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Summary

This paper establishes a novel online fault detection and identification strat-
egy for a class of continuous piecewise affine (PWA) systems, namely, bimodal
and trimodal PWA systems. The main contributions with respect to the
state-of-the-art are the recursive nature of the proposed scheme and the consid-
eration of parametric uncertainties in both partitions and in subsystems param-
eters. In order to handle this situation, we recast the continuous PWA into its
max-form representation and we exploit the recursive Newton-Gauss algorithm
on a suitable cost function to derive the adaptive laws to estimate online the
unknown subsystem parameters, the partitions, and the loss in control authority
for the PWA model. The effectiveness of the proposed methodology is verified
via simulations applied to the benchmark example of a wheeled mobile robot.
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1 INTRODUCTION

With the increased demand of reliability for control systems, much attention has been devoted by the control community
in fault detection techniques for complex systems.1-4 Piecewise affine (PWA) systems constitute a special class of complex
(in particular, hybrid) systems that has been extensively studied in the literature in many application domains: production
control systems,5 robotics,6 and flight control systems,7 among others. A classical problem in the aforementioned appli-
cation domains is the detection and identification of faults, which might appear in the form of plant structural changes
(usually associated to variations in the state matrix) or actuator faults (usually associated to changes in the input matrix).
In the classical (nonhybrid) setting, the fault detection and identification (FDI) problem can be reformulated in terms
of an estimation problem, ie, it is assumed that faults in the system are reflected in a change of the parameters of the
system model.8 The situation with PWA systems is, however, more complex than classical estimation because an extra
uncertainty might occur, ie, the partitions describing the switching from one mode to another might be uncertain or even
change with time. Therefore, FDI of a PWA system involves the estimation of both the parameters of the submodels and
the regions (hyperplanes) defining the partition of the state space. In other words, despite the more complex setting, also
the FDI for PWA systems can be, in principle, reformulated as a parametric estimation problem.
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With reference to partitioning, two alternative assumptions can be distinguished: the partition is assumed known
and fixed a priori or the partition is unknown along with the unknown submodels. For the first case, estimation of the
submodels can be carried out using standard linear identification techniques; therefore, no particular challenge appears.
For the second case, both the subsystems and the partitions corresponding to each subsystem must be estimated. This
issue implies a classification problem where each data point must be associated to the most suitable mode. Then, the
regions are shaped to clusters of data where the strict relation among data classification, parameter estimation, and region
estimation makes the FDI problem hard to solve.9 Despite the challenging task, there is a number of approaches in the
literature of PWA systems dealing with this problem: Ferrari-Trecate et al10 propose a statistical clustering approach to
classify the data points and estimate the submodel parameters in order to reconstruct the polyhedral partition of the
regressor domain. Further results dealing with the estimation problem include the Bayesian statistical-based approach,11

the bounded-error procedure,12 and the mixed-integer programming procedure.13 A survey on further recent results for
the estimation of PWA systems can be found in the work of Garulli et al.14 It has to be noted thought that the vast majority
of results for the estimation of PWA systems focuses on the development of estimation algorithms that work offline, ie,
from batches of data.

On the other hand, literature has provided also alternative sets of tools (non necessarily based on parameter esti-
mation) for FDI in complex systems: a brief overview is given here. Model-based tools focusing on the detection and
identification of the partial loss of control authority in PWA systems, frequently used to model actuator faults, are stud-
ied in the works of Zhou et al15 and Ding.16 Most recently, a robust three-stage unscented Kalman filter is introduced in
the works of Xiao et al,17,18 for the simultaneous state and fault estimation of nonlinear systems with unknown inputs.
An observer-based fault estimation approach for discrete PWA systems is presented in the work of Xu et al,19 whereas
Tabatabaeipour and Bak20 provide sufficient conditions in terms of linear matrix inequalities for the input-to-state stability
of the estimator. A message passing algorithm for automatically propagating the effects of uncertainties in intercon-
nected bilinear systems and derive probabilistic fault thresholds is proposed in the work of Ferrari et al.21 In the work of
Bashi et al,22 a clustering approach based on the maximized expectation algorithm is used, and it is proven to identify
effectively sudden or preexisting faults into a hybrid, mixed discrete mode continuous-time state setting. An online learn-
ing algorithm using a Lyapunov-based approach is carried out in the work of Trunov and Polycarpou23 to prove robust
fault detection for the case of multiple-input–multiple-output nonlinear systems. Estimation-based and observer-based
FDI of PWA systems with parametric uncertainties and known partitions is studied in the works of Baldi et al24 and
Satyavada and Baldi,25 respectively. A map-based approach using parameter-estimation techniques is presented in the
work of Schwaiger and Krebs,26 where the unknown parameters are estimated online and they are used to detect faults
in the model. A dual estimation scheme is developed in the work of Baldi et al27 to detect parametric changes with par-
tial state information. A comprehensive review presenting the state-of-the-art FDI methods in the literature and their
applications are given in the works of Hwang et al28 and Samy et al.29

Closely related to FDI, special attention has been devoted to fault-tolerant controller (FTC) synthesis for complex sys-
tems, which aim to cope with the identification of partial loss of the control action and compensate for the later in the
closed-loop hybrid or PWA systems. FTC architectures can be divided into two main categories: passive FTC methods,
which provide controller synthesis proven to guarantee stable performance both when the system works in nominal opera-
tion and under faulty conditions, and active FTC methods, which are characterized by the reconfiguration of the controller
when faulty conditions are detected.30 In the work of Nayebpanah et al,31 a FTC is proposed to guarantee stabilization and
satisfactory system performance in case of partial loss of control authority in the control loop. A reconfigurable control
approach for continuous PWA systems susceptible to actuator and sensor faults is given in the work of Richter et al32: by
solving a set of linear matrix inequalities, this approach is proven robust to closed-loop stability and guarantees reference
tracking. Overviews of the diverse FTC schemes and their applications are given by the works of Witczak33 and Zhang
and Jiang.34

None of the aforementioned FTC and FDI approaches can deal with PWA systems with parametric uncertainties in
both partitions and in subsystems parameters. Therefore, to the best of the authors' knowledge, there is currently no
online FDI technique developed for continuous PWA systems with joint unknown subsystems and partitions. The main
contribution of this work is tackling, in a parameter estimation framework, the FDI problem for a class of continuous-time
PWA systems, namely, bimodal and trimodal continuous PWA systems, where the subsystems and the partition are jointly
unknown. Without loss of generality, the unknown system partition is assumed to be generated by the so-called “centers”
as defined in the work of Bako et al.35 By exploiting this particular description, a novel parametric model is derived via the
max-form of the PWA system. A cost function depending on the estimation error is derived, which is used to develop a
recursive Gauss-Newton algorithm to obtain online the adaptive laws for all the parameters (ie, the subsystem parameters
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and the centers). It has to be noted that, differently from the literature on estimation in PWA systems, the developed
algorithm is completely online.

Online FDI algorithms produce unknown system estimates at each time instant, by processing and evaluating the cur-
rent signals measurements. Because of this, they are commonly referred to as recursive FDI algorithms, to be distinguished
from the offline or nonrecursive ones. For the latter case, also found in the literature as the batch FDI estimation algo-
rithms, all signals' measurements are collected offline over large time interval horizons. In both online or offline methods,
the unknown parameters are calculated by using optimization techniques on some appropriately chosen cost function.
However, while parameter values estimated using online fault detection and parameter estimation architectures can vary
with time as new data arrive, the parameters estimated using offline techniques do not (unless new batches of data are
collected). Compared to the offline scheme, online recursive algorithms measure the system's signals continuously so
as to update and correct the parameter estimates. Because they can update for fault occurrence incidents in the system
and compensate for their resultant detrimental effect while the system is in operation, online estimation algorithms are
conceptually superior for fault detection problems when compared to the offline ones.36,37

The rest of this paper is organized as follows. Section 2 presents preliminaries for the PWA system representation and
Sections 3 and 4 present the online FDI problem and the main result of this work, for bimodal and trimodal PWA systems,
respectively. The effectiveness of the online identification methodology is illustrated via simulations in Section 5. Finally,
Section 6 concludes this paper summarizing the main findings and giving some recommendations for future work.

The notations used in this paper are standard:
R: the set of real numbers;
N: the set of nonnegative integers;

Given a vector x =
[

x1 x2 · · · xm
]T ∈ Rm, the superscript T denotes its transpose and diag (x) =

⎡⎢⎢⎢⎣
x1 0 · · · 0
0 x2 · · · 0
0 0 ⋱ 0
0 0 · · · xm

⎤⎥⎥⎥⎦;
ri(X ) denotes the ith row of matrix X.

2 PRELIMINARIES IN PWA SYSTEMS

We consider the bimodal PWA system of the form

ẋ =

{
A1x + B1Λ1u + e1, if (x,u) ∈ 1

A2x + B2Λ2u + e2, if (x,u) ∈ 2,
(1)

where x ∈ Rn is the state, u ∈ Rm is the input, Bi ∈ Rn×m are known matrices, Ai ∈ Rn×n and ei ∈ Rn, are
unknown matrices and affine terms, respectively, Λi ∈ Rm×m are unknown diagonal matrices, for i ∈ {1, 2}. The term
BiΛi models partial loss of control authority, and {1,2} are polyhedral partitions of the state-input space. The regions
1 and 2 are polyhedral partitions into Rn+m (the state-input space), generated by the centers as defined in the work
of Bako et al.35 In fact, for general PWA systems (non necessarily bimodal), given N ∈ N,N ⩾ 2 vectors c1, c2, … , cN ∈
Rn+m representing the centers, for each point z = [x,u]T ∈ Rn+m in the state-input space, the polyhedral regions are
defined as

𝑗 = {z ∈ R
n+m | ‖‖z − c𝑗‖‖2 ≤ ‖z − ck‖2

}
, k ≠ 𝑗

=
{

z ∈ R
n+m |𝑗z ≤ q𝑗

}
, (2)

where

𝑗 = 2
[

c1 − c𝑗 c2 − c𝑗 · · · cN − c𝑗
]T
,

q𝑗 =
[
𝛽1,𝑗 𝛽2,𝑗 · · · 𝛽N,𝑗

]
,

with 𝛽k,𝑗 = cT
k ck − cT

𝑗
c𝑗 for j = 1, 2, … ,N. For bimodal PWA systems with partitions 1 and 2, we have only two centers,

ie, c1 and c2 from (2). The regions 1 and 2 are given by the following relations:

1 =
{
(x,u) |2(c2 − c1)T

[
x
u

]
−
(

cT
2 c2 − cT

1 c1
) ≤ 0

}
(3a)

2 =
{
(x,u) |2(c2 − c1)T

[
x
u

]
−
(

cT
2 c2 − cT

1 c1
) ≥ 0

}
. (3b)
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System (1) is an extension in a PWA sense of classical uncertain systems used in adaptive and fault-tolerant control of
multivariable linear systems.38,39 FDI in classical uncertain systems can be performed by using parameter estimation
techniques, eg, by assuming that faults in the system are reflected in a change of the (nonfaulty) parameters in the system
model.40 A similar idea applies (albeit the more challenging task) to the PWA extension (1): the FDI problem then involves
detecting any change in the system parameters of (1), as formulated in the following.

Problem 1. Derive a recursive (online) FDI algorithm with the capability of estimating the unknown system param-
eters, the unknown loss of control authority, and the unknown partitions of the PWA system (1). In addition, embed
in the FDI algorithm a finite-memory (or forgetting) mechanism so as to be able to detect (slowly) changes in the
system parameters.

2.1 Max-form representation of bimodal PWA systems
It is assumed that system (1) is continuous in the state space. By referring to the work of Thuan and Camlibel,41 continuity
of the system is equivalent to the existence and uniqueness of an h ∈ Rn such that[

A1 B1Λ1
]
−
[

A2 B2Λ2
]
= 2h(c2 − c1)T (4a)

e1 − e2 = −h
(

cT
2 c2 − cT

1 c1
)
. (4b)

In view of (4), system (1) can be written into its max-form representation as follows:

ẋ =
[

A2 B2Λ2
] [ x

u

]
+ e2 − h max

{
2(c1 − c2)T

[
x
u

]
−
(

cT
1 c1 − cT

2 c2
)
, 0
}
. (5)

One can see that there are infinitely many pairs of centers (c1, c2) that can generate the polyhedral regions 1 and 2
in (3). However, if we fix one center to an arbitrary value, the other center is uniquely determined. Therefore, without
loss of generality, we fix the center c2 to be equal to a given value c̃ and we use the notations c,A,B, e, and Λ in place of
c1,A2,B2, e2, and Λ2, respectively. Then, (5) becomes

ẋ = Ax + B diag (u)λ + e − h max
{

2(c − c̃)T
[

x
u

]
−
(

cTc − c̃T c̃
)
, 0
}
, (6)

where λ ∈ Rm in (6) is defined in vector form as λ =
[
λ1 λ2 · · · λm

]T , such that Λ = diag (λ).

Remark 1. Note that the clear benefit of (6) with respect to (1) is its economy with respect to parameters. In fact, in
(1), we need to estimate 2(n2 + m + n) parameters for the subsystems and (n + m + 1) parameters for the partitions:
on the other hand, in (6), we have n2 + m + n parameters for the subsystem (A,BΛ, e) and 2n + m parameters for h
and c. This is because (6) exploits explicitly the continuity of the PWA system.

3 ONLINE IDENTIFICATION OF BIMODAL PWA SYSTEMS

By following a FDI approach based on parameter estimation as in the work of Simani et al,40 Problem 1 for the PWA
system (6) can be recast to the minimization of the following cost function:

J(t, 𝜃̂) = 1
2 ∫

t

0
e−𝜉(t−s)‖‖‖x(s) − x̂(s, 𝜃̂)‖‖‖2

ds,

which can be componentwisely written as

J(t, 𝜃̂) = 1
2 ∫

t

0
e−𝜉(t−s)

n∑
i=1

(
x̂i(s, 𝜃̂) − xi(s)

)2ds, (7)

where 𝜉 > 0 corresponds to the forgetting factor that is a design parameter, 𝜃 denotes the unknown parameter that
contains all the healthy (nonfaulty) or faulty values of the parameters, which appear in the form of plant structural changes
(associated to variations in the state matrix A and the affine vector e), actuator faults (associated to changes in the input
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vector λ), or mode partition faults (associated to changes in the vector h and the center c). In addition, after collecting the
true parameters in

𝜃 =

⎡⎢⎢⎢⎢⎣
𝜃1
⋮
𝜃n
λ
c

⎤⎥⎥⎥⎥⎦
, with 𝜃i =

[ ri(A)T

ei
hi

]
for i = 1, 2, … ,n, (8)

where ei and hi in (8) are the scalar components of the vectors e and h, we have that 𝜃̂ are the estimated values of 𝜃
computed by the minimization of (7). The state x̂(s, 𝜃̂) is the observed state for system (6), which is computed through the
following Luenberger-like observer:

̇̂x(s, 𝜃̂) = Amx̂(s, 𝜃̂) + (Â − Am)x(s) + B diag(u(s))λ̂ + ê

− ĥ max {Ψ(ĉ, x(s),u(s)), 0} ,
(9)

where Ψ(ĉ, x(s),u(s)) = 2(ĉ − c̃)T
[

x(s)
u(s)

]
− (ĉT ĉ − c̃T c̃) and Am is a Hurwitz matrix. The Luenberger-like observer (9) is

an extension in PWA sense of the parallel-series estimator used for classical linear systems.37 The solution of (9) can be
calculated explicitly as follows:

x̂(s, 𝜃̂) = e Am x0 + ∫
s

0
e Am(s−𝜏)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[ [xT1 − max{Ψ, 0}] · · · 0
0 ⋱ 0
0 · · · [xT1 − max{Ψ, 0}]

] ⎡⎢⎢⎢⎢⎢⎢⎢⎣

r1(Â − Am)
ê1
ĥ1
⋮

rn(Â − Am)
ên
ĥn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ B diag(u)λ̂

⎫⎪⎪⎪⎬⎪⎪⎪⎭
d𝜏. (10)

The unknown parameter 𝜃 is estimated with the recursive Gauss-Newton algorithm. Then, 𝜃̂ is updated online via the
following adaptive law:

̇̂
𝜃(t) = −ΓU(t)−1Φ(t)

⎡⎢⎢⎢⎢⎣
𝜕J(t,𝜃̂)
𝜕x̂1

⋮
𝜕J(t,𝜃̂)
𝜕x̂n

⎤⎥⎥⎥⎥⎦
|𝜃̂(0)=𝜃̂0

, (11)

where Γ > 0 is the adaptation gain decided by the designer and

U̇(t) = −𝜉U(t) + Φ(t)Φ(t)T , U(0) = 0 (12)

with

Φ(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕x̂1(t,𝜃̂)
𝜕𝜃̂1

𝜕x̂2(t,𝜃̂)
𝜕𝜃̂1

· · · 𝜕x̂n(t,𝜃̂)
𝜕𝜃̂1

𝜕x̂1(t,𝜃̂)
𝜕𝜃̂2

𝜕x̂2(t,𝜃̂)
𝜕𝜃̂2

· · · 𝜕x̂n(t,𝜃̂)
𝜕𝜃̂2

⋮ ⋮ ⋮ ⋮
𝜕x̂1(t,𝜃̂)
𝜕λ̂

𝜕x̂2(t,𝜃̂)
𝜕λ̂

· · · 𝜕x̂n(t,𝜃̂)
𝜕λ̂

𝜕x̂1(t,𝜃̂)
𝜕ĉ

𝜕x̂2(t,𝜃̂)
𝜕ĉ

· · · 𝜕x̂n(t,𝜃̂)
𝜕ĉ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

In order to calculate recursively all the terms in (13), one can see that x̂(t, 𝜃̂) can be written in the following form:

x̂(t, 𝜃̂) = g0(t) + g1(t)𝜃̂ + g2λ̂ (14)

with
g0(t) = e Amtx0 − Am ∫

t

0
e Am(t−𝜏)x(𝜏)d𝜏,

g1(t) = ∫
t

0
e Am(t−𝜏)

[ [x(𝜏)T1 − max{Ψ, 0}] · · · 0
0 ⋱ 0
0 · · · [x(𝜏)T1 − max{Ψ, 0}]

]
d𝜏,

g2(t) = ∫
t

0
e Am(t−𝜏)B diag (u(𝜏))d𝜏,
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where Ψ is intended as Ψ(ĉ, x(𝜏),u(𝜏)). By using (10), the following relations are true:

𝜕x̂(t, 𝜃̂)
𝜕𝜃̂

= g1(t) (15a)

x̂(t, 𝜃̂) − x(t) = g0(t) − x(t) + g1(t)𝜃̂ + g2(t)λ̂ (15b)

𝜕x̂(t, 𝜃̂)
𝜕λ̂

= g2(t) (15c)

and
𝜕x̂(t, 𝜃̂)
𝜕ĉ

= −∫
t

0
e Am(t−𝜏)ĥ

[ w1(𝜏)
⋮

wn+m(𝜏)

]T

d𝜏, (15d)

where

w𝑗(𝜏) =

{
2x𝑗(𝜏) − 2ĉ𝑗(𝜏), Ψ(ĉ, 𝜏) = max{Ψ(ĉ, 𝜏), 0)}
0, otherwise,

(16)

for j = 1, 2, … ,n, where

x𝑗(𝜏) =

{
x𝑗(𝜏), 𝑗 = 1, 2, … ,n
u𝑗−n(𝜏), 𝑗 = n + 1, … ,n + m.

From (7) and (15b), it can be proven

d
dt

(
𝜕J(t, 𝜃̂)
𝜕x̂

)
= −𝜉 𝜕J(t, 𝜃̂)

𝜕x̂
+ g0(t) − x(t) + g1(t)𝜃̂(t) + g2(t)λ̂(t), (17)

and because of (13), (15a), (15c), (15d), relation (13) is equivalently represented by

Φ(t) =
⎡⎢⎢⎢⎣
gT

1 (t)
gT

2 (t)
𝜕x̂(t)
𝜕ĉ

T

⎤⎥⎥⎥⎦ . (18)

To update g0, g1, g2, and 𝜕x̂(t)
𝜕ĉ

, we use the fact that

ġ0 = Amg0 − Amx, g0(0) = x(0) (19a)

ġ1 = Amg1 +

[ [xT1 − max{Ψ, 0}] · · · 0
0 ⋱ 0
0 · · · [xT1 − max{Ψ, 0}]

]
,

g1(0) = 0

(19b)

ġ2 = Amg2 + B diag(u), g2(0) = 0 (19c)

d
dt

(
𝜕x̂
𝜕ĉ

)
= Am

𝜕x̂
𝜕ĉ

− ĥ

[ w1
⋮

wn+m

]T

,
𝜕x̂
𝜕ĉ

(0) = 0 (19d)

with w1,w2, … ,wn+m defined in (16). The recursive design is complete and the local optimality of the resulting FDI
method for PWA systems is remarked hereafter.

Remark 2. Because (1) is nonlinear with respect to the estimated parameters, the cost function (17) is nonconvex with
respect to 𝜃̂, even after the max-form representation (6). As a consequence, a global optimum minimizing the cost
function (17) cannot be guaranteed for every initial condition (even in the presence of persistency of excitation). In
other words, only convergence to local optima can be guaranteed in general: therefore, the Gauss-Newton algorithm
will exhibit best performance when the initial estimate 𝜃̂0 lies in a small neighborhood of 𝜃. To the best of the authors'
knowledge, there is no estimation method for PWA systems with joint unknown subsystems and partitions that can
guarantee global optimality.

Remark 3. Note that, in case the partitions {1,2} are known, the parameter c is given, and (6) results in a
linear-in-the-parameter model for which standard converge results apply,42 after a slight revision of the proposed
method in order to get rid of 𝜕x̂(t)

𝜕ĉ
.
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4 ONLINE IDENTIFICATION OF TRIMODAL PWA SYSTEMS

The proposed framework can be extended to trimodal continuous PWA systems with minor modifications. Similarly to
the bimodal PWA system case studied in Section 2, the trimodal PWA system reads as

ẋ =
⎧⎪⎨⎪⎩

A1x + B1Λ1u + e1, if (x,u) ∈ 1

A2x + B2Λ2u + e2, if (x,u) ∈ 2

A3x + B3Λ3u + e3, if (x,u) ∈ 3,

(20)

where
1 =

{
(x,u) | 2(c2 − c1)T

[
x
u

]
−
(

cT
2 c2 − cT

1 c1
) ≤ 0, 2(c3 − c1)T

[
x
u

]
−
(

cT
3 c3 − cT

1 c1
) ≤ 0

}
,

2 =
{
(x,u) | 2(c2 − c1)T

[
x
u

]
−
(

cT
2 c2 − cT

1 c1
) ≥ 0, 2(c3 − c2)T

[
x
u

]
−
(

cT
3 c3 − cT

2 c2
) ≤ 0

}
,

3 =
{
(x,u) | 2(c3 − c2)T

[
x
u

]
−
(

cT
3 c3 − cT

2 c2
) ≥ 0, 2(c3 − c1)T

[
x
u

]
−
(

cT
3 c3 − cT

1 c1
) ≥ 0

}
.

4.1 Max-form representation of trimodal PWA systems
In order to write the max-form presentation of the PWA system in (20), one has to distinguish between two cases.

Case 1. The centers c1, c2, and c3 lie on a line. Without loss of generality, it is assumed that the center c2 lies on the
segment [c1, c3]. Similarly to the bimodal PWA system case, the continuity of the PWA system (20) is equivalent to the
existence and uniqueness of h1, h2 ∈ Rn such that (20) can be equivalently written as

ẋ =
[

A2 B2Λ2
] [ x

u

]
+ e2

− h1 max
{

2(c2 − c1)T
[

x
u

]
−
(

cT
2 c2 − cT

1 c1
)
, 0
}

− h3 max
{

2(c1 − c3)T
[

x
u

]
−
(

cT
1 c1 − cT

3 c3
)
, 0
}
.

(21)

Case 2. The centers c1, c2, and c3 do not lie on a line. The continuity of (20) is equivalent to the existence and uniqueness
of h1, h2, h3 ∈ Rn such that [

A1 B1Λ1
]
−
[

A2 B2Λ2
]
= 2h1(c2 − c1)T ,

e1 − e2 = − h1
(

cT
2 c2 − cT

1 c1
)
,

(22a)[
A2 B2Λ2

]
−
[

A3 B3Λ3
]
= 2h2(c3 − c2)T ,

e2 − e3 = − h2
(

cT
3 c3 − cT

2 c2
)
,

(22b)[
A3 B3Λ3

]
−
[

A1 B1Λ1
]
= 2h3(c3 − c1)T ,

e3 − e1 = − h3
(

cT
3 c3 − cT

1 c1
)
.

(22c)

Lemma 1. For the vectors h1, h2, and h3 in (22), it is true that

h1 = h2 = −h3. (23)

Proof. Relation (22) gives
(h3 + h2)cT

3 + (h1 − h2)cT
2 − (h1 + h3)cT

1 = 0. (24)
If c1, c2, and c3 are linearly independent, it follows from (24) that h1 = h2 = −h3. For the case that c1, c2, and c3
are linearly dependent, one center can be written as a linear combination of the two other centers. Without loss of
generality, let c3 = 𝛼c1 + 𝛽c2, with 𝛼, 𝛽 ∈ R such that 𝛼 + 𝛽 ≠ 1. It follows that

(h3 + h2)cT
3 = 𝛼(h3 + h2)cT

1 + 𝛽(h3 + h2)cT
2 ,

(h3 + h2)cT
3 = (h1 + h3)cT

1 + (h2 − h1)cT
2 ,

(25)
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implying h2 + h3 = (𝛼 + 𝛽)(h2 + h3), and hence, h2 = −h3. Substituting this result in (24), it follows that h1 = h2 and
the lemma is proved.

In view of (22) and Lemma 1, if we define h1 = h2 = −h3 = h, then the PWA system (20) is given in its max-form
presentation as

ẋ =
[

A3 B3Λ3
] [ x

u

]
+ e3 − h max

{
2(c2 − c3)T

[
x
u

]
−
(

cT
2 c2 − cT

3 c3
)
, 2(c1 − c3)T

[
x
u

]
−
(

cT
1 c1 − cT

3 c3
)
, 0
}
.

(26)

Remark 4. As demonstrated from the above discussion, the max-form presentation of the trimodal PWA system in (20)
can have two different forms, (21) or (26), depending on whether the centers lie on a line or not. Once the appropriate
max-form is determined, the adaptive update laws are developed in similar fashion as in the bimodal PWA system case.

5 SIMULATION RESULTS

5.1 Bimodal PWA system
In this section, we evaluate the effectiveness of the online FDI technique on the wheeled mobile robot (WMR) shown in
Figure 1 and presented in the work of Nayebpanah et al.43

The WMR is assumed to be rigid and it is driven by a torque T to control the heading angle 𝜓 . The forward velocity of
the robot u0 is in the direction of the X-body axis and it is assumed to be constant, by designing appropriately a cruise
controller. The heading angle of the WMR 𝜓 is measured with respect to the positive X-axis in the inertial frame. The
kinematic equations for the WMR are

𝑦̇ = u0 sin(𝜓)
𝜓̇ = R,

(27)

and the dynamic equation of the WMR is
Ṙ = 0.75 1

I
T, (28)

where T is the input to the system, corresponding to the torque generated by the direct current motors, 0.75 is the unknown
actuator effectiveness, and I = 1 kg·m2 (which is known) corresponds to the moment of inertia of the WMR with respect
to the center of its mass. Inspired by this example, we consider as the actual system the bimodal PWA system in the form
(1), with

A1 =
⎡⎢⎢⎣

0 2
𝜋

u0 0
0 0 1
0 0 0

⎤⎥⎥⎦ ,A2 =
⎡⎢⎢⎣

0 − 2
𝜋

u0 0
0 0 1
0 0 0

⎤⎥⎥⎦ ,
B1 = B2 =

[
0 0 1

I

]T
, Λ1 = Λ2 = 0.75,

e1 =

[ 0
0
0

]
, e2 =

[ 2u0
0
0

]
,

FIGURE 1 Schematic representation of the wheeled mobile robot43 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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with u0 = 1, which is unknown. The aforementioned matrices arise from approximating, in the range
[
−𝜋∕2, 3𝜋∕2

]
,

the sinusoid with two straight lines (one straight line passes through the origin with slope 2∕𝜋, while the other one
passes through the point (𝜋, 0) with slope −2∕𝜋). As a consequence, the switching surface between the two subsystems is
given by

[
0 2

𝜋
0 0

] ⎡⎢⎢⎢⎣
x1
x2
x3
u

⎤⎥⎥⎥⎦ − 1 ≤ 0, (≥ 0), (29)

where [x1 x2 x3 u] = [y 𝜓 R T]. The surface can be equivalently expressed by the two centers c1 and c2, defined as follows:

c1 =
[

0.25 𝜋

2
− 0.25 0.25 0.25

]T
,

c2 =
[

0.25 𝜋

2
+ 0.25 0.25 0.25

]T
.

Note that the definition of c1 and c2 is not unique: however, by fixing c2, the other center c1 would be uniquely determined.
We acknowledge that, in this particular example, the partitions might be known: however, to be consistent with our setting
and illustrate the proposed method, we assume that the partitions are unknown.

In view of the structure of the matrices, only five parameters are unknown and need to be determined: the nonzero term
in the first row of A2, the nonzero term in e2 (representing uncertainties or changes in the cruise speed), the scalar term
Λ2 (representing uncertainties or changes in the actuator effectiveness), the unique nonzero term in h, and the second
entry of c1 (representing uncertainties in the partition). Therefore, by defining 𝜃 properly, it is possible to use a priori
knowledge of the matrix structure and derive a Gauss-Newton method that estimates only the relevant five parameters
(details are not shown for compactness). The design parameters have been taken as

Am =

[ 0 −0.637 0
0 0 1

0.003 −0.054 −0.114

]
, 𝜉 = 0.5, Γ = diag (0.01, 0.03, 0.85, 0.03, 0.01),

where the eigenvalues of Am are stable (one real eigenvalue and one complex conjugate pair). The initial state is taken as
x0 = [1 𝜋∕2 0]T. In order to provide enough persistency of excitation, the input is a series of steering and countersteering
sinusoids at frequency 0.2, 0.8, and 1.6 rad/s.

In order to check the consistency of the approach, we have selected many initial estimates 𝜃̂(0) randomly (zero mean
Gaussian noise with covariance 0.1) in a neighborhood of 𝜃. For all initial conditions, the convergence was consistent,
and Figures 2 and 3 show one simulation. In addition, Figures 4 and 5 show the capability to track some (slow) variation
in time of the parameters: these variations have been simulated by slightly increasing u0 and decreasing the actuator
effectiveness.
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0.9
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1.1

FIGURE 2 Online identification of A2 and Λ2 when c2 is known (the true parameter values are shown in red color lines) [Colour figure
can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Online identification of e2, h, and c1 when c2 is known (the true parameter values are shown in red color lines) [Colour figure
can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Online identification of A2 and Λ2 when c2 is known for slow variations (the true parameter values are shown in red color
lines) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Online identification of e2, h, and c1 when c2 is known for slow variations (the true parameter values are shown in red color
lines) [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 Performance
depending on the initial estimate

Var
[
𝜃 − 𝜃̂(0)

]
Avg

[‖𝜃−𝜃̂st‖‖𝜃‖
]

0.03 0.2%
0.1 0.4%
0.3 0.8%
1.0 4.2 %
3.0 18.8%

Remark 5. In order to highlight nonlinearity of the problem and the possibility of getting trapped into local minima,
Table 1 shows the distance between the true and the estimated parameters (at steady state) ||𝜃−𝜃̂st||∕ ‖𝜃‖, as a function
of the variance of 𝜃 − 𝜃̂(0). The Table highlights that, when the initial condition is very far from the true parameter,
the steady-state distance also increases: this happens because the Gauss-Newton algorithm may not converge to the
actual parameters.

5.2 Trimodal PWA system
In order to show the effectiveness of the proposed approach also in a trimodal setting, we take the example from the work
of Kersting and Buss.44 This example has all the centers on a line, and notice that e1 and e3 have been modified with
respect to the aforementioned work44 so as to make the PWA system continuous. In particular, we have

A1 =
[

0 1
−1.5 −1

]
, B1 =

[
0

1.5

]
, e1 =

[
0

1.4

]
,

A2 =
[

0 1
−2 −1

]
, B2 =

[
0

1.5

]
, e2 =

[
0

0.4

]
,

A3 =
[

0 1
−2.5 −1

]
, B3 =

[
0

1.5

]
, e3 =

[
0

1.4

]
,

and Λ1 = Λ2 = Λ3 = 0.75. The switching surface is defined in terms of the three centers

c1 =
[
−4 0 0

]T
,

c2 =
[

0 0 0
]T
,

c3 =
[

4 0 0
]T
.
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FIGURE 6 Online identification of A2 and Λ2 when c2 is known (the true parameter values are shown in red color lines) [Colour figure
can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Online identification of e2, h1, and h3 when c2 is known (the true parameter values are shown in red color lines) [Colour figure
can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Online identification of c1 and c3 when c2 is known (the true parameter values are shown in red color lines) [Colour figure can
be viewed at wileyonlinelibrary.com]

By exploiting a similar form as in (21), we formulate the FDI problem as the one of estimating the parameters of A2, Λ2,
e2, the vectors h1 and h3, and the centers c1 and c3 (we assume that the center c2 is known). We have used x0 = [0.5 −0.5]T,
a multisinusoid input (with 3 sinusoids), and the design parameters

Am =
[
−10 0

0 −10

]
, 𝜉 = 0.05,Γ = diag(1, 1, 1, 1, 1, 1, 1, 0.05, 0.05, 40, 40),

where the zero components of h1, h3, c1, and c3 are not estimated. The results from the proposed online FDI algorithm are
given in Figure 6 (for A2 and Λ2), Figure 7 (for e2, h1, and h3), and Figure 8 (for c1 and c3). It is observed that all estimates
converge to the correct values after some transient.

6 CONCLUSION

This paper has established a novel online FDI strategy for a class of continuous PWA systems, namely, bimodal and
trimodal PWA systems. The approach is estimation based, ie, it is assumed that faults in the system are reflected in a
change of the parameters of the system model. The main contributions with respect to the state-of-the-art are the recursive

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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nature of the proposed scheme and the consideration of parametric uncertainties in both partitions and in subsystems
parameters. In order to handle this situation, we recast the continuous PWA into its max-form representation and we
exploited the recursive Newton-Gauss algorithm on a suitable cost function to derive the adaptive laws to estimate online
the unknown subsystem parameters, the partitions, and the loss in control authority for the PWA model. The effectiveness
of the proposed methodology was verified via simulations applied to the benchmark example of a WMR. Future work
could include the extension beyond trimodal systems: a possible idea to deal with this situation is to have multiple bimodal
or trimodal estimators and a switching logic, according to architectures as in the work of Baldi et al.45
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