of the DALES simulation and 2 and 4 times the time step of the DALES
simulation. Note that increasingly coarse discretisations of the same DALES solution do not reproduce the same resolved
Fourier modes, since the problem is not periodic.

two possible explanations for this. First, this could be a physical indication that the Kolmogorov scales are
being approached at high resolution, which would yield spectra of similar shape [236]. However, because
the data that constructs this spectrum derives from an LES run with an artificial viscosity closure, it is in fact
much more likely a reflection of that model’s overambitious dissipation in its quest for stability [195, 229],
and therefore not necessarily physical.

In all, this yields a spectrum that is not as shallow as other 1D tests commonly devised for testing proto-
type unresolved scales models for atmospheric motion [88, 160] and is therefore a kind first test. However,
the test is still considered appropriate, as instantaneous snapshots of the flowfield, such as that presented in
Fig. 6.1b do intermittently contain highly energetic, unresolved scales, which are seen to have an impact on
the resolved scales. Such features do in fact translate to the larger-scale problem.

Hence, while conclusions based on this study’s model problem can clearly not be directly extrapolated to
global, atmospheric turbulence, the simple problem does begin to capture several aspects that are relevant
to the global problem. Therefore, this model problem is still considered an appropriate first test.

Based on these remarks, an interval of relevant scales is identified at which the ANNs should still profi-
ciently learn the interaction terms and VMM-ANNs still successfully predict the solution from them: To be of
any interest for physical turbulence-resolving models at large scale, discretisations that are cut off above the
range of rapidly decaying energy must be considered. Spatial resolutions that are six times as coarse as the
original DALES simulation begin meeting this criterion. Therefore, this discretisation will be considered the
default test in the following chapters; it is the definition of a “coarse” discretisation promised in Section 3.6.

The temporal spectrum in Fig. 6.1c similarly consists of a relatively low number of large modes and a steep
slope. However, as will be discussed in Chapter 8, there is no interesting scenario in which a discretisation
coarser than four times the sampled DALES time step remains well-posed. While time discretisations that are
at least another four times coarser are desired to begin approaching the energy plateau seen in Fig. 6.1c and
mimic the more challenging situation faced by a GCM, this study employs time steps for which an appreciable
range of the temporal spectrum remains resolved.

6.2. Time-Averaged Spatial Profiles of Exact Interaction Terms
Fig. 6.2 and Fig. 6.3 show time-averaged profiles of the L2 norms of the Galerkin and interaction terms at
various levels of spatial and temporal discretisation, respectively. The terms have not been normalised by
a convective velocity scale [236], as the illustration here is numerically oriented, rather than physical. This
is also the rationale for plotting these somewhat unconventional quantities: They are the direct terms that
participate in the simulations considered here, rather than more common representations of the turbulent
fluxes discussed in Section 4.2.2. At coarser h, the individual weak form terms are integrals over increasingly
large areas. However, the force term scales accordingly, such that the momentum budget remains exactly
closed. Hence, although they show norms of the terms and not the terms themselves, the plots in essence
illustrate how momentum is on average spatially redistributed among the terms as the discretisation changes.
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Figure 6.2: Spatial profiles of the squared weak form terms, averaged over 16 randomly sampled columns, varying with
spatial discretisation h/hD ALES , at ∆t/∆tD ALES = 2.
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Figure 6.3: Spatial profiles of the squared weak form terms, averaged over 16 randomly sampled columns, varying with
temporal discretisation ∆t/∆tD ALES , at h/hD ALES = 6.

These profiles reveal several interesting characteristics of the various terms’ roles in the simulation, that
are instructive to ANN formulations for the interaction terms. Hence, they are all reviewed in this light in the
following.(

ψ, ∂w
∂t

)
Ω

This term contains a little less than half of the Galerkin terms’ total amplitude at these discreti-

sations. It represents the spatial projection of the evolution of resolved turbulent modes. As
these are large modes, they are generally produced by the surface flux and dissipated only at
the inversion. Hence, their time evolution’s distribution is relatively constant throughout the
mixed layer, only decaying a little throughout it. The term increases somewhat in magnitude as
the spatial and temporal resolutions reduce, as its increased local integral width outweighs that
a number of modes is cut from its resolved scales space.(

∂ψ
∂z , w2

)
Ω

This term somewhat resembles term V in Eq. (4.3), if it is interpreted as a spatial redistribution

operator of resolved w with characteristic speed w . Its magnitude profile does not follow the
classical distribution of such terms, with a well-rounded shape and a distinct peak at z

zi
≈ 0.3

[236]. This is because the term only contains resolved modes, leaving an increasingly significant
portion of the spatial turbulent transfer in the layer’s middle portion to the projection of the
unresolved scales model at coarser h, which will be essential to capture to reproduce correct
statistics of w . Since it is not a function of the temporal discretisation, the term is unchanged
as the time discretisation changes, as are the cross and Reynolds terms.
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(
ψ, ∂w ′

∂t

)
Ω

This term expresses time changes in the unresolved scales that only exist on the resolved scales

due the non-orthogonal nature of the scale decomposition (see Section 3.2.2 and Section 4.3.2).
It is most active where the smallest scales in the simulation change and bears resemblance to
its resolved-scales counterpart. At high spatial resolution, this does not have a distinct spatial
structure; the term is relatively constant throughout the turbulent portion of the domain. As
the simulation becomes coarser, however, it must recapture some of its Galerkin term’s dropoff
near the inversion, where small scales evolution matters [236]. This is in line with the gen-
eral challenge of predicting inversions dominated by small scales at coarse resolution, of which
Section 2.5.2 established the relevance to GCMs. The term also rapidly gains prominence as the
time discretisation coarsens. In such situations, the assumptions that underpin non-dynamic
VMS break down, and dynamic subscales methods must be considered. This is the case here
and for GCMs, motivating the term’s inclusion in the ANN model.(

∂ψ
∂z ,2w w ′

)
Ω

The cross term constitutes the largest unresolved scales contribution to the budget at all dis-

cretisations considered here. Its role in the layer increases and changes as the spatial discreti-
sation becomes increasingly coarse. It must then compensate for the resolved nonlinear term,
which is limited to represent an increasingly narrow range of mode interactions. In particular,
the cross term must capture direct interactions between modes above and below the grid cutoff.
At large h, the magnitude of these interactions increase throughout the domain and especially
in its lower third, yielding an increasingly full profile. This assigns a relatively substantial re-
sponsibility to the term to ensure the correct distribution of turbulence away from the wall.(

∂ψ
∂z , w ′2

)
Ω

While being comparatively small throughout the domain, the Reynolds term has two interesting

characteristics. First, it confirms the expectation that the resolved-scales projections of purely
unresolved, small scales are most active at the turbulent boundaries [195, 236]: Most turbulent
dissipation is expected to take place here, which in the presence of a net forward cascade of
turbulent energy requires the smallest scales in the simulation to do this work. Second, as the
smallest scales that drive this behaviour progressively live in the unresolved scales space as h
increases, these contributions very rapidly become more substantial; they cannot be trivialised
for accurate calculations at low resolution.

6.3. Averaged Distributions of Interaction Terms
While Fig. 6.2 and Fig. 6.3 provide insight into the terms’ average spatial magnitudes, they do not say anything
about their composition. Hence, their amplitudes’ distribution over modes will be considered in this section.
Fig. 6.4 and Fig. 6.5 show time-averaged spectral decompositions with kz at various h and space-averaged
spectral decompositions with kt at various ∆t of the terms, respectively. These decompositions are referred
to here and in the following chapter as “distributions”, to clarify that they arise from a discrete solution, rather
than a continuous spectrum. They have been computed with an energy-conserving Fourier transform of the
interaction terms, to again remain comparable at various levels of discretisation.

When plotted on the same amplitude scale, Fig. 6.4 shows that at all levels of discretisation, the majority
of the budget’s magnitude resides in the Galerkin terms: Their modal amplitudes are on average an order of
magnitude larger than the interaction terms. The figure thus provides an illustration of the widely appreciated
fact that most of the problem’s energy can be captured on the resolved scales when the problem’s energy
spectrum is truncated in a rapidly decaying inertial range [195], such as that presented in Fig. 6.1a.(

ψ, ∂w
∂t

)
Ω

This term’s amplitudes are dominated by low spatial wavenumbers. As the term is intimately

linked to w , its distribution over spatial wavenumbers somewhat resembles Fig. 6.1a. It dis-
plays that large changes in w in time are primarily driven by large, spatial structures in the flow,
with the term dropping off quickly as kz increases. At the highest spatial resolution considered,
comparatively little amplitude is carried by the term’s small, resolved scales. If like scales are
most prone to interaction, this would suggest that the term experiences relatively little inter-
action with the unresolved scales. In other words, the resolved and unresolved scales are well-
separated, and scale separation arguments could underpin models for the unresolved scales’
impact on the term at this level of discretisation. For instance, doubling h

hD ALES
from 1.5 to 3

merely increases
(
ψ, ∂w ′

∂t

)
Ω

by a factor 2.39 on average. This is mostly a reflection of the inte-
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Figure 6.4: Temporally averaged modal decomposition of amplitudes of the Fourier-transformed Galerkin terms GF and
Interaction terms IF over spatial wavenumbers, over the same number of columns as Fig. 6.2.
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Figure 6.5: Spatially averaged modal decomposition of the amplitudes of the Fourier-transformed Galerkin terms GF and
interaction terms IF over temporal wavenumbers, over the same number of columns as Fig. 6.3.

grals being evaluated over spatial domains that are twice their original size, and thus shows that

not much of
(
ψ, ∂w

∂t

)
Ω

’s amplitude is lost. However, further doubling h to a level at the top end

of the rapidly energy-decaying range once again has a much larger impact (a factor of 4.49), as
small resolved and large resolved modes are of more equal importance.

In the distribution over kt , the term’s role is much more significant at higher wavenumbers,
before rapidly dropping off. As for the spectra in Section 6.1, this dropoff might indicate that
they approach temporal scales that are so small that they physically begin dissipating energy
into heat. However, it is more likely a numerical artefact, due to the necessity of sampling
DALES data at 6 times its original time step (∆tD ALES = 6∆tDN S ), and artificially smoothen-
ing the data with splines beyond this point. Hence, once the resolution approaches ∆tD ALES ,
high wavenumber amplitudes will no longer have a turbulent set of scales to interact with. This
identifies that running forward problems with temporal discretisations in the low end of the
plotted interval is likely an overly kind representation of the true fluctuations in the bound-
ary layer. Nevertheless, Section 8.2 will show that even at such artificially smooth levels, the
numerical model encounters problems.(

∂ψ
∂z , w2

)
Ω

In contrast to the time derivative projection, this term peaks at intermediate kz , with its peak

shifting to ever lower wavenumbers as the discretisation becomes coarser. Hence, the term is
more prone to spatial unresolved scales interactions than the time derivative projection, and is
also modified somewhat more significantly as the spatial discretisation changes.
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(
ψ, ∂w ′

∂t

)
Ω

As its resolved counterpart, low kz modes dominate this term, making it the prevailing unre-

solved scales term in this wavenumber regime. The term is therefore relatively non-local in
space. Its distribution over kt shows that it is the primary vehicle for interaction of resolved
and unresolved time scales. The unresolved time scales interact most strongly with the small,
resolved time scales, resulting in a peak at intermediate kt . Similar to its resolved-scales coun-
terpart, the term drops off at even higher kt , again showing that once ∆t approaches ∆tD ALES ,
the unresolved scales space is largely smooth.(

∂ψ
∂z ,2w w ′

)
Ω

The cross-term is dominated by high-frequency spatial content. At these high kz , its magnitude

outweighs that of the other interaction terms, characterised by a distinct peak at the resolved
scales space’s cutoff wavenumber kc . These observations indicate that i) the term’s main role is
to represent turbulent transfer of momentum between the portions of w and w ′ around kc , and
that ii) this transfer is the most important interaction between resolved and unresolved scales
at the discretisations in this study. These are common characteristics of LES with kc in the
inertial range, where turbulent transfer is dominated by a forward cascade of energy between
like scales. In time, the term is dominated by a plateau over low wavenumbers, before dropping
steeply.

Since the cross term is linear in w ′, it is captured by the first of the infinite cascade of unresolved
scales problems (see Eq. (3.13) and Eq. (3.14)). When it dominates the unresolved scales contri-
bution, this motivates the use of linear unresolved scales models, such as the algebraic model
[222]. Fig. 6.4 shows that this would have been a good assumption for most of the discretisa-
tions considered here and explains the relatively proficient performance of the algebraic model
in Fig. 5.17b, even at h

hD ALES
= 6. For a VMM-ANN, its direct dependence on w is likely to make

it the most tractable term to learn for an ANN model. Again, the term dips at the very smallest
resolved scales, at high resolution. As in the above two instances, this is likely an artefact of the
LES discretisation, such that high resolution simulations here should be treated with care.(

∂ψ
∂z , w ′2

)
Ω

Finally, the Reynolds term is an order of magnitude less than the other terms at all discretisa-

tions, though it rapidly becomes more important at larger h. This is also in line with the theory
discussed in Section 3.2.3: The term’s nonlinearity in w ′ formally requires the infinite cascade
of linear problems Eq. (3.13) to be posed. As the discretisation becomes coarser and the un-
resolved scales space becomes larger, an increasing number of the problems in this cascade
becomes non-trivial, resulting in the higher-order terms of the asymptotic series for w ′ carry-
ing an increasing amount of energy, until a level is reached where the asymptotic series can no
longer be expected to converge [222].

For the range of discretisations of the problem considered here this is never the case, which fur-
ther justifies the use of algebraic unresolved scales models in the context of VMS. However, it
is a regime in which the original SP formulation is largely invalid. Its asymptotic derivation re-
quires the time-averaged unresolved scales’ momentum fluxes that are present on the resolved
scales to be of order ε compared to the resolved scales’ contribution (see Eq. (2.15)). If ε≈ 10−1,
Fig. 6.4 shows that these fluxes are dominated by the cross term, while the Reynolds term is
mostly of O(ε2). Since w appears explicitly in the cross term, this is incommensurate with fully
separating the resolved and unresolved scales equations, as assumed by Eq. (2.9). As captured
by requirement 3 in Section 2.6, this is why one would consider fully coupled equations, such
as those that follow from asymptotic analysis (as in Section 2.5.1) or the VMS formulation, once
GCM grid resolutions become so fine that the cross term’s dynamics begin playing a significant
role.

The lack of coarse resolutions where the Reynolds term’s nonlinear dynamics dominate the
model problem also clearly illustrates the limit of this study’s applicability. Even at very high
GCM resolutions, the Reynolds term (and other pure unresolved scales interactions) are ex-
pected to remain the largest unresolved scales contribution [88, 160]. For the discretisations
considered here, they never are. Hence, the VMM-ANN cannot be fully tested on the scales that
are most relevant to its potential use as a GCM. This confirms Section 6.1’s observation that the
tests here are a “kind” introduction of the model that can be considered a lower bound of its
necessary capability.
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6.4. Conclusions
The characteristic scales of the interaction terms to be predicted by the ANN are dominated by the model
problem’s relatively steep spectrum over spatial and temporal wavenumbers. h

hD ALES
= 6 is required to intro-

duce modes above the rapidly decaying range of turbulence to the unresolved scales space, while no time
discretisation considered here achieves this. Finer space and time discretisations suffer from approaching
the DALES data’s cutoff wavenumber and the associated, likely artificial, drop in turbulence. Therefore, the
spatial discretisations of h

hD ALES
= 6 will be the default test case for the model in online settings, while the

relatively fine time discretisations that will be used are likely artificially kind.
Even at coarse h, the Galerkin terms remain an order of magnitude more significant than the interac-

tion terms. Hence, standard LES observations remain relatively valid: The linear cross term dominates the
nonlinear Reynolds term in the transfer of turbulence between the resolved and unresolved scales spaces.
However, the latter rises rapidly in prominence at coarser h, especially at the boundary and the inversion,
and therefore begins resembling the strong, nonlinear backscatter that large-scale atmospheric models must
negotiate. Both terms are dominated by high kz modes and low kt modes, such that they are relatively local
in space and non-local in time. Conversely, the unresolved scales time derivative projection is dominated by
low kz modes and higher kt modes. The impact of these characteristics on the predictive ability of ANNs that
operate on feature sets that are local both in space and time will be extensively discussed in the following
chapter.
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Chapter 6 characterised several dimensions of the exact interaction terms of the model problem. This chapter
will determine the extent to which these characteristics can be learned by the ANNs proposed in Chapter 5,
when they are trained and evaluated offline on error-free data. After a note on dataset size in Section 7.1, the
chapter discusses the predictive ability and generalisability of ANNs with various feature sets and architecture
combinations in Section 7.2, to answer RQ2.1. Subsequently, Section 7.3 assesses the performance of one
of these models at various levels of discretisation, to answer RQ2.2, before the most important findings are
summarised in Section 7.4.

7.1. Dataset size
Broadly speaking, ANN unresolved scales and turbulence models tend to keep improving as the number of
examples they face is increased, even at very large dataset sizes [21, 205, 255]. The obvious drawback associ-
ated with training on increasingly large datasets, however, is the computational cost penalty it imposes. Al-
though the cost of ANN training might only have to be incurred once if the network is sufficiently well-trained
to generalise to any situation one may wish to deploy it in, this may not be useful once the total simulation
time of training the networks begins to approach the time required for running an appreciable number of
DNSs. Therefore, a brief assessment is made here to gauge how an ANN’s accuracy per unit computational
time for this problem scales with the available dataset’s size. This assessment is based on runs with FS2 and
hand-tuned hyperparameters. It is conducted at the default discretisation of h

hDN S
= 6 and ∆t = 2∆tDN S .
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Figure 7.1: Scaling of predictive ability (Summed R2 over Î and J ) and training time as a function of the number of samples
used for ANN training, for FS2. For the present problem, the time cost of running a forward problem with 1024 elements
is included as a dashed line.

Fig. 7.1a shows that the prediction metric very roughly follows a linear trend throughout the range of sam-
ples that can be included from a single DALES simulation. Sequentially quadrupling the number of columns

83
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that participate in the dataset from 2x2 (lower end of the figure) up to 64x64 (upper end of the figure) roughly
keeps adding and subtracting proportional increments to R2 and J , respectively, with sublinear scaling at
small and large dataset sizes. The training time, however, also scales approximately linearly and rapidly
reaches the order of days. This computational cost is contextualised by running a DNS of the forward prob-
lem with h = 0.09375hD ALES ,∆t = 0.02∆tD ALES and an algebraic unresolved scales model. Without activating
any of the code’s speedup settings, this simulation achieves a final, average L2 error of the solution of 2.1·10−4

at the cost of running approximately 3 hours. This simulation time is drawn as a dashed line in Fig. 7.1b.
In this light, several dataset sizes will be considered in this chapter. Grids of 8x8 columns, spaced by 16

columns in each dimension, span a sufficient spatial width to encounter most of the uncorrelated turbulence
in the domain and offer some improvements in learning with respect to the lowest number of samples. Yet,
their training costs are approximately an hour, which is less than merely running a DNS for this problem
and facilitates turning the models around relatively quickly. The latter is essential in the following section,
which treats the sensitivity and “optimisation” of ANN performance to the various input feature sets and
architectural parameters and requires many ANNs to be trained. The optimised models that emerge from
this section are then trained on the largest grid of 64x64 columns from a single DALES simulation, and must
therefore be tested on a different simulation (see Section 5.4.4).

7.2. Input Features and Architecture
The feature sets in Table 5.2 span a wide set of candidate inputs. Hence, to fairly compare them, they are each
subjected to a hyperparameter optimisation. Each individual training session in these optimisations employs
the grid of 8x8 columns and the same z − t discretisation as in Section 7.1. The ANNs are judged in terms of
J on a held out set of 16 columns from the same DALES simulation that generated the training data. These
columns are located more than one correlation length away from any training column, and from each other.

For each feature set, three sweeps of training sessions are conducted to gauge the influence of the ANN
hyperparameters. In the first, hand-based iterations are performed to identify orders of magnitude of learn-
ing rate, λL2 , dropout fraction and layer construction that function relatively well (an example combination
from this phase was used to generate Fig. 7.1). 5% of the possible permutations of these ranges, reported
in Table 7.1, are subsequently sampled with a random search, resulting in 984 individual training sessions.
These yield the correlations in Table 7.2 and set the stage for a discussion on hyperparameter sensitivity. Fi-
nally, the models are scanned with a full grid search over the most promising parameter ranges, from which
the best model configuration can be identified and conclusions can be drawn.

Parameter Sampling range
Hidden layers [1,2,3]
Neurons/layer [64,256,512]
αl

[
1 ·10−4,2.25 ·10−3,5.00 ·10−3

]
L2 weight regularisation λL2

[
1 ·10−6,1 ·10−5,1 ·10−4

]
Dropout probability [0.0,0.125,0.25]
Optimiser [Adam , NAdam, RMSProp]
Activation [ReLU, ELU, Sigmoid]
Batch size/Total number of samples [0.25,0.5,1.0]
Epochs [1000,2500,5000]

Table 7.1: Ranges of free hyperparameters sampled by random grid search, resulting in a total of 984 combinations.

7.2.1. Hyperparameter Sensitivity
By necessity, a discussion on hyperparameter sensitivity based on strongly downsampled data is somewhat
incomplete and requires subjective judgement, a clear drawback of ANN modelling. However, within these
limits, the relative impact of all hyperparameters on J are quantified in Table 7.2, Fig. 7.2 and Fig. 7.3.

All feature sets display similar trends in Table 7.2, albeit with different magnitudes. This allows decoupling
the hyperparameter sensitivity study from the feature set sensitivity study. The former is treated first, with FS3
as the running example. Deviations from the trends between feature sets are mentioned where relevant.

Table 7.2 shows that J is insensitive to network depth and λL2 . Hence, these parameters are neglected for
now. Next, small batch sizes are generally favourable. This is a positive finding, since only approximately 8
columns of data fits on the Graphical Processing Units (GPUs) at any instant, requiring small batch sizes for
GPU-accelerated training. A large number of maximum epochs, 5000, is set, as many of the runs otherwise



7.2. Input Features and Architecture 85

Hyperparameter FS1 FS2 FS3 FS4
αl -0.719 -0.0790 -0.265 -0.527
Neurons/layer -0.314 -0.0749 -0.115 -0.168
Epochs -0.121 -0.120 -0.101 -0.163
Hidden layers -0.079 0.0303 0.0329 -0.190
λL2 0.00102 -0.0102 0.00390 0.00532
Dropout 0.0503 0.0294 0.150 0.0806
Batch size 0.376 0.0241 0.0165 0.432

Table 7.2: Pearson correlation (R) of hyperparameters to J on the 16 validation columns, ranked in terms of positive to
negative impact on reducing J over the ranges reported in Table 7.1.

reach the maximum number of epochs while still making progress. In practice, however, this limit is not often
reached for well-trained models, which exit on early stopping (see, for instance, Fig. 7.4).
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Figure 7.2: Average impact on J on the validation columns of varying the neurons/layer (subplots), learning rate (bar
assemblies) and dropout (hue) in the ranges reported in Table 7.1. The extent of black bars denotes bootstrapped 95%
confidence intervals, though the sampling rate is sufficiently low that these should be treated with care.

The three remaining impactful hyperparameters, αl , the number of neurons per layer and dropout prob-
ability, are plotted in Fig. 7.2, which illustrates three trends. First, the higher selected learning rates are
favoured for minimising J . Second, dropout adversely impacts the loss, especially when combined with the
higher learning rates. Finally, “wider” networks with more neurons per layer seem beneficial, though this
trend stagnates at 512 neurons per layer. These tendencies broadly mirror Robijns’ optimised architecture,
which also did not require dropout or weight regularisation, and employed few layers with many neurons per
layer [209]. It is encouraging that these results translate to this study’s more realistic turbulence dataset.

The impact of optimiser and activation function choice is presented in Fig. 7.3. ReLUs and ELUs, with
their non-saturating gradients, minimise J an order of magnitude better than standard sigmoid activations
for the present problem. ELUs were considered for their ability to carry non-zero negative activations, which
improves learning in several settings [46]. However, Fig. 7.3 finds that the biased ReLUs actually yield further
improvements. Hence, all further nonlinear ANNs in this study employ such activation functions.
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activation = elu
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RMSprop Nadam Adam

activation = relu

Figure 7.3: Average impact on J on the validation columns of varying the optimiser between RMSProp, NAdam and Adam,
for ReLU, ELU and Sigmoid activation functions. The black bars denotes bootstrapped 95% confidence intervals.
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The impact of the optimisation algorithm choice is much less pronounced, though a trend emerges here
also: The Adam loss function is consistently outperformed by RMSprop loss and even further by its Nesterov
momentum-augmented version, NAdam. While the difference is statistically insignificant when consider-
ing the variability in the results, this falls in line with the theoretical observation that Nesterov momentum
should yield superior gradient direction improvements than its classical momentum counterpart [65]. It also
matches recent empirical observations that the use of Nesterov momentum can translate to improved learn-
ing when combined with RMSProp methods that limit how far each parameter may proceed along the found
direction [237]. For this dataset, Adam’s purely history-based momentum update to the gradient actually
upsets the learning in comparison to RMSProp, which does not incorporate momentum. Hence, the results
suggest that incorporating the gradients from the most recent step in the momentum update, as done in
NAdam optimisation, helps to determine the correct gradient directions. Therefore, a NAdam optimiser will
be considered in the remainder of this work, although its impact is small.

In conclusion, J is sensitive to batch size, learning rate, the number of neurons per layer and dropout,
for all considered feature sets. Fig. 7.2 shows that ANN architectures of relatively shallow, “wide” networks,
trained without regularisation or dropout at learning rates in the upper interval of the considered range per-
form best in these tests. Finally, Fig. 7.3 reveals that ANNs with ReLU activation functions and a NAdam
optimiser yield the best performance, motivating their choice in the rest of this study.

7.2.2. Optimised Architecture and Feature Sets
With this sensitivity established, the second phase of optimisation consists of a full scan of parameter com-
binations in a reduced space around the best values from the first stage, along with some manual tests, for all
feature sets. For FS3, the results are illustrated by Fig. 7.4.

Figure 7.4: Training history on training and validation data and R2 correlation on validation data (upper row) and test
data (lower row) of each of the three interaction terms for the best set of hyperparameters, with FS3 as input.

Trained on a grid of 64x64 columns, from which 16 validation columns are held out to assess early stop-
ping, Fig. 7.4 shows that J converges similarly on both training and validation sets. This is encouraging, since
many of the validation columns are new to the model. Fig. 7.4 further shows R2 from evaluations of the
trained model on both the validation columns (upper row) as well as 16 uncorrelated columns of turbulence
from a different DALES simulation (lower row). This latter, held-out set of data is also uncorrelated from any
examples encountered in the hyperparameter optimisation and has remained hidden until now. It can thus
be considered a “test” set in the traditional sense of the term [211]. The computed R2 measures on this test
set are at most 0.01 lower than on the validation data, confirming that the ANN has generalised very well.

A pattern emerges from this figure that broadly transfers to all feature sets: In general, the cross term,
which is linear in w ′, is the easiest to learn, the nonlinear Reynolds term is more challenging and the unre-
solved scales’ time derivative projection is in most settings the most difficult term to learn.

The remaining feature sets’ best configurations and performance are listed in Table 7.3. For FS3 and
FS4, larger, 1024 neuron layers increment the performance slightly compared to the previously considered
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Hyperparameter FS1 FS2 FS3 FS4 Algebraic
Hidden layers 3 2 2 2
Neurons/layer 1024 512 512 512
αl 1 ·10−4 1 ·10−4 1 ·10−4 1 ·10−4

λL2 0.0 0.0 0.0 0.0
Dropout 0.01 0.0 0.0 0.0
Optimiser NAdam NAdam NAdam NAdam
Activation ReLU ReLU ReLU ReLU
Relative batch size 0.125 0.5 0.5 0.125
R2 on test data(

ψ, ∂w ′
∂t

)
Ω

0.191 0.402 0.461 0.738 -(
∂ψ
∂z ,2w w ′

)
Ω

0.637 0.602 0.795 0.926 0.267(
∂ψ
∂z , w ′2

)
Ω

0.531 0.562 0.670 0.589 0.016

J on test data 6.31·10−4 7.95·10−5 7.46·10−5 1.62·10−5 5.58·10−3

Table 7.3: Set of ANN architectures and hyperparameters that yield the best performance on all considered feature sets.
R2 and J are listed on a test dataset of 16 columns from a different DALES dataset than was trained on.

512-neuron layers. This motivates choosing the much cheaper 512 neuron configuration (see Section 9.4
for the impact on the forward model’s cost). For FS1, the improvement is considered substantial enough to
incorporate wider layers, while this feature set also benefits from another hidden layer.

Despite these differences, the feature sets generally respond well to very similar architecture, mirroring
Section 7.2.1. However, their performance differs considerably. FS1 does not include a time history, and is

unable to represent
(
ψ, ∂w ′

∂t

)
Ω

well as a result. FS2 includes a history of two time levels, strongly improving the

term’s representation. However, this feature set does not depend on the current time level solution, curtailing
its ability to predict the cross and Reynolds terms. FS3 combines the two first feature sets and improves the
prediction further. Finally, including the Galerkin terms from the current time level gives a further improve-
ment, reflected in FS4’s high proficiency in the skill metrics. The improvement is only in terms of the linear
terms in the budget, making the non-linear Reynolds term the hardest to predict for FS4.
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Figure 7.5: Comparison of time-averaged spatial distributions of the L2 norms of the interaction terms, as predicted
by exact, ANN and algebraic models, at h/hD ALES = 6 and ∆t/∆tD ALES = 2, over 16 columns from a different DALES
simulation than was trained on. The ANN is the best FS3 model in Table 7.3.

To judge the merit of these results, they can be compared to the algebraic model. As shown in Fig. 5.17b
and discussed in Section 6.3, this model reproduces w and its statistics well, even at the coarse discretisation
considered here. However, Fig. 7.5 shows that the accuracy of the terms dramatically improves when they are
predicted by the ANN. In terms of R2 and J , Table 7.3’s right-most column further supports this observation.
As expected from the discussion in Section 6.3, the linear, algebraic model reasonably predicts the cross term’s
statistics, but bears almost no resemblance to the non-linear Reynolds term; it is much better predicted by

the ANN. The algebraic model does not account for
(
ψ, ∂w ′

∂t

)
Ω

. The ANN also predicts this term well.
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In conclusion, the optimal sets of hyperparameters ensure that all interaction terms can be learned with
an accuracy that is much higher than that of the algebraic model at the considered resolution. This accu-
racy generalises very well outside the model’s training envelope to cases where the turbulence is statistically
equivalent. The skill displayed by the models is remarkable, since the individual turbulent realisations of the
interaction terms that the ANN must predict here are uncorrelated to what it was trained upon.

7.3. Predictability as a Function of Discretisation Level
The best ANN configuration that emerges from Section 7.2 is now ready to be subjected to a number of tests
to assess its ability to learn the interaction terms in several settings, in alignment with Majda’s proposed sys-
tematic assessment of novel multiscale models (see Section 2.5.1 and Section 2.6). As proposed in Section 3.6,
the first of these tests should be to which extent the ANNs can still predict the interaction terms as a func-
tion of resolved-scale parameters when the discretisation becomes increasingly coarse. In particular, to be
promising unresolved scales models in practical situations, they must still accurately predict the terms once
the discretisation’s cutoff wavenumber kc falls in the more shallow k−5/3 range of the model problem’s energy
spectrum, as established in Chapter 6. Fig. 7.6 aids in the assessment hereof.
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Figure 7.6: Contours of R2 of an array of ANNs (top) and algebraic models (bottom) over a range of h and ∆t . The ANNs
use FS4 and the hyperparameters from Table 7.3, each trained and tested on data sampled with a different combination
of h and ∆t . All ANNs are trained on an equal number of samples, corresponding to the dimensions of the coarsest
discretisation, randomly selected from 8x8 columns. They are evaluated on 16 different, full, uncorrelated columns from
the same DALES simulation. Contour lines of constant Courant number C are superimposed.

Fig. 7.6a shows R2 of ANNs that take FS4 as input, use the hyperparameters from Fig. 7.4, and are trained
on 8x8 column datasets generated with different, single combinations of the discretisation parameters h and
∆t . Their R2 is evaluated on 16 corresponding, uncorrelated and previously hidden columns from the same
DALES simulation. The figure furthermore draws iso-lines of constant Courant number C :

C = w∗∆t

h
(7.1)

Where w∗ is a characteristic velocity. In this work, it is the maximum velocity encountered in a simulation.
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The first observation that follows from Fig. 7.6 is that the ANN model’s superiority over the algebraic
model extends to any combination of h and ∆t tested here. The algebraic model’s cross term prediction only
becomes somewhat satisfying at the finest resolutions in space and time, while its Reynolds term predictions
are practically uncorrelated from the exact values at any resolution. This clearly shows that the algebraic
model would be insufficient at the coarser scales required for atmospheric simulation where the Reynolds
term dominates, as discussed in Section 6.3. The outlook for the ANNs, however, appears more promising.

For these ANNs, three observations follow from Fig. 7.6a. First, the prediction of the interaction terms
generally improves as C becomes smaller. In particular, the unresolved scales time derivative prediction and
Reynolds term display this trend, while all terms reach their highest predictive skill at the lowest C . Second,
the improvement generally manifests itself more strongly when ∆t reduces than when h increases. Hence,
the terms’ predictability does not appreciably appear to drop off as the resolved-scales turbulence departs
the range of rapidly decaying turbulence. Finally, while the cross and Reynolds terms vary monotonically, the
unresolved scales time derivative projection displays a distinct area in which its skill drops off. Hence, the
trends observed here cannot be explained solely in terms of C .
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Figure 7.7: Amplitude distribution with kz of exact (circles), algebraic (squares) and ANN (pluses) predictions of the
interaction terms at three levels of spatial discretisation, averaged over time, for a test column. ∆t/∆tD ALES = 2.
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Figure 7.8: Amplitude distribution with kz of exact (filled circles) and ANN (pluses) predictions of the interaction terms
at three levels of temporal discretisation, averaged over space for a test column, and with kt of the time derivative term at
the two coarsest levels of ∆t . h/hD ALES = 6.

To shed more light on these three observations, the amplitudes of the interaction terms are decomposed
into Fourier modes of spatial wavenumber (kz ) and temporal wavenumber (kt ). The resulting distributions
with kz and kt of these amplitudes are plotted in Fig. 7.7 and Fig. 7.8 for exact (circles), algebraic (squares)
and ANN (pluses) interaction term predictions. These distributions mirror those presented in Section 6.3.
Fig. 7.7 shows discretisations over three levels of h, but constant ∆t , while Fig. 7.8 considers the influence
of changing ∆t at a constant h. The distributions are evaluated only for a single test column, but tests on
different test columns were not found to display very different trends.

Fig. 7.7 shows two interesting facets of the algebraic model. First, despite being unable to predict where in
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the spatial domain large-scale and small-scale variations in the interaction terms should appear (see Fig. 7.5),
the model does predict reasonable averaged amplitudes distributed over kz modes. Hence, if the turbulence
were isotropic, the model might have predicted these terms quite well. Second, despite predicting increas-
ingly deficient amplitude distributions at coarser h, the general shapes of these distributions are often better
than those of the ANNs. Nevertheless, the errors of the algebraic model remain consistently larger than those
of the ANNs, especially at coarser h.

Three factors appear to play a role in how the ANN predictions of the interaction terms evolve with dis-
cretisation and how they end up displaying the trends seen in Fig. 7.6a: i) The ANN input stencil’s relation
to the terms’ dominant scales, ii) the ANN’s structural errors and iii) the inherent predictability of the terms
as a function of their resolved-scales input. The following paragraphs aim to discuss how each of these fac-
tors could affect the interaction terms, to separate the notion of “predictability” into two components: The
predictability that results from the local stencils considered by Robijns and in this study, and the inherent
predictability that remains when the impact of these stencils is accounted for.

7.3.1. Influence of the Stencil
The ANNs are trained to minimise the interaction terms’ error in a global norm, perhaps leading one to hope
that the ANNs will be equally proficient at predicting both the small and large scales of the interaction terms,
at a specified h and ∆t . However, the ANNs’ input feature sets introduced in Section 5.4.2 are all defined on
stencils that are quite local in space and time compared to the kz and kt modes that dominate the amplitude
distributions of several terms in Figs. 7.7 and 7.8. The impact this has can be discussed on the basis of Fig. 7.9.8/9/2019 thesisStencil (3) (1) (4).drawio
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(blue line), at ∆t/2 (green line) and at 2h (red line), compared to a larger mode of length Ll (orange line). The domains of
dependence (DOD) of the stencil and the Ll mode are shaded blue and orange, respectively.

Fig. 7.9 depicts the space-time stencil of FS3 and FS4, which both include a two-level time history. The
Domain of Dependence (DOD) of this stencil at a certain time step is shaded blue. For the nonlinear convec-
tion problem at hand, w is both the solution and the local convection velocity. The blue lines in the figure
show the highest convective velocity that can be represented by such a stencil, wmax . If w > wmax , informa-
tion locally travels faster than what the stencil can detect. One can recapture this information by reducing
C , through either a reduction in ∆t (green lines) or an increase in h (red lines), or by widening the stencil.
Both lowering C and widening the stencil are expected to favourably impact kz modes close to the domain of
dependence of the stencil.

However, the nonlinearity of the problem makes it considerably more challenging to predict how kz

modes that are much more non-local than the stencil will respond to either of the above strategies. For
instance, lowering C for an unchanged, local stencil might only benefit the kz modes close to the 2h cut-
off wavenumber, kc . These are the modes that can (almost) be resolved by the stencil. Hence, their well-
posedness is expected to directly increase from reductions in C . However, if one assumes that the nonlinear
mode interaction is the strongest between modes with similar kz , the improvement in the predictability of
these high kz modes may not be felt by the lower kz modes. Fig. 7.9 shows that even at very small ∆t , the
stencil would remain too local to directly cover the DOD of a larger spatial mode of characteristic length Ll
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and spatial wavenumber kL ∝ 1
Ll

, schematically illustrated with orange shading. Hence, these larger modes
rely on such nonlinear scale transfer of information from the high kz modes around kc to be well-predicted.
However, if the prediction of low kz modes is truly separated from the high kz stencil, which one would expect
if kL << kc , improving the prediction of such modes might require explicitly including information of modes
of lower kz , closer to the scales of Ll , on the stencil.

Alternatively, one could view the inclusion of such non-local, low kz information as better constraints
on the high kz modes’ consistency with the larger kz modes of which they are a part. Since all these high kz

modes are individually predicted, such consistency could benefit the lower kz modes’ consistency. Regardless
of the exact explanation, this raises the expectation that including more non-local information on the ANN
input stencil will aid its predictive ability of the interaction terms.

This can be achieved in two ways. First, increasing h means that kc approaches kL , such that more non-
local, relevant information is available for the ANN to correctly predict the larger mode. However, the ANN
must obviously account for the projection of increasingly many modes that begin to fall below the lower kc

of such coarser h, such that it remains interesting to see the extent to which the overall predictions drop
off. Second, at a given h, the prediction of low kz modes might benefit from increasing the stencil width to
approach Ll . If its prediction truly requires non-local data, one would expect improvements from such wider
stencils to continue to materialise for these modes until the stencil width approaches the correlation length
of the turbulence Lc .

These conjectures could explain some behaviour of the unresolved scales’ time derivative projection in
Fig. 7.7a. The high kz modes of this term are accurately predicted, while the low kz that are much larger
than what the stencil can cover suffer from systematic underprediction. The low kz modes dominate the
amplitude of the unresolved scales’ time derivative projection. Hence, this offers an explanation for why it is
so challenging to learn: The ANNs are unaware of the non-local features that drive the term.

Therefore, the unresolved scales’ time derivative projection would likely benefit from non-local mod-
elling. Such non-locality is added to the ANNs’ input stencils in Fig. 7.10, which shows tests conducted with
ANNs trained on FS4 input with stencils of width Ls = h to Ls = 4h in both directions from the equation of
interest. Fig. 7.10a shows that as increasingly non-local data is accounted for, the prediction of progressively
lower kz modes substantially improves, while the high kz modes remain rather unaffected. This does not
immediately appear to reflect that the low kz modes do not feel the influence of the high kz modes, since all
low kz modes benefit from added non-locality. In fact, one could conjecture that the high kz modes are the
beneficiary from the added non-locality, while the nonlinear scale interaction in fact is strong and responsi-
ble for translating this improvement to the much lower kz . Such a view is actually not so different from the
alternative argument based on the stencil: Including information of the lower kz features of the flow explicitly
might improve the high kz modes’ consistency with these large phenomena in the ANN prediction.

Regardless of the exact underlying dynamics, the improved prediction of high-amplitude, low kz modes
substantially enhances the unresolved scales’s time derivative projection’s overall prediction. Such extensions
are much more challenging to impose on SP formulations, which confine the unresolved scales to periodic
domains embedded in a single element. Hence, SP would likely be limited in its ability to predict this term.
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Figure 7.10: Amplitude distributions with kz of the three interaction terms, predicted by ANNs with input stencil widths of
1-4h (pluses) compared to exact values (filled circles), averaged over the time dimension of a test column. h/hD ALES = 3
and ∆t/∆tD ALES = 2.

Fig. 7.7a also shows that the relative error in the unresolved scales’ time derivative projection’s low kz
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modes reduces as h increases. As these modes dominate the term’s amplitude, this improvement likely drives
the increase in R2 for the term at larger h, observed in Fig. 7.6a. Based on the above discussion, this appears to
show that the term’s prediction benefits more from having non-local input available than it suffers from hav-
ing to account for the projections of an increasing number of unresolved kz modes as h increases. This trend
is expected to continue as long as h < Lc . However, should h become so large that it exceeds the correlation
length of the turbulence, it is unlikely that adding further non-locality to the stencil will aid the prediction
further. For such cases, the unresolved scales’ time derivative projection’s predictability might begin to suffer
as h becomes even larger.

As for the unresolved scales’ time derivative projection, the cross term’s prediction error is mostly concen-
trated at low kz , far from the ANN’s domain of dependence. Fig. 7.7b shows that at coarser h, the relative error
of these modes again reduces, as kc approaches them. Similarly, Fig. 7.10b displays small improvements in
these modes as the stencil becomes increasingly non-local. In contrast to the time derivative term, however,
high kz modes that lie close to the local ANN stencil dominate the cross term’s amplitude. This means the
term suffers the least of any from the local stencil, explaining why it is i) insensitive to adding non-local input
in Fig. 7.10b and ii) the most predictable of any of the terms in Table 7.3. As C reduces through either coarsen-
ing h (Fig. 7.7b) or refining ∆t (Fig. 7.8c), especially the high-amplitude modes of high kz increasingly enter
the local DOD of the ANN in Fig. 7.9. This may explain why the cross term also benefits especially strongly
from reductions in C , as seen in Fig. 7.6a. The Reynolds term responds somewhat differently; it is treated on
its own in Section 7.3.3.

The paragraphs above show that increasing the non-locality of the input stencils presented in Fig. 7.10
improves the ANN’s predictive ability. Their use is therefore recommended in future work. However, they do
not feature in simulations of the forward problem, as they are unlikely to impact the answers to RQ3.

With respect to the temporal dimension, FS3 and FS4’s stencils are also rather local: They only include
the smallest, 2∆t kt mode. This is very general for problems with rapidly changing statistical states, but may
prevent the ANN from appropriately predicting the lower kt modes of the problem. The ANN’s knowledge
of these modes would be even less if ∆t reduces further and the stencil becomes even more local. However,
reducing ∆t also reduces C , such that high kz modes around the cutoff wavenumber become better-posed.
This actually results in improvements in the predictions of especially these modes in Fig. 7.8c and Fig. 7.8d
(the unresolved-scales time derivative projection is considered in the next subsection). Furthermore, increas-
ing the time history of the stencil from no history (FS1) to the 2∆t history of FS3 and FS4, actually has little
influence on the low kt modes, as evidenced by Fig. 7.11. This may be because the stencil is still almost a
decade of kt removed from the scales that matter to the terms’ predictions, which would prevent their accu-
rate prediction under a similar assumption of scale separation as discussed for the spatial modes above. If
this conjecture is true, these terms would likely require ANNs with very long-term input stencils, or statistics
of their history, for their prediction to meaningfully improve at the time resolutions considered here. Such
time histories have the added benefit of grounding the ANN predictions in long-term dynamics in online
settings, which could prevent them from suddenly digressing the solutions of such problems from physical
regimes. This will be shown in Section 8.3.4 and considered further in Section 9.1.
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Figure 7.11: Amplitude distributions of the three interaction terms with kt , predicted by ANNs with 0-2∆t input his-
tory stencils (pluses) compared to exact values (filled circles), averaged over the space dimension of a test column.
h/hD ALES = 3 and ∆t/∆tD ALES = 2.
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7.3.2. Influence of Structural Errors
The time-discretisation trend of the unresolved scales time derivative projection cannot be immediately ex-
plained by the stencil. As seen in an integral sense in Fig. 7.6a and in the modal decompositions in Fig. 7.8b, its
error is small at both large and small ∆t , and larger at the intermediate discretisation level. Fig. 7.8a suggests
that this may be due to the combination of two factors.

First, all the predicted amplitude distributions are without exception overly “shallow”: The ANNs struc-
turally tend to underestimate how much the terms’ amplitudes change over their kz and kt modes, resulting
in rather “flat” distributions. The terms’ total time-averaged amplitudes are also generally underpredicted, as
can also be seen in Fig. 7.5. Such systematic ANN error in problems with multiple active scales is commonly
associated with improper normalisation of their input data or lack of statistical generalisation. However,
these ANNs’ inputs have been appropriately normalised (see Section 5.4.1), while the study has attempted
to be rather careful not to fall in a biased generalisation trap. Furthermore, switching to a standardisation
scheme, removing the normalisation entirely or testing on a larger set of columns has not been found to
affect this underprediction. Hence, it appears to be a feature of the ANNs trained here.

This is a concerning observation, since ANNs generally derive their strength from their ability to extract
multiscale features from a problem. In fact, this is one of the stronger arguments for their use as turbulence
models [139]. However, even this could be due to stencil locality: The ANN’s weights and biases might be
optimised only for the local features that can be represented on a narrow stencil. In support of this hypothesis,
Fig. 7.10 shows that when increasingly non-local features are included, the shallowness is largely remedied.
This conjecture is also in line with recent attempts to reconstruct full energy spectra from only large-scale
variables with CNNs [76]. These distributions are also overly shallow and biased towards the magnitudes of
the scales they were taught by.

The shallowness of the amplitude distributions has an interesting impact on the prediction of the low kt

modes of the unresolved scales’ time derivative projection when ∆t/∆tD ALES increases from 4 to 8. Fig. 7.8a
shows that at ∆t/∆tD ALES = 4, the model overpredicts the long-term kt modes of the term, possibly due to
a lack of history in the stencil. However, hiking ∆t/∆tD ALES to 8 raises the amplitudes of the exact low kt

modes to the same order of magnitude as the remainder of the unresolved scales’ time derivative projection’s
scales. This somewhat luckily positions them at the order where the ANN already guessed they should be,
based on its high kt stencil. In turn, this suddenly improves the term’s correlation in a rather unexpected
manner. Similar unexpected responses could of course occur in different regimes of the turbulence and the
discretisation, even though they are not observed elsewhere in this study. Hence, the trends observed here
and the conclusions drawn from them should be treated with the care that a system with such nonlinear
behaviour demands.

7.3.3. Inherent Predictability
The importance of correlation to the resolved-scales input can be appreciated by considering the Reynolds
term’s distribution with kz in Fig. 7.7c. In similar fashion to the cross term, the Reynolds term’s amplitude
peaks at the cutoff wavenumber, where the ANN stencil operates. However, this term is the pure product
of unresolved scales interactions and is therefore in general less dependent on the resolved scales variables
that live close to the grid cutoff than the linear cross and time derivative terms. This might be the reason
why its high kz modes are worse-predicted than its low kz modes, and why it displays a more uniform error
distribution over kz that constantly improves as the input stencils are widened in Fig. 7.10c. As shown in
Fig. 7.8d, reducing the time step again positively impacts especially the high-amplitude kz modes.

In contrast, the error does not worsen at increasingly coarse spatial resolution, despite the rising promi-
nence of higher-order contributions from the infinite cascade of linear problems that result from the unre-
solved scales’ nonlinearity. This is very encouraging, because as h increases i) the nonlinearity traditionally
makes the Reynolds term increasingly ill-posed, but ii) the term also becomes progressively more important
and would be the dominant contribution at the unresolved scales of a much larger scale model [222]. How-
ever, since Fig. 7.10c shows how the Reynolds term benefits from added non-local input, the addition of such
input as h increases may outweigh a loss in inherent predictability, in similar fashion as what was observed
for the unresolved scales time derivative projection. Once h > Lc , the term might therefore start to become
worse predicted. Hence, tests on datasets with a range of kz modes larger than the turbulence’s correlation
length should be carried out to confirm whether the predictability of the Reynolds term remains high even at
the scales of larger-scale atmospheric models.
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7.3.4. Outlook
Summarising, the ANN predictions of the interaction terms remain dramatically better than those of alge-
braic models at all the levels of discretisation that have been considered in this study. This improvement in
predictability remains regardless of which stencils are chosen. The local input stencil appears to facilitate
decent predictions of the smallest scales of the interaction terms, which does not harm the cross term pre-
diction, but is detrimental to the unresolved scales’ time derivative projection. In contrast, the Reynolds term
appears to be more directly dominated by its weaker relation to the small, resolved scales. All terms respond
favourably to reductions in C , which improve the well-posedness of the high kz modes of the terms. The ex-

ception is the non-monotonic region in
(
ψ ∂w ′

∂t

)
Ω

, which should serve as a cautionary note on the generality

of these trends and their explanations.
In all, the individual terms’ predictability does not appear to suffer inherently from coarser discretisation.

However, this might change once h > Lc . Furthermore, as the magnitude of the unresolved scales projections
is redistributed from the well-predicted cross term to the worse-predicted Reynolds term at coarser h, the
overall error in the unresolved scales’ projections does in fact increase when h increases. As the contributions
of the interaction terms relative to the Galerkin terms will also only increase at larger h, this does mean that
the overall model error rises and that forward simulations may increasingly fall prey to those errors.

Robijns operated ANNs with local stencils that trained at C an order of magnitude less than the smallest
numbers presented in Fig. 7.6a and ran simulations on problems with a much narrower range of scales than
those considered here [209]. Therefore, while displaying considerable success in simple settings, Robijns’
architectures are unlikely to be fully adequate to the model turbulence problem.

Finally, note that no tests have been conducted in this section to establish whether the ANN predictions
of the interaction terms generalise with respect to different h and ∆t combinations. Robijns showed results
where the ANNs do appear to generalise with respect to h and Re [209]. It is obviously interesting to see
whether this translates to the more realistic turbulence problem considered here. However, it is considered
a second priority in this study, behind ensuring that the offline results presented in this section translate to
online simulations. Therefore, such tests will not be carried out.

7.4. Conclusions
This chapter has ventured to answer RQ2. RQ2.1 is dealt with in Section 7.2, which finds that wide, shallow
ANN architectures with ReLU activation, trained to minimise J without weight regularisation or dropout are
beneficial for learning the interaction terms of the model problem in a priori simulations. Adding a time
history to the feature set strongly improves the prediction of the unresolved scales’ time derivative projection,
while including the Galerkin terms as input features further improves both the prediction of this projection
and that of the cross term. The models are relatively proficient at reproducing the exact statistics of the
interaction terms outside their training envelope and significantly outperform their algebraic counterparts.
However, the terms are less impressively learned than for Robijns’ simple problem and systematically err on
the low side, with potential implications for the forward problem.

In answer to RQ2.2, the interaction term predictions considered here do not display a significant dropoff
in predictability when they must account for an increasing number of increasingly energetic spatial or tem-
poral unresolved scales, outside their training envelope. Rather, the observed predictability changes in the
terms are ascertained to depend on the stencil of an ANN input’s relation to the scales of the problem: The
local stencil facilitates good prediction of the smallest resolved scales on the grid, favouring the cross term’s
modal distributions. All terms but the unresolved scales’ time derivative projection’s response to ∆t improve
with lower C , as the stencil’s domain of dependence encapsulates an increasing number of high kz modes.
In spite of the individual terms remaining well-predicted, the inherently more ill-posed and worse-predicted
Reynolds term will increasingly dominate the interaction terms’ contribution at lower h, which itself will
begin dominating the resolved scales terms. Therefore, the modelling error associated with the term could
eventually become sufficiently substantial that it may overshadow forward simulations of the resulting nu-
merical model.



8
Properties of VMM-ANNs: Simple Problem

The previous chapter ascertained that relatively simple ANN architectures based on local data stencils of
the resolved scales possess considerable skill in learning the interaction terms of a VMM for the Boussinesq-
forced test case, and that the potential for the resulting VMM-ANN models to improve state of the art algebraic
models and possibly SP is therefore vast. However, for this potential to materialise, the models must translate
their skill to forward problem simulations. This is the topic of RQ3, which is answered in the upcoming two
chapters.

The forward problem introduces two additional dimensions of which the ANNs trained on error-free data
in offline settings are unaware and to which the field has paid relatively little attention so far. First, the nonlin-
ear nature of the problem requires the iterative Newton procedure outlined in Section 5.5.1 to be carried out
in each time step. To consistently couple the resolved and unresolved scales, the ANNs are here included in
this procedure, although it is a dimension that the ANN never encountered in generating the results in Chap-
ter 7. Second, the ANNs will inevitably introduce modelling errors, which means that their input in online
simulations will become polluted by the errors they themselves induce. However, the ANNs have only been
trained on exact data from the statistical envelope of the DALES-generated turbulence. One might therefore
expect these two dimensions to introduce new and interesting hurdles for the models to clear, which in turn
might have contributed to the lack of generalisation and stability observed in previous ANN unresolved scales
models (these were discussed in Section 3.5.3).

The following two chapters will answer the three subquestions of RQ3. First, they will confirm that the
added, unknown dimensions of the forward problem render the simple ANNs from the previous chapter
insufficiently informed to capitalise on their considerable promise. They will show that this results in the
VMM-ANNs missing two fundamental prerequisites of numerical models, as presented in Section 3.5.3: A
unique solution is not always attainable, and even when it is, the model does not continuously find the unique
solution throughout its running, yielding instability. This answers RQ3.1. The chapters will furthermore show
that traditional approaches to improve the forward simulations are insufficient to remedy these fundamental
flaws, suggesting that the added dimensions of the forward problem must be addressed at their root for the
encouraging results from Chapter 7 to translate to online running. This answers RQ3.2. Finally, the models’
computational cost is considered, in answer to RQ3.3.

Uniqueness and stability are properties that the model should possess independently of an ANN’s pre-
diction accuracy. Hence, this chapter first eliminates the prediction error and focusses on the impact of the
iterative procedure. It returns to the manufactured solution problem, for which the terms are predicted close
to perfection and the solution can be almost perfectly attained, as shown in Section 5.5.7. This also allows
analysing the model’s properties in a setting where they can be understood.

This chapter considers RQ3.1 and RQ3.2, beginning with an assessment of the model’s uniqueness and
stability characteristics in Section 8.1 and Section 8.2 over much more conventional levels of discretisation
and Courant number C than considered in [209]. These sections identify two main failure modes of the model
and suggest underlying causes, while Section 8.3 investigates which parameters of the simulations do and do
not affect these properties.
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8.1. Uniqueness
Section 5.5.1 introduced the nonlinear nature of the weak residual Rwi and the corresponding necessity to
solve for the degrees of freedom that minimise its L2 norm iteratively. Assuming the ANN were a linear oper-
ator L, Rwi would be a coupled set of quadratics in [ai−1, ai , ai+1] for the chosen basis, where each quadratic
is a function of three unknown amplitudes:
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Where K contains all ANN input features that are not functions of the unknown amplitudes, such as in-
formation from previous time steps (e.g. an

i and an−1
i ). The uniqueness of any wn+1 hinges on the number

of real roots that Eq. (8.1) prescribes for Rwi . Bézout’s theorem limits how many such roots there can be
[225]. In its base form, this theorem states that a pair of polynomials X1 and X2 of degrees d1 and d2 that have
less than infinitely many common points has a number of intersections equal to the product of their degrees
d1d2, if one counts intersections at infinity, in the complex plane and of higher multiplicity than 1. This may
be generalised to higher dimensional systems: Assume one has n homogeneous polynomials in n +1 vari-
ables of degrees d1, . . . ,dn . These polynomials form n “hypersurfaces” in a projective space of dimension n.
If a finite number of hypersurface intersections exists within a “ground field” that is algebraically closed, the
exact number of intersections is d1 ·d2 · · ·dn , if one again counts intersections at infinity, in the complex plane
and of higher multiplicity than 1. In this context, Bézout’s theorem provides an upper bound to the amount
of real roots that ‖Rwi ‖2 might have in terms of the number of elements of a discretisation nel : 2nel−1.

While the number of solutions to Eq. (8.1) is therefore exponential in its number of spatial degrees of
freedom, this often has no practical implications. There are two reasons for this. First, infinity and complex
roots occur often, but are also often excluded from the numerical method’s possible solution set. Multiplicity
roots are practically speaking of no concern. Second, even when multiple roots materialise in the numerical
method’s solution space, the problem can remain practically unique if the spurious roots are sufficiently far
removed from the physical basin of attraction that a well-initialised problem never encounters it.

To analyse the uniqueness of the VMM-ANN in particular and the Newton procedure it must negotiate in
every time step in general, it is instructive to map the response of ‖Rwi ‖2 to two degrees of freedom. Hence,
the problem is reduced to three-element discretisations with two fixed boundary nodes and two degrees of
freedom a1 and a2. These amplitudes are illustrated at an instance in time in Fig. 8.1, along with the piecewise
linear bases ψ that weight them, the resulting w , the continuous solution w and the w ′ that results.

0 e0 1/3 e1 2/3 e2 1
z

a1 a2 w
i

w
w′

Figure 8.1: Finite element discretisation of the manufactured solution problem with two degrees of freedom.

This discretisation gives rise to response surfaces of ‖Rwi ‖2 in a1 and a2 at each time step, such as those
presented in Fig. 8.2. The ANNs trained to close this model display the near-perfect learning behaviour pre-
sented in Fig. 5.13. Hence, these ANNs are expected to predict Rwi ’s roots nearly perfectly if they are given
correct input and remain within the confines of the manufactured solution that the model was trained on.
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Figure 8.2: Response surfaces of ‖Rwi ‖2 for a manufactured solution problem with two degrees of freedom a1 and a2.
They derive from simulations where ∆t = 2, h = 1

3 and C = 1.2. The ANN’s structure is the same as that of the FS3 model
in Table 7.3.

Fig. 8.2 shows ‖Rwi ‖2(a1, a2) when exact, algebraic and ANN models predict the interaction terms. The
responses are displayed for the first time step at which the unresolved scales model is active1, such that the
plotted convergence paths of each simulation originate from the same initial condition and can be compared.

Fig. 8.2a shows that the exact model has a single, well-defined root. This may be understood by returning
to Eq. (8.1). When an exact model for Î is prescribed, it exactly specifies what the terms should be and is
not a function of the problem’s degrees of freedom. Therefore, it does not affect the problem’s order, but
interestingly also does not display more than the single, correct root, to which the solution converges. It is an
example of a situation where only a single root appears in the real, finite space of solutions to Eq. (8.1).

In contrast, the algebraic model’s input depends on an+1
i through Rs and τ (see Eq. (5.30)). Furthermore,

it does so in a nonlinear manner, by multiplying Rs with a nonlinear τ. This allows the model to affect the
problem’s roots more profoundly, illustrated by the appearance of a second root of ‖Rwi ‖2 in Fig. 8.2b. Prac-
tically speaking, however, this is not of much concern, for the following three reasons. First, the spurious
root and its attractor boundary are situated relatively far from the domain where the model operates; in the
language of complex systems, the model is relatively resilient [216]. Second, the gradients of ‖Rwi ‖2 remain
smooth, such that it is unlikely that the model’s Jacobian will induce large, unexpected excursions that might
cross the attractor basin’s boundary. Finally, the model’s Jacobian is highly commensurate with its predicted
space of ‖Rwi ‖2, such that up-to-date Jacobian guesses direct the model very proficiently towards its root
from any initial condition. This yields rapid convergence, and makes attractor switches due to bad gradient
predictions very unlikely. Hence, the algebraic model remains practically unique.

Despite these attractive characteristics, the algebraic model mispredicts the root of ‖Rwi ‖2 with respect
to the exact model (indicated by a black square in the response surfaces in this chapter). The ANN estimate
of Î returns a much better guess of the position of the root with respect to the exact solution. Fig. 8.2c shows
that this estimate nearly coincides with the root, as the near-perfect training of the model would lead one
to expect. However, the figure also displays the model’s adverse characteristics in the same three categories
that left the algebraic model practically unique. First, it shows the appearance of a second root. However,
in contrast to the algebraic model, this root’s attractor boundary lies much closer to the correct root, making
it likelier for the model to converge to the spurious solution. Second, its Rwi space is highly nonlinear, with
strong, local gradient changes and even discontinuities appearing. This makes converging the model a highly
challenging procedure, where sudden, large mispredictions of the Jacobian that could drive the model far
from its desired root are likely. Finally, the model’s algebraic Jacobian does not match this distorted Rwi

space well, orienting the iterative increments to a1 and a2 in the wrong direction. In Fig. 8.2c, this brings the
solution very close to spilling over into the wrong attractor and converging to the spurious root. Hence, this
direct ANN model for the interaction terms does not appear to be practically unique.

One may identify two facets of the VMM-ANNs’ non-uniqueness. The first is laid bare by reducing the
ANN to a linear operator, as assumed in Eq. (8.1), and simplifying the ANNs’ architecture. This can be done

1This is the third time step. Exact closure terms are employed in the first two time steps, see Section 5.5.5
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by replacing their non-linear ReLU activation functions with linear transformations from layer n to n +1:

xn+1
i =ωn

i j xn
j +bn+1

i (8.2)

The simplest ANN model for such a situation consists of a single hidden layer with a single node that
linearly transforms a sum of the input features to the output features. Such a model is illustrated in Fig. 8.3a.
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Figure 8.3: Response surfaces of ‖Rwi ‖2 for a manufactured solution problem with two degrees of freedom a1 and a2 for
ANN models with a linear activation function. They derive from simulations where ∆t = 3, h = 1

3 and C = 1.8. The ANNs
have a single layer with varying numbers of neurons and take FS3 as input.

A single-neuron, linear model is incapable of good predictions, as one might expect. However, it also
possesses only a single root, likely because the ANN is unable to add much complexity to ‖Rwi ‖2. However,
adding a second neuron to this model’s hidden layer is already sufficient to make Bézout’s upper bound of
four roots spread out into the real space that the VMM-ANN might converge to. For this simple problem, they
are well-spaced and adding further neurons to the layer tends to spread the roots farther apart, as shown in
Fig. 8.3c. However, such “root spreading” is concerning and has real implications, as seen later in this chapter.

The second aspect of the VMM-ANN’s non-uniqueness is introduced by restoring the nonlinearity to the
ANN. Since ANNs commonly derive their strength from being a highly nonlinear map from their input to
their output and Section 3.3.4 and Section 6.1 established that linearised models of the unresolved scales of
the turbulence problem at coarse discretisation will not suffice, the model must likely possess such nonlin-
earity to be useful. However, the implications of sequentially reintroducing the nonlinearity are illustrated in
Fig. 8.4, which considers a simplified model architecture of two neurons in two hidden layers ([2,2]).
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Figure 8.4: Response surfaces of ‖Rwi ‖2 for a manufactured solution problem with two degrees of freedom a1 and a2 for
[2,2] ANN models with various degrees of nonlinearity. They derive from simulations where ∆t = 3, h = 1

3 and C = 1.8.
The ANNs take FS3 as input.
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Fig. 8.4a illustrates the fully linear model, which still displays 4 roots. As will be discussed in Section 8.3.3,
Robijns found that limiting the ANN predictions to the maximum and minimum values of their training
dataset may aid the convergence of the nonlinear procedure. However, Fig. 8.4b illustrates that adding such
nonlinear limiters to the linear ANN completely distorts the Rwi space and in fact adds a root. Finally,
Fig. 8.4c shows that substituting the linear activation functions for ReLUs again further complicates the Rwi

space and that another root is added.
These simple networks illustrate that once the model for Î is left to ANNs of much higher nonlinearity than

the second order polynomials in an+1
i that predict the Galerkin terms, Bézout’s theorem no longer bounds the

maximum number of roots of ‖Rwi ‖2. Even though these ANNs predict the correct root well, they can and
do introduce more roots. More worryingly, more roots appear as the model’s nonlinearity increases, and they
often cluster increasingly closely together (pay particular attention to the comparative axis scales in Fig. 8.4).
In Fig. 8.4c, this would require the solution to travel across an attractor with a spurious root to arrive at the
correct solution, an obvious impossibility for Newton methods. Finally, the added nonlinearity highly distorts
the gradients and distribution of attractors in the Rwi space. Therefore, the solution in Fig. 8.4b converges
to a spurious root, despite being initialised closest in Euclidian distance to its correct root. Even the linear
model’s weak residual space presented in Fig. 8.4a is sufficiently incommensurate with the model’s Jacobian
that the solution is driven to infinity, instead of converging to the correct root.

If the spurious roots would appear very close to the correct solution, even this non-uniqueness might
not have been too concerning to a pragmatist if the solution prediction remains adequate. However, even
for Fig. 8.4c, where the spurious root is not overly far removed from the correct root, the wrong prediction is
damaging enough for the next time step to no longer represent anything close to the correct roots. This leads
both the limited linear and fully nonlinear ANNs to diverge in the time step after that plotted in Fig. 8.4.

In all, direct VMM-ANNs as considered by Robijns [209] are non-unique in very problematic ways. Linear
ANNs already tend to bring out the maximum number of roots of the nonlinear problem, while further roots
beyond the Bézout bound are introduced as the ANNs’ nonlinearity is restored and extended. The roots are
often closely clustered and their surrounding attractors highly distorted, leading to attractor switches and
consequent divergence of the models.

This will not have shown up in Robijns’ studies of the model’s sensitivity to noisy and biased predictions
of the interaction terms, as these cases still employed an exact model for the terms with only a single root
[209]. However, it does not explain why the model often remained stable and successful in that study or in
Section 5.5.7. This will be addressed next.

8.2. Stability
Stable simulations should be continuous and well-defined, in the sense that small perturbations to the input
data should only yield small perturbations to the output data [111]. Given that all input to the models is finite,
this definition encompasses divergence of the model to infinity. In this light, the weak residual spaces of the
VMM-ANNs presented above are clearly not stable. This is due to the large number of attractors that present
themselves in the VMM-ANN’s weak residual space and the model’s inability to successfully navigate such
a space, leading to wildly different outcomes of the models if they are pushed over the boundary of a basin
of attraction. As soon as such an attractor switch occurs, the models tend to wander off in unpredictable
directions and rapidly grow to infinity. Therefore, the traits that give the mode its non-unique character are
also factors driving its instability.

The simulation results presented in Section 5.5.7, however, were exceptionally proficient, leading one
to question what else governs the stability of the VMM-ANNs. An answer to this question would also answer
RQ3.1 more comprehensively. The question is therefore treated at present. For linear models, one could anal-
yse stability analytically by means of a Von Neumann analysis [111]. A more common approach for nonlinear
problems, such as the problem at hand, is to evaluate the energy balance of the model. However, as explained
in Section 5.3.1, it is not in general possible to evaluate the contribution to the resolved-scales energy balance
when the interaction terms’ sum over elements is predicted by the ANN, rather than their element contribu-
tion. Therefore, this section limits itself to a direct analysis of the problem, presented in Fig. 8.5 and Fig. 8.6,
while Section 8.3.3 gives an interpretation of the energy evolution for the simple problem. This still creates
a window through which the inner workings of the instability may be seen, though follow-up work should
ideally conduct the analysis in terms of the energy balance directly.

A primary driver of when instability manifests itself appears to be C . Fig. 8.5 shows the temporal evolution
of the three degrees of freedom that were predicted well at the end of Section 5.5.7, at three increasingly
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Figure 8.5: Temporal evolution of the three degrees of freedom a1, a2 and a3 at increasing∆t of simulations with h = 0.25,
closed by ANNs of shape [512,512] taking FS3 as input. C = [1.2,1.4,1.6] for ∆t = [1.50,1.75,2.00].

coarse time discretisations. As C increases through increments to ∆t , the models start to diverge, and do so
progressively early in the simulation. At ∆t = 1.5 (C = 1.4), divergence occurs in the 2h mode: After a period
of several time steps in which a2 is slightly mispredicted, the error carries over to the neighbouring modes
and the solution is driven to ±∞. The model that runs with the largest time step, ∆t = 2, has C = 1.6 and
diverges straight to infinity from a seemingly well-predicted state.

Hence, there are two distinct versions of the instability; both are presented below with the aid of Fig. 8.6.
This figure yet again shows ‖Rwi ‖2(a1, a2) for a problem with two degrees of freedom, where C varies between
0.6, 1.2 and 1.8 in its three windows, i.e. it is a different problem than presented in Fig. 8.5. Fig. 8.6 shows the
first time step, ne , in which the models’ prediction error exceeds 1 ·10−4, an order of magnitude larger than
the largest error observed in the near-perfect cases in Section 5.5.7. Note that similar to the time at which
instability sets in, ne reduces as ∆t rises: From 120 time steps for the fine model, through 21 steps for the
intermediate model, to only 13 steps for the coarsest model.
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Figure 8.6: Response surfaces of ‖Rwi ‖2 at the time step ne , when the solution’s EL2 > 10−4 for the first time, for three

increasing ∆t . The spatial grid spacing is h = 1
3 , while the ANNs take FS3 as input and have a [512,512] structure.

The first version of the instability is directly associated with the nonlinearity of the weak residual space. It
is illustrated in Fig. 8.6c. Within a full period T of the sine wave, the problem becomes increasingly ill-posed
as∆t increases (when∆t > T , this perfectly periodic problem is identical to one with a time step of∆t−T and
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should therefore behave similarly as when∆t < T ). In particular, for increasing∆t , the initial prediction of a1

and a2 will on average be farther from its correct solution, requiring the model to traverse progressively long
distances through the weak residual space to find a root. This makes it much more likely that a spurious root
is encountered along the way, or that the model comes across regions where bad gradient predictions drive
it to infinity. This is exacerbated by the weak residual space, which itself becomes less workable at larger
∆t : In Fig. 8.6c, multiple, clustered roots again appear and the gradient predictions become increasingly
erratic. Given that the largest ∆t model presented in Fig. 8.5 departed from a near-perfect initial condition,
but diverges in the time step after that plotted here, it is conjectured that an ill-posed weak residual space is
the primary driver behind the direct divergence to infinity of that simulation also.

The second version of instability is the unstable propagation and accumulation of errors. This instabil-
ity makes single modes in the intermediate-level discretisation in Fig. 8.5 grow, leading them to diverge the
Newton procedure. Fig. 8.6a and Fig. 8.6b show the response surfaces associated with the onset of such in-
stabilities. They are not related to the ANN’s distortion of the weak residual, as the models converge well to
the prescribed root. However, the figures show that the root itself is wrongly positioned. These appear to
be “genuine” model errors. Although they initially quite small, these errors increase over several time steps:
The ANN makes an error, this feeds lower quality input back to the ANN in the next time step and further
deteriorates the predictions. A point is then quickly reached where the initial condition for a time step is suf-
ficiently far removed from the training space of this non-generalised model that no roots can be found and
the simulation diverges.

While erratic behaviour is expected of the model once the solution leaves the region of data where the
model was trained, it remains unclear why the model, which is excellent when operating inside the training
space, begins displaying errors at all. In fact, avoiding modelling error was a primary driver for consider-
ing the near-perfect, simple manufactured solution problem in this chapter. It is therefore interesting that
the onset of instability appears to potentially result from very small errors, and that it grows in a fashion
reminiscent of classical small-scale mode growth associated with unstabilised finite element methods [34].
However, consider that the problem has no mechanism of dissipating energy from such modes other than
the interaction terms themselves. This means that any error in the terms on the overly energetic side must
be compensated by an equal error on the dissipative side for the simulation to remain stable. Instead, as will
be discussed in Section 8.3, the errors tend to reinforce themselves due to the nature of the problem and the
interaction terms. Without the explicit inclusion of an operator that dampens the rising modes, the model
has no way of remaining stable and has no choice but to blow up.

In summary and in the context of RQ3.1, the two dimensions of the forward problem that are added to the
offline problem in this chapter are observed to correspond to two sources of instability: Those engendered
by an ANN-induced, ill-posed weak residual space and those driven by self-reinforcing error accumulation.
These sources explain the instabilities observed by Robijns, and suggest why that study by and large managed
to run stable calculations at very low C for very well-trained ANNs in the context of a simple problem. To
simulate more complex turbulence at higher C , these instabilities must be addressed. This is the topic of
RQ3.2, whose study begins in the next section.

8.3. Improvement Attempts
To address the characteristics found and the concerns raised by the two previous sections, the following sec-
tions focus on several strategies that attempt to improve the identified drawbacks of the model, concentrating
on RQ3.2. They assess which modified VMM-ANN architectures constitute better platforms to translate the
offline performance to online simulations, and which do not. Sections 8.3.1 to 8.3.3 first focus on whether
it is possible to improve the forward simulation’s architecture somewhat to better navigate the nonlinear
weak residual space, through the introduction of adaptive relaxation, a better Jacobian and limiting schemes.
Next, Sections 8.3.4 to 8.3.7 consider the influence of the ANN’s design within the model, by gauging the in-
fluence of different time stencils, by including the nonlinear procedure in the ANNs’ training space and even
by replacing the direct ANN with an explicit, order-controlled scheme, which can also be posed as a hybrid
formulation with the algebraic model.

8.3.1. Adaptive Relaxation
The VMM-ANNs in the previous sections often diverged due to overambitious steps along a predicted gra-
dient direction, which landed the models in regimes where they converged to spurious roots or directly di-
verged. Another, somewhat related failure that is often encountered is shown in Fig. 8.7. Here, the model
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previously considered in Fig. 8.4c oscillates around three of its roots, without ever converging to any of them.
Fig. 8.7a shows that the strong oscillations of the solution are reflected in the interaction terms. These change
strongly between single CPs for both degrees of freedom, which induces large, sudden changes in the mag-
nitude and direction of the CP solution vector ∆ai . These consequently fail to drive the solution towards any
root.
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Figure 8.7: The impact of adaptive relaxation on convergence of Rw for a [2,2] ANN model for Î with ReLU activation
functions and FS3 as input. Blue lines signify convergence without any relaxation, orange lines are adaptively relaxed
with τr = 1 ·10−3 and green lines with τr = 1 ·10−4. The simulations are run with ∆t = 3, h = 1

3 , C = 1.8, and the algebraic
Jacobian.

If one consults Appendix C.3, one will see that the iterative Newton procedure can be understood as a
forward Euler discretisation of a continuous problem that should monotonically decay the weak residual to
the root of the basin of attraction in which it is initialised. This stands clearly in contrast with the oscillating
convergence paths in Fig. 8.7. In Appendix C.3, adaptive relaxation of the Newton procedure is identified as
an interesting solution. Such relaxation prevents large, uncontrolled steps in the highly nonlinear portions of
the space, where monotonic convergence towards the nearest root is desired. At the same time, it allows large
steps once the model approaches a root. The effects of adaptive relaxation with two different scales of its free
parameter τr are shown in Fig. 8.7.

For the displayed case, adding increasing levels of adaptive relaxation progressively manages to rid the
Newton procedure of its oscillating behaviour. Smaller allowed deviations from the continuous convergence
path yield more monotonic behaviour, despite requiring more CPs to converge the model. However, Fig. 8.7
also shows that adaptive relaxation i) still cannot guarantee convergence to the correct root and ii) cannot
even guarantee convergence to the root of the attractor in which the time step is initialised, the lower left root
in Fig. 8.7b.

8.3.2. ANN Jacobian
The second of the drawbacks that remain when running with relaxation can be amended by addressing the
Jacobian prediction. In the above sections, many cases could have continued converging to correct roots
for several time steps if they were correctly steered. However, because the weak residual spaces of ANN-
closed models differ so substantially from those predicted by algebraic models, the algebraic Jacobian cannot
faithfully represent the gradients of the ANN-closed model, leading the simulations into spurious attractors
or even to infinity. Therefore, the ANN Jacobian elaborated on in Section 5.5.4 is introduced to the model
here. Its effects are illustrated by Fig. 8.8.

The figure displays relaxed convergence for the same case as in the previous section, with three different
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3 , C = 1.8, and τr = 10 ·10−4.

Jacobians. Substituting the algebraic Jacobian’s cross and Reynolds term contributions for their ANN coun-
terparts (blue and orange lines) improves the convergence, highlighting the extent to which these terms are
differently predicted when an ANN is embedded in the model. However, this is still insufficient to restrain the
model from proceeding into the wrong attractor.

The prevention of an attractor switch is only achieved once the model employs the full ANN Jacobian,
including the unsteady unresolved scales projection’s contribution (green line). Once this is included, the
model converges to the root of its initial attractor along a relatively straight convergence path. This suggests
that directly embedding ANNs in the Newton procedure requires employing relatively high-fidelity versions
of the Jacobian that must be continuously updated within a time step. Note that in achieving the correct
convergence, the interaction terms related to a1 have not changed; the only change is in the prediction of
the interaction terms to a2. This shows how the misprediction of a single mode’s interaction term is in fact
sufficient to drive the entire solution to the wrong root.

In general, including the ANN Jacobian often helps preventing spillover into wrong attractors and diver-
gence of the Newton procedure, though it cannot guarantee this. It yields better guesses for ∆ai , such that
less relaxation is required for convergence. The combined effect reduces the number of CPs required to con-
verge the model at any time step. However, as will be discussed in Section 9.4, its net effect is still an increase
in computation time, as it requires four additional ANN evaluations per element.

While this section shows the ANN Jacobian’s proficiency, it also immediately highlights its limits. While
helping the model converge to the nearest root of the weak residual, this is still not the correct root. The in-
ability of any Newton method to deal with this situation in the presence of an ANN closure therefore remains
a fundamental flaw that simple fixes to the traditional numerical model’s architecture cannot solve.

8.3.3. Limiting schemes
One way of deterring the ANNs from sabotaging the iterative Newton procedure was suggested by Robijns:
He found that limiting ANNs to their training domain with nonlinear cutoffs was beneficial to bound the
ANN predictions of the interaction terms during the iterative procedure [209]. When normalised, this study’s
training domain’s limits are -0.5 and 0.5 (see Section 5.4.1). However, the limited ANN prediction Iil could be
cut off at any [Imi n , Imax ]:
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Îil =


Imi n , Îi ≤ Imi n

Îi , Imi n < Îi < Imax

Imax , Îi ≥ Imax

Such cutoffs were only intended to constrain the CP sequence and not to affect the roots of the residual.
However, Fig. 8.4 showed that they have the potential to strongly distort the entire weak residual space and
exacerbate the non-uniqueness problem as a result. Nevertheless, they are gauged here because they do
appear to influence the stability problem in an interesting manner.

Their effect is illustrated by Fig. 8.9. This figure displays the time evolution of the three modes of a 4
element discretisation, along with their predicted interaction terms, for three simulations that are relaxed
and use the ANN Jacobian. The first of these does not employ limiters and diverges after 7 time steps.
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Figure 8.9: Temporal evolution of the three degrees of freedom a1, a2 and a3 when the components of Î are nonlinearly
limited, for simulations run with h = 0.25, ∆t = 2, C = 1.6. Î is predicted by an ANNs of shape [512,512], taking FS3 as
input.

The second is limited to only allow normalised ANN predictions of the unsteady unresolved scales pro-
jection between [0.0,0.5]. This is an interesting case, because for the manufactured sine problem considered
here (Eq. (4.9)), w is strictly positive and ∂w

∂t is in direct opposite phase to w . This latter observation can be

seen in Fig. 8.9, where
(
ψ, ∂w ′

∂t

)
Ω

, which follows ∂w
∂t , is in opposite phase to w . For each mode,

(
ψ, ∂w ′

∂t

)
Ω

’s

contribution to the problem’s resolved-scale energy balance is −
(
w , ∂w ′

∂t

)
Ω

(see e.g. Appendix B of [209] for

an elaboration). Hence, in Fig. 8.9 the term will add energy when it is negative and subtract energy when it
is positive. One may hypothesise that restricting the model to only positive predictions of the term prevents
it from adding energy to the simulation, which potentially could prevent the unstable error accumulation
discussed in Section 8.2.

In practice, however, this type of term-biasing yields a much too dissipative solution. The first time when
the term should have become negative, but is limited at 0, w already begins decaying rapidly. While the other
terms initially compensate somewhat to keep the signal alive, the solution quickly reduces to around zero

and even becomes negative. Once w < 0, positive instances of
(
ψ, ∂w ′

∂t

)
Ω

will actually add energy to the sim-

ulation, and its magnitude is expected to increase. However, the model is already sufficiently far removed
from its functioning space that it switches attractors and diverges the Newton iterations. This illustrates the
importance of including backscattering energy in the simulation: Neglecting it is here almost equally detri-
mental as including it. Less extreme positive limiting of the term is observed to decay w somewhat slower,
but it cannot prevent it.

Finally, limiting the solution to the ANN’s full training domain [−0.5,0.5] in similar fashion to what was
done by Robijns does interestingly allow the simulation to hold on significantly longer than if no limiters
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are used. Hence, while it distorts the weak residual space, including these limiters does discourage large
excursions during the Newton iterations for this problem, similarly to what is reported by Robijns [209].

However, even this simulation also eventually diverges in a problematic way. Different modes do eventu-
ally begin growing a little, as evidenced by small errors in a2 of the cross and Reynolds terms around 30 s into
the simulation. Eventually, this is enough to push the model to converge to a spurious root where all inter-

action terms are stuck in their limiters, at t = 42 s. It is particularly instructive to consider
(
ψ, ∂w ′

∂t

)
Ω

. It gets

stuck in its lower limiter, leading it to add energy to w , which grows as a consequence. However, because w
was already close to the maximum of the physical signal, it now grows beyond this maximum value. Since w

and
(
ψ, ∂w ′

∂t

)
Ω

are exactly out of phase, this leads the ANN to believe that the term should be even more neg-

ative. However, the limiter disallows this. The result is that the term adds a constant amount of energy to the
simulation every subsequent time step while w ’s amplitude grows exponentially larger: The rapid divergence
has been replaced with a slow divergence.

The cross and Reynolds terms can also contribute to the instability. Depending on the sign of the solution’s
local gradient, these terms can be both positive and negative. Once the solution is sufficiently far from a
physical situation, the terms can abruptly flip signs, suddenly beginning to add or subtract energy. This
sometimes stabilises the simulation; in Fig. 8.9 it causes divergence even quicker.

The interesting thing to note here is that this confirms that the instabilities in the simulation can be self-
reinforcing. If the ANN were not limited, but for instance linearly extrapolating outside its trained range, it

would keep predicting larger values of
(
ψ, ∂w ′

∂t

)
Ω

, adding energy during the nonlinear iterations and immedi-

ately diverge, if there is no mechanism in the simulation that contains the energy. Even if a root to the solution
does happen to exist in this direction, it will be one that adds energy.

Once the terms are stuck in their limiters, the iterative Newton procedure often fails to find any root,
even with ANN Jacobians and high values of relaxation. Given how important it is that the Jacobian matches
the space in which the ANN operates, this is not unsurprising, especially when considering that when the
ANN is limited, the ANN Jacobian is undefined at the discontinuity. This “stagnating” failure mode leads to
low-progress CPs or the slow divergence of the simulation over several time steps. It is revisited in Section 9.1.

In all, despite worsening the non-uniqueness problem, limiting is observed to help in delaying error in-
troduction, although it does not possess the ability to eliminate error accumulation and the associated in-
stability. This could potentially be improved somewhat by making the limiter continuous, or by making its
extrapolating value penalise growth in energy-inducing terms. However, its formulation remains inherently
opposed to the idea that well-generalised ANNs should also perform well outside their training space and be
tested and confirmed to operate well there. Hence, the ANN should know of energy conservation and physics
by itself. Therefore, the next two sections focus on such improvements.

8.3.4. Longer Temporal Input Stencils
As ∆t increases within a period of the sinusoidal manufactured solution, almost all resolved, temporal varia-
tion is in the 2∆t wave. This stands in contrast to the temporal resolutions considered for Boussinesq-forced
model problem in Section 6.3, at which the terms are dominated by intermediate kt modes that lie far from
the 2∆t wave. Hence, while increasing the local stencil to include the 2∆t wave did not improve the predic-
tion of the interaction terms for the Boussinesq-forced problem in Section 7.3, it may have a more favourable
impact on this much more local manufactured solution. Contrary to targeting improved offline predictions
of the interaction terms, the incentive for using longer input stencils in online simulations is their potential
to ground the dominating kt modes of the ANN in reality longer: If the prediction is conditioned on a time
history, i) at least part of its input remains stationary throughout an iterative solution procedure, which keeps
at least some of the ANN inputs reasonable, and ii) roots that would lie far from the history’s tendency could
be penalised.

The benefits of including two time levels to the ANN’s input stencil are confirmed by Fig. 8.10. It shows the
time-evolution of the problem with three degrees of freedom, closed by ANNs that are fed FS1 (information
at time levels t n+1 only), FS3 (information at t n+1, t n and t n−1) and an in-between feature set named FS1.1,
which includes the solution at time levels t n and t n+1, at a simulation with C = 1.2. While the FS3 simulation
remains stable and accurate throughout the simulated time domain, the FS1.1 simulation diverges, and the
FS1 simulation diverges even earlier, even when the limiters are included in the models. Hence, the inclu-
sion of longer time stencils is indeed a stabilising force, such that FS3 will be the default feature set for the
Boussinesq-forced problem. However, given that much lower kt modes dominate that problem’s time history,
it may require much longer time history stencils than considered in this work for these benefits to materialise.
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8.3.5. Training on CP Data
The treacherous appearance of the Rwi space most likely reflects that the ANNs considered thus far are not
familiar with the existence of such a space. They have only been trained on correct data that assume the mod-
els have already survived the nonlinear solution procedure’s journey on this manifold. However, mapping out
and training on m samples in each of the nel −1 degrees of freedom of Rwi would require mnel−1 samples to
be taken and trained on at each time step, which rapidly becomes intractable.

A compromise might be to only train on data in the weak residual space that is relevant. Such data may
be found in the convergence paths that are traced in the space when exact versions of the interaction terms
are included in the simulations, as illustrated in Fig. 8.2a. Sampling such data at intermediate stages of the
CPs may help to teach the ANN to follow these convergence paths.
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Fig. 8.11 shows that the model’s weak residual space can indeed be considerably improved by including CP
data in the ANN’s training. While two other attractor basins can be identified for a 2 degree of freedom model
after 50 time steps, these are similarly far removed as they are for the algebraic model, while the basin the ANN
operates in is both relatively smooth and wide. This facilitates much better convergence behaviour, requiring
significantly less iterations than direct approaches (see Table 8.1). Fig. 8.12 shows that at high C , the model
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remains stable when a third degree of freedom is introduced, in contrast to any of the other configurations.
This supports the hypothesis that informing the ANNs of the existence of the weak residual space, rather than
merely the weak residual’s root, will improve the model’s behaviour in that space.

The drawback to this approach is that it still adds a dimension that the ANN must learn to generalise over.
Here, it means that what was previously a dataset of 2,400 examples turned into one with 99,400 samples.
While one could subsample the CPs and not include every point the exact solution procedure visits, this was
found in the above tests to be significantly less effective. However, when more degrees of freedom are intro-
duced and the problem becomes more complex, one might need to resort to such subsampling to contain
training times. Furthermore, it is unclear whether knowledge of weak residual hypersurfaces is something
that generalises. Hence, the final judgement of the model is postponed until the following chapter, where it
will be subjected to a more challenging test case outside its training envelope.

8.3.6. A Quadratic Coefficient ANN Model
Another approach to solving the problems encountered in the previous sections is to prevent the ANNs from
influencing Rwi at all. Such a model is proposed here as a larger departure from the original framework, to
assess whether this would restore practical uniqueness and stability of the model.

Rather than letting the ANN predict the interaction terms directly, this model only lets the ANN predict
the coefficients ck , k = 0, . . . ,8 of a general quadratic in the same three degrees of freedom that affect a mode:

Î = ck P (a)k (8.3a)

P (a) = [a2
i−1, a2

i , a2
i+1, ai−1ai , ai−1ai+1, ai ai+1, ai−1, ai , ai+1] (8.3b)

If ck is no longer a function of the degrees of freedom ai , this means that Rwi ’s order is restored to two,
again containing the number of possible roots. Hence, this simulation turns to the explicit input stencil FS2
as its ANN inputs, despite this yielding worse-trained models for the actual turbulence problem.

The model predicts the coefficients once at the start of each time step, and keeps them constant through-
out the iterative solution procedure that follows. These coefficients can then be used to find the model’s
Jacobian contribution. This can now be derived analytically, by differentiating Î to its appropriate ai . This
allows the construction of each of the terms in an element’s Jacobian (see Appendix C.2 for an elaboration):

∂

∂ai

(
Îi

)= 2c1ai + c3ai−1 + c5ai+1 + c7 (8.4a)

∂

∂ai+1

(
Îi

)= 2c2ai+1 + c4ai−1 + c5ai + c8 (8.4b)

∂

∂ai

(
Îi+1

)= 2c1ai + c3ai+1 + c4ai+2 + c6 (8.4c)

Which are added in the same manner as the traditional ANN Jacobian (see Algorithm 4 in Appendix C.2).
This gives the model two further distinct advantages over the direct models: First, the model only requires
five expensive ANN evaluations per degree of freedom at the outset of a time step, with cheap evaluations of

the quadratic evaluating Î and ∂Î
∂a j

at every following corrector pass. Second, since the weak residual space is

again quadratic, the model requires little relaxation and only a few CPs to converge.
This is illustrated by Fig. 8.13. It shows the convergence paths from the same initial condition of the

same discretisation with direct and quadratic coefficient models. The direct models display their typically
erratic behaviour, converging to a spurious root in few iterations if running unrelaxed with an ANN Jacobian,
in many iterations if relaxed and running with the algebraic Jacobian, and diverging when running with an
ANN Jacobian and relaxation. The quadratic coefficient model, however, converges to the correct root in 4
iterations, on par with the algebraic model’s convergence. Rwi is again quadratic, smooth and contains only
a single root, seemingly solving the non-uniqueness problem.

However, even this model suffers from the ANN. As Rwi remains a quadratic, its maximum number of
roots might still appear. All four of these are brought out already in the very next time step, illustrated in
Fig. 8.14. This figure also illustrates that the model can still suffer from instabilities: The model already dis-
plays convergence to a slightly wrong prediction of the root. When another degree of freedom is introduced,
Fig. 8.15 confirms that the model quickly diverges. At reduced C , the model again holds on longer. However,
error propagation eventually spills that simulation over into a different attractor at t = 39 s, where it remains.
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3 , C = 1.8.
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Hence, even retooling the model to eliminate part of the ANN’s detrimental characteristics is found to be
insufficient to guarantee its uniqueness and stability. The only manner in which the ANNs’ influence over
the weak residual space could be fully eliminated is likely through the use of explicit time marches, where the
ANNs only predict a single value at the outset of a time step and no minimisation of the weak residual based
on the unknown degrees of freedom is carried out.

Such explicit time marches might avoid the weak residual-related problems encountered here. However,
they can also no longer guarantee the minimisation of the weak residual. Furthermore, they can only access
a history of information, resulting in worse-trained ANNs. Finally, they must likely operate at much smaller
∆t to avoid the second mode of instability encountered here, as they remain explicit. Therefore, although
their investigation would certainly be interesting, translating the models to fully explicit configurations is not
necessarily a primary recommendation.

8.3.7. Hybrid Algebraic-ANN Model
A final approach to improved navigation of the weak residual space for problems that operate at traditional
LES discretisation level may be to leverage the algebraic model. These models are cheap, in certain situations
provably unconditionally stable [226] and generally practically unique. Hence, one could first converge the
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nonlinear problem in a time step with this model, and use that guess as an initial condition from which
the ANN can attempt to find a better solution. This is illustrated in Fig. 8.16, where an ANN converges the
simulation from the algebraic model’s guess to the exact root. For this case, the algebraic model’s prediction
is decent, reducing the distance the ANN would have to move the model through the nonlinear space and
aiding its convergence to the physical root as a result. It additionally allows using up-to-date input features

of the algebraic model’s prediction of the cross and Reynolds terms,
(
∂ψ
∂z ,−2wτRs

)
Ω

and

(
∂ψ
∂z ,

(
τRs

)2
)
Ω

, as

input features to the ANN.
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Figure 8.16: Response surface of ‖Rw‖2 for the hybrid algebraic-ANN formulation, for simulations where ∆t = 1, at t = 3.
The ANNs are conditioned on input from the converged algebraic model (at the orange diamond).

Here, the model is embedded in the quadratic coefficient model. Perhaps unsurprisingly, it therefore fails
in exactly the same manner as the quadratic coefficient model: Its divergence patterns follow those presented
in Fig. 8.15. This suggests that the reduced distance the model must traverse in the weak residual space
does not necessarily aid its stability. Also, this method has the potential to break down when the algebraic
model exits its domain of validity at large h, or when strong nonlinearities remain in the weak residual space
between the converged algebraic model and the correct root of the ANN model. However, this model is also
not designed to improve the second type of instability that dominates the quadratic ANN failures observed
here. Rather, it could aid in keeping the more challenging turbulence problem unique.

8.4. Conclusions
The direct VMM-ANNs considered by Robijns are here found to be practically non-unique when ANNs that
are unaware of the weak residual space are asked to traverse it. Linear ANNs bring out the maximum num-
ber of real roots of the second-order problem, and the introduction of nonlinearity to the networks makes
them increasingly ill-posed. This sources instability when C is much higher than considered by Robijns, as
navigating the distorted and nonlinear space leads the model into spurious attractors or prevents it from
converging. Furthermore, instability at large C is observed even when the nonlinear space is successfully tra-
versed, as small errors tend to accumulate and lead single modes to suddenly diverge. These two modes of
instability are hypothesised to result from the ANNs’ lack of knowledge of weak residual spaces and erroneous
input data, answering RQ3.1.

In support of this hypothesis, this chapter does not find alternative configurations of the VMM-ANN
model that fully abate stability issues at the levels of temporal discretisation desired to run large calculations.
Their various architectures, maximum C , cost and failure properties are summarised in Table 8.1. Relax-
ation and an ANN Jacobian increase the likelihood that the model will converge smoothly to the nearest root,
but still cannot guarantee this is the physical root and prevent the first mode of instability. Robijns’ limiting
schemes and longer temporal input stencils are capable of postponing the second mode of instability, but
cannot prevent it. However, modifying the ANN’s training to actually include knowledge of the Rwi space
improves its stability. Similarly, completely preventing it from partaking in the convergence in this space by
only letting it predict the coefficients to a general quadratic in the degrees of freedom returns a bound to the
model’s non-uniqueness. While the second mode of instability manifests itself even for these model architec-
tures once C becomes sufficiently large, these models do provide an initial outlook for what might be needed
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Type C FS Limits τr Jacobian cPs
step

t
step nD Fail.

Direct 1.8 3 - 1·10−4 Algebraic 250 0.0863 0 WR
Direct 1.8 3 - 1·10−4 ANN 250 0.131 0 Div
Direct 1.8 3 - - ANN 10 0.0123 0 WR
Direct 1.2 3 - 1·10−4 ANN 131 0.0604 - -
Direct 1.4 3 - 1·10−4 ANN 165 0.0734 28 Div
Direct 1.6 3 - 1·10−4 ANN 239 0.0835 5 Div
Direct 1.6 3 [0.0,0.5] 1·10−4 ANN 152 0.0763 2 Stag
Direct 1.6 3 [-0.5,0.5] 1·10−4 ANN 240 0.105 23 Stag
Direct 1.2 1 [-0.5,0.5] 1·10−4 ANN 192 0.0955 4 Stag
Direct 1.2 1.1 [-0.5,0.5] 1·10−4 ANN 148 0.0665 36 Stag
CP Set 1.6 3 - 1·10−4 ANN 40.1 0.0674 - -
Quadratic 1.8 2 - - ANN 7 0.00135 4 MG
Quadratic 2 0.8 - - ANN 5.73 0.00272 32 WR
Quadratic 2 1.6 - - ANN 6.75 0.00204 4 Div
Hybrid 2 1.6 - - Alg/ANN 10.0 0.00255 4 Div

Table 8.1: Characteristics of computational cost, accuracy and stability of direct and quadratic ANNs for simulations with
ANNs of shape [512,512]. nD is the number of successfully completed time steps without simulation divergence. The
failure modes WR, Div, MG and Stag refer to wrong root prediction, divergence of the iterative procedure, mispredicted
root growth, and stagnation of the Newton iterations.

to translate the ANNs’ offline promise to online performance.
This discussion answers RQ3.2 in the context of the manufactured solution problem. However, it should

be further investigated in the context of the model problem, to establish the extent to which the character-
istics observed here translate to more realistic simulations, how these change once substantial model error
is introduced and whether the conjectured directions for improving forward simulations of VMM-ANNs also
apply to this problem. This will be the topic of Chapter 9.
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Properties of VMM-ANNs: 1D Turbulence

Chapter 8 established two modes of instability that prevent the sizeable promise of ANN unresolved scales
models to translate to forward simulations of VMM-ANNs: Those associated with ill-posed weak residual
spaces and those that follow from error accumulation over several time steps. While the former could already
be realistically assessed in the context of the highly accurate manufactured solution problem, the latter will
presently be addressed for the more realistic Boussinesq-forced Burgers’ problem, where substantial ANN
model error enters the simulation. Hence, to fully answer RQ3, this chapter will consider the VMM-ANN for
the more realistic model problem.

First, Section 9.1 gauges the extent to which the stability characteristics identified for the manufactured
solution translate to a case with significant model error. While it will identify the same two modes of in-
stability that plagued the manufactured solution, it will conclude that none of the configurations from the
previous chapter that attempted to address the weak residual’s ill-posedness hold up when model errors are
large. Section 9.2 will subsequently confirm that the impact of these errors escalates as the resolution of the
model reduces and the ANN’s role widens, as would be required by GCMs.

In this context, Section 9.3 will investigate the apparently dominating second mode of instability in more
detail. By preventing the instability through the introduction of an artificial viscosity operator, it will gather
evidence to support the hypothesis that the instability arises partially due to a lack of knowledge on how the
ANNs trained on error-free data deal with inexact inputs engendered by their own prediction errors. This
will allow RQ3.2 to be finally answered, leading to recommendations on new directions that could potentially
allow the ANNs’ offline skill to translate to online simulations, as well as the implications this might carry
for the models’ costliness. Finally, Section 9.4 studies the model’s computational cost, to answer RQ3.3 and
complete the study.

9.1. Stability
Section 8.2 highlighted that the models are most likely to function at low Courant number C . Also, Section 7.3
indicated that the interaction terms are better predicted at low C . Hence, to provide the model with opti-
mal preconditions for its successful operation, the following tests are run at only twice the DALES-sampled
time step, where very little temporal fluctuation remains under the grid cutoff. However, the defining crite-
rion of success for the model would be its ability to simulate turbulence once the cutoff wavenumber of the
simulation lies largely outside the rapidly energy-decaying range. Hence, based on the analysis from Sec-
tion 6.3, h = 6hD ALES is chosen. For an exact Burgers’ problem, this yields a maximum C around 0.4, which
is significantly lower than where the simple cases listed in Table 8.1 still converged. This discretisation level
allows directly accessing the ANN models listed in Table 7.3. Hence, they are models that trained on a set of
64x64 DALES columns, and are tested here on a single, randomly selected column of data from a different
simulation.

Table 9.1 lists a number of model configurations run at this discretisation, when they are closed by an ANN
with the architectures listed in Table 7.3. These models sequentially introduce the improvement strategies
suggested in Section 8.3, and are listed alongside their offline and online R2 correlation of instantaneous
samples of the three interaction terms. This facilitates a direct comparison between the ANN’s online and
offline trends.

111
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Type FS Limits τr Jac. Offline R2 Online R2 nD Fail
Direct 3 - - Alg. [0.461,0.795,0.670] [0.071,0.615,0.434] 22 MG
Direct 3 - 1 ·10−4 Alg. [0.461,0.795,0.670] [0.071,0.615,0.434] 22 MG
Direct 3 - 1 ·10−4 ANN [0.461,0.795,0.670] [0.071,0.615,0.434] 22 MG
Direct 3 [-0.5,0.5] 1 ·10−4 ANN [0.461,0.795,0.670] [0.071,0.615,0.434] 22 Stag
Direct 3 [-0.5,0.5] 1 ·10−4 Alg. [0.461,0.795,0.670] [0.021,0.144,0.207] 40 Stag
Direct 3 [0.0,0.5] 1 ·10−4 ANN [0.461,0.795,0.670] [0.000,0.674,0.427] 25 Stag
Direct 1 [-0.5,0.5] 1 ·10−4 ANN [0.191,0.637,0.531] [0.018,0.108,0.004] 22 MG
Direct 4 - 1 ·10−4 Alg. [0.738,0.926,0.589] [0.001,0.009,0.029] 1 Stag
CP set 3 [-0.5,0.5] 0.01 Alg. [0.532,0.777,0.701] [0.012,0.419,0.005] 28 MG
Hybrid H - 0.01 ANN 0.845 0.027 164 MG
Quad. 2 - 1 ·10−4 ANN 0.638 0.509 54 MG
None - - 1 ·10−4 Alg. - - - No

Table 9.1: Characteristics of accuracy and stability of direct and quadratic ANNs for simulations with h = 6hD ALES , ∆t =
2∆tD ALES , C ≈ 0.417 and ANNs from Table 7.3. “CP set” refers to ANNs trained on an exact model’s convergence and
hybrid refers to the algebraic-ANN models. nD is the number of successfully completed time steps without simulation
divergence. The failure modes MG and Stag refer to mode growth-driven divergence and stagnated convergence of the
iterative solution procedure.

It is acknowledged that R2 is a somewhat deficient yardstick. The ANN will inevitably introduce errors
to the simulation that will push the instantaneous solution trace of the chaotic problem away from the exact
solution and reduce R2. However, perturbing the initial problem might not prevent reproducing the problem’s
statistics appropriately [150, 177], which is all one would hope to achieve. Hence, the R2 metrics in Table 9.1
and later in this chapter overestimate the extent of the miscorrelation in online simulations. Still, the metric
will be used within these limits, because the trends it displays are still indicative of the phenomena that are
encountered.

All cases in Table 9.1 diverge. Hence, they are listed alongside the number of time steps they successfully
complete until they fail, as well as their failure modes. Also, the online R2 is computed over the time interval
before the predicted w first exceeds the maximum magnitude encountered in the exact simulation.

While instabilities arise in many different locations, all these cases diverge due to the uncontrolled growth
of one or several modes of the lowest resolved wavenumber, 2h, very similarly to what was observed for the
simple models in Section 8.2. Hence, it is not so difficult to imagine that the problems of those simulations are
also encountered here, but that they are compounded by the relatively large modelling errors of the ANNs for
the Boussinesq-forced problem. The following paragraphs attempt to ascertain this hypothesis for the mod-
els listed in Table 9.1, by i) characterising the typical instability development of these models, ii) identifying
the occurrence of problems associated with ill-posed weak residual spaces and iii) discussing the instabilities
that still remain.

The mode growth underpinning the failure is exemplified by Fig. 9.1. This figure shows the spatial distri-
butions of the solution and the interaction terms over four time steps from the first simulation listed in Ta-
ble 9.1. Its instability is due to an excited mode adjacent to the boundary. As displayed in Fig. 6.2, this mode
often features large unresolved scales projections, making such relatively highly excited boundary modes a
relatively common situation.

In the first plotted time step, excessive energy is added to the mode, as the ANN predicts
(
ψ, ∂w ′

∂t

)
Ω

to

be negative when it should be positive, and underpredicts
(
∂ψ
∂z , w ′2

)
Ω

. The excitement of this mode is not

damped, as the ANN predictions remain poor and continue adding energy to the mode as a history of in-
creasingly large w is developed. When unchecked, this quickly causes the mode to grow until the predictions
of the other terms begin failing at nDt = 21, and the iterative procedure is driven to infinity at nDt = 23. This
diverging path of the Newton iterations is illustrated by the red line in Fig. 9.3.

One may read from Table 9.1’s online R2 that
(
ψ, ∂w ′

∂t

)
Ω

is generally mispredicted in the simulation that

gives rise to Fig. 9.1, compared to that model’s offline R2. Fig. 7.7 showed that in such offline settings, the

smallest, resolved scales of
(
ψ, ∂w ′

∂t

)
Ω

are particularly well-predicted. Therefore, it is surprising that these

modes of the term give rise to the instability of the forward simulation. This could therefore be an indication
of an early root switch.
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Figure 9.1: Evolution of instability in w for the first model listed in Table 9.1, over four consecutive time steps due to
subsequent mispredictions of the three, plotted interaction terms, for an excitation of the boundary-adjacent mode at
nDt = 20,21, sudden growth of the mode at nDt = 22 and divergence at nDt = 23.

Sections 8.3.1 and 8.3.2 showed that helping the model with relaxation or an improved Jacobian could
cure the problem. Furthermore, Section 8.3.3 showed that nonlinear limiting of the interaction terms could
postpone divergence. However, with the former two additions, the model still diverges in similar fashion at
the same time step. Adding the nonlinear limiters, however, does prevent the Newton iterations from diverg-
ing at nDt = 20. Unfortunately, it also prevents the procedure from converging at this time step, resulting in
the stagnating failure mode discussed in Section 8.3.3 as the models remain stuck in the limiters.

Table 9.1 shows that several other cases also become unstable in this manner. For instance, term biasing
to prevent the simulation from adding energy to the boundary mode is only marginally more successful.
It allows the simulation to live an additional 3 time steps, before the Newton iterations for this model also
stagnate.

Interestingly, when the nonlinear limiters are combined with an algebraic Jacobian, rather than the ANN
Jacobian, the model continues to find roots for more time steps. This simulation also fails due to the boundary
mode growth, but does so somewhat more slowly than the other simulations. Hence, while all cases display
somewhat similar behaviour, the evolution of this case’s energy spectrum, plotted in Fig. 9.2, is a particularly
clear illustration of the problem. At nDt = 15, the simulation predicts all modes relatively well, with the
exception of the boundary mode, which causes the energy in the 2h mode to perk up. With the lack of a
dissipative operator, the energy proceeds to spread to more of the small, resolved modes at nDt = 20. At
nDt = 25, the increasing energy in the mode has begun to influence all other modes, and the convergence of
the Newton procedure stagnates shortly after this instance.

The only change in the architecture of this model with respect to models that diverge after 22 time steps
is the changed Jacobian. This suggests that the boundary mode may have undergone an attractor switch.
Indeed, Fig. 9.3 provides evidence for such a switch. It depicts the convergence traces of the Newton iterations
for the first two degrees of freedom from the lower boundary, a1 and a2, for models with an algebraic (orange)
and an ANN (green) Jacobian. Despite originating from an almost identical w prediction, the simulation
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Figure 9.2: Three instantaneous energy spectra corresponding to w (blue), exact w (orange) and VMM-ANN predictions
of w (green), separated by 5 time steps, over a period where energy accumulates in the smallest resolved modes of the
VMM-ANN, run with the FS3 ANN from Table 7.3, on a discretisation with h = 6hD ALES , ∆t = 2∆tD ALES and C ≈ 0.417.

with the ANN Jacobian does not find a root. The algebraic Jacobian simulation, however, rapidly increases
the interaction terms until they hit the limiters. The simulation then proceeds to converge w to a root that
exists with the interaction terms on their limiters. However, the profiles in Fig. 9.3 show that this converged
solution has already travelled an appreciable distance from its correct position and still adds energy to a1 and
a2. Therefore, adding the nonlinear limiters merely slows the divergence of the mode, just as for the simple
problems.

0 10 20 30

0.5

1.0

w

CPs a1

0 10 20 30
0.5

0.0

0.5
1e 1 CPs a2

0.0 0.5 1.0 1.5 2.0

1

0

1
Profiles

0 10 20 30
0.0

0.5

(
,

w
′ t
)

0 10 20 30
0.5

0.0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

0 10 20 30

2

0

( z
,2

w
w
′ )

0 10 20 30
0

1

2

0.0 0.5 1.0 1.5 2.0
2

0

2

0 10 20 30
nCPs [-]

2

0

( z
,w

′ w
′ )

1e 1

exact ann, alg jac ann, ann jac ann, no limiters

0 10 20 30
nCPs [-]

0

2

1e 1

0.0 0.5 1.0 1.5 2.0
z/zi [-]

2.5

0.0

2.5
1e 1

Figure 9.3: Convergence paths of the first two modes and final profiles of the solution and interaction terms at nDt = 23
(failure) for simulations closed by exact and ANN predictions of the interaction terms. The models employ ANN and alge-
braic Jacobians (orange, green lines respectively) with nonlinear limiters active, and algebraic Jacobian without nonlinear
limiting (red line). Note that the latter simulation diverges, such that its final profiles are not plotted.
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Table 9.1 shows several other models that also are unstable. In particular, all feature sets diverge, ranging
from the low-correlating FS1 to the high-correlating FS4. The failure of FS1 and FS3 after an equal number of
time steps indicates that the improvement seen in the simple problem when including a time history to the
input stencil does not translate to the Boussinesq-forced problem. This could be an indication that the input
stencils are too local in time for the ANN to understand that the local predictions must also be consistent with
the high-amplitude, long-term dynamics of the turbulence, as hypothesised in Section 7.3. The failure of FS4,
however, is especially notable: Despite clearly being the best-performing feature set in offline evaluation, it
diverges much earlier than the other models, after only a single time step. This cannot be well explained
within the current analysis. It does, however, reinforce the observation that good offline predictions do not
necessarily translate to online performance.

Training the ANNs on samples from the nonlinear iteration space substantially improved the predictions
in Section 8.3.5. However, this strategy also does not offer much improvement for the more realistic model
problem. While this simulation survives the initial mode growth, it soon destabilises elsewhere, as illustrated
by the CP set entry in Table 9.1.

The quadratic coefficient model holds on somewhat longer. It does not excite the boundary mode and
does not display the symptoms of attractor switches. However, the model disturbs a different, single mode
somewhat later, still leading to divergence of the Newton iterations. While one might expect that this model
would suffer from having to use the lower-correlating FS2 as input, it rather has relatively high-correlating
online predictions of the terms, showing once again that very different characteristics are demanded of the
models in an online setting than in an offline setting. No configuration of the model holds on longer than
what is reported in Table 9.1. This suggests that even models with better-posed weak residual spaces fall prey
to instability, just as was observed for the simple case. However, as will be discussed in Section 9.2, it is the
only model that manages to remain stable in online running at finer discretisation, albeit with unimpressive
results.

Finally, the hybrid model holds on longest of any configuration. Its training results in relatively high cor-
relation on its offline predictions of the interaction term. Even for this model, however, the story remains
unchanged: Despite the fact that it presumably must traverse a much shorter distance in the Newton iter-
ations, it is sufficient to prevent the ANNs from remaining stable. With very low online correlation on the
interaction term, it fails after 164 time steps due to the divergence of a different, single mode.

From these results, one can conclude that the models are insufficiently general to translate their dramatic
improvement over algebraic models in offline settings to online simulations for the Boussinesq-forced test
case, in a similar manner as observed in the simple test case in Chapter 8. The same two modes of instability
as observed in Section 8.2 occur: In some cases, divergence is provably due to the ill-posed weak residual
space, which still leads single modes to switch attractors. However, for this more complicated problem, the
second version of instability appears to be further compounded by the ANN’s imperfect offline predictions of
the interaction terms, which do not translate to good online performance. As a consequence, errors accumu-
late in the small scales of the simulations, which with or without attractor switches induce instabilities. This
increased model error appears to diverge the calculations earlier than was observed for their simple counter-
parts, even at much lower C . Little to no improvement in the model’s stability is observed for this problem
when strategies are deployed that result in much better-posed weak residual spaces in Section 8.3. Therefore,
the second mode of instability might be the most far-reaching problem of the method, which may require
very different remedies than examined so far in this work. This instability is therefore further discussed in
Section 9.3. First, however, the severeness of the instability’s impact is assessed by gauging how the model’s
behaviour changes as a function of the discretisation level.

9.2. Influence of Discretisation
RQ3 concerns the transfer of the ANNs’ predictive ability from offline to online simulations of turbulence on
grids that directly resolve phenomena down to the upper end of the range of rapidly energy-decaying scales.
The previous section shows that none of the configurations considered here successfully achieve this, even at
relatively low C (< 0.5). Section 7.3 showed that there is no strong dropoff in the ANNs’ ability to predict the
interaction terms at coarser h, which might lead one to think that the instabilities observed in forward sim-
ulations are relatively independent of h. However, Section 7.3 also hypothesised that this might be another
feature of online simulations that offline tests cannot appropriately capture: At finer resolution, the ANNs’
negative influence over the model is likely to be less, potentially leading to better stability characteristics.
This was already observed by reducing ∆t for the manufactured solution problem in Section 8.2.
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Hence, this section considers runs of the direct and quadratic coefficient model with considerably refined
discretisations for the Boussinesq-forced Burgers’ problem. It reexamines the range of spatial discretisations
encountered in Section 7.3, but refines the time direction further, below the sampling interval of DALES. In
these cases, almost no unresolved scales fluctuation remaining in the signal, such that the unresolved scales’
time derivative projection merely interpolates a spline. The smoothness of the signal in time should then
make the problem as well-posed as one can imagine.

Type ∆t/∆tD ALES h/hD ALES Offline R2 Online R2 before MG nD Failure
Direct 2 6 [0.461,0.795,0.670] [0.021,0.615,0.434] 22 MG

2 3 [0.394,0.703,0.479] [0.031,0.109,0.137] 62 Stag
2 1.5 [0.360,0.654,0.370] [0.097,0.205,0.176] 55 Stag
1 6 [0.656,0.850,0.787] [0.201,0.112,0.183] 106 Stag
1 3 [0.595,0.798,0.714] [0.212,0.367,0.178] 115 Stag
1 1.5 [0.463,0.816,0.731] [0.242,0.478,0.203] 154 Stag
0.5 6 [0.702,0.861,0.805] [0.286,0.197,0.221] 100 MG
0.5 3 [0.612,0.804,0.754] [0.261,0.178,0.243] 280 Stag
0.5 1.5 [0.530,0.822,0.701] [0.275,0.189,0.217] 329 Stag

Quadratic 2 6 0.536 0.612 47 MG
2 3 0.249 0.029 - -
2 1.5 0.359 0.016 - -
1 6 0.556 0.363 111 MG
1 3 0.305 0.521 201 Stag
1 1.5 0.279 0.034 - -
0.5 6 0.604 0.178 211 Stag
0.5 3 0.208 0.179 571 Stag
0.5 1.5 0.274 0.007 - -

Table 9.2: Characteristics stability of simulations closed by direct and quadratic coefficient ANN models. The direct mod-
els down to ∆t/∆tD ALES = 1 correspond to those in Fig. 7.6a, while the quadratic models, closed by FS2, are trained on
the same dataset as the direct models. The simulations run with τr = 0.01, an ANN Jacobian and nonlinear limiting to
[−0.5,0.5] (only for direct models). Online R2 before mode growth is measured until the first instance where w in the do-
main exceeds the maximum value encountered in the exact simulation, and nD is the number of successfully completed
time steps without simulation divergence. The failure modes Stag and MG refer to stagnation and mode-growth-driven
divergence of the Newton scheme.

Table 9.2 illustrates that the R2 of the direct model’s interaction terms is somewhat restored to their offline
performance as both temporal and spatial discretisation come down one level. The trend stagnates beyond
this single step for the cross and Reynolds terms. This is likely because all solutions eventually depart reality
and fail. Hence, their skill should be compared in conjunction with the number of time steps until failure. The
nD column in Table 9.2 confirms what was hypothesised in Section 7.3: Despite the offline ANN predictions
being relatively insensitive to coarser h, the ANN’s model error is less impactful as the resolution increases
and the ANN’s role diminishes. Here, this translates to simulations that remain stable longer.

The quadratic coefficient model remains fully stable for several cases. However, it is not yet particularly
accurate. While the instantaneous R2 of the interaction terms listed in Table 9.2 over-exaggerates the lack of
accuracy of the model, Fig. 9.5c shows it cannot yet reproduce the model’s statistics. This implies that even
when stable, the models are not yet capable of handling the errors they have induced well. However, this may
merely be another feature of the same, underlying problem and not an additional dimension of deficiency.
Furthermore, restoring the smoothness of and removing roots from the weak residual space has seemed to
return stability to this model. While no proof can be offered that these theoretical improvements are the
direct cause of the enhanced stability, they will certainly will not have hurt.

In all, the lack of generalisability from offline to online simulations appears to be exacerbated at coarser
resolution, where the ANNs’ increasing, unconstrained model error plays a progressively large role. In spite
of impressive performance at coarse resolutions in offline simulations, they fail earlier when they must carry
an increasing burden in the forward simulation. Without further constraints, this likely makes their current
formulation a rather ineffective unresolved scales model for a GCM, where their impact would often be even
more substantial than here [160]. Therefore, a direction one might look in to find such constraints is discussed
in the following section.
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9.3. Aspects of Stability
The introduction of significant model error with the Boussinesq-forced problem demands a closer look at the
second mode of instability: The accumulation of energetic errors in the smallest, resolved scales. Section 8.3
showed that strategies that ease the travel through the numerical weak residual space can somewhat cure the
first type of instability. In particular, training the ANNs on data from this space yielded much better results.
Given that instabilities still quickly materialise for such CP-trained models in Section 9.1, one might hypoth-
esise that a similar lack of generalisation lies at the foundation of the second mode of instability: The ANNs
appear to suffer when they leave the safe haven of perfect physical data input and are cast into the storm of an
online simulation where they are continuously subjected to the product that their own errors create. This will
be investigated in two stages below. First, artificial viscosity will be introduced to the simulations to i) ascer-
tain that excessive energy accumulation lies at the foundation of the problems encountered here, ii) assess
how much dissipation is required to re-establish reasonable simulations and iii) judge whether the ANNs’
offline performance returns if the simulation is kept close to physical solutions. Second, their sensitivity to
having to generalise outside their training data is analysed. From this analysis, an improvement direction for
curing the instabilities is suggested.

9.3.1. Artificial Viscosity Stabilisation
Section 8.2 showed that all simulations considered thus far destabilise due to accumulating energy in their
smallest resolved modes, leading to the above suggestion that this might be driven by a lack of a rigorous
method that constrains the unresolved scales’ energy. Because the developed framework is not conducive
to straightforward online evaluation of the problem’s large-scale energy balance, the evidence to support
this hypothesis can be delivered by reintroducing an operator to the model that attempts to stabilise the
calculation by inherently working to restore the energy balance.

The classical formulation for such stabilisation is an artificial viscosity model [229]. The introduction
of such a model is clearly inconsistent with the idea of attempting to represent the unresolved scales terms
exactly. Furthermore, adding it on top of the interaction terms models essentially “double-counts” the tur-
bulence. However, perhaps a small amount of artificial viscosity is already sufficient to cap the sudden mode
growths that destabilise the calculation. If this is all that is required to return the solution to reasonable
regimes, this would indicate energy conservation as a clear improvement avenue for the ANN unresolved
scales models. If these regimes are additionally well-handled by the ANN, it would furthermore show that
one might not have to wander far down that avenue to arrive at a decent model. Therefore, an artificial vis-
cosity term V is added to simulations of the direct and quadratic coefficient models, according to Eq. (9.1):

V = 2νa

(
∂ψ

∂z
,
∂w

∂z

)
Ω

(9.1a)

νa = ca,1w
∂w

∂t
+ ca,2h2 ∂w

∂z
(9.1b)

This definition is inspired by Scovazzi’s shock-capturing scheme [223], and is intended to increase the
diffusion in the presence of i) strong gradients and ii) rapid, large increases in the resolved-scale energy asso-
ciated with single-mode instability. However, when added to the coarsely resolved test cases in Table 9.1, the
model still does not converge. This is only achieved once the spatial resolution is doubled. These first results
of a converging, direct ANN mode are presented in Fig. 9.4.

Three observations can be made from this figure. First, the instantaneous snapshots of the turbulence
in this figure reveal that the artificial viscosity term is often concerned with negating the effects of the larger
contributions of the ANN-predicted interaction terms. Second, the time-averaged profiles of the interac-
tion terms of such a converged simulation, plotted in the right-most window of the figure, show that the
dominating cross term (full line) is significantly overpredicted with respect to its exact equivalent (dashed
line), despite Section 7.2.2 showing that the ANN predictions tended to underpredict the terms’ influence
in offline settings. Finally, despite the ANN still dominating the overall unresolved scales predictions, the
viscosity term’s impact here already outweighs that of the unresolved scales’ time derivative projection and
the Reynolds term. In combination, these observations broadly appear to confirm the unstable nature of the
model: Its offline characteristics do not translate to online simulations, requiring significant levels of opposite
effects from a dissipative operator to remain stable. A strategy to ensure energy conservation will therefore
be required to address the instability problem.



118 9. Properties of VMM-ANNs: 1D Turbulence

0.0 0.5
1e 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.5 0.0 2.5
1e 1

1 0 1 1 0 1 2.5 0.0 2.5
1e 1

0 1 2 3 4
1e 2

I2

( , w′

t ) ( z , 2ww′) ( z , w′w′) 2 a( z , w
z )

t = 0.02 t = 0.24 t = 0.46 t = 0.69 t = 0.91

exact

Figure 9.4: Profiles of instantaneous and time-averaged norms of the interaction terms of a VMM-ANN run stabilised with
additional artificial viscosity, ca,1 = 1·10−3, ca,2 = 1·10−2. The simulation runs at∆t = 2∆tD ALES , h = 3hD ALES , C ≈ 0.33,
with a direct FS3 ANN interaction term model, using the hyperparameters from Table 7.3.

As shown in Section 9.2, the quadratic coefficient model can also remain stable at finer levels of discreti-
sation. This is not yet attributable to any model skill: Fig. 9.5c displays that a large amount of energy still
accumulates in this model’s smallest, resolved scales. The predicted 〈w2〉 profile is in turn much too ener-
getic. However, this model provides a good starting point for a heuristic assessment of how much artificial
viscosity would be necessary to return the statistics to a reasonable level. Two such tests are shown in Fig. 9.5,
labelled “low νa” (ca,1 = 1 ·10−4, ca,2 = 1 ·10−3) and “high νa” (ca,1 = 1 ·10−3, ca,2 = 1 ·10−2). They illustrate
that the ANN prediction of the interaction term and the velocity statistics can only be reproduced faithfully
for the “high νa” case, where the artificial viscosity begins relieving the ANN as the major unresolved scales
model. Hence, they confirm that the current form of the model has a long way to go before it can be labelled
stable.

The results also support the hypothesis posed at the outset of this section. The ANN’s average predictive
performance can be somewhat restored when the solution’s statistics are confined by the artificial viscosity.
Hence, this suggests that their lack of knowledge of where their errors drive the solution may be fundamental
to their lack of online performance.
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Figure 9.5: Time-averaged profiles of the L2 norms of the sum of ANN-predicted interaction terms and “low” (ca,1 =
1 · 10−4, ca,2 = 1 · 10−3) and “high” (ca,1 = 1 · 10−3, ca,2 = 1 · 10−2) artificial viscosity terms, with their resulting vertical
velocity statistics. Simulations are with the quadratic coefficient model at ∆t = 2∆tD ALES , nel = 32, C = 0.33, closed by a
[512,512] ANN, taking FS2 as input.
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9.3.2. Dataset Dependence
However, one might also hypothesise that training the ANNs on larger datasets with more examples would
already provide them with a broader basis on which they could handle incorrect guesses. This is unlikely
to be true, as the ANNs considered here have been subjected to O(104) times as many examples as what is
present in a single-column forward simulation during training. Also, even larger training runs than reported
here very rapidly become impractically expensive. Finally, the model seems to misbehave not because it is
unaware of different realisations of the same statistical turbulence; Section 7.2.2 showed that it generalises
fairly well to those. Rather, it struggles with the statistically different situations that it creates for itself through
error propagation.

In a similar vein, however, one might argue that the models tested in Section 9.1 are merely insufficiently
general to run on columns outside their sphere of training examples, or that the models are unlucky and
have been tested on a particularly challenging column. To tie up these loose ends, several tests have been
conducted on different columns both inside and outside the model’s training set. Furthermore, tests have
been conducted with ANNs that have been trained only on a single column of data, and subsequently tested
only on that column of data.

Training set Testing column Offline R2 Online R2 nD Fail
8x8 Outside [0.461,0.795,0.670] [0.071,0.615,0.434] 22 MG
8x8 Inside [0.461,0.795,0.670] [0.009,0.267,0.279] 34 MG
1 Outside [0.236,0.585,0.596] [0.175,0.023,0.059] 28 MG
1 Inside [0.236,0.585,0.596] [0.071,0.053,0.263] 33 MG

Table 9.3: Characteristics of stability of direct ANNs with FS3 input and hyperparameters from Table 7.3 for simulations
with h = 6hD ALES , ∆t = 2∆tD ALES , C ≈ 0.417. The training sets are the default 8x8 set and a single, randomly chosen col-
umn, while inside and outside refer to whether they have been tested on a column that belongs to or is uncorrelated from
their training set, respectively. nD is the number of successfully completed time steps without simulation divergence.
The failure mode MG denotes mode growth-driven divergence of the iterative solution procedure.

However, Table 9.3 shows that these tests do not produce results of note. All models still fail relatively
early, excited by different single modes that diverge the calculations. Even training and running on the exact
same column does not improve matters. This strengthens the hypothesis that rather than due to a lack of
generalisability of the ANNs to offline tests outside their training envelope, it is their lack of generalisability
from offline to online simulations that curtails their stability and consequently, their accuracy.

9.3.3. Outlook
In particular, the observations in this section support the conjecture posed at the outset of Chapter 8: It
might be the lack of the offline-trained ANNs’ knowledge on how to handle the errors they themselves induce
in forward simulations that lies at the heart of the instabilities observed in Section 9.1. More generally, this
hypothesis falls in line with very recent research on ANN predictions of HIT [21] and on Lorenz attractors
[217], where strong offline performance could not generalise to physical realisations of temporal trajectories
of deterministic chaos in previously unseen spaces, once an imperfect history had to be considered. This
suggests that the issue may be relatively broad.

In this light, the stability issues encountered in this work are unlikely to be curable by any straightforward
extensions of the VMM-ANN model, providing a definite answer to RQ3.2. Rather, the observations suggest
that one might need to extend the training space of the ANNs to cover the currently ignored difference be-
tween offline and online simulation. Hence, this motivates one to consider training strategies that inform
the ANNs of their errors. This could be achieved through offline training on datasets that have been aug-
mented with erroneous input examples. This data could for instance be created artificially, or by unstable
forward problem simulations with a pre-trained ANN model embedded. Going further, one might recon-
sider the merits of online training, discussed in Section 5.4. For such training, one could run a VMM-ANN
with a pre-trained ANN in parallel with a high-fidelity model. Every n time steps, one could compute a loss
function based on the VMM-ANN’s performance with respect to the high-fidelity simulation and update the
ANN’s weights and biases according to the standard backpropagation algorithms outlined in Section 3.5.1
and Section 5.4 before the next time step. Rasp suggests in a publication that emerged weeks before this
thesis was finalised [204] that such online training strongly aids the energy instabilities of his original study
of ANN-closed SP [205]. Hence, this surfaces as an interesting pathway also for the prediction of interaction
terms.
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In contrast to the studies quoted above, however, the framework proposed here consistently steps the
interaction terms and discretised resolved scales through an iterative procedure, yielding a second dimension
of difference between offline and online simulation. Knowledge of several points in this space was found to
improve the ANN predictions of the weak residual spaces in Section 8.3.5 for simple problems, similar to
what Rasp finds for the physical problem [204]. Hence, any of these error-augmented learning strategies
require another dimension for the method considered in this work: Offline training would have to consider
data from the CP sequence and from erroneous examples, while online training would have to be embedded
within the iterative schemes that are used to solve the nonlinear, discrete problem, for the ANN training to be
conditioned on both i) the numerics of the weak residual and ii) the statistically different physical states its
errors lead it to see. In all, both strategies are therefore likely to substantially increase the computational cost
of training, since they both add a dimension to the training space that potentially contains many degrees of
freedom. Therefore, even if such strategies do succeed in translating the offline promise of ANN-predicted
interaction terms to online simulations, it is unclear whether their accuracy per degree of freedom can still
outperform that of traditional parameterisation. That would in turn pose serious questions to studies that
have contended that ANNs represent a pathway to higher accuracy per degree of freedom [79, 139]. These
conjectures should therefore be investigated in more detail.

9.4. Computational Cost
RQ3.3 treats the final, vital aspect of the performance of VMM-ANNs covered by this study: The model’s com-
putational cost. In fact, as discussed in Section 2.2.4, the main driver for the development and investigation
of these models is the allure of reproducing the problem’s large-scale behaviour accurately with a reduced
number of degrees of freedom with respect to what its physics demand of direct computational methods.
While the previous sections have discussed several aspects of the model that at present curtail their accuracy,
these sections have not discussed at what computational cost. This was also not treated by Robijns [209].
Therefore, this section reviews the computational cost of each of the model’s stages, contrasts the cost to the
algebraic model and a DNS of the problem, and discusses scalability in the problem’s number of degrees of
freedom and dimensionality.

The columns of Table 9.4 report the results that are treated in the following subsections: Cost of ANN train-
ing ttr ai n (Section 9.4.1), weak residual assembly tRw (Section 9.4.2), Jacobian assembly t j ac (Section 9.4.3),

Newton iterations nCPs
step (Section 9.4.4) and overall cost t

step (Section 9.4.5), for selected cases from Table 9.1.
These cases were run with similar levels of computational background activity, such that the presented results
are expected to roughly indicate the relative performance of the configurations they reflect. The discussions
do not concern the solution of linear systems at each step of the CPs, which are observed to be similarly
expensive for ANNs and algebraic models here.

Type FS τr Jac. tRw

[·10−4
]

t j ac
[·10−4

] ttr ai n
tal g

cPs
step

t
step

[·10−3
] t

step
t

step al g

Alg. - - Alg. 5.05 ± 0.102 5.38 ± 2.70 - 6.05 ± 1.25 4.71 ± 0.654 1
DNS - - Alg. 5.01 ± 3.17 5.12 ± 0.101 - 110 ± 22.4 690 ± 52.5
Direct 3 - Alg. 22.1 ± 0.505 3.53 ± 1.78 7.88 33.2 ± 11.2 86.2 ± 6.67 14.1
Direct 3 10−4 Alg. 21.2 ± 0.512 3.34 ± 1.54 7.88 58.2 ± 12.1 149 ± 6.19 24.3
Direct 3 10−4 ANN 22.1 ± 0.496 70.3 ± 12.4 7.88 34.2 ± 8.42 292 ± 8.37 47.7
Quad. 2 - ANN 5.42 ± 0.217 5.89 ± 1.72 9.86 5.03 ± 1.02 8.89 ± 0.432 1.45
CP set 3 0.01 Alg. 22.0 ± 0.554 3.41 ± 1.12 79.4 4.13 ± 0.921 75.4 ± 0.149 12.32
Hyb. H 0.01 ANN 5.24 ± 0.092 5.64 ± 1.62 9.21 36.4 ± 7.85 15.2 ± 0.175 3.22

Table 9.4: Characteristics of computational cost of direct and quadratic ANNs for simulations corresponding to selected
runs from Table 9.1. All time units are in seconds. The listed values are a run’s mean ± its standard deviation

9.4.1. ANN Training
The first aspect of the simulation cost is training the ANNs. Although this would be a one-off investment if the
model is sufficiently general, the previous two chapters show that such generalisability is not achieved here,
nor is it in any other studies on atmospheric unresolved scales modelling conducted so far [79, 205]. Given
this lack of generalisability, it is instructive to retain the training cost of a single ANN as a fraction of a single
forward problem simulation’s total cost.
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Referring back to Fig. 7.1b, the cost of training an ANN for this one-dimensional test problem rapidly
surpasses that of running a DNS without any stabilisation of the forward problem. As an extension of this
comparison, Table 9.4 considers the cost of training as a fraction of the total runtime of a decently performing
algebraic model, ttr ai n

tal g
. The training times of the various ANN models are obviously influenced by numerous

factors that are unaccounted for in this comparison, such as the ANN hyperparameters, number of inputs,
weight initialisation and ability to quickly find a good optimum. However, despite these differences, the
table ascertains that even when training on the standard, 8x8 column sets considered in Chapter 7, all ANN
configurations are already consistently almost an order of magnitude more expensive than a full forward pass
of an algebraic model.

Hence, even if the ANNs significant improvement in accuracy over the algebraic model could be translated
to online simulations, they might still struggle to outperform the simpler model in terms of accuracy per unit
of computational cost. This might improve as the simulations scale, however, as will be discussed next.

9.4.2. Weak Residual Assembly
During weak residual assembly of a direct version of the ANN, one forward pass of the network is required
per element. Under the assumption that the ANNs will have an equal number of nodes nneur in each of
its nl yr dense layers (as here), the computational cost of the weak residual assembly, in terms of number
of operations, scales with a leading order of nel nl yr n2

neur . This derives from having to compute nl yr dense
matrix-vector products of O(n2

neur ), while activation function evaluations only scale with nneur . Hence, an
ANN’s evaluation cost scales linearly in the numerical problem’s degrees of freedom, but quadratically in the
ANN’s complexity. However, nneur might in turn scale with nel if new phenomena must be learned in larger
problems, such that this is not necessarily universal.

The algebraic model, on the other hand, primarily scales with nel ni p nal g , having to solve a single equa-
tion of cost nal g at each integration point. Hence, as long as ni p nal g < nl yr n2

neur , it is cheaper than the
ANN. For the problems listed in Table 9.4, this is certainly the case: Evaluating the weak residual with an ANN
embedded is around 4 times as expensive when an algebraic model is used.

This balance is expected to be somewhat modified if the problem’s two remaining dimensional degrees
of freedom are added. In such cases, the ANN complexity would presumably increase, requiring a higher
nneur . However, its cost would still merely scale with nel , while the algebraic model would require tensor
grids of integration points, resulting in a scaling of nel n3

i p nal g . This might give situations where weak residual

assembly with ANNs is cheaper than with the algebraic model, although tests that realistically investigate this
would require the extension of the test case considered here to 3D.

The improved scaling will almost certainly have a tangible impact when using a quadratic coefficient
model, which only evaluates the ANN once per weak residual assembly in a time step. Therefore, this model’s
weak residual assembly cost is on average comparable to that of the algebraic model. As it also avoids an
integration point loop, it will scale the best of all models considered here.

9.4.3. Jacobian Assembly
The scaling of the ANN Jacobian assembly is very similar to that of the weak residual, although the finite dif-
ference technique used in this work requires four forward passes of the ANN per element instead of one. As
shown in Table 9.4, the ANN Jacobian evaluation is therefore roughly four times as costly as the ANN weak
residual evaluation. The cost could be reduced to the levels of weak residual assembly if automatic differenti-
ation techniques estimate the Jacobian entries. These techniques would require only a single backwards pass
per element if the ANN is a function of all degrees of freedom of a weak form. The cost of a backwards pass
through the network is similar as a forward pass, as its matrices merely need to be transposed to carry out
such an operation [211].

Assembling the Jacobian based on the algebraic model incurs only a marginally higher computational
cost than the algebraic model weak residual assembly: The current implementation only requires the eval-

uation of a single τ per element ( ∂τi
∂a j

components are neglected, as discussed in Section 5.5.4). Hence, the

overall difference in cost between the ANN and algebraic Jacobian assembly in Table 9.4 exceeds an order
of magnitude. However, note that the quadratic coefficient model’s ANN Jacobian assembly cost changes
similarly little as the algebraic Jacobian, compared to their weak residual assembly cost. This is because the
quadratic coefficient model also merely requires a single forward pass of the ANN per element for the Jaco-
bian assembly, from which the Jacobian contributions in Eq. (8.4) can be evaluated.

The same discussion on scaling as for the weak residual assembly applies to the Jacobian assembly. How-
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ever, given its added comparative cost, the potential improvements of the ANN Jacobian might only materi-
alise on very large grids with many integration points.

9.4.4. Newton Iterations
Several of the parameters discussed in the previous sections also affect the number of Newton iterations
that are on average required to converge the problem to a root. Section 8.3.1 showed that relaxation can aid
convergence in certain cases. However, Table 9.4 demonstrates that this on average requires 1.76 times as
many CPs, making a time step almost twice as expensive to take.

Furthermore, Section 8.3.2 showed that an improved ANN Jacobian reduces the number of CPs required
to converge the model per time step, which might weigh up somewhat for its added cost per evaluation. Un-
fortunately, this reduction is generally much less than the added evaluation cost, a cost that must additionally
be incurred at every CP to retain the benefits of the model. This makes simulations with an ANN Jacobian ap-
proximately 3 times as expensive to advance in time as simulations with an algebraic Jacobian. More broadly,
all the direct ANN models in Table 9.4 still have weak residual spaces that are challenging for the Newton
procedure to navigate. These require more than five times as many iterations to converge in a time step than
algebraic models do, further exacerbating the costliness of direct, implicit ANN unresolved scales models.

In Section 8.3.5, employing ANNs trained on data from the Newton iterations improves the smoothness
and convexity of the weak residual space. Here, this is paired with a large reduction in the number CPs re-
quired per time step. Similarly, the quadratic coefficient model, with its quadratic weak residual space, is
easy to converge in few CPs: Even less CPs are commonly required than for the algebraic model. Finally, hy-
brid algebraic-quadratic coefficient models require around three times as many iterations per time step (36.4
± 7.85) than the sum of an algebraic and quadratic coefficient model (6.05±1.25+5.03±1.02). Hence, the
cheapness of these individual models cannot be leveraged in a combined model.

9.4.5. Overall Cost
These sections have highlighted that to minimise computational cost, the ANNs should be embedded in
the models in such a way that they ensure cheap weak residual and Jacobian assembly, with approximately
quadratic weak residual spaces that do not require relaxation and facilitate rapid convergence in every time
step. While cheaper weak residual and Jacobian assembly might be achieved by leveraging parallel architec-
ture to conduct forward passes of the ANNs, the ill-posed weak residual spaces are an inherent deficiency of2
the direct models in Table 9.4. Overall, this generally results in costs per time step that are an order of magni-
tude higher than that of the algebraic model. This adds another dimension to the model’s current deficiency.
However, the models remain an order of magnitude cheaper than having to run a DNS. Hence, they could
still be relatively proficient in terms of accuracy per unit computational cost, if their dramatic improvement
in offline prediction accuracy with respect to the algebraic model can be translated to online performance at
lower cost than a DNS. The quadratic ANN model further lightens the perspective: Its weak residual and Ja-
cobian assemblies are cheap and its weak residual space is well-posed, such that it can compete with the cost
of the algebraic model at the considered level of discretisation. If it had immediate potential as a predictive
model, its scaling would make it very attractive indeed.

9.5. Conclusions
This chapter concludes the present study on VMM-ANNs by assessing their performance in forward simu-
lations of 1D statistically stationary boundary layer turbulence outside the models’ training envelope, com-
pared to both the ground truth high-fidelity DALES simulation and algebraic approximations of the interac-
tion terms.

For direct ANN models, no unequivocally stable regime of the model has been identified at coarse discreti-
sation, even at very low C . Relaxation, ANN Jacobians, training with data from the CP sequences, different
feature sets, algebraic-ANN hybrids and various training sets all fail to remedy the occurrence of single modes
diverging. The failure modes appear to somewhat reflect those encountered in simple problems: Attractor
switches have been identified, while considerable model error now accumulates quickly over several time
steps. These errors add energy to single modes and introduce the models to regimes where they suddenly
drive the weak residual to infinity, or prevent it from converging.

The instabilities are postponed and even disappear for several configurations of the quadratic coefficient
model at finer resolution. This confirms that while the interaction terms’ predictability might not drop off
at coarse resolution, the forward simulation’s error suffers significantly when the ANNs’ role is expanded, as



9.5. Conclusions 123

would have to be the case for larger-scale models.
The addition of an explicitly dissipative artificial viscosity operator remedies the instabilities, confirming

that the lack of energy conservation lies at the root of the second mode of instability in online simulations.
Furthermore, the ANN predictions of the interaction terms recover once a sufficient amount of artificial vis-
cosity returns the simulations to physical regimes. This provides evidence that it is the models’ lack of expo-
sure to the regions their errors make them enter that lies at the foundation of their failure in this study. It is
suggested that including these regions in the training of the ANNs, either in offline or online settings, could
amend the failure. However, this might come at a significant additional computational cost.

This would be non-trivial, because embedding direct ANN architectures in the forward problem already
strongly increases the computational cost of weak residual assembly, Jacobian assembly and the nonlinear
solution procedure, in addition to their training cost. While likely scaling somewhat better than the algebraic
model, this highlights that most of the ANNs’ offline performance must be regained in online simulations if
ANN unresolved scales models are to remain competitive with algebraic or DNS models in terms of accuracy
per degree of freedom. In turn, this imposes limits on the computational cost that can be invested in strategies
that attempt to regain the models’ offline performance in online settings.
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Conclusions and Recommendations

In this work, a data-driven unresolved scales model for a consistent multiscale modelling framework is pro-
posed that in theory could meet four requirements for future General Circulation Models (GCMs), identified
in Chapter 2. The framework i) makes no assumptions on the unresolved scales model’s form, ii) fully and
consistently couples the resolved and unresolved scales models, iii) explicitly handles intermittent, energetic
backscatter to the resolved scales and iv) as a result could improve the prediction of low, stratocumulus clouds
if the projection of unresolved scales onto the resolved scales can be inferred when only informed by the re-
solved scales.

In Chapter 3, Artificial Neural Networks (ANNs) are identified as models with particularly high potential
to meet these criteria, leading to the development of a Variational Multiscale Method (VMM)-ANN mod-
elling framework. The framework is tested in the context of a highly simplified, one-dimensionalised inviscid
Burgers’ problem, forced by a genuinely turbulent term that derives from statistically stationary Large Eddy
Simulation (LES) simulations of a Convective Boundary Layer (CBL) with the Boussinesq equations, as out-
lined in Chapter 4. This model problem is proposed as a stepping stone to actual turbulence simulations.
In conjunction with the methodology outlined in Chapter 5, this forms the basis for answering the study’s
research questions.

10.1. Conclusions
RQ1
What are the characteristic scales, spatial distributions and relevance to the global problem of the amplitudes of
the interaction terms of a VMS formulation for the model problem, over a range of time and space discretisation
levels?

The turbulence of the model problem features a net-forward scattering cascade, with a short range of
−5/3 decay followed by a more rapidly decaying range, such that the interaction terms remain smaller than
the Galerkin terms at any level of discretisation. Nevertheless, their amplitude content is significant, espe-
cially at high spatial wavenumbers of the cross and Reynolds stresses and high temporal wavenumbers of the
unresolved scales time derivative projection, at reduced spatial grid resolution. At reduced temporal resolu-
tion, the latter term also becomes increasingly significant. The cross term is especially important for redistri-
bution in the lower third of the domain, while the Reynolds term matters most at the turbulent boundaries.
While the phenomena that drive the model problem’s turbulence are very different from those that are faced
by global models, they are judged to provide a suitable platform for a primary assessment of the developed
model.

RQ2
What is the ability of feed-forward ANNs trained on error-free data to make generalised offline predictions of
the model problem’s exact interaction terms, compared to state-of-the-art models?

Training ANNs to represent the interaction terms of the model problem on error-free data in offline set-
tings yields promising results when the models are evaluated in uncorrelated, offline settings. This can be
observed through the answers that Chapter 7 provides to RQ2’s two sub-questions.

125
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RQ2.1
Which combinations of ANN input variables, output variables and architecture ensure that the ANN accurately
represents the interaction terms?

The interaction terms can be learnt successfully by employing shallow, wide ANNs trained with learn-
ing rates in the high end of the considered range, without weight regularisation or dropout. The unresolved
scales’ time derivative projection benefits from the inclusion of a time history in its input feature set; includ-
ing the Galerkin terms in the feature set further improves both the time derivative term and the cross term.
The models dramatically improve the offline representation of the exact spatial statistics of the interaction
terms in comparison to simple, algebraic, state of the art unresolved scales models, when evaluated on un-
seen, uncorrelated examples of the statistical turbulence that they were trained on. However, they are less
well-predicted than in the simple problems encountered in [209], which is partially attributable to the input
stencil’s relation to the turbulence: While the stencil is local in space and time, the unresolved scales’ time
derivative projection’s amplitude is dominated by large, non-local spatial modes and the cross- and Reynolds
terms by long-term temporal modes. Including information on larger spatial modes in the input stencils of
the ANNs improves their representation.

RQ2.2
To what extent can an ANN predict the interaction terms over a range of increasingly coarse space and time
discretisations?

The interaction terms remain well-predicted by the ANNs over a range of grid resolutions that require
them to represent the effects of inertial range turbulence. All terms but the unresolved scales’ time derivative
projection improve monotonically with reducing Courant number C . This is conjectured to be due to in-
creasing overlap between the spatio-temporal domain covered by the stencil and the domain of dependence
of the large, non-local modes. In spite of remaining well-predicted, the overall ANN model error is observed
to rise at coarser spatial discretisation, as the interaction terms’ amplitudes are progressively redistributed
from the well-predicted cross term towards the worse-predicted Reynolds term. In total, this will increase the
presence of model error in increasingly coarse online simulations that themselves require larger unresolved
scales contributions.

RQ3
To what extent does an ANN’s generalised offline predictive ability at coarse resolutions translate to online sim-
ulations?

Chapters 8 and 9 extensively demonstrate that the promising results in offline settings shown by ANNs
that are trained on error-free data outside the numerical procedures of a forward problem do not translate
directly to such forward simulations. The models are unstable, especially at coarser levels of discretisation.
The model’s failure in this simple test case provides a problematic starting point for its extension to larger-
scale simulations. However, the answers to RQ3.1-RQ3.3 give some perspective to this conclusion.

RQ3.1
What are sources of the stability issues encountered by Robijns in [209]?

Investigations of a simple sine wave in 2 and 3 degrees of freedom reveal that the VMM-ANN models have
two modes of instability, associated with two dimensions of the forward problem that offline model evalua-
tions do not need to consider. The first of these results from the ANNs’ impact on the nonlinear weak residual,
which must be minimised to solve for the problem’s degrees of freedom during every time step. The nonlinear
ANNs i) introduce an unbounded number of roots to the weak residual when they depend on the problem’s
unknowns and ii) tend to cluster the nonlinear problem’s roots in a space where they may be encountered
even when the ANNs do not increase the order of the problem’s nonlinearity in the degrees of freedom. This
makes the VMM-ANNs practically non-unique and the problems they attempt to solve ill-posed. Instability
arises from attractor switches and divergence that occur in the nonlinear Newton procedure that attempts
to negotiate the distorted weak residual space that the ANNs engender. It is exacerbated at large time steps,
where the models must travel far through the space.

A second mode of instability is observed even when the VMM-ANNs’ weak residual spaces are well-posed:
Once a small error is made, the ANNs appear insufficiently general to retain the statistical properties of the
offline problem they were trained on and quickly become nonsensical. This is the second dimension that
distinguishes online evaluation from error-free offline training.

Both modes of instability are also observed in forward simulations of the more realistic Boussinesq-forced
Burgers’ problem, where single modes accumulate energy and diverge. Attractor switches have been iden-
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tified to play a part in this and it is hypothesised that distorted weak residual spaces do as well. However,
instabilities of the second mode, driven by ANN-induced model errors, appear to dominate.

RQ3.2
To what extent can stability issues be abated by alternative formulations of the VMM-ANN model?

No simple modifications of the VMM-ANN have been found that unconditionally remedy these two modes
of instability. For the manufactured solution problem, it is shown that the first mode cannot be treated by re-
laxation or an improved Jacobian, which fail to guarantee the model’s uniqueness. In contrast, models that
limit the order of the weak residual or are trained on data sampled from trajectories through the weak resid-
ual space remedy the space’s distorted appearance and non-uniqueness. From this, it is concluded that to
simulate forward problems successfully, training ANNs to reproduce the correct solution of a weak form is
insufficient: The network cannot generalise this knowledge to construct smooth and convex hypersurfaces
around their correct solutions. Hence, accounting for this dimension of online running in the ANN training
or model formulation substantially helps abating the first mode of instability. However, even models with
better-posed weak residual spaces still fall prey to the second mode of instability.

Robijns’ limiting, which keeps the predicted interaction terms close to their physical training regime, and
longer temporal input stencils, which ground the ANN predictions in a temporal history, both postpone the
second mode of instability somewhat, but also cannot prevent its occurrence.

The instability of each of these configurations translates to simulations of the Boussinesq-forced Burgers’
problem. For this problem, the only models that remain stable are examples of a quadratic coefficient ANN
model that bounds the weak residual order, when they are run at finer resolutions than what is relevant for
the turbulence of the model problem. This links back to RQ2.2’s answer: While the offline predictive ability of
the ANNs does not drop off at increasingly coarse resolution, their model error holds the online simulations
hostage when their role is expanded.

The only formulation of the VMM-ANN that consistently abates the stability issues contain an artificial
viscosity, which returns excellent solution statistics and reestablishes some of the ANNs’ performance from
offline simulations. The latter observation suggests that the ANNs are also insufficiently generalised to handle
the errors they impose on the solution they drive, when these errors eventually feed back statistically different
states to their input than they were trained upon.

In summary, it appears that the two dimensions of online simulations that were insufficiently accounted
for in offline training on error-free data are the reason why no stable alternative formulations of the VMM-
ANN could be found: The ANNs’ lacking knowledge on how to handle i) the weak residual space and ii) errors
they themselves induce.

RQ3.3
What is the model’s computational cost compared to higher-fidelity simulations and algebraically stabilised
VMM?

Finally, direct ANN architectures steeply increase the computational cost of weak residual assembly, Ja-
cobian assembly and the Newton procedure, in addition to an appreciable training cost, when compared
to algebraic VMM closures. However, they might scale somewhat better than the algebraic models, while
the explicit quadratic coefficient model is already competitively cheap, albeit at the sacrifice of some offline
performance.

In all, this study poses serious questions to the view that ANNs might be the silver bullet of unresolved scales
models. More broadly, it questions whether numerical procedures, which pose very stringent and precise
requirements on the models they successfully co-operate with, are commensurable with the unconstrained
manner in which the ANNs have been treated in this study. As mentioned at the outset of the document,
problems observed in this work are likely to translate to other multiscale problems that one might be tempted
to solve with ANN unresolved scales models, and to other numerical frameworks in which they could be
embedded in this context. Yet, these conclusions also identify several immediate improvement directions for
future work, such that the overall outlook is not as bleak as they suggest, but actually still full of potential.

10.2. Recommendations
Neural Network Structure
Section 7.3 showed that the offline predictions of the ANNs are limited by the input stencil, which is rather
local in comparison to the dominant spatial and temporal scales of several of the terms. This was amended



128 10. Conclusions and Recommendations

by considering wider spatial input stencil, although they were not considered in forward simulations of the
problem. Such stencils would inform the simulation of larger scales, and discourage the excitement of single,
local modes to unreasonable amplitudes if the rest of the domain remains well-predicted. In a similar vein,
tailoring the locality of feature interaction in a problem is already well-described by Convolutional Neural
Networks (CNNs). Their convolutional layers can be set with strides that would control the non-locality of
the problem in a more global, spatial sense [21]. Such parameters can be related to features such as the cor-
relation length of the turbulence. Since CNNs commonly open the door to strong performance increases in
problems with many, varying features, it is recommended to abandon the dense local architectures consid-
ered here for CNNs that are evaluated once for the entire spatial domain, with the feature extraction at all
scales in the domain embedded in the architecture.

Similarly, one might incorporate longer temporal histories or statistics thereof as input to the ANNs. These
histories may prevent nonphysical time-step level fluctuations, by removing spurious roots that do not mesh
with the longer-term behaviour of the problem. They may also restrain the model from migrating into statis-
tically different regimes that do not agree with the problem’s long-term dynamics. However, ANN architec-
tures that cover long-term behaviour already exist: Several sophisticated architectures of Recurrent Neural
Networkss (RNNs) are already somewhat capable of successfully incorporating long- and short-term histo-
ries into their predictions in fluid flow problems [255]. These architectures might therefore be leveraged to
keep the models better in check with their important, longer-term dynamics.

Weak Boundary Conditions
The mode that destabilises the forward problem is frequently the mode directly adjacent to the boundary.
This is because the strong, homogeneous Dirichlet boundary condition requires very large gradients in the
solution from the wall in the first element. This requirement may be relaxed by substituting the strong con-
ditions for their weak counterparts, which is often observed to aid stability of the wall-layer in traditional LES
[112]. Weak formulations would also naturally handle the heat flux boundary conditions of 3D simulations,
should follow-up studies get to those. Hence, it is recommended to incorporate such interpretations of the
boundary condition in following work.

Enforcement of Energy Conservation
The implementation of the method considered here precluded a proper analysis of the evolution of energy
in the resolved flow. While this did not curtail the identification of the phenomena driving the instability of
the 1D Boussinesq-forced problem, it should ideally be more fully conducted in the online simulations of
future work. Additionally, the evaluation of such balances could be used as online constraints on how rapidly
energy is allowed to accumulate in the scales that are normally associated with instability. While constraining
the evolution of energy comes dangerously close to imposing a prediction on the model instead of the model
giving the prediction, the cutoffs of such models could likely already be set at relatively high values, as clearly
nonphysical behaviour is here seen to emerge on very short time scales, driven by the potential of the non-
linear Newton procedure to rapidly drive the solution to nonsensical regimes. In an offline sense, the models
could be informed of the energy balance during training, where one can add the energy evolution of each
interaction term to the cost function. Finally, one might return to a framework that is slightly less ambitious
than what is studied here, where energy conservation is enforced explicitly by the model form (e.g. [226]),
and only predict the coefficients of such models. This line of research is gaining traction in the atmospheric
modelling community [220]. While such frameworks are less general than what is considered here, they are
much better positioned to leverage prior knowledge of how the unresolved scales should behave, even if this
knowledge is put forward through phenomenological models.

Training for the online problem
The most profound limit of the ANNs considered here, however, appears to be their lack of generalisability
from offline settings to online simulations. The evidence presented in Section 8.3.5 and Section 9.3 suggests
that this might be due to lacking knowledge of both the iterative solution procedure and the physical regimes
the model error drives it to. Two general strategies might be targeted to amend this, as outlined at the end of
Section 9.3.

First, one may attempt to add the weak residual and model-induced error dimensions to an offline train-
ing set. For such training, a single training example of an error-free set of inputs and an interaction term
output would be enriched with input data from i) the weak residual space and ii) errors the ANNs could have
induced, for instance from an earlier online simulation.
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Second, Rasp’s recent study suggests training the ANNs online might improve how the ANNs are taught
to deal with the errors they themselves induce [204]. As noted in Section 9.3, both strategies likely rapidly
scale the expense of the training, such that detailed studies are recommended to gauge their effectiveness in
generalising the ANNs to online simulations and the resulting accuracy per unit computational cost.





A
Atmospheric Scale Ranges and Models

Despite the lacking evidence for its general validity [153], global atmospheric models traditionally rely on
scale separation to contain their computational cost. When formulating a mathematical model, this is done
by manipulating the Navier-Stokes equations (Eq. (2.1)) to isolate the scale ranges that one is interested
in [130, 202]. Self-contained, distinct scale ranges, as opposed to continuous, strongly interacting spectra,
would allow mathematical models to be unambiguously posed for the dominating phenomena over a given
range of scales without worrying whether this will interact with different sets of scales. This allows the fo-
cus to be placed only on the phenomena that are predominantly associated with the scales one is interested
in. As these models appear in several discussions in this report, the following paragraphs aim to provide the
background and reasoning that leads to their formulation.

Klein presents a framework of multiscale asymptotics that allows the identification of the distinguished
scale-specific asymptotic limits of Eq. (2.1) [130, 131]. He departs from eight universal characteristics that
define atmospheric motion, presented in Table A.1.

Characteristic Symbol Order of magnitude [unit]
Earth radius Re [m] 6 ·106

Earth rotation rate Ωe [s−1] 10−4

Gravitational acceleration g [ms−2] 101

Sea-level surface pressure p0 [Nm−2] 105

Freezing temperature of H2O T0 [K] 3 ·102

Equator-pole and vertical tropospheric
potential temperature difference

∆ θ0 [K] 4 ·101

Dry gas constant Rg [m2s−2K−1] 3 ·102

Dry ratio of specific heats γ [−] 101

Table A.1: Universal characteristics of atmospheric motion, adopted from Klein [131]

The seven dimensional characteristics in Table A.1 allow construction of auxiliary quantities, typically
referred to in literature as sea-level air density ρ0 ∼ 1.25 kgm−3 and density scale height hsc ∼ 11 km, as well
as three distinct signal speeds: sea-level speed of sound cs ∼ 330 ms−1, “internal wave speed” ci nt ∼ 110 ms−1

and “thermal wind velocity” uth ∼ 12 ms−1. Internal waves refer to oscillations that are balanced by gravity,
while thermal winds pertain to the motion induced by potential temperature gradients under hydrostatic
and geostrophic balance. With these quantities, one may construct three independent, nondimensional Π
parameters. While not very rigorously confined by Klein, it can be instructive to relate these Π parameters to
a single small parameter ε∼O(10−1), which allows them to refer to ratios between the different characteristic
speeds [131]:

Π1 = hsc

Re
≈ 1.6 ·10−3 = c1ε

3 ∼ uth

cs
(A.1a)

Π2 =
∆Θr e f

Tr e f
≈ 1.5 ·10−1 = c2ε∼ uth

ci nt
(A.1b)

131
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Π1 = cs

Ωe Re
≈ 4.7 ·10−1 = c3

p
ε∼ ci nt

cs
(A.1c)

In combination with hsc and Re , the length scales that correspond to the three characteristic signal speeds
then give rise to five discernible spatial scales from the initial characteristics. Table A.2 presents these with
typical nomenclature, and links their relative scaling to hsc in terms of ε to indicate their distinct scale asso-
ciation:

Characteristic length Symbol ε scaling Value [unit]
Planetary scale Lp = π

2 Re ε−3hsc 104 km

Obukhov radius / External Rossby radius Lob = cr e f

Ωe
ε−

5
2 hsc 3.3 ·103 km

Synoptic scale / Rossby radius Lr o = ci nt
Ωe

ε−2hsc 1.1 ·103 km
Meso-β scale Lmeso

uth
Ωe

ε−1hsc 1.5 ·102 km

Meso-γ scale / density scale height hsc = γp0
gρ0

ε0hsc 1.1 ·101 km

Table A.2: Discernible length scales of atmospheric motion, adopted from Klein [131]

At each of these length scales, different terms in Eq. (2.1) have different magnitudes, as illustrated by
the definitions of their non-dimensional scaling parameters in Eq. (A.2). Two notes should be taken from
these definitions: First, at the characteristic velocity and length scales presented above, Re is always very
large, such that the viscous term in Eq. (2.1b) is commonly neglected at the mathematical modelling stage to
reduce Eq. (2.1) to the Euler equations [169, 236]. This is the reason why no reference dynamic viscosity µd is
included in Table A.1. Second, the non-dimensional numbers are interdependent and can be re-expressed in
terms of ε. For instance, if lr e f = hsc , ur e f = uth and tr e f = hsc

uth
:

Fr = u0√
g l0

= uth

Rg Tr e f
= uth

cs
= ε3 (A.2a)

Ma = u0√
p0/ρ0

= uth

cs
= ε3 (A.2b)

Ro = u0

2Ωe l0
= 1

2

Lmeso

hsc
= 1

2
ε (A.2c)

St = l0

t0u0
= 1 (A.2d)

Re = ρ0u0l0

µ
= ρ0uthhsc

µd
∼O(1010) (A.2e)

Carrying out a similar interpretation at the other main discernible length scales, maintaining u0 = uth

and t0 = l0
u0

, shows how the different terms scale differently as the characteristic length scale increases:

Non-dimensional parameter Definition hsc Lmeso LRo Lp

Froude number Fr = u0p
g l0

ε3 ε
7
2 ε4 ε

9
2

Mach number Ma = u0p
p0/ρ0

ε3 ε3 ε3 ε3

Rossby number Ro = u0
2Ωe l0

1
2ε

1
2ε

2 1
2ε

3 1
2ε

4

Strouhal number St = l0
t0u0

1 1 1 1

Table A.3: Non-dimensional parameters in Eq. (2.1) and their value in terms of ε at the discernible reference lengths of

Table A.2, when u0 = uth and t0 = l0
u0

If one then assumes that solutions to Eq. (2.1) can depend on only a single temporal scale, vertical length
scale and horizontal length scale, all appropriate to the phenomenon under consideration, a hierarchy of
asymptotic “single-regime” models may be constructed in terms of scalings with ε when ε→ 0. These mod-
els are the most frequently encountered mathematical interpretations of atmospheric motion. When ε is
compared to hsc and t0 = hsc

u0
, these models may be summarised by Fig. A.1.

Particularly useful models for time-dependent, advective processes arise when t0 and l0 are of the same
order (internal waves are better described when a timescale is constructed with ci nt and l0). These are the
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Figure A.1: Particular mathematical models at various ranges of length and time scales compared to hsc and u0 = uth .
WTG is the weak temperature gradient model, HPE are the hydrostatic primitive equations, QG is quasi-geostrophic
motion and PG is planetary geostrophic motion

combinations on the diagonal of Fig. A.1 that correspond to the non-dimensional parameters in Table A.3.
An example is the set of Weak Temperature Gradient (WTG) models, which arise in the asymptotic limit of
Eq. (2.1) when ε0 −ε−1 is introduced. WTG models are often used for analyses in tropical meteorology [162].

When l0 and u0 increase, different balances begin dominating. In particular, Ro reduces such that Earth-
rotational effects become increasingly important in the horizontal momentum equations. This results in the
quasi-geostrophic models on the synoptic scales and planetary geostrophic models on the planetary scales
[259]. As Table A.3 shows, the balance at leading order for these models is increasingly between global-scale
pressure gradients and Coriolis forces as Ma and Ro attain the same order at the scale of LRo .

A.1. The Anelastic and Boussinesq Equations
The anelastic equations have two attractive characteristics: First, they identify a flow regime in which not a
single timescale needs to be chosen, but a range of timescales remains valid [189]. Second, they prohibit the
acoustic wave solutions allowed by Eq. (2.1).

Acoustic waves are broadly considered insignificant for meteorological or climatological phenomena at
the global scale [130, 189, 202]. Yet, their discretised representation obliges high temporal resolutions to guar-
antee the stability of most numerical methods [230]. To save computational cost, it is therefore common to
filter acoustic waves from the equations [85]. This yields analogous situations to classic incompressible flow
regimes, although they are explicitly required to still describe phenomena associated with moist convection,
stratification and rotational effects when applied for atmospheric simulation [131].

The anelastic approximation achieves this by assuming that sound speed cs →∞, such that linear pres-
sure wave solutions to Eq. (2.1) are prohibited and such information travels throughout the domain instan-

taneously [202]. This can be achieved by setting ∂ρ
∂t in Eq. (2.1a) to 0, proposing that the velocity field is

divergence-free.
The anelastic assumption is valid when four conditions are met [202]. First, all thermodynamic variables

may only deviate slightly from their reference values, such that density and pressure perturbations ρ′′ and p ′′
from a reference state ρ0 and p0, defined as ρ′′ = ρ−ρ0 and p ′′ = p−p0, are relevant unknowns. Second, pro-
cesses associated with advection (O(uth)) and internal waves (O(ci nt ) must be of sufficiently low frequency,
or large time scale, that they are far removed from processes at the time scales of the speed of sound (cs ).
Third, the advective and internal wave dynamics must be of similar time scales. This statement means that
the frequency of the internal waves, the Brunt-Väisälä frequency, is of similar order as the inertial scale fre-
quency t−1

0 = u0
l0

. In terms of the analysis above, it demands that ci nt = O(uth) when ε→ 0 [131]. Finally,
the “aspect ratio” of the motions, or the ratio of characteristic vertical and horizontal length scales, must be
sufficiently small. This justifies neglect of time-variations in the density perturbations in Eq. (2.1a), while
maintaining their influence in the Ma and Fr terms in Eq. (2.1b), where they influence pressure and potential
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temperature perturbations. In dimensional flux form, this leads to Eq. (A.3):

∂

∂x j

(
ρu j

)= 0 (A.3a)

∂

∂t

(
ρui

)+ ∂

∂x j

(
ρu j ui

)+2εi j kΩe jρuk +
∂p

∂xi
+ gρδi 3 = 0 (A.3b)

∂

∂t

(
ρθ

)+ ∂

∂x j

(
ρθu j

)= Sθ (A.3c)

The anelastic system can reduce pressure prediction to solving a diagnostic Poisson equation, similar to
what can be done for incompressible flow [92, 202]. However, in combination with the numerical challenges
of solving pressure Poisson equations, it has two important drawbacks. First, it only remains accurate for
small variations in θ with respect to the reference state, which does not hold across the troposphere [69].
Second, it does not conserve energy [13] unless the reference state is isentropic [202]. Therefore, more general
versions of the anelastic equations [149], or extensions such as the pseudo-incompressible equations [69,
130], have been developed.

The Boussinesq equations result from further reducing the scales of the motion considered in the prob-
lem. In particular, when the motion’s depth in z becomes of O(ε), Fr and gravity will become increasingly
dominant, such that the motion is comparatively less influenced by fluctuations in pressure with respect to
the reference state. Pressure fluctuations are then much smaller than density or temperature fluctuations,
such that by the ideal gas law:

θ′′

θ0
=−ρ

′′

ρ0
(A.4)

This allows the removal of density fluctuations from the equations of motion, expressing them only in

terms of pressure fluctuations π= p ′′
ρ0

and temperature fluctuations θ′′ = θ−θ0:

∂u j

∂x j
= 0 (A.5a)

∂ui

∂t
+u j

∂ui

∂x j
+2εi j kΩe j uk +

∂π

∂xi
+ g

θ′′

θ0
δi 3 = 0 (A.5b)

∂θ

∂t
+ ∂

∂x j

(
θu j

)= Sθ (A.5c)

The Boussinesq equations are frequently employed for atmospheric boundary layer computations of
shallow convection. While they can result in satisfactory analyses of processes at these scales, the discussion
above aims to highlight that they are not valid at much larger scales, where different processes dominate the
motion. Nevertheless, since these scales are meaningful for climate-scale predictions satisfactorily described
in global-scale models, they are considered a suitable place to begin developing new models.

A.2. The hydrostatic primitive equations
At larger scales, a fluid flow model must remain valid across the globe. This yields significant challenges
for posing mathematical models that exploit scale-specific phenomena, neglect acoustic waves, but remain
consistent with the original equation set.

Therefore, it is generally considered necessary to retain fully compressible equations in the horizontal for
length scales larger than hsc [131], while approximations are often introduced through the vertical momen-
tum equation [253]. The most common approximation is to consider that this equation reduces to hydrostatic
balance. This is justified by recognising that a characteristic vertical length scale is hsc , while the planetary
length scale Lp = ε−3hsc . This is the shallow-atmosphere approximation [253, 254]. It forms the grounds for

omitting the time-varying component of vertical velocity w , by pointing out that t0 = Lp

uth
= ε−3 >> LRo

uth
= ε−2,

such that internal gravity waves, which are fluctuations of w associated with ci nt ∝ LRo are neglected. This is
the quasi-steady approximation [171, 202].

Hydrostatic balance therefore explicitly filters both vertical acoustic and internal waves by ignoring ver-
tical mean velocity, while allowing horizontally propagating acoustic waves such as Lamb waves [131]. This
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is problematic for direct modelling of small scale behaviour, because the horizontal perturbation pressure
force is not hydrostatically balanced by the perturbation density field, leading to spurious, unstable modes
[202]. However, as discussed in Section 2.2, global-scale discretised models commonly employ grid resolu-
tions that are too large to simulate these scales, deferring this problem to the higher-resolution models that
are expected to emerge over the coming decade.

A.3. The Superparameterisation (SP) Equations
Grabowski’s original proposal for SP departs from the anelastic equations Eq. (A.3) and casts them on the
general SP form Eq. (2.9). This results in seven large scale and small scale anelastic equations for moist dy-

namics, such that in the terminology of Eq. (2.9), χ = [
ui ,θ, qv , qc , qp

]T , where qv , qc and qp are the mixing
ratios of water vapour, condensed water and precipitation (condensed water that falls relative to the flow)
[83]. All assumed small-scale effects are included in the small-scale equations. Only large-scale advection,
buoyancy (as denoted with reference to the ambient state θe and the reference potential temperature profile
θ0), Coriolis forcing and optional gravity wave absorbers (subsumed under the optional source terms f ) and
pressure perturbations with respect to a geostrophically balanced ambient condition normalised with the
anelastic reference density ρ0 remain in the large-scale equations. κ= Rv

Rg
−1 (Rv is the gas constant of water

vapour) and ξ=
[
θ, qv , qc , qp

]
, while the total derivative D

Dt subsumes the steady and unsteady inertial terms.

∂
(
ρ0u j

)
∂x j

= 0 (A.6a)

Dui

Dt
=− ∂π

∂xi
+δi ,3g

(
θ−θe

θ0

+κ(
q v −q v,e

)−qc −q p

)
+F ui

SS + fui
(A.6b)

Dξ

Dt
= F ξ

SS + f
ξ

(A.6c)

The small-scale anelastic equations take on a similar form:

∂
(
ρ0u′

j

)
∂x j

= 0 (A.7a)

Du′
i

Dt
=−∂π

′

∂xi
+δi ,3g

(
θ′−θ′e
θ′0

+κ(
q ′

v −q ′
v,e

)−q ′
c −q ′

p

)
−F

u′
i

SS + fu′
i

(A.7b)

Dθ′

Dt
= θe

T0

[
Lv

cp
(CON +DEP )+ r f

]
+Sθ′ −F θ′

SS + fθ′ (A.7c)

Dq ′
v

Dt
=−CON −DEP + sqv ′ −F

qv ′
SS + fqv ′ (A.7d)

Dq ′
c

Dt
=CON − ACC − AU T −F

qc′
SS + fqc′ (A.7e)

Dq ′
p

Dt
= 1

ρ0

∂

∂z

(
ρ0vt q ′

p

)
+ ACC + AU T +DEP −F

qp′
SS + fqp′ (A.7f)

Where r f is the temperature influence due to radiative flux divergence, Lv is the latent heat of evapora-
tion or condensation of water, cp is the specific heat of air at constant pressure and vt is the sedimentation
velocity of precipitation water. Cloud condensation from water vapour CON, autoconversion of condensate
into precipitation AUT, condensate accretion through precipitation ACC and the precipitation source or sink
through deposition or evaporation of water vapour DEP are all modelled on the small scales only, originally
through Grabowski’s own simple scheme [82].





B
A Bulk Model for the Statistically Stationary

Convective Boundary Layer

Van Driel and Jonker consider a bulk model of the CBL [247]. This model reduces the problem to a 1D situa-
tion with constant θ and exactly linearly reducing 〈w ′′θ′′〉 in the mixed layer. The temperature inversion∆〈θ〉
is a discontinuity.

These assumptions simplify the problem greatly. Consider first continuity in its conservative form over
the layer, which simplifies to indicating that zi varies in time only with the net vertical velocity we −ws , we

denoting the entrainment velocity directed upwards and ws denoting a possible subsidence velocity oriented
downwards:

∂zi

∂t
= we −ws (B.1)

Hence, if one is to prevent the layer from growing in time, one must know what drives we and subse-
quently balance it with a subsidence. [247] proposes to achieve this with a radiative sink, Sθ ∝ ws . The study
proceeds to derive a bulk model for the CBL that can be subjected to analytical stability analysis, to find a

suitable choice for Sθ that ensures that ∂zi
∂t = 0. This choice informs the governing inputs of the high-fidelity

statistically stationary LES simulation of this study. Therefore, the approach is briefly described below.
To be solved, Eq. (B.1) requires an approximation for we . For this purpose, consider the conservation

equation for potential temperature within the CBL, represented here in its integral form also. 〈θ〉, constant
in space, varies in time only as a balance of turbulence-induced flux at the vertical domain boundaries, the
surface and the inversion height, or through any source term in the layer. This is where the radiative source
Sθ is introduced.

zi
∂〈θ〉
∂t

=−Sθ+〈w ′′θ′′〉s −〈w ′′θ′′〉zi (B.2)

In addition, potential temperature is conserved over the temperature discontinuity, which requires slightly
more analysis. Consider, for the 1D problem, this sudden jump in 〈θ〉 over zi (zl denotes any z within the con-
vective layer, whereas z is a location above it):

∂

∂t

[∫ z−i

zl

〈θ〉d z +
∫ z

z+i
〈θ〉d z

]
= 〈w ′′θ′′〉zl −〈w ′′θ′′〉z −

∫ z

zl

Sθd z (B.3)

〈w ′′θ′′〉z = 0, as the layer above the inversion is assumed to be a stable stratification, with no turbulence.
As the temperature inversion may change over time, Leibniz’ rule must be invoked to carry out the integra-
tion:

∂zi

∂t
〈θ〉z−i +

∫ z−i

zl

∂〈θ〉
∂t

d z − ∂zi

∂t
〈θ〉z+i

+
∫ z

z+i

∂〈θ〉
∂t

d z = 〈w ′′θ′′〉zl −
∫ z

zl

Sθd z (B.4)
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Defining the temperature discontinuity is∆〈θ〉 = 〈θ〉z+i
−〈θ〉z−i and recognising that the remaining integrals

of ∂〈θ〉
∂t merely represent new flux and radiation balances such as Eq. (B.2) in the respective domains below

and above the discontinuity, this can be rewritten as:

− ∂zi

∂t
∆〈θ〉+〈w ′′θ′′〉zl −〈w ′′θ′′〉z−i −

∫ z−i

zl

Sθd z +〈w ′′θ′′〉z+i
−〈w ′′θ′′〉z −

∫ z

z+i
Sθd z = 〈w ′′θ′′〉zl −

∫ z

zl

Sθd z (B.5)

Again invoking the argument that all turbulent fluxes above the discontinuity are 0, while cancelling the
fluxes at zl and radiation terms under the assumption that Sθ is a time-independent constant yields an ex-
pression relating the entrainment flux to the inversion strength:

∂zi

∂t
∆〈θ〉 =−〈w ′′θ′′〉z−i =−〈w ′′θ′′〉zi (B.6)

[247] proposes to simplify Eq. (B.6) through Lilly’s zeroth-order model [146], by setting ∂zi
∂t ≈ we under the

assumption that layer growth is locally driven:

〈w ′′θ′′〉zi ≈−we∆〈θ〉 (B.7)

This is obviously inconsistent with Eqs. (B.1) and (B.2). Nevertheless, it is adopted here to illustrate a more
important point: The layer’s growth is related to the inversion strength ∆〈θ〉. Hence, to ensure the stability of
the layer, one must analyse the evolution of ∆〈θ〉 in addition to that of zi . An evolution equation for ∆〈θ〉 is
easily posed by applying the assumptions of the simplified model [240]:

∂∆〈θ〉
∂t

=
∂〈θ〉z+i
∂t

−
∂〈θ〉z−i
∂t

(B.8a)

∂〈θ〉z−i
∂t

= ∂〈θ〉
∂t

(B.8b)

∂〈θ〉z+i
∂t

=
∂〈θ〉z+i
∂zi

∂zi

∂t
= Γ∂zi

∂t
(B.8c)

∂∆〈θ〉
∂t

= Γ∂zi

∂t
− ∂〈θ〉

∂t
(B.8d)

Where Γ = ∂〈θ〉
∂z . This is considered a constant at any location above zi . If one then chooses Sθ’s propor-

tionality constant such that Sθ = wsΓ, this can be rewritten, using the reduced continuity equation to:

∂∆〈θ〉
∂t

= Γwe − ∂〈θ〉
∂t

−Sθ (B.9)

Assuming 〈w ′′θ′′〉s will be specified as a boundary condition and is known, this leaves four equations
(Eqs. (B.1), (B.2), (B.7) and (B.9)) for five unknowns (we , ws , 〈θ〉 ∆〈θ〉 and 〈w ′′θ′′〉zi ). To evaluate 〈w ′′θ′′〉zi

and close the model, an estimate must be made of the transport of turbulent flux from the surface to the
inversion altitude, often achieved through further simplification of Eq. (4.4). Common options are to assume
that vertical redistribution is instantaneous through only term V in Eq. (4.3) [18, 240], that only the vertical
velocity component matters for this transport and that it is directly driven by the surface heat flux. This yields:

−〈w ′′θ′′〉zi ≈C ′′ ∂
∂z

〈kw ′〉 ≈C ′w ′′3 ≈C〈w ′′θ′′〉s (B.10)

Van Driel and Jonker point out that making this assumption breaks down when the convective timescales
in the layer are short, because it assumes that term i in Eq. (4.3) is 0, which is unreasonable [247]. This is
improved by posing a transport equation for E (as proposed in [184]).

Regardless of which closure model is employed, the model is tractable for analytical fixed point and linear
fluctuation analysis to ascertain that statistically stable situations can be reached [247]. The former is done
by rewriting Eqs. (B.1), (B.2), (B.7), (B.9) and (B.10) to two evolution equations for zi and ∆〈θ〉:

∂zi

∂t
= C〈w ′′θ′′〉s

∆〈θ〉 −ws (B.11a)



139

∂∆〈θ〉i

∂t
= 〈w ′′θ′′〉s

(
CΓ

∆〈θ〉 +
1+C

zi

)
(B.11b)

And subsequently setting the time derivatives in Eq. (B.11) to 0. This returns a single fixed-point solution,
zi0 , ∆〈θ〉0:

∆〈θ〉0 = C〈w ′′θ′′〉s

ws
(B.12a)

zi0 =
(1+C )〈w ′′θ′′〉s

Sθ
(B.12b)

The leading order time-derivatives of linear fluctuations to these fixed points are summarised in a Jaco-
bian matrix, which has eigenvalues with ever negative real parts, revealing that the fixed points are uncondi-
tionally stable:

λ1,2 =−
1±

√
1−3C
1+C

2C

Γw2
s

〈w ′′θ′′〉s
(B.13)

Hence, this analysis informs that the choice of Sθ = Γws is suitable to ensure that a statistically stationary
situation can be maintained as long as 〈w ′′θ′′〉s > const > 0 and its fluctuations are not overly large.





C
Methodology Details

Several details of the methodology that is broadly outlined in Chapter 5 are further exhibited in this appendix.
While these details distract from the higher-level discussion in the main text, they are included here to ensure
the completeness of the study’s documentation.

C.1. Bi-Cubic Interpolation of DALES Data
To construct the forcing anywhere in the spatio-temporal 1D domain of the Boussinesq-forced Burgers’ prob-
lem, the discrete, sampled w in any column of the Dutch Atmospheric Large Eddy Simulation (DALES) data
must be made a continuous function of z and t from its nodal definition zi and t n :

wn
i → w(z, t ) (C.1)

To achieve this, w(z, t ) is defined as a set of bi-cubic Hermite splines. Given zi < z < zi+1 and t n < t <
t n+1, four such 1D splines are constructed along the time direction at zi+ j , j = [−1,0,1,2], assuming the grid
spacing h and time step ∆t are constant:

w(zi+ j , t ) =
3∑

k=0
c j k t k (C.2)

Where c j k is the 4×4 matrix that ensures the satisfaction of:

w(zi+ j , t n) = wn
i+ j (C.3)

w(zi+ j , t n+1) = wn+1
i+ j (C.4)

∂w(zi+ j , t n)

∂t
=

wn+1
i+ j −wn−1

i+ j

2∆t
(C.5)

∂w(zi+ j , t n+1)

∂t
=

wn+2
i+ j −wn

i+ j

2∆t
(C.6)

Such that they may be written as:

c j k =


− 1

2
3
2 − 3

2
1
2

1 − 5
2 2 − 1

2
− 1

2 0 1
2 0

0 1 0 0

[
wn−1

i+ j , wn
i+ j , wn+1

i+ j , wn+2
i+ j

]T
(C.7)

Using the four w(zi+ j , t ) that can be computed in this fashion, a final cubic Hermite spline is constructed
along the z-direction to estimate w(z, t ). It is also designed according to the above methodology, needing to
satisfy C 0 continuity and the finite difference approximation for C 1 continuity at zi and zi+1.
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The use of central differences to approximate the derivatives at the four boundaries of
[
t n , t n+1

]×[zi , zi+1]
ensures a C 1 continuous representation of w throughout the domain, with exception of nodes that require
interpolations across a boundary. These must be handled with one-sided finite differences to let the spline be
drawn. The zero-time boundary is made entirely homogeneous. As no higher order derivatives in z and t will
be taken of this function, the above approach ensures that also f is C 1 continuous, such that no unphysical
discontinuities are introduced.

C.2. Finite Difference ANN Jacobian Assembly
In the i +1st element, the approach to assembling the Jacobian from ANN predictions of Î aims to add the
following element matrix to the global system:

∂Îi

∂a j
=

[
∂
∂ai

(
Îi

)
∂

∂ai+1

(
Îi

)
∂
∂ai

(
Îi+1

)
0

]
≈

[
Îi (ai−1,ai+δa,ai+1)−Î (ai−1,ai a,ai+1)

δa
Îi (ai−1,ai ,ai+1+δa)−Î (ai−1,ai a,ai+1)

δa
Îi+1(ai+δa,ai+1,ai+2)−Î (ai ,ai+1a,ai+2)

δa 0

]
(C.8)

Section 8.3.2 only features three non-zero terms, since terms that overlap elements need not be computed
when full interaction terms, rather than their element contributions, are computed. Each of the three deriva-
tive terms in Eq. (C.8) are approximated with a simple first order finite difference in which ANN-predicted
interaction terms appear with perturbed a j -dependent inputs. These perturbed features are summarised in
Table C.1.

Function of a ∂
∂ai

(
Îi

)
∂

∂ai+1

(
Îi

)
∂
∂ai

(
Îi+1

)
ai−1 1 1 0
ai 1+δa 1 1+δa
ai+1 1 1+δa 1
ai+2 0 0 1
∂a
∂t i−1 1 1 0
∂a
∂t i 1+ ct ,1δa 1 1+ ct ,1δa
∂a
∂t i+1 1 1+ ct ,1δa 1
∂a
∂t i+2 0 0 1

Rs,I ,i (ai−1, ai , ai+1) (1,1+δa,0) (1,1,0) (0,1+δa,1)
Rs,I ,i+1(ai , ai+1, ai+2) (1+δa, 1,0) (1,1+δa,0) (0,1,1)

Table C.1: Perturbations of the amplitudes a for the unknown input features of the ANN, used to construct finite difference
approximations to the Jacobian contributions in the left column. ct ,1 is a factor for the time derivative’s finite difference
approximation (see Section 5.5.5).

The factor ct ,1 in this table is the factor that multiplies the terms proportional to wn+1 in the finite differ-
ence time marches Eq. (5.26) and Eq. (5.29). Hence, it represents the unknowns at t n+1 in the time stepping
scheme.

The direct perturbations to a and ∂a
∂t in Table C.1 are straightforward to compute. Strong residual terms,

however, must be assembled with the correct perturbations in the loop over Integration Point (IP)s. ∂Îi
∂a j

is

added only after that loop. The base Î is updated each time a new weak form is reached, while the perturbed
Î and the resulting finite differences are computed and added in internal loops over active weak forms (eqs)
and active weighting functions (w f s).

The full implementation of the ANN-Jacobian is summarised by Algorithm 4.
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Algorithm 4 ANN-Jacobian Assembly

1: for i=0,1,...,nel do . Element loop
2: if i=0 then
3: Assemble global strong residual vector Rs,I ,i

4: for ip=0,1,...,nI P do . Integration point loop
5: Load current guess of w , ∂w

∂t and known f
6: for eq=0,1 do . Active weak forms in element
7: for wf=0,1 do . Active amplitudes in element

8: Add IP contribution to Galerkin terms of
∂Rw,eq

∂aw f
in element i

9: if sgsType=Algebraic then

10: Add IP contribution to algebraic unresolved scales terms of
∂Rw,eq

∂aw f
in element i

11: else if sgsType=ANN then

12: Compute
[
Rs,I ,i (ai−1, ai +δa),Rs,I ,i+1(ai +δa, ai+1),Rs,i+1(ai , ai+1 +δa)

]T

13: if sgsType=ANN then
14: for eq=0,1 do . Active weak forms in element
15: if eq=1 then
16: Update Îi

17: for wf=0,1 do . Active amplitudes in element
18: Compute Î P

eq,w f

19: Compute and add ∂Îi
∂a j

C.3. Adaptive Relaxation Scheme for Newton’s Method
An adaptive relaxation scheme has been implemented to improve convergence behaviour. It is based on
rewriting the Taylor expansion Eq. (5.24) that results in the iterative Newton scheme Eq. (5.25) as an explicit
Euler discretisation with a step size equal to the relaxation factor λr (which is 1 in Eq. (5.25b):

ap+1
i −ap

i

λ
=−

(
∂Rwi

∂a j

)−1

Rwi , a0
i = an

i (C.9)

This can be interpreted as a discretisation of the non-linear system of coupled Ordinary Differential Equa-
tion (ODE)s:

∂ai

∂λr
=−

(
∂Rwi

∂a j

)−1

Rwi , a(λr = 0) = a0
i (C.10)

Assuming the parameters in Eq. (C.10) are continuous and exact and the coupled ODEs are diagonalised,
each decoupled equation can be solved for Rw :

Rw =R0e−λr (C.11)

Which describes convergence to the nearest root of Rw as λr →∞ along a monotonic, exponential path.

In reality, however, ∂ai
∂λr

is not continuous,
∂Rwi
∂a j

is not exact and the system of equations is not decoupled.

Therefore, deviations from the exponential convergence path will occur. These can manifest themselves as
oscillating convergence behaviour [140] or even divergence [219] of the Newton procedure. Therefore, an
adaptive procedure is employed here that constrains λr with a free parameter that controls the L2 norm
of the leading order error between the exponential convergence path a(λr ) and a linearised explicit Euler
convergence path â(λr ) in every Corrector Pass (CP) (see [11] for a derivation):

τ
p
r = ||a(λp

r )− â(λp
r )||2 ≈ λ

p
r

2

∥∥∥∥(
∂Rwi

∂a j

)∥∥∥∥
2

(C.12)

Setting τp
r = 0 renders an infinitely long convergence path in line with Eq. (C.11). Large values of τ al-

low large excursions from the exponential path, yielding faster convergence but higher risk of oscillations or
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divergence. However, Eq. (C.12) indicates that the error becomes increasingly small close to roots of Rwi ,

where
∥∥∥(

∂Rwi
∂a j

)∥∥∥
2

,‖∆ai‖2 → 0. Hence, with a fixed, preset τp
r , Eq. (C.12) can be leveraged to construct an

adaptive scheme for λp
r that minimises oscillations and other deviations induced by taking large steps from

bad initial guesses in a space with large gradients of ai , while reducing to an unrelaxed scheme (λr = 1) when
it approaches a root:

λ
p
r = min

(√
2τr∥∥∆ap

i

∥∥ ,1

)
(C.13)

A second order scheme for λ that extends Eq. (C.12) to a second order approximation of the error [11] is
also implemented and tested. However, this is not found to have significant improvement over Eq. (C.13) on
oscillating convergence cases, even though it requires an additional linear system solve per CP. It is therefore
not considered further here.
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