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Abstract When an agent programexhibits unexpected behaviour, a developer needs to locate
the fault by debugging the agent’s source code. The process of fault localisation requires an
understanding of how code relates to the observed agent behaviour. The main aim of this
paper is to design a source-level debugger that supports single-step execution of a cognitive
agent program. Cognitive agents execute a decision cycle in which they process events and
derive a choice of action from their beliefs and goals. Current state-of-the-art debuggers for
agent programs provide insight in how agent behaviour originates from this cycle but less so
in how it relates to the program code. As relating source code to generated behaviour is an
important part of the debugging task, arguably, a developer also needs to be able to suspend an
agent program on code locations. We propose a design approach for single-step execution of
agent programs that supports both code-based as well as cycle-based suspension of an agent
program. This approach results in a concrete stepping diagram ready for implementation
and is illustrated by a diagram for both the Goal and Jason agent programming languages,
and a corresponding full implementation of a source-level debugger for Goal in the Eclipse
development environment. The evaluation that was performed based on this implementation
shows that agent programmers prefer a source-level debugger over a purely cycle-based
debugger.

Keywords Debugging · Cognitive agent · Agent program · Source-level · Decision cycle ·
Cognitive state
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1 Introduction

Debugging is the process of detecting, locating, and correcting faults in a computer program
[22]. A large part of the effort of a programmer consists of debugging a program. This
makes efficient debugging an important factor for both productivity and program quality
[46]. Typically, a defect is detected when a program exhibits unexpected behaviour. In order
to locate the cause of such behaviour, it is essential to explain how and why it is generated
[18].

A source-level debugger is a very useful and important tool for fault localization that
supports the suspension and single-step execution of a program [38]. Single-step execution
is based on breakpoints, i.e., points at which execution can be suspended [22]. Stepping
through program code allows for a detailed inspection of the program state at a specific point
in program execution and the evaluation of the effects of specific code sections.

Debuggers typically are source-level debuggers. However, most debuggers available for
agent programs do not provide support for suspending at a particular location in the source
code. Instead, these debuggers provide support for suspension at specific points in the rea-
soning or decision cycle of an agent. The problem is that these points are hard to relate to
the agent program code. In addition, these debuggers only show the current state, but do
not show the current point in the code where execution will continue. It thus is hard for a
programmer to understand how code relates to effects of agent behaviour. Although the role
of an agent’s decision cycle in the generation of an agent’s behaviour is very important, we
believe that source-level debugging is also very useful for agent-oriented programming.

In this paper, we propose a design of a source-level debugger for agent programming.
Arguably, such a tool provides an agent programmer with a better understanding of the
relation between an agent’s program code and its behaviour. Part of the contribution of
this paper is to propose a design approach that is applicable to programming languages for
cognitive agents.

The paper is organised as follows. In Sect. 2, we discuss related work on (agent program)
debugging. We also discuss the features of a selection of well-known agent programming
languages in some detail, as these are important for the design of a debugger for these
languages. In addition, we discuss their current debugging tools. Section 3 presents the
design of a source-level debugger for agent programs. We identify design principles and
requirements that we use in our design, and features that a source-level debugger for agent
programs should have. A concrete design is provided for both the Goal [17] and Jason
[5] agent programming languages. In Sect. 4, the set-up and results of an evaluation that
was preformed on the source-level debugger implementation that was created for Goal are
discussed. Section 5 concludes the paper with recommendations for future work.

2 Issues in debugging cognitive agent programs

In this section, we briefly discuss what is involved in debugging a software system, and
analyse the challenges that a developer of cognitive agent programs faces.

2.1 Debugging and program comprehension

Katz and Anderson [24] provide a model of debugging derived from a general, somewhat
simplified model of troubleshooting that consists of four debugging subtasks: (i) program
comprehension, (ii) testing, (iii) locating the error, and (iv) repairing the error. Program
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comprehension, the first subtask in the model, is an important subtask in the debugging
process as a programmer needs to figure out why a defect occurs before it can be fixed [8,
28,29]. Gilmore [14] argues that the main aim of program comprehension during debugging
is to understand which changes will fix the defect. Based on interviews with developers,
Layman et al. [31] conclude that the debugging process is a process of iterative hypothesis
refinement (cf. [43]). Gathering information to comprehend source code is an important part
in the process of hypothesis generation. Lawrance et al. [30] also emphasize the information
gathering aspect in program comprehension and the importance of navigating source code,
which they report is by far the most used information source during debugging (cf. [38]).
Similarly, Eisenstadt [12] suggests to provide a variety of navigation tools at different levels of
granularity. In addition, reproducing the defect and inspecting the system state are essential
for fault diagnosis and for identifying the root cause and a potential fix. It is common in
debugging to try to replicate the failure [30,31]. In this process, the expected output of a
program needs to be compared with its actual output, for which knowledge of the program’s
execution and design is required. Testing is not only important for reproducing the defect
and for identifying relevant parts of code that are involved, but also for verifying that a fix
actually corrects the defect [43].

Eisenstadt [12] also argues that it is difficult to locate a fault because a fault and the
symptoms of a defect are often far removed from each other (cause/effect chasm, cf. [11]).
As debugging is difficult, tools are important because they provide insight into the behaviour
of a system, enabling a developer to form amentalmodel of a program [31,43] and facilitating
navigation of a program’s source code at runtime [30]. A source-level debugger is a tool that
is typically used for controlling execution, setting breakpoints, and manipulating a runtime
state. The ability to set breakpoints, i.e., points at which program execution can be suspended
[22], by means of a source-level debugger is one of the most useful dynamic debugging tools
available and is in particular useful for locating faults [38,43].

2.2 Challenges in designing a source-level debugger

Even though much of the mainstream work on debugging can be reused, the agent-oriented
programming paradigm is based on a set of abstractions and concepts that are different from
other paradigms [19,40]. The agent-oriented paradigm is based on a notion of a cognitive
agent that maintains a cognitive state and derives its choice of action from its beliefs and
goals which are part of this state. Thus, agent-oriented programming is programming with
cognitive states.

Compared to other programming paradigms, agent-oriented programming introduces sev-
eral challenges that complicate the design of a source-level debugger (cf. [29]). For example,
many languages for programming cognitive agents are rule-based [4,39]. In rule-based sys-
tems, fault localization is complicated by the fact that errors can appear in seemingly unrelated
parts of a rule base [44]. Moreover, a rule base does not define an order of execution. Due
to this absence of an execution order, agent debugging has to be based on the specific eval-
uation strategy that is employed. Moreover, cognitive agent programs repeatedly execute a
decision cycle which not only controls the choice of action of an agent (e.g., which plans
are selected or which rules are applied) but also specifies how and when particular updates
of an agent’s state are performed (e.g., how and when percepts and messages are processed,
or how and when goals are updated). This style of execution is quite different from other
programming paradigms, as a decision cycle imposes a control flow upon an agent program,
and may introduce updates of an agent’s state that are executed independently of the program
code at fixed places in the cycle or when a state changes due to executing instructions in the
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Fig. 1 The main components of an exemplary Goal agent program on the left, and two possible (partial)
traces of this agent’s execution on the right

agent program. This raises the question of how to integrate these updates into a single-step
debugger.

An agent’s decision cycle provides a set of points that the execution can be suspended at,
i.e. breakpoints. These points do not necessarily have a corresponding code location in the
agent program. For example, receiving a message from another agent is an important state
change that is not present in an agent’s source, i.e., there is no code in the agent program that
makes it check for newmessages. Thus, two types of breakpoints can be defined: code-based
breakpoints and (decision) cycle-based breakpoints. Code-based breakpoints have a clear
location in an agent program. Cycle-based breakpoints, in contrast, do not always need to
have a corresponding code location. Together, these are referred to as the set of pre-defined
breakpoints that a single-step debugger offers. When single-stepping through a program,
these points are traversed. An example1 of the difference between code-based and cycle-
based breakpoints has been illustrated in Fig. 1. The two traces demonstrate that the same
cycle-based event (breakpoint) of achieving the finished goal can originate as the result
of two different points in the agent program (due to the random execution order of the main
module, i.e., either the post-condition of the finish action or the insert action).

Auser should also be able tomark specific locations in an agent’s source atwhich execution
will always be suspended, evenwhen not explicitly stepping. To facilitate this, a debugger has
to identify such a marker (e.g., a line number) with a code-based breakpoint. These markers
are referred to as user-defined breakpoints. A specific type of user-defined breakpoint is
a conditional breakpoint, which only suspends execution when a certain (state) condition
applies. A user should also be able to suspend execution upon specific decision cycle events,
especially when those do not have a corresponding location in the agent source. This can for
example be indicated by a toggle in the debugger’s settings. Such an indication is referred to
as a user-selectable breakpoint.

2.3 Languages and debugging tools for cognitive agents

In this section, we will briefly discuss specific debugging tools as illustrations of state-of-
the-art debugging of cognitive agent programs. Moreover, we discuss the main language

1 This example uses basic elements from the Goal language; see Sect. 2.3.3.
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features and the decision cycle of such an agent program, which is most important in defin-
ing the semantics of a language. By understanding the building blocks of a specific agent
programming language, we can identify the specific challenges that we will face in designing
a source-level debugger for such a language.

We have chosen to focus on some of the more well-known languages in the literature
that have been around for some time now and that provide development tools for an agent
programmer to code and run an agent system. In our analysis, we have included the rule-
based languages 2APL [9], Goal [17], and Jason [5] and the Java-based languages Agent
Factory [33], JACK [42], Jadex [34], and JIAC [21]. The former languages each define their
own syntax for rules with conditions expressed in some knowledge representation language
such as Prolog, whereas the latter languages build on top of and extend Java with cognitive
agent concepts. The rationale for this selection is that we wanted to analyse relatively mature
languages that have been well-documented in the literature, whilst making sure we could
investigate the current implementation and tools available for a language. It should be noted
that publishedpapers about a languagemaydiffer from the currently available implementation
as most of the languages are being continuously developed.

For the selected platforms, we now describe the basic language elements and abstractions
available for programming cognitive agents, whether any embedded languages are used, e.g.,
for knowledge representation (KR), and thedecision cycle that specifies howanagent program
is executed. We also summarize the functionality of the debugging tools that are available.

2.3.1 2APL

2APL aims for the effective integration of declarative and imperative style programming [9].
To this end, the language integrates declarative beliefs and goals with events and plans that
are similar to imperative-style programs in a single rule-based language. JProlog [10] is used
as the embedded KR language. Plans consist of actions that are composed by a conditional
choice operator, iteration operator, sequence operator, or non-interleaving (atomic) operator.
If the execution of a plan does not achieve its corresponding declarative goal in the goal base,
the goal persists and can be used to select a different plan. A planning goal rule can be used
to generate a plan when an agent has certain goals and beliefs. A plan repair rule can be used
when a plan (execution of first action) fails and the agent has a certain belief in its belief base
to replace the failed plan with another plan. Events remain in an event base until processed,
which includes messages received from other agents. There is no explicit modularization
construct available.

Decision cycle The decision cycle of a 2APL agent is illustrated in Fig. 2. Each cycle starts
by applying all applicable planning goal rules, after which the first action of all plans are
executed. Afterwards, all events (first external and then internal) are processed. A new cycle
is only started if a rule has been applied or a new event has been received. By using such
a cycle, when the execution of a plan fails, it will be either repaired in the same cycle or
re-executed in the next.

Environment and MAS 2APL agents are connected to an environment via a Java class that
implements a dedicated environment interface for the language. The implemented functions
form the actions that an agent can execute on the environment’s state. Actions can have a
return parameter, and thus execution of a plan is blocked until such a return value is available.
Actions can also throw exceptions to indicate their failure. Observing the environment is
possible by either active or passive sensing. Messages and events are represented through
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Fig. 2 The 2APL agent decision cycle [9]

special predicates in an agent’s belief base. Each 2APL agent runs in its own single thread,
and agents and environments are executed in parallel. There are no tools for controlling the
scheduling of individual agent execution.

Development tools 2APLprovides a separate runtimewith a set ofmonitoring tools. This run-
time environment is separate from the environment for programming a 2APL agent program.
During a run, the cognitive state of a single agent can be inspected, though not manipulated,
and execution can be controlled by stepping an entire cycle or suspending execution at spe-
cific points in the cycle.While stepping, logging output is generated that can be inspected in a
console window. It is also possible to inspect all past states of an agent in this runtime, either
in full or for specific bases only. There is no link to the program code that is being executed
while stepping or for relating state changes to the execution, although the logging output
and state views contain specific code fragments. A user-defined breakpoint mechanism is not
available.

2.3.2 Agent Factory

Agent Factory aims to provide a cohesive framework for the development and deployment
of multi-agent systems [33]. Agents can be created by implementing a Java interface, but
dedicated rule-based languages exists as well; through the use of a Common Language
Framework (CLF), multiple languages can be used, although the Agent Factory AgentSpeak
(AF-AS) language is the default. There are no embedded languages used, though it is possible
to interface with external APIs written in Java.

Decision cycle Agent Factory agents follow a specific decision cycle. First, perceptors are
fired and beliefs are updated. Second, the agent’s desired states are identified, and a subset
of desires (new intentions) is added to the agent’s commitment set. Older commitments that
are of lower importance will be dropped if there are not enough resources available. Finally,
various actuators are fired based on the commitments.
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Environment and MAS Agent Factory supports the Environment Interface Standard (EIS)
[3], a standard for connecting to agent environments. Multiple scheduling algorithms are
available for agents, ranging from round-robin to multi-threaded.

Development tools Agent Factory provides a separate debugger (“inspection tool”) in which
the cognitive state of one or more agents can be inspected, though not edited, and execution
can be controlled by stepping through entire decision cycles one at a time. It is also possible
to inspect all past states of an agent, and a number of logs are provided. However, there is
no relation to the code anywhere in this tool. When using a CLF language (instead of plain
Java), no user-defined breakpoint mechanism is available.

2.3.3 GOAL

Goal aims to provide programming constructs for developing cognitive agent programs at the
knowledge level that are easy to use, easy to understand, and useful for solving real problems
[17]. A dedicated rule-based language is used for the formalization of agent concepts.Goal
is designed to allow for any embedded KR language to be used; currently mostly SWI-Prolog
is used. An agent’s cognitive state consists of a belief base, a goal base, a percept base, and
a mailbox. Declarative goals specify the state of the environment that an agent wants to
establish, and are used to derive an agent’s choice of action. Agents commit blindly to their
goals, i.e., they drop (achieve) goals only when they have been completely achieved. Agents
may focus their attention on a subset of their goals by using modules.

Decision cycle The decision cycle of a Goal agent is illustrated in Fig. 3 (in Sect. 3.2). A
Goal agent cycle starts with the processing of percept rules, allowing an agent to update its
cognitive state according to the current perception of the environment. Next, using this new
cognitive state, an action is selected for execution. If the precondition of this action holds, its
postcondition will be used to update the agent’s cognitive state, after which a new decision
cycle starts.

Environment andMAS Goalmakes use of EIS [3] to facilitate interactionwith environments,
as does Agent Factory. Agents and environments are executed in parallel.

Development tools A new debugger for Goal will be designed in this paper; the previous
implementation was similar to that of 2APL, e.g., facilitating the inspection of the cognitive
state of a single agent in a separate runtime, and allowing specific steps of the decision cycle
to be executed in a stepwise fashion. No relation to the code was provided in this runtime
either; multiple consoles with logging output were available. This runtime also has a user-
defined breakpoint mechanism, halting the execution when a certain line of code is reached or
when a certain condition has been met. However, these breakpoints only paused the agent’s
decision cycle (i.e., no program code or evaluations were shown). In addition, actions to alter
the cognitive state of an agent can be executed, and a cognitive state can be queried as well.

2.3.4 JACK

JACK aims for the elegant and practical development of multi-agent systems [42]. As it is a
conservative extension to Java, there is no explicit notion of any rule-based constructs. No
embedded language is used either. Agents are specified by defining the events they handle and
send, the data they have, and the plans and capabilities they use. Agents use beliefsets that are
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Fig. 3 The Goal agent structure and decision cycle [17]

relational databases which are stored in memory. Events are used to model messages being
received, new goals being adopted, and information being received from the environment.
A plan is a recipe for dealing with a given event type, under a certain context condition.
Each (Java) statement in a plan body can fail, which will prevent the rest of the plan from
being executed, and failure handlingwill be triggered instead (the consideration of alternative
plans). Capabilities and sub-capabilities are used as (hierarchical) modularisation constructs.

Decision cycle A JACK agent has no explicit decision cycle, but waits until it receives an
event or a goal, upon which the agent initiates activity to handle that event or goal; if it does
not believe that the event or goal has already been handled, it will look for the appropriate
plan(s) to handle it. The agent then executes the plan(s), depending on the event type. Such
a plan can succeed or fail; if the plan fails, the agent may try another plan. The applicability
of alternatives is evaluated in the current situation, that is, not the situation when the event
was first posted. Moreover, a plan’s context condition is split into two parts: the context and
a relevance condition, which is used to exclude plans based on the details of an event (which
do not change). Meta-plans can also be used to decide which plan to select in more detail
(i.e., if multiple are applicable). A special event type is the inference goal, which is handled
by executing all applicable plans in sequence.

Environment andMAS JACK has no explicit notion of an environment; actions are performed
using Java calls. In principle, JACK is single-threaded, although specific constructs exist to
execute tasks in a new thread.

Development tools The Jack Development Environment (JDE) allows the creation of entities
by dragging and dropping, automatically generating skeleton code. A graphical plan editor
is also available, allowing the bodies of plans to be specified using a graphical notation.
Moreover, a design tool is included that allows overview diagrams to be drawn, which can
be used to create a system’s structure by placing entities onto the canvas and linking them
together, which can be automatically created based on an existing system as well. A textual
trace of processing steps that can be configured to show various types of steps is available
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as a debugging tool. For distributed agents, interaction diagrams are used that graphically
displaymessages sent between agents.Moreover, graphical plan tracing is provided, showing
a graph whilst a plan is executing, highlighting the relevant notes and showing the values of
the plan’s variables and parameters. Execution can be controlled by stepping through specific
events, or stepping with a fixed time delay between the steps. However, a direct relation to
the code is absent in all these interfaces, and a user-defined breakpoint mechanism is not
available.

2.3.5 Jadex

Jadex aims to make the development of agent based systems as easy as possible without
sacrificing the expressive power of the agent paradigm by building up a rational agent layer
and allowing for intelligent agent construction using sound software engineering foundations.
In its latest version (BDI V3), Jadex uses annotated Java code to designate agent concepts;
there are no rule-based elements or embedded languages. Beliefs are represented in an
object-oriented fashion, and operations against a belief base can be issued in a descriptive
set-oriented query language. Goals are represented as explicit objects contained in a goal
base that is accessible to the reasoning component as well as to plans. An agent can retain
goals that are not currently associated to any plan. Four types of goals are supported: perform
(actions), achieve (world state), query (internal state), and maintain (continuously ensure a
desired state). Thus, changes to beliefs may directly lead to actions such as events being
generated or goals being created or dropped. Plans are composed of a head and a body.
The head specifies the circumstances under which a plan may be selected, and a context
condition can be stated that must be true for the plan to continue executing. The plan body
provides a predefined course of action given in a procedural language. It may access any other
application code or third party libraries, as well as the reasoning engine through a BDI API.
Capabilities represent a grouping mechanism for the elements of an agent, allowing closely
related elements to be put together into a reusable (scoped) module which encapsulate a
certain functionality.

Decision cycle There is also no explicit decision cycle, but, similar to JACK, when an agent
receives an event, the BDI reasoning engine builds up a list of applicable plans for an event
or goal from which candidate(s) are selected and instantiated for execution. Jadex provides
settings to influence the event processing individually for event types and instances, though
as a default, messages are posted to a single plan, whilst for goals many plans can be executed
sequentially until the goal is reached or finally failed (when no more plans are applicable).
Selected plans are placed in the ready list, from which a scheduler will execute plans in a
step-by-step fashion until it waits explicitly or significantly affects the internal state of the
agent (i.e., by creating or dropping a goal). After a plan waits or is interrupted, the state of the
agent can be properly updated, e.g., facilitating another plan to be scheduled after a certain
goal has been created.

Environment and MAS Jadex offers a standard environment model called “EnvSupport” that
is meant to support the rapid development of virtual environments. In addition, as Java is
used for the procedural code, external APIs can be referenced there as well. A single thread
model for each component is enforced.

Development tools Debugging a BDI V3 agent allows stepping an agent through the afore-
mentioned steps that are taken for each event in a separate runtime that does not provide
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a relation to the program code itself, whilst facilitating inspection of the agent’s cognitive
state. Nomodifications to the cognitive state are possible at runtime, and no (generic) logging
output or user-defined breakpoint mechanism is available (for BDI V3).

2.3.6 Jason

Jason is a multi-agent system development platform based on an extended version of AgentS-
peak [36] aimed at the elegant and practical development of multi-agent systems. A dedicated
rule-based language is used for the formalization of agent concepts. This language does not
make use of any explicit embedded language, as KR constructs are part of the agent specifi-
cation language itself. An agent is defined by a set of beliefs and a set of plans. Thus, a Jason
agent is a reactive planning system: (internal or external) events trigger plans. A plan has a
head, composed of a trigger event and a conjunction of belief literals representing a context.
A plan also has a body, which is a sequence of basic actions or (sub)goals the agent has to
achieve (or test) when the plan is triggered. If an action fails or there is no applicable plan for
a (sub)goal in the plan being executed, the whole failed plan is removed from the top of the
intention, and an internal event associated with that same intention is generated, allowing a
programmer to specify how a particular failure is handled. If no such plan is available, the
whole intention is discarded. Two types of goals are distinguished in a goal base: achievement
goals and test goals.

Decision cycle The decision cycle of a Jason agent is illustrated in Fig. 6 (in Sect. 3.3). Each
cycle, the list of current events is updated, and a single event is selected for processing. For
this event, the set of applicable plans is determined, fromwhich a single applicable plan has to
be chosen: the intended means for handling the event. Plans for internal events are pushed on
top of the current intentions, whilst plans for external events create a new intention. Finally,
a single action of an intention has to be selected to be executed in the current decision cycle.
When all instructions in the body of a plan have been executed (removed), the whole plan is
removed from the intention, and so is the achievement goal that generated it (if applicable). To
handle the situation in which there is no applicable plan for a relevant event, a configuration
option is provided to either discard such events or insert them back at the end of the event
queue. A plan can also be configured for atomic execution, i.e., no other intention may be
executed when such a plan has started executing. Moreover, in a cooperative context, the
agent can try to retrieve a plan externally.

Environment and MAS Similar to 2APL, a Jason environment is a Java class that extends
the provided environment interface which contains functions for dealing with percepts and
actions. In addition, the Common ARTifact infrastructure for AGents Open environments
(CArtAgO) [37] has been developed as a general purpose framework for programming and
executing virtual environments. Jason makes use of multiple threads. An environment has its
own execution thread and uses a configurable pool of threads devoted to executing actions
requested by agents. As actions have a return parameter, the execution of a plan is blocked
until such a return value is accessible. In addition, each agent has a thread in charge of
executing its decision cycle, though these can be configured to be shared in a thread pool as
well. Moreover, the agents can use different execution modes. In the default asynchronous
mode, an agent performs the next decision cycle as soon as it has finished the current cycle.
In the synchronous mode, all agents in a system perform one decision cycle at every “global
execution step”.
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Development tools Jason provides a separate runtime that includes a debugger. This debugger
can show the current and previous cognitive states of an agent, though editing a cognitive
state is not possible. It is possible to execute one or more (complete) decision cycles in a
stepwise fashion. There is no direct relation to the program code anywhere in this runtime;
one general console that displays log messages is available, accompanied by several logging
mechanisms that can be used by an agent. Other debugging mechanism such as user-defined
breakpoints are not available.

2.3.7 JIAC

JIAC aims to combine agent technology with a service-oriented approach in order to
emphasize industrial requirements. A dedicated rule-based script-language is used by JIAC:
JADL++, although an agent can be programmed in Java as well by using certain pre-defined
classes. OWL is used as the embedded KR language, i.e., for representing knowledge and
beliefs. Agent configurations are provided in XML documents. Services and actions can
be described semantically in terms of preconditions and effects, allowing dynamic service
discovery and selection. Each agent has a set of abilities (services), which can be used by
other agents as well. A specific agent plays a specific role, specified by the relevant goals
and actions to fulfil such a role. The actions can be implemented in pure Java, from which
other existing technologies like a web service can also be used.

Decision cycle AJIACagent uses a life-cycle. This life-cycle defines three agents states (void,
ready, and active). A specific function can be executed on each state transition. Moreover, a
specific “execute method” can be periodically called (in the active state) depending on the
agent’s configuration.

Environment and MAS JIAC has no explicit notion of an environment; actions (and agent
communication) are handled through service invocation. Each JIAC agent is run in its own
dedicated thread, although actions are executed asynchronously.

Development tools The default Java runtime and/or debugger are to be used for executing
JIAC agents. In this case, code written in JADL++ or XML is not (directly) accessible in the
debugging process, and no specific agent debugging tools are available, although JIAC does
feature several visual tools such as a service designer and a distributed system monitor.

2.3.8 Overview

From this analysis, we can conclude that source-level debugging is not currently employed by
any agent programming language. Debugging is performed in a separate runtime application
that is able to step through a decision cycle in parts or as a whole. When debugging or
running an agent program in 2APL, Agent Factory, Goal, Jack, Jadex, and Jason, the agent
program (i.e., source code) is not shown, and no indication of the currently executed line
of code is given. Alternatively, with JIAC agents, debugging is performed at a low level of
abstraction (e.g., stepping into code of the framework itself with the Java debugger). 2APL,
Agent Factory, and Jason facilitate inspecting an agent’s history, for example, stepping ‘back’
in the agent cycle (i.e., cognitive states), whilst only Goal supports querying or editing an
agent’s cognitive state at runtime. Goal is also the only language that supports some form
of user-defined breakpoints in the agent program.
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We can thus conclude that current state-of-the-art debuggers for cognitive agent programs
provide insight into agent behaviour related to the specific decision cycle it executes, but
less so in how the behaviour relates to the agent program code. However, as this section also
showed that relating code to generated behaviour has important benefits for the debugging
task, we propose a method for the design of a source-level debugger for cognitive agent
programs in the next section.

3 Design approach for a debugger for cognitive agents

In this section, we propose a design approach for a source-level agent debugging tool that
is aimed at providing a better insight into the relationship between program code and the
resulting behaviour, with a focus on single-agent debugging. A number of principles and
requirements will be introduced to guide the design of a stepping diagram, which defines
how the program code is navigated by a user. Such a diagramwill be given for both theGoal
and Jason agent programming languages.

3.1 Principles and requirements

We will list some important principles and requirements for a source-level debugger that
will be taken into account when designing such a debugger in the next section. As our
main objective is to allow an agent developer to detect faults through understanding the
behaviour of an agent, an important principle is usability. More specifically, Romero et al.
[38] indicate that a programmer should be able to focus on the declarative semantics of a
program, e.g., its rules, checkingwhether a rule is applicable, how it interacts with other rules,
and what role the different parts of a rule play [44,45]. This is related to the work Eisenstadt
[12], which indicates that a debugger should employ a traversal method for resolving large
cause/effect chasms, but without the need to go through indirect steps, intermediate subgoals,
or unrelated lines of reasoning. Side-effects pose an additional challenge, as they might be
part of a cause/effect chain, but cannot always be easily related to locations in the code.
Therefore, transparency is an important principle that can be supported by providing a one-
to-one mapping between what the user sees and what the interpreter is doing whilst explicitly
showing any side effects that occur [35]. A debugger should also strive for temporal, spatial,
and semantic immediacy [41]. Temporal immediacy means that there should be as little delay
as possible between an effect and the observation of related events. Spatial immediacy means
that the physical distance (on the screen) between causally related events should be minimal.
For example, the evaluation of a rule should be displayed as close as possible to the rule
itself. Semantic immediacy means that the conceptual distance between semantically related
pieces of information should be kept to a minimum. This is often represented by how many
user-interface operations, such as mouse clicks, it takes to get from one piece of information
to another. As source-level debuggers aim to correlate code with observed effects, immediacy
is an important motivation for the use of such a debugger.

Breakpoints are an essential ingredient of single-step execution. Their main purpose is
to facilitate navigating the code and run (generated states) of a program. As discussed in
Sect. 2, a debugger for cognitive agent programming languages can define two types of
breakpoints: code-based and cycle-based.We propose that for a source-level debugger, code-
based breakpoints should be preferred over cycle-based breakpoints when they serve similar
navigational purposes. In other words, when breakpoints show the same state, the code-
based breakpoint should be used as a starting point, as it is important to highlight the code
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to increase a user’s understanding of the effects of the program. A good example illustrating
this point is the reception of percepts in the decision cycle of a Goal agent. As percepts are
processed in the event module, the entry of this module is a code-based breakpoint that can be
identified with the processing of percepts, i.e., the received percepts can be displayed when
entering the event module. This reduces the amount of steps that are required and improves
the understanding of the purpose of the event module.

In addition, Collier [7] indicates that a user should be able to control the granularity of
the debugging process. In other words, a user should be able to navigate the code in such a
way that a specific fault can be investigated conveniently. For example, a user should be able
to skip parts of an agent program that are (seemingly) unrelated to the fault, and examine
(seemingly) related parts in more detail. The common way to support this is to define three
different step actions: step into, step over, and step out [32]. The stepping flow to follow after
each of these actions will have to be defined (i.e., in a stepping (flow) diagram) in order to
provide a user with the different levels of granularity that are required.

Hindriks [18] and Romero et al. [38] indicate that at any breakpoint, a detailed inspection
of an agent’s cognitive state should be facilitated. The information about an agent’s state
should be visualized and customizable in multiple ways to support the different kinds of
searching techniques that users employ. In addition, the work of Eisenstadt [12] indicates
that support for evaluable cognitive state expressions should be provided. This will aid a user
by supporting, for example, posing queries about specific rule parts to identify which part
fails. Romero et al. [38] also indicate that modifying the program’s state and continuing with
a new state should be supported as well. Thus, we propose that support for themodification of
a cognitive state should be provided. A user could for example be allowed to execute actions
in a similar fashion to posing queries in order to perform operations on an agent’s state.

3.2 Designing a stepping diagram

We propose a design approach for a source-level debugger for cognitive agent programs
that consists of the following steps. First, possible code-based breakpoints will be defined
by using the programming language’s syntax (Step 1). The relevance of these code-based
breakpoints to a user’s stepping process needs to be evaluated, leading to a set of points at
which events that are important to an agent’s behaviour take place (Step 2a). In addition,
the agent’s decision cycle needs to be evaluated for important events that are not represented
in the agent’s source in order to determine cycle-based breakpoints (Step 2b). These points
will then be used to define a stepping flow, i.e., identifying the result of a stepping action on
each of those points in a stepping diagram (Step 3). Finally, other required features such as
user-defined breakpoints (Step 4), visualization of the execution flow (Step 5) and state
inspection (Step 6) need to be handled. As an example, we will provide a detailed design
for the Goal agent programming language in this part, and afterwards we will discuss the
design of a source-level debugger for some other agent programming languages that were
discussed in Sect. 2 as well.

3.2.1 Step 1: syntax tree

Inspired by Yoon and Garcia [43], we propose that an agent’s syntax tree can be used as
the starting point for defining the single-step execution of an agent program. Fig. 4 (top
part) illustrates a slightly modified syntax tree for a Goal agent (see Sect. 2), based on the
simplified language specification as shown in Tables 1 and 2 (see Hindriks [20] for the full
grammars). Note that ‘id[(term)]’ represents a call to either a user-specified (environment)
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Table 1 The (simplified) core of the Goal Module Grammar (BNF)

module := useclause+ option∗ module id(term) { rule+ }

useclause := use id [as usecase] .

usecase := knowledge | beliefs | goals | actionspec | module
option := exit= exitoption . | focus= focusoption . | order= orderoption .

rule := if csq then actioncombo . | forall csq do actioncombo .

csq := stateliteral (, stateliteral)∗
stateliteral := stateop(term) | not(stateop(term)) | true
stateop := bel | goal | a-goal | goal-a | percept | sent
actioncombo := action (+ action)∗
action := id[(term)] | generalaction(term)
generalaction := insert | delete | adopt | drop | send
term := a (composite) KR expression

Table 2 The (simplified) core of the Goal (User-Defined) Action Spec. Grammar (BNF)

specification := useclause+ actionspec+
useclause := use id [as knowledge] .

actionspec := define id[(term)] with pre{ term } post{ term }

term := a (composite) KR expression

action or a module in the grammar (at action). In addition, each node in the syntax tree
represents a specific type, but not an instance. For example, one module usually consists
of multiple rules, as indicated by the labels on the edges. An edge indicates a syntactic
link, whilst a broken edge indicates a semantic link. Relevant semantic links need to be
added in order to represent program execution flow that is not based on the syntax structure
alone.

3.2.2 Step 2a: code-based breakpoints

The idea is that each node in a syntax tree can be a possible code-based breakpoint (‘step
event’). However, as the actual source of some nodes is fully represented by their children,
these non-terminal nodes can be left out of the stepping process. Moreover, some nodes
might not be relevant to a user in order to understand an agent’s behaviour. Here, we define
a node that is relevant to agent behaviour as a point at which (i) an agent’s cognitive state is
inspected or modified, or (ii) a module is called and entered.

State inspections allow a user to identify mismatches between the expected and the actual
result of such an inspection. In other words, if a user expects a condition to fail, he should be
able to confirm this (and the other way around). Changes to a (cognitive) state are important
to the exhibited behaviour of an agent and it should always be possible to inspect it, as should
module calls or entries (or similarly, e.g., pushing a plan to an intention) as they are important
to the execution flow of an agent. In Fig. 4, the breakpoints thus identified have been indicated
at the corresponding syntax node.
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Fig. 4 A Goal syntax tree with the relevant breakpoints indicated on the nodes that are present at the
different levels on the left side of the figure, and the stepping flow between those breakpoints (for into and
over) illustrated on the right side of the figure

3.2.3 Step 2b: cycle-based breakpoints

There are points at which important behaviour occurs that a user wold want to suspend the
execution upon that are not present in an agent’s syntax tree. For example, achieving a goal
involves an important cognitive state inspection (looking for a corresponding belief) and
modification (removing the goal), which are not represented in an agent program’s source.
Points like these that have no fixed correspondence in the agent program we call cycle-based
breakpoints. To include such a breakpoint, a toggle (setting) can be added that provides a
similar mechanism to user-defined breakpoints by always suspending the execution upon
such an event.

Theneed for these cycle-basedbreakpoints and additional explanations highlight an impor-
tant challenge specific to agent-oriented programming. This results in the fact that we cannot
simply construct a source-level debugger by using an agent’s source code only. Thus, a
combination of both the syntax and the semantics of an agent is required to account for all
possible changes of an agent’s behaviour.

The decision cycle of a Goal agent is illustrated in Fig. 3. The only event that cannot be
directly identified with a location in the source code in Goal is the achievement of a goal
(i.e., in updating the mental state).

3.2.4 Step 3: stepping flow

Next, for each identified breakpoint, we need to determine the result of a stepping action,
i.e., the flow of stepping. Based on the syntax tree, the stepping actions can be defined as
follows:
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Fig. 5 An example of a stepping flow through a Goal agent program

– Into traverse downward from the current node in the syntax diagram until we hit the
next breakpoint. In other words, follow the edges going down in the tree’s levels until
an indicated node is reached. If the current node is a leaf (i.e., we cannot go down any
further), perform an over-step.

– Over traverse to the next node (i.e., to the right) on the current level until we hit the next
breakpoint. If there are none, perform an out-step.

– Out traverse upward from the current node until we hit the next breakpoint, whilst
remaining in the current context. In other words, the edges going back up in the tree’s
levels should be traced until any applicable node, and then from there back down again
until any indicated node is reached (like an into-step). Here, applicable refers to a ‘one-
to-many’ edge of which not all cases have been processed yet.

On the bottom part of Fig. 4, the flow for the step into and step over actions on each
breakpoint has been illustrated. For readability, the step out action has been left out. Note
that the broken edge indicates a link to the event module. This special module is executed
after each action that has been performed in order to process any new percepts or messages
that have been received by the agent. After the event module has been processed, depending
on the rule evaluation order, either the first rule in the module or the rule after the performed
action will be evaluated. In addition, a module’s exit conditions might have been fulfilled at
this point as well, which means that the flow may return to the action combo in which the
call to the exited module was made. An example of a stepping flow is illustrated in Fig. 5.

The extensive definition of an out-step is needed because, for example, when stepping out
of a user-defined action, purely following the edges until the previous (upper) breakpoint
would result in reaching the module node, whilst we actually want to step to the next rule.
Following this reasoning, the same result would be obtained even when doing a step-into
from the post-condition node. Therefore, when traversing upward, we consider all nodes.
In the example in Fig. 5, both the action combo and the rule nodes have been processed
completely already, sowewill reach themodule node. If themodule contains anymore rules,
this node will still be applicable, and thus we traverse downward until the first indicated node,
which in this case is the next rule evaluation. If there are no more rules to be executed, we
continue upwards, exiting the current module entirely, thus arriving back at the point where
the call to the module was made (or finishing the execution when in a top-level module).

The stepping flow after a user-selectable breakpoint (i.e., cycle-based) can be dictated by
the existing (surrounding) node. For example, achieving a goal is only possible after either
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executing a cognitive state action or applying a post-condition, so the stepping actions from
the relevant node should be used when stepping away from a goal-achieved breakpoint.

3.2.5 Step 4: user-defined breakpoints

User-defined breakpoints are usually line-based. In other words, a user can indicate a specific
line to break on, instead of a code part. This breaking will always be done, even when not
explicitly stepping. Line-based user-defined breakpoints are a widely used mechanism of
convenience. However, some breakpoints can be at the same line as other breakpoints. In
this case, we pick the breakpoints that are on a higher level in the tree in order to allow a
user to still step into a lower level. In the case of Goal, actions and post-conditions can thus
not be used as a (‘regular’) user-defined breakpoint, whilst module entries, rule evaluations,
and pre-conditions can. Conditional user-defined breakpoints in Goal are also associated
with either rule evaluations or pre-conditions (not module entries), but will only suspend
execution when the corresponding condition has a successful evaluation (holds).

3.2.6 Step 5: visualization

Each time the execution is suspended, the code that is about to be executed is highlighted,
and any relevant evaluations of (e.g., the values of variables referenced in a rule) of this
highlighted code should be displayed. These evaluations will improve a user’s understanding
of the execution flow. For example, if a rule’s condition has no solutions, a user will not expect
the rule’s action to be the next point at which the execution is suspended. Such info is (usually)
absent in cycle-based debuggers.

Problems can arise when the code evaluation does not help in making the execution flow
clear to a user. For example, stepping into an action’s precondition is a step that can lead
to a completely different location in the code base, which might be unexpected. Another
example is the completion of an action combo, which can result in leaving the current
module depending on its exit conditions. To help a user understand these ‘jumps’ through a
program, the code evaluations that are shown can be augmented with additional information
indicating the source of the step. For example, when at a precondition, besides the evaluation
of the condition a user could also see “selected external action: . . .”, which gives a hint about
the reason why we arrived at the action’s precondition. Similar explanations can be provided
after or before other steps that might not be clear to a user. Moreover, a visualisation of the
call stack (i.e., the locations at which ‘functions’ were called) is useful for this as well. In the
case of Goal, calls to modules and actions ‘push’ a new element on the stack, thus keeping
the location of the call in the view of the user.

Logging output (i.e., in a console) can also help a user gain understanding of the history
of the execution flow. For Goal, all breakpoints generate a log message that is printed to the
specific agent’s console. In addition, in case any action fails or an (environment) exception
occurs, an error message is shown in the same console.

3.2.7 Step 6: state inspection

Finally, the inspection and modification of a cognitive state will not be discussed in detail
here, as this is amore standard feature. However, care should be taken to conveniently support
all of those operations, as they are important to the debugging process. In particular, we have
added features that allow the cognitive state of a Goal agent to be sorted and filtered (by
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Table 3 The (simplified) core of
the Jason Agent Specification
Grammar (BNF)

agent ::= belief ∗ plan+
belief ::= literal .

plan ::= triggering_event : context <- body .

triggering_event ::= (+ | -) [! | ?] literal
context ::= literal (& literal)∗
body ::= body_formula (; body_formula)∗
body_formula ::= [! | ? | + | -] literal
literal ::= a (composite) KR expression

search queries). This helps a user make sense of a cognitive state, especially if it is very large.
In addition, a single interactive console is provided in which both cognitive state queries and
actions can be performed in order to respectively inspect or modify a cognitive state.

3.3 Application to other agent programming languages

The same design steps discussed above can be applied to other agent programming languages
in a similar fashion. The syntax and accompanying decision cycle of a Jason agent, for
example, can be used in the same manner as described above. Although a Jason agent does
not have modules, it does consist of a number of (plan) rules. These rules are built up of a
trigger event, a context (conjunction of belief literals), and a body (a sequence of actions:
deeds). A simplified specification of the syntax of the Jason language is specified in Table 3
(see Bordini et al. [5] for the full grammar).

The syntax tree (Step 1) based on this grammar is illustrated on the top part of Fig. 7.
In that tree, the code-based breakpoints (Step 2a) have been indicated as well, i.e., at
each node that corresponds with an inspection or modification of an agent’s cognitive state.
As represented in the decision cycle of a Jason agent in Fig. 6, Jason has three selection
functions (i.e., for events, options, and intentions), a belief revision function, and it also has
a goal achievement mechanism and a mechanism for handling events that have no applicable
plans; these all represent cycle-based breakpoints (Step 2b), as they represent important
behaviour that is not present in an agent’s syntax tree. A toggle (setting) should be added for
each of these events in order to allow suspending execution on them.

In addition, we look at a stepping flow for the source-level debugging of Jason agents,
as illustrated on the bottom part of Fig. 7, which has been derived in the same manner as
before (Step 3). We assume that when for a certain event, the event triggers of an agent’s
plans are evaluated, a successful evaluation of a trigger will lead to directly evaluating the
corresponding context2. However, successful evaluation of both an event trigger and the
context of a plan will not always directly lead to the execution of the corresponding plan
body, as the deeds in the body will be processed into the intention set (by the option selection
function), from which in turn a different deed might be selected to execute next (by the
intention selection function). The execution of a deed usually leads to a new event, and thus
the stepping flow will start again at the first node. Even when a plan is atomic (i.e., indicating
that all actions in the plan’s body should be executed directly after each other), this flow will

2 Although this does not match the described cycle directly, it is an optimization of the cycle that is the default
behaviour of a Jason agent, as confirmed in a discussion with the language designers of Jason. We also assume
synchronous execution without the use of concurrent plans.
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Fig. 6 The Jason agent decision cycle (based on AgentSpeak) [5]

Fig. 7 A Jason syntax tree with the relevant breakpoints indicated on the nodes that are present at the different
levels on the left sideof the figure, and the steppingflowbetween those breakpoints (for into and over) illustrated
on the right side of the figure

123



960 Auton Agent Multi-Agent Syst (2017) 31:941–970

remain the same, as atomic plans only override the intention selection mechanism; each deed
will still (generally) lead to a new event being generated, and thus the start of a new decision
cycle.

In a sense, this flow is similar to that of Goal. However, after executing an action, the
execution flow in Goal is ‘restarted’, whilst in Jason an intention that has been selected
many cycles ago might still be executed. It will thus be important to make sure the flow from
one plan’s context into (a certain point in) another plan’s body is made as clear as possible,
for example by using some visualisation of an agent’s intention stack (Step 5). For user-
defined breakpoints and state inspection (Step 4 and Step 6), the same principles as for
Goal can be applied to Jason.

Finally, for Java-based languages like Jadex, the set of available annotations that indicate
the cognitive agent constructs can be used as the base for the syntax tree. In contrast to the
default Java debugging flow, the ‘evaluation’ of such an annotation is an important point of
interest. Care would have to be taken to make sure the execution flow between the annotated
functions or classes is clear to a user.

3.4 Implementation for GOAL

An implementation of the proposed source-level debugger design forGoalwas performed by
extending the Goal plug-in for the Eclipse IDE3. This plug-in provides a full-fledged devel-
opment environment for agent programmers, integrating all agent and agent-environment
development tools in a single well-established setting [26]. The Eclipse platform is based
on an open architecture that allows for building on top of well-known existing frameworks
[13]. By using Eclipse and the DLTK framework [15], for example, a state-of-the-art editor
for Goal has been created, which forms a solid foundation for further tools. It includes
a state-of-the-art editor that features syntax highlighting, auto-completion, a code outline,
code templates, bracket matching, and code folding. Exchangeable support for embedded
KR languages is provided as well, and a testing framework for the validation of agents based
on temporal operators has been created [27].

The source-level debugger implementationmakes use of theDeBugGer Protocol (DBGP),
which is a common debugger protocol for languages and debugger UI communication [6].
The DLTK framework in Eclipse provides support for using the DBGp protocol in order
to offer a debugging interface to a programmer. The debugger implementation expands on
the support for implementing the stepping diagram that has been integrated into Goal by
adopting a stack-based execution model, which naturally follows from the different levels
that are represented in the stepping tree. This mechanism works by, for example, pushing the
task of executing of the actions of a rule (level 5 in the diagram of Fig. 4) onto the agent’s
execution stack after successful evaluation of a rule’s condition (level 4 in the diagram). The
stepping actions (i.e., the flow) can thus be implemented based on these levels, following the
rules identified in Step 3 in Sect. 3.2. This implementation was also inspired by the debugging
infrastructure of Lindeman et al. [32]. The resulting Goal debugging interface is illustrated
in Fig. 8. In addition, a general overview of the organization of the debugging components
is given in Fig. 9. As illustrated in this image, a listener is attached to the Goal runtime.
This listener responds to events from that runtime (i.e., the breakpoints), forwarding them to
Eclipse (as the Goal core and Eclipse run in separate processes). In Eclipse, these events are
translated into DBGp messages, that in turn control the debugging interface. By using DLTK
and DBGp, Eclipse’s generic debugging interface could be reused; only slight adjustment

3 See http://goalhub.github.io/eclipse for a demonstration of the debugger implementation, instructions on
how to install Goal in Eclipse, and links to relevant source code.
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Fig. 8 A screenshot of the Goal debugging interface in Eclipse Neon

Fig. 9 An overview of the debugging component structure in Goal (left) and Eclipse (right)

was needed to for instance support the inspection of the multiple bases (i.e., beliefs, goals,
etc.) of an agent. A user can also give commands through this interface, which traverse the
same flow, but then in reverse.

4 Evaluation

In this section, we evaluate the source-level debugger that has been implemented for Goal.
In order to perform this evaluation, an implementation of the source-level debugger design
has been added to the Eclipse plug-in for Goal (see Sect. 3.4).

4.1 Quantitative

A group of over 200 first-year computer science bachelor students at Delft University of
Technology made use of this implementation during 6 weeks, working in pairs to develop a
team of agents operating in the BW4T environment [23]. When handing in their final agents,
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Table 4 Descriptive statistics of the performed evaluation (N = 94), also see Appendices 1 and 1. The
answers to Questions 4 and 8 are discussed in this section

Question Mean Range

1. Total Time Spent 11.1 Number of hours

2. Debugging and Testing 34.5 % Percentage of total time

3. Using Debugger 25.6 % " "

7. Debugger Effectiveness 3.2 1 (not) to 5 (very) effective

5f. Debug: Watch Express. 2.8 1 (least) to 6 (most) useful feature

5b. Debug: Interact. Console 3.0 " "

5d. Debug: Breakpoints 3.0 " "

5a. Debug: Logging 3.7 " "

5e. Debug: State Inspection 4.1 " "

5c. Debug: Stepping 4.3 " "

6f. AOP: Multiple agents 2.2 1 (least) to 6 (most) easy aspect

6b. AOP: Ext. Environments 3.3 " "

6d. AOP: Decision Cycles 3.6 " "

6e. AOP: Rule-based Reas. 3.7 " "

6a. AOP: Use of KR 4.0 " "

6c. AOP: Cognit. States 4.2 " "

the pairs were asked to answer a number of questions in order for us to improve the Goal
platform; it was made clear that their answers would not influence their grade in any way.
The questionnaire that was used is provided in Appendix 1.

94 pairs filled out this questionnaire. The results were processed by assigning a numeric
value to the (Likert-scale) answers on questions 5, 6, and 7, and taking the lower bound as
the single number to the answers on questions 1, 2, and 3. Using this processed data, the
descriptive statistics given in Table 4 were obtained. Note that for readability the order in this
table does not correspond to the order in which the questions were given (e.g., the ordering
questions 5 and 6 have been sorted in ascending order of their results). In addition, (Tukey)
boxplots for these results are given in Figs. 10, 11, and 12.

The results show that these novice agent programmers spend about a third of their time on
debugging and testing their agent program, and nearly all that time (a quarter of the total time
on average) is spent using the source-level debugger. Stepping and state inspection are clearly
regarded as the most useful features of the debugger, which is a positive affirmation of our
work. The debugger is usually utilized (Q4) when students see their agent doing something
wrong (56 % of respondents indicated this) or to see how their agent program behaves
exactly (32 % of respondents indicated this). In addition, the use of external environments
and especially multiple agents is regarded as causing most of the problems for debugging
(Q5), suggesting directions for future work.

A correlation analysis showed some significant results, i.e., with a Pearson correlation
coefficient less than .05 in a 2-tailed test, as shown in more detail in Appendix 1. An expected
result is that the the total time spent on programming (Q1) is positively correlated with
the percentage of time spend on debugging and testing (Q2), which in turn is positively
correlated with the percentage of time spend in the debugger (Q3). Moreover, the percentage
of time spend in the debugger is positively correlated with the perceived effectiveness of the
debugger (Q7). As the total average of the perceived effectiveness of source-level debugging
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Fig. 10 Boxplots of the results of Questions 1, 2, 3, and 7 (higher means more effective)

for locating faults is quite high (3.2 out of 5 even with some low outliers), this correlation
suggests that although some time is needed to familiarize oneself with the agent debugging
tools, they provide a programmer with an effective development tool.

In addition, the correlations between the different debugging features (Q5) suggest that
the students can be split into two groups: one that indicates stepping, state inspection and
breakpoints are most useful, and one that indicates logging, the interactive console, and
watch expressions are most useful. This grouping is supported by the correlations between
the debugging features and the different AOP aspects (Q6), as finding stepping and/or state
inspection a more useful debugging feature is positively correlated with the rule-based aspect
of AOP (i.e., regarded as easier), whilst in contrast finding logging and/or the interactive
console a more useful debugging feature is negatively correlated with the rule-based aspect
of AOP (i.e., regarded as more difficult). This suggests that using source-level debugging
facilitates understanding of rule-based reasoning. A related result is the fact that finding
breakpoints a more useful debugging feature is negatively correlated with the usefulness
of the state inspection debugging feature, and that finding watch expressions a more useful
debugging feature is negatively correlated with the logging debugging feature. This suggests
that breakpoints and watch expressions are useful tools to reduce the amount of ‘manual’
inspection (e.g., looking at states or logs) that is needed.

4.2 Qualitative

The hypotheses in this section are also supported by the qualitative data that was provided by
the students in their answers to Question 8. A selection of these comments is given below:
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Fig. 11 Boxplot of the results of Question 5 (higher means a more useful debugging feature)

– I liked the visual Goal environment as it is much more relatable than a simple console.
I liked its simplicity in separating logical processes.

– Debugging with multiple agents was not as good as we expected it to. It was hard to see
what each agent believed and percepted. You had to pause one agent, but the others would
just continue to gather blocks. So by trying to debug you interfered with the program and
you might get a different outcome that way. That is not what you want to happen when
you are debugging.

– Being able to look at the beliefs, goals, percepts and messages when the bots are paused
was very helpful for debugging, as was seeing those update while stepping through a
bot’s code. This especially helped with starting to learn the platform, as it was easy to
see the effect of each line of code.

– I found the debugger ineffective as when you use the debugger the agents act differently
fromwithout using the debugger. Also becausewhen one agent hits a breakpoint the others
keep going, making it very hard to determine what went wrong in the communication or
teamwork.

– We loved the debugging, this was really easy to understand and you could easily find the
bugs. The pausing and stepping is clear and very useful!

– I found it very annoying that the debugger and stepping apparently could yield very
different behaviour, but it was something that you could work around with eventually. In
a way it was a good thing because it also reminds you of its multi-threaded nature; make
no assumptions about synchronization. I think this is partly what caused the most trouble
for people using Goal. Using the debugger is an essential tool for figuring out when a
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Fig. 12 Boxplot of the results of Question 6 (higher means a more easy AOP aspect)

rule is fired, namely by putting a (conditional) breakpoint at the ‘then’-line. I liked this
a lot!

Although the comments are generally positive, clear directions for future work (as also
suggested by the quantitative data) are indicated by the students, which will be discussed in
the next section.

5 Conclusions and future work

In this paper we propose a source-level debugger design for agents that takes code stepping
more serious than existing solutions, aimed at providing a better insight into the relation-
ship between program code and the resulting behaviour. We identify two different types of
breakpoints for agent programming: code-based and cycle-based. The former are based on
the structure of an agent program, whereas the latter are based on an agent’s decision cycle.
We propose concrete design steps for designing a debugger for cognitive agent programs.
By using the syntax and decision cycle of an agent programming language, a set of pre-
defined breakpoints and a flow between them can be determined in a structured manner, and
represented in a stepping diagram. Based on such a diagram, features such as user-defined
breakpoints, visualization of the execution flow, and state inspection can be handled. We
provide a concrete design for the Goal and Jason programming languages, as well as a full
implementation for Goal, and argue that our design approach can be applied to other agent
programming languages as well. A qualitative evaluation shows that agent programmers
prefer the source-level (i.e., code-based) over a purely cycle-based debugger.
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The debugging challenges related to rule-based reasoning and agent decision cycles form
the core of this paper. However, there are more challenges in debugging cognitive agents
that need to be addressed. One of these is the fact that agents are (usually) connected to an
environment. Two problems need to be dealt with: (i) it cannot be assumed that an environ-
ment is deterministic which makes it difficult to reproduce a defect, and (ii) environments
typically cannot be suspended instantly (or at all) which makes it difficult to understand the
context of a defect. This is especially the case when dealing with physical environments,
e.g., controlling robots like search-and-rescue drones. Simulating environments could be a
possible solution for this, i.e., using a deterministic, suspendable and repeatable version of
an environment for debugging purposes. However, this is a major challenge, especially in
large or uncertain domains.

Another problem is the fact that debugging multiple agents at once is significantly more
complicated than debugging a single agent. This problem is most prominent in the evalu-
ation results. Although debugging concurrent programs is a major problem in any type of
programming language [2], the agent-oriented paradigm entails a number of aspects that
might aid in supporting this for multi-agent systems specifically. For example, the fact that
the way in which agents communicate is determined by the platform could be exploited for
specific visualizations. In addition, grouping concepts such as organizations and roles [1,16]
could help in clustering information for users, especially considering that the amount of
information needed for debugging can easily explode in a systems with many agents.

In addition, many programming languages for cognitive agents embed knowledge rep-
resentation (KR) languages like Prolog or a Web Ontology Language (OWL). Some agent
programming languages also embed (instead of extend) an object-oriented programming lan-
guage such as Java. This introduces the additional problem of how to employ the debugging
frameworks that are available for the embedded languages. For example, the SWI Prolog
trace mechanism could be made available through the Goal debugger in some way.

Finally, the debugger design should be evaluated on different groups of users, i.e., different
from novice (first-year student) programmers. Moreover, additional quantitative measures
such as the average time of finding a bug, the average quality of programs (e.g., the amount
of faults/failures in a result with or without use of the source-level debugger), and more could
give more insights into the challenges of debugging multi-agent systems.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: A Questionnaire

The following instructions were given in the questionnaire that was used for the evaluation
in Sect. 4:

1. Indicate the total time you spent on programming for this assignment.
(Less than 8, 8–12, 12–16, 16–20 h, or More than 20 h)

2. Indicate the percentage of time that you spent on debugging and testing out of the total
time you spent on programming for this assignment.
(Less than 10, 10 to 25, 25 to 40, 40 to 55 %, or More than 55 %)

3. Indicate the percentage of time that you spent using the Eclipse debugger out of the total
time you (both) spent on programming for this assignment.
(Less than 10, 10 to 25, 25 to 40, 40 to 55 %, or More than 55 %)

123

http://creativecommons.org/licenses/by/4.0/


Auton Agent Multi-Agent Syst (2017) 31:941–970 967

4. Select the option that best matches you.
(I use the debugger after an automated test fails, I use the debugger to see howmyprogram
behaves, I use the debugger when I see that the robots in BW4T do something wrong, or
I hardly use the debugger)

5. Order the following debugging features provided by the Eclipse debugger from most
useful to least useful.
(Logging, Interactive Console, Stepping, Breakpoints, State Inspection, and Watch
Expressions)

6. Order each of the following aspects of agent-oriented programming frommaking debug-
ging more easy to more difficult.
(Embedded KR languages like Prolog, External environments like BW4T, Cognitive
states, Decision cycles, Rule-based decision making, and Multiple agents)

7. Rate how effective you find source-level debugging for locating faults in an agent pro-
gram.
(Very Effective, Effective, Somewhat Effective, Not that Effective, Ineffective)

8. Provide any comments you have on agent programming, developing, debugging, and
testing. We would like to know what you think works well but would also appreciate any
comments or suggestions for improving how you can develop agent programs.

Appendix 2: Correlation analysis

This section provides the correlation analyses of the results of the evaluation as discussed in
Sect. 4 (N=94) (Tables 5, 6, 7).

Table 5 Correlation analysis of the answers to Questions 1, 2, 3, and 7

Pearson C. TotalTime DebuggingTesting UseDebugger Effectiveness

TotalTime 1 .436∗∗ .097 .005

DebuggingTesting .436∗∗ 1 .460∗∗ −.071

UseDebugger .097 .460∗∗ 1 .235∗∗
Effectiveness .005 −.071 .235∗ 1

∗∗ Correlation is significant at the 0.01 level (2-tailed)
∗ Correlation is significant at the 0.05 level (2-tailed)

Table 6 Correlation analysis of the answers to Question 5

Pearson C. Logging Console Stepping Breakpoints Inspection Expressions

Logging 1 −.043 −.279∗∗ −.129 −.435∗∗ −.216∗
Console −.043 1 −.319∗∗ −.305∗∗ −.248∗ −.178

Stepping −.279∗∗ −.319∗∗ 1 −.008 .087 −.335∗∗
Breakpoints −.129 −.305∗∗ −.008 1 −.269∗∗ −.186

Inspection −.435∗∗ −.248∗ .087 −.269∗∗ 1 −.119

Expressions −.216∗ −.178 −.335∗∗ −.186 −.119 1

∗∗ Correlation is significant at the 0.01 level (2-tailed)
∗ Correlation is significant at the 0.05 level (2-tailed)
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Table 7 Correlation analysis of the answers to Question 6

Pearson C. KR Environments States Cycles Rules Multiagent

KR 1 .014 −.188 −.438∗∗ −.234∗ −.417∗∗
Environments .014 1 −.249∗ −.309∗∗ −.563∗∗ −.054

States −.188 −.249∗ 1 −.054 .036 −.330∗∗
Cycles −.438∗∗ −.309∗∗ −.054 1 .072 −.006

Rules −.234∗ −.563∗∗ .036 .072 1 −.212∗
Multiagent −.417∗∗ −.054 −.330∗∗ −.006 −.212∗ 1

∗∗ Correlation is significant at the 0.01 level (2-tailed)
∗ Correlation is significant at the 0.05 level (2-tailed)
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