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Abstract
Pedestrian spaces are increasingly becoming popular locations for shopping, recreation, 
festivities, and other social activities. Therefore, an improved understanding of the factors 
that make walking environments enjoyable and safe is essential. Most existing studies focus 
on modelling walking behaviours of individual pedestrians. However, most people partici-
pate in these activities as parts of social groups. Although the movement and choice behav-
iours of pedestrians in social groups differ from those of individuals, a model featuring 
group movements has not been developed. This study uses neural networks to analyse the 
effects of variables influencing pedestrian movements of social groups and predict the vari-
ation in walking dynamics. A top-view video was used to extract the trajectories of pedes-
trian groups. After identifying the social groups in a crowd, the movement characteristics, 
pedestrian–environment interaction, inter-pedestrian interaction, intra-group relationship, 
and inter-group relationship of all group members were calculated and considered in the 
model. After a variable selection process using neural networks, a neural network model 
was developed featuring variables that are strongly related to the lateral or longitudinal 
changes in the individual’s walking speed. The current movement condition, presence of 
obstacles nearby, impending collisions, current position and velocity of other group mem-
bers, and following behaviour were found to impact a pedestrian’s walking dynamics. The 
proposed model can predict the pedestrian density and distribution according to a space 
function, contributing to better crowd management and efficient design and renovation of 
pedestrian spaces. Furthermore, the variable selection method can optimise and simplify 
other pedestrian behaviour prediction models.

Keywords  Pedestrian · Social group · Neural network · Group dynamics · Unmanned aerial 
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Introduction

People enjoy spending their leisure time in public urban spaces, such as shopping malls, 
game parlours, concerts, and festivals. Many places where people undertake such activities 
are pedestrian-only spaces because they offer a favourable and safe environment for pedes-
trians. These public urban spaces have attracted increased attention over time, resulting 
in overcrowding, which can diminish the pedestrian experience of these spaces and even 
affect the physical safety owing to crowd incidents.

Pedestrian flow models can be used to predict the walking dynamics of a crowd. In gen-
eral, pedestrian flow models are divided into microscopic and macroscopic models (Duives 
et al. 2013). Microscopic models are most often used to simulate a pedestrian’s operational 
movement dynamics. The social force model is one of the most frequently used micro-
scopic models; it considers both physical and motivational factors when determining the 
next step of each individual agent in the simulated environment. According to this model, 
the pedestrian walking behaviour is influenced by the goal and desired velocity of the indi-
vidual, physical boundaries of spaces (e.g. walls, obstacles), and attractive/repulsive effects 
of objects, spaces, and other agents in the surrounding environment of an agent. In the 
original version of the social force (SF) model proposed by Helbing and Molnár (1995), 
the agents were assumed to have no social attachment to other pedestrians.

In recent years, several alterations have been suggested to the SF model to enhance 
its realism. For instance, Zacharias (2001) found that the gathering of pedestrians might 
increase the attractiveness of certain locations, and Qu et al. (2018) established that over-
crowding creates unfavourable feelings among people and consequently repulse them. Koh 
and Wong (2013) found that commercial activities and crowdedness are both important 
factors that divert pedestrians from the preferred path. Furthermore, Xiao et  al. (2016) 
established that the distribution of pedestrian density is an important factor influencing the 
pedestrian experience in a pedestrian environment.

Moreover, the behaviour of pedestrians moving in groups, known as group dynamics, 
was found to be an important factor influencing the walking behaviour of individual pedes-
trians (Lu et al. 2014), crowd movement dynamics (Duives et al. 2014), and distribution of 
pedestrians over a space (Wang et al. 2013). Considerable research has been conducted on 
the statistical properties of group dynamics (e.g. James 1953; Bakeman and Beck 1974). 
For instance, observations on pedestrian group size showed that the sizes of social groups 
were mostly less than or equal to 6 (Ge et  al. 2012; Li et  al. 2015; Feng and Li 2016). 
Additionally, Moussaïd et al. (2010) illustrated that the group size influences the walking 
speed and formation of a social group. Zanlungo et al. (2014) reported that small pedes-
trian groups generally exhibit similar constellations.

A common feature of all microscopic pedestrian models featuring group dynamics is 
that small explicit additions to the model structure have been made to account for the influ-
ence of the group. An additional force with a predetermined mathematical formulation is 
usually added to the array of ‘social’ forces. Essentially, the estimation procedure com-
prises the calibration of the parameters of this explicit new force (i.e. reaction strength 
and radius). However, it should be investigated whether this explicit manner of accounting 
for the interactions with group members as well as non-group members comprehensively 
accounts for all influences of the group on the movement dynamics of the group members.

In contrast to these previous attempts, the present study adopts a different approach to 
the modelling of pedestrian group dynamics. The objective of this study is to derive a neu-
ral network model incorporating a comprehensive set of input variables that influence a 
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pedestrian’s movement behaviour in social groups. For this purpose, this study estimates an 
array of ‘simple’ artificial neural network models that feature the movement characteristics 
to evaluate the effect of variables on the prediction accuracy and obtain the best set of input 
variables. This new model accounts for a wide range of influences, such as the movement 
characteristics of the agent, pedestrian–environment interaction, inter-pedestrian interac-
tion, intra-group relationship, and inter-group relationship.

The remainder of this paper is structured as follows. “Background” section presents a 
brief overview of the previous studies on pedestrian movement prediction models. “Meth-
odology” section comprehensively discusses the research methodology. “Case study” sec-
tion presents a case study. “Results” section presents the results of selecting the related 
variables and running the neural network model. Finally, “Conclusion” and “Applications 
and future work” sections, respectively, present the main conclusions of this research and 
the potential applications of this model to future research and the design of public walking 
spaces.

Background

Previous studies have attempted to model walking and group dynamics using microscopic 
pedestrian simulation models and artificial intelligence (AI) models. This section reviews 
the literature intensively. “Explicit modelling of group dynamics” section discusses the 
current state-of-the-art pertaining to the modelling of group dynamics. Furthermore, 
“Machine-learning modelling of walking behaviour (and group dynamics)” section elabo-
rates the use of AI models to model pedestrian movement behaviour.

Explicit modelling of group dynamics

The studies featuring the modelling of group dynamics can be classified based on the foun-
dation model that they enhanced. Three foundation models are used, namely, social force 
(SF) model, cellular automaton (CA) model, and agent-based model (ABM). The studies 
that have made specific adaptations to incorporate group dynamics are discussed below.

The SF model is a continuous model that describes the influence of the desired veloc-
ity, presence of other pedestrians, physical borders, and attractiveness of nearby locations 
on the pedestrian behaviour as a force. Several researchers have enhanced the original 
SF model of Helbing and Molnár (1995) to incorporate group dynamics. Moussaïd et al. 
(2010) attempted to incorporate head rotation, attraction effect, and repulsive effect in 
social groups into the SF model. Furthermore, Zanlungo et al. (2014) used interaction with 
group members and the inter-group collision avoidance behaviour to describe the group 
dynamics. Recently, Zhang et  al. (2018) attempted to incorporate the leader–follower 
behaviour in an inter-group relationship and the similarity of position and velocity in an 
intra-group relationship into the SF model. This SF model is capable of describing the 
interactions, but the force having the dominant influence could not be clarified.

Furthermore, the CA model divides a space into grids of cells and simulates the move-
ment of individuals between cells in discrete time intervals. This model has been improved 
to simulate group behaviour in crowds. For instance, Köster et  al. (2011) incorporated 
social groups into the CA model and found that group behaviour influences the crowd 
movement; several group behaviours were validated experimentally. Recent studies have 
also incorporated intra-group structure (You et  al. 2016) and leader–follower behaviour 
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(Lu et al. 2017) into the CA model. CA models require less computation and effectively 
describe the existing theories in a discrete space; however, they are incapable of examining 
and updating the theory of walking behaviour.

On the other hand, the ABM is a ‘bottom-up’ model, which allows agents to move in 
a continuous space instead of grids; it also allows setting movement rules without the 
restriction of being driven by a ‘force’. Qiu and Hu (2010) incorporated an intra-group 
structure and inter-group relation into the ABM and found that the group size, intra-group 
structure, and inter-group following behaviour affect the crowd dynamics. Later, research-
ers attempted to incorporate interactions between sub-groups (Fu et al. 2014), panic case 
(Wang et al. 2015), and social group speed coordination (Kiefer et al. 2017) into the ABM. 
In the ABM, the rule of movement is predetermined, making it feasible to execute a variety 
of behaviours; however, similar to the CA model, the predetermined rule follows the previ-
ously studied theory, and new influencing factors cannot be incorporated.

In summary, attempts have been made in an unorganised manner to simulate group 
behaviour by means of microscopic pedestrian models. Previous studies showed the influ-
ence of group dynamics on the pedestrian walking behaviour by adding variables describ-
ing group dynamics, but the relative importance of variables describing group dynamics 
and other variables were not directly compared in a comprehensive model. Therefore, fur-
ther fundamental research is required to determine the exact factors that influence group 
movement behaviours.

Machine‑learning modelling of walking behaviour (and group dynamics)

AI models allow the implicit modelling of various movement dynamics (Chella et  al. 
2000). In other words, machine learning models can learn a relationship between input and 
output variables, while allowing much flexibility in specifying prior assumptions on this 
relationship. These model types can also be used to study pedestrian movement behaviour. 
This section reviews the three most promising AI modelling techniques that have already 
been used by other researchers to model walking behaviour, namely, the Markov model, 
neural network, and long-short term memory (LSTM) model.

Markov model

A Markov chain is a stochastic model describing a sequence of possible events in which 
the probability of each event depends only on the state attained in the previous event. A 
Markov model can be effectively used to study a discrete system and can be applied to 
the spatial sequential choice. Models such as the hidden Markov model (HMM), relational 
Markov networks (RMN), and Markov decision process (MDP) use the Markov chain con-
cept to predict pedestrian behaviour. Ashbrook and Starner (2003) incorporated previous 
locations into a Markov model to predict the movement of people. By considering indi-
vidual characteristics, Gambs et al. (2010) used a Markov model to predict the next desti-
nation of a person based on the historical information of the previously visited spaces and 
the probability distribution of transitions between states. Furthermore, Gambs et al. (2012) 
included several historical locations of the concerned person to improve the precision of 
prediction.

To study the movement and distribution of pedestrians in a public area, a model that can 
be applied to predict the instantaneous movement behaviour is required to simulate pedes-
trian walking dynamics. Nascimento et al. (2010) proposed a two-layer HMM to predict 
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the pedestrian movement dynamics based on the historical trajectories. The lower-level 
model features stopping and moving to the north, west, south, or east, and the upper-level 
model switches the action mode of the lower level according to the type of activity. Burkert 
and Bamler (2012) incorporated pedestrian interaction by calculating four motion features 
between pedestrians, and a weight was assigned for the interaction based on the distance 
between the pedestrians. This model considered the interaction between neighbouring 
pedestrians, and it could make sense for determining social groups with two pedestrians. 
The Markov models verified the importance of historical states in predicting pedestrian 
dynamics. Because Markov models aim to predict discrete states, the amount of input vari-
ables required to build a continuous prediction model is extremely large, and it is difficult 
to calibrate the model to compare the effects of different variables.

Neural network

The neural network considered in the present study excludes deep learning, which dis-
tinguishes its concept in this study from the LSTM model. A neural network is a series 
of algorithms that endeavours to recognise the underlying relationships in a set of data 
through a process similar to the operation of the human brain. Zheng et al. (2002) com-
bined the SF model and a neural network and found that an appropriate proportion of impa-
tient pedestrians in a crowd could improve the crowd movement and passage time. First, 
a neural network was used to build a choice model of pedestrian behaviour (Ottomanelli 
et al. 2010; Zainuddin and Lim 2012; Yuen et al. 2014). Later, Yi et al. (2016) used the 
previous displacement of the pedestrian to predict the future movement. Song et al. (2018) 
compared the neural network model and SF model in several scenarios and found that the 
former exhibits better performance in predicting the pedestrian movement than the latter. 
In general, previous neural network models used historical information and the surround-
ing condition as inputs and considered repulsion from the walking environment.

Because pedestrian movement is also influenced by the attraction from group mem-
bers, a prediction model for walking behaviour influenced by social groups is yet to be 
constructed. Wang et  al. (2019) proposed a method to select the input variables from a 
group of behavioural and environmental factors that could be used to predict the variation 
in walking speed to simplify the prediction model. However, that study focused on a choice 
model of acceleration, deceleration, and maintenance of the current speed, which do not 
quantify the change in speed or consider the change in direction. Thus far, there have been 
no reports on a neural network model that considers a variety of variables to predict the 
trajectory and walking dynamics and is combined with a method to filter the variables in 
this model.

LSTM model

The LSTM model is a type of recurrent neural network model that has recently been used 
to predict pedestrian trajectories. It is capable of considering all historical information 
and discarding irrelevant data, enabling it to automatically learn the current and histori-
cal states of a pedestrian and predict the future positions. Alahi et al. (2016) used Soical-
LSTM networks to predict the pedestrian movement by considering the previous move-
ment condition and spatial neighbours in the model. It was found that the LSTM model 
could predict pedestrian movement, but the environmental factors were not included in 
this model. Pfeiffer et al. (2018), Bartoli et al. (2018), and Xue et al. (2018) incorporated 
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the environmental borders and obstacles in the LSTM model and improved the prediction 
accuracy. Later, other factors, such as the attention model (Fernando et al. 2018) and spa-
tial affinity between pedestrians (Xu et al. 2018), were integrated with the LSTM model to 
further improve the accuracy. Recently, Bisagno et al. (2019) considered social groups in 
the LSTM model by treating them as an entity and predicted the movement dynamics by 
considering only the influence of the inter-group relationship. In that study, many other 
factors such as leader–follower interaction and intra-group interaction were neglected. Fer-
nando et al. (2019) used an LSTM model to predict the pedestrian’s operative movement 
behaviour and attempted to derive the influence of group behaviour from this movement 
prediction model. That study found an approach to extract pedestrian social groups in the 
crowd by identifying group behaviour, but the influence of group members on the walk-
ing dynamics was not quantified. Generally, in the LSTM model of predicting pedestrian 
dynamics, the influence from walking environment and other pedestrians are represented 
by their hidden states, and the type of interaction is not specified. Moreover, a prediction 
model for pedestrian movement considering social group behaviour has not been explicitly 
elucidated.

In general, the Markov model has logic to predict the pedestrian dynamics, but it can-
not cope with the calibration of many variables needed to be incorporated in a continuous 
space. The neural network and LSTM model are not limited by multicollinearity between 
variables since their aim is to achieve the highest fit without identifying functional rela-
tionships of individual variables (Lakes et  al. 2009). Because the influencing factors of 
walking dynamics may have multicollinearity, and most other models should not take the 
influencing factors with multicollinearity as input variables simultaneously, which will 
lead to the exclusion of some influencing factors, neural network and LSTM model can 
establish a comprehensive model. The simplicity of neural networks may impair their 
accuracy in some cases; however, because of their simplicity, they have the potential to 
be comprehensive and comprehensible. The LSTM model is capable of making accurate 
predictions; however, because of its complexity, no existing method has been sufficiently 
validated to determine the relative importance of influencing factors represented by hidden 
states. Regardless of the type of model used for prediction, a proper set of input variables 
is always a key factor. A neural network provides the opportunity to use a variety of vari-
ables as inputs simultaneously and calculate the contribution of each variable to the walk-
ing dynamics to obtain a prediction model with the set of most influential input factors.

Methodology

The present study attempts to establish a comprehensive set of factors that are jointly 
required to model grouping behaviour. Thus, a model type is required that can be inter-
preted mathematically and applicable in variable selection. Simultaneously, we intend to 
step away from the explicit modelling of the variables and the relations between them. A 
neural network is suitable for this purpose. This section presents a method to model pedes-
trian group behaviour implicitly by means of a neural network.

First, the general structure of the neural network is presented. Accordingly, the variables 
that feed the model are introduced; then, the variable selection process is detailed. Finally, 
the parameter analysis method used to handle the stochasticity in the model calibration 
process is discussed.
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Design of neural network model

As seen in Fig. 1, the neural network model in this study is a three-layer network compris-
ing an input layer, a hidden layer, and an output layer, because the neural network with one 
hidden layer can be more comprehensible (Heaton et al. 2017). The input layer contains 
one or more input variables used to predict the output. The output layer is the accelera-
tion along the x-axis (Nx) and y-axis (Ny) in the next time interval (0.5 s). The number of 
neurons in the hidden layer correlates to those in the input layer. The activation function 
between input layer neurons and hidden layer neurons is tangent sigmoid function, and the 
activation function between hidden layer neurons and output layer neurons is linear transfer 
function. The tangent sigmoid function is defined as

where x denotes the input of hidden neurons, and y represents the output of hidden neurons.
The cases are divided into two sets: training and testing. The training set is used to train 

the model (determine the coefficients for the multinomial logit model and parameters for 
the machine learning model). The testing set is used to test the performance of the trained 
model. The predicted results from the testing set are compared with the actual experimental 
data to determine the final prediction accuracy. In this study, the training and testing groups 
are randomly selected from the dataset. A limited number of groups featuring large group 
sizes are present in the dataset, which might cause an imbalance in the test of the model. 
Thus, all the groups are divided into two parts to avoid imbalance between the training 

(1)y =
2

1 + e−2x
− 1,

Fig. 1   Architecture of neural network used in this study
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and testing data. Groups with more than three members are classified as large groups, and 
the others are classified as small groups. In the process of dividing the data, 80% of small 
groups and 80% of large groups are selected to be used for training, and the remaining 20% 
of the data featuring both types of groups are used for testing.

Identification of candidate input variables

A pedestrian can be affected by his/her current and historical states (Alahi et al. 2016). In 
this study, the historical state is described by the velocity variation in the previous time 
interval. For the current state, according to the SF model, the pedestrian walking dynamics 
is influenced by the preferred velocity, repulsive force from the borders or other pedestri-
ans, and influence of social groups (Helbing et al. 2001). The influence of social groups 
can be further classified into intra-group relationships and inter-group relationships (Qiu 
and Hu 2010). As shown in Fig.  2, the input variables considered in the model can be 
classified into five groups: movement characteristics, pedestrian–environment interaction, 
inter-personal interaction, intra-group relationship, and inter-group relationship. In order to 
organise the complex environment influence (non-fixed number of obstacles, neighbours, 
and leaders) as a few input variables to be used in the neural network, basic rules are used 
to convert these influences into variables.

The first group of input variables describes the movement characteristics. In most 
microscopic models, these comprise the walking speed, direction, and acceleration. Thus, 
these variables are included in the set of candidate variables for this neural network. In 

Fig. 2   Structure of the input and output variables in the model
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this research, this group of variables comprises the current speed (V), desired direction 
(D), acceleration along the x-axis (Ax), and acceleration along the y-axis (Ay), as shown 
in Fig. 3. Because the walking dynamics in a short time interval is influenced by the body 
swing, and a long time interval fails to describe certain details of the walking process, the 
time interval is set to 0.5 s. V is calculated as the distance of movement in the previous 
0.5 s divided by the time interval (0.5 s). The intended direction is the direction extend-
ing from the current position to the final position in the area of focus, and D is the angle 
between the current walking direction and the intended direction. Ax and Ay denote the dif-
ference between the current velocity and the velocity 0.5  s earlier along the x-axis and 
y-axis of the current coordinate system divided by the time interval (0.5 s), respectively.

The second group of variables features the interaction between the pedestrians and 
obstacles in the environment, as shown in Fig. 4. Pedestrians maintain a safe distance 
from other elements in the environment to avoid the risk of injury (Helbing and Molnár 

Fig. 3   Variables describing the movement characteristics

Fig. 4   Interaction between pedestrians and obstacles in the environment
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1995). Therefore, in this study, walls, handrails, steps, and slopes are treated as obsta-
cles. The force from the obstacles within a distance of 1.62 m (Johansson et al. 2007) 
from a specific pedestrian is considered. Borders such as steps and slopes, which can 
be navigated, are generally considered obstacles. However, in the case of a pedestrian 
about to leave the region of interest from a border, the border is not treated as an obsta-
cle when the distance between the current pedestrian position and the position on the 
border from where the specific pedestrian will exit the region is less than 4 m (Fajen 
and Warren 2003). Based on the angle of interaction, the obstacles are divided into 12 
groups, namely, 0°–30°; 0° to − 30°; 30°–60°; − 30° to − 60°; 60°–90°; − 60° to − 90°; 
90°–120°; − 90° to − 120°; 120°–150°; − 120° to − 150°; 150°–180°; and − 150° to 
− 180°. In this study, the symmetrical parts of the region around the current walking 
direction, such as 30°–60° and − 30° to − 60°, are treated as opposite positions. Fur-
thermore, the sum of and difference in the forces at the opposite positions are calculated 
and considered as the input variables of this group. For the force in the region from � to 
� , B�,�

s
 is the sum of forces generated from the obstacles, and B�,�

d
 is the difference in the 

forces. The force generated by an obstacle decays exponentially with the distance from 
the edge of the specific pedestrian (Johansson et al. 2007). Thus, if the radii of pedestri-
ans are considered as 0.3 m, the force is calculated using Equation 2.

The third group of variables pertains to interpersonal interactions. This group of var-
iables includes the time to collision and the distance between pedestrians. Considering 
the angle between the current walking direction of a specific pedestrian and the position 
of other pedestrians, to clarify the influence from specific directions, other pedestrians 
are separated into 12 groups using the same method as separating obstacles, as shown in 
Fig. 5. This group of variables are also the sum of and difference in the forces generated 
from the opposite positions of the walking direction.

As shown in Fig.  5a, time to collision is the time until an impending collision. A 
situation where the distance between a specific pedestrian and another pedestrian is less 
than 0.6 m is regarded as a collision, and the time ( �t ) is calculated. The time to colli-
sion is also considered as a force. For the force in the region from � to � , T�,�

s
 is the sum 

of forces generated from the pedestrians, and T�,�

d
 is the difference in the forces. Because 

the probability of collision decays exponentially with �t (Festa et al. 2018), the influ-
ence of a pedestrian (n) is calculated using Equation 3. If no possible collisions arise 
from a specific region, the force will be considered as 0.

Other pedestrians can also be treated as obstacles. For the direction from � to � , D�,�
s

 is the 
sum of forces between � and � , and D�,�

d
 is the difference in the forces between � and � . For 

another pedestrian (n), the distance from the specific pedestrian (d) is used to calculate the 
force, as seen in Fig.  5b. The force generated by other pedestrians decays exponentially 
with the distance between the edges of these two pedestrians (Johansson et al. 2007); thus, 
if the radii of pedestrians are considered as 0.3 m, the distance between the two pedestrian 
edges is d − 0.6 m, and the distance-dependent force is calculated using Eq. 4. If no other 
pedestrians appear in a specific region, the distance-dependent force will be considered as 
0.

(2)F(n) = e(0.3−d)

(3)F(n) = e−�t.
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(a)

(b)

Fig. 5   Interpersonal interaction
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The fourth group of variables comprises intra-group relationships. Aggregation and fol-
lowing are the two actions that group members take to maintain the preferred intra-group 
structure (Qiu and Hu 2010), and group size influences the preferred structure (Moussaïd 
et al. 2010). As seen in Fig. 6, this group of variables includes group size, relative positions 
of the pedestrians within a group, and the difference in velocity between a specific pedes-
trian and other group members. Group size ( Gs ) defines the number of pedestrians in the 
social group. The central position is the mean value of the positions of all group members 
on the x-axis and y-axis. The longitudinal and lateral distances between the specific pedes-
trian and the central position on the x-axis and y-axis are Go and Ga, respectively, which 
describe the aggregation in the social group. The difference in velocity includes two vari-
ables: Gx and Gy. These two variables indicate the difference in the walking speed between 
the specific pedestrian and the mean values of the other group members on the x-axis and 
y-axis, which describe the following behaviour in the group.

The fifth group of variables relates to the inter-group interaction; this group of variables 
includes the leader–follower behaviour, as shown in Fig. 7 (Qiu and Hu 2010). Robin et al. 
(2009) modelled the leader–follower behaviour and divided the visible region (− 85° to 

(4)F(n) = e(0.6−d).

(a) (b)

(c)

Fig. 6   Intra-group relationship
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85°) into a ‘central’ region (− 15° to 15°), ‘side’ region (− 45° to − 15° and 15° to 45°), 
and ‘extreme’ region (− 85° to − 45° and 45°–85°). In the present study, these regions are 
separated as left and right regions. The left region comprises the regions 0°–15°, 15°–40°, 
and 40°–85°, and the right region comprises the regions 0° to − 15°, − 15° to − 40°, and 
− 40° to − 85°. Pedestrians outside the targeted social group but within the range of 6.25 m 
from a specific pedestrian and have a walking direction between − 10° and 10° are selected 
as potential leaders. Among all the potential leaders, the one nearest to the specific pedes-
trian is the leader at that moment. The variables of leader–follower behaviour are the sum 
of and difference in the forces generated from opposite positions of the walking direction. 
For the direction from � to � , L�,�

s
 is the sum of the leader–follower force between � and � , 

and L�,�
d

 is the difference in the leader–follower force between � and � . The attractive force 
from the leader is positively correlated with the difference in speed ( �v ) and negatively 
correlated with the distance between the specific pedestrian and the leader (d) (Robin et al. 
2009). The variable �v = vl − vp , where vl is the speed module of the leader and vp is the 
speed module of the specific pedestrian. For a leader (n), the following force is calculated 
using Eq.  5. Faster leaders cause acceleration, and slower ones induce deceleration, but 
all leaders attract the specific pedestrian along the y-axis. Because the difference in forces 
from opposite positions is correlated to the movement dynamics on the y-axis, |F(n)| is 
regarded as the leader–follower force when calculating L�,�

d
.

Neural network model selection process

A branch and bound technique is used to derive the neural network model with the best 
prediction accuracy. The process is initially simple but gains complexity with the progres-
sive addition of variables into the model. Three procedures are used to select the best neu-
ral network to describe the overall walking behaviour, including group behaviour, in the 
dataset. In the first procedure, variables without enough prediction ability are filtered out. 
In the second procedure, variables with sufficient relative importance are selected. Finally, 
the number of neurons is determined according to the average displacement error (ADE) of 
the prediction model, as shown in Fig. 8.

(5)F(n) = (vl − vp)∕d.

Fig. 7   Relationship between a leader and a specific pedestrian
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In the first procedure, the ability of each candidate variable to predict the walking 
behaviour is determined. For this purpose, a neural network model is estimated that uses 
only one candidate variable as the input at a time. The prediction ability of every input 
variable is evaluated by R-square, which indicates the prediction ability (Tan et al. 2002) 
and can be used for both linear and non-linear models (Ržazanskasa et al. 2017; Elmchichi 
et al. 2020). The R-square is defined as

where y denote ground truth, y is the mean value of ground truth, and ŷ means the pre-
dicted value. The R-square closer to 1 indicates better prediction ability. The R-square 
between the prediction result and ground truth in the testing process is accordingly used 
to filter the variables with sufficient prediction ability. This procedure involves three steps.

In step 1, the R-square between the prediction result of every variable as input and the 
ground truth is calculated repeatedly for a fixed number of hidden neurons (n). Accordingly, 
the mean value of all the previous repetitions is calculated and recorded. Therefore, the results 
of ‘step n’ comprise two sets, namely, the mean value of all repetitions up to that attempt in 
and excluding the current repetition. If the margin of error in the 95% confidence interval of 
both sets is less than 0.0001 or the number of repetitions exceeds 999, the repetition will ter-
minate and the median R-square of all repetitions will be recorded as Rxn and Ryn . In step 2, 
the process of step 1 repeats with hidden neurons from 1 to 9 for all models, and the median 
value of Rxn and Ryn will be, respectively, selected as Rx and Ry. In step 3, in order to get a 
comprehensive input variable group, even variables with weak prediction ability should be 
included in the model. The R-square above 0 can indicate that a specific variable has predic-
tion ability (Barten 1987). However, due to the randomness of the neural network model, the 
R-square of variables without prediction ability will fluctuate around 0. Therefore, setting 0 
as the threshold will not be able to filter out some variables without prediction ability and 
obtain a stable candidate set. Then, a threshold that can keep a large number of variables with 

(6)R2 =

∑
(y − y)2 −

∑
(y − ŷ)2

∑
(y − y)2

,

Fig. 8   Process of variable selection
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prediction ability and filter out variables with R-square fluctuating around 0 to obtain a stable 
candidate set should be used. In this study, variables with R-square larger than 0.003 in Rx or 
Ry are selected for inclusion in the candidate set.

In the second procedure, the neural network model is estimated with all the selected vari-
ables as inputs, and the relative importance of every input variable is calculated. As a non-
linear model, determining the relative importance of variables is more difficult than in linear 
regression models, and Garson’s method is used in this study, because it was proved that the 
neural network can identify the most influential input variables from a given variable list by 
Garson’s method (Garson 1991), and recently, the reliability of Garson’s method in the vari-
able selection process of three-layer neural network is verified to be better than other widely 
used methods, such as correlation method and principal component analysis (Papatheocharous 
and Andreou 2010; Fischer 2015; Yousefi et al. 2018; Liu et al. 2018). According to Garson’s 
method (Garson 1991), for a neural network model with N neurons in the input layer and L 
neurons in the hidden layer, the relative importance of the ith input variable to the kth output 
variable ( Iik ) can be defined as

where �ij is the weight of the ith neuron in the input layer and jth neuron in the hidden 
layer, and �jk is the weight of the jth neuron in the hidden layer and kth neuron in the output 
layer. Variables with sufficient relative importance will be selected for inclusion in the neu-
ral network model. This procedure involves three steps.

In step 1, the relative importance of every input variable is calculated by Garson’s method 
in the prediction model with 1–9 hidden neurons (n), and the mean value is recorded as the 
relative importance in this step. In step 2, because the relative importance calculated by Gar-
son’s method can reach a stable trend with 999 repetitions (Olden and Jackson 2002), the pro-
cess followed in step 1 is repeated 999 times, and the mean value of the relative importance in 
all the previous repetitions is calculated and recorded as I. In step 3, steps 1 and 2 are repeated 
until the value of I for every input variable is larger than a certain threshold. Because a high 
threshold can simplify the model, and a low threshold can ensure the higher prediction accu-
racy, in order to exclude less influential values and maintain a sufficiently comprehensive set 
of input variables, the threshold is set to 0.03. If the value of I for an input is less than 0.03, the 
input with the least I will be deleted, and the updated set of the remaining variables will be the 
input in the next repetition of steps 1 and 2. The variables remaining after all repetitions are 
the set of candidate input variables.

At the end of the variable selection process, the ADE of the neural network model featur-
ing the selected variables as input is calculated repeatedly with a fixed number of hidden neu-
rons (n), and every repetition is recorded. For all N pedestrians appearing from tsta to tfin , the 
ADE of each repetition is calculated as

where Pi,t
x

 and Pi,t
y

 denote the predicted movement along the x-axis and y-axis, respectively, 
of the ith pedestrian during the next 0.5 s from time t, and Gi,t

x
 and Gi,t

y
 are the correspond-

ing ground truths. The mean ADE of all the previous repetitions is calculated and recorded. 

(7)Iik =

∑L

j=1

�����ij�jk
���∕

∑N

r=1

����rj
���
�

∑N

r=1

∑L

j=1

�����ij�jk
���∕

∑N

r=1

����rj
���
� ,

(8)ADE =

N∑

i=1

tfin∑

t=tsta

√
(Pi,t

x − G
i,t
x )

2 + (Pi,t
y − G

i,t
y )

2

N(tfin − tsta)
,
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With more than 1999 repetitions, the variation of ADE with the increase of hidden neurons 
will reach a stable trend, and a U-shape characteristic can be observed, so if the number of 
repetitions exceeds 1999, the repetition will terminate, and the mean ADE of all the repeti-
tions for n neurons in the hidden layer will be recorded as An . The effectiveness is tested 
with the number of hidden neurons ranging from 1 to 70, and the number of neurons at 
which the movement is predicted with the best accuracy is selected as the number of neu-
rons in the hidden layer.

Parameter analysis

After determining the input variables, output variables, and number of neurons in the hid-
den layer, the actual structure of the neural network model is determined. Garson’s method 
is capable of quantifying the relative importance and select variables (Papatheocharous and 
Andreou 2010; Fischer 2015; Yousefi et  al. 2018; Liu et  al. 2018). Other methods such 
as Olden’s method and SHapley Additive exPlanations (SHAP) values can quantify the 
intensity and direction of each input variable’s contribution to each output variable (Olden 
and Jackson 2002; Lundberg and Lee 2017), which is helpful to understand the relationship 
between each input and output variable in the model. Since both Olden’s method and Gar-
son’s method are weight-based methods, if Olden’s method is used, comparing the relative 
importance and contribution can show the role of specific variables in the structure of neu-
ral network. For a neural network model with N neurons in the input layer and L neurons 
in the hidden layer, the contribution of the ith input variable to the kth output variable ( Cik ) 
can be defined as

where �ij is the weight of the ith neuron in the input layer and jth neuron in the hidden 
layer, and �jk is the weight of the jth neuron in the hidden layer and kth neuron in the output 
layer. Cx and Cy are the contributions of each input variable to Nx and Ny, respectively. The 
magnitude indicates the strength of contribution and the sign shows the direction of con-
tribution. The group of input variables will not be further changed by the result of Cx and 
Cy in this step, so no threshold is specified for Cx and Cy. In this study, the five variables 
that have the largest magnitude of contribution to Nx and Ny are selected as the variables 
that contribute significantly to the prediction of Nx and Ny respectively. Olden’s method can 
also reach a stable trend with 999 repetitions (Olden and Jackson 2002), so the final neural 
network runs 999 repetitions using random initial weights. To evaluate the performance of 
the final model, the average of R-square, ADE, relative importance and contribution will 
be calculated.

Case study

Description of the site

The area chosen for case study is a busy commercial district near the Flood Control Vic-
tory monument at the Harbin Central Street, China, as shown in Fig. 9. This district is a 
pedestrian-only space, and the area of interest in this study is 59 m long and 9 m wide. 

(9)Cik =

L∑

j=1

�ij�jk,
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This region contains six dominant starting points and destinations: (1) left side, (2) slopes 
and steps below, (3) right side, (4) entrance of a shopping mall, and (5 + 6) two restaurant 
entrances. Except for the left and right sides, this area is surrounded by building facades, 
handrails, steps, and slopes, which form the borders of this area.

Using an unmanned aerial vehicle (UAV), a video of length 10 min was recorded on 
Saturday, September 1, 2018, which was a pleasant sunny day to visit this area. The cam-
era captured the video at a resolution of 2720 × 1536 pixels and frame rate of 24 fps, and 
was attached to a DJI Mavic Pro light UAV weighing 743 g. The flying height of the UAV 
was 90 m, which was sufficiently high to observe both ends of the area of interest and suf-
ficiently low to be able to clearly recognise pedestrian movements.

In the 10 min video, 1565 pedestrians appeared in the region of interest. In this study, 
pedestrians who are obviously smaller than other pedestrians are regarded as children and 
pedestrians on crutches and wheelchairs are regarded as needing other people’s assistance 
in walking. Consequently, most people could walk and choose their route independently 
with only a few children and pedestrians who need other people’s assistance in walking. 
During the video-recording period, all the pedestrians walked calmly without exhibiting 
any abnormal behaviour.

Identification of social groups

As the present study considers the walking behaviour of members in social groups, pedes-
trians having an abnormal average walking speed (less than 0.5  m/s) are ignored. The 
grouping process can be divided into two stages. By means of a set of heuristics, pedestri-
ans that have similar trajectories are identified in the first stage. Then, in the second stage, 
the results of the first stage are reviewed manually, and the social groups are identified.

The first stage consisted of six steps performed automatically by a program, as shown 
in Fig. 10; five of these steps relate to the criteria used to determine the similarity between 
pedestrians, and the remaining step relates to identifying possible groups based on the 
result of the similarity analysis. In the first five steps, the trajectory of every pedestrian is 
compared with that of all the other pedestrians who appear in the camera image simultane-
ously. Any pair that meets all the criteria is regarded as being part of the same group. First, 
among the six predetermined starting points in the area of interest, as shown in Fig.  9, 
pedestrians sharing the same starting point as the specific pedestrian being analysed are 
selected and moved to the next step. Similarly, pedestrians having the same destination are 
identified in the second step. Accordingly, the distance between these pairs of pedestrians 

Fig. 9   Representation of a scene from the case-study area
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in the entire trajectory is calculated. The criterion for relationship is met if the mean value 
of the distance is less than 1.5 m (Li et al. 2015). The fourth step considers the difference in 
speed; a pair is retained if the mean value of the speed difference between these two pedes-
trians is less than 0.5 m/s (Li et al. 2015). The last step of determining the relationship is 
based on the difference in the walking direction; a pair is considered to be related if the 
mean value is less than 25° (Li et al. 2015). The sixth step is to identify all the members of 
a group. In this step, all pairs with a relationship are first regarded as a two-person group. 
If Pedestrian a in Group A is related to Pedestrian b in Group B , Group A and Group B are 
combined, and both the original groups are deleted. The initial groups are combined step-
by-step until none of these groups can be combined further.

In the second stage, members excluded from the social groups in the previous step are 
added to the group, and irregular groups are disregarded. There is one criterion for add-
ing pedestrians to a group and three criteria for neglecting a group. The pedestrians or 
groups that have apparent interactions with anyone in a predetermined group (e.g. touch-
ing, waiting, turning body to talk) in the video are added to that group. In this study, three 
types of behaviours are treated as irregular. First, certain factors such as a food stand or 
dustbin attract specific pedestrians; it is difficult to incorporate this in a model that consid-
ers all pedestrians. Therefore, groups attracted by these factors are disregarded. Second, 
the groups with children are disregarded because children tend to behave more casually 
than adults, and their movements influence the movement of other individuals in the group. 
Third, the groups stopping to find their way or walking back after reaching the intended 
destination are disregarded. In such conditions, the deceleration or return is not induced 
by the factors considered in this research. The grouping result is achieved by considering 
these manual adjustments. In this stage, 58 groups added new members because of interac-
tions observed, and 48 irregular groups were disregarded.

Fig. 10   Automatic identification of social groups by a program
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Trajectory extraction and grouping

The UAV captured the video featuring images of 2720 × 1536 pixels. Because the pan-
tilt camera can prevent video shaking, the averaged measurement error in every time 
interval (0.5 s) is diminished to 0.0173 m. The video analysis software ‘Tracker’, which 
is a program built on an open-source Physics Java framework, was used to derive the 
trajectories of all pedestrians within the study area from the video recordings. The ori-
gin of the coordinate system, the positive direction of the x-axis, and the unit length can 
be fixed on the unchanged background in the video (the building facade in this study), 
which can further reduce the averaged measurement error. Combined with the unit 
length in the video, this study applies perspective transformation to convert the data to 
GPS level. Owing to the high altitude of the UAV and the low number of pixels per indi-
vidual, the movements of the upper body were part of the captured trajectories. After 
performing the semi-automatic tracking procedure, the tracking errors produced by the 
software were corrected manually by visual inspection.

Most pedestrians were part of various social groups in the video; the grouping condi-
tion is shown in Fig. 11. There were 805 pedestrians walking normally in social groups, 
which incorporated 34,005 data points that can be used for training and testing. The 
largest group observed in the video consisted of 6 people, and most of the pedestrians 
belonged to groups with 2 or 3 people, accounting for 50% and 30% of all pedestrians, 
respectively; this result corresponds to the result of James (1953). The remaining groups 
consisted of pedestrians walking individually, pedestrians moving slowly (at less than 
0.5 m/s), and members in the groups demonstrating behaviour triggered by factors that 
are not considered in this study, such as those attracted by other factors or those who 
had lost their way. Members in social groups ought to walk together; however, some 
larger groups split into sub-groups when the pedestrian density nearby was high and 
reunited after passing the crowded area. Although social groups may split, their mem-
bers are more likely to walk together within a certain range of distance.

Fig. 11   Number of groups in 
different group sizes
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Results

In the first procedure, the R-square of 18 variables are larger than 0.003 and considered as 
having strong prediction ability in this study. After the second procedure, 16 variables are 
found to influence the acceleration of pedestrians that are part of social groups when all 
variables having strong prediction ability are used as input variables. The relative impor-
tance (I) and contribution (Cx and Cy) of these 16 variables in the final model are shown 
in Table 1. These variables feature the current movement characteristics, pedestrian–envi-
ronment interactions, inter-personal interactions, intra-group relationships, and inter-group 
variables. The influence of the variables included in each group is discussed per group.

Using these 16 variables as inputs, the mean ADE of the training and testing process 
of 1–70 neurons in the hidden layer is shown in Fig. 12. In general, the training accuracy 
increases with increase in the number of neurons in the hidden layer. Furthermore, the pre-
diction accuracy increases with increase in the number of neurons in the hidden layer when 
the number is not large; however, after a threshold, the ADE increases because of over-
fitting. Therefore, the neural network featured 17 neurons in the hidden layer, which can 
exhibit the best prediction accuracy.

Movement characteristics

This group of variables consists of four variables, namely, current velocity (V), angle 
between the current movement direction and target direction (D), acceleration along the 
x-axis (Ax), and acceleration along the y-axis (Ay). Table  2 shows the result of the first 
variable selection procedure, which is the R-square between the prediction result of each 
variable and the ground truth of acceleration along the x-axis and y-axis. The prediction 
results of V, D, Ax, and Ay are strongly correlated with acceleration along the x-axis (Nx). 

Table 1   Relative importance 
of all input variables, where I 
represents relative importance, 
Cx represents the contribution 
to Nx, and Cy represents the 
contribution to Ny

Variables I Cx Cy

V 0.1377 − 1.0525 0.0044
D 0.2023 0.2487 0.8056
Ax 0.2724 0.3180 − 0.0273
Ay 0.3197 − 0.0280 1.6436
B
0,30

d
0.1017 0.1928 − 0.0204

B
30,60

d
0.1352 0.1503 0.2502

B
60,90

d
0.1581 − 0.2976 − 0.0554

B
90,120

d
0.1162 0.0839 − 0.1110

T
0,30
s

0.0656 − 0.0453 − 0.1510

T
0,30

d
0.0742 − 0.0243 − 0.4749

T
30,60

d
0.0398 0.0261 − 0.1696

Go 0.0657 0.1716 0.1793
Ga 0.0434 − 0.0273 0.3694
Gx 0.0875 0.1718 − 0.0439
Gy 0.1204 0.0326 − 0.0179
L
0,15
s

0.0601 0.0610 − 0.0728
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Moreover, the prediction results of D and Ay are correlated with the acceleration along the 
y-axis (Ny).

In the second variable selection procedure, all the four variables are incorporated in 
the final model, as shown in Table 1. The fact that V, Ax, and Ay are incorporated in the 

Fig. 12   Average displacement error in the training and testing process with 1–70 neurons in the hidden 
layer

Table 2   R-square between 
prediction results using a single 
variable describing movement 
characteristics as input and the 
ground truth of the testing data

Variables Rx Ry

V 0.0084 0.0000
D 0.0031 0.1288
Ax 0.1867 − 0.0007
Ay 0.0115 0.2015
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prediction model shows that the walking condition in the past 0.5  s strongly influences 
the movement during the next 0.5 s. The negative contribution from V to Nx indicates that 
pedestrians attempt to maintain their walking speed within a desirable range. Both the con-
tributions of Ax to Nx and Ay to Ny are positive, indicating that pedestrians follow a simi-
lar turning trend as adopted in the previous time interval. The contribution of D to Ny is 
positive, indicating that pedestrians try to walk in a similar direction to the destination. Ny 
is not correlated with V, which could be because fast-walking pedestrians make smaller 
directional changes (Duives et al. 2017); however, a small change in the walking direction 
induces a large Ny. The correlation between acceleration and V and D is consistent with 
previous research results (Helbing and Molnár 1995; Zanlungo et al. 2014), and this study 
validates a continuous trend of acceleration.

Pedestrian–environment interaction

Of the 12 variables describing the pedestrian–environment interaction, B0,30

d
 , B30,60

d
 , B60,90

d
 , 

and B90,120

d
 are found to be correlated with Ny in the first procedure, as shown in Table 3. 

This finding implies that obstacles in the visible area have a strong influence on the varia-
tion of walking dynamics.

In the final model, all the four variables are incorporated, as shown in Table 1. B30,60

d
 , 

B
60,90

d
 , and B90,120

d
 contribute more to Ny than B0,30

d
 , which can be caused by the infrequent 

occurrence of walls on pedestrian routes. The contribution of B30,60

d
 is positive, which can 

be the result of the guiding effect of the wall. A previous study found that pedestrians tend 
to walk along walls to get a smooth path (Lee 2015). The negative effects of B60,90

d
 and 

B
90,120

d
 ensure a safe distance between pedestrians and walls. If the specific pedestrian no 

longer walks along the wall, resulting in the wall exceeding 30°–60°, the repulsive force of 
the wall will be the dominant factor. This finding validates the guiding effect found by Lee 
(2015) and the repulsive force found by Johansson et al. (2007), which are combined in the 
neural network model.

Inter‑personal interaction

The neural network model includes the time to an upcoming inter-pedestrian collision and 
the distance to surrounding pedestrians. In the first procedure, T0,30

s
 and T0,30

d
 are found to 

be correlated with Nx, and T0,30

d
 , T30,60

d
 , D90,120

d
 and D120,150

d
 are correlated with Ny, as shown 

in Table 4.
T0,30
s

 , T0,30

d
 , and T30,60

d
 are incorporated in the prediction model, as shown in Table 1. In 

the prediction model, the Cx of T0,30
s

 is negative. This correlation shows that face-to-face 
collisions decrease the walking speed. The influence of T0,30

d
 on Nx is also negative but 

weaker than that of T0,30
s

—this indicates that the deceleration will be more apparent for 

Table 3   R-square between 
prediction results using a single 
variable describing pedestrian–
environment interaction as input 
and the ground truth of the 
testing data

Variables Rx Ry

B
0,30

d
− 0.0004 0.0169

B
30,60

d
− 0.0005 0.0116

B
60,90

d
− 0.0004 0.0069

B
90,120

d
− 0.0004 0.0044



Transportation	

1 3

collisions approaching from the left. This result may be caused by the fact that most pedes-
trians walk on the right side, resulting in less space to evade collisions from the left. For 
Ny, the Cy of both T0,30

d
 and T30,60

d
 is negative, and the Cy of T0,30

d
 is stronger. These correla-

tions show that in face-to-face collisions, pedestrians turn in the opposite direction to evade 
the collision, and the collision nearer to the current walking path causes a larger impact. It 
can also be found that in the final model, the Cy of T0,30

s
 is negative. This can be attributed 

to the phenomenon that in face-to-face collision, pedestrians are more prone to turn right to 
avoid, which is consistent with the previously found right-hand behaviour (Moussaïd et al. 
2009). The relative importance of the time to collision and the distance of collision is com-
pared in this study. The exclusion of D90,120

d
 and D120,150

d
 shows that pedestrians are more 

sensitive to the time to collision than the distance to surrounding pedestrians.

Intra‑group relationship

Five variables in the neural network model describe intra-group relationships, namely, 
group size ( Gs ), longitudinal distance (Go), lateral distance (Ga), difference in speed along 
the x-axis (Gx), and difference in speed along the y-axis (Gy). Go, Ga, Gx, and Gy are 
selected in the first procedure, and the result is presented in Table 5.

All four variables are incorporated in the final model, as shown in Table 1. The Cx of Go 
and Gx is stronger, and the Cy of Go and Ga are stronger. The Cx of Go and Cy of Ga are pos-
itive. These two correlations indicate cohesion in social groups, which causes pedestrians 
to maintain proximity with their group members. The Cx of Gx is also positive—this indi-
cates velocity coordination, wherein pedestrians in the same social group attempt to main-
tain a similar walking speed as their fellow group members. The contribution from Gy is 
slightly different from the finding of velocity coordination proposed by Qiu and Hu (2010). 
The less obvious contribution and large relative importance of Gy can be caused by the 
complex influence of Gy in this study. In some cases, the affected pedestrians react before 
their group members; Under other influences, their team members react first. Although the 
influence of Gy is important, it depends on the conditions described by other variables.

Table 4   R-square between 
prediction results using a single 
variable describing inter-personal 
interaction as input and the 
ground truth of the testing data

Variables Rx Ry

T
0,30
s

0.0097 − 0.0001

T
0,30

d
0.0067 0.0085

T
30,60

d
− 0.0003 0.0059

D
90,120

d
− 0.0005 0.0124

D
120,150

d
− 0.0006 0.0069

Table 5   R-square between 
prediction results using a single 
variable describing intra-group 
relationship as input and the 
ground truth of the testing data

Variables Rx Ry

Go 0.0086 − 0.0003
Ga − 0.0008 0.0113
Gx 0.0283 − 0.0009
Gy − 0.0003 0.0443
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Inter‑group relationship

Six variables describe the leader–following behaviour, and the prediction result of L0,15
s

 is 
found to be correlated with Nx, as shown in Table 6. L0,15

s
 is incorporated in the final model. 

The Cx of L0,15
s

 is positive, indicating that pedestrians accelerate and decelerate according 
to the leader, and the leaders near the current walking path have a significant influence. The 
effect of this influencing factor is similar to that of Robin et al. (2009), and this study fur-
ther defines the dominant scope of pedestrian impact.

Neural network model

The final neural network model contains 16 input variables, namely, V, D, Ax, Ay, B
0,30

d
 , 

B
30,60

d
 , B60,90

d
 , B90,120

d
 , T0,30

s
 , T0,30

d
 , T30,60

d
 , Go, Ga, Gx, Gy, and L0,15

s
 . To further validate the 

effectiveness of our neural network model, the prediction performance with the same data-
sets of state-of-the-art models, namely, a discrete model (Robin et al. 2009), the SF model 
(Zanlungo et al. 2014), and the Social LSTM model (Alahi et al. 2016), is compared with 
that of our neural network model. The dataset is separated into the first five minutes and 
last five minutes. For the LSTM model and our neural network model, the first half is used 
for training, and the second half is used for testing. The discrete model and SF model pre-
dict the second half. Because Social LSTM model predicts for 12 steps, in order to have an 
objective comparison between methods, every model predicts for 12 steps.

The average displacement error (ADE) and final displacement error (FDE) in the pre-
diction of 12 steps (6 s) are listed in Table 7. FDE is calculated as the distance between 
the predicted final destination and the true final destination at end of the prediction period 
(Alahi et al. 2016). The prediction accuracy decreases with the increase of prediction steps, 
so the ADE of predicting 12 steps is significantly larger than that of predicting 1 step.

The results conform to the finding that data-based methods show better prediction accu-
racy (Kothari et al. 2020). Our proposed neural network model achieves a better predic-
tion accuracy than Social LSTM, which may be a result of our comprehensive set of input 
variables. Our model has four main advantages. First, the long-term goal of pedestrians is 
not included in Social LSTM. In our proposed neural network, the variable D describes 

Table 6   R-square between prediction results using a single variable describing inter-group relationship as 
input and the ground truth of the testing data

Variables Rx Ry

L
0,15
s

0.0036 − 0.0012

Table 7   Comparison of ADE and 
FDE of other methods with that 
of our neural network model

Models ADE FDE

Discrete model 1.0701 2.0132
SF model 1.4717 2.2984
Social LSTM 0.6326 1.3255
Our neural network 0.3559 0.6863
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the direction of destination of a specific pedestrian. Second, studies on human trajectory 
prediction can be categorized into the learning of human–human (social) interactions, 
human–space (physical) interactions, or both (Kothari et  al. 2020). Social LSTM learns 
human–human (social) interactions, and our proposed model learns both human–human 
(social) interactions and human–space (physical) interactions. Third, as a non-grid predic-
tion model, our proposed neural network model can incorporate distant influences on a 
specific pedestrian. Fourth, in our proposed model, the social groups are identified by both 
a program and observation, which can further improve the prediction accuracy.

The relative importance and contribution in the final model are presented in Table 1. In 
the neural network model, the five most important input variables are Ay, Ax, D, B60,90

d
 and 

V. This shows that the current walking condition has the greatest impact on the walking 
dynamics. V, Ax, B

60,90

d
 , D, and B0,30

d
 are the most influential factors in the prediction of Nx, 

and Ay, D, T0,30

d
 , Ga, and B30,60

d
 have the largest contribution to Ny.

The ADE of the final model to predict the next time step is slightly lower than 0.0370, 
and the R-square of predicting the variation of speed in x-axis and y-axis are 0.3161 and 
0.4048 respectively. Furthermore, the input variable groups are excluded from the neural 
network in individual succession to calculate the ADE of prediction result with the remain-
ing variables, as shown in Table 8. When the movement characteristics group is excluded 
from the input variables, the ADE of the prediction result is largest; the ADE is second-
largest when the intra-group relationship group is excluded. Previous studies focused on 
building models with better prediction accuracy, and the relative importance of different 
variables in a comprehensive model is not directly compared. The results of this study 
are consistent with previous studies, that is, the model incorporating group behaviour can 
improve the prediction accuracy (Moussaïd et al. 2010; Bisagno et al. 2019). Furthermore, 
by comparing the importance of group behaviour with other variables, this study verifies 
the importance of group behaviour in the comprehensive model, and found that movement 
characteristics and intra-group relationship are the most effective of all input variables.

Conclusion

Although attempts have been made by some researchers to incorporate group dynam-
ics into microscopic pedestrian models, the principle of interaction within social groups 
remains unclear. This study proposed a neural network model that can clarify the relative 
importance and contribution of each influential factor on the prediction of walking dynam-
ics of pedestrians in social groups.

This study presented a three-step method to determine a neural network model for 
pedestrian walking dynamics. The first two steps aim to select the input variables, and the 
third step determines the number of neurons in the hidden layer. Because the movement of 

Table 8   ADE of our neural 
network, obtained by excluding 
input variable groups in 
individual succession

Excluded group ADE

Movement condition 0.0442
Pedestrian–environment 0.0370
Inter-pedestrian 0.0373
Intra-group 0.0382
Inter-group 0.0371
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pedestrians is two-dimensional (x-axis and y-axis in the coordinate system), an input vari-
able that is correlated with the prediction of the walking dynamics in any axis is selected 
in the first step. In the second step, all the variables selected in the first step are input varia-
bles, and those determined as insensitive in the prediction model are sequentially excluded 
using Garson’s method, until all the variables are sufficiently sensitive to be incorporated 
in the final model. In the third step, the ADE of the prediction model with an increasing 
number of neurons in the hidden layer is calculated, and the number of neurons yielding 
the best prediction accuracy is selected.

It is found that the movement dynamics of pedestrians in social groups is influenced by 
the group members. Both cohesion and velocity coordination in social groups are influen-
tial factors making non-negligible contributions to the variation in the current velocity. In 
this study, the factor with the strongest influence on the walking dynamics was velocity 
coordination, which is related to group behaviour. Pedestrians tend to maintain a similar 
speed as their group members along the x-axis, but the velocity coordination along the 
y-axis is complex and depends on the specific conditions. The cohesion in social groups 
influences the members of the group, whereby they strive to remain close to the centre of 
their group. Consequently, pedestrians change their velocity to maintain proximity to the 
centre. In this study, the influence of cohesion and velocity coordination was validated, and 
the weight of the influence of group dynamics was quantified.

The same type of parameter can exhibit different types of influence on the variation in 
walking dynamics, and some influences can even be contrary, as observed in the pedes-
trian–environment interaction in this study. Obstacles are generally considered a type of 
repulsion, and the strength of repulsion corresponds to the distance and angle with respect 
to the pedestrian. In this study, it was found that the force from obstacles within the range 
of 60°–120° diverts the pedestrians to the opposite direction; however, in the case of obsta-
cles within the range of 30°–60°, the boundary of the area attracts the pedestrians. Conse-
quently, some correlations cannot be simply regarded as attraction or repulsion, because 
the influence can be more complex.

For pedestrians in social groups, the time to collision shows a greater contribution than 
the distance to surrounding pedestrians, which has been extensively considered in previous 
models. This group of variables incorporates all types of collisions, including colliding 
pedestrians in the same and opposite directions. Therefore, the influences of both surpass-
ing behaviour and avoidance behaviour can be incorporated to find the correlation with 
variation in the original walking dynamics. The strength and category of influence are 
determined by the time remaining for an upcoming collision and the direction from which 
the collider approaches.

Applications and future work

This study investigated a comprehensive neural network model to predict pedestrian move-
ments in social groups. This study is important in the design of urban spaces, especially 
spaces intended for commercial or entertainment activities. Previous models mainly con-
sidered the parameters influencing individual behaviour. However, pedestrians in these 
spaces are more liable to be in social groups, where their behaviour is very different from 
those of individual pedestrians. Because the constitution of different sizes of social groups 
is related to the activities in which the pedestrians participate, the positions of bottleneck 
areas, crowd distribution, and pedestrian capacity are influenced by the function of the 
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space. Being aware of the properties of the space to be designed, rather than simply imag-
ining the use of the space, can enable designers to incorporate the environmental settings 
and group composition of that space into our neural network model to predict the use of the 
space and identify bottlenecks or void areas before completing the project. Furthermore, 
changes in the ownership or characteristics of a specific area cause a corresponding change 
in the amount and percentage of social groups in the area. This model can also be used to 
evaluate the influence of renovation design on pedestrian walking dynamics and ensure 
that the renovated space is suitable for its new function.

In this study, the importance of including group behaviour was examined. Group 
dynamics has been studied by several researchers, all of whom have proposed the idea 
that group dynamics is important in crowd dynamics. However, its relative importance in 
comparison with other types of influences has not been quantified. In this study, it was 
found that the inclusion of intra-group relationship is highly important, except in the cur-
rent walking condition. Future studies that aim to optimise existing models such as the SF 
model, Markov model, and LSTM model should consider the relative speed and position of 
a specific pedestrian moving in a social group to predict the movement dynamics of pedes-
trians in real life, and their influences should be incorporated.

Group behaviour and many other factors could potentially influence the walking dynam-
ics of pedestrians. Therefore, a variety of input variables can be added synchronously in a 
comprehensive prediction model, which causes the model to contain useless information 
and increases the model complexity significantly, especially in the case of models such 
as the Markov or LSTM model. Selecting a part of the variables before determining the 
final group of input variables is important in the first step. It is also meaningful to test the 
relative importance of a specific parameter before adding it to the SF model. Many exist-
ing models require assumptions to be made by the modeller (Cheng et al. 2014); however, 
determining whether these parameters are influential and crucial is difficult. This study 
provides a method to select variables that are most influential in walking dynamics predic-
tion models. Therefore, this study makes a fundamental contribution to the selection of 
influencing factors and the quantification of the influence to simplify the input variables 
and identify non-negligible influences.

In the future, the model can be further improved in the following aspects. First, the 
input variables can be made flexible; that is, if additional influential factors are found to be 
important, the model should allow these factors to be added into the input variable group 
to test if they can further improve the accuracy. Second, other methods could also be effec-
tive in the variable selection process, such as SHAP values. If new methods are sufficiently 
verified to be effective in variable selection of other machine learning models, such as 
neural network with multiple hidden layers and LSTM model, different variable selection 
processes and models can be compared to further improve the prediction accuracy. Third, 
because different kinds of interaction in social groups caused by the group members’ gen-
der, age, and relationship can affect the influence of social groups, the group dynamics in a 
specific kind of space can have some unique features. In addition, other factors such as sur-
rounding density and time of day can also influence group dynamics, and the focus of this 
study is the calm walking mode. The multinomial logit model can be further improved by 
training the neural network based on experiments in other spaces and conditions. Fourth, 
further research can use our neural network model to predict the pedestrian distribution in 
typical urban environment, and provide planners with more generic and concrete design 
strategies, such as in the form of tables. Fifth, the video used in this study was shot from 
the top, which is suitable for tracking pedestrians; to further improve the prediction accu-
racy, another camera can be used to capture and add other information to the model. On 
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one hand, the step frequency is unobservable, making the variation caused by pedestrian 
locomotion modes with steps unquantifiable. The effects of the swing of the body can be 
eliminated by adding a video that can observe the step frequency. On the other hand, the 
trajectories of pedestrians are at least 9 m, and the average density is only 0.1938 p/m2, 
making it feasible to identify social groups because, under the influence of the territory 
effect, most pedestrians do not stay and walk together throughout the trajectory if they are 
not from the same social group (Helbing and Molnár 1995). However, it still cannot be 
ensured that all social groups are identified without errors. Thus, future attempts should 
add another video to record visual hints such as talking and appearance to further improve 
the accuracy of identifying social groups.

Acknowledgements  The authors would like to thank Ying Liu, Yan Feng, Junfeng Fu, and Yongjie Pan for 
their assistance in conducting this research.

Authors’ contribution  SS: conceptualization, data curation, formal analysis, methodology, software, roles/
writing—original draft. CS: conceptualization, data curation, supervision, writing—review and editing. 
DCD: conceptualization, formal analysis, methodology, software, roles/writing—original draft. SPH: con-
ceptualization, supervision, writing—review and editing.

Funding  This work was supported by the China Scholarship Council [Grant Number 201806120266]; the 
research program ’Allegro: Unravelling slow mode travelling and traffic: with innovative data to a new 
transportation and traffic theory for pedestrians and bicycles’ [ERC Grant Agreement No. 669792]; and the 
National Natural Science Foundation of China [Grant Number 51878202].

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author states that there is no conflict of inter-
est.

References

Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Li, F., Savarese, S.: Social LSTM: Human trajectory 
prediction in crowded spaces. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), pp. 961–971 (2016). https://​doi.​org/​10.​1109/​CVPR.​2016.​110

Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across multiple 
users. Pers. Ubiquitous Comput. 7, 275–286 (2003). https://​doi.​org/​10.​1007/​s00779-​003-​0240-0

Bakeman, R., Beck, S.: The size of informal groups in public. Environ. Behav. 6, 378–390 (1974). https://​
doi.​org/​10.​1177/​00139​16574​00600​305

Barten, A.P.: The Coefficient of Determination for Regression Without a Constant Term, pp. 181–189. 
Springer, Dordrecht (1987). https://​doi.​org/​10.​1007/​978-​94-​009-​3591-4_​12

Bartoli, F., Lisanti, G., Ballan, L., Bimbo, A.: Context-aware trajectory prediction. In: 2018 24th Interna-
tional Conference on Pattern Recognition (ICPR), pp. 1941–1946 (2018). https://​doi.​org/​10.​1109/​
ICPR.​2018.​85454​47

Bisagno, N., Zhang, B., Conci, N.: Group LSTM: group trajectory prediction in crowded scenarios. In: 
Computer Vision—ECCV 2018 Workshops, vol 11131, pp. 213–225 (2019). https://​doi.​org/​10.​1007/​
978-3-​030-​11015-4_​18

Burkert, F., Bamler, R.: Graph-based analysis of pedestrian interactions and events using hidden Markov 
models. Photogrammetrie - Fernerkundung - Geoinf. 2012, 701–710 (2012). https://​doi.​org/​10.​1127/​
1432-​8364/​2012/​0150

Chella, A., Frixione, M., Gaglio, S.: Understanding dynamic scenes. Artif. Intell. 123, 89–132 (2000). 
https://​doi.​org/​10.​1016/​S0004-​3702(00)​00048-5

Cheng, L., Yarlagadda, R., Fookes, C., Yarlagadda, P.K.D.V.: A review of pedestrian group dynamics and 
methodologies in modelling pedestrian group behaviours. World J. Mech. Eng. 1, 1–13 (2014)

Duives, D.C., Daamen, W., Hoogendoorn, S.P.: State-of-the-art crowd motion simulation models. Transp. 
Res. C Emerg. Technol. 37, 193–209 (2013). https://​doi.​org/​10.​1016/j.​trc.​2013.​02.​005

https://doi.org/10.1109/CVPR.2016.110
https://doi.org/10.1007/s00779-003-0240-0
https://doi.org/10.1177/001391657400600305
https://doi.org/10.1177/001391657400600305
https://doi.org/10.1007/978-94-009-3591-4_12
https://doi.org/10.1109/ICPR.2018.8545447
https://doi.org/10.1109/ICPR.2018.8545447
https://doi.org/10.1007/978-3-030-11015-4_18
https://doi.org/10.1007/978-3-030-11015-4_18
https://doi.org/10.1127/1432-8364/2012/0150
https://doi.org/10.1127/1432-8364/2012/0150
https://doi.org/10.1016/S0004-3702(00)00048-5
https://doi.org/10.1016/j.trc.2013.02.005


Transportation	

1 3

Duives, D.C., Daamen, W., Hoogendoorn, S.P.: Influence of group size and group composition on the 
adhered distance headway. Transp. Res. Procedia 2, 183–188 (2014). https://​doi.​org/​10.​1016/j.​trpro.​
2014.​09.​026

Duives, D.C., Daamen, W., Hoogendoorn, S.P.: Operational walking dynamics of crowds modeled with lin-
ear regression. Transp. Res. Rec. 2623, 90–97 (2017). https://​doi.​org/​10.​3141/​2623-​10

Elmchichi, L., Belhassan, A., Aouidate, A., Ghaleb, A., Lakhlifi, T., Bouachrine, M.: QSAR study of new 
compounds based on 1,2,4-triazole as potential anticancer agents. Phys. Chem. Res. 8(1), 125–137 
(2020). https://​doi.​org/​10.​22036/​PCR.​2019.​204753.​1685

Fajen, B.R., Warren, W.H.: Behavioral dynamics of steering, obstacle avoidance, and route selection. J. Exp. 
Psychol. Hum. Percept. Perform. 29, 343–362 (2003). https://​doi.​org/​10.​1037/​0096-​1523.​29.2.​343

Feng, Y., Li, D.: An empirical study and a conceptual model on heterogeneity of pedestrian social groups 
for friend-group and family-group. In: Proceedings of Pedestrian and Evacuation Dynamics 2016, pp. 
402–407 (2016)

Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Soft + hardwired attention: an LSTM framework for 
human trajectory prediction and abnormal event detection. Neural Netw. 108, 466–478 (2018). https://​
doi.​org/​10.​1016/j.​neunet.​2018.​09.​002

Fernando, T., Denman, S., Sridharan, S., Fookes, C.: GD-GAN: generative adversarial networks for trajec-
tory prediction and group detection in crowds. In: Computer Vision—ACCV 2018, vol. 11136, pp. 
314–330 (2019). https://​doi.​org/​10.​1007/​978-3-​030-​20887-5_​20

Festa, A., Tosin, A., Wolfram, M.T.: Kinetic description of collision avoidance in pedestrian crowds by side-
stepping. Kinet. Relat. Models 11, 491 (2018). https://​doi.​org/​10.​3934/​krm.​20180​22

Fischer, A.: How to determine the unique contributions of input-variables to the nonlinear regression func-
tion of a multilayer perceptron. Ecol. Model. 309–310, 60–63 (2015). https://​doi.​org/​10.​1016/j.​ecolm​
odel.​2015.​04.​015

Fu, Y., Li, M., Liang, J., Hu, X.: Modeling and simulating the walking behavior of small pedestrian groups. 
AsiaSim 474, 1–14 (2014). https://​doi.​org/​10.​1007/​978-3-​662-​45289-9_1

Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: Show me how you move and I will tell you who you 
are. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Security and Privacy in 
GIS and LBS, vol. 4, pp. 34–41 (2010). https://​doi.​org/​10.​1145/​18684​70.​18684​79

Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: Next place prediction using mobility Markov chains. In: 
Proceedings of the First Workshop on Measurement, Privacy, and Mobility, pp. 1–6 (2012). https://​doi.​
org/​10.​1145/​21811​96.​21811​99

Garson, G.D.: Interpreting neural-network connection weights. AI Expert 6, 46–51 (1991)
Ge, W., Collins, R.T., Ruback, R.B.: Vision-based analysis of small groups in pedestrian crowds. IEEE 

Trans. Pattern Anal. Mach. Intell. 34, 1003–1016 (2012). https://​doi.​org/​10.​1109/​TPAMI.​2011.​176
Heaton, J., McElwee, S., Fraley, J., Cannady, J.: Early stabilizing feature importance for tensorflow deep 

neural networks. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4618–4624 
(2017). https://​doi.​org/​10.​1109/​IJCNN.​2017.​79664​42

Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995). 
https://​doi.​org/​10.​1103/​PhysR​evE.​51.​4282

Helbing, D., Molnár, P., Farkas, I.J., Bolay, K.: Self-organizing pedestrian movement. Environ. Plan. B. 
Plan. Des. 28, 361–383 (2001). https://​doi.​org/​10.​1068/​b2697

James, J.: The distribution of free-forming small group size. Am. Sociol. Rev. 18, 569–570 (1953). https://​
doi.​org/​10.​2307/​20874​44

Johansson, A., Helbing, D., Shukla, P.K.: Specification of the social force pedestrian model by evolutionary 
adjustment to video tracking data. Adv. Complex Syst. 10, 271–288 (2007). https://​doi.​org/​10.​1142/​
S0219​52590​70013​55

Kiefer, A., Rio, K., Bonneaud, S., Walton, A., Warren, W.: Quantifying and modeling coordination and 
coherence in pedestrian groups. Front. Psychol. 8, 1–13 (2017). https://​doi.​org/​10.​3389/​fpsyg.​2017.​
00949

Koh, P.P., Wong, Y.D.: Influence of infrastructural compatibility factors on walking and cycling route 
choices. J. Environ. Psychol. 36, 202–213 (2013). https://​doi.​org/​10.​1016/j.​jenvp.​2013.​08.​001

Köster, G., Seitz, M., Treml, F., Hartmann, D., Klein, W.: On modelling the influence of group formations 
in a crowd. Contemp. Soc. Sci. 6, 397–414 (2011). https://​doi.​org/​10.​1080/​21582​041.​2011.​619867

Kothari, P., Kreiss, S., Alahi, A.: Human trajectory forecasting in crowds: a deep learning perspective, pp. 
1–33. arXiv:​2007.​03639 (2020)

Lakes, T., Müller, D., Krüger, C.: Cropland change in southern Romania: a comparison of logistic regres-
sions and artificial neural networks. Landsc. Ecol. 24, 1195–1206 (2009). https://​doi.​org/​10.​1007/​
s10980-​009-​9404-2

https://doi.org/10.1016/j.trpro.2014.09.026
https://doi.org/10.1016/j.trpro.2014.09.026
https://doi.org/10.3141/2623-10
https://doi.org/10.22036/PCR.2019.204753.1685
https://doi.org/10.1037/0096-1523.29.2.343
https://doi.org/10.1016/j.neunet.2018.09.002
https://doi.org/10.1016/j.neunet.2018.09.002
https://doi.org/10.1007/978-3-030-20887-5_20
https://doi.org/10.3934/krm.2018022
https://doi.org/10.1016/j.ecolmodel.2015.04.015
https://doi.org/10.1016/j.ecolmodel.2015.04.015
https://doi.org/10.1007/978-3-662-45289-9_1
https://doi.org/10.1145/1868470.1868479
https://doi.org/10.1145/2181196.2181199
https://doi.org/10.1145/2181196.2181199
https://doi.org/10.1109/TPAMI.2011.176
https://doi.org/10.1109/IJCNN.2017.7966442
https://doi.org/10.1103/PhysRevE.51.4282
https://doi.org/10.1068/b2697
https://doi.org/10.2307/2087444
https://doi.org/10.2307/2087444
https://doi.org/10.1142/S0219525907001355
https://doi.org/10.1142/S0219525907001355
https://doi.org/10.3389/fpsyg.2017.00949
https://doi.org/10.3389/fpsyg.2017.00949
https://doi.org/10.1016/j.jenvp.2013.08.001
https://doi.org/10.1080/21582041.2011.619867
http://arxiv.org/abs/2007.03639:1--33
https://doi.org/10.1007/s10980-009-9404-2
https://doi.org/10.1007/s10980-009-9404-2


	 Transportation

1 3

Lee, S.J.: Navigational pedestrian movement model with vision-driven agents. J. Asian Archit. Build. 
Eng. 14, 371–378 (2015). https://​doi.​org/​10.​3130/​jaabe.​14.​371

Li, X., Duan, P., Zheng, S., Li, B., Liu, M.: A study on the dynamic spatial-temporal trajectory features 
of pedestrian small group. In: 2015 2nd International Symposium on Dependable Computing and 
Internet of Things (DCIT), pp. 112–116 (2015). https://​doi.​org/​10.​1109/​DCIT.​2015.9

Liu, J., Boyle, L.N., Banerjee, A.G.: Predicting interstate motor carrier crash rate level using classifica-
tion models. Accid. Anal. Prev. 120, 211–218 (2018). https://​doi.​org/​10.​1016/j.​aap.​2018.​06.​005

Lu, L., Ren, G., Wang, W., Wang, Y.: Modeling walking behavior of pedestrian groups with floor field 
cellular automaton approach. Chin. Phys. B 23, 088901 (2014). https://​doi.​org/​10.​1088/​1674-​1056/​
23/8/​088901

Lu, L., Chan, C., Wang, J., Wang, W.: A study of pedestrian group behaviors in crowd evacuation based 
on an extended floor field cellular automaton model. Transp. Res. C Emerg. Technol. 81, 317–329 
(2017). https://​doi.​org/​10.​1016/j.​trc.​2016.​08.​018

Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: Advances in Neural 
Information Processing Systems, vol. 30, pp. 4765–4774 (2017)

Moussaïd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.: Experimental study 
of the behavioural mechanisms underlying self-organization in human crowds. Proc. R. Soc. B 
276(1668), 2755–2762 (2009). https://​doi.​org/​10.​1098/​rspb.​2009.​0405

Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian 
social groups and its impact on crowd dynamics. PLoS ONE 5, e10047 (2010). https://​doi.​org/​10.​
1371/​journ​al.​pone.​00100​47

Nascimento, J.C., Figueiredo, M.A.T., Marques, J.S.: Trajectory classification using switched dynami-
cal hidden Markov models. IEEE Trans. Image Process. 19, 1338–1348 (2010). https://​doi.​org/​10.​
1109/​TIP.​2009.​20396​64

Olden, J.D., Jackson, D.A.: Illuminating the “black box’’: a randomization approach for understanding 
variable contributions in artificial neural networks. Ecol. Model. 154, 135–150 (2002). https://​doi.​
org/​10.​1016/​S0304-​3800(02)​00064-9

Ottomanelli, M., Caggiani, L., Iannucci, G., Sassanelli, D.: An adaptive neuro-fuzzy inference system 
for simulation of pedestrians behaviour at unsignalized roadway crossings. Adv. Intell. Soft Com-
put. 75, 255–262 (2010). https://​doi.​org/​10.​1007/​978-3-​642-​11282-9_​27

Papatheocharous, E., Andreou, A.S.: On the problem of attribute selection for software cost estimation: 
input backward elimination using artificial neural networks. In: Artificial Intelligence Applications 
and Innovations, pp. 287–294 (2010)

Pfeiffer, M., Paolo, G., Sommer, H., Nieto, J., Siegwart, R., Cadena, C.: A data-driven model for inter-
action-aware pedestrian motion prediction in object cluttered environments. In: 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 5921–5928 (2018). https://​doi.​org/​10.​
1109/​ICRA.​2018.​84611​57

Qiu, F., Hu, X.: Modeling group structures in pedestrian crowd simulation. Simul. Model. Pract. Theory 
18, 190–205 (2010). https://​doi.​org/​10.​1016/j.​simpat.​2009.​10.​005

Qu, Y., Xiao, Y., Wua, J., Tang, T., Gao, Z.: Modeling detour behavior of pedestrian dynamics under dif-
ferent conditions. Physica A 492, 1153–1167 (2018). https://​doi.​org/​10.​1016/j.​physa.​2017.​11.​044

Robin, T., Antonini, G., Bierlaire, M., Cruz, J.: Specification, estimation and validation of a pedestrian 
walking behavior model. Transp. Res. B Methodol. 43, 36–56 (2009). https://​doi.​org/​10.​1016/j.​trb.​
2008.​06.​010

Ržazanskasa, P., Verikasab, A., Vibergd, P.A., Olsson, M.C.: Predicting physiological parameters in 
fatiguing bicycling exercises using muscle activation timing. Biomed. Signal Process. Control 35, 
19–29 (2017). https://​doi.​org/​10.​1016/j.​bspc.​2017.​02.​011

Song, X., Han, D., Sun, J., Zhang, Z.: A data-driven neural network approach to simulate pedestrian 
movement. Physica A 509, 827–844 (2018). https://​doi.​org/​10.​1016/j.​physa.​2018.​06.​045

Tan, S.B., Wee, S.B., Cheung, Y.B.: Agreement or prediction: asking and answering the right question. 
Ann. Acad. Med. Singap. 31(3), 405–407 (2002)

Wang, J., Li, N., Zhang, L.: Small group behaviors and their impacts on pedestrian evacuation. In: 2015 
27th Chinese Control and Decision Conference (CCDC), pp. 232–237 (2015). https://​doi.​org/​10.​
1109/​CCDC.​2015.​71616​96

Wang, K., Shi, X., Goh, A.P.X., Qian, S.: A machine learning based study on pedestrian movement 
dynamics under emergency evacuation. Fire Saf. J. 106, 163–176 (2019). https://​doi.​org/​10.​1016/j.​
fires​af.​2019.​04.​008

Wang, Z., Song, B., Qin, Y., Zhu, W., Jia, L.: Effect of vertical grouping behavior on pedestrian evacua-
tion efficiency. Physica A 392, 4874–4883 (2013). https://​doi.​org/​10.​1016/j.​physa.​2013.​06.​015

https://doi.org/10.3130/jaabe.14.371
https://doi.org/10.1109/DCIT.2015.9
https://doi.org/10.1016/j.aap.2018.06.005
https://doi.org/10.1088/1674-1056/23/8/088901
https://doi.org/10.1088/1674-1056/23/8/088901
https://doi.org/10.1016/j.trc.2016.08.018
https://doi.org/10.1098/rspb.2009.0405
https://doi.org/10.1371/journal.pone.0010047
https://doi.org/10.1371/journal.pone.0010047
https://doi.org/10.1109/TIP.2009.2039664
https://doi.org/10.1109/TIP.2009.2039664
https://doi.org/10.1016/S0304-3800(02)00064-9
https://doi.org/10.1016/S0304-3800(02)00064-9
https://doi.org/10.1007/978-3-642-11282-9_27
https://doi.org/10.1109/ICRA.2018.8461157
https://doi.org/10.1109/ICRA.2018.8461157
https://doi.org/10.1016/j.simpat.2009.10.005
https://doi.org/10.1016/j.physa.2017.11.044
https://doi.org/10.1016/j.trb.2008.06.010
https://doi.org/10.1016/j.trb.2008.06.010
https://doi.org/10.1016/j.bspc.2017.02.011
https://doi.org/10.1016/j.physa.2018.06.045
https://doi.org/10.1109/CCDC.2015.7161696
https://doi.org/10.1109/CCDC.2015.7161696
https://doi.org/10.1016/j.firesaf.2019.04.008
https://doi.org/10.1016/j.firesaf.2019.04.008
https://doi.org/10.1016/j.physa.2013.06.015


Transportation	

1 3

Xiao, Y., Gao, Z., Qu, Y., Li, X.: A pedestrian flow model considering the impact of local density: Voronoi 
diagram based heuristics approach. Transp. Res. C Emerg. Technol. 68, 566–580 (2016). https://​doi.​
org/​10.​1016/j.​trc.​2016.​05.​012

Xu, Y., Piao, Z., Gao, S.: Encoding crowd interaction with deep neural network for pedestrian trajectory pre-
diction. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5275–5284 
(2018). https://​doi.​org/​10.​1109/​CVPR.​2018.​00553

Xue, H., Huynh, D.Q., Reynolds, M.: SS-LSTM: a hierarchical LSTM model for pedestrian trajectory pre-
diction. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1186–
1194 (2018). https://​doi.​org/​10.​1109/​WACV.​2018.​00135

Yi, S., Li, H., Wang, X.: Pedestrian behavior understanding and prediction with deep neural networks. In: 
Computer Vision—ECCV 2016, vol. 9905, pp. 263–279 (2016). https://​doi.​org/​10.​1007/​978-3-​319-​
46448-0_​16

You, L., Hu, J., Gu, M., Fan, W., Zhang, H.: The simulation and analysis of small group effect in crowd 
evacuation. Phys. Lett. A 380, 3340–3348 (2016). https://​doi.​org/​10.​1016/j.​physl​eta.​2016.​08.​012

Yousefi, P., Naser, G., Mohammadi, H.: Surface water quality model: impacts of influential variables. J. 
Water Resour. Plan. Manag. 144(5), 04018015 (2018). https://​doi.​org/​10.​1061/​(ASCE)​WR.​1943-​5452.​
00009​00

Yuen, J.K., Lee, E.W.M., Lam, W.: An intelligence-based route choice model for pedestrian flow in a trans-
portation station. Appl. Soft Comput. 24, 31–39 (2014). https://​doi.​org/​10.​1016/j.​asoc.​2014.​05.​031

Zacharias, J.: Path choice and visual stimuli: Signs of human activity and architecture. J. Environ. Psychol. 
21, 341–352 (2001). https://​doi.​org/​10.​1006/​jevp.​2001.​0225

Zainuddin, Z., Lim, E.A.: Intelligent exit-selection behaviors during a room evacuation. Chin. Phys. Lett. 
29, 018901 (2012). https://​doi.​org/​10.​1088/​0256-​307X/​29/1/​018901

Zanlungo, F., Ikeda, T., Kanda, T.: Potential for the dynamics of pedestrians in a socially interacting group. 
Phys. Rev. E 89, 012811 (2014). https://​doi.​org/​10.​1103/​PhysR​evE.​89.​012811

Zhang, J., Liu, H., Li, Y., Qin, X., Wang, S.: Video-driven group behavior simulation based on social com-
parison theory. Physica A 512, 620–634 (2018). https://​doi.​org/​10.​1016/j.​physa.​2018.​08.​046

Zheng, M., Kashimori, Y., Kambara, T.: A model describing collective behaviors of pedestrians with vari-
ous personalities in danger situations. In: Proceedings of the 9th International Conference on Neural 
Information Processing, 2002. ICONIP ’02., vol.  4, pp. 2083–2087 (2002). https://​doi.​org/​10.​1109/​
ICONIP.​2002.​11990​43

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Shi Sun is pursuing a doctoral degree in the Architecture Department at the Harbin Institute of Technology. 
His research interest is in the fields of urban pedestrian space design and pedestrian behaviour modelling.

Cheng Sun,  PhD, is a professor in the Architecture Department at the Harbin Institute of Technology. He 
is working on public building design and theory, architecture and human settlements in cold regions, urban 
disaster prevention and building safety, parametric architectural design, smart building and construction.

Dorine C. Duives,  PhD, is an assistant professor in the Department of Transport & Planning at the Delft Uni-
versity of Technology. Her expertise lies in traffic operations and management, especially in the context of 
the active modes of transportation, such as pedestrians and cyclists, within urban environments.

Serge P. Hoogendoorn,  PhD, is a professor in the Department of Transport & Planning at the Delft Uni-
versity of Technology. His research evolves around Smart Urban Mobility include theory, modelling, and 
simulation of traffic and transportation networks; development of methods for integrated management of 
transportation networks; impact of uncertainty of travel behaviour and network operations; impact of ICT on 
network flow operations, robustness and resilience; urban data and its applications.

https://doi.org/10.1016/j.trc.2016.05.012
https://doi.org/10.1016/j.trc.2016.05.012
https://doi.org/10.1109/CVPR.2018.00553
https://doi.org/10.1109/WACV.2018.00135
https://doi.org/10.1007/978-3-319-46448-0_16
https://doi.org/10.1007/978-3-319-46448-0_16
https://doi.org/10.1016/j.physleta.2016.08.012
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000900
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000900
https://doi.org/10.1016/j.asoc.2014.05.031
https://doi.org/10.1006/jevp.2001.0225
https://doi.org/10.1088/0256-307X/29/1/018901
https://doi.org/10.1103/PhysRevE.89.012811
https://doi.org/10.1016/j.physa.2018.08.046
https://doi.org/10.1109/ICONIP.2002.1199043
https://doi.org/10.1109/ICONIP.2002.1199043


	 Transportation

1 3

Authors and Affiliations

Shi Sun1   · Cheng Sun1 · Dorine C. Duives2 · Serge P. Hoogendoorn2

	 Cheng Sun 
	 suncheng@hit.edu.cn

	 Dorine C. Duives 
	 D.C.Duives@tudelft.nl

	 Serge P. Hoogendoorn 
	 s.p.hoogendoorn@tudelft.nl

1	 School of Architecture, Harbin Institute of Technology; Key Laboratory of Cold Region Urban 
and Rural Human Settlement Environment Science and Technology, Ministry of Industry 
and Information Technology, Harbin 150006, China

2	 Department of Transport and Planning, Faculty of Civil Engineering and Geosciences, Delft 
University of Technology, 2628 CN Delft, Netherlands

http://orcid.org/0000-0002-7927-8712

	Neural network model for predicting variation in walking dynamics of pedestrians in social groups
	Abstract
	Introduction
	Background
	Explicit modelling of group dynamics
	Machine-learning modelling of walking behaviour (and group dynamics)
	Markov model
	Neural network
	LSTM model


	Methodology
	Design of neural network model
	Identification of candidate input variables
	Neural network model selection process
	Parameter analysis

	Case study
	Description of the site
	Identification of social groups
	Trajectory extraction and grouping

	Results
	Movement characteristics
	Pedestrian–environment interaction
	Inter-personal interaction
	Intra-group relationship
	Inter-group relationship
	Neural network model

	Conclusion
	Applications and future work
	Acknowledgements 
	References


