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A B S T R A C T

Low-cost muon detectors utilising cheap plastic scintillators and a limited number of individual silicon
photomultipliers (SiPMs) offer a compelling approach to cheap experimental designs, provided the event
localisation of a traversing particle can be accurately determined. In this theoretical work, we use Geant4
to simulate a diverse range of detector configurations, shapes and SiPM photosensors, predicting the light
intensity received at a given SiPM. Testing a range of methods to localise muon events we determine that
machine learning techniques outperform analytic models, and of these, a simple gradient boosted framework
is the most reliably accurate localisation technique for our simulated scintillators. We find that a simple
square scintillator outperforms other geometries and that AI performs, when applied to this shape, with a
linear relationship between the positional accuracy of the event recovery and the average distance between
photosensors around the detector perimeter.
. Introduction

For small-scale particle detection experiments it may often be im-
ractical to use sophisticated and expensive technologies, such as drift
hambers [1] or charge-coupled devices (CCDs) [2], in order to locate
he position of a particle event (although see CREDO [3] as a large
cale example of using smartphone CCDs for muon detection). One
ost-effective method of particle location is to rely on cheap, plastic
cintillators [4,5] and low-cost silicon photomultipliers (SiPMs) photo-
ensors [6,7]. To go beyond event counting to event reconstruction,
e require knowledge of where the muon traversed the detector. It

s, in theory, possible to measure the intensity of light in several
iPM photosensors positioned around the scintillator as the particle
asses through this scintillator, and triangulate the location of the
ignal. While seemingly a well-posed problem, due to reflections within
he material, a simple analytic triangulation algorithm in which the
ntensity 𝐼 ∝ 1

𝑟2
, where 𝑟 is the distance, may not perform well as we

ill show in this work.
The task of this paper is to determine if it is possible to use low

umbers of SiPMs to reconstruct the muon location when traversing a
cintillator for the purpose of delivering a low-cost detector in reality.
e will determine if the 𝐼 ∝ 1

𝑟2
technique is feasible and identify a

uperior alternative to it if not. In particular, we will explore more
omplex analytic models as well as several machine learning (ML)

∗ Corresponding author.
E-mail address: aduffy@swin.edu.au (A.R. Duffy).

techniques and analyse their respective performances. At its most fun-
damental, this work is a reconstruction challenge in which a muon
event traverses through the plastic scintillator at position 𝑥⃗ = (𝑥, 𝑦)
whereby optical photons are emitted. The intensity of the optical
photons are measured by 𝑁 photomultipliers optically coupled to the
scintillator. These 𝑁 intensity measurements form an 𝑁 dimensional
vector for the event denoted by 𝐼 . The aim is to produce a model
 ∶ R𝑁 ←←→ R2 that takes intensities 𝐼 as an input and outputs the
position 𝑥⃗ = (𝐼). In addition, we will further extend the analysis of
these techniques by investigating a range of scintillation geometries and
photomultiplier locations (and numbers) to demonstrate the trade-off
between lowering component cost and event reconstruction accuracy
to inform future instrumentation and experimental design choices.

While our motivation is to deduce particle location in a detector, the
formulation is general and may be applied to other problem domains.
For example, a common application is indoor positioning systems to at-
tempt the locate the position of an electronic device using the received
signal strength of various WiFi detectors within a building [e.g.8].

To provide the data for our idealised muon reconstruction work
we generate an extensive suite of test data using Geant4 [9–11], as
explained in Section 2. In particular, Geant4 simulations for a range
of detector configurations as outlined in Section 3 are used to train the
ML-algorithms and to evaluate the accuracy of the ML-based results
ttps://doi.org/10.1016/j.nima.2021.165237
eceived 25 November 2020; Received in revised form 7 February 2021; Accepted
vailable online 25 March 2021
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obtained in this work. We initially attempt to reconstruct the location
of the muon events using an analytic formalism in Section 4 and then
move to more complex AI techniques in Section 5. We explore a range
of detector configurations including scintillator geometries (comparing
fiducial square to circle, and then a range of polygons), number of
photosensors (i.e. sample points) and their spacing in Section 6. We
discuss these results and implications for future work in Section 7
before concluding in Section 8 on what the optimal configuration for a
low-cost detectors may be.

2. Geant4 simulations

There are a large range of experimental configurations possible
when considering a plastic scintillator for use in low-cost experiments.
To offer the broadest insights to the instrumental design of these future
experiments we adopt the most general assumptions that can be mod-
elled. A simple, uniform, plastic scintillator with no internal defects;
high reflective paint-coating and idealised photosensors locations.

We used Monte Carlo simulations, based on the LXe extended exam-
ple in Geant4 10.05.p01 [9–11], to calculate the theoretical response
of the proposed detector for 3 GeV muons incident normally on the
detector surface. Again, this is a highly idealised experiment as muons
occur with a large angular distribution [e.g.12] but the majority of
muons will occur close to zenith; an assumption that is increasingly
accurate the deeper underground an experiment is located for example.

Geant4 FTFP_BERT physics list was adopted in this work as it is
the default in the LXe example. The G4EmStandardPhysics constructor
was substituted with G4EmStandardPhysics_option4, which is deemed
to be the most accurate e.m. physics constructor in Geant4 for EM
physics processes [13]. Default step length and low energy particle
cutoff limits of this physics constructor were implemented as they
have been shown to reliably produce a wide variety of experimental
results [13,14]. The emission of fluorescence radiation was enabled.
The threshold of production of secondary particles was set equal to
0.7 mm, which is less than one tenth the thickness of the scintillator
slab. Optical photon processes, scintillation and Cherenkov radiation
production were modelled as well.

We found that approximately 8 × 105 simulated incident muons per
etector design provided results with adequate statistics. The output
f the simulation is the photon count at the windows of the SiPMs
nd the incident position of the muon for each incident particle. The
etection efficiency of the SiPMs are then convolved with the photon
ounts resulting from the simulations to provide a final intensity value
hat the ML-based detection algorithms can utilise.

.1. Scintillator properties

In this idealised model, the scintillator bulk properties were based
n the EJ-208 specification sheet [15] as summarised in Table 1.

In the simulation, the scintillator was modelled in vacuum and
oated with 0.11 mm thick EJ-205 TiO2 paint, a standard low-cost
oating to ensure significant internal reflections and boost received
ignals at the photosensor locations. In Fig. 1(a) we show the assumed
eflectivity of optical photons at the interface between the scintillator
nd the TiO2 paint that covers it. While experiments may explore
ifferent coating combinations, the flat (and high) reflectivity across
he visible spectrum provides a compelling yet simple baseline design.
thers of course, may choose to vary this if there was a particular
avelength they wanted to optimise the design for.

Fig. 1(b) shows the spectrum of the optical photons emitted by
olyvinyl toluene (PVT), this data is derived from the EJ-208 specifica-
ion sheet [15]. Quenching effects are modelled using Birk’s Law, with

Birk’s Constant of 0.128mm eV−1, derived from the experimentally
etermined value of the BC-104 PVT scintillator [16].

Optical photons are counted when they traverse the SiPM windows
ith the resulting intensity recorded after convolving these counts with
he quantum efficiency of the SiPMs outlined in Fig. 1(c).

2

Table 1
Photon energy independent bulk properties of the simulated
scintillator [15].
Properties

Scintillation Yield 9200mm−1

Refractive Index 1.58
Density 1.023 g cm−3

Absorption Length 400 cm
Decay Time 3.3 ns
Birk’s Constant 0.128mm MeV−1

The SiPMs windows have a total area of 7 × 7 mm2 and a 6 × 6
mm2 sensitive area. The small remaining area is simulated to be alu-
minium. Each SiPM window is represented in red for the square and
circular shaped configurations in Figs. 2(a) and 2(b), respectively. We
have also explored other geometries beyond these fiducial cases, to
characterise and identify the optimal set-up for the event reconstruction
of incident muons. These are outlined in the following section.

2.2. Detector configurations

Various configurations of the detector were simulated to study the
ability of ML-techniques to reconstruct the position of the muon posi-
tion when traversing the scintillator (see figure Fig. 2). The thickness of
the detector in the direction of the muons’ incidence is kept constant
and equal to 10 mm . The shape of the side at right angles with the
incident muons is instead changed (plane, circle and polygon). In
Fig. 2(a) we see the detector with planar, i.e. square, sides and in
Fig. 2(b) we show the positioning of the SiPMs along circular sides.
Again, the muons are normally incident on the device as shown in
Fig. 2.

For the square scintillator, edge widths of 100 mm , 150 mm and
200 mm were used with 4, 6 and 8 SiPMs mounted on the edges re-
spectively. The 4 SiPM configuration consists of a single SiPM mounted
on each thin edge, the position of which is determined by an offset
value from the left edge. This offset value varies as described below
and shown in Fig. 3. The 6 SiPM configuration introduces two extra
SiPMs on two opposing sides, which are governed by a second offset
value. The 8 SiPM configuration consists of 2 SiPMs on each edge.

For the circular scintillator, the areas of the circle used corre-
sponded to a whole, one half and one quarter of the surface area of
the 200 × 200 mm2 square scintillator. Each area was simulated with
3, 4, 5, 6, 7 and 8 SiPMs, evenly distributed around the thin edge of the
circular scintillator. Again, the square and circular detector geometries
can be seen in Figs. 2(a) and 2(b) respectively.

For the polygon scintillator, a polygon is generated with an equiva-
lent surface area to that of the 200 × 200 mm2 square scintillator. A
SiPM is mounted on each edge, giving a polygon with 𝑁 sides and
𝑁 total SiPMs. The SiPMs are mounted in three configurations: at the
middle of the edge, a quarter of the way along the edge and directly on
the edge corner (in practice the SiPM is effectively offset 3.5 mm from
the corner to affix it entirely on the face of the scintillator, but for
convenience this will be stated henceforth as the edge corner). We show
this configuration pattern for a pentagon shape in Fig. 3.

Each configuration is simulated using a perpendicularly incident
𝜇+ field with an energy of 3GeV. For every muon which traverses
the detector geometry, the incident position (𝑥, 𝑦) on the face of the
detector is recorded as well as the number of optical photons detected
at each SiPM.

3. Light-yield results

Fig. 4 shows the number of optical photons traversing any of the
SiPM windows, produced by a muon incident on the scintillator in
position (𝑥, 𝑦). Using 4 SiPMs on the square scintillator, regions of low
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Fig. 1. Photon wavelength dependent scintillator parameters modelled in this work (see Refs. [17,15,18]).
Fig. 2. The square and circular scintillator geometries simulated. The windows of the SiPMs are shown in red. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Fig. 3. SiPM configurations used for the polygon scintillator. Here, a pentagon is used as an example.
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esponse arise, clearly visible as dark blue in Fig. 4(a). While increasing
he number of SiPMs reduce these areas, they are still prevalent with

and 8 SiPMs as seen in Fig. 4(b) and Fig. 4(c) respectively. The
symmetry in the response of the SiPM photosensor, as given by yellow
ixels of higher photon count detection in Fig. 4 in the clockwise
irection, indicates the face of the window that the SiPM is affixed too.
s shown in Fig. 2(a), the SiPM at a corner edge is in reality still on one
ide, rather than a sheared corner. The offset from that corner is small,
ust 3.5 mm , however it will preferentially collecting more rebounding
ight normal to that face.

No such asymmetry is seen in the circular geometry of Fig. 5 as
he SiPMs are affixed to the circular exterior. The improvement in the
ight collection of increasing SiPM photosensors as seen for the square
eometry is, however, reflected in the circular shaped scintillators.
 d

3

The results show that in these geometries, the detector response has
strong dependence on the position of the traversing muon. We would

ike to reduce the regions of low response to improve the efficiency of
uon detection, as these could be problematic from the perspective

f creating a viable low-cost plastic scintillator detector with a low
umber of SiPMs.

To solve this problem, different geometrical configurations of the
etector system were studied. The left column of figure Fig. 6 shows the
esults for the square scintillator where the regions of low response can
e seen to simply rotate around. These regions tend to be on the borders
f the scintillator, between the SiPMs and at the centre. The signal is
lso lower at the corners due to the effects of internal reflection.

Indeed, this behaviour can be generalised for the other polygon
hapes explored in Fig. 6, allowing one to anticipate and select a
esign to optimise the response of the detector. Mounting the SiPMs
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Fig. 4. Detector response with 4, 6 and 8 SiPMs shown by subfigures (a), (b) and (c) respectively, on the edges of the square scintillator.
Fig. 5. Detector response with 4, 6 and 8 SiPMs shown by subfigures (a), (b) and (c) respectively, on the edges of the cylindrical scintillator.
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n the middle of the polygon edges gives large regions of small re-
eived photon counts as seen in Fig. 6(a). The area of higher counts
pproximately forms a smaller rotated polygon with the vertices being
t each SiPM. The SiPMs mounted a quarter along the edge resolve
hese regions much better as in Fig. 6(b), and the edge mounted SiPMs
een in Fig. 6(c) are better again, similar to the lower count regions as
hown with the square scintillator. As we explore in Fig. 7 below, this
isual trend of configurations belies the real quantitative difference.
lthough we note in general the differences in the configurations for
eceived photon counts is minor, the performance later on for event
econstruction is not.

In Fig. 7 we see the quantitative impact of the different configu-
ations explored in Fig. 6 with a SiPM along each edge of a polygon.
lthough more SiPMs will result in more photons being detected as
xpected, Fig. 7(a) shows that there is a diminishing return with
ncreasing SiPMs detecting fewer photons per SiPM. We also see the
lacement of SiPMs on the quarter edge to also perform more poorly
or the square and pentagon shapes.

In Fig. 7(b) we defined the global detector efficiency (GDE) esti-
ated by the total number of photons detected, divided by the number

f photons produced by all generated muons. This GDE was then
ormalised by the maximum GDE, in this case the octagon polygon, to
ake the relative GDE. It is clear that increasing the number of SiPMs
ill result in a higher number of detected photons. Visually this can be

een by the increasingly green colour in Fig. 6 from (i) to (iii) as the
iPM count increased.

Perhaps most importantly for event reconstruction, was the uni-
ormity of photon count detection, as calculated using the standard
eviation across the scintillator, divided by the number of SiPMs in
ig. 7(c). This is the quantitative estimate of the range of colours
een by eye in Fig. 6, and a lower number indicates reduced dead
ones across the detector. Essentially, all configurations benefit from
ncreasing the number of SiPMs (visually this is the diminishing of the
ark regions) although the corner mounted detectors are marginally
orse than the mid or quarter placed SiPMs.

Using this wide range of simulated photon outputs for muons inci-
ent on a range of geometries, number of SiPM photosensors as well
 a

4

s their positions/separation lengths we can now explore the optimal
onfiguration under which these event locations can be recovered.

. Analytical reconstruction

We remind the reader that the entry of each simulated muon using
eant4 represents a known ‘true’ event position along the scintillator

urface, and the resulting photon count at each SiPM photosensor that
esults is recorded. These intensity measurements form the elements of
n intensity vector 𝐼 for that event.

The process of localising an event on the detector surface 𝑥⃗ =
(𝑥, 𝑦) from the light intensities 𝐼 measured by 𝑁 photosensors requires
etermining a model  ∶ R𝑁 ←←→ R2 that results in 𝑥⃗ = (𝐼). Before
xploring more complex machine learning models we first explore
nalytical approaches. In particular, two reconstruction methods were
nvestigated as outlined in the next two subsections.

.1. Weighted average reconstruction

In order to compare the reconstruction performance of machine
earning methods, a standard reconstruction technique based on a
eighted average is first presented in this section. This is similar to

he method outlined in [7] and [19]. The reconstructed position is
etermined by computing a weighted average of the intensity readings
rom each SiPM using

𝑥⃗reco =
∑

𝑘 𝐼
2
𝑘 𝑥⃗𝑘

∑

𝑘 𝐼
2
𝑘

, (1)

where 𝑥⃗𝑘 represents the position of SiPM k in the two-dimensional (x,y)
plane, and 𝐼𝑘 its intensity measurement. The results are illustrated in
ig. 8, where the reconstructed positions are shown together with the
rue position, i.e. where muons are sourced with Geant4, cumulatively
or all events. This figure also includes different geometries of a square
n (i), pentagon in (ii) and octagon in (iii), as well as various photosen-
or positions along the edge of the scintillator as will be introduced in
he following sections (in the centre or middle of an edge in Fig. 8(a)

nd a quarter from the edge in Fig. 8(b)). For now it is sufficient to note
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Fig. 6. Exploring the dependence of the detector response and ‘dead zones’ of relatively lower photon capture through the systematic rotation of the SiPM photosensor location.
hat the analytical method shows a clear bias toward reconstructing the
osition in the centre of the detector, with the exception of cases where
he true position is close to the photosensor.

To better illustrate this, reconstructed positions for the square geom-
try are illustrated in Fig. 9 with red marks, where they are compared
o specific clusters of true positions as the blue dots. In this square
eometry configuration, the SiPMs are located in the middle of the
etector sides (configuration as given by Fig. 4(a)).

The reconstruction performance of the analytical approach for scin-
illator area of 200 × 200mm2 is reported in Table 2, and is quantified
y the average distance between the reconstructed and true positions
or cases where the photosensor is in the middle of the detector side
nd cases where it is at a quarter of its edge width. For the case of
he square, the offset for a SiPM from a corner is thus 100mm for the

former and 25mm for the latter as shown visually in Fig. 6(a) and
Fig. 6(b) respectively. This table can be compared with Table 7 which
considers the ML-based reconstruction approach, clearly showing the
ML advantage over analytical reconstruction.
5

Table 2
Average distance in [mm] between the predicted and actual position in
a configuration where one SiPM is located on each side of a particular
shape of the detector. All configurations have total area of 200×200mm2 .
Photosensors were positioned either a quarter along an edge or in the
middle of an edge for the middle and last columns respectively. Middle
positions are indicated by Fig. 3(a) (light yield from Fig. 6(a)) and
Quarter positions in Fig. 3(b) (light yield from Fig. 6(b)).
Number of Quarter Middle
edges [mm] [mm]

4 63.57 68.74
5 65.32 67.0
6 62.73 63.96
7 61.93 63.87
8 61.86 63.94

4.2. Analytical fit

We explore another approach that involves an analytical method,
based on using the inverse square law of light propagation inside the
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Fig. 7. Summary statistics of the detected photon counts as a function of polygon
sides, in which each side has a SiPM, with different SiPM configurations (lines/points
given in legend) as given in Fig. 6.

scintillator. The reconstructed position is determined by fitting the
intensity readings of the SiPM photosensors according to the following
function [20]

𝐼(𝑥⃗) ≈ 𝐼0𝛼
𝑒−𝛼|𝑥⃗−𝑥⃗0|

(𝑥⃗ − 𝑥⃗0)2
+ 𝜏, (2)

epresenting the intensity of the light illuminating an individual SiPM
hotosensor and proportional to the SiPM reading. In Eq. (2) we
escribe the light propagation within the scintillator according to a
odified version of the standard inverse square law. This modification

s to account for light reflection, attenuation through the plastic scintil-
ator, and photosensor noise. In this formula, 𝐼0 represents the original
ntensity of the light source, 𝛼 accounts for the absorption of light in
he scintillator, and 𝜏 represents a parameterisation of the background
ight caused by scattered scintillation photons. The distance between
he position of the source, 𝑥⃗, and the position of the photosensor,
𝑥⃗0, is considered to be in the two-dimensional plane (x,y) only, as
o sensitivity would be provided to the reconstruction of the vertical
osition of the source.

The fit is performed using the curve_fit routine of the scipy pack-
ge [21], implementing a non-linear least square minimisation proce-
ure. A calibration procedure is described below, detailing the mea-
urement of fit constants using simulated data.

The number of free parameters illustrated in Eq. (2) is often com-
arable with the number of intensity readings provided by the SiPM
hotosensors around the scintillator perimeter for individual events.
n order to guarantee a stable fit procedure, and noticing that 𝐼0,
, and 𝜏 should not significantly vary on an event-by-event basis, a
alibration procedure has been conducted where multiple events are
itted simultaneously in order to determine these parameters.
6

able 3
ivision of event regions used for the calibration procedure on a square geometry,
here 𝐵[mm] is set as [25, 37.5, 50] for edge widths in mm of [100, 150, 200] respectively
Dataset region 𝑥 𝑦

centre ∈ (−𝐵,𝐵] & ∈ (−𝐵,𝐵]

sides ∈ (−𝐵,𝐵] & ∉ (−𝐵,𝐵]
∉ (−𝐵,𝐵] & ∈ (−𝐵,𝐵]

corners ∉ (−𝐵,𝐵] & ∉ (−𝐵,𝐵]

In order to take into account a possible dependency of these quan-
tities on the true position of the incident radiation across the area of
the scintillator, the dataset is divided in different regions summarised
in Table 3 for a square geometry. For each dataset defined in this
way, all events are fitted simultaneously where the position of the
light source is fixed based on the input value from the simulation.
Parameters determined in this way are then set as the initial values
of the fit.

Even after the calibration is performed however, the fit is affected
by convergence issues, to the point that unreliable results affect most of
the reconstructed points. To further improve upon the performance of
the fit, the lrm and dogbox options are selected in turn when calling
the curve_fit routine. In addition to this, fit parameters have been
estricted in turn. A constraint on 𝜏 to be ≈ 0.001 h of 𝐼0 has been

introduced as well as trying several interval ranges for 𝛼, either fixed
to its nominal value of ≈ 2.5e−4 mm−1 [15], or considering variation
ranges of 1%, 5%, 10% and 30% around this value. Finally, for each
of these options the fit is repeated with and without initialising the
reconstructed position to the coordinates determined by the weighted
average method.

The best results are obtained for the dogbox option while having
𝛼 = 2.5e−4 mm−1 and initialising the reconstructed position at the
origin. An example of the fits obtained in this way is reported in Fig. 10.
As evident from the plots, even under these restricted and improved
conditions the overall reconstruction performance of the fitting method
is worse than the weighted average one. Fitting issues are likely to
arise from the formula of light propagation used, where no analytical
way of modelling reflections was incorporated. We note that there are
thorough investigations about this modelling present in the literature
(e.g. [22]). However, as the scope of this present work is to present a
general approach valid for different detector geometries, primarily by
leveraging recent advances in machine learning, any additional studies
to adjust the fit convergence are not pursued further.

5. Machine learning models

The failure to accurately recover muon event locations with analytic
fits in Section 4 suggest that internal reflections and other non-linear
features of the experiment are complicating the modelling effort. We
therefore turn to machine learning models as ways to capture any
inherent signals in the SiPM intensities beyond that which the analytic
fit was able to utilise. In this Section we explore three standard machine
learning models and compare their performances, with a summary of
the theory and motivation of each model given.

The simulated muon events were split into three datasets: train-
ing, validation and testing. The weights for a given machine learning
method are learnt using the training set. This training process is re-
peated with different hyperparameters (such as network depth for the
Multilayer Perceptron Neural Network or the 𝜎 value for the Probabilis-
tic Neural Network) and its performance measured on the validation
set. The hyperparameters are then set using the results of the validation
set. Finally, our results show the outcome of each model when using
the testing dataset, which was not previously seen by the model at
any point during the training. The exact sample size of each subset
may differ for a given machine learning technique employed (but is
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Fig. 8. Cumulative reconstructed (red marks) and true (blue dots) positions for the analytical reconstruction method based on the weighted average approach. Different detector
geometries are considered, where one SiPM photosensor is located in the middle of each detector side in Fig. 8(a), or at a quarter of its edge width in Fig. 8(b). The average
distance between the reconstructed and true position is also reported in each figure. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
Fig. 9. True (blue dots) events within a 12.5 mm region, and resulting reconstructed (red marks) positions using the weighted average analytical method on a square geometry
where one SiPM photosensor is located in the middle of each the detector side. Dimensions are shown in [mm]. Subsamples of true muon locations are displayed exclusively in
each plot. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
b
p
i
p
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approximately 6 × 105 for the training set, 1 × 105 for the validation set
nd the remaining 1 × 105 for the testing set).

The data consists of a true position coordinate where the muon was
ncident on the scintillator and several intensity measurements from the
arious SiPMs that are optically linked to the scintillator. In the training
ata we have true positions that distributed over a fixed grid, this
mulates how training data with known positions might realistically
 i

7

e available. For example, one might measure real muon positions by
lacing a small scintillator on top of the main scintillator which could,
n a binary manner, detect if a muon passed through both or not. By
lacing this small trigger-scintillator at several points along a grid on
he main scintillator surface and recording events only when the two
cintillators coincide, we will be able to record the final scintillator
ntensities while also knowing the muon incidence positions. These
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Fig. 10. Similar to Fig. 9 but now showing example reconstruction estimates for the analytic method, with subsamples of initial muon event locations centred in a region of
12.5 mm in blue dots and the resulting estimate in red cross, for the 200 × 200 mm2 square detector. This analytical model made use of a method of position [20] given by Eq. (2),
where the light absorption coefficient 𝛼 is fixed to its nominal value [15] and the noise term 𝜏 is negligible with respect to the 𝐼0 factor. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
T
c

𝑃

positions will however be limited to positions on that the grid we
choose with a given resolution dependent on that small scintillator
size. As a result, although we do not generate such a configuration in
practice, we can provide insight to the performance of AI within such
a realistic limitation in this work.

For our simulated data the grid we used was 39 by 39 resulting
in 1521 total grid locations. We used an equal amount of training
events from each of these grid positions in the training. In contrast,
the testing data has continuous position coordinates, as an unknown
muon could enter anywhere on the scintillator. This limitation recreates
the data that would be available in practise and leads to the algorithm
performances worsening by 7–15 percent over the ideal case. For every
variation in geometry and photosensor position/number the machine
learning algorithm shown was retrained.

5.1. Probabilistic Neural Network

Modified Probabilistic Neural Networks (PNN) have previously been
attempted in the context of indoor positioning systems [23]. We imple-
ment a similar model here for our event location on the scintillator
surface. This was implemented without using a standard PNN package
to allow the flexibility to perform modifications.

Each event produces an intensity reading at one of the photosensors,
forming a vector of intensities 𝐼 for that event. The collection of
intensity vectors for all events that share the same grid position 𝑥⃗𝑘 is
given by 𝐈𝑥⃗𝑘 .

For a given testing event 𝐼𝑡𝑒𝑠𝑡, the distances in intensity space are
calculated for each training point 𝐼𝑖 ∈ 𝐈𝑥⃗𝑘 that has its true position at
𝑥⃗𝑘. This is used to calculate a score 𝑆𝑘 for the particular position 𝑥⃗𝑘,
where a hyper-parameter 𝜎𝑘 is introduced that quantifies a length scale
for each grid position on the scintillator.

𝑆𝑘 =
∑

𝑒𝑥𝑝
(

−
|𝐼𝑡𝑒𝑠𝑡 − 𝐼𝑖|

2𝜎𝑘

)

. (3)

𝐼𝑖∈𝐈𝑥⃗𝑘

8

he probability that 𝐼𝑡𝑒𝑠𝑡 was located at position 𝑥⃗𝑘 may then be
alculated as

(𝑥⃗𝑘|𝐼𝑡𝑒𝑠𝑡) =
𝑆𝑘

∑

𝑗 𝑆𝑗
, (4)

and the predicted position is given by the probability-weighted average
for all positions

𝑥⃗𝑝𝑟𝑒𝑑 =
∑

𝑖
𝑃 (𝑥⃗𝑖|𝐼𝑡𝑒𝑠𝑡)𝑥⃗𝑖 . (5)

An advantage of this method is the ability to adjust the 𝜎 parameter
at each given point. This is particularly useful as certain areas of the
scintillator will have varying uncertainty in their reconstruction accu-
racy. Both the analytical and machine learning methods implemented
often struggle to reconstruct points along the edges of the scintillator,
leading to poor performance in these areas. By optimising values of
𝜎 for points along the edges, it is possible to change their probability
weightings and increase the reconstruction performance.

While this method allows a unique 𝜎𝑘 to be optimised for each grid
point that our training events cover, it is not computationally feasible
to optimise for this many hyperparameters in our case. Therefore the
𝜎 hyperparameters were assigned by splitting the scintillator into three
distinct regions. A centre region for points within 30 mm of the centre
were all assigned 𝜎𝑐𝑒𝑛𝑡𝑟𝑒. A middle layer for points between 30 mm and
60 mm from the centre were all assigned 𝜎𝑚𝑖𝑑𝑑𝑙𝑒. All points further than
60 mmwere assigned 𝜎𝑜𝑢𝑡𝑒𝑟. In Fig. 11 we explore the reconstruction
recovery performance for several example 𝜎 values, from the most
central concentrated in Fig. 11(a), to a more dispersed distribution
in Fig. 11(b) and finally the least centrally concentrated 𝜎 values
in Fig. 11(c). The respective values of 𝜎𝑐𝑒𝑛𝑡𝑟𝑒, 𝜎𝑚𝑖𝑑𝑑𝑙𝑒 and 𝜎𝑜𝑢𝑡𝑒𝑟 were
found using a grid search over various combinations and selecting the
parameters based on the reconstruction performance when applied to
the validation set.
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Table 4
Machine learning algorithm performance comparison, using the error radius (the 1 𝜎
onfidence interval of all separation distances) and the average, mean, of the separation
istance between the known ‘true’ muon event and the machine learning predicted
ocation for a 200 × 200 mm2 square scintillator with SiPMs in the edges/corners (given
y Fig. 3(c) and light yield recovery pattern in the leftmost example of Fig. 6(c)).
Algorithm Error radius Average distance

[mm] [mm]

Probabilistic Neural Networks 31.4 26.71
Multilayer Perceptron Network 37.68 32.28
XGBoost Algorithm 30.29 26.35

This simple set-up increases performance over using a single 𝜎 value
for all points. However, this segmentation introduces a component to
the algorithm construction that may result in less comparable results
when tested on different scintillator geometries.

5.2. Multilayer Perceptron Neural Network

A standard Multilayer Perceptron Neural Network was implemented
in Tensorflow [24]. This network accepts 𝑛 intensities as an input, and
produces two outputs: the 𝑥 and 𝑦 coordinates of the event.

Different network architectures were assessed using the validation
dataset results. The best performing architecture was a 6 hidden layer
network, with 16 neurons per layer all using the Rectified Linear Unit
(ReLu) activation function. Dropout was implemented on all hidden
layers with probability of 0.2. The final layer consisted of two outputs
with linear activation functions, these were the 𝑥 and 𝑦 coordinates.

5.3. XGBoost

Gradient boosting is a machine learning technique that provides
predictions using an ensemble of decision trees. One popular imple-
mentation is the XGBoost Python package [25] which we have used
for our data. The number of trees and the maximum depth of each tree
were varied as hyperparameters and selected using GridSearchCV. For
our data this consisted of 200 trees with a maximum depth of 6. We
used the default values for eta (learning rate) 0.3 and gamma (min split
loss) 0.

5.4. Comparison of techniques

The three algorithms and their resulting performance are compared
in Table 4. The first comparison metric (middle column) is the error
radius, the distance at which a 1 𝜎 confidence interval is attained for
the separation between true and predicted event locations. The second
metric is the mean separation distance between all actual positions
and their respective predicted positions. The general trend is that the
Multilayer Perceptron Network under-performs compared to the PNN
or XGBoost which have similar respective results. As discussed previ-
ously, our implementation of PNN required some human decision in
the segmentation that would not necessarily be replicable on different
scintillator geometries. Combining this with the fact that XGBoost has
a lower computational cost than the PNN method, we determine that
XGBoost is a suitable solution to adopt for low-cost detectors in reality.

6. Detector design

The success of the machine learning approach to evaluating muon
event positions relative to the analytic model gives us confidence to
continue to explore the design of a muon detector in terms of number of
photosensors and the scintillator geometry. We begin by systematically
increasing the number of SiPMs around the square scintillator, with
yellow pixels showing high light yield in Fig. 4 indicating the position
of the photosensors. Different simulations were retrained with the
XGBoost set-up mentioned previously in Section 5.3. We also relax
9

Table 5
Radial 1𝜎 confidence intervals (in mm) for various square scintillation edge width
sizes and number of SiPM photosensors employed, with the four initial SiPMs in the
edge corners (as given by Fig. 3(c); light yield pattern of Fig. 4)a. Subsequent pairs of
photosensors placed in the middle of opposing sides, resulting in the recovery pattern
seen in Fig. 12.

Scintillator edge width Separation distance error [mm]

[mm] 4 SiPMs 6 SiPMs 8 SiPMs

100 13.35 10.44 7.80
150 20.59 16.66 12.91
200 29.01 23.15 17.95

the previous constraint of training event true positions being confined
to a fixed grid. We report the radial 1𝜎 confidence interval for each
simulation in Table 5.

Using these overall results, the recovery of the radial 1𝜎 confidence
sep appears to follow a simple linear relationship with the size of the
cintillator (L) and number of photosensors (N) given by

sep ≈ 30.65 mm
( 𝐿
200mm

)( 4
𝑁

)

, (6)

using simple linear regression (with fixed, zero, intercept) resulting in
𝑅2 = 0.99. The optimal set-up for a given experiment may therefore in
practice be decided by considering the required count rate (scaling as
𝐿2), the intended accuracy of the reconstruction 𝑟sep and cost of each
𝑁 SiPM component.

The visualisation provided in Fig. 12 demonstrates that the algo-
rithm struggles to identify points along the edges of the scintillator. This
explains the success of the techniques that allow variable predictive
parameters in different regions of the scintillator, such as the outlined
probabilistic neural network method in Section 5.1. The computa-
tionally and time intensive tuning of these parameters however is a
challenge for experimenting with them over many design iterations as
in this work.

6.1. Circular design

It might be hoped that a circular geometry could alleviate the effect
of ‘dead zones’ in the recovery accuracy along the edges seen in the
square scintillator design in Section 3. However, the circular shaped
detector does not only fail to resolve these issues but, perhaps surpris-
ingly, significantly under-performs in the recovery when compared to
a square detector of identical area.

In Fig. 13 we see the same structure as in Fig. 12 but with dra-
matically larger diagonal features (revealing quite clearly the position
of the SiPM photosensors in each instance). Reflecting this, the re-
covery performance given by the 1-𝜎 distance error for the circular
case as compared with the square geometry, given in Table 6, are
correspondingly much larger.

6.2. Polygon designs

As part of the design of a low cost detector, we would hope to min-
imise the number of SiPMs used, and hence explore different polygon
shapes and placement of the photosensors to determine if there is a
performance increase possible. We implement the XGBoost algorithm
for various detector polygon geometries (in terms of increasing edge
count, from three to eight, i.e. triangle to octagon) explored when using
either three or four SiPMs alone.

As is shown in Table 7, the effect of increasing number of edges
for fixed number of SiPMs, i.e. four, is to increase the average re-
covery error (and a noticeable worsening when placed in the middle
of an edge). Essentially, this result demonstrates that increasing edge
counts is to asymptotically reach the case of the circular scintillator
which offered the worst performance of all geometries. In Table 8, we
explore this performance with only three SiPMs, ensuring that there
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Fig. 11. The effect of changing the three 𝜎 values (𝜎𝑐𝑒𝑛𝑡𝑟𝑒 , 𝜎𝑚𝑖𝑑𝑑𝑙𝑒 , 𝜎𝑜𝑢𝑡𝑒𝑟) assigned to Eq. (3) for reconstructing positions. All images are for the same validation set. Blue points are
he actual muon event positions used in Geant4. Red points are the algorithm’s predicted muon positions. By adjusting the 𝜎 values of the different areas the algorithm is better
ble to capture the true response of the scintillator. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. The effect of increasing number of photosensors for the 200 × 200 mm2 square scintillator. Blue points are the actual muon event positions used in Geant4. Red points
re the algorithm’s predicted muon positions. We note that the improvement in the position reconstruction average given in Table 6 is also seen visibly as an improvement in the
eneral recovery spread (i.e. diminishing diagonal features). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle.)
Fig. 13. As in Fig. 12 the effect of increasing number of photosensors in the performance of the XGBoost machine learning recovery accuracy, but now for the circular scintillator
f radius 97.7 mm . Blue points are the actual muon event positions used in Geant4. Red points are the algorithm’s predicted muon positions. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)
re different symmetries in the SiPM spacing’s around a geometry
f increasing numbers of edges. As might be expected the overall
erformance is poorer due to the one fewer SiPM photosensors, but the
eneral trend of diminishing performance with increasing edges remain
as does the finding that positioning the photosensor in the middle of
n edge is markedly worse). The performance for the final geometry,
he octagon, is actually reasonably similar (albeit poor) if either three
r four SiPMs were used. This can be seen as more an indication of the
inite scintillator size and the event error approaching that magnitude
ather than a convergence in performances in a positive sense.

From this we can conclude that symmetric sight-lines and/or mul-
iple internal reflections result in diminished performance for the al-
orithm. Having more than one detector per edge (as given earlier
n Table 5) is preferential for performance, but critically the resulting

etector design should minimise the number of edges.

10
7. Discussion

In this work we explored, using Geant4 simulations, the feasibility
and optimal design of a muon detector based around low-cost SiPM
photosensors monitoring a plastic scintillator. The reconstruction of the
muon event position with only four SiPM photosensors was a challenge
for the analytic model, as explored in Section 4, which saw us then
explore machine learning (ML) techniques.

In Section 5 we explored three standard ML-techniques in the
literature, a Probabilistic Neural Network, a Perceptron Neural Network
and a gradient boosted decision tree scheme (XGBoost [25]). As Table 4
indicates, the performance of the later was the best for recovery of
muon event locations when using a four SiPM square scintillator and,
due to both simplicity of methodology and computational performance,
was selected to further explore detector designs.

As the intention was to optimise the design for future low-cost

muon detectors we explored the number of the SiPM photosensors, the
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Table 6
Radial 1𝜎 confidence intervals for estimated event reconstruc-
tion in 200 × 200 mm2 square detectors with SiPMs placed in
the edges/corner, then increasing numbers placed in pairs in
the middle of opposing sides of the square, see indicative light
yield from yellow pixels in Fig. 4. This is compared to the
195 mmdiameter circular detector geometries (of equivalent
area) with increasing number of SiPM photosensors evenly
distributed around the circumference, see yellow pixel for
indicative distribution in Fig. 5. The square always outperforms
the circular design, compare the recovery distributions of
Figs. 12 and 13 to see this by eye. Moreover, the initial edge
position for the square also provides superior reconstruction to
either the middle or quarter cases explored in Tables 7 and 8.

SiPM count Square Circle
[mm] [mm]

4 29.01 82.94
6 23.15 81.01
8 17.95 71.30

Table 7
Average distance (1𝜎 confidence interval) in [mm] between the
predicted and actual position for four SiPMs. Photosensors were
positioned either a quarter along an edge or in the middle of
an edge for the middle and last columns respectively. Middle
positions are indicated by Fig. 3(a) (light yield from Fig. 6(a))
and Quarter positions in Fig. 3(b) (light yield from Fig. 6(b)).
Edges Quarter Middle

[mm] [mm]

4 33.7 (41.35) 56.1 (72.99)
5 37.1 (42.99) 56.6 (72.81)
6 45.1 (55.26) 59.9 (75.73)
7 51.3 (62.48) 59.9 (74.86)
8 56.3 (70.97) 64.6 (83.9)

Table 8
As with Table 7 the average distance (1𝜎 confidence interval)
in [mm] between the predicted and actual position but now for
only three SiPMs. Photosensors were positioned either a quarter
along an edge or in the middle of an edge for the middle
and last columns respectively. Middle positions are indicated
by Fig. 6(a) and Quarter positions in Fig. 6(b).
Edges Quarter Middle

[mm] [mm]

3 40.1 (46.53) 65.5 (80.59)
4 42.4 (50.86) 61.8 (79.89)
5 48.3 (58.52) 61.5 (80.38)
6 55.7 (69.33) 63.4 (79.82)
7 57.6 (72.48) 65.1 (81.07)
8 60.1 (75.65) 68.3 (88.55)

geometry of the detector and the placement of the SiPMs. In Section 6
we showed the improvement of the event reconstruction accuracy with
increasing number of photosensors for the square scintillator (as well
as the size of the scintillator) given in Table 5. This resulted in a
simple linear relationship between positional accuracy and the average
distance between the photosensors around the square detector, shown
in (6).

In an effort to lower the costs of constructing such a detector
in reality, we explored whether detector geometries for fixed SiPM
photosensors counts could help in the reconstruction. The four SiPM pho-
tosensors deployed in various locations along polygons from squares to
octagons in Table 7 showed a systematic reduction in performance. This
finding was confirmed for three photosensors in the triangle to octagon
case in Table 8. Furthermore, the placement of the SiPMs matter too;
the middle or quarter spacing along an edge (as given by Fig. 6(a) and
Fig. 6(b) respectively) is always inferior to placing at the edge/corner.

These findings all suggest that the optimal design of a low-cost
muon detector is also surprisingly simple: cover in reflective coating a
plastic scintillator of square geometry, place SiPMs at the edges/corners

(to increase positional accuracy use additional SiPMs placed in opposite

11
pairs in the middle of the scintillator edges) and use the XGBoost
machine learning algorithm for event reconstruction. Of course, it
is also entirely possible that real-world scintillators have sufficiently
complex internal structures that the linear relationship between posi-
tional accuracy and the number of SiPMs employed will break down in
practice.

This design is by no means the best, or only one, imaginable but our
theoretical exploration suggest it should be competitive. Improvements
to such a design can include the exploration of the thickness of the
scintillator slabs, as well as exploring more advanced machine learning
techniques. Indeed, the next steps can also include the challenge of
designing a low-cost muon detector that can recover the true trajectory
of passing muons. Fully integrating trajectory recovery across multiple
detector layers, essentially recovering a joint fit, to measure the angle
of incidence of muons for a square design is non-trivial. In particular,
we would need to modify the simulation process to inject muons over
the full angular range with varying energies, in a distribution [12]. It
might also be anticipated that training a machine learning algorithm for
the entire problem-case of trajectory recovery over multiple layers (as
opposed to training on individual slabs) could offer improved recovery
accuracy. This will be explored in future work.

8. Conclusion

In this study, we explored the factors that might influence the design
of a low-cost muon detector, based around plastic scintillators and
simple SiPMs photosensors. This worked utilised Geant4 simulations
to model a muon radiation field incident on scintillators of varying
size and geometry, and track the expected light yield at key locations
around the edge where various numbers of SiPMs can be affixed. The
theoretical intensity values recorded were then used to determine the
predicted muon event location using both analytic and machine learn-
ing algorithms. As shown in Section 4, the former struggled to recreate
the known event locations while for the latter, several techniques were
explored and ultimately XGBoost [25] was found to perform best.

Using the boosted gradient method we then attempted to derive a
relationship between the reconstruction accuracy for a given detector
size and SiPM photosensor count, resulting in a linear increase in
the reconstruction positional error with increasing edge width of a
square detector and decreasing with number of photosensors evenly
distributed around the perimeter of the scintillator, see Eq. (6).

The performance of the selected XGBoost scheme with differing
detector geometries, and locations of the photosensors around those
geometries, was explored in Sections 6.1 and 6.2. Perhaps surprisingly,
the recovery of events for circular designs was incredibly poor. This
may be seen as the asymptotic limit of increasing edges to the de-
tector, going from square to octagon, which resulted in systematically
diminishing performance for a fixed number of SiPMs. The location of
the SiPMs themselves along the polygon edge was also an important
driver of performance, with photosensors in the middle of a polygon
edge leaving dead zones of low light yield recovery and hence poor
reconstruction accuracy. Ultimately, placing four SiPMs in the edge
corners of a square appeared to offer the best location of muons on
the detector, this simple design is strongly recommended by the suite
of Geant4 simulations explored in this work to guide future low-cost
muon detectors.
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