
 Multi Agent Path Planning forMedical Urban Air MobilityServices in 3D Environments
Master of Science Thesis
Vincent van Gorp

Multi Agent Path Planning forMedical Urban Air MobilityServices in 3D Environments
Master of Science Thesis

by

Vincent van Gorp
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on 05-06-2024.

Student number: 4777697
Project duration: 3 April, 2023 – 5 June, 2024
Thesis committee: Dr.Ir. E. van Kampen TU Delft, Chair

Dr. M.J. Ribeiro TU Delft, Daily Supervisor
Dr. O.A Sharpanskykh TU Delft, Daily Supervisor
Dr. M. Lourenço Baptista TU Delft, Examiner

Acknowledgements

The submission of this Master’s thesis marks the culmination of my academic journey at the Faculty of
Aerospace Engineering at the Technical University of Delft. I have always had a passion for the aviation in-
dustry, and upon finishing my degree this passion has only grown. Over the past six years, I have been able
to develop myself both academically and personally and I have had the ability to explore and learn about the
aviation industry. Overall, I have enjoyed my time in Delft and I cherish the people that I have met along the
way, such as my study friends and "old" roommates. The last year of writing my master’s thesis has not been
easy, with many setbacks and moments that I wanted to quit. However, upon almost finishing my master’s
degree, I am very proud of this work and the persistence I have shown along the way.

I would like to express my gratitude to both my supervisors Alexei Sharpanskykh and Marta Ribeiro for their
support during the entire thesis project. They have always been available to help me with all kinds of chal-
lenges and questions and I would like to thank them for their valuable insights and support.

Furthermore, I want to express my gratitude to my friends and family for their support throughout the past
six years, which made my time in Delft more enjoyable. While writing my master’s thesis, many of my fellow
student friends supported me for which I am grateful. I want to give special thanks to three of them in no
particular order: Loek, Sam, and Victor. I appreciate your availability for help and the feedback you provided
when I was stuck, both technically and mentally. Your input significantly enhanced the quality of my thesis
and the time I spent working on it. Thank you all.

To conclude, I have mixed feelings about the end of my student time. I feel disappointed that my study time
has gone by so quickly, but simultaneously I am looking forward to what the future in the aviation industry
will bring me.

Vincent van Gorp
Delft, May 2024

ii

Contents

List of Figures vi

List of Tables ix

List of Abbreviations x

I Scientific Paper 1

II Literature Study
previously graded under AE4020 27

1 Introduction 28

2 Urban Air Mobility 30
2.1 Urban Air Mobility Services . 30

2.1.1 Urban Air Vehicle delivery services. 31

2.1.2 Delivery Companies . 32

2.2 Urban Air Mobility Vehicle Types . 33

2.3 Unmanned Aircraft System Traffic Management . 34

2.3.1 UTM Airspace . 34

2.3.2 UTM Architecture . 35

2.3.3 UAV Communication . 37

2.4 Urban Air Mobility Selected Use Case . 38

2.4.1 UAV Medical Supply Delivery . 38

2.4.2 Agents in Multi-Agent System . 39

3 Environment Modelling 41
3.1 Rotterdam Area Environment . 41

3.1.1 Medical Facilities . 41

3.1.2 Warehouses . 42

3.1.3 Rotterdam Restricted/Limited Access . 42

3.2 Geofencing . 43

3.3 Demand Modelling . 45

4 Concept of Operations 46
4.1 Operational Framework. 46

4.1.1 Existing system . 46

4.1.2 Proposed System. 47

4.2 System Objectives. 48

4.3 System Requirements & Assumptions. 48

4.3.1 Requirements . 49

4.3.2 Assumptions . 49

5 Multi Agent Pathfinding 51
5.1 Introduction to Multi Agent Pathfinding . 51

5.1.1 Problem Definition . 51

5.1.2 Centralised & Distributed Pathfinding . 52

5.1.3 Objective Functions . 52

iii

iv Contents

5.2 MAPF Algorithms Overview . 52
5.3 Optimal Reduction-based MAPF Algorithms . 53
5.4 Optimal Search-based MAPF Algorithms . 54

5.4.1 Extensions of A* . 54
5.4.2 The Increasing Cost Tree Search . 57
5.4.3 Conflict Based Search . 57
5.4.4 Safe Interval Path Planning. 62

5.5 Rule-based MAPF Algorithms . 63
5.6 Bounded Sub-Optimal Search-based MAPF Algorithms. 63

5.6.1 Extensions of A* . 63
5.6.2 The Increasing Cost Tree Search . 64
5.6.3 Conflict Based Search . 65

5.7 Beyond Classical MAPF . 66
5.7.1 MAPF with Large Agents . 67
5.7.2 MAPF with Kinematic Constraints . 67
5.7.3 Reinforcement Learning for MAPF . 68

5.8 MAPF Algorithms used for UAV path planning . 68
5.8.1 Conflict Resolution . 69
5.8.2 Modeling Large UAV Agents . 69
5.8.3 Spatio-Temporal Pruning . 70

5.9 Comparison of MAPF Algorithms . 70
5.10 Simulation Software. 73

6 Research Proposal 75
6.1 Research Gaps . 75
6.2 Research Objective . 76
6.3 Research Questions . 76

III Supporting work 78

1 Path Planning and Coordination Specifications 79
1.1 findPath. 79
1.2 getSuccessors . 79
1.3 possibleMoves . 79
1.4 checkSeparation . 81
1.5 updateDynamicObstacles. 81

2 Overview of Scenarios 82
2.1 Experiment A Scenarios . 83
2.2 Experiment B Scenarios. 83
2.3 Experiment C Scenarios. 84
2.4 Experiment D Scenarios . 85

3 Variability of Simulation 86
3.1 Experiment A . 86
3.2 Experiment B . 87
3.3 Experiment C . 87
3.4 Experiment D . 88

4 Additional Experiment A Results 89
4.1 Performance WC-SIPP . 89

5 Additional Experiment B Results 91
5.1 Performance WC-SIPP . 91
5.2 Heatmaps . 94

6 Additional Experiment C Results 96
6.1 Unexpected Obstacles Placement . 96
6.2 Performance WC-SIPP . 97

Contents v

7 Additional Experiment D Results 99
7.1 Comparison urgent versus standard mission types . 99
7.2 Comparison of Priority Planning Order . 100

Bibliography 101

List of Figures

2.1 Airspace design concepts. From left to right these are Full Mix, Layers, Zones, and Tubes. Fig-
ures taken from Metropolis [85] . 35

2.2 Theoretical UTM Architecture proposed by FAA and NASA. Figure taken from NASA [27] 36

3.1 Warehouse (>25,000 [m2]) placement in Rotterdam according to the MASS-GT Model [18] cre-
ated in QGIS [78] . 42

3.2 Map of Rotterdam city centre (yellow), parks & recreational areas (green), Port of Rotterdam
(Red) created using Google Earth Pro [36] . 44

3.3 Post-processed map data for southern Manhattan, representing building with heights over 20
meter, where buildings are clustered together in geofence volumes. Figure taken from Kim and
Atkins [52] . 45

4.1 Preliminary overview of the proposed system focusing on ordering and delivering of medical
supplies. 48

5.1 Overview of Classical MAPF algorithms . 53
5.2 Example of a full-checking OSF implementation in EPEA* using the Manhatten distance heuris-

tic, figure taken from Goldenberg et al. [35]. Left-hand side displays the difference between f (n)
and f (nc) and the right-hand side displays the f-value of the heuristic. 56

5.3 Success-rate CBS compared to ICTS and EPEA*, taken from Sharon et al.[90] 59
5.4 Success-rate of MA-CBS experiments using EPEA* as low-level solver, taken from Sharon et al.[89] 59
5.5 Comparison of simulation results between CBS, MA-CBS(10) + OD and MA-CBS(10)+ODrM*.

The left plot shows the succes rate of found solutions within a 5-min time frame, the right plot
shows the time to find a solution. Figure taken from Ferner et al.[29] 60

5.6 Comparison of simulation results between ICBS(25), ICTS, EPEA*, MA-CBS(25), and MA-CBS(25).
The top plots show the success rate of found solutions for each map, the bottom plot shows the
average runtime. Figure taken from Boyarski et al [11] . 61

5.7 Environment containing two agents, where a configuration is highlighted. For the configuration
a timeline is presented. Figure taken from Phillips and Likhachev [75] 62

5.8 Unsuccesful demonstration of the SIPP algorith. Left figure (a.) shows the initial environment,
middle figure (b.) shows agent 1 waiting for agent 0, right figure shows the inevitable collision.
Figure taken from Wang et al. [114] . 63

5.9 Left figure (a) displays conflict interval for the voxels intersection method. Right figure (b) dis-
plays conflict interval for the computational geometry method. Figures taken from Ho et al. [40] 70

3.1 Coefficient of variation for experiment A, KPI Computational Time 86
3.2 Coefficient of variation for experiment A, KPI Explored Nodes . 86
3.3 Coefficient of variation for experiment A, KPI Average Speed . 86
3.4 Coefficient of variation for experiment A, KPI Traveled Distance 87
3.5 Coefficient of variation for experiment A, KPI Travel Time . 87
3.6 Coefficient of variation for experiment A, KPI Delivery Time . 87
3.7 Coefficient of variation for experiment B, KPI Computational Time 87
3.8 Coefficient of variation for experiment B, KPI Explored Nodes . 87
3.9 Coefficient of variation for experiment B, KPI Average Speed . 87
3.10 Coefficient of variation for experiment B, KPI Traveled Distance 87
3.11 Coefficient of variation for experiment B, KPI Travel Time . 87
3.12 Coefficient of variation for experiment B, KPI Delivery Time . 87
3.13 Coefficient of variation for experiment C, KPI Computational Time 87
3.14 Coefficient of variation for experiment C, KPI Explored Nodes . 87

vi

List of Figures vii

3.15 Coefficient of variation for experiment C, KPI Average Speed . 87
3.16 Coefficient of variation for experiment C, KPI Traveled Distance 88
3.17 Coefficient of variation for experiment C, KPI Travel Time . 88
3.18 Coefficient of variation for experiment C, KPI Delivery Time . 88
3.19 Coefficient of variation for experiment D, KPI Computational Time 88
3.20 Coefficient of variation for experiment D, KPI Explored Nodes . 88
3.21 Coefficient of variation for experiment D, KPI Average Speed . 88
3.22 Coefficient of variation for experiment D, KPI Traveled Distance 88
3.23 Coefficient of variation for experiment D, KPI Travel Time . 88
3.24 Coefficient of variation for experiment D, KPI Delivery Time . 88

4.1 Computational time with varying window sizes and demand rates for the small environment . . 89
4.2 Explored nodes with varying window sizes and demand rates for the small environment 89
4.3 Average speed with varying window sizes and demand rates for the small environment 90
4.4 Average speed with varying window sizes and demand rates for the small environment 90

5.1 Computational time with varying number of layers and demand rates for the small environment 91
5.2 Explored nodes with varying numbers of layers and demand rates for the small environment . . 91
5.3 Computational time with varying number of layers and demand rates for the small environment 92
5.4 Computational time with varying number of layers and demand rates for the large environment 92
5.5 Average speed with varying number of layers and demand rates for the small environment . . . 93
5.6 Average speed with varying number of layers and demand rates for the large environment . . . 93
5.7 Heatmap of the flown paths for the small environment with 1 available layer, for all demand

scenarios, showing the number of times a node and edge is visited. Layer 1 is shown 94
5.8 Heatmap of the flown paths for the small environment with 3 available layers, for all demand

scenarios, showing the number of times a node and edge is visited. Layer 1 is shown 94
5.9 Heatmap of the flown paths for the small environment with 1 available layer, for all demand

scenarios, showing the number of times a node and edge is visited. Layer 2 is shown 94
5.10 Heatmap of the flown paths for the small environment with 3 available layers, for all demand

scenarios, showing the number of times a node and edge is visited. Layer 3 is shown 94
5.11 Heatmap of the flown paths for the large environment with 1 available layer, for all demand

scenarios, showing the number of times a node and edge is visited. Layer 1 is shown 95
5.12 Heatmap of the flown paths for the large environment with 3 available layers, for all demand

scenarios, showing the number of times a node and edge is visited. Layer 1 is shown 95
5.13 Heatmap of the flown paths for the large environment with 1 available layer, for all demand

scenarios, showing the number of times a node and edge is visited. Layer 2 is shown 95
5.14 Heatmap of the flown paths for the large environment with 3 available layers, for all demand

scenarios, showing the number of times a node and edge is visited. Layer 3 is shown 95

6.1 Graph representation for the small environment with blue nodes being warehouse locations,
red nodes being healthcare facilities and orange nodes being locations where unexpected ob-
stacles could be introduced for layer 1. 96

6.2 Graph representation for the small environment with orange nodes being locations where un-
expected obstacles could be introduced for layer 2 . 96

6.3 Graph representation for the large environment with blue nodes being warehouse locations, red
nodes being healthcare facilities and orange nodes being locations where unexpected obstacles
could be introduced for layer 1. 97

6.4 Graph representation for the large environment with orange nodes being locations where un-
expected obstacles could be introduced for layer 2 . 97

6.5 Computational time with varying number of unexpected obstacles and demand rates for the
small environment . 97

6.6 Computational time with varying number of unexpected obstacles and demand rates for the
large environment . 97

6.7 Average speed with varying number of unexpected obstacles and demand rates for the small
environment . 98

viii List of Figures

7.1 Computational time with varying urgency distributions comparing urgent and standard mis-
sions for a demand rate of 6, and large environment . 99

7.2 Explored nodes with varying urgency distributions comparing urgent and standard missions for
a demand rate of 6, and large environment . 99

7.3 Average speed with varying urgency distributions comparing urgent and standard missions for
a demand rate of 6, and large environment . 99

7.4 Travel distance with varying urgency distributions comparing urgent and standard missions for
a demand rate of 6, and large environment . 99

7.5 Travel time with varying urgency distributions comparing urgent and standard missions for a
demand rate of 6, and large environment . 99

7.6 Delivery time with varying urgency distributions comparing urgent and standard missions for
a demand rate of 6, and large environment . 99

7.7 Computational time with varying priority planning orders comparing urgent and standard mis-
sions for a demand rate of 6, urgency distribution of 50%, and large environment 100

7.8 Explored Nodes with varying priority planning orders comparing urgent and standard missions
for a demand rate of 6, urgency distribution of 50%, and large environment 100

7.9 Average Speed with varying priority planning orders comparing urgent and standard missions
for a demand rate of 6, urgency distribution of 50%, and large environment 100

7.10 Travel distance with varying priority planning orders comparing urgent and standard missions
for a demand rate of 6, urgency distribution of 50%, and large environment 100

7.11 Travel time with varying priority planning orders comparing urgent and standard missions for
a demand rate of 6, urgency distribution of 50%, and large environment 100

7.12 Delivery time with varying priority planning orders comparing urgent and standard missions
for a demand rate of 6, urgency distribution of 50%, and large environment 100

List of Tables

2.1 Overview of delivery UAVs . 34
2.2 Trade-off table representing benefits of selecting each delivery item 38

3.1 Overview of different types of healthcare facilities, the medical supplies they will need, and
an estimated number of available facilities in Rotterdam according to Zorgkaart The Nether-
lands [124] . 42

4.1 Requirements for the modelling of the UAV Medical Supply Delivery problem 49
4.2 Assumptions for the modelling of the UAV Medical Supply Delivery problem 49

5.1 Overview of papers using reinforcement learning for MAPF . 68
5.2 Overview of papers using MAPF algorithms for the planning and coordination of UAVs 69
5.3 Conflict Resolution methods proposed by Ho et al [42], the conflict types they can resolve and

their drawbacks. 69
5.4 Overview of selected state-of-the-art MAPF algorithms . 72
5.5 MAPF algorithm trade-off using weighted scores . 72
5.6 Overview of Simulation Tools adapted from Antelmi et al [5] applicable to the UAV Medical De-

livery Problem . 73
5.7 Trade-off table for the selection of Simulation tool . 74

2.1 Overview of scenarios used for experiment A, including all independent variable settings 83
2.2 Overview of scenarios used for experiment B, including all independent variable settings 83
2.3 Overview of scenarios used for experiment C, including all independent variable settings 84
2.4 Overview of scenarios used for experiment D, including all independent variable settings 85

4.1 Statistical analysis comparing the performance of the algorithm for window sizes 20, 30, and 40,
varying the environment type and demand rate. Values given in the table are p-values obtained
from the Kruskal Wallis statistical test . 90

4.2 Effect size analysis comparing the performance of the algorithm for window sizes 20 and 40,
varying the environment type and demand rate. Values given in the table are A-values obtained
from the Vargha-Delaney statistical test . 90

5.1 Statistical analysis comparing the performance of the algorithm for the small and large envi-
ronment with 1 and 3 layers, varying the demand rates. Values given in the table are A-values
obtained from the Vargha-Delaney effect size test. 92

5.2 Statistical analysis comparing the performance of the algorithm for the small and large envi-
ronment with 3 and 5 layers, varying the demand rates. Values given in the table are A-values
obtained from the Vargha-Delaney effect size test. 92

ix

List of Abbreviations

3E Enhanced triple pruning

ANSP Air Navigation Service Provider

ASP Answer Set Programming

ATC Air Traffic Control

BCBS Bounded Conflict-Based Search

BP Bypassing Conflicts

BVLOS Beyond Visual Line-Of-Sight

CA* Cooperative A*

CBS Conflict-Based Search

CBSwP Conflict-Based Search with Priorities

CDR Conflict Detection and Resolution

CNPC Control and NonPayload Communication

CO-WHCA* Conflict-Oriented Windowed Hierarchical Cooperative A*

CONOPS Concept of Operations

CT Constraint Tree

CTR Control Zone

DAO Dragon Age: Origins

DNS Dynamic Potential Search

EASA European union Aviation Safety Agency

ECBS Enhanced Conflict-Based Search

EES Explicit Estimation Search

eICTS extended Increasing Cost Tree Search

EPEA* Enhanced Partial Expension A*

eVTOL electric Vertical Take-off and Landing

FAA Federal Aviation Authority

FIMS Flight Information Management System

GCBS Greedy Conflict-Based Search

GIS Geographical Information System

HCA* Hierarchical Cooperative A*

HEMS Helicopter Emergency Services

x

List of Abbreviations xi

I&W Ministery of Infrastructure and Water Management

ICTS Increasing Cost Tree Search

ID Independence Detection

ILP Integer Linear Programming

ILT Inspectie Leefomgeving en Transport (The human environment and transport inspectorate)

LA-MAPF Multi-Agent Path Finding with Large Agents

LoS Line-of-Sight

MA-CBS Meta-Agent Conflict-Based Search

MAPF Multi-agent Path Finding

MASS-GT Multi-agent Simulation System for Goods Transport

MDD Multi-value Decision Diagram

NAS National Airspace System

OD Operator Decomposition

OSM OpenStreetMap

PBS Priority-Based Search

PC Payload Communication

PC Prefering Cardinal conflicts

RF Radio Frequency

rM* Recursive M*

SAT Boolean satisfiability

SDSP Supplemental Data Service Providers

SIPP Safe-Interval Path Planning

SoSID Systems of Systems Inverse Design

STN Simple Temporal Network

TASS Tree-based Agent Swapping Strategy

TMX Traffic Manager

TPG Temporal Plan Graph

UAM Urban Air Mobility

UAS Unmanned Aircraft System

UAV Unmanned Aerial Vehicles

USS Unmanned Aircraft System Service Suppliers

UTM Unmanned Aircraft System Traffic Management

V2V Vehicle-to-Vehicle

VLOS Visual Line-Of-Sight

WA* Weighted A*

WHCA* Windowed Hierarchical Cooperative A*

I
Scientific Paper

1

Multi Agent Path Planning for Medical Urban Air Mobility Services
in 3D Environments

Vincent van Gorp,∗

Delft University of Technology, Delft, The Netherlands

Abstract

Urban Air Mobility (UAM) has seen remarkable growth over the past decade, especially considering the
delivery of goods. Notably, the delivery of medical supplies via Unmanned Aerial Vehicles (UAVs) has
emerged as a promising application, which is driven by its societal benefits and has been demonstrated
successfully in rural environments. However, expanding these operations to urban areas presents a unique
set of challenges, such as high traffic density and the need for online path planning of UAVs. Effective
path planning and coordination are of utmost importance to allow for safe and efficient delivery operations
in urban environments. Currently, path planning of UAVs is relatively unexplored, and for drone delivery
models the trajectories of UAVs are often oversimplified. This research aims to fill the research gap by
developing and evaluating an online path planning and coordination mechanism in 3D for a cooperative fleet
of autonomous UAVs delivering medical supplies. The Rotterdam Area is selected as a use case, but the
model can be adapted to other cities. Utilising an agent-based model formulation, this paper formulates a
novel approach for multi-agent pathfinding in 3D and real-world environments, where the travelled paths of
UAVs in drone delivery models are computed by taking into account the urban environment and kinematics
of UAVs. Windowed Cooperative Safe Interval Path Planning (WC-SIPP) is used as a path planning and
coordination mechanism, where kinematic constraints of UAVs and safety separation distances between
UAVs are incorporated. Experimental studies show the capability of the algorithm to plan UAVs in different
multi-layer urban environments. We establish that including more than one vertical layer is beneficial for
UAVs to avoid conflicts by allowing them to change altitudes during flight. Additionally, we show that an
increase in the number of layers does not lead to an increase in the delivery time of packages. However, an
increase in available layers does come with a decrease in computational performance. Besides, the proposed
method is able to plan the trajectories of UAVs and ensure safety separation between UAVs within a dynamic
environment, where up to 20 unexpected obstacles are introduced into the environment. Furthermore, we
demonstrated that for our operation model, assigning prioritisation based on either mission type or package
request time did not influence the delivery time of packages.

1 Introduction
Over the past decade, Urban Air Mobility (UAM) services have been emerging all over the globe, offering both
transportation of passengers and packages. Transportation of packages using unmanned aerial vehicles (UAVs)
is already in operation in both rural and urban environments. In 2023 the total number of drone deliveries
exceeded 1 million in total according to estimations of McKinsey [1], and it is expected that the number of
deliveries will only grow in the coming years. Companies such as Zipline [2] and Wing [3] are operating fleets
of UAVs to deliver a variety of goods, such as food, medicines and e-commerce. At this point, the delivery of
medical items is most mature, with Zipline demonstrating the success of this use case in Rwanda [4]. Zipline
is transporting medical supplies from distribution centres to various medical facilities all over the country. The
company aims to deliver up to 2 million packages within the country by 2029. Looking at the public benefit
of delivering medical items via UAVs, it can be deemed that the public benefit is larger compared to food and
e-commerce. According to EASA [5], the social acceptance of drone delivery is higher in case the delivery has
benefit for the community and does not serve individual needs. Therefore out of these applications, the delivery
of medical supplies is the most promising use case. UAVs have only limited payload capacity, making them
well-suited to deliver medical supplies, such as medicine, emergency supplies and vaccines. Even though Zipline
has demonstrated the success of this use case in rural environment, integrating a similar system within an urban
environment introduces new challenges and constraints. Therefore, effective path planning and coordination is
of utmost importance to allow for efficient and safe operations in urban environment.

∗Msc Student, Sustainable Air Transport, Faculty of Aerospace Engineering, Delft University of Technology

1

To analyse the complex dynamics and interactions among different actors for UAM services, our approach in-
volves utilising agent-based modelling (ABM). ABM offers us the benefit of modelling individual behaviour and
interactions of different agents, incorporating a dynamic realistic urban environment, and allowing for good
model scalability and flexibility. The FAA and NASA [6] propose a theoretical framework outlining the key
actors, components, and their interactions on a high level for the Unmanned Aircraft System Traffic Mana-
gement (UTM) airspace. This framework acts as the basis of our Multi-Agent System (MAS). In order to
accurately model the paths of UAVs, this work will focus on the modelling of 3D UAV operations by use of
multi-agent pathfinding (MAPF). MAPF algorithms allow for conflict-free planning and coordination between
various agents within a shared environment. Path planning is a critical aspect to allow for UAM services, and
by following an agent-based modelling approach, this work can contribute by implementing novel techniques
to improve multi-agent path planning of autonomous UAVs. Currently, path planning for UAV operations in
3D and real-world urban environments is relatively unexplored. Besides, there has been a focus in literature
for medical supply delivery on the development of vehicle routing models, also known as drone delivery models
[7, 8, 9]. These models often oversimplify the UAV’s trajectory, depicting it as a direct straight line between the
departure location and arrival destination, disregarding the operational environment. This results in models
where the trajectory of the UAV is not accurately represented. Therefore, this research covers the following
research gaps, being that multi-agent pathfinding in 3D and real-world environments is relatively un-
explored, and the travelled path of UAVs for drone delivery models is not represented accurately.
Following from these research gaps, the primary focus of this work is to develop a medical drone delivery model
in a 3D urban environment representing the travelled paths of UAVs. To analyse path planning in urban envi-
ronments, we selected the Rotterdam Area as the use case for the distribution of healthcare supplies. However,
it must be noted that the model can also be adapted to other urban environments. Rotterdam is selected due
to two main reasons. First, the inner city of Rotterdam contains many high rises in combination with organic,
non-grid-like, city structures, making path planning less trivial compared to grid-like cities. Second, due to the
presence of many healthcare facilities, such as hospitals, pharmacies, clinics, and general practitioners, a large
market exists for the delivery of medical supplies. Ensuring timely delivery of medical supplies from warehouses
to medical facilities is important for patient care, as delays could result in severe consequences, particularly
during shortages [10]. Therefore, the delivery system should allow for medical emergency missions, which would
need prioritisation over standard medical delivery. Due to the unexpected nature of emergency missions, the
delivery system should allow online path planning.

Hence, in light of the aforementioned considerations the main research objective is specified as follows: To de-
velop and evaluate an online path planning and coordination mechanism in 3D for a cooperative
fleet of autonomous UAVs delivering medical supplies in the Rotterdam Area.

In this research, we propose a multi-agent system for the delivery of both standard and urgent medical supplies
in the Rotterdam Area. Multi-agent pathfinding in a 3D environment is used to model the paths of UAVs,
where conflict-free planning and coordination are key. We selected Windowed Cooperative Safe Interval Path
Planning as the path planning and coordination mechanism. Kinematic constraints of UAVs are incorporated
during planning, as well as separation distance constraints between UAVs. This results in a novel approach for
multi-agent pathfinding in 3D and real-world environments, where the trajectories of UAVs are represented by
considering the urban environment and the kinematics of UAVs.

This paper is structured as follows. First, a comprehensive overview of the current state-of-the-art research will
be given in section 2. Afterwards, section 3 will elaborate on the case study. In section 4 the methodology will
be presented. In this section an overview of the multi-agent system, specifications regarding its environment
and agents, and the path planning and coordination method is given. Afterwards, the experimental setup is
shown in section 5. The results of the experiments are presented and discussed in section 6. Lastly, section 7
provides our conclusions and recommendations for future work.

2 Literature Review
This section first presents state-of-the-art information regarding UAV delivery. Afterwards, an overview is
presented of the current state-of-the-art research regarding multi-agent path finding (MAPF) in section 2.2.
In section 2.3 research regarding the modelling of UAM operations in urban environments will be explored,
focusing on applications of MAPF models for UAM services.

2

2.1 UAV Delivery
Urban Air Mobility is seen as one of the new revolutionary approaches to improve the transportation industry,
which includes the transportation of packages using UAVs. Companies, such as Zipline [2] and Wing [3], are
already operating fleets of UAVs delivering packages in rural and urban environments. For example, Zipline [2] is
operating a fleet of autonomous UAVs delivering medical supplies all over Rwanda by making use of centralised
distribution centres. They are able to deliver packages to healthcare facilities within an hour of ordering. Similar
to Zipline, Wing [3] is also operating fleets of UAVs, where a centralised unmanned traffic management software
is used to plan the routes of individual UAVs to deliver various packages. The delivery items can be subdivided
into three categories, being retail & e-commerce, food, and medical items. The delivery of medical items is seen
as the most promising use case due to its maturity, and the public benefit it offers to society. Besides, the social
acceptance for delivering medical supplies is higher compared to the other categories according to EASA [5].
Food delivery is offered by Wing [3] in Australia, but occurs on a smaller scale compared to delivery of medical
supplies. Furthermore, the delivery of e-commerce has difficulty with starting up, with Amazon shutting down
its e-commerce drone delivery services [11]. Thus, in our research, the delivery of medical supplies in urban
environment will be considered with a centralised path planning and coordination approach, similar to the
operating models of Zipline and Wing.

2.2 Multi-Agent Pathfinding and Motion Planning
Multi-agent pathfinding is the problem of finding paths for multiple agents within a shared environment, where
agents have to reach their goal without collisions between other agents and the environment [12]. MAPF prob-
lems can be categorised into two distinct groups, centralised and distributed planning methods. We have selected
a centralised path planning method, as this fits best within the UTM framework proposed by the FAA and
NASA [6]. According to this framework, it can be expected that path planning and coordination per Unmanned
Aircraft System (UAS) Operator will be centralised, which is also similar to the operating models of Zipline
][2] and Wing [3]. In this work, a distinction is made between the individual path-finding of agents, low-level
planning, and the collaborative path-finding of multiple agents, high-level planning. For the individual path
planning of agents, Safe Interval Path Planning (SIPP) [13] has been selected with the objective of minimising
travel time. SIPP is well suited for the planning of agents in a dynamic environment as it is able to use a
smaller search space in comparison with A*. The A* algorithm is a path-finding algorithm that uses a heuristic
search algorithm to find the path with the smallest cost given a start and goal node. Enhancements to the
standard A* algorithm are Independence Detection (ID) [14] and Operator Decomposition (OD) [15]. Another
promising A*-based algorithm is M* [16]. Even though these algorithms improve the algorithm by addressing
the drawbacks of A*, being that the state-space and branching factor (number of possible positions an agent
can occupy in the next time step) is exponential in the number of agents, these algorithms are not developed
for agents moving in a dynamic environment. SIPP is developed for agents moving in a dynamic environment
and offers us the benefit of not using a state for every configuration and time step pair, but uses a grouping
of collision-free time steps. An extension of SIPP is SIPP with Kinodynamic Constraints [17]. Standard SIPP
relies on the assumption that agents can stop instantaneously, an assumption which does not hold when con-
sidering UAV kinematics. This extension allows us to incorporate acceleration and deceleration during path
planning. SIPP itself can be integrated with other MAPF solvers, where SIPP acts as the low-level planner. By
use of SIPP, we extend our problem from path planning to motion planning, as we incorporate the trajectory
of agents, considering kinematic features and dynamic obstacles when agents move towards their goal [18].

The high-level planner should be well suited for online planning and re-planning of operations and allow for
mission prioritisation due to the nature of medical supply delivery. One of the most widely used multi-agent
planners is Conflict Based Search (CBS) [19], which uses a two-level search in order to find an optimal solution
for all agents. The goal of the high-level search is to find conflicts and add constraints, while the low-level
search focuses on updating the paths of agents, consistent with the new constraints. CBS does not allow direct
integration of prioritisation of agents. Therefore, an extension of CBS is Priority Based Search (PBS) [20] is
proposed, which increases the computational performance of CBS and allows for prioritised planning. PBS
does offer the benefit of prioritisation of agents, but does not directly offer online path planning. Online path
planning can be incorporated into this algorithm, but implementation is not trivial. An algorithm that allows for
direct implementation of online planning and mission prioritisation is Windowed Cooperative (WC) Planning
[21]. WC has the benefit of reserving paths for a limited time window, and allows for changing prioritisation
of agents during the simulation. WC is an online MAPF solver, and even though optimality and completeness
are sacrificed, it allows for real-time path planning. Therefore, WC is selected as the coordination and conflict
resolution approach, where the standard implemented A* algorithm is replaced with SIPP in order to plan the
trajectories of UAV agents.

3

2.3 Modelling UAM Operations in Urban Environment
With the continuous advancement of UAV technology, recent research has been anticipating towards an increas-
ing demand of UAM services. The development of UTM systems is imperative to ensure safe integration of UAV
operations in low-altitude airspace. An important component of safe operations is the establishment of Conflict
Detection and Resolution (CDR) methods. A distinction can be made between strategic and tactical CDR.
Strategic CDR aims to find and prevent conflicts before they occur by adjusting flight paths or re-scheduling
missions. This method is also referred to as pre-flight CDR. Tactical CDR aims to respond to conflicts as they
arise during mission execution, where often only a small part of the flight plan is adjusted to keep the deviation
as small as possible. Ho et al. [22] proposed a pre-flight CDR method that incorporates both take-off schedul-
ing and speed adjustment. Take-off scheduling allows for operations to be postponed, while speed adjustment
allow for decreased speed on given flight segments. Their method also incorporates the shape of UAVs, by
representing an agent as a sphere. The representation of UAVs is based on previous work from Ho et al. [23].
Postponing flights, speed adjustment, and the UAV’s shape will also be incorporated within this work, albeit
with minor adjustments. The MAPF solver selected by Ho et al. is Enhanced Conflict Based Search (ECBS),
which plans paths of UAV operations in batches. Previously planned batches are afterwards treated as flight
path constraints for following batches, which is less suitable for online planning and incorporation of priority
missions. Besides, Hoekstra et al. [24] performed research towards centralised separation management for UAM
services, exploring the modelling of urban environment, separation management concepts, and different mission
types. For the centralised concept within this work, flights are strategically deconflicted prior to take-off by
assigning flights to different flight layers and afterwards delaying departure slots to resolve conflicts. However,
this does not take into account rerouting of flights.

Besides the research from Ho et al. [22, 23], limited research is available on the modelling of 3D UAV operations
in urban environments, with a focus on multi-agent path planning. Models that do consider the delivery of
medical supplies [7, 8, 9] frequently oversimplify the trajectory of UAVs, portraying it as a direct line from
departure to destination point. Therefore, this research will contribute to the existing body of knowledge
research by exploring multi-agent path-finding in 3D and real-world environments. The case study presented
in section 3 will serve as the basis to evaluate our multi-agent pathfinding method in a practical scenario.

3 Case Description
This section provides further details regarding the use case employed in this study. This is done by specifying
the objective of the operation, and describing the concept of operations. The concept of operations acts as the
foundation of the agent-based model.

In the context of transporting medical supplies, guaranteeing timely delivery from warehouses to medical fa-
cilities is paramount for patient well-being. This study focuses solely on delivery between inventory locations,
commonly referred to as warehouses, and medical facilities. It is expected that drone delivery will be mainly
utilised for last-mile delivery, as is similar to the current operation models of Zipline [2] and Wing [3]. Due
to the limited payload of UAVs, the scope of this research is limited to operations of UAVs flying towards and
from the medical facility, and delivering one package only. UAVs are able to deliver a package by lowering the
package using a cable delivery system while hovering above the drop-off zone. These operations assume enough
space for multiple drones to simultaneously deliver medical packages, without imposing a maximum number of
hovering drones. To achieve effective operations, the objective of the operation is to minimise the travel time
of UAVs, while ensuring no collisions during flight. Reducing travel time is desired as this directly affects the
speed of delivering medical packages.

In addition, we select the Rotterdam Area as the use case for the distribution of healthcare supplies. This
environment is selected due to the presence of many healthcare facilities, such as clinics, general practitioners,
hospitals, and pharmacies. It is also selected due to its organic, non-grid-like city structure with a large variation
in building types. Besides the environment, the actors present in this use case are derived from the theoretical
UTM framework proposed by the FAA and NASA [6]. The actors present in this use case are the UAS Operator,
UAVs, and medical facilities. How these actors are represented within our MAS, will be extensively discussed in
section 4.2. The medical supplies will be delivered by UAVs, where we selected the DJI Matrice 600 [25]. This
UAV has a payload capacity of up to 6 kilograms and a round trip range of 10 kilometres, which is sufficient for
medical supply delivery in the selected areas of Rotterdam. For the delivery of medical supplies, a distinction
can be made between two different mission types. The first is the delivery of standard medical supplies, and the
second is the delivery of urgent medical supplies. Within this research, the exact content of each package is not
specified. For standard mission types, one could envision the transportation of routine medication, diagnostic
samples or non-emergency medical equipment. For urgent mission types, one could think of blood samples,

4

emergency medications and emergency medical equipment. In order to execute the different missions, one UAS
Operator will be responsible for path planning and coordination of UAVs. It is assumed that no other UAS
Operators and foreign UAVs are present during operations. The UAS Operator will have an infinite amount of
UAVs at its disposal to plan missions. This decision has been taken, due to the research being centred on path
planning rather than task allocation.

4 Methodology
In this section, we propose an agent-based modelling approach, with a focus on the modelling of 3D UAV oper-
ations for medical supply delivery in urban environment by use of multi-agent pathfinding. The implementation
of the model is developed in Python. First, a specification on the environment will be presented in section 4.1.
In section 4.2 the agents present within the model and their interactions will be described. Lastly, the proposed
path planning and coordination mechanism will be presented in section 4.3.

4.1 Environment Specification
In this research, the Rotterdam Area has been selected as the use case for the distribution of healthcare
supplies. Two different neighbourhoods in Rotterdam have been selected in order to assess our MAS. Both
areas contain multiple healthcare facilities. A 500m by 500m neighbourhood between Erasmus Medical Centre
and Leuvehaven has been selected as the small environment. For the large environment the neighbourhoods
Spangen, Tussendijken, and a part of Bospolder has been selected, which spans an area of 750m by 1500m. The
environment is represented by a graph G = (V,E), consisting of vertices V and non-directional edges E. Each
vertex vi has as an attribute the location coordinates (xvi , yvi , zvi). The 2D graph is obtained using data from
OpenStreetMap (OSM)][26], representing the street network in the selected neighbourhoods. The 3D graph is
constructed by duplicating the 2D graph across multiple layers. Each vertical layer is separated by 10 meters,
as the vertical safety separation distance between UAVs is set to be 7.62 meters (25 feet), similar to the values
used for the Metropolis II project [24]. Each vertex in a layer is connected to its neighbour vertices within
its own layer, as well as to those in the one layer above and below. No edge is present between a vertex and
the vertices directly above and below it, as this would result in non-realistic UAV trajectories. A schematic
overview of vertex connections in a 3D graph across multiple layers is shown in Figure 1.

Figure 1: Schematic overview of vertex connections across multiple layers

A 2D graph representation of the small and large environment can be seen in Figure 2 and Figure 3, respectively.
In this graph, warehouse locations are represented by blue vertices, and healthcare facilities by red vertices.
These vertices are located in the bottom layer. For the small environment, 2 warehouse locations and 4
healthcare facilities are present. For the large environment, 3 warehouse locations and 5 healthcare facilities are
present. Within these environments, the healthcare facilities represent real healthcare facilities, such as doctors,
clinics and pharmacies. Due to the absence of existing warehouses, strategic locations were chosen to represent
warehouses. The locations are predominantly located at the edges of the environment, as this represents the
entry and exit points of the delivery area. It is anticipated that future warehouses will be situated on the
periphery of the city.

5

Figure 2: Graph representation for the small en-
vironment with blue nodes being warehouse loca-
tions, red nodes being healthcare facility locations

Figure 3: Graph representation for the large en-
vironment with blue nodes being warehouse loca-
tions, red nodes being healthcare facility locations

4.2 Agent Specification
This section presents the specifications related to the agents present in the MAS, which are the UAS Operator
Agent, UAV Agent, and Healthcare Facility Agent. An overview of the MAS can be seen in Figure 4.

Figure 4: Overview of the multi-agent system

4.2.1 UAS Operator Agent

The UAS Operator agent is responsible for the management of the entire UAV fleet, including the planning and
coordination of UAVs, in order to ensure fast medical package delivery. The operator has the goal to minimize
the delivery time of packages, while ensuring no collisions between UAVs. Within the scope of this model, only
1 centralised UAS operator agent will be present, with no physical presence in the simulation. The agent is
responsible for the centralised path planning and task allocation, with an unlimited amount of UAV agents at
its disposal. This indicates that the UAS Operator will be the single central computing power, responsible for
finding a global solution for all agents. The agent has the following properties:

• Allocation property: This property involves interaction between the UAS Operator and UAV agent.
A requested package by a healthcare facility is allocated to a UAV agent at the request time, giving the
UAV agent a start, package drop-off and goal location.

6

• Priority management property: This property involves interactions between the UAS Operator Agent
and all active UAV agents. The priority planning schedule is based is based on 3 factors, being the delivery
status (delivery or fly back), package type (urgent or standard), and package request time of a UAV agent.
Priority is first given to UAVs delivering packages over flying back. Second UAVs are given priority if their
package type is urgent over standard. Last, priority is given for the earliest request time. The combination
of these factors will determine the priority order.

• Path planning property: This property involves interaction between the environment, the UAS Oper-
ator Agent, and a UAV agent. The operator is able to plan the path of a UAV agent, after initialisation,
given the representation of the environment, previously computed paths, and collision-free periods (safe
intervals). The UAS operator agent makes use of WC-SIPP during path planning, which will be elabo-
rated upon in section 4.3. During path planning, kinematic constraints from the UAV agent are taken
into account.

• Path update property: This property involves interaction between the UAS Operator Agent, and a
UAV agent. For each planning window, following the WC-SIPP method, the UAS operator shares the
updated path with the UAV Agent.

• Safety Separation Property: This property includes interaction between the UAS operator agent and
UAV agents. During path planning, the operator ensures sufficient separation between UAV agents. The
horizontal separation distance is 32 meters and the vertical separation is 7.62 meters (25 feet). These
values are derived from the Metropolis II project [24].

• Check for environment availability property: This property involves interaction between the en-
vironment and the UAS Operator Agent. The agent is able to perceive the environment, including the
availability of all vertices during each path planning window. A vertex can be unavailable if it becomes
blocked by an unexpected static obstacle. This could for example occur when temporary airspace restric-
tions are imposed.

4.2.2 UAV Agent

The UAV agent is responsible for the task execution of the imposed tasks by the UAS Operator agent. This in-
cludes initialisation at the correct start position, following the provided path to the healthcare facility, delivering
the package to the customer agent, and flying back to the warehouse location. During operations, it is assumed
that the agent has sufficient battery life to complete a mission without recharging. With a round trip range
of 10 kilometres and a maximum environment size of 750m by 1500m, this is deemed a valid assumption. The
agent has a physical presence within the simulations, and its flying properties originate from the DJI Matrice
600 [25]. Overall, an unlimited number of UAVs is available for the UAS operator. The UAV agent has the
following properties:

• Initialisation property: This property includes interaction between the UAV agent, UAS Operator,
and the environment. A UAV agent will be able to initialise at its starting position once the spawn time
of the agent is equal to the simulation time step, which is provided by the UAS Operator agent. The UAS
Operator agent will send information regarding the start location, the package type, and the goal to the
UAV agent.

• Receive Trajectory Property: This property includes interaction between the UAV agent and the
UAS operator agent. For each planning window, following the WC-SIPP method, the UAV agent receives
the updated path from the UAV agent, including the imposed speeds along this path.

• Motion Properties: This property includes interaction between the UAV agents, the UAS Operator,
and the environment. At each time point, the UAV agent follows the heading, acceleration, and speed
given along its route by the UAS Operator Agent. The agent has the capability to accelerate/decelerate
with a constant acceleration of 2 [m/s2] and has a maximum vertical speed of 5 [m/s] and a maximum
horizontal speed of 18 [m/s] [25]. It is assumed that the agent is only able to move with a speed in
horizontal direction, that is a multiple of the UAV’s acceleration. When considering movement between
two layers, movement in vertical direction is necessary. For movement in vertical direction, it is assumed
that the initial and final vertical speed of a motion is 0 [m/s], as within each layer the agent is restricted
to only move in horizontal direction. If the agent needs to change altitude, it will instantly start this
movement in the quickest way possible. The movement consists of an acceleration, constant speed, and
deceleration phase. Regarding horizontal movement, UAVs are only allowed to either accelerate/decelerate
to a predetermined speed on an edge. At each node, a command can be given to increase/decrease its
speed using a constant acceleration/deceleration. A speed change will occur at the beginning of the edge.
The distance and time to accelerate/decelerate is given by Equation 1 and Equation 2. The time flying
at a constant speed after acceleration/deceleration is given by Equation 3. The total time travelling the
edge is the addition of tacc and tvconstant .

7

dacc = v0 · tacc ±
1

2
· a · t2acc (1) tacc =

|v1 − v0|
a

(2) tvconstant =
dedge − dacc

v1
(3)

Speed changes can be imposed to either avoid conflicts with other agents or to allow for an upcoming turn.
In order to allow for realistic operations, turn speed restrictions are imposed, based on the heading change
required for the turn. The turn speeds are taken from USEPE, a research project exploring separation
methods for drone operations in urban environment [27]. Besides, as both the warehouse location and
healthcare facility are located in the bottom layer, the UAV will operate predominantly in the bottom
layer. In case the lowest layer is occupied, the other layers are used as an alternative. The UAV will come
back to the lowest layer as possible afterwards.

• Package delivery property: This property includes interaction between the UAV Agent, Healthcare
Facility Agent, and the UAS Operator Agent. Once a UAV reaches the healthcare facility location, it
will able to hover above the target location and deliver the package to the healthcare facility agent. It is
assumed that for delivery of a package by use of a cable system, the delivery takes 20 to 30 seconds, using
a uniform distribution U(20, 30). No specifics regarding the exact delivery time are currently available
from either Zipline [2] or Wing [3], but a time range was deduced through the analysis of video material.
Upon delivery, the UAS Operator Agent will receive an update regarding the UAV’s delivery status.

• Termination Property: This property includes interaction between the UAV Agent, the UAS Operator
Agent, and the environment. The UAV agent will terminate itself from the environment once it has
reached its goal. Upon termination, the UAS Operator Agent will receive an update regarding the UAV’s
flight status.

4.2.3 Healthcare Facility Agent

Lastly, the Healthcare Facility Agent is able to request medical packages from the UAS Operator. It can either
request an urgent or standard package. Every medical facility is represented by one independent agent. The
healthcare facility is represented by a vertex in the simulation environment. This location can only be used
by UAV agents to deliver packages. Within the urban environment, real-world locations have been selected
as delivery sites. The drop-off locations are situated at the front of these locations. The delivery location is
assumed to be a safe area, where multiple UAVs are able to deliver requests to a healthcare facility agent. This
agent has the following properties:

• Package Request Property: This property includes interaction between the Healthcare Facility Agent
and the UAS Operator Agent. The Healthcare Facility agent is able to generate package requests at a
pre-defined demand rate. In order to generate packages a Poisson distribution is used, with λ being the
package rate per hour per facility.

• Package Receiving Property: This property includes interaction between the healthcare facility agent,
and a UAV agent. Once the UAV agent arrives at the delivery location, the healthcare facility agent is
able to receive the package.

4.3 Path Planning and Coordination Mechanism
In the previous section, the agents present in the multi-agent system are introduced. This section will elaborate
on the path planning and coordination mechanism utilised by the UAS Operator Agent. We modelled the path
planning of UAV agents as a Multi-Agent Path Finding (MAPF) problem. The path planning and coordination
mechanism consists of two parts, which are the single-agent planner and the multi-agent planner. For the multi-
agent path planning, Windowed Cooperative (WC) planning has been used, which is discussed in section 4.3.1.
For the single-agent planner, Safe Interval Path Planning (SIPP) has been used, which is elaborated upon in
section 4.3.2.

4.3.1 Windowed Cooperative Planning

For the multi-agent path planning and coordination algorithm, we have selected Windowed Cooperative (WC)
Planning. WC allows us to plan paths online, and incorporate and change mission prioritisation during planning.
The algorithm can be found in Algorithm 1. The multi-agent cooperative path planning occurs in windows,
where the window size w is fixed to a predefined size. A window is a time interval for which the constraints of the
previously planned agent are considered for the planning of an agent. After this window, the remaining paths
of the previously planned agents are not reserved. Therefore, conflicts that would occur after this window are
not resolved in the planning window. Only conflicts occurring during the window are resolved. The agent will
be following its path until replanning occurs, which is halfway through the window, with k = w

2 . (Re-)planning
occurs in line 7 for Algorithm 1. If (re-)planning is true, the path planning order is assigned based on the
priority of the agents. The paths of agents are planned sequentially using the individual agent planner, which

8

is in our research SIPP. The priority order of agents is based on the criteria discussed in section 4.2. After
assigning the priority order of the agents, the lists of both static and dynamic obstacles are updated. Static
obstacles are unexpected obstacles that will be introduced in the current path planning window and dynamic
obstacles are the paths of previously planned agents. Before the complete replanning cycle, constraints from
the previous planning window are partially taken into account in the current planning window. In our work,
if a UAV agent is travelling on an edge during replanning, the agent will follow the previously computed plan
until the next vertex, and replanning for this agent will occur from this vertex onwards. This indicates that
the path from the preceding window is partially reserved for the current window. UAV agents are only allowed
to travel to the neighbouring vertex when they enter an edge with the imposed speed by the operator agent,
and therefore no additional speed changes along this edge are allowed. After assigning the priority order and
updating the static and dynamic obstacles, the replanning of all agents can commence. For the individual
planning of agents, SIPP is used, with the following input information: starting position (nstart), starting time
(tstart), starting velocity (Vstart), and starting heading (ψstart). This is needed to compute a feasible trajectory
for the UAV agent, considering the kinematic constraints. After (re-)planning, the path of the agent will be
updated. This means that the initial path is disregarded and the new path is assigned to the agent. To ensure
that agents head in the correct direction the single agent path planning is executed from the UAV’s current
starting position to its goal position, with only taking into account the constraints of the previously planned
agent for the current window.

Besides, a drawback of windowed planning is the potential for bottleneck situations, as agents’ paths are planned
sequentially and constraints from previously planned agents could result in not being able to find a feasible path.
This issue can be resolved by using deterministic re-scheduling [28]. If the planner is not able to find a path
for an agent due to higher-priority reservations from other agents, that agent’s priority is raised to the highest
level during replanning. This is done to allow the agent to plan its path with a minimal number of constraints,
increasing its success in finding a feasible path. After resorting the priority order of the agents, the previously
planned paths are removed from both the set of paths, as well as from the dynamic obstacle list. Within one
window multiple reschedules can take place, until a feasible set of paths for all agents is found. In case no
successful path is found, the simulation is set to be unsuccessful.

Algorithm 1 Windowed Cooperative Safe Interval Path Planning
1: Input:
2: Set of agents A, Graph Urban Environment G(V,E), Dynamic Obstacle List DO,
3: Static Obstacle List SO
4: Output:
5: Set of paths Pa for each agent ai, a ∈ A
6: Function:
7: if Planning is True: then
8: PlanningSchedule = sort(A, prioritisation criteria)
9: SO.update()

10: DO.update(Pa) # Update DO using previously computed Pa

11: Pa = {}
12: while Not all paths found do
13: for each ai in A do
14: path = SIPP(nstart, tstart, Vstart, ψstart, G(V,E), DO, SO)
15: if path found then
16: Pa.append(path)
17: DO.update(Pa)
18: if path not found then
19: PlanningSchedule = Re-sort(A) # using Deterministic Rescheduling
20: Pa = {}
21: DO.remove(Pa) # Remove new planned paths before starting replanning
22: if no new PlanningSchedule is found then
23: SimulationFailed is True

4.3.2 Safe Interval Path Planning

To plan the paths of individual agents, we utilise SIPP [13], a path planning method developed for path planning
in dynamic environments. Our method is developed in Python and is based on the open-source code by Bose,
Markelov and Noyes [29]. SIPP offers us the benefit of not using a state for every graph location and time step
pair, but uses a grouping of collision-free time steps for every location. This grouping is called a safe interval,

9

Figure 5: Example path of an agent on a graph G(V,E) and the resulting collision and safe intervals

and represents the time interval during which the agent can occupy the location. A visual representation of how
safe intervals are updated is given Figure 5. The number of safe time steps for a location can be unbounded,
but the number of safe intervals per location is finite and generally small, which results in a smaller search
space compared to A*. In order to track the movement of dynamic obstacles, the paths of agents are stored in
a dynamic obstacle list. In our work, dynamic obstacles are agents that have a higher priority than the planned
agent. Standard SIPP relies on the assumption that agents are able to stop instantaneously. This assumption
does not hold when considering kinematic constraints from UAV agents are considered and must be taken into
account accordingly. An extension of SIPP, SIPP with Kinodynamic Constraints [17], relaxes the assumption
of agents being able to stop instantaneously. In our work, we will also relax this assumption. Besides, SIPP
also relies on the fact that an agent is able to wait at locations. In our work, UAV agents are prohibited to wait
during flights, as this is deemed to be inefficient in terms of energy usage and flight time.

Planning with safe intervals consists of two phases, which are the graph construction and the graph search. For
the graph construction, a timeline for each configuration is created using the paths of previously planned agents.
As we incorporate variable speeds of agents, the configuration consists of the graph location and horizontal speed
of the vertex or edge. Additionally, we also incorporated safe intervals on edges, to allow for agents following each
other on the same edge when travelling in the same direction. If they would be travelling in opposite directions,
constraints would be imposed. After the graph construction, the graph search is performed in order to find a
path for a UAV agent. For the graph search, an overview of the algorithm is illustrated in Figure 6 using a flow
diagram. On the left-hand side the function findPath is illustrated. For this algorithm, the heuristic function
is adapted to incorporate both time and distance in equal weights, using an Euclidean distance heuristic. The
distance between two vertices is calculated using the Haversine formula, which also incorporates altitude. The
findpath function is used to find a path from a starting position to a goal position, given the starting position,
time, speed and heading of an agent. The function itself is not altered from the original function and more
detailed information regarding this function can be found in Part III, Supporting Work, Chapter 1. In order to
find a path successors are created from a state, beginning with the starting state. A successor is a state that
can be reached from the current state by taking a valid action. In our work, the function to create successor
states is adapted for our use case, where the getSuccessor function is illustrated in flow diagram Figure 6 on
the right-hand side. During the creation of successors, it is ensured that the to-be-performed motion is feasible
considering the kinematic constraints of the agent. This is necessary, as the agent is not able to instantaneously
change its speed. Besides, healthcare facility locations are seen as safe positions, meaning that no collisions
occur at these vertices. In our work, multiple UAVs are allowed to deliver packages at the same time. For all
other locations, if a collision occurs at timestep t or the separation distance is violated during the motion, the
successor is disregarded.

10

Figure 6: Flow diagram of the findPath function on the left hand side, including the getSuccessors function on
the right hand side

5 Experimental Setup
In this section, we present the experimental setup to simulate the transportation of medical supplies by use of
UAVs in urban environments. The operations are based on the case description provided in section 3, where
the operating time window for each experiment is set to 1 hour. To analyse the performance of the multi-
agent model, several experiments are executed. Each experiment is performed using the urban environment
representations, as described in the environment specification in section 4.1. The agents present in the multi-
agent system, as described in section 4.2, are the same for all experiments. Every experiment consists of a set
of scenarios, and every scenario is a set of different independent variable settings. An overview of all scenarios
can be found in Part III, Supporting Work, Chapter 2. In order to have a constant coefficient of variation each
scenario is simulated 100-200 times, which ensures reliable results. More details regarding the variability of
simulation results can be found in Part III, Supporting Work, Chapter 3. This section will first elaborate on the
independent variables and key performance indicators, and afterwards discuss the four different experiments.

5.1 Independent Variables
For each experiment, a subset of independent variables is varied in order to analyse the multi-agent system,
which are as follows:

• Window Size: is the window size selected for the WC-Planning Algorithm. Three different window sizes
are used, being 20, 30 and 40 [s] in size.

• Urban Environment Type: Two different urban environments are used, referred to as a small and a
large environment, as described in section 4.1.

• Demand Rate: is the number of total packages requested per medical facility per hour. Three different
demand rates are used, which are 2, 4 and 6 packages/facility/hour.

• Number of Available Layers: is the number of available layers for operations in the urban environment.
Three different values are used, which are 1, 3 and 5 available layers. If the number of layers is not varied,

11

the standard number of available layers is set to 3. As described in section 4.2, the UAVs will be delivering
packages in the lowest layer, where both the warehouse and healthcare facility locations are situated. Other
layers are used as alternatives when the lower layer is occupied.

• Urgency Distribution for Packages: is the percentage of total packages across all facilities that have
the package type urgent. Three different distributions are used, being 10%, 25% and 50%. If the urgency
distribution is not altered, a distribution of 25% is selected.

• Priority Planning Order: is the priority planning ordering method used by the UAS Operator. Three
distinct planning orders exist which are Mission Type and Request Time (MTRT) ordering, Request Time
(RT) ordering, and Random (R) ordering. If the priority planning order is kept constant, the standard
priority planning order is MTRT.

• Number of unexpected obstacles is the number of unexpected static obstacles introduced during path
planning. An unexpected obstacle will be represented by unavailable vertices. 5 different values are used,
being 0, 5, 10, 15, and 20. For experiments A, B, and D, the number of unexpected obstacles is set to 0.

5.2 Key Performance Indicators
To analyse the performance and results of the different experiments, the following Key Performance Indicators
are measured for the subsequent experiments:

• Computational Time: is the computational time [s] for planning the total path of each UAV agent.
• Nodes Explored: is the number of nodes explored during the path planning search of a UAV agent
• Success rate: is the number of successful simulations, over the total number of simulations per scenario.

A simulation is deemed successful if all delivery missions within that simulation are completed without
collisions.

• Travel Distance: is the travelled distance [m] of each UAV agent.
• Travel Time: is the total travel time [s], including delivery, per UAV agent.
• Average Speed: is the average speed [m/s] of each UAV agent.
• Delivery Time Package: is the delivery time [s] measured from the time of request until the time of

delivery.

5.3 Experiment A: Window Size
The first experiment focuses on investigating the impact of the window size used for WC-SIPP. The selected
window size during path planning is a critical parameter that can significantly influence both the success rate
and computational performance of the algorithm. A larger window size allows the operator to anticipate and
plan for a larger part of upcoming dynamic obstacles, which can lead to fewer bottleneck situations and a higher
success rate. However, this advantage comes with a possible increased computational cost, as planning over a
larger time horizon with a larger set of constraints can be more computationally heavy. However, with a larger
window size, replanning needs to occur less often, which could have a positive influence on the computational
time. It is expected that if a path of an agent cannot be found easily and more nodes need to be explored to
plan around imposed constraints, reducing the window size will have a positive impact on the computational
time. However, if a path can be found relatively easily for agents, computing the motions during path finding
will have the largest influence on the computational time, and therefore increasing the window size will lead to
a lower computational time. Within the first experiment, we aim to select the most suitable window size for
both the small and large urban environments. This is achieved by varying the window size (20, 30, 40) and the
demand rate per medical facility (2, 4, 6). A window size of up to a maximum of 40 seconds is selected, as
we would like to allow for the incorporation of urgent missions, we need to allow for timely change of mission
prioritisation. With a maximum window size of 40, the agent is capable of travelling a maximum distance
of 360 meters before replanning occurs. The other independent variables are kept constant, with 3 available
layers, 25% urgency distribution for packages, mission type and request time priority planning order, and no
introduced unexpected obstacles. The results of this experiment are presented in section 6.1. The hypotheses
are described below and are tested with a significance level of α = 0.05. Each hypothesis is applicable to all
demand scenarios.

• Hypothesis HA1: A window size of 40 seconds will lead to a higher success rate compared to window
sizes of 20 and 30 seconds for WC-SIPP.

• Hypothesis HA2: A window size of 40 seconds will lead to lower computational times compared to
window sizes of 20 and 30 seconds for WC-SIPP.

• Hypothesis HA3: A window size of 40 seconds will lead to a smaller number of explored nodes compared
to window sizes of 20 and 30 seconds for WC-SIPP.

12

5.4 Experiment B: Multi-layer path planning
In the second experiment, we aim to investigate the scalability and performance of multi-layered path planning
in 3D by varying the number of available layers for both the small and large environments. The scalability of
the algorithm in multi-layered space is of interest, as it reflects the ability to handle larger and more intricate
urban environments. By adjusting the number of layers (1, 3, 5) for various demand rates (2, 4, 6), we seek to
analyse how the performance of the algorithm scales and assess the impact on the KPIs of the drone delivery
system. The highest-performing window size, from experiment 1, will be selected for this and the following
experiments. The other independent variables are kept constant. The results of this experiment are presented
in section 6.2. The hypotheses are described below and are tested with a significance level of α = 0.05. Each
hypothesis is applicable to all demand scenarios.

• Hypothesis HB1: Increasing the number of layers will lead to higher computational times.
• Hypothesis HB2: Increasing the number of layers will lead to faster delivery times.
• Hypothesis HB3: Path planning using multiple layers will lead to a higher success rate compared to

path planning in a single layer.

5.5 Experiment C: Path planning in a dynamic environment
In the third experiment, we aim to evaluate the online path planning and coordination mechanism to effectively
plan paths in dynamic environments. To achieve this, we introduce static obstacles into the environment, varying
in number of obstacles introduced. The objective is to assess how well the algorithm is able to adapt to unforeseen
obstacles, while maintaining efficient path planning for drone delivery missions. By simulating scenarios with
strategically placed static obstacles, we aim to simulate real-world conditions, where the environment can change
rapidly. Unexpected obstacles are placed at vertices that are frequently visited by UAVs. Unexpected obstacles
are introduced at random time steps with U (0, 3600), and are placed at strategically placed locations, to increase
their impact on the operation. Obstacles placed at less frequently visited vertices have a lower impact. When
an obstacle is scheduled to appear within the current planning window, the UAS Operator is made aware. This
approach allows the operator to adjust flight plans accordingly. For this experiment, the number of unexpected
obstacles (0, 5, 10, 15, 20) is varied. The obstacle size is set to be 1 unavailable vertex for a duration of 3
windows. The other independent variables are kept constant. It must be noted that for this experiment, we
conduct a total of 200 simulations per scenario to obtain a consistent coefficient of variance. The results of this
experiment are presented in section 6.3. The hypotheses are described below and are tested with a significance
level of α = 0.05. Each hypothesis is applicable to all demand scenarios.

• Hypothesis HC1: Increasing the number of unexpected obstacles up to 20 leads to higher computational
times.

• Hypothesis HC2: Increasing the number of unexpected obstacles up to 20 leads to an increase in delivery
time.

5.6 Experiment D: Priority Planning Order
In the fourth experiment, we aim to investigate the effect of different priority planning orders on the performance
of the path planning algorithm for the drone delivery system. Specifically, we evaluate three different methods
for prioritising UAVs and analyse the impact on the operations. In the previous experiments, the priority
planning order was determined by considering the mission type of UAVs (urgent, standard) and their package
request time. However, in this experiment, we will explore two different methods for prioritising UAVs. The first
method involves prioritising UAVs solely based on their request time, allowing us to investigate the influence
of prioritising mission types. The second method entails assigning UAVs a random priority order, providing
insight into the effect of prioritising request time. Additionally, we will vary the distribution between urgent
and standard packages to asses how different ratios of urgent to standard packages influence the performance
of the priority planning ordering method. Three different urgency distributions are varied 10%, 25% and 50%
for different demand rates and priority planning orders. The other independent constants are kept constant.
The results of this experiment are presented in section 6.4. The hypotheses are described below and are tested
with a significance level of α = 0.05. Each hypothesis is applicable to all demand scenarios.

• Hypothesis HD1: The distribution ratio between urgent and standard packages influences the delivery
time of urgent missions compared to standard missions, when prioritising UAVs based on mission type
and request time.

• Hypothesis HD2: Prioritising UAVs based on mission type and request time improves the delivery time of
UAVs with urgent missions compared to prioritising based solely on request time or random prioritisation.

• Hypothesis HD3: Prioritising UAVs based on request time improves the delivery time of UAVs compared
to random prioritisation

13

6 Results and Discussion
In this section, we present the findings from the experiments to evaluate the performance of our path planning
and coordination mechanism for UAVs delivering medical supplies under varying conditions. The results are
structured into four subsections, each dedicated to a specific experiment.

6.1 Experiment A:Window Size
The first experiment focuses on investigating the impact of the window size used for WC-SIPP on the algorithm’s
performance. In this experiment, we aim to select the most suitable window size for both small and large
environments. In Figure 7 and Figure 8, the success rate of the algorithm is shown for both the small and
large environments, respectively. The success rate is deemed to be the most critical KPI, as it demonstrates
the ability of the MAPF algorithm to consistently find viable and collision-free paths for all UAVs within a
simulation.

Figure 7: Simulation success rate for the small
environment comparing different window sizes
(20,30,40) for various demand rates

Figure 8: Simulation success rate for the large
environment comparing different window sizes
(20,30,40) for various demand rates

It can be seen that for both the small and large urban environment, a window size of 40 seconds outperforms the
other window sizes in terms of success rate for all demand scenarios, which supports hypothesis HA1. However,
for the large environment with a demand rate of 6, the same success rate is obtained when comparing window
sizes 30 and 40. Therefore, a closer look is taken into the computational performance and explored nodes during
path planning for the large environment. The computational time and explored nodes for various window sizes
and demand rates are visualised in Figure 9 and Figure 10. Here it is illustrated that for every demand scenario,
a window size of 40 offers better computational performance compared to the other window sizes. A better
computational performance is directly related to the fact that for a window size of 40, replanning occurs less
frequently, and therefore the total number of explored nodes is less considering the complete path search. Even
though more constraints are taken into account during path planning with a larger window size, the effect in
increased explored nodes is marginal when compared to an increased replanning frequency. This indicates that
a path can be found close to the optimal path, as the number of explored nodes does not increase significantly,
when increasing the demand rate. The computational time and explored nodes results for various window sizes
and demand rates for the small environment can be found in Part III, Supporting Work, Chapter 4.

14

Figure 9: Computational time with varying win-
dow sizes and demand rates for the large environ-
ment

Figure 10: Explored nodes during path search with
varying window sizes and demand rates for the
large environment

In order to test the statistical significance of the experiment results, the Kruskal Wallis statistical test [30] is
used. This test is utilised as the data from 3 data groups is numerical, not normally distributed and unpaired.
The p-values for both environments and all demand scenarios are given in Table 1. Green values indicate that
there is a significant difference is obtained, with p-value < 0.05, while red values indicate there is no significant
difference obtained, p-value > 0.05. In Table 1 it can be seen that for both environments and all demand sce-
narios, statistical significance is obtained, except for one scenario. This is for the small environment and highest
demand rate when considering the computational time KPI. This could partially be attributed to the fact that
for the small environment with the highest demand rate, the number of UAVs operating at the same time in
close proximity is larger compared to other scenarios. The UAS Operator ensures safety separation during path
planning, which involves checking for violations in separation distances for each possible motion. Checking for
violations in safety separation occurs during the generation of successors, as described in Figure 6. This process
relies on calculating the distance between the exact location of active UAVs. The locations of active UAVs are
stored in a separation list, which needs to be searched for every time step per possible motion. This process
is computationally inefficient, and could potentially lead to prolonged computational times, as larger window
sizes require the storage of more constraints. However, further research is necessary to confirm this explanation
and determine the effect of this function.

Besides the Kruskal-Wallis statistical test [30], the Vargha-Delaney [31] effect size test is also conducted to
assess the magnitude of differences between the different results. Using the Vargha-Delaney test a small effect
size is observed when considering the computational time and explored nodes for a window size of 20 and 40.
This supports the observed results in Figure 9 and Figure 10. Therefore, we accept both HA2 and HA3.

Table 1: Statistical analysis comparing the performance of the algorithm for window sizes 20, 30, and 40, varying
the environment type and demand rate. Values given in the table are p-values obtained from the Kruskal Wallis
statistical test

Environment Small Large
Demand rate 2 4 6 2 4 6
KPI
Computational Time 3.4E-06 6.1E-03 0.62 3.7E-08 1.9E-12 3.7E-14
Explored Nodes 1.0E-04 4.3E-08 6.7E-11 1.4E-07 5.0E-15 1.4E-25

6.2 Experiment B: Multi-layer path planning
For the second experiment, the focus is on investigating the scalability and performance of multi-layer path
planning. This is tested by varying the number of available layers for various demand rates for both environ-
ments. In this section, we primarily focus on the results from the large environment, as this environment better
displays the scalability and performance of multi-layer path planning. The results for the small environment
can be found in Part III, Supporting Work, Chapter 5. Figure 11 and Figure 12 illustrate the effect on the
computational time and explored nodes for the large environment. It is evident from these results that as the
number of layers increases, the computational performance does not scale well.

15

A statistical analysis is conducted using the Kruskal-Wallis statistical test [30] for various demand rates and
environments, comparing path planning for different numbers of available layers, which can be seen in Table 2.
Table 2 supports our finding, showing that as the number of layers increases, computational times significantly
increases across all demand rates. Therefore, we accept HB1. Besides the Kruskal-Wallis statistical test [30],
the Vargha-Delaney [31] effect size test is also conducted to assess the magnitude of differences between the
different results. Using this test, it can be concluded for computational time KPI the effect size is large for all
scenarios when increasing the number of layers. For the explored nodes KPI, the effect size is normal to large.
An overview of the A-values can be found in Part III, Supporting Work, Chapter 5.

The increase in computational time for varying the number of layers can be explained by considering the number
of explored nodes, as shown in Figure 12. As the number of layers increases, the number of explored nodes
increases rapidly, resulting in poor computational performance. This indicates that the current heuristic does
not search the 3D urban environment graph in an efficient manner.

Moreover, we can see in Table 2 that for the other KPIs only a significant difference is observed for the average
speed for both the small and large environment, except for the lowest demand rate. However, when using the
Varhga-Delaney effect size test, the effect size of increasing the number of layers is negligible on the average
speed. Furthermore, it can be noticed that the delivery time KPI is not significantly improved, which leads to
rejecting HB2.

Figure 11: Computational time with varying num-
ber of layers and demand rates for the large envi-
ronment

Figure 12: Explored nodes during path search with
varying number of layers and demand rates for the
large environment

Table 2: Statistical analysis comparing the performance of the algorithm for different numbers of available
layers, varying the demand rates. Values given in the table are p-values obtained from the Kruskal Wallis
statistical test

Environment Small Large
Demand Rate 2 4 6 2 4 6
KPI
Computational Time 3.4E-81 2.1E-185 0.0E+00 6.8E-155 0.0E+00 4.6E-297
Explored Nodes 1.8E-27 0.0E+00 0.0E+00 4.2E-41 8.8E-80 8.6E-127
Travel Distance 0.85 0.97 0.71 0.96 0.91 0.93
Travel Time 0.94 0.74 0.86 0.98 0.92 0.86
Average Speed 0.01 0.02 1.1E-05 0.17 1.9E-06 1.9E-11
Delivery Time 0.86 0.96 0.95 0.98 0.96 0.96

Besides the scalability and performance of the path planning and coordination algorithm, it is also interesting
to analyse the behaviour of UAV agents in multi-layer path planning. An overview of the travel time spent
in each layer for various number of available layers is given in Table 3. In this overview, it can be seen that
when increasing the number of available layers to operate in, the UAV agent prefers to still fly predominantly
in the lowest altitude layer. This behaviour is expected as both the warehouse and medical facility locations
are located in this layer. In Table 4 the number of average layer changes per simulation is given for both the

16

small and large environments. The number of layer changes is counted per change of layer, indicating that a
change from layer 1 to layer 2 and back to layer 1 is counted as 2 layer changes. In Table 4, it can be observed
that the average number of layer changes is small. At first glance, it may seem unnecessary to incorporate a
multi-layer environment, as the UAVs predominantly fly in the bottom layer, and the number of layer changes is
small. However, upon examining the success rate for various number of available layers for both environments,
it becomes apparent that the inclusion of more than one layer is warranted. The success rate for both the small
and large environment is shown in Figure 13 and Figure 14, respectively. It can be observed that the success
rate is lower for the 1 layer environment compared to the multiple vertical layer environments, which supports
HB3. Therefore, it can be concluded that the upper layers are mainly used to avoid conflicts and are only visited
shortly. After avoiding a conflict, the UAVs are returning to the bottom layer.

Table 3: Overview of travel time spent in each layer for a varying number of available layers (1,3,5) for both
the small and large environment.

Time spent [%]
Environment Layers Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Small 1 100 - - - -
Small 3 96.0 3.5 0.5 - -
Small 5 94.3 3.7 1.4 0.6 0
Large 1 100 - - - -
Large 3 98.2 1.4 0.4 - -
Large 5 98.0 1.6 0.3 0.09 0.0009

Table 4: Overview of the average number of layer changes per simulation for varying number of available layers
for both the small and large environment

Changes between layers
Environment Layers Layers 1-2 Layers 2-3 Layers 3-4 Layers 4-5
Small 3 8.9 1.9 - -
Small 5 8.7 4.0 2.1 0
Large 3 6.5 2.7 - -
Large 5 7.7 3.5 1.5 0.01

Figure 13: Simulation success rate for the small
environment comparing different number of avail-
able layers (1,3,5) for various demand rates

Figure 14: Simulation success rate for the large en-
vironment comparing different number of available
layers (1,3,5) for various demand rates

Lastly, in order to analyse the flown routes and average speed for UAV agents, heat maps are constructed.
In this section, only the results from the large environment containing 1 layer are shown to demonstrate the
behaviour of UAV agents. The results for the small and large environments with various number of available
layers can be found in Part III, Supporting Work, Chapter 5. The first heat map, presented in Figure 15, shows
the average number of times nodes and edges are visited across all demand scenarios. The second heat map,
presented in Figure 16, shows the average speed across all demand scenarios. These figures illustrate that UAV

17

agents prefer to fly direct routes from warehouse locations to medical facilities and vice versa. Parts of the
environment that contain many changes of directions and that are not directly on the route of agents are visited
less frequently. This can be explained as the flying speed of UAVs is more restricted in these parts, which would
result in longer travel times. This behaviour is expected as the objective of the UAS Operator agent is to plan
paths of UAVs with minimal travel time. It is also evident that certain parts of the environment are never
visited, as they are not directly on the route of agents. In our MAS, locations of warehouses have been selected
more arbitrarily, due to the absence of existing warehouses. It is anticipated that future warehouses will be
situated on the periphery of the city. Analysis of Figure 15 suggests that the placement of warehouses impacts
the flown routes by UAVs. Therefore, it is imperative to consider these routes when determining warehouse
locations.

Figure 15: Heat map of the flown paths for the
large environment with 1 available layer, for all
demand scenarios, showing the number of times a
node and edge is visited.

Figure 16: Heat map of the flown paths for the
large environment with 1 available layer, for all
demand scenarios, showing the average speed per
node and edge.

6.3 Experiment C: Path planning in a dynamic environment
For the third experiment, we aim to assess the effectiveness of online path planning and coordination in dy-
namically changing environments. To accomplish this, we introduce static obstacles varying in number. Static
obstacles are strategically placed and have a size of 1 vertex and a duration of 3 windows (120 seconds). For
the locations of unexpected obstacles, the reader is referred to Part III, Supporting Work, Chapter 6. The
number of unexpected obstacles introduced ranges from 0 to 20 obstacles, with incremental steps of 5. The goal
is to evaluate the algorithm’s ability to adjust to unexpected obstacles while ensuring efficient path planning
for drone delivery. Figure 17 and Figure 18 show the success rate of the simulation model for various demand
rates with an increasing number of unexpected obstacles introduced into the environment. As can be seen from
both figures the success rate does not decrease significantly with an increasing number of unexpected obstacles
for a constant demand rate.

Next, we analyse the performance KPIs of the algorithm when exposed to an increasing number of unexpected
obstacles. A statistical analysis is conducted using the Kruskal-Wallis statistical test [30] for various demand
rates, for which the results can be seen in Table 5. Here it is demonstrated that for a varying number of
unexpected obstacles, only a significant difference can be observed for the computational time KPI for both
environments and all demand rates. For the average speed KPI, only for the small environment, a significant
difference can be observed. However, when using the Varhga-Delaney effect size test [31], the observed effect
size for the average speed KPI, is negligible. For the computational time, a negligible effect is observed, except
for the large environment with a demand rate of 2. Here a small effect is observed. An overview of the results
of the Vargha-Delaney test is shown in Table 6. Combining these insights, we reject both hypotheses HC2 and
HC3.

18

Figure 17: Simulation success rate for the small
environment for various demand rates and number
of unexpected obstacles

Figure 18: Simulation success rate for the large
environment for various demand rates and number
of unexpected obstacles

Table 5: Statistical analysis comparing the performance of the algorithm for different numbers of introduced
unexpected obstacles, varying the demand rates. Values given in the table are p-values obtained from the
Kruskal Wallis statistical test

Environment Small Large
Demand Rate 2 4 6 2 4 6
KPI
Computational Time 1.6E-05 1.5E-16 3.0E-04 8.4E-29 6.6E-34 3.4E-34
Explored Nodes 0.94 0.88 0.93 1.00 1.00 1.00
Travel Distance 0.98 0.97 0.95 1.00 1.00 1.00
Travel Time 0.86 0.64 0.62 1.00 1.00 0.96
Average Speed 4.81E-02 2.93E-03 1.50E-05 0.95 0.96 0.53
Delivery Time 1.00 1.00 0.99 1.00 1.00 0.92

Table 6: Statistical analysis comparing the performance of the algorithm for 0 and 20 introduced unexpected
obstacles, varying the demand rates. Values given in the table are A-values obtained from the Vargha Delaney
effect size test

Environment Small Large
Demand Rate 2 4 6 2 4 6
KPI
Computational Time 0.55 N 0.5 N 0.45 N 0.59 S 0.54 N 0.52 N
Average Speed 0.55 N 0.55 N 0.55 N 0.5 N 0.5 N 0.51 N

Next, the behaviour of UAV agents is analysed when introducing up to 20 unexpected obstacles into the
environment. In Table 7 an overview is given of the travel time spent in each layer for both the small and large
environment when introducing 0 and 20 unexpected obstacles. It can be observed that in case 20 obstacles
are introduced into both environments, the travel time spent in the bottom layer is reduced, while the travel
time spent in the second layer is increased. UAV agents briefly move to the second layer in order to avoid the
unexpected obstacles, that are primarily introduced into the bottom layer. This effect can also be observed
when measuring the number of layer changes, which is given in Table 8. The number of layer changes from
the bottom layer to the second layer is increased on average with 42.3% and 38.3% for the small and large
environments, respectively. The increased time spent in the second layer also becomes evident when comparing
the heat maps of the flown paths for the small environment. The heat maps of the second flight layer for the
small environment with 0 and 20 introduced unexpected obstacles are shown in Figure 19 and Figure 20. It can
be observed that the nodes and edges in this layer are visited more frequently when introducing 20 obstacles
compared to 0 obstacles.

19

Table 7: Overview of travel time spent in each layer for both the small and large environment with 0 and 20
unexpected obstacles.

Time spent [%]
0 Obstacles 20 Obstacles

Environment Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3
Small 96.0 3.5 0.5 94.6 (-1.4) 4.8 (+1.3) 0.6 (+0.1)
Large 98.2 1.4 0.4 97.7 (-0.5) 1.9 (+0.5) 0.4

Table 8: Overview of the number of layer changes per simulation for both the small and large environment with
0 and 20 unexpected obstacles.

Changes between layers
0 Obstacles 20 Obstacles

Environment 10-20 20-30 10-20 20-30
Small 8.8 1.9 12.6 (+3.8) 2.1 (+0.2)
Large 6.5 2.7 8.9 (+2.4) 2.8 (+0.1)

Figure 19: Heat map of the flown paths for the
large environment with 3 available layers, for all
demand scenarios, showing the number of times a
node and edge is visited for layer altitude 20 with
0 unexpected obstacles

Figure 20: Heat map of the flown paths for the
large environment with 3 available layers, for all
demand scenarios, showing the number of times a
node and edge is visited for layer altitude 20 with
20 unexpected obstacles

6.4 Experiment D: Priority Planning Order
For the fourth and last experiment, we focus on investigating the effect of different priority planning in order
to assess the performance of the path planning algorithm for the drone delivery system. The experiments are
only performed considering the large environment. Three different methods for prioritising UAVs are analysed,
which are mission type and request time (MTRT) prioritisation, request time (RT) prioritisation, and random
(R) prioritisation. Additionally, we will vary the distribution between urgent and standard packages (10%, 25%,
50%). In this experiment, we first investigate if prioritising urgent missions over standard missions leads to a
significant difference in UAV performance. A statistical analysis is conducted using the Mann-Whitney U test
[32] for various demand rates and urgency distributions, for which an overview of the calculated p-values is given
in Table 9. Here it can be seen that for various demand rates and urgency distribution, no significant difference
in UAV performance can be observed. Therefore, we reject HD1. This indicates that assigning priority based
on mission type does not result in a significant difference in UAV performance in our MAS when comparing
travel distance, travel time, average speed, and delivery time. This could be attributed to the fact that UAVs

20

have the advantage of avoiding conflicts by changing layers for a short period of time. Changing altitude during
operation only leads to a small increase in travel distance, travel time and delivery time, which is deemed to be
insignificant in our operations. For a visual comparison measuring the difference in performance of UAVs with
urgent and standard missions, the reader is referred to Part III, Supporting Work, Chapter 7.

Table 9: Statistical analysis comparing UAV performance for urgent and standard missions for different package
urgency distribution and demand rates. The priority planning order method used is mission type and request
time prioritisation. Values given in the table are p-values obtained from the Mann-Whitney U statistical test

Demand Rate 2 4 6
Urgency Distribution 10 25 50 10 25 50 10 25 50
KPI
Travel Distance 0.78 0.52 0.69 0.62 0.23 0.37 0.7 0.98 0.41
Travel Time 0.72 0.44 0.98 0.78 0.32 0.39 0.71 0.89 0.38
Average Speed 0.97 0.9 0.3 0.45 0.84 0.29 0.87 0.74 0.93
Delivery Time 0.47 0.25 0.14 0.93 0.27 0.63 0.88 0.099 0.79

Furthermore, we investigate if prioritising UAVs based on mission type and request time significantly improves
the performance of UAVs with urgent missions compared to prioritising based solely on request time or random
prioritisation. A statistical analysis is conducted using the Kruskal Wallis test [30] for various demand rates
and urgency distributions, for which an overview is given in Table 10. Here it can be seen that for various
demand rates and urgency distribution, no significant difference is observed for prioritising urgent mission types
when compared to assigning prioritisation based solely on request time and compared to assigning random
prioritisation. This leads to rejecting HD2. Similar to the previous investigation, this result could be attributed
to the fact that UAVs have the advantage of quickly changing layers to avoid conflicts, with no significant
increases in travel distance, travel time and delivery time.

Table 10: Statistical analysis comparing UAV urgent mission performance for different priority planning ordering
methods (MTRT, RT, R) for different package urgency distribution and demand rates. Values given in the table
are p-values obtained from the Kruskal Wallis statistical test

Demand Rate 2 4 6
Urgency Distribution 10 25 50 10 25 50 10 25 50
KPI
Travel Distance 0.97 0.85 0.96 0.79 0.93 0.57 0.78 0.65 0.83
Travel Time 0.91 0.83 0.94 0.62 0.88 0.25 0.60 0.32 0.7
Average Speed 0.97 0.94 0.76 0.94 0.36 0.83 0.62 0.37 0.74
Delivery Time 0.95 0.99 0.82 0.98 0.96 0.99 0.98 0.99 0.98

Last, we investigate if prioritising UAVs based on request time significantly improves the performance of UAVs
compared to assigning prioritisation randomly. A statistical analysis is conducted using the Mann-Whitney
U statistical test [32], where we compare the UAV performance for request time prioritisation to random
prioritisation for various demand rates. An overview of the p-values can be seen in Table 11. In this overview, it
can be seen that there is a significant difference in travel time and average speed when considering a demand rate
of 4. When considering a demand rate of 6, the travel distance, travel time, and average speed are significantly
different. However, when using the Vargha-Delaney A-test [31], a negligible effect size is measured. This
indicates that even though there is a significant difference for the specific cases, the increase in performance is
negligible. Therefore, we reject HD3. Combining the findings from this experiment, it can be concluded that
in our model of operations, assigning priority based on either mission type or request time does not lead to
improved performance.

21

Table 11: Statistical analysis comparing UAV performance for different priority planning ordering methods
(RT, R) for different demand rates. Values given in the table are p-values obtained from the Mann-Whitney U
statistical test and A-values obtained from the Vargha-Delaney effect size test

p-value A-value
Demand Rate 2 4 6 2 4 6
KPI
Travel Distance 0.43 0.13 0.02 0.51 0.51 0.51
Travel Time 0.24 0.01 4.5E-04 0.51 0.52 0.52
Average Speed 0.30 1.9E-03 7.7E-07 0.51 0.52 0.53
Delivery Time 0.88 0.73 0.68 0.50 0.50 0.50

6.5 Discussion
This section discusses the obtained results from each experiment. We aim to gain valuable insights and under-
stand the implications of our findings within the large scope of this context. In total four different experiments
were conducted to test different aspects of the multi-agent system. For the first experiment, we aimed to in-
vestigate the impact of selecting different window sizes for WC-SIPP. For this experiment, it was demonstrated
that an increasing window size leads to a higher success rate. The operator is able to plan UAVs by taking more
constraints into account, leading to fewer bottleneck situations. From this experiment, it became evident that
a decrease in replanning frequency led to a lower computational time. This is noteworthy, as Silver [21] demon-
strates that for an increase in window size, a higher computational time is measured. In our work, calculating
the trajectory is computationally more heavy compared to taking into account constraints from other agents,
leading to this result. For further research, it needs to be explored at which point taking into account con-
straints from other agents would have computational drawbacks by increasing the window size and demand rate.

Furthermore, we investigated the scalability and performance of path planning in multiple layers. It became
evident that an increase in the number of available layers leads to an increase in computational time for both
the small and large environments. When comparing the results between the small and large environments,
an increase in computational time can be observed. This indicates that as the search space grows larger, the
computational time increases rapidly. The main reason for an increase in computational time when varying
the number of layers is the rapid increase in expanded nodes. Even though the number of available layers has
increased, the delivery time of UAVs has not improved. Combining these insights, improvements are needed for
the heuristic function, in order to allow for a more efficient search in the search space. The current Euclidean
heuristic incorporates both time and distance in equal weights. Using a more advanced heuristic could therefore
reduce the number of explored nodes and decrease the computational time when searching in 3D space. A
possibility would be to adjust the algorithm to primarily search in the bottom layer and only search in upper
layers when conflicts arise, as the majority of operations occur in the bottom layer. The upper layer however is
required in our environment, as planning in a single vertical layer environment leads to a decrease in success rate.

From this experiment it also became evident that in operations where UAVs are predominantly flying in the
bottom layer and using the upper layers to avoid conflicts, a horizontal spread is more beneficial in terms of
success rate of operations compared to a vertical spread. This can be observed when comparing the success rate
from the small environment with the large environment. It must be noted that the small environment contains 4
medical facilities in an area of 500 by 500 meters, while the large environment only contains 5 medical facilities
in an area of 750 by 1500 meters. When comparing the success rate for both environments, it can be observed
that the success rate is better for the large environment, even though more operations are considered. This
can be attributed to the fact that UAVs are spread more across the environment during operations and can
therefore more easily avoid conflicts and keep horizontal distance. When comparing an increase in the number
of available layers, no increase in success rate can be observed when comparing the 3 vertical layer environment
to the 5 vertical layer environment, demonstrating that a vertical spread in our operations is not as important
as having a horizontal spread.

Moreover, when considering UAV operations for medical last-mile delivery from warehouse locations to health-
care facilities in urban environments, it can be expected that larger urban environments will need to be consid-
ered for operations. This aligns with the work from Ho et al.[23], which examined a 14.35 by 17.1-kilometer area
with two planning layers and 30x30 meter voxels. Our model offers improved accuracy in representing paths
near delivery locations. However, as the environment size expands, careful consideration of the environment
representation as well as the number of available vertical layers is essential to maintain computational feasibility.

22

Besides, we demonstrated the capability of the online path planning and coordination mechanism to effectively
plan paths in dynamic environments. By introducing up to 20 static obstacles into the environment, we demon-
strated that the success rate does not decrease significantly. It must be noted for this experiment only one
type of static obstacle is introduced to demonstrate the capability of the algorithm to plan UAVs in a dynamic
environment. However, integrating more realistic uncertainty factors like weather conditions and changing reg-
ulatory restrictions, such as imposed no-fly zones, is needed to assess better the capability of the algorithm to
plan in dynamic and more realistic environments. Our model also assumes that the UAV is able to perfectly
follow the given trajectory, which is also an assumption that needs to be relaxed for real-world implementation.

For the final experiment, we investigated the influence of prioritising UAVs based on mission type and request
time. It became evident that for our model, prioritisation of agents based on either request time or mission type
did not influence the performance of the delivery model. Therefore, if an operator is considering the delivery
of short-distance packages, mission or request time prioritisation does not offer a decrease in delivery time.
However, it must be noted that the operations in this model are simplified, as only a time window of 1 hour
is considered with each UAV only performing one mission. Further analysis would be needed to assess if UAVs
performing multiple missions during a larger operation time window, would still lead to insignificant differences
in the performance of UAVs when prioritising them based on mission type and request time.

To summarize, the proposed path planning and coordination mechanism, WC-SIPP, is able to plan paths and
coordinate UAV agents in multi-layer 3D urban environments considering the delivery of medical supplies.
Planning in a multi-layer environment is beneficial for UAVs to avoid conflicts, while not increasing the delivery
time of packages. However, the total number of available layers should be considered carefully, as it leads to a
rapid increase in computational time. The proposed method is able to plan paths in a dynamic environment
including replanning during flight due to changes in mission priority and introduction of unexpected obstacles.
This makes it suitable for pre-flight conflict detection and resolution by incorporating in-flight replanning. In
our model prioritising based on either mission type or request time did not improve the delivery time of UAVs
for simplified missions. However, when considering more realistic and more complex operations, this result may
not remain valid.

7 Conclusions & Recommendations
This paper presents and evaluates an online path planning coordination mechanism in 3D for a cooperative
fleet of autonomous UAVs delivering medical supplies in the Rotterdam Area. The Rotterdam area is selected
as a use case, but the model can be adapted to other cities. We propose a multi-agent system for the delivery
of both standard and urgent medical supplies. Multi-agent pathfinding in a 3D environment is used to model
the paths of UAVs for a medical drone delivery model. Our approach utilises Windowed Cooperative Safe
Interval Path Planning, where kinematic constraints of UAVs are incorporated during path planning, as well as
separation distances between UAVs. Using two different neighbourhoods in Rotterdam as case studies, we first
demonstrated the importance of selecting an appropriate window size for operations, as it is key for reducing
the occurrence of bottlenecks situations during simulations.

Second, we demonstrated the ability of the algorithm to plan paths in multiple flight layers, showing that an
increase in the number of layers does not influence the performance of operating UAVs. UAVs operate predom-
inantly in the bottom layer and use other layers to avoid conflicts. A multi-layered environment therefore also
outperforms a single-layer environment in terms of success rate. However, an increase in the number of available
layers comes with a significant increase in computational time.

Third, we showed the capability of the algorithm to plan and coordinate paths of UAVs within a dynamic en-
vironment by introducing up to 20 unexpected obstacles. The obstacles are primarily introduced at frequently
visited vertices and by making use of layer changes the path planning and coordination mechanism is able to
successfully plan around these obstacles.

Last, we demonstrated that for our operation model, assigning prioritisation based on either mission type or
request time did not significantly influence the performance of UAVs. To conclude, our analysis has shown
the promising potential of using WC-SIPP for online multi-agent pathfinding in a 3D urban environment. The
model is adaptable to other urban environments and can be utilised to model the path planning and coordina-
tion of a cooperative fleet of autonomous UAVs considering multiple warehouse and healthcare locations.

While our research demonstrated the implementation of an online path planning and coordination mechanism
for medical urban air mobility services in a realistic 3D environment, further research is necessary. Currently,

23

the urban environment is represented by the street network in the selected environments. Building representa-
tions in the form of keep-out polygons should be included in the environment, to allow for a more realistic urban
representation. Besides, scaling to a larger urban environment would allow for a more realistic operational en-
vironment. The operations in our model are simplified and the incorporation of better task allocation methods
and more complex medical missions could provide further insight into the developed framework. To allow for
more complex operations, the computational performance of path planning in multi-layered environments needs
to be addressed. Using a more advanced heuristic could reduce the number of explored nodes and decrease the
computational time when searching in 3D space.

Besides, to allow for a more accurate representation of the travelled paths of UAVs, the kinematics of UAVs can
be improved. Improvements can be made by considering turn radius limitations, reduced restrictions for edge
motions, and rotational movements.

Moreover, investigating diverse drone types and including battery performance characteristics is important for
analysing UAV delivery services, especially when considering an increase in urban environment size. Integrating
this would allow for more accurately represented operations. The operation model could also be improved by
incorporating a refined demand model based on the healthcare infrastructure, which goes beyond the current
Poisson distribution. Lastly, integrating more realistic uncertainty factors like weather conditions and regulatory
restrictions is essential to operate in dynamic environments effectively.

References
[1] A. Cornell, S. Mahan, and R. Riedel, “Commercial drone deliveries are

demonstrating continued momentum in 2023,” 10 2023, accessed on 26-03-
2024. [Online]. Available: https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/
future-air-mobility-blog/commercial-drone-deliveries-are-demonstrating-continued-momentum-in-2023

[2] Zipline, “Welcome to the best delivery experience not on earth.” 2023, accessed on 26-03-2024. [Online].
Available: https://www.flyzipline.com

[3] Wing Aviation LLC, “Better delivery.” 2023, accessed on 26-03-2024. [Online]. Available: https://wing.com

[4] K. Korosec, “Zipline is now the national drone service provider for rwanda,” Decem-
ber 2022, accessed on 26-03-2024. [Online]. Available: https://techcrunch.com/2022/12/15/
zipline-is-now-the-national-drone-service-provider-for-rwanda/

[5] European Union Aviation Safety Agency (EASA), “Study on the societal acceptance of urban air mobility
in europe,” EASA, Tech. Rep., 03 2021.

[6] Federal Aviation Administration, “Unmanned aircraft system traffic management: Concept of operations
v2.0,” FAA, Tech. Rep., 03 2020.

[7] B. Rabta, C. Wankmüller, and G. Reiner, “A drone fleet model for last-mile distribution in disaster relief
operations,” International Journal of Disaster Risk Reduction, vol. 28, pp. 107–112, 2018.

[8] M. Moshref-Javadi, A. Hemmati, and M. Winkenbach, “A truck and drones model for last-mile delivery: A
mathematical model and heuristic approach,” Applied Mathematical Modelling, vol. 80, pp. 290–318, 2020.

[9] P. Kitjacharoenchai, B. Min, and S. Lee, “Two echelon vehicle routing problem with drones in last mile
delivery,” International Journal of Production Economics, vol. 225, p. 107598, 2020.

[10] X. Shang, G. Zhang, B. Jia, and M. Almanaseer, “The healthcare supply location-inventory-routing prob-
lem: A robust approach,” Transportation Research Part E: Logistics and Transportation Review, vol. 158,
p. 102588, 2022.

[11] U. Shakir, “Amazon is shutting down its drone delivery service in california as it looks to other
markets,” 2024, accessed on 07-05-2024. [Online]. Available: https://www.theverge.com/2024/4/22/
24137383/amazon-prime-air-drone-delivery-closing-lockeford-california-phoenix-arizona

[12] R. Stern, Multi-Agent Path Finding – An Overview. Cham: Springer International Publishing, 2019, pp.
96–115.

[13] M. Phillips and M. Likhachev, “Sipp: Safe interval path planning for dynamic environments,” in 2011
IEEE international conference on robotics and automation. IEEE, 2011, pp. 5628–5635.

24

[14] T. Standley and R. Korf, “Complete algorithms for cooperative pathfinding problems,” in Proceedings of
the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume One, ser.
IJCAI’11. AAAI Press, 2011, p. 668673.

[15] T. Standley, Finding Optimal Solutions to Cooperative Pathfinding Problems, ser. AAAI’10. AAAI Press,
2010, p. 173178.

[16] G. Wagner and H. Choset, “M*: A complete multirobot path planning algorithm with performance
bounds,” in Proceedings of (IROS) IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, September 2011, pp. 3260 – 3267.

[17] Z. Ali and K. Yakovlev, “Safe interval path planning with kinodynamic constraints,” arXiv e-prints, pp.
arXiv–2302, 2023.

[18] C. Zhou, B. Huang, and P. Fränti, “A review of motion planning algorithms for intelligent robots,” Journal
of Intelligent Manufacturing, vol. 33, no. 2, pp. 387–424, 2022.

[19] G. Sharon, R. Stern, A. Felner, and N. Sturtevant, “Conflict-based search for optimal multi-agent pathfind-
ing,” Artificial Intelligence, vol. 219, pp. 40–66, 2015.

[20] H. Ma, D. Harabor, P. Stuckey, J. Li, and S. Koenig, “Searching with consistent prioritization for multi-
agent path finding,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp.
7643–7650, Jul. 2019.

[21] D. Silver, “Cooperative pathfinding.” Proceedings of the 1st Artificial Intelligence and Interactive Digital
Entertainment Conference, AIIDE 2005, pp. 117–122, 01 2005.

[22] F. Ho, A. Gonçalves, B. Rigault, R. Geraldes, A. Chicharo, M. Cavazza, and H. Prendinger, “Multi-agent
path finding in unmanned aircraft system traffic management with scheduling and speed variation,” IEEE
Intelligent Transportation Systems Magazine, vol. 14, no. 5, pp. 8–21, 2021.

[23] F. Ho, A. Goncalves, A. Salta, M. Cavazza, R. Geraldes, and H. Prendinger, “Multi-agent path finding for
uav traffic management: Robotics track,” Autonomous Agents and Multiagent Systems 2019, 2019.

[24] A. Morfin Veytia, C. Badea, J. Ellerbroek, J. Hoekstra, N. Patrinopoulou, I. Daramouskas, V. Lappas,
V. Kostopoulos, A. Vidosavljevic, J. van Ham, E. Sunil, P. Alonso, J. Terrazas, D. Bereziat, A. Vidosavl-
jevic, and L. Sedov, “Metropolis ii: Benefits of centralised separation management in high-density urban
airspace,” SESAR Innovation Days, 12 2022.

[25] DJI, “Matrice 600 specs,” 2024, accessed on 28-03-2024. [Online]. Available: https://www.dji.com/nl/
matrice600

[26] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,” IEEE Pervasive Computing,
vol. 7, no. 4, pp. 12–18, 2008.

[27] M. Nikolaeva, O. Aranda, O. Dahle, and M. Baena, “USEPE consolidated concept of operations,” ISDEFE,
Tech. Rep., Dec. 2022.

[28] A. Andreychuk and K. Yakovlev, “Two techniques that enhance the performance of multi-robot prioritized
path planning,” arXiv preprint arXiv:1805.01270, 2018.

[29] A. Bose, I. Markelov, and S. Noyes, “Multi-agent path planning in python,” https://github.com/atb033/
mu1ti-agent_path_planning, 2021.

[30] E. Ostertagova, O. Ostertag, and J. Kováč, “Methodology and application of the kruskal-wallis test,”
Applied mechanics and materials, vol. 611, pp. 115–120, 2014.

[31] M. Hess and J. Kromrey, “Robust confidence intervals for effect sizes: A comparative study of cohensd
and cliffs delta under non-normality and heterogeneous variances,” in annual meeting of the American
Educational Research Association, vol. 1. Citeseer, 2004.

[32] T. MacFarland and J. Yates, “Mann–whitney u test,” Introduction to nonparametric statistics for the
biological sciences using R, pp. 103–132, 2016.

25

II
Literature Study

previously graded under AE4020

27

1
Introduction

Urban Air Mobility (UAM) is an emerging industry focusing on the transportation of passengers and deliv-
ery of parcels within urban landscape. It can be expected that UAM services will take off in the coming
decade [39]. Regarding the transportation of passengers, companies such as Blade [8] and Uber Elevate [45]
are already offering air taxi services in a few cities, albeit on a small scale. The delivery of parcels via Un-
manned Aerial Vehicles (UAVs) has already been in operations since 2016 [123] and the number of parcels
being delivered yearly has only increased ever since. In response to the increasing demand of UAM services,
path planning and coordination methods are required to allow for efficient, sustainable and safe operations
in urban environment.

In order to model the complex dynamics and interaction between various stakeholders in the urban envi-
ronment, this thesis will focus on modelling 3D UAV operations by use of multi-agent path finding (MAPF).
MAPF algorithms allow for conflict-free path planning and coordination of multiple agents within a shared
environment. By focusing on path planning for UAM services, this work can contribute to development of
real-world implementation of UAV transport system, which is a relatively unexplored field. Path planning is a
critical aspect to allow for UAM services, and by following an agent-based approach novel techniques and/or
model extensions can be proposed to improve path planning of autonomous UAVs and address specific chal-
lenges to UAV operations. It can be expected that with an evolving demand of UAV operations, regulations
of UAV operations will change as well, which includes adaptations in flight restrictions. Also safe integration
with current airspace needs to be ensured, while also autonomously avoiding collisions with other UAVs. Be-
sides avoiding collisions between UAVs, it will be equally important to develop effective systems to detect and
avoid static obstacles, such as high rises and restricted airspace. Modelling of 3D UAV operations is needed to
capture the complex dynamics and interactions between agents and their shared environment. Combining
the modelling of 3D UAV operations with dynamic airspace constraints will impose novel challenges for the
development and evaluation of an agent based model.

This literature study is divided into 5 main chapters. The context in which path planning and coordination
of UAVs will occur, will be provided in chapter 2. This include an overview of urban air mobility services,
business models, companies, and vehicle types. Furthermore, the operational framework, which is called
Unmanned Aircraft System Traffic Management, will be discussed. Combining the aforementioned informa-
tion, a use case will be selected, which is deemed most suitable for path planning and coordination of UAVs
in urban environment. Next, chapter 3 will elaborate on several factors that will influence the modelling of
the urban environment. This includes a selection of a city and its key characteristics. Also, various software
tools and modelling methods will be discussed, which could be suitable for the modelling of the environ-
ment and its operations. The information provided in the previous chapters will be combined to create a
concept of operations for UAV operations in urban environment, which will be presented in chapter 4. This
includes an analysis of the existing system, justification of an extension, and the new proposed system. For
the proposed system, system objectives, requirements and assumptions are presented. Following from the
concept of operations, multi-agent path finding (MAPF) algorithms are presented in chapter 5. MAPF al-
gorithms allow us to find an efficient and safe method for planning and coordination of multiple UAVs in a
shared environment. After presenting several MAPF algorithms a trade-off is performed in order to select

28

29

the most suitable method for the problem at hand. In chapter 6 a research proposal is presented based on
the findings of the aforementioned chapters. This includes an overarching main research objective, which is
further divided into research questions and sub-questions. These questions enable us to meet the research
objective in a structured manner.

2
Urban Air Mobility

Urban Air Mobility (UAM) is a rapidly emerging industry focusing on transportation of both passengers and
cargo within the urban environment. This chapter will focus on Urban Air Mobility and the different use
cases, vehicles, and traffic management systems in order to define the selected problem for this thesis. As
the concept of delivering items via UAVs in urban environment is relatively new, a concept of operations
(CONOPS) is needed in order to outline the operational framework, the objectives, and requirements of the
system. This chapter will give an overview of the different stakeholders involved for UAM service, different
suitable UAM vehicle types, and an overview of the proposed airspace and architecture needed for UTM. The
selected use case will act as the foundation of the CONOPS. Afterwards, chapter 3 will provide reasoning for
selecting the Rotterdam Area as urban landscape, including several characteristics that need to be taken into
account for modelling the urban environment. The information presented in this chapter and the following
chapter will be combined in order to provide a CONOPS, which will be presented in chapter 4.

section 2.1 will present different UAM services and provide reasoning for the most suitable service. sec-
tion 2.2 will provide an overview of different vehicle types used for UAM. section 2.3 will discuss different
urban airspace concepts, as well as the proposed architecture for operations within urban airspace. Lastly, in
section 2.4 the selected use case will be discussed, presenting the agents within the multi-agent system.

2.1. Urban Air Mobility Services
Urban Air Mobility (UAM) is seen as one of the new revolutionary approaches to improve the transportation
and logistic industry. The services offered for UAM can be divided into two different operation types, which
are the transportation of passengers or packages, both using unmanned aerial vehicles (UAV). The benefit
of passenger transport using UAVs, also referred to as air taxis, is that shorter distances can be flown using a
higher speed compared to car travel. This can lead to a significant reduction in travel time and possibly even
help to decongest traffic in metropolitan areas. Companies that already offer passenger services are e.g. Uber
Elevate [45] and Blade [8]. Both companies offer taxi services using helicopters, but offer this only in lim-
ited cities, albeit at a small scale. In the future it is expected that these services will be taken over by electric
Vertical Take-off and Landing (eVTOL) aircraft, where promising eVTOL vehicles [39] are being developed by
Lilium [58], Volocopter [108] and Joby [48]. Even though developments for passenger transport in UAM seem
promising, currently there are no companies operating eVTOLs for passenger transport. Transportation of
packages using drones is however already in operation. In early 2022, over 2000 commercial drone deliveries
were occurring every day worldwide and the number of deliveries is only growing [16]. This does include
parcel delivery in both rural and urban environments. Even though this amount is relatively small compared
to the total number of parcel deliveries worldwide, it does show the maturity of UAV delivery compared to
passenger transport. Companies that are already operating fleets of drones to deliver a variety of goods, such
as food, medicines, and e-commerce, are e.g. Zipline [123], UPS [105], and Wing [116]. A future possibility
could also be to use passenger eVTOL vehicles for larger parcel deliveries, but this is deemed outside of the
scope of this thesis.

Both passenger transport and parcel delivery are interesting use cases in order to investigate planning and

30

2.1. Urban Air Mobility Services 31

coordination of UAVs in urban environment. However, due to three main reasons the delivery of parcels will
be chosen as use case, which are the following:

• First, parcel delivery using UAVs is currently more mature than passenger transport using UAVs. Most
eVTOLs are currently either in design or test phases. Up to now, no fleets of eVTOLs transporting pas-
sengers exist. Parcel delivery using drones both in rural and urban environment is already in a further
development stage and therefore more promising.

• Second, during operations it can be expected that the number of drones to deliver packages will be
larger than the number of eVTOLs transporting passengers in the coming decade, making the planning
and coordination of drones in urban environment more challenging.

• Third, autonomous flight operations for drones do already exist and are more likely to be included on
a large scale for parcel delivery compared to passenger transport. One of the main reasons is that even
though technology-wise it will be possible to fly eVTOLs autonomously, there are big public hurdles
to be taken, such as accountability in case anything goes wrong. For drones, this is less problematic,
as no passengers are onboard of UAVs, reducing the risk of human injury caused by an UAV. There-
fore, the development of planning and coordination mechanisms for drones will be more beneficial for
autonomous operations.

To conclude, both passenger and parcel delivery are expected to take off in the coming decade, with par-
cel delivery being the most suitable use case. The next section will elaborate on the different UAV delivery
services available.

2.1.1. Urban Air Vehicle delivery services
Drone-delivery services are on the rise and are expected to become more widespread in the coming decade.
In general, there are two promising business models that could be interesting use cases. The first one being
the delivery of packages for the last-mile delivery of large retailers and delivery companies, such as Amazon
and DHL. This would be the delivery of packages from a warehouse to customer [16]. The other business
model is hyper-local delivery of packages. This would be the delivery of packages from local stores to cus-
tomers using a third party delivery company in a small area in a very short time frame [73]. Both will be
explained in greater detail below.

Last-mile delivery
Last-mile delivery is currently the most expensive and time-consuming part within the shipping process,
but it is key to satisfaction of customers. According to Capgemini [47] 40 percent of customers use delivery
services at least once per week. The cost involved with last-mile delivery accounts to 41 percent of the total
supply chain costs [47]. With big retail companies, such as Amazon and DHL, offering free delivery services
as well as same or next day delivery, the cost of the last-mile will only further increase. Due to the short
time frame of delivery as well as the use of heavy transportation vans, the optimisation of routes becomes
difficult, especially when considering energy emissions and transportation costs. A transportation vehicle is
expected to drive to multiple locations before dropping of a package to a customer. The package is often a
1000 times less the weight of the vehicle, resulting in high energy and transportation costs. Matching the size
of the delivery vehicle with the package size could allow for lower energy costs. An example of this is the use
of delivery of food using bikes, such as UberEats and Just Eat Takeaway. This is considered to be hyper-local
delivery and will be discussed later in this section. The downside of bike delivery is the high labour costs
involved. A solution to both key problems within in the last-mile delivery could be potentially solved using
drone deliveries, as energy emissions could be reduced by better matching the size of the package to the
delivery vehicle as well as using autonomous flight to reduce the labour costs. According to McKinsey [16]
if a drone would deliver one package to a customer, with a drone operator overseeing a total of 20 drones,
the overall cost of delivery would become cost competitive with other transport modes, such as delivery by
electric car or electric/ICE van. Last-mile delivery could have two integration possibilities for large retailers.
The first one being that drones will fly from warehouse locations towards customers and afterwards fly back
to pick up a new package or to recharge. Another possibility would be to integrate drone and truck delivery.
This would mean that a truck would still be needed to carry parcels to a certain area as well as the drones.
The drones would then be used for the final delivery of goods [26].

32 2. Urban Air Mobility

Hyper-local delivery
Where last-mile delivery focuses on the delivery of retail items of large corporations, hyper local delivery fo-
cuses on both the delivery of food and retail items of local stores only. This often achieved by using third party
delivery companies. A good example of this is the delivery of fresh food by UberEats and Just Eat Takeaway.
Due to the nature of the product, fast delivery is required in order to keep the food fresh and warm. The
delivery distance is often within a radius of 5-15 kilometers depending on the delivery services and the time
to delivery can range from 15 minutes to 2 hours taken from the time of order. Similar to last-mile delivery,
the transportation vehicle does often not match the size of the delivery items in case cars or vans are used.
When bike carriers are used the size of the delivery vehicle already matches the packages size better, but here
high labour costs are involved for third party companies. One of the challenges with hyper-local delivery is
the management of its fleet (delivery personnel). Due to the unexpected demand of items to be delivered, the
size of the fleet does often not match the demand. The usage of autonomous delivery drones could therefore
be a solution, as little to no labour costs are involved when a drone is not operating. The hyper-local delivery
model does also suit the delivery of medicine. The delivery of medicine using drones in mainly rural areas is
currently carried out by Zipline [123].

Both business models can be used for the delivery of parcels using UAVs. The remainder of this section will
focus on already operating delivery companies using UAVs and their delivery services.

2.1.2. Delivery Companies
This section will shortly discuss the operation models of two market-leaders within the drone-delivery sec-
tor, which are Zipline [123] and Wing [116]. Zipline has reached the milestone of delivering 500,000 pack-
ages worldwide and Wing has completed over 300,000 drone deliveries. As both companies are beyond the
proof-of-concept phase, key insights can be obtained from the operation model for the drone delivery model
problem.

Zipline
First, Zipline [123] is the market-leader when it comes to the delivery of parcels using drones. The company
was founded in 2016 and is currently operating in 7 different countries ranging from the United States to
Rwanda and Japan. The company’s primary business model is the operation of warehouses containing med-
ical supplies. By using in-house designed drones medical supplies, such as blood and vaccines, are trans-
ported to hospitals and health facilities. The drones used for medical supplies, which are called the Platform
1 Zip, have a service radius of 100 km and are able to fly at an altitude of 90 meters. The packages are deliv-
ered using a specially designed package and make use of parachute at a dropping altitude of 30 meters. The
package will then land in the designated landing area, which has a diameter of 5 meters. The drones are able
to fly autonomously, but drone operators are present in the warehouses to monitor the flights. The company
started operations in Rwanda and has a currently a partnership with the Rwandan government to aim for 2
million deliveries and 200 million kilometers of autonomous flight by 2029 [55]. This concept is successful
due to the fact that transportation of medical supplies using traditional transportation methods is very time
consuming, due to poor infrastructure available in Rwanda. By using centralised distribution centres of med-
ical supplies and autonomous drones, it possible to deliver packages 24 hours per day to hospitals within an
hour of ordering.

Besides the delivery of medical equipment using the Platform 1 Zip drone, the company is also working on a
Platform 2 Zip drone, which is being build for precise delivery in urban environment. The drone can be used
to deliver packages containing retail & e-commerce items, food, or healthcare items. The drone is expected
to fly from a warehouse or restaurant location to the customers location and would hover tens of meters
above the drop-off location. Upon arrival a build-in delivery drone would be dropped down using a cable
which is able to quietly drop-off the package. The benefit of this system is that the drone will stay up in the
air, reducing noise pollution as well as the chance of injury caused by the drone to bystanders. Zipline [123]
states that this delivery service is 7 times faster compared to traditional automobile delivery, and shall result
in 97% fewer emissions compared to ground delivery using petrol vehicles. It must be noted that the Platform
2 Zip drone is not yet in service, but does seem promising based on the successful operations of the Platform
1 Zip drone. Also the statements regarding the transportation speed and the emission saving potential cannot
be checked due to limited information available.

2.2. Urban Air Mobility Vehicle Types 33

Wing

Next, Wing [116], which is a subsidiary of Alphabet (also the parent company of Google), is the number two
drone delivery company in the world, with over 300,000 deliveries made. The company is currently operat-
ing in Australia, the United States, and Finland. Wing focuses on hyper-local delivery using their in-house
developed drones. The packages that can be delivered by this drone are similar to the packages that can be
delivered by the Platform 2 Zip drone. Packages are picked up using a cable and auto loader. The auto loader
is a machine which allows drones to pick-up a package autonomously with the use of a grappling hook. The
drone climbs to an altitude of 45 metres and flies towards the customers location. Afterwards the drone will
descend to an altitude of 7 meters and lowers the package towards the desired location. By hoovering and
lowering the package, the delivery method reduces noise, chance of human injury and energy consumption.
After package delivery, the drone will return to the Wing site to recharge. The goal of Wing is to build a net-
work that does not consist of point-to-point routes. The network intents to follow complex and changing
routes when needs are evolving. This has the benefit that packages can be picked-up and dropped off in a
more efficient manner, while also allowing the drone to recharge at various hubs when necessary [54]. The
Wing drone is able to fly autonomously. A centralised unmanned traffic management software is used to plan
the routes of an individual drone. After planning, the drone is able to take-off and fly towards the customers
location. If problem are encountered during flight, contingency actions are taken automatically by the drone.

It can be concluded that both hyper-local delivery and last-mile delivery can be successfully offered by de-
livery companies, such as Zipline and Wing. Both companies make use of centralised hubs to assist in drone
operations, such as providing charging or battery swap services. For last-mile delivery, warehouses are used,
resulting in a hub-and-spoke network. For hyper-local delivery a point-to-point network is more common.
Besides the specific drones developed by Zipline and Wing, several other Unmanned Aerial Vehicles are avail-
able for UAM services. The available vehicle types will be discussed in the next section.

2.2. Urban Air Mobility Vehicle Types
Unmanned Aerial Vehicles (UAVs) have risen in popularity and are being used on a daily basis for a vari-
ety of applications. The UAV design is often tailored to the specific tasks needed to be performed, such as
transportation and surveillance. This section will only focus on UAVs tailored to delivery of packages, often
referred to as delivery drones. An overview will be given of drones that are currently able to deliver packages
including technical specification regarding the Wing Type, Weight of the drone, Maximum Payload, Maxi-
mum Range, Operating Altitude, Maximum and/or Cruise Speed, and Delivery Mechanism. The maximum
range is equal to the total round-trip range. Based on the capabilities of the delivery drones, assumptions can
be made for delivery modelling. For the wing type, four different classifications exist, which are fixed wing,
multirotor, hybrid (combination of fixed wing and multirotor), and single rotor [67]. Fixed wings drones have
the benefit that they are able to fly large distances at high speeds, but do lack maneuverability, as they are
not able to hover, rotate and move backwards. Multirotor drones on the other hand do offer high level of ma-
neuverability and agility, due to their symmetrical design using multiple rotors ranging often between 4 and
8. The main limitations of the multirotor design are their short endurance and low payload capabilities due
to their small size. The hybrid design offers the best of both the fixed wing and multirotor design, allowing
the drone to vertically take-off and land. After take-off the configuration of the rotors can be changed to the
fixed wing configuration to allow for better range and endurance. The downside of this design is the higher
cost and complexity involved. Lastly, single-rotor UAVs make use of only 1 rotor for vertical lift and take-off
(VTOL) and use a small rotor to stabilise, which is similar to a helicopter. They are often used for military
purposes and do not seem suitable to operations in urban environment.

An overview of promising and operational UAVs is given in Table 2.1. All drones except the Zipline P2 have
conducted test flights. From Table 2.1 several key insights can be obtained regarding the operations of deliv-
ery drones suitable for urban environment. First, the most promising wing type is the hybrid configuration,
as it offers both the larger range and endurance, as well as good levels of maneuverability. Payload capacity
ranging from 1.2 - 6 kilogram is able to suffice the delivery of food, medicine, and e-commerce. The Wing-
copter 198 [118] is capable of delivering three different parcels up to a total payload weight of 5 kilograms
using a cable delivery mechanism. With a range of 20 kilometers or more, most European cities can be largely
covered, which 5 out of 6 drones are capable of. According to the European Union Aviation Safety Agency
(EASA) [23] the maximum flight altitude of drones is 120 meters. Allowing the drones to fly at high altitudes

34 2. Urban Air Mobility

has three main benefits, which are reduction in noise pollution, lower chance of human injury, and more ob-
stacle free paths. Lastly, none of the delivery drones opt to have a delivery system, which require the drone to
land at a customers location to drop off a package. Using different cable designs, such as a grappling hook for
Wing [116] and a delivery droid for Zipline [123], packages can be delivered at higher altitudes. Cable delivery
mechanisms allow for precision delivery, which is preferred in urban environment. To our knowledge, no re-
search has been done up to the safety of using cable mechanisms for delivery. To ensure safe operations, this
should be studied in more detail to assess human injuries caused by different malfunctions during delivery.
For rural environment, parachute delivery mechanisms would suffice. The benefit of the latter mechanism is
the increased turn around time for the drone during delivery. As one of the benefits of UAV delivery is vehicle
design optimisation for a specific delivery type, there will not be one drone that will be best all over the board.
Therefore, a combination of drones could also be feasible within one fleet. To ensure safe operations a traffic
management system is needed, which does not only encompasses the UAV itself. This will be discussed in
more detail in the next section.

Table 2.1: Overview of delivery UAVs

Drone Wing Type
Weight

[kg]
Payload

[kg]
Range
[km]

Altitude
[m]

Speed
[km/h]

Delivery
Mechanism

Zipline P1 [123] Hybrid 21 1.75 160
80-120 (cruise)

30 (delivery)
101 (cruise)
128 (max)

Parachute

Zipline P2 [123] Hybrid Unkown 3.6 38 90 (cruise) 112 (max)
Delivery

Droid

Wing [116] Hybrid 5.2 1.2 20
45 (cruise)
7 (delivery)

104.4 (cruise) Cable

Dji Mavic 2
Enterprise [20]

Multirotor 0.9 0.2 8 6000 (max) 72 (max) Cable

Wingcopter
198 [118]

Hybrid 20 6 65-85 5000 (max)
100 (Cruise)
144 (Max)

Cable

Wingcopter
178 [117]

Hybrid 12 6 35-75 5000 (max)
86 (Cruise)
151 (Max)

Cable

2.3. Unmanned Aircraft System Traffic Management
Due to expected growth of unmanned aircraft systems (UAS) within the (urban) airspace, the need for effec-
tive management of UAS traffic rises. Effective management is needed to be able to ensure safe operations
for both ground traffic and conventional air traffic. The integration of UAS traffic within the airspace falls
under the system called Unmanned Air Systems (UAS) Traffic Management (UTM). This section will give an
overview of different concept for UTM Airspace, different stakeholders involved within falling under UTM
Architecture, and lastly the expected UAV communication and coordination.

2.3.1. UTM Airspace
According to both the FAA [27] as well as EASA [23], the airspace in which drones are allowed to fly is 120
meters in Europe and 400 feet (122 meters) in the United States. NASA and the FAA propose a concept of
operations for complex UTM operations, which occur below 400 feet above ground level [27]. This includes
both UTM operations that are uncontrolled (part of class G airspace) and controlled (part of class A,B,C,D, or
E). The class G airspace is thus the portion of the national airspace system (NAS) that is not part of the con-
trolled airspace. This means that ATC has no responsibility to provide separation services. The management
of the airspace will be cooperative between UAS and the interaction between UTM will be minimal. The UTM
architecture will be further explained in subsection 2.3.2.
Due to the fact that a large part of the UAV operations will occur in uncontrolled airspace below 400 feet
above ground level with minimal interaction of ATC, operators will be given extensive freedom in their op-
eration management. The Metropolis project [85] investigated new airspace design concepts for the urban
environment. Different traffic scenarios were modelled to provide a better understanding of air traffic within
the selected airspace. This included extreme traffic scenarios as well. For the airspace design four different
airspace structures were taken into account, which are Full Mix, Layers, Zones and Tubes. An example of the
design structures is shown in Figure 2.1.

• Full Mix: The Full Mix design is the least restricted airspace design in which vehicles are allowed to fly at

2.3. Unmanned Aircraft System Traffic Management 35

every altitude and direction within the allowed airspace, without being constrained to a structural lay-
out. Airborne separation is expected to be ensured using coordination and communication between
UAVs.

• Layers: The airspace is split up into multiple horizontal layers, in which a layer will have an operating
altitude bandwidth. Every layer will correspond to a certain heading angle, which will be repeated for
the different layers.

• Zones: The Zones design is based on the conventional airspace structure. Different zones are allocated
to different vehicle types, speed ranges and global directions. This is done to aid UAV separation. Dif-
ferent compared to the Full Mix and the Layers design, a possibility would be to dynamically adjust the
zones to allow for better traffic handling.

• Tubes: The last design option considered is Tubes, which has the opposite design philosophy compared
to the Full Mix concept. The Tubes provide a dense route structure that is fixed within the airspace.
Similar to the Zones concept, different tubes will be allocated to different vehicle types, directions and
speeds. Also a possibility exist to dynamically adjust the tubes, based on the traffic.

Figure 2.1: Airspace design concepts. From left to right these are Full Mix, Layers, Zones, and Tubes. Figures taken from Metropolis [85]

In order to select the best urban airspace design, Sunil et al. [98] compared four different airspace concepts
in terms of capacity, safety and efficiency. It was demonstrated the tubes concept has a lower airspace ca-
pacity compared to the other 3 concepts. For this concept more airspace is required for separation in the
pre-planning phase, reducing the overall capacity. However, this does not indicate that higher traffic volumes
are safely facilitated in the other concepts. Safety can be assessed by the mean number of conflicts alerts oc-
curring per flight. For the Zones and Tubes concept the number of conflicts is higher compared to the Layers
and Full Mix concept. The reason for this is that due to the structured airspace, higher traffic concentrations
exist, resulting in more conflict alerts at high traffic volumes. For the other concepts, the traffic is more dis-
tributed within the airspace, resulting in less conflict alerts. The efficiency of each concept is assessed by the
route efficiency, which is defined as the shortest distance between start and goal location divided by the ac-
tual travelled distance. Here both the Layers and Full Mix concept outperform the Zones and Tubes concept.
Due to less restrictions within the airspace, a more direct path can be flown, resulting in more efficient routes.

Therefore, it can be concluded that both the Full Mix and Layers concept outperform the Zones and Tubes
concept in terms of capacity, safety and efficiency. The Full Mix and Layers concept perform rather equally,
but the Layers concept slightly outperforms the Full Mix concept on one aspect. The Layers concepts out-
performs Full Mix when comparing the results for number of conflict alerts and number of intrusions. Due
to the fact this difference is minimal, but the implementation of a layered airspace will be more complex, the
choice has been made to choose the Full Mix concept, where separation will be provided by using communi-
cation and coordination of UAVs. Above a flight altitude of 400 feet (122 meters), a layered concept could be
the better option.

2.3.2. UTM Architecture
Besides the fact that the UTM airspace will be different compared to conventional airspace, the key actors
involved in UTM will also be dissimilar. The FAA and NASA [27] propose a theoretical architecture that iden-
tifies the key actors and components, their relationships, functions and information flows on a high-level for
the UTM airspace. The architecture can be seen in Figure 2.2. This architecture will act as the foundation of
the different roles and interactions between agents. In order to accurately represent the entities in the UTM
framework as agents in a multi-agent system, it is key to understand the different entities and their com-

36 2. Urban Air Mobility

plex interactions. Afterwards, the proposed UTM architecture can be simplified to allow for modelling of a
multi-agent system.

Figure 2.2: Theoretical UTM Architecture proposed by FAA and NASA. Figure taken from NASA [27]

Information and data will be shared between various stakeholders, including operator to operator, vehicle
to vehicle, and operator to FAA communication. By sharing flight information and coordinating flights to
de-conflict flight paths, safe operations can be ensured . The communication and coordination between all
stakeholders will be via a distributed information network. This will be different compared to conventional
traffic management, which is centralised and partially done by communicating by voice between air traffic
control (ATC) and pilots. UAV communication will be further explained in subsection 2.3.3.

Within the UTM Architecture [27], three key stakeholders will be discussed in more detail, which are the FAA,
Operators, and UAS Service Suppliers (USS). First, the FAA has the federal authority over aircraft operations
in all airspace classes, from class A to G, as well as the regulatory and oversight authority of civil operations in
the NAS. The European counterpart is EASA. The primary role of the FAA within UTM is to provide airspace
constraint data to airspace users as well as to provide the operational and regulatory framework. In order
to provide regulatory and operational oversight the FAA interacts with the Flight Information Management
System (FIMS), which has the function of air navigation service provider (ANSP). Second, the operator is the
responsible party for the management of operations. The operators will plan flights and share this infor-
mation all while meeting regulatory responsibilities. The term operator can be used for both manned and
unmanned operators. For unmanned operators a distinction can be made between operators that use visual
line of sight (VLOS) or beyond visual line of sight (BVLOS) for their operations. For the delivery of pack-
ages using UAVs it is expected that operations will be done by BVLOS operators, highlighting the need for
clear communication and coordination between UAS. Lastly, support of operations for UAS operators can
be provided by third party USS. The services provided by USS are threefold. The first service is supporting
communication between Operators and federated UTM actors (such as the FAA) to meet regulatory and op-
erational requirements. The second service is to provide operators with operational information to ensure
safe and efficient missions. The third service is to archive operational data in historical databases.

To conclude, different entities will provide different functions within the UTM Architecture. The entities

2.3. Unmanned Aircraft System Traffic Management 37

within this architecture will provide the basis for the agents within the delivery modelling problem. Different
compared to conventional ATC, which uses a centralised planning and coordination approach, UTM will
make use of a distributed planning and coordination approach. Operators will use a centralised approach for
managing their fleet.

2.3.3. UAV Communication
Based on the proposed UTM Architecture described in subsection 2.3.2, Chakrabarty et al [14] developed an
operational architecture using vehicle to vehicle (V2V) communication. The manner in which V2V commu-
nication will occur is of importance for the UAV delivery problem as it will act as the basis for how different
agents will be able to communicate and share information with each other.

The proposed communication architecture is visualised in Figure 2.2 and includes the following actors: UASs,
UAS Operators, UAS Service Suppliers (USS), Supplemental Data Service Providers (SDSP), and Flight Infor-
mation Management Systems (FIMS). The communication and coordination will be through a distributed
and highly automated network in which the following information will be shared. The FAA will provide real-
time airspace constraints to the UAS operators via the FIMS and to the USS. The UAS operator is expected
to operate in accordance to the imposed rules. Besides the information shared by the FIMS, other relevant
information, such as terrain & obstacle data, specialised weather data, and constraint information is needed
for safe operations. This will be provided by the SDSP. Currently, it is not clear if this information will be di-
rectly shared to the UAS or will be indirectly shared via the UAS operator and/or USS. The benefit of sharing
this information directly to UAS is that this allows the aircraft to directly re-plan its path if necessary. The
communication between a UAS Operator and UASs will be bidirectional, allowing communication of initial
plans and possible plan adjustments to be shared between the two stakeholders. Also sharing the location
information of all UASs to the UAS operators allows the operators to ensure that all constraints provided by
the FIMS and SDSP are adhered to. Lastly, V2V communication will play an important role in ensuring safe
operations and separation between UASs operating in close proximity. What is deemed to be close proximity
needs to be defined. This means that the operator will be aware of each UASs location at any time, but not all
UAS will be aware of the location of every UAS. [14]

The means of communication between UAS operators and UAS, as well as between UAS and UAS still needs to
be defined in the future. The communication itself can be split up into Control and NonPayload communica-
tion (CNPC) and Payload Communication (PC) [122]. PC communication is for instance the sharing of aerial
images or videos to the operator. This is deemed outside of the scope of this thesis. The CNPC shares infor-
mation related to flight operations. Four distinct communication technologies can be used for both air-to-air
and air-to-ground communication, which are Direct Link, Satellite, Ad Hoc Network and Cellular network.

The direct link network is mostly used in the past for air-ground communication using unlicensed radio fre-
quency (RF) band. The benefit of this network is that it is simple to implement and has low costs. The down-
sides of this network are limited to Line-of-Sight (LoS) operations, insecure connections, and difficulties in
scalability. [122]
Next, a satellite network would allow for UAV BLoS communication, also allowing UAVs to fly in remote areas,
without other means of coverage, such as WiFi or 5G. The main disadvantages of this network are the high
cost involved during operations and the high latency. [122]
Furthermore, the mobile ad hoc network has the benefit over the satellite network that no infrastructure is
required, and the network itself is self-organised. Communication occurs between multiple devices. The
disadvantage of the network is the high cost and complexity involved, as well as limited scalability. [122]
Lastly, using a cellular network for the communication between UAVs has the benefit of supporting large-
scale communication networks in a cost-effective manner. This is not deemed possible for the previously
mentioned technologies. The only downside of using cellular networks is the limited coverage in remote
areas. However, as this thesis is only focused on UAV delivery in urban environment, access to a cellular net-
work can be expected. [122]

Several cellular technologies exist, such as WiFi, 4G+ and 5G [104]. Yang et al [120] researched the capabilities
offered by 4G+ networks as well as it limitations. Using a 2.6GHz carrier frequency with 20MHz carrier band-
width on a LTE-Advance network, it was demonstrated that most latency data samples were concentrated
between 200 and 300 milliseconds at heights of both 50 meters and 100 meters, which would encompass the

38 2. Urban Air Mobility

operating altitudes for UAVs. Without further enhancements to the current network, these latencies could be
too high for V2V communication. The benefit of a 4G+ network is the range in which a signal can be received,
which is 30 kilometers. Therefore, it could potentially be sufficient for operator to drone communications,
while limiting the amount of information that would need to be shared. A 5G network could offer a lower
latency in combination with the ability to share information at higher bit rates. One of the limitations of the
5G network is limited range, which could be 50-500 meters. This range would be sufficient for V2V commu-
nication. Verizon [107], AT&T [6], and T-Mobile [30] have invested in the development of 5G-networks and
have already tested and demonstrated the capabilities a 5G network could offer for BVLOS flight operations
using UAVs.

2.4. Urban Air Mobility Selected Use Case
After exploring different UAM Services and UAM Vehicle Types as well as the proposed UAS Traffic Manage-
ment structure, the problem formulation will be discussed, which will form the basis of this thesis. This sec-
tion will discuss the selected UAM Service, fleet and airspace design. Combining this information the agents
present within the multi-agent system will be proposed. The main focus of the multi-agent system will be the
path planning and coordination of UAVs, for which the multi-agent pathfinding framework is most suitable.

2.4.1. UAV Medical Supply Delivery
Two distinct types of UAM services will be offered in the future, which are passenger transport and parcel
delivery, as discussed in section 2.1. The latter will be selected as this thesis UAM service, due to three rea-
sons. First, parcel delivery using UAVs is more mature compared to passenger transport. Second, the plan-
ning and coordination of UAVs for parcel delivery will be more challenging due to the high number of UAVs
involved. Third, a higher level of autonomy will be involved, emphasising the need for planning and coordi-
nation methods for UAV delivery fleets. Within the delivery sector, UAVs can be utilised for various purposes,
such as the delivery of food, medical supplies and e-commerce. Table 2.2 presents a trade-off of the benefits
of selecting each delivery item. The delivery of medical items using UAVs is most mature, with Zipline [55]
demonstrating the success of this use case in Rwanda. Food delivery is also taking place in Australia offered
by Wing [116], but is taking place on a smaller scale. Currently, the delivery of retail & e-commerce items is
not mature, with Amazon Air [74] not being able to come off the ground. In general the market size of people
ordering retail & e-commerce and food items is significantly larger compared to medical items. The public
benefit of delivering medical items via drones in a fast manner is deemed higher compared to food and retail
& commerce. Lastly the social acceptance of drone delivery is higher according to EASA [22]. This is if the
use case has benefit for the community and does not serve individual needs, being the case for the delivery
of medical items.

Table 2.2: Trade-off table representing benefits of selecting each delivery item

Delivery Item Maturity Market Size Public Benefit Social Acceptance
Retail & E-Commerce - - ++ - - - -
Food +- ++ +- - -
Medical Items ++ +- ++ ++

Therefore out of these applications, the delivery of medical supplies offers the most benefit to the public, as
it significantly improves access to healthcare services. Both Zipline [123] and Wing [116] offer services to de-
liver medical services to both healthcare facilities as well as to the general public. This technology is already
a game-changer in Rwanda [55], but can also become of importance within the urban environment. Due to
the limit capacity of delivery drones, as discussed in section 2.2, the delivery of medical items will be lim-
ited to up to 5 kg. This would allow for the delivery of e.g. medicines, vaccines, emergency (blood) supplies
and diagnostic samples [24]. The delivery of medical supplies using traditional supply methods is already
well established with companies as PostNL [77] using transport vans and Velomedi [106] using bike carri-
ers. Challenges associated with traditional modes of transport can be overcome using UAVs, resulting in an
efficient and reliable way to deliver medical supplies. The medical supplies will originate from several ware-
house locations and will afterwards be delivered to customers, similar to the business model of Zipline [123].
Zipline only delivers items to medical facilities, which will also be the customers in this work. A possibility
could also be to allow drones to pick-up diagnostic samples from customers and deliver those to warehouses.

2.4. Urban Air Mobility Selected Use Case 39

The UAV Medical Supply Delivery problem is both interesting from an application and academic perspective.
From an application perspective, medical drone delivery can assist medical facilities with managing inven-
tory, especially for short-term perishable items. It can also increase on time delivery of medical supplies, as
delays caused by traffic congestion can have severe consequences for patients. Due to improvements in the
logistics of healthcare items as well as the public benefit UAV medical delivery can offer, this use case will be
one of the first deployed UAM services in urban environment. Therefore, by focusing on the path planning
and coordination of autonomous medical drones, this work can contribute to the development of this real-
world implementation. From an academic point of view, by following an agent based approach the complex
dynamics and interactions between agents can be captured in a 3D urban environment. As most multi-agent
pathfinding methods are developed for 2D environments, this work can explore state-of-the-art algorithms
and techniques, which need to be scaled for 3D environments, while being computational efficient and pos-
sibly allow for real-time planning. This work can also explore coordination & prioritisation strategies and
communication protocols between agents, from which emergent behaviour of urban UAV operations can be
analysed.

Next, for the delivery of medical supplies within the urban environment different UAVs would be suitable for
operations. For this thesis two different UAVs will be considered, which are the Wingcopter 178 and 198, as
described in section 2.2. The Wingcopter 178 will be the main delivery drone. A possible extension could
be to include the Wingcopter 198 into operations. The main reason for choosing these two different drone
types, is the amount of technical information available, which includes range estimations for different pay-
loads, flight and climb speeds in different mission modes and maximum wind resistance. The Wingcopter
178 will be able to deliver 1 parcel up to 6 kilogram with a range of 35 kilometers, while the Wingcopter 198
will be able to deliver 3 parcels up to a total of 5 kilograms with a range of 65 kilometer. The parcels will be
delivered using a cable mechanism.

Regarding UTM, the UTM Airspace design structure that will be selected is Full Mix, as described in Figure 2.1.
The different entities that will form the basis of the agents within the multi-agent system are the FIMS, USS,
SDSP, UAS Operators and UAS, as described in subsection 2.3.2. This will be explained in the following sub-
section.

2.4.2. Agents in Multi-Agent System
Focusing on the UAV Medical Supply Delivery problem, as described in the previous subsection, the following
agents will be proposed, where the UTM architecture acts as the basis, as can be seen in Figure 2.2.

• Authority: This agent consist of two different entities within the UTM architecture framework. On
the hand side this agent represents EASA/FAA via the flight information management system (FIMS),
which will provide regulations and constraints to the urban airspace, such as the maximum flying alti-
tude, restricted airspace areas and the allowed operations window. On the other side it will represent
the Supplemental Data Service Provider (SDSP), which will provide information regarding the terrain,
obstacle and wind directions to the Operator. As both the FIMS and SDSP will fulfill a data provision
role to the UAS Operator, the choice has been made to merge both entities into one agent. This agent
will be only providing information to the Operator agent, but does not have a role in the planning and
coordination of UAVs. Therefore the authority agent will have no physical presence in the simulation,
as its only goal is to provide information regarding its environment to other agents using one-way com-
munication.

• Operator: Similar to the aforementioned agent, the operator agent will be the combination of two en-
tities, which are the USS and the UAS Operator. The operator will be a commercial entity that will be
responsible for the management of the UAV fleet, which includes the global planning and coordina-
tion of UAVs, as well as ensuring the fulfillment of the demand. The operator will also be responsible
for adhering to regulations and restrictions imposed by the Authority agent. This agent will be a self-
interested agent, with the goal of maximising its profit. The operator itself will use centralised planning
method for the management of its fleet. It is expected when multiple operators operate in the same
airspace, the coordination between the operators will be distributed, as no ATC entity will be present.
Therefore, the operator agent will also have no physical presence in the simulation. The agent will
have advanced cognitive properties as it is able to plan conflict-free paths of all UAV agents. Enabling

40 2. Urban Air Mobility

UAV agents to reach their goal in a fast and conflict-free manner is the goal of this agent. The operator
agent will be able to communicate to both the UAV agent and the customer agent using bidirectional
communication.

• UAV: The UAV agent is responsible for the task execution. This includes picking up the correct parcel,
following the correct path to the customer, and delivering the parcel to the customer. The path to the
customer is provided by the operator. The UAV properties will originate from the technical specifica-
tions of the Wingcopter 178 initially. This agent will have limited cognitive capabilities compared to the
Operator agent. It will be able to follow the path imposed by the operator, but only knows its own path.
When in close proximity with other UAV agents, the agent will be able to use bidirectional communi-
cation to other UAV agents to share their plans to ensure no conflicts will occur. If needed, the agent
will be able to re-plan its path. This agent will have a physical presence within the environment, will be
reactive to its environment, and will be mobile.

• Customer: The customer agent will be able to request specific items within a certain timeframe at pre-
ferred locations. This will probably be certain pick-up locations within dedicated zones. The customer
agent will be able to go to the pick-up location and receive the item. A possibility would be that certain
medical supplies will be requested that have a higher priority compared to other delivery items, such as
medicine. Another possibility could be that customers would be able to deliver diagnostic samples to
pick-up zones. This agent will have limited cognitive properties as it will only be able to order medical
supplies via the operator and afterwards receive the package, delivered by the UAV agent. The goal of
this agent is to order and receive their supplies. The agent will be physically present in the simulation,
represented by goal nodes of UAV agents. The agent will be able to communicate to the operator to
share order and delivery confirmation information, as well as share delivery confirmation information
to the UAV agent.

3
Environment Modelling

To allow for the modelling of medical urban air mobility services, a model needs to be created represent-
ing an urban environment. This chapter will focus on several aspects that are key for modelling the urban
landscape. First, the reason for selecting Rotterdam as use case will be explained in section 3.1. This will
also include an overview of the medical facilities, possible warehouse placements, and restricted & limited
access areas for UAV operations in Rotterdam. Second, geofencing will be discussed in section 3.2, to allow
for the modelling of virtual boundaries around buildings and no fly zones, which can afterwards be incorpo-
rated within UAV path planning. In section 3.3, a simulation tool for urban freight transport will be discussed,
facilitating demand modelling of medical facilities in Rotterdam.

3.1. Rotterdam Area Environment
Rotterdam has been selected as the use case for the distribution of healthcare supplies due to several rea-
sons. First of all, the inner city of Rotterdam contains many high rises in combination with a non grid like,
but rather organic, city structure, making path planning more interesting. Flying over residencies by UAVs will
be possible in certain neighbourhoods, while in other parts of the city UAVs will fly mostly over road infras-
tructure. Second, situated on the north side of Rotterdam is Rotterdam the Hague Airport (RTHA), which will
influence the UAV operations and the allowed airspace it is permitted to fly in. Third, restricted flying areas
will also be located in large parts of the city itself due to location of the Port of Rotterdam, which is currently
restricted airspace. Fourth, due to the presence of three large hospitals as well as many healthcare facilities
distributed over the city, a large market exist for the delivery of medical supplies. Lastly, for the Rotterdam
Area an open-source simulation tool for modelling the demand of urban freight transport is available, called
MASS-GT, which will be discussed in section 3.3. Combining the aforementioned reasons, Rotterdam is an
interesting use case for the modelling of UAV operations, which will need many considerations regarding al-
lowed and non-allowed flying zones during operations for several mission types.

This section will go into detail regarding the Rotterdam Area environment. It is important to consider factors
such as the placement of hospitals and pharmacies as well as restricted flying areas in order to accurately
represent the Rotterdam Area and allow for correct modelling of UAV paths. This section will first elaborate
on the customers, which are medical facilities. Afterwards focus is on suppliers, which will be warehouses
and distribution centres. Lastly restricted and limited access areas will be discussed.

3.1.1. Medical Facilities
First, healthcare logistics can be innovated by using UAVs, which enables medical facilities to overcome logis-
tical challenges. The effectiveness of using drones for delivering supplies to healthcare facilities has already
been demonstrated in Rwanda by Zipline [55, 123]. In order to accurately model the delivery of various med-
ical supplies, it is important to get an understanding of which facilities are present in Rotterdam and which
medical supplies they will be needing. An overview of different healthcare facilities is presented in Table 3.1,
including the medical supplies that can be delivered to the facility. The estimated number of medical facil-
ities available for delivery in Rotterdam is also shown in Table 3.1. The three largest possible customers are
Erasmus MC Hospital, Maaststad Hospital, and Ikazia Hospital, with a total of 1350, 600 and 350 hospital

41

42 3. Environment Modelling

beds respectively. The total number of possible delivery cites for medical supplies is 427. It must be noted
that multiple medical facilities can be located within the same building, but operate under different names.
However, with a maximum of 427 possible delivery cites, the market for delivery of medical supplies is suffi-
cient. The medical supplies will originate from warehouses/distribution centres, which will be elaborated on
in the following subsection.

Table 3.1: Overview of different types of healthcare facilities, the medical supplies they will need, and an estimated number of available
facilities in Rotterdam according to Zorgkaart The Netherlands [124]

Healthcare Facility Medical Supplies # Facilities Rotterdam
Hospital Medicine, Vaccines, Emergency Supplies, Diagnostic Samples 16
General Practitioner Offices Medicine, Vaccines, Emergency Supplies, Diagnostic Samples 164
Pharmacies Medicine 75
Specialist Clinics Medicine, Emergency Supplies, Diagnostic Samples 30
Mental Health Institutions Medicine 75
Diagnostic Centres Diagnostic Samples 3
Nursing Homes Medicine, Emergency Supplies, Diagnostic Samples 64

3.1.2. Warehouses
Similar to the business model of Zipline [123], several warehouse locations will be able to provide the demand
for all healthcare facilities. Around distribution centres numerous flight maneuvers will take place, which
can cause noise nuisance in the vicinity of warehouses. Therefore, it can be expected that warehouses will
be located mostly at industrial areas, located outside of the city centre of Rotterdam. An example of possible
warehouse locations in the Rotterdam area is visualised in Figure 3.1. The warehouse locations originate
from the MASS-GT project [18], which are based on the real-world locations of warehouses. This project will
be discussed in more detail in section 3.3. Figure 3.1 only shows warehouses with a floor space over 25,000
[m2], representing large warehouses. A benefit of using large warehouse locations outside the city centre is
the possible incorporation of a vertiport. A vertiport is a mobility hub and landing space for both passenger
and cargo UAVs. For the problem at hand, only landing and recharing/battery swapping of cargo UAVs will be
considered. Furthermore, the port of Rotterdam also opened the first vertiport location in the Netherlands,
showing the willingness of Rotterdam to include UAV operations within the city [72]. For the modelling of
the medical delivery problem, a selection of warehouses will be made, based on their respective location to
customer sites.

Figure 3.1: Warehouse (>25,000 [m2]) placement in Rotterdam according to the MASS-GT Model [18] created in QGIS [78]

3.1.3. Rotterdam Restricted/Limited Access
The placement of medical facilities and warehouse locations will have profound impact on path planning
of UAVs. However, one of the biggest influences on the path planning of UAVs will be the placement of re-
stricted and limited access areas within urban environment. Even though drones are physically capable of
flying throughout the entire city, it is not preferred due to privacy, nuisance and environmental reasons. Fur-
thermore, Rotterdam also has multiple no or limited fly zones due to the nearby airport and seaport. These

3.2. Geofencing 43

areas will have different impacts on the flight planning of drones and will be discussed in more detail be-
low. The influence of the airport, seaport, and city centre, parks & recreational areas will be discussed below
respectively.

Rotterdam The Hague Airport
Rotterdam The Hague Airport (RTHA) is located on the north side of Rotterdam and heavenly influences
the allowed airspace to fly in. Around RTHA a control zone (CTR) is established, which encompasses the
entire city of Rotterdam [82]. Within the CTR drone flight is limited, and is only allowed if the operator has a
license provided by the The Human Environment and Transport Inspectorate (ILT) [82]. Besides the license,
permission for operating the flight also needs to be granted by LVNL [82]. If both the license and access are
granted, a maximum flying height of 120 meters is imposed, similar to norms provided by EASA [23] and the
FAA [27]. Therefore, it is assumed that drone operations will be feasible in Rotterdam as long as permission is
granted by LVNL. In order to cause no nuisance to air traffic, a possibility could be to restrict the flying height
based on the distance from the airport.

Port of Rotterdam
Besides the airport limiting flight operations in Rotterdam, the port of Rotterdam is a no fly zone for drone
operations. Part of the no fly zone of the port of Rotterdam, situated close to the city centre is shown in red in
Figure 3.2. The Port of Rotterdam is currently working together with the Ministry of Infrastructure and Water
Management (I&W), Ministry of Defence and ILT in order to create a prototype of the U-Space above the port
of Rotterdam [71]. This is still in development phase and up to now, no areas have been marked which are
allowed to fly through. However, a possibility could be to allow drones delivering emergency medical supplies
to fly over the port airspace, even though this would be restricted for other drone operations. This is similar to
the operation of helicopter emergency medical services (HEMS), which are also allowed to fly through certain
restricted areas.

City Centre, Parks & Recreational Areas
The municipality of Rotterdam [33] states that it is currently working on policies regarding restricted/limited
access urban airspace as well as possible landing sites for UAVs. However, up to our knowledge no policy
has been currently adopted regarding limited access areas in Rotterdam. It could for instance be possible
that it is not preferred that drones fly over crowded areas, parks and recreational areas in order to reduce
nuisance. An example of restricted flying areas is visualised in Figure 3.2, which highlights the city centre
of Rotterdam in yellow, and parks & recreational areas in green. However, in case urgency is required, such
as for emergency supplies, exceptions can be made. According to a study performed by EASA [22] on the
societal acceptance of UAM in Europe use cases that are in general public interest, especially for health and
safety services, are deemed more acceptable. Even higher noise levels could be acceptable if the number
of operations for emergency purposes will be limited. Therefore, different levels of geofencing can be used
based on the mission type of the drone.

3.2. Geofencing
Geofencing is a key component for UAV operations, allowing for safe flight operations. Geofencing can be
described as the use of virtual boundaries and geographic zones based on a geographical location [52]. The
virtual boundaries can be used to restrict flights within no fly zones, but also to keep clearance from obsta-
cles such as high-rises. Therefore, it is expected that for UTM, the envisioned geofencing system will have
initially two kinds of airspace, which are fly-zones (keep-in geofence) and no-fly-zones (keep-out geofence).
In general these volumes will be statical, for example for highrises. However, an addition could be to have dy-
namically adjusted virtual boundaries, to allow for either separation between UAVs or to enable more direct
paths for emergency missions.

In order to ensure that UAVs will not fly in no-flying zones, geofencing needs to be taken into account during
UAV path planning. Geofencing is used both for obstacle and restricted airspace avoidance as well as flight
separation of UAVs. Using parameters such as vehicle speed, geofence boundary safety size and polygon
boundaries parameters, a flight plan can be created that does not violate the constraints of the environment.
A trajectory keep-in geofence can be used for the modelling of the planned flight plan. A path finding logic is
used for path planning between a departure and destination location. The proposed algorithms by Kim and
Atkins [52] use a set of 3D polygons to represent different geofence volumes. A visibility graph approach is

44 3. Environment Modelling

Figure 3.2: Map of Rotterdam city centre (yellow), parks & recreational areas (green), Port of Rotterdam (Red) created using Google
Earth Pro [36]

taken for path planning. As the number of vertices needed to create geofence volumes influences the com-
putational speed of the graph generation, map simplification algorithms are needed. A possible method to
reduce the number of vertices is by clustering geofence volumes, which reduces the number of vertices. The
downside of this method is that more airspace is restricted in the model as would be in a real-world scenario.
Another possibility could be to reduce the complexity of the models shape, by using pre-defined geometric
shapes, such as beams, cubes, and cylinders.

The aforementioned geofencing methods can both be applied to airspace as well as obstacles. In order to
represent obstacles in the Rotterdam Area, map data of Rotterdam will need to be processed. A possible
source in order to get geographical city data is OpenStreetMap (OSM) [37]. OSM is an open source provider
of map data, including data of the Rotterdam area. In order to create a 3D keep-out geofence representation
of the region, several steps need to be taken. From the OSM data input, a data formatting step is needed in
order to reduce the complexity of the environment by representing buildings by polygon vertices, building
heights and street level coordinates. The next step is to create larger polygons by merging multiple building
polygons together. Then, 2D and even 3D keep-out geofences can be created. An example of post-processed
map data for southern Manhattan, New York, is shown in Figure 3.3, which includes only buildings with a
height over 20 meters. The coloured polygons represent single buildings, while the black polygons represent
merged polygons. The same method could be applied in order to model part of the Rotterdam environment.
In order to even further reduce the complexity of the model, buildings up to certain heights situated close to
each other can be represented by one single polygon with a uniform height. For example, if three buildings
next to each other have maximum heights of 8, 10 and 12 meters, a possibility could be to cluster these build-
ings and create a polygon with a height of 15 meter, which includes a safe separation distance in addition. A
similar approach can be taken for other heights. Based on the selected area, different height categories will
be determined. Geofencing could also be used to keep safe separation from other dynamic obstacles, such
as birds. However, as the trajectory of birds is difficult to predict, this will be deemed outside of the scope of
this thesis.

To conclude, geofencing methods will be key for the modelling of UAV operations in urban environment.
It will be needed to represent virtual keep-out zones around building and restricted & limited access areas.
Besides the modelling of the environment, the modelling of the demand will also be key for medical UAV
operations, which will be discussed in the next section.

3.3. Demand Modelling 45

Figure 3.3: Post-processed map data for southern Manhattan, representing building with heights over 20 meter, where buildings are
clustered together in geofence volumes. Figure taken from Kim and Atkins [52]

3.3. Demand Modelling
In order to accurately represent the demand of medical items, a demand model needs to be incorporated
within the system. The Multi-agent Simulation System for Goods Transport (MASS-GT) [18] is a multi-agent
simulation model designed for modelling of urban freight transport. The tool is open-source and originates
from a project at the TU Delft. The model incorporates different stakeholders within the multi-agent ap-
proach, such as producers, customers and carriers. The stakeholders originate from four markets which are
the commodity market, logistics services market, transport market, and infrastructure market. Data from the
Central Bureau of Statistics Netherlands regarding transport shipments via road transport is used to calibrate
the model. Besides the transport shipment data, also data regarding vehicle tours, trip patterns, firm pop-
ulation and commodity flows is incorporated. The model allows for the simulation of urban freight in the
Rotterdam Area, including The Hague and Leiden. It also includes the locations of distribution centres, cat-
egorised based on floor space. Parcel depots of several large shipment companies have also been included,
such as DHL, PostNL and UPS. The study area itself is divided into zones, for which each zone the estimated
demand for certain types of commodities can be modelled.

The MASS-GT model [18] can potentially be used in multiple ways as part of the modelling of the UAV medical
supply delivery problem. First, warehouse placements can be used to represent several source locations for
medical supplies. Furthermore, the demand of commodities in combination with the number of medical
facilities in a zone can possibly be used to estimate the expected demand of medical supplies.

4
Concept of Operations

The use of unmanned aerial vehicles (UAVs) for the delivery of parcels is an emerging concept. One of the
most prominent delivery items are healthcare supplies. As the concept of delivering medical items via UAVs
is relatively new, a concept of operations (CONOPS) is needed in order to outline the operational framework,
the objectives, and requirements of the system. chapter 2 gave an overview of the different stakeholders
involved for UAM service, different suitable UAM vehicle types, and an overview of the proposed airspace
and architecture needed for UTM. The chapter also included explanation for choosing UAV Medical Supply
Delivery as the selected use case. chapter 3 provided reasoning for selecting the Rotterdam Area as urban
landscape, including several characteristics that need to be taken into account for modelling the Rotterdam
environment. This chapter will combine the information presented in the aforementioned chapters in order
to provide a CONOPS. Even though Zipline [123] has already been operating in Rwanda since 2016, operations
in urban environment have not yet been implemented. The CONOPS will serve as an blueprint outlining
the operational framework, objectives, and system requirements & assumptions, which will be discussed in
section 4.1, section 4.2, and section 4.3 respectively.

4.1. Operational Framework
The operational framework for UAV Medical Supply Delivery will act as the foundation from which the system
objectives, requirements, and assumptions will be derived. This section will first provide a short overview of
the existing system. Afterwards, a justification of why an extension is needed for the current system will be
given. Lastly, the future system will be described.

4.1.1. Existing system
This subsection will give a short overview of the current system for healthcare and pharmaceutical logistics,
mainly focusing on the delivery of healthcare supplies from warehouse locations to medical facilities.

The pharmaceutical supply chain has the following basic structure [38]. First drugs are manufactured at
production sites of pharmaceutical manufacturers. Pharmaceutical manufacturers are the source for pre-
scription drugs within the supply chain, and are considered the first element in the supply chain. Afterwards
pharmaceuticals are transported to wholesale distributors. Wholesale distributors directly purchase phar-
maceutical products from manufactures, store the products in warehouses and afterwards are responsible
for the shipment of products to medical facilities, such as hospitals and pharmacies. The current method of
transportation for healthcare items is via ground transportation within the same city. Upon receiving of the
shipment, medical facilities store the products before dispensing the items to patients. It must be noted that
this is the basic structure of the pharmaceutical supply chain and many variations exist due to constantly
evolving players. For the supply of other medical items, such as vaccines [61] or blood supplies [1], the supply
chain can be different. However, the same basic elements exist. For all items a source is the first element in
the supply chain. The second element in the supply chain is a large inventory location. The third and last
element is the delivery location, which are often medical facilities. This thesis will only focus on the deliv-
ery between inventory locations and medical facilities, as it is expected that drone delivery will be mainly be
utilised for last-mile delivery.

46

4.1. Operational Framework 47

There are multiple challenges involved for delivery and warehousing of healthcare items. Three main chal-
lenges are:

• Managing inventory: Medical facilities have to balance an adequate inventory in order to meet pa-
tients needs, while avoiding unnecessary inventory cost [56]. Especially with short-term perishable
items, such as blood supplies, a careful balance is needed [95]. To ensure an adequate inventory, in-
ventory management needs to be optimised, which can be challenging for medical facilities as accurate
demand forecasts are needed.

• Delivering in time: Ensuring timely delivery of medical supplies from warehouses to medical facilities
is important for patient care. Delays or inefficiencies, due to for example traffic congestion, can have
severe consequences. For certain medical items, shortages are not allowed. Therefore, efficient routing
and scheduling of transport is needed to guarantee medical supplies. [87]

• Controlling temperature: For many medical supplies, such as vaccines and blood supplies, specific
temperature control is needed in order to maintain the integrity of the products. The delivery of these
items is part of the cold supply chain and offers different challenges compared to standard supply de-
livery. The cold supply chain could be improved by providing faster and more reliable distribution. [61]

An extension to the current transportation and supply chain system, could be the use of drones for delivering
medical supplies to facilities. The extension can be justified as it allows for easier inventory management,
timely delivery of emergency items, and even allow for faster distribution within the (cold) supply chain.
Centralised warehouses have the capability to ship products to multiple medical facilities within a city by
use of drones. This in order to better help balancing the overall inventory, and allowing for medical requests
within a short time frame.

4.1.2. Proposed System
subsection 4.1.1 focused on the simplified current medical supply chain and why an extension of using
drones for delivery between distribution centres and medical facilities can be justified. This subsection will
provide an overview of the proposed system, by combining information presented in chapter 2 and chapter 3
regarding UAM services and environment modelling respectively.

First, the FAA and NASA [27] propose a theoretical architecture identifying the key actors and components on
a high-level for the UTM Airspace. The UTM architecture can be found in subsection 2.3.2. It is expected that
for the delivery of medical items, the same entities will be involved, with one or multiple key UAS operators
being in charge of UAV operations within an urban area, such as the city of Rotterdam. Other key actors in-
volved in UTM are the Flight Information Management System (FIMS), Supplemental Data Service Provider
(SDSP), and the UAVs. Besides the actors involved from an aeronautical perspective, distribution centres and
medical facilities from the medical perspective will be taken into account. Especially large distribution cen-
tres placed outside the city will be of importance, as it allows for the incorporation of a vertiport. Regarding
the medical facilities, several facilities will be taken into account, each with specific supply needs. A complete
overview of healthcare facilities and needed supplies is given in Table 3.1.

Furthermore, the FIMS will provide airspace constraint data, such as no-fly zones. It will also provide the
regulatory framework. The SDSP will provide terrain and weather data. In order to model medical UAV op-
erations in the Rotterdam Area, data from both sources needs to be included. Terrain information can be
obtained from a geographical city data source, called OpenStreetMap. For No-fly zones a geofencing system
can be used, as described in section 3.2. Keep-out geofences can also be used for keeping safe separation from
obstacles and other UAVs. In order to allow emergency missions to reach their destination as fast as possible,
geofencing volumes need to be dynamically adjustable to allow these UAVs to pass through no-flying zones,
similar to HEMS operations. Regarding the airspace itself, no further constraints are imposed, as the Full Mix
concept is selected for class G operations.

In order to adress the UAV medical delivery problem, a comprehensive framework is needed to show the
different stages involved. The framework includes the process involved, starting from the moment a medical
package is order up to its delivery. A preliminary overview can be seen in Figure 4.1, showing the process from
ordering to delivering parcels by UAVs. During both the initial path planning of the UAVs by the operator as
well as the in-flight path planning the environment needs to be taken into account carefully, with emergency

48 4. Concept of Operations

path planning allowing for less restricted airspace usage. Planning and coordinating UAVs with different
allowable and adjustable airspace access will be complex and needs to be planned for by the UAV operator.
For the proposed agent-based model, the distribution centre and UAV operator will be represented by the
same agent, being the operator agent.

Standard Order Processing

Distribution Centre receives
order

Distribution Centre informs
Operator of available pick up

time

Operator collects multiple orders
in a certain time frame

Standard Path Planning

Ordering

Operator plans paths from
Distribution Centre to Medical

Facilities of multiple orders
based on priority

Emergency Order Processing

Operator collects order as soon
as possible

Distribution Centre packes order
and prepares for delivery

Medical Facility evaluates inventory
and makes order accordingly

Medical Facility requests
emergency supply

Distribution Centre receives
order

Distribution Centre packes order
and prepares for delivery

Distribution Centre informs
Operator of urgency and

available pick up time

UAVs take-off and follow their
trajectory

UAVs replan their paths
according to path deviations,

delays and imposed constraints

Emergency Path Planning

Operator plans path* from
Distribution Centre to Medical

Facility

Operator notifies UAVs of
emergency mission and imposes

constraints on other UAVs

UAV take-off and follows
trajectory

UAV replans path according to
path deviation and delays

Delivery

UAV navigate planned route and delivers package to Facility

Package is retrieved at designated delivery point by Medical Facility

After succesfull delivery, confirmation is sent to Distribution Centre

Standard and Emergency Return Path Planning

Operator provides initial path from Medical Facility to Distribution Centre

UAVs take-off and follow their trajectory

UAVs replan their paths according to path deviations, delays and
imposed constraints

UAV returns at Distribution Centre and is available for new mission

Figure 4.1: Preliminary overview of the proposed system focusing on ordering and delivering of medical supplies.

4.2. System Objectives
The current medical delivery supply chain is facing multiple challenges, including challenges regarding in-
ventory management, timely delivery of (emergency) supplies, and controlling temperature. The extension
of the current system by using drones for delivery of medical supplies can support inventory management
and timely delivery of (emergency) supplies. The scope of this thesis will focus on real-time path planning in
a complex dynamically adjustable urban environment for medical services. Therefore, the proposed system
will have the following two main objectives:

1. Ensure on-time delivery of (emergency) medical supplies by enabling fast UAV operations.
2. Enable UAV operations into urban environment respecting the geofences of a real-world environ-

ment.

4.3. System Requirements & Assumptions
Based on the presented urban air mobility use case, as described in section 2.4, and the proposed system,
as described in subsection 4.1.2 system requirements and assumptions will be made. Requirements and as-
sumptions for the modeling of the UAV Medical Supply Delivery problem can be found in subsection 4.3.1 and
Table 4.2 respectively. Most requirements and assumptions follow from information provided in the previ-
ous discussed chapters and sections. Both the requirements and assumptions fall under different categories,
which are Delivery, Vehicle, Planning & Coordination, and Environment. The requirements and assumptions
following from the proposed system will have a great influence of the planning & coordination of UAVs in ur-
ban environment. Planning & coordination can be achieved and modelled by use of Multi-Agent Pathfinding
(MAPF) algorithms, which will be discussed in chapter 5. Based on these requirements, the best suited MAPF
algorithm will be selected.

4.3. System Requirements & Assumptions 49

4.3.1. Requirements
An overview of the initial requirements for the proposed system, being UAV medical supply in urban envi-
ronment, can be found in Table 4.1.

Table 4.1: Requirements for the modelling of the UAV Medical Supply Delivery problem

Identifier Category Requirement Section

REQ-DEL-01 Delivery
UAV Delivery shall only be considered for the delivery of
medical supplies

2.4

REQ-DEL-02 Delivery UAV Delivery shall provide timely delivery of medical items 4.1

REQ-VEH-01 Vehicle
The UAV shall have sufficient payload capacity to carry
various medical supplies

2.2, 2.4

REQ-VEH-02 Vehicle
Only UAVs that are be able to communicate to both the
Operators as well as other UAVs in proximity shall be allowed
in the environment

2.3

REQ-VEH-03 Vehicle
The UAV shall be able to fullfill the time requirement
required to deliver (emergency) medical supplies within
the Rotterdam Area

2.2

REQ-VEH-04 Vehicle The UAV shall have VTOL capabilities 2.2

REQ-PC-01
Planning &
Coordination

The UAV Operator shall have to provide conflict-free paths
to UAVs

3.1, 3.2

REQ-PC-02
Planning &
Coordination

The UAV shall have to be able to replan its path partially in
real-time in case of new constraints and/or path deviations

4.1

REQ-PC-03
Planning &
Coordination

UAV path planning and coordination shall provide mission
prioritisation based on urgency levels of delivery item

4.1

REQ-PC-04
Planning &
Coordination

Operator shall be able to provide UAV path planning
and coordination for multiple agents

4.1

REQ-ENV-01 Environment
The UAV Delivery System shall be able to operate in urban
environments without collisions of UAVs

3.2

REQ-ENV-02 Environment
The environment shall be modelled to incorporate
geographical characteristics of the delivery area in 3D

3.1, 3.2

REQ-ENV-03 Environment
Obstacles and no-fly zones shall be modelled as keep-out
geofence to ensure safe operations

3.2

REQ-ENV-04 Environment
No-fly zones shall be dynamically adjustable to allow for
emergency missions

3.2

4.3.2. Assumptions
An overview of the initial assumptions for the modelling of the UAV medical supply problem can be found in
Table 4.2.

Table 4.2: Assumptions for the modelling of the UAV Medical Supply Delivery problem

Identifier Category Assumption Section

ASS-DEL-01 Delivery
Delivery location of a customer (medical facility) will be
located at predefined delivery areas

2.1,
4.1

ASS-DEL-02 Delivery
Pick-up of delivery item will occur only at selected warehouses
containing sufficient inventory of medical supplies to meet
demand

2.1,
3.1

ASS-DEL-03 Delivery
Delivery of package will occur using a cable-delivery system,
allowing the drone to hover above the customer location

2.1,
2.2

ASS-VEH-01 Vehicle
Iniatally, only Wingcopter 178 will be available within
the UAS fleet; UAS characteristics will be modelled after
Wingcopters technical specifications.

2.2

ASS-VEH-02 Vehicle
Batteries of UAVs can be changed at delivery centres,
where swapped batteries will be completely recharged

2.2

50 4. Concept of Operations

ASS-VEH-03 Vehicle
The UAV will have sufficient battery life to complete
delivery mission without recharging

2.2

ASS-VEH-04 Vehicle UAVs will be able to communicate to Operators at all times 2.3

ASS-VEH-05 Vehicle
UAVs will be able to communicate to other UAVs (V2V
communication) only in close proximity (up to 500 meters)

2.3

ASS-VEH-06 Vehicle
UAVs will be able to meet requirements and
regulations regarding transportation of medical items

4.1

ASS-VEH-07 Vehicle
UAVs will not have any technical difficulties during operations,
such as loss of communication or engine failure

4.1

ASS-VEH-08 Vehicle
Operator-to-drone and drone-to-drone communication will not
have a delay of more than 1 seconds.

2.3

ASS-PC-01
Planning &
Coordination

One UAV Operator will be able to plan and coordinate all
task allocations and flight paths for all UAVs

2.3

ASS-PC-02
Planning &
Coordination

UAV will only know its own task and planned flight path;
Only in close proximity of other UAVs flight plans will be
shared to avoid conflicts

2.3

ASS-PC-03
Planning &
Coordination

UAV will know path constraints in case an emergency mission
takes place

2.3

ASS-PC-04
Planning &
Coordination

Only UAV operations from one Operator will be taken into
account

2.3,
4.1

ASS-ENV-01 Environment
Influence of different weather conditions will not be taken
into account (excluding wind conditions)

-

ASS-ENV-02 Environment

Only statical objects (e.g. buildings) and 1 type of
dynamical objects (other delivery drones) will be taken into
account. No interaction with humans, cars, birds, etc. during
flight.

3.2

ASS-ENV-03 Environment
Urban airspace will be up to a maximum flight altittude
of 120 meters above ground level.

2.3

5
Multi Agent Pathfinding

Multi agent pathfinding (MAPF) is a growing area of research within the field of Artificial Intelligence (AI). The
MAPF problem is to plan paths for multiple agents within a shared environment. This allows agents to reach
their destination without the collision of agents. This chapter will foremost focus on classical MAPF algo-
rithms. First, section 5.1 will provide an introduction into MAPF, by giving the problem definition, discussing
the difference between centralised and distributed MAPF methods, and the different objective functions that
can be used. Second, section 5.2 gives an overview of the to be discussed MAPF algorithms, where the algo-
rithms are being split up based on optimality. For optimal algorithms, section 5.3 and section 5.4 will provide
information on optimal reduction-based and search-based algorithms respectively. Regarding sub-optimal
algorithms, rule-based and search-based algorithms will be discussed in section 5.5 and section 5.6 respec-
tively. After a deep-dive into classical MAPF algorithms, section 5.7 will shortly elaborate on beyond classical
MAPF algorithms incorporating large agents, kinematic constraints, and reinforcement learning. section 5.8
will present key insights obtained from previous work combining UAV path planning and MAPF algorithms.
Next, a comparison of MAPF algorithms will be made in order to determine the most suitable MAPF algorithm
to use for the medical delivery problem, which is presented in section 5.9. Lastly, based on the information
presented within this chapter and chapter 2-chapter 4, a selection for a suitable simulation software tool will
be made in section 5.10.

5.1. Introduction to Multi Agent Pathfinding
Multi agent pathfinding (MAPF) is the problem of finding paths for multiple agents within a shared envi-
ronment, where agents have to reach their destination without having collisions between the agents or the
environment [63, 96, 97]. In this section we will start with introducing the problem definition of classical
MAPF, explaining the difference between centralised and distributed planning methods, and defining multi-
ple possible objective functions.

5.1.1. Problem Definition
The classical MAPF problem with k agents (ai , ..., ai+n) is defined by the tuple (G, s, g), where G = (V, E) is an
undirected graph, whose vertices the agent can occupy, s : [1, ..., k] → V is a function that maps the agent to
a start vertex, and g : [1, ..., k] → V is a function that maps the agent to a goal or target vertex [96, 97]. For a
classical MAPF it is assumed that time is discretised. For every time step t, the agent is located on one of the
vertices and can perform a single action. An agent can perform two actions, which are to wait or to move.
Waiting indicates that the agent will stay at its current location for one time step. Moving indicates that the
agent will move from its current location to an adjacent location within the next time step [96]. A solution
to the MAPF problem is valid once all agents reach their goal locations without collisions between agents.
This is achieved by planning a path pi for agent ai without having a conflict with the paths of other agents.
A conflict arises when two or more agents are planned to occupy the same location at the same time. If this
conflict is not resolved, it will result in a collision. A conflict occurs if agents are planned to occupy the same
vertex at the same time (Vertex conflict), or if agents are planned to transverse the same edge at the same time
in the same direction (Edge conflict), or if agents are planned to swap locations in one time step (Swapping
conflict) [97]. A swapping conflict is also indicated in literature as an edge conflict and will be from here

51

52 5. Multi Agent Pathfinding

onward be indicated similarly. A joint plan denotes the set of plans or paths of single-agents, for each agent.

5.1.2. Centralised & Distributed Pathfinding
MAPF problems can be categorised into two distinct groups, which are centralised and distributed planning
methods [90]. Centralised planning methods use a single central computing power, which needs to find a
global solution for all k agents. Centralised planning also encompasses the planning of paths where each
agent plans its own path, but the knowledge is shared among the agents and centralised entity has control
over all agents. For distributed planning methods, each agent is responsible for the planning of its own path.
Distributed conflict resolution methods for agents can be prescribed, reactive or explicitly negotiated [81].
Both centralised and distributed MAPF methods have their benefits. For centralised methods, global optimal
solutions can be guaranteed by using global constraints and interactions between agents. Also a high level
of coordination between agents can be achieved, as complete information can be shared between agents.
The benefits of distributed MAPF methods are that they are in general more scalable and suitable for prob-
lems with large number of agents. For centralised methods, the problem size can scale exponentially with the
number of agents involved. Using a decentralised approach also allows for a more robustness, as agents will
be able to adapt quickly to unexpected challenges.

The UTM Architecture proposed by the FAA and NASA [27], shows that a distributed planning method will be
used, when considering planning and coordination for multiple UAS Operators within a shared environment.
However per UAS Operator the planning and coordination will be centralised, especially in pre-flight condi-
tions. During operations, when uncertainty is introduced, distributed planning methods can be utilised to
resolve unforeseen conflicts. This work will focus on the operations of one UAS operator only, and therefore
centralised methods are more suited to the problem at hand.

5.1.3. Objective Functions
In general, MAPF problems can have multiple valid solutions, which are based on the chosen objective func-
tion. The two most common objective functions are makespan and sum of costs. Makespan is denoted as
the number of time steps required for all agents to reach their goal. Sum of costs is denoted as the sum of
time steps for each agent to reach its goal or target. The goal of an agent is the desired state that an individual
agent aims to achieve. The goal of an agent can encompass more than only reaching a certain location, but
could also include to deliver a package or to perform certain actions. A target often refers to a location that
an agent aims to navigate to. Reaching the target can be the goal of the agent, but can also be a sub-goal in
order to achieve the final goal of the agent. Once an agent reaches its goal and the goal is to stay at the target
it needs to be determined how staying at the target will influence the sum of costs. A possibility could be that
if the agent waits at its goal, the sum of costs does not increase by the waiting time of that agent. [96, 97] Tra-
ditionally for classical MAPF, makespan is considered for reduction-based MAPF, while sum of costs is mostly
used for search-based MAPF algorithms. Reduction-based and search-based algorithms will be explained in
section 5.2-section 5.4. Other objective functions are for example flow-time, which is the objective to min-
imise the average length of paths of the agents [115], or to maximise the number of agents that reach their
goal within a certain time span [64]. These objective functions are less common in classical MAPF problems,
but do become more popular for Beyond Classical MAPF problems.

5.2. MAPF Algorithms Overview
MAPF algorithms can be classified using different approaches. This section will split classical MAPF algo-
rithms based on optimally, which is optimal and (bounded) suboptimal MAPF algorithms. Optimal solu-
tions for MAPF algorithms aim to minimize the objective function, as presented in subsection 5.1.3. Optimal
methods guarantee e.g. the minimal cost required for each agent to reach their goal. (Bounded) Sub-optimal
methods provide solutions that are not optimal, but do provide the benefit of being more computational effi-
cient and scalable. Figure 5.1, shows an overview of the different classes of algorithms. The following sections
will provide an overview of the different algorithms and will focus on why an algorithm would be fit or would
not be fit to the problem at hand, which is UAV Medical Supply Delivery. Algorithms that are deemed not suit-
able will only be discussed briefly for completeness. section 5.3 will give an overview of the optimal reduction
based MAPF solvers. section 5.4 will give an overview of the optimal search-based MAPF solvers, which will
include a deeper insight into A*-based optimal algorithms, Increasing Cost Tree Search (ICTS) algorithms
and Conflict Based-Search algorithms in subsection 5.4.1, subsection 5.4.2, and subsection 5.4.3 respectively.

5.3. Optimal Reduction-based MAPF Algorithms 53

Besides the optimal MAPF solvers, the Bounded Sub-Optimal solvers will be discussed in section 5.5 and
section 5.6 for rule-based and search-based bounded sup optimal solvers respectively. section 5.6 will use a
similar structure to section 5.4 when discussing the different algorithms.

Classical MAPF
Algorithms

Optimal Bounded Sub-
Optimal

Reduction-based
(Section 5.3)

Search-based
(Section 5.4)

SAT

Rule-based
(Section 5.5)

Search-based
(Section 5.6)

A*-based

ICTS

CBS

A*-based

ICTS

CBS

ILP Push & Swap

BIBOX

SATSAT A*-basedSAT A*-basedSAT A*-based

Push & Swap

BIBOX

ICTS

CBS

ILP

A*-based

ICTS

SAT

ASP

TASS

SIPP

Figure 5.1: Overview of Classical MAPF algorithms

5.3. Optimal Reduction-based MAPF Algorithms
The aim of reduction-based MAPF algorithms is to decompose the problem into smaller sub-problems that
can be solved using other well-studied problems. Three examples of this class, are boolean satisfiability
(SAT) [46], Integer Linear Programming (ILP) [121] and Answer Set Programming (ASP) [25]. Reduction-based
algorithms are complete for all MAPF instances. The objective function for this class is makespan, but can
be modified to solve MAPF with other objective functions, such as sum of costs, optimally. Also adapting for
(bounded) sub-optimally is possible, however both adaptations are not deemed trivial. It must be noted that
for search-based algorithms with sum of costs objectives, it is deemed easily possible to makespan, which is
an advantage if one wants to compare solutions using different objectives [63].

SAT Algorithms make use of boolean variables (True or False), which is used to express the graph, agents lo-
cations and constraints. The following constraints are applied, which are constraints to ensure valid starting
and goal locations, constraints to ensure agents occupy only one vertex per time step, constraints to ensure
one vertex is occupied by one agent per time step, and constraints to ensure correct movements. The optimal
makespan can be found by increasing the total time until a satisfiable solution is found. [46, 100]

Integer Linear Programming (ILP) [121] can also be used to solve MAPF problems, and allows for easy adapta-
tion of objective functions. ILP is a type of optimisation problem, with variables that consist only of integers.
Both the objective function and constraints are linear. The benefit of using ILP, is that when implemented
correctly can allow for a 100% success rate, however ILP does not scale well computationally for increasing
size of either agents or environment.

Answer Set Programming (ASP) [25] models the path finding problem as a so-called program and tries to solve
the problem by computing models. These comping models are called answer sets. The benefit of ASP is that
it allows for a framework which can solve multiple path finding variations. It can also be applied to any sort of
graphs. The downside is that the finding of optimal solutions, including constraints for collision types, does
not computationally scale well.

The key strength of reduction-based solvers is to find solutions for small densely populated maps with many
obstacles. However, for large maps reduction-based solver can be unable to find solutions, even with a small
number of agents [46]. Even though the urban environment consist of areas made up with a high density of
obstacles (e.g. buildings and trees), the environment itself will be large. It also expected that UAVs are able to
pass each other within streets, by passing each other vertically and/or horizontally, depending on the street

54 5. Multi Agent Pathfinding

characteristics.

5.4. Optimal Search-based MAPF Algorithms
The search-based optimal algorithm class is the one of the most prominent MAPF solvers. In general, search-
based algorithms perform better on large sparsely populated maps, while having trouble finding a solution on
small densely populated maps, which is the opposite for reduction-based algorithms. The search-based al-
gorithms can be divided into three subclasses, which are Extensions of A*, Increasing Cost Tree Search (ICTS)
and Conflict Based-Search, which are discussed in subsection 5.4.1, subsection 5.4.2, and subsection 5.4.3
respectively.

5.4.1. Extensions of A*
The A* algorithm is one of the most used path finding algorithms within the field of AI, and can both be
applied to single agent path finding as well as multi agent path finding. First, single agent path finding will be
discussed.

Single Agent Path Finding A*
A* can be used for a single agent to find the shortest path from a start node to a goal node on a graph [96].
Other well-known path finding algorithms are Dijkstra’s Algorithm and Best-First-Search. The downside of
Dijkstra’s algorithm is that the algorithm explores a significant amount of nodes, as it will expand radial on a
graph. However, it is guaranteed to find the shortest path. Greedy Best-First-Search makes use of an heuristic
to determine which node should be explored next, which does not always result in the shortest path, espe-
cially when concave obstacles are involved [3], but is able to provide answers in a faster manner. It is not
quantified how much faster it is able to provide a solution.

The A* algorithm uses a heuristic search algorithm that uses the following cost function, f (n) = g (n)+h(n),
where g (n) is the current cost to reach node n from the start node and h(n) is a heuristic that estimates the
cost of reaching the goal node from the current node n [13, 96]. The common heuristic functions used for
this algorithm are heuristic distances such as the Manhattan distance, Euclidean Distance, or excluding dis-
tance [31]. These heuristics calculate the distance from the current node to the goal node, without taking
obstacles into account. The Manhattan distance is the absolute difference between two coordinates [49]. The
Euclidean distance is the distance between two coordinates, when following a direct line between the two
nodes [49].

A heuristic is admissible iff h(n) ≤ h*(n), where h*(n) is a perfect heuristic and h*(n) is known for all nodes . If
the heuristic is admissible, it is guaranteed to find an optimal solution. The pseudo-code of the A* algorithm
can be found in Algorithm 1.

Multi-agent path finding A*
The above mentioned algorithm can also be adapted for MAPF, by running A* on the k-agent search space,
where the states represent the different possibilities to place k agents into all |V| vertices [28, 96]. An admissi-
ble heuristic is to sum the individual heuristics for each agent, using a distance heuristic, such as Manhattan
or Euclidean distance. A more informed heuristic is the sum of individual costs, which is also admissible.
For each agent ai the optimal path is calculated from its current node to the goal node of the specific agent.
The sum of these costs over all agents is then used as the heuristic. This heuristic can be calculated during
operations of the agent [91] or can be computed in a pre-processing phase [93]. The latter uses a breadth first
search from the agents goal position to every free grid position [93].

One of the main drawbacks of using A* for MAPF is that the state-space is exponential in the number of
agents. Also the branching factor of a given state can be exponential in the number of agents. The branching
factor is the number of possible positions an agent can occupy in the next time step. Both drawbacks com-
bined can lead to computational infeasability, especially when many agents are involved. In order to reduce
the computational time of A*, multiple enhancements have been made. We will focus on the following 3 en-
hancements, which are Independence Detection (ID) [94], Operator Decomposition (OD) [93], and Enhanced
Partial Expension (EPEA*) [35]. Also an A*-based algorithm called M* [109] will be explored.

5.4. Optimal Search-based MAPF Algorithms 55

Algorithm 1 A-star Algorithm taken from Candra, Budiman and Pohan [13]

1: open_list = set containing start
2: closed_list = empty set
3: start.g = 0
4: start.f = start.g + heuristic(start, goal)
5: while current is not goal do
6: current = open_list element with lowest f cost
7: remove current from open_list
8: add current to closed_list
9: for each neighbor not in closed_list do

10: if neighbor not in closed_list then
11: neighbor.f = current.g + heuristic(neighbor, goal)
12: if neighbor is not in open_list then
13: add neighbor to open_list
14: else
15: openneighbor = neighbor in open_list
16: if neighbor.g < openneighbor.g then
17: openneighbor.g = neighbor.g
18: openneighbor.parent = neighbor.parent
19: if open_list is empty then
20: return false
21: return backtrack_path(goal)

Independence Detection (ID)
Independence Detection (ID) [94] is an enhancement to A*, which divides agents into independent groups.
These groups are afterwards solved separately. Agents are independent if there is a solution for each group
in which the solutions do not have any collisions. Independent groups can be created by first finding an
optimal path for each agent separately and afterwards combining them in groups if conflicts are present.
Combining is done for the first two agents that have a conflict and is resolved by a global search A* algorithm,
e.g. A* + Operator Decomposition (OD) [94]. The computational time of solving the MAPF is dominated by
the largest independent group of k’ agents, and is therefore able to reduce the computational time |O(V)k | to
|O(V)k ′ | [28].

Operator Decomposition (OD)

Operator Decomposition (OD) [93] is an improvement to A*, which reduces the branching factor from bag ent
k

to bag ent . This is done by avoiding surplus nodes. Surplus nodes are nodes, whose cost is greater than the cost
of the optimal solution, and are therefore not needed in order to compute the optimal solution. By avoiding
to generate these nodes, a reduction of the computational effort can be obtained [35]. In the standard A*
algorithm, every agent moves (or stays within) a state for every time step. OD only considers movement of
the first agent, where the order of the agents is arbitrary, but fixed. Standard states are when no agent has
been assigned a move. Intermediate states is when at least one agent has been assigned a movement. At
the intermediate states, the movement of agents without assigned movements are considered only. This will
result in the generation of new intermediate nodes. Assigning movement to the last unassigned agent in
an intermediate state, results in a standard state. After a solution is found, the intermediate nodes in the
open_list are not developed in standard nodes, resulting in a reduction of the surplus nodes [28, 93].

Enhanced Partial Expension (EPEA*)
Enhanced Partial Expension (EPEA*) [35] similar to OD reduces the generation of surplus nodes to decrease
the computational time. EPEA* avoids the generation of surplus nodes by using a priori 1 domain knowledge.
EPEA* generates only nodes with f (nc) = f (n). Using a priori domain- and heuristic specific knowledge a
list of operators is created, which leads to a list of nodes with the needed f-value, without creating surplus
nodes. This is achieved by using an Operator Selection Function (OSF). The OSF is able to return for the
expansion of node n, the set of child nodes with f (nc) = f (n), as well as able to store the minimum f-value

1a priori means from what is before in Latin. It means that a state can be derived from reasoning alone

56 5. Multi Agent Pathfinding

with f (nc) > f (n). The latter is done as this node can be useful, but it cannot be proven in the current phase
of the search. The first child nodes are classified as provably useful and the second nodes are classified as
possibly surplus. Provably useful is defined as it can be mathematically be proven that the solution is useful.
A possibly surplus node can become provably useful when node n is re-expanded with a higher stored value.
An example of the OSF is visualised in Figure 5.2. The goal node is located North-West of the current node.
Using the Manhattan distance heuristic, the distance from the nodes located in each directions from the
current nodes are calculated, which is visualised on the right-hand side of Figure 5.2. Moving increases the
value by 1, which leads to a value of 4 for moving in a Northern or Western direction, while moving in Eastern
or Southern direction leads to a value of 6. f (n) = 4, resulting in a value difference of +0 for the Northern
and Western movement and +2 in Eastern and Southern direction, which is visualised on the left-hand side
of Figure 5.2. [35]

Figure 5.2: Example of a full-checking OSF implementation in EPEA* using the Manhatten distance heuristic, figure taken from
Goldenberg et al. [35]. Left-hand side displays the difference between f (n) and f (nc) and the right-hand side displays the f-value of the

heuristic.

M*
M* [109] is an A*-based algorithm, that also searches the k-agent search space, similar to A*. One of the main
limitations of A* is the exponential branching factor. For M*, the branching factor and the dimensionality is
dynamically changed based on the number of conflicts. Dimensionality is denoted as the number of agents
that is not allowed to have conflicts [28]. The branching factor is changed in the following manner. Initially,
when a node is expanded, the M* algorithm only generates a child node which is part of the optimal individ-
ual path of each agent ai . This means that every agent ai will ’move’ a node until a conflict is found between
q ≥ 2 agents [28]. For only the conflicting agents the nodes from the start node to the current node are re-
expended, generating nodes for all the possible actions these agents can perform and finding a collision free
path for these agents. The collisions itself are stored in a conflict set. For the other agents only the optimal
path will be followed [96]. This process is repeated until all agents find their goal without collisions.

Several improvements to the M* algorithm were made. The first being Recursive M* (rM*) [109], which iden-
tifies disjoint conflict subsets and combines them. Afterwards paths are found for these sub problems re-
cursively. Therefore, rM* has similarity to ID, as it identifies sub problems which can be solved indepen-
dently [96]. Another improvement is the combination of rM* with OD, which is called ODrM* [29]. The rM*
algorithm makes uses of OD for the underlying planner. It is used for first finding an optimal path for each
agent ai , and secondly for finding solutions for the conflict set. Ferner et al.[29] demonstrate that ODrM*
outperforms both rM* and OD. A typical 8-connected grid world with 32x32 cells with a 20 percent change
of a cell being marked as an obstacle was used to perform all tests. The start and goal position of each agent
was chosen randomly and the number of agents was varied from 5 up to 60. A total of 100 simulations per
agent number were performed, each with a random environment. 5 minutes were given to find a solution.
The number of successful simulations as well as the mean time to find a solution were used to compare the
algorithms. The time to find a solution is used as a performance indicator. It was demonstrated that ODrM*
outperforms M*, as M* has a 20-30 percent lower success rate compared to ODrM*, when 25-30 agents are
involved. Also combining OD with rM* leads to a 60 percent improvement in performance, for problems that
include 20 agents.

In conclusion, based on the results from Ferner et al.[29] the combination of rM* and OD performs the best
within the subclass of optimal search-based MAPF Algorithms, searching the k-agent state-space.

5.4. Optimal Search-based MAPF Algorithms 57

5.4.2. The Increasing Cost Tree Search
Another optimal search-based MAPF algorithm is the Increasing Cost Tree Search (ICTS) [88], which is dif-
ferent compared to the extensions of A*, as it does not search the k-agent space directly [96]. ICTS divides
the MAPF problem into two problems based on the understanding that the complete solution for problem is
built from individual solutions of the agents. An individual solution is the path from start to goal. The two
problems are the minimal cost of each agents path to find an optimal solution per agent, and finding a set of
non-conflicting paths for all agents, given their individual costs. These two problems are solved for ICTS in
different levels of the algorithm, called the high-level search and low-level search. The goal of the high-level
search is to find a minimal cost solution in a search space that spans combinations of cost of each agent. The
low-level search acts as a goal test for the high-level search, where it searches for a valid solution under cost
constraints given by the high-level search. [88]

The high-level search is performed on the increasing cost tree, which consist of nodes, a root of the tree, a
successor function, and a goal test. First, every node s consists of a k-vector including the individual path
costs, denoted as [C1,C2, ...,Ck]. Node s represents all possible complete solutions where the individual path
cost of agent ai is equal to Ci . For every node within the same level, the total cost is the same. Second, the
root of the ICT is the optimal cost of individual paths without taking other agents into account, similar to the
sum of individual costs in A*, which is denoted as [opt1,opt2, ...,optk]. Third, each node will generate k suc-
cessors, where each successor increments the cost of agent ai , increasing the total cost function by 1. Lastly,
an ICT node is a goal node if the individual path cost of each agent is equal to Ci and there is a non-conflicting
solution. The depth of the optimal goal node is denoted by ∆. The depth of the search is dependent on the
number of agents k, the topology of the searched map and the ratio of agents to vertices on the map. [88]

For the low-level search, all paths of cost Ci are stored in a compact data-structure called multi-value deci-
sion diagram (MDD). The low-level searches the cross product of the MDDs to find a set of k non-conflicting
paths for the different agents. This can be searched using a depth-first branch-and-bound as this is not an
optimisation problem. If a set is found, the low-level search returns True, and the search is stopped. If False
is returned, the search continues to the next ICT node via the high-level search. [28, 88]

An extension in order to speed up ICTS is to use pruning techniques. The goal of pruning is to remove sec-
tions of the ICT, by quickly identifying subsets of single-agent plan costs for which there is no valid solution.
If such a subset exists, the node can be declared a non-goal node and the high-level search can continue.
Different pruning techniques exist, such as Simple pairwise/triple pruning, enhanced pairwise/triple prun-
ing, and repeated enhanced/triple pairwise. Sharon et al.[88] demonstrate that the combination of ICTS +
enhanced triple pruning (3E) perform best.

5.4.3. Conflict Based Search
Next, Conflict-based Search (CBS) [90] similar to ICTS [88] uses a two-level search in order find an optimal
solution for all agents. CBS is used in a variety of sophisticated real-world scenarios, and will therefore be
explained in greater detail, starting with the classical CBS.

Classical CBS
The CBS algorithm is not based on A*, and does not search the k-agent space directly [96], which is similar
to ICTS. CBS uses the following definitions. Paths are only considered for a single agent from their respective
start to goal vertex. A solution is the set of k paths for the given set of k agents. Furthermore, a constraint,
denoted as a tuple (ai , v, t), is a vertex v , where agent ai is prohibited to be at time step t . A consistent path
is a path of agent ai where all constraints are met for agent ai . A consistent solution is the set of k consis-
tent paths. A conflict, denoted as tuple (ai , a j , v, t), is when agent ai and a j are occupying vertex v at time
step t . A solution is valid if all k paths have no conflicts. A consistent solution can be invalid, if the paths
have conflicts, even when meeting the own constraints of each agent. The main idea of CBS is to develop a
set of constraints for each agent and find paths taking into account these constraints. When conflicts arise,
new constraints are formed. CBS uses a two-level search algorithm, where the goal of the high-level search
is to find conflicts and add constraints. The low-level search focuses on updating the agents path to be con-
sistent with the new constraints. The high and low-level search will be explained in more detail below. [28, 90]

58 5. Multi Agent Pathfinding

The high level of CBS searches the constraint tree (CT), which is a binary tree, where each node N consist of
the following data: N.constraints, N.solution, and N.cost. Regarding the set of constraints (N.constraints), the
CT root, is an empty set. The child nodes in the CT inherit the constraints of the parent node and adds one
new constraint for each agent. The solution (N.solution) is a set of k paths. The paths for each agent ai are
found using the low-level search. The total cost (N.cost) is the summation of all cost over all k agents, which
is denoted as the f-value of the node. The nodes in the CT are ordered based on their costs, using a best-first
search. [28, 90]

A node in the CT is processed in the following manner. The low-level search is used given a list of constraints
for a node N and returns an optimal path for individual agents given their constraints. For finding the optimal
path in the low-level search, any optimal path finding algorithm can be used, such as A*. Ties between nodes
with the same f-value are broken in favor of paths with fewer conflicts. If a consistent path is found for each
agent, the paths are validated by simulating the movements of the agents along their planned solutions. If
all agents reach their goal without any conflict, N is declared a goal node, the high-level search is stopped,
and N.solutions is returned. If the solution is invalid, the node is declared a non-goal node and the high-level
search continues. [28, 90]

Given a non-goal CT node, a conflict (ai , a j , v, t) is resolved in the following manner, which is called as a split
action. For a valid solution a constraint for either agent ai or a j is imposed for vertex v at time step t . The
node N , containing the conflict, is split into two child nodes, where each node contains either a constraint
for agent ai or agent a j . The low-level search is then afterwards only used for the agent with the imposed
constraint. [28, 90]

The pseudo-code for CBS can be seen in Algorithm 2 for the high-level search, while the pseudo-code for the
low-level search using simple A* can be seen in subsection 5.4.1 in Algorithm 1. Lines 1-7, and 20-22 belong
to the classical CBS, while the colored lines belong to CBS improvements, which will be discussed later in this
subsection. Algorithm 3 shows the pseudo-code for generating child nodes for CBS high-level search.

Algorithm 2 CBS High-level Main Algorithm taken from Felner et al.[28]

1: Init R with low-level paths for the individual agents
2: insert R into open
3: while OPEN not empty do
4: N ← best from OPEN //lowest cost solution
5: Simulate the paths in N and find all conflicts
6: if N has no conflict then
7: return N.solution //N is goal
8: C ← find-cardinal/semi-cardinal-conflict(N) // (PC)
9: if C is semi- or non-cardinal then

10: if Find-bypass(N,C) // (BP) then
11: Continue
12: if should-merge(ai , a j) // Optional, MA-CBS then
13: ai j = merge(ai , a j)
14: if MR active then
15: Restart Search
16: Update N.constraints()
17: Update N.solution by invoking low-level(ai j)
18: Insert N back into OPEN
19: Continue // go back to the while statement
20: for each agent ai in C do
21: A ← Generate Child(N, (ai , s, t))
22: Insert A into OPEN

5.4. Optimal Search-based MAPF Algorithms 59

Algorithm 3 CBS High-level Generate Child function taken from Felner et al.[28]

1: A.constraints ← N.constraints + (ai , s, t)
2: A.solution ← N.solution
3: Update A.solution by invoking low level(ai)
4: A.cost ← SIC(A.solution)
5: return A

In order to test the performance of CBS with previously developed MAPF algorithms, Sharon et al. [90] demon-
strate the success rate of EPEA*, ICTS + 3E (denoted as ICTS), and CBS on three different maps, each with their
own topology. These benchmark maps are taken from the game Dragon Age: Origins (DAO). The first map,
map den520d, has many open large space without bottlenecks. The second map, map ost003d, has a few
open spaces and few bottlenecks. Lastly, the third map, brc202d, has few open spaces and many bottlenecks.
The success rate of each algorithm per map can be seen in Figure 5.3. On all three algorithms ID is used
to enhance performance. It can be seen that ICTS performs best on a map with large open spaces and few
bottlenecks, while CBS performs in general best on maps with few open spaces and many bottlenecks. ICTS
outperforms EPEA* on all maps, while CBS only outperforms EPEA* on the second and third map. The rea-
son that ICTS outperforms CBS in large open spaces is that ICTS is more efficient at quickly expanding the
search tree and therefore finding open spaces. This allows the algorithm to find solutions faster, as it is less
focused on solving conflicts. However, for maps containing many bottlenecks an few open spaces, CBS will
outperform ICTS as it is more efficient in resolving conflicts.

Figure 5.3: Success-rate CBS compared to ICTS and EPEA*,
taken from Sharon et al.[90] Figure 5.4: Success-rate of MA-CBS experiments using EPEA*

as low-level solver, taken from Sharon et al.[89]

As classical CBS chooses to split up nodes arbitrarily, poor split up choices can increase the CT. Therefore
several improvements were made to CBS, which will be discussed further in this section.

Meta-agent CBS (MA-CBS)
The first improvement to CBS is Meta-agent CBS (MA-CBS) [89]. Classical CBS behaves poorly when there is
a high rate of internal conflicts between agents. The number of conflicts could become so high, that using
a coupled solver would lead to better results. Therefore MA-CBS adds the option to merge conflict agents
into meta-agents instead of the split action. A meta-agent itself consist of M agents and is treated as a single
composite agent, whose state consists of a vector containing the locations of each agent. Meta-agents can be
merged together with other (meta-)agents, however their node within the CT is never split. The pseudo-code
for MA-CBS can be found in Algorithm 2, line (12-19). When agents are merged, the constraints are unified
(line 16). Afterwards, the low-level search is invoked for the new meta-agent only (line 17). The merging of
constraints must ensure the return of an optimal solution, which is why Sharon et al.[89] proposed a simple
merge policy. Two agents ai and a j are merged into a meta-agent, denoted as ai j , if the number of conflicts

60 5. Multi Agent Pathfinding

Figure 5.5: Comparison of simulation results between CBS, MA-CBS(10) + OD and MA-CBS(10)+ODrM*. The left plot shows the succes
rate of found solutions within a 5-min time frame, the right plot shows the time to find a solution. Figure taken from Ferner et al.[29]

.

between the two agents exceeds a predefined parameter, denoted as B. The merge-policy parameter is de-
noted as MA-CBS(B). If this parameter is not preceded, the should-merge function (line 12) returns False and
a normal split action is performed. Sharon et al.[89] demonstrate that MA-CBS outperforms classical CBS.
Using three different maps, each with their own topology the success-rate of MA-CBS is tested. The number
of k agents is increased from 5 to 40 in increments of 5. For each value of k, 100 instances are run. The results
of the experiment can be seen in Figure 5.4. It must be noted that MA-CBS(0) is the same as A* (or equivalant
extensions, such as EPEA*) + ID, while MA-CBS(∞) is the same as classical CBS. EPEA* has been chosen as
the low level solver, as it outperforms classical A*.

The results in Figure 5.4 show that MA-CBS with non extreme values outperforms both MA-CBS(0) (which
is EPEA* + ID, denoted as EPEA*) and MA-CBS(∞) for all three maps. In general if more agents are present
within a map, denoted as map density, low values of B are more efficient (lower computational time). Fur-
thermore, for maps with large open spaces and few bottlenecks, low values of B are also more efficient, while
maps with many bottlenecks and few open spaces, high values of B are more efficient. Lastly, if a slow MAPF
solver is used for the low-level search, high values of B are preferred. This is because the higher the B-value,
the less often the low level search is invoked. The computational performance of the low-level search MAPF
solver can be increased by using a ODrM* in combination with MA-CBS [29]. Using the same test environ-
ment as discussed in subsection 5.4.1 for M*, Ferner et al.[29] demonstrate that ODrM* using the MA-CBS
framework outperforms both basic CBS and MA-CBS combined with the A* + OD coupled planner. The se-
lected B-value for MA-CBS with ODrM* and MA-CBS with OD is 10. The results can be seen in Figure 5.5,
where it is demonstrated that a success rate of 96% can be achieved for 40 agents, and almost 80% can be
achieved for 60 agents. This compares to below 60% success rate for both CBS and MA-CBS(10)+OD for 40
agents and below far 20% for 60 agents. In a small environment with few agents the performance of all algo-
rithms is comparable, but with more agents involved, hence more conflicts need to be resolved. This results
in MA-CBS(10) + ODrM* outperforming both other algorithms.

Merge and Restart
An improvement to MA-CBS [89] is to restart the search from the root node of the CT, when a merge decision
is made. This improvement is called Merge and Restart (MR) [11]. A new root node is used, including the
merged agents from the beginning. The pseudo code of this improvement can be found in Algorithm 2, in
lines 14 and 15. MR is a simple to implement improvement, but does save computational effort, which will
be elaborated on after discussing all improvements.

Preferring Cardinal Conflicts
The second improvement to (MA-)CBS proposed by Boyarski et al. [11] is the splitting of nodes in the CT, when
a cardinal conflict occurs. This improvement is called Preferring Cardinal Conflicts (PC). In general, con-
flicts can be divided into cardinal-conflicts, semi-cardinal conflicts and non-cardinal conflicts. For cardinal-

5.4. Optimal Search-based MAPF Algorithms 61

conflicts, when a conflict (ai , a j , v, t) is split into constraint (ai , v, t) and (a j , v, t) and when invoking the low-
level search, the cost for both agents’ paths is increased including the constraint. Another definition is that
optimal path of both agents ai and a j include location v at time step t . Second, semi-cardinal conflicts are
conflicts where only the cost of one agents’ path is increased. Third, non-cardinal conflicts are conflicts where
neither one of the two constraints lead to an increased cost. Using the definitions for cardinal conflicts, the
improvement is included within the pseudo-code for Algorithm 2. In line 8, the conflicts are examined. If one
of the constraints is cardinal, the node is split, indicating that the algorithm continues to line 20.

Bypassing conflicts

The last improvement focuses on preventing the splitting of nodes, by bypassing the conflict. A conflict is by-
passed by modifying the path of one the agents. This is improvement is called Bypassing Conflicts (BP) [12].
This especially is beneficial for conflicts that are semi-cardinal or non-cardinal. By modifying the path of one
the agents instead of splitting the node the size of the CT is kept smaller, saving computational effort in the
high-level search. The pseudo-code for BP can be seen in lines 10 and 11 in Algorithm 2. Two variants of BP
are Peek at the Child (BP1) [12] and Deep Search for Bypasses (BP2) [12]. BP1 peeks at one of the two imme-
diate children in the CT and tries to adopt their paths, while BP2 searches in a best-first manner through all
children and tries to adopt the path with the lowest cost.

Improved Conflict Based Search

The improvements MA-CBS, MR, PC and BP can all be optionally added to CBS separately. If all are com-
bined together, the algorithm is called Improved CBS (ICBS). Boyarski et al. [11] use extensive experiment to
compare different optimal MAPF algorithms. For the experiment the maps from DAO were used, where each
map has a different topology. The selected MAPF algorithms are as follows. For ICBS, ICBS(25) (combination
of MA-CBS+BP+PC+MR) is chosen. This is compared with MA-CBS(25)+BP [12], MA-CBS[89], EPEA*[35],
and ICTS+p (ICTS + pruning) [88]. The results can be seen in Figure 5.6. First, from these results it can be
concluded that ICBS outperforms other CBS variants for all graphs. ICBS also has in general the best perfor-
mance regarding run time for all graphs. It can be noted that ICBS outperforms all algorithms in maps with
few open spaces and many bottlenecks. However, when large open spaces are involved it has similar perfor-
mance to EPEA* and ICTS. For previous versions of CBS, CBS always under-performed compared to ICTS and
EPEA*, which can be seen in Figure 5.3 and Figure 5.4. It must be noted that no MAPF solver is best for all
circumstances and all topologies and therefore the chosen solver, should be based on the use case.

Figure 5.6: Comparison of simulation results between ICBS(25), ICTS, EPEA*, MA-CBS(25), and MA-CBS(25). The top plots show the
success rate of found solutions for each map, the bottom plot shows the average runtime. Figure taken from Boyarski et al [11]

62 5. Multi Agent Pathfinding

5.4.4. Safe Interval Path Planning
In the previous subsections, the discussed algorithms model the environment as if it is static. Dynamic obsta-
cles, which in most cases are other agents, are turned into static obstacles, which can lead to computational
inefficient planning methods. This is because it requires adding time as an additional dimension to the search
space. In an online setting, every time a new agent is introduced, re-planning needs to take place, which de-
creases the computational performance even more. An algorithm that was developed for the planning of
agents in dynamic environments is Safe Interval Path Planning (SIPP) [75]. SIPP does not have a state for
every configuration and time step pair, but does use a grouping of collision free time steps. This grouping is
called a safe-interval, and for a pair the configuration and the safe interval is used. This leads to a smaller
search space, as the the maximum number of safe interval for any given configuration is at most the num-
ber of agents moving through the specific configuration. The safe interval is defined as the period of time
in which there is no collision for a configuration. One time step before and after the safe interval a collision
would occur. Only when a dynamic obstacle would not move through the configuration, there will not be
a collision after the safe interval. The collision interval is the opposite of the safe interval. An example of a
configuration with a timeline for safe intervals and collision intervals can be seen in Figure 5.7. The SIPP al-
gorithm also makes use of a Dynamic Obstacle Representation, which tracks the dynamic obstacles (agents).
This includes a list of all agents, where each agent has a radius and a trajectory. The trajectory exist of a list of
points including state variables. The state variables specify the configuration, time, and point’s uncertainty.
The trajectory list also allows for more than one possible trajectories.

The planning exists of two phases, which are the Graph Construction and the Graph Search. The first phase
exist of creating a timeline for each spatial configuration using the predicted trajectories of each agent. In
the second phase, an A* search is run. The used A* algorithm has two alterations, which are the selection of
successor states and how time variables are updated for states. For SIPP the states are expanded at the earliest
time step possible for each location and time interval in order to ensure the maximum set of successors
for that state. In short the overall algorithm divides the timeline of each agent into safe and collision time
intervals. By calculating the next target point the agent can decide to move or stop at a certain location [114].
Wang et al, show that SIPP does not always work. This occurs in a situation when the path of one agent
is a subset of of the path of another agent. As one agent is inclined to wait at a certain location until the
collision interval has passed, the agent will end up in collision with the other agent. This specific example
can be seen in Figure 5.8. The algorithm is suited for waiting actively to avoid obstacles, but does not have
the ability to actively avoid agents. The SIPP algorithm similar to extensions of A* also be integrated with
other MAPF solvers, such as CBS [4]. However the implementation is more complex compared to A*. Several
extensions and integrations of SIPP exist, which are Any-Angle Pathfinding [119], Anytime SIPP [70], and SIPP
with Kinodynamic Constraints [2].

Figure 5.7: Environment containing two agents, where a configuration is highlighted. For the configuration a timeline is presented.
Figure taken from Phillips and Likhachev [75]

5.5. Rule-based MAPF Algorithms 63

Figure 5.8: Unsuccesful demonstration of the SIPP algorith. Left figure (a.) shows the initial environment, middle figure (b.) shows
agent 1 waiting for agent 0, right figure shows the inevitable collision. Figure taken from Wang et al. [114]

5.5. Rule-based MAPF Algorithms
Rule-based MAPF algorithms are a class of sub-optimal algorithms and use rules for specific agent-movements
within a variety of scenarios. Compared to search-based algorithms, they do not include massive search. This
leads to finding solutions in a relatively fast manner, but comes with the price of having solutions that are far
from optimal. Another downside of rule-based algorithms is that they require special properties of the un-
derlying graph in order to work. This can lead to being an inapplicable MAPF algorithm for many problems.
The required properties are solver dependent and will be discussed below. However, due to both limitations,
having solutions being far from optimal and being limited to specific graph types, these algorithms will only
be touched upon shortly, as they are not deemed suitable to the modelling of UAM services. Recently devel-
oped algorithms are tree-based agent swapping strategy (TASS) [50], Push-and-Swap [62], and BIBOX [99].

TASS [50] is a complete algorithm for tree graphs only. A tree graph is a graph that is connected and acyclic,
indicating that there are no cycles in the graph. This means that between two vertices there is a unique path
between two vertices. Taking the urban environment into account, a tree-graph does not represent this envi-
ronment and therefore this algorithm is not suitable.

Next, Push-and-Swap [62] is an algorithm that moves to its goal until it is unable to move further and uses
unused vertices to reverse the location of two agents. The algorithm only works in graphs with n vertices and
maximum n-2 agents. Enhancements are Parallel-Push-and-Swap [83] and Push-and-Rotate [19]. The bene-
fit of these algorithms is that it able to solve MAPF problems with many agents (100+) in a very fast manner,
however generating solutions far from optimal.

Lastly, BIBOX [99] and its enhancement diBOX [10] are complete MAPF algorithms for bi-connected graphs
only. This algorithm is very efficient on bi-connected graphs, but it cannot be used for traditional grid envi-
ronments. For a traditional grid each vertex is connected to 4 other vertices. Similar to Push-and-Swap, the
algorithm only works in graphs with n vertices and maximum n-2 agents.

5.6. Bounded Sub-Optimal Search-based MAPF Algorithms
Even though optimal search-based optimal algorithms improved their computational performance by vari-
ous extensions described in section 5.4, on large maps when many agents are involved, it can become infeasi-
ble for these algorithms to solve optimally in reasonable time. Bounded sub-optimal search based algorithms
are algorithms that accepts a parameter ϵ> 0 and returns a solution with a cost that is at most 1 + ϵ of the op-
timal solution. 1 + ϵ can also be denoted as bound w in literature. Increasing the value of ϵ could possibly
decrease the computational time to find a solution, while still allowing to find an approximate optimal solu-
tion. This section will use the same sub-classes as described in section 5.4 to discuss different algorithms. [96]

5.6.1. Extensions of A*
The A* algorithm and its extension are widely used in search-based MAPF algorithms, especially for the low-
level search of CBS. Within literature many approximately optimal A*-based algorithms exist. This subsection
will only describe the most promising algorithms, which are Weighted A* [76] and its variants, and Hierarchi-
cal Cooperative A* [92] and its variants.

64 5. Multi Agent Pathfinding

Weighted A*
First, the most well-known A*-based algorithms that can be used both for individual as multi-agent planning
is Weighted A* (WA*) [76]. It uses a best-first search that uses an evaluation function, f (n) = g (n)+(1+ϵ)h(n),
to choose which node will be expanded. Within literature many enhancements exist to WA* for single-agent
path finding, such as e.g. Optimistic Search [101], Explicit Estimation Search (EES) [102], and Dynamic Po-
tential Search (DNS) [34].

The principle from WA*, to inflate the heuristic by adding a weight, can also be used for other variants of A*,
such as M*. This is called inflated M* [110]. Inflating the heuristic for M* has two main benefits. The first one
being that the inflated heuristic biases the search towards the ends of search tree, which are close to the goal.
This is beneficial as the solutions are more likely to be found faster. Another benefit is that these nodes within
the search tree will have smaller conflict sets in general, which is one of the downsides of optimal M*, as the
re-expansion of vertices is exponential in the size of the conflict set [110].

Hierarchical Cooperative A*
Besides variations of the WA* algorithm, another prominent example if search-based sub-optimal algorithms
is Hierarchical Cooperative A* (HCA*) [92]. HCA* is a distributed planner, where each agents path is planned
one after each other, while having a certain hierarchy. After the path of an agent is determined, the path itself
is denoted within a reservation table, that is shared with other agents. The entries within the reservation table
are not allowed to be used by to-be-planned agents’ paths. As only a small part of the reservation table will be
accessed, an efficient implementation would be to store the grid locations and time steps using a hash table.
Similar to A*, different heuristics can be used for the search, such as Euclidean or Manhattan distance.

One of the main limitations to HCA*, is that the prioritisation of agents highly influences the paths of other
agents, and therefore could lead to far from optimal results. Windowed-HCA* (WHCA*) [92] only applies
the reservation table, within a limited time window. This means that for each agent the cooperative search
from its current position to the goal node is performed up to a certain fixed depth, resulting in a partial
route. The abstract search is performed to full depth to ensure that agents are moving towards their goal. The
agents reservation are therefore only considered during the planning window and are ignored in the rest of
the search. During the movement of agents, the window will shift forwards, once all agents have reached a
certain set point. After moving the window, the cooperative search will occur again. The order of prioritisa-
tion of agents can be altered per window shift, reducing the bias present in HCA*.Another benefit of WHCA*
is that due to taking into account the reservation table for only the window duration, the number of possible
conflicts between agents is reduced. WHCA* is an online MAPF solver, while even though optimality and
completeness is sacrificed, it allows for real time path planning. This makes it a strong algorithm to be used
for real time drone planning.

A promising extension of WHCA* is Conflict-Oriented WHCA*(CO-WHCA*) [9]. For WHCA*, agents could
potentially have no conflicts during the first time window W and move towards their goal position. However,
if a conflict occurs just after the first window, at time step W + 1, it can become difficult for agents to resolve
their conflict, especially if kinematic constraints are applied, which could result in a deadlock situation. If
a deadlock situation occurs agents are not able to move and reach their goal location, making the solution
incomplete. Therefore, CO-WHCA* places the window position around conflicts that were found in the ab-
stract search, increasing the success-rate of the solver. Improving the prioritisation scheme will also lead to
higher success-rates.

5.6.2. The Increasing Cost Tree Search
Regarding ICTS, there are no bounded sub-optimal ICTS algorthims for classical MAPF problems [96]. Due to
the fact that the high-level search does not involve a heuristic, inflated A* variants cannot be used. However,
within the current literature there does exist an approximately optimal variants of ICTS, in which agents are
moving on a weighted graph, meaning that the edges have a non-unit cost. This allows for agents to be able to
arrive at a vertex at different times compared to other agents [111]. A benefit of having weighted graphs is to
allow for variable speed of agents. Including non-unit cost within ICTS, is denoted as extended ICTS (eICTS).
In eICTS each nodes has a lower and upper bound within the ICTS. The high-level search is a best-first search
on the lower bound. The low-level search looks for an optimal solution within these bounds. Looking for an

5.6. Bounded Sub-Optimal Search-based MAPF Algorithms 65

optimal version within the low-level search can be computational intensive and therefore sub-optimallity can
be added in the low-level search. Adding also sub-optimallity to eICTS results in an approximately optimal
version of eICTS called wICTS. [96, 111]

5.6.3. Conflict Based Search
The last optimal search-based MAPF solver that will be discussed a variations of CBS. Optimal CBS and its
variants are used often in real-world scenarios, but do have the limitation that it is exponential in the number
of conflicts and therefore limits the scalability of CBS. Multiple enhancements exist to CBS, were subopti-
mallity is included. This subsection will explore variants, where only the low-level search is altered, and
where both the high and low-level search are altered.

Sub-optimal CBS low-level search
Improving the computational speed of CBS in the low-level search can be easily done by changing the existing
optimal shortest path algorithm, such as A*, to a suboptimal variant of A*, such as WA* [76], inflated M* [110],
EES [102], or DNS [34].

Greedy CBS
A variant of CBS, where suboptimallity is introduced in both the high and low-level search is Greedy-CBS
(GCBS) [7]. In classical CBS both the high and low-level uses best-first search in order to find an optimal path
for each agent in the low-level search and the lowest cost CT-node in the high-level search. GCBS uses the
same framework, but allows for more flexible search. This results in finding valid solutions faster, but could
result in suboptimal solutions. The main idea of the relaxation of the high-level search for GCBS is to prioritise
CT nodes that seem closer to the goal, similar to inflated M* [110]. The reason is that these nodes will be likely
to have less conflicts. GCBS uses conflict heuristics to find CT nodes that have less conflicts and therefore are
more likely to lead to a goal node. Different conflict heuristics are e.g. Number of conflicts (counting conflicts
per CT node), Number of conflicting agents (counting number of agents that have at least one conflict), and
Number of Pairs (counting number of pair of agents that have at least one conflict). The relaxation of the
low-level search is not done by implementing a variant of WA*, as these algorithms return long paths with
many new conflicts, thus increasing the size of the CT. However, it is done by modifying the low-level search
for agent ai to a best-first search, that then prioritises a path with minimum number of conflicts with paths
of other agents. This means that if the oath of agent a1 is planned, and the path of agent a1 will be planned
using the low-level search, the search would prefer a path that has no conflict with a2, even if this sacrifice
optimality. This indicates that GCBS is therefore not optimal, but is however complete if an upper bound B
exists on the cost of a valid solution and the algorithm will prune nodes in the CT, that have a higher cost than
B.

Bounded Sub-optimal CBS
Two other promising sub-optimal variants are Bounded CBS (BCBS) [7] and Enhanced CBS (ECBS) [7]. Both
algorithms use a focal search frame work for the high level search. Focal search maintains two two list of
nodes, one being the classical OPEN list and one being a new FOCAL list. The FOCAL list contains a subset of
nodes from OPEN, which nodes may lead to a solution that is approximately optimal. Another heuristic can
be used to determine which nodes within FOCAL needs to be extended. This heuristic can be inadmissable
(overestimating the cost of the path) and domain-dependent. Thus for focal search two arbitrary functions
are used, denoted as f1 and f2. f1 determines which nodes are in FOCAL. f2 is a to-be-chosen heuristic
determining the nodes to be extended in FOCAL. BCBS applies for the high level search the following focal-
search. The cost of the CT node is determined by g (n), and for the second heuristic the conflict heuristic
from GCBS is used, denoted as hc (n). For the low-level search for the first function of the focal search, the
regular f (n) is used from the A* algorithm, which is f (n) = g (n)+h(n). For the second function, the conflict
heuristic is used. The bounds given for the high- and low level search for BCBS are denoted as BCBS(wh , wl).
If one of the bounds is equal to 1, instead of a focal search, an optimal search is used for either the high or low
level search. BCBS(∞,∞) is the same as GCBS as all nodes from OPEN will be used in FOCAL. Barer et al [7]
proof that the solution is guaranteed to be less than or equal to w ·C∗, where w = wh ·wl . The distribution
of w between wh and wl is not trivial. For BCBS(wh , wl) wh and wl are fixed, which can be inefficient. To
improve this, an enhancement to BCBS is proposed, called Enhanced CBS (ECBS) [7]. ECBS provides more
flexibility within the focal search. ECBS makes use of the same low-level search as BCBS(1, w). The low-level
search returns two values to high-level search, which is similar to BCBS the cost of the node and the lower

66 5. Multi Agent Pathfinding

bound of the optimal solution of the entire problem. This allows for the algorithm to have more flexibility
in the high level when the low-level returns node cost close to the lower bound. In conclusion, both BCBS
and ECBS never expand nodes with cost higher than w times the optimal solution, allowing for an increase in
computational performance compared to CBS, with the maximum cost of w times the optimal solution

CBS with Priorities & Priority-based Search
Lastly, two variants of CBS which use prioritisation of agents to increase the computational performance are
discussed. First, CBS with Priorities (CBSwP) [65] performs similar to CBS a best-first search for the high-level
search. Within each CT node a priority ordering is stored and only child nodes are generated where the pri-
ority of the child node extends the priority of the parent node. Conflicts are resolved in order using preferring
cardinal conflicts [11] to select which conflicts need to be resolved first.

Next, Priority-Based Search (PBS) [65] is a two-level algorithm, which can be used for prioritised planning. A
priority tree (PT) is constructed within by performing a depth-first search on the high-level to dynamically
construct a priority ordering. PBS chooses which agent should be given a higher prioritisation by using a
greedy algorithm. A partial priority order is constructed until no collisions are found. This is achieved by
efficiently backtracking and exploring other branches when there is no solution in the current branch. If two
agents collide, an order pair is constructed by splitting a PT node, similar to CBSwP for CT nodes. No con-
straints are stored in PT nodes, which is different compared to CBSwP. If agent ai has a higher priority than
agent a j , no collisions exist between the two agents if PBS processes PT Node N. For PBS, a possibility exist to
add an initial priority order, which the solution must respect. By default this list is empty. Different priority
orderings can be used for PBS. Interesting examples are FIX, LH, SH, and RND. FIX is a PBS variant that is
similar to CA* [92], using the order of the agents in the MAPF instance. LH has a fixed priority order, for which
agents with the longest paths from start to goal vertex have the highest priority. SH uses an opposite priority
ordering, thus the agent with the shortest path has the highest priority. Lastly, RND is different compared to
the aforementioned priority orderings, as it initially runs PBS 10 times using a randomised priority ordering.
After 10 times, the solution with the smallest cost is selected.

Experiments performed by Ma et al [65], demonstrate that PBS and its variants have a higher success rate
with increasing number of agents, within the selected time limit, compared to classical CBS and CBSwP, due
to the fastly increasing size of the CT for CBS and CBSwP. The benefit of CBSwP is increased performance
compared to CBS, while finding almost optimal solutions. Standard PBS outperforms all PBS variants when
considering optimallity, as it is able to obtain solutions only 4% worse than optimal. Further experiments
performed for PBS using the DAO map, brc202d (few open spaces, many bottlenecks) demonstrate that PBS
is also easily scalable with up to 600 agents. However, it must be noted that this map does not represent urban
area topology, which often contains large open areas. Experiments performed using the DAO lak503d map
(large open spaces, few bottlnecks) show up to 6 time faster runtimes compared to CBS and almost 5 times
faster runtimes compared to CBSwP with 100 agents.

5.7. Beyond Classical MAPF
The previous sections only focused on classical MAPF algorithms, which all have three main assumptions in
common [96], which are as follows:

• Assumption 1: Every action takes exactly one time step
• Assumption 2: Time is not continuous, but discretised into time steps.
• Assumption 3: Each agent only occuppies 1 vertex at every time step

These assumptions do not represent real-world scenarios, and therefore more sophisticated MAPF algo-
rithms have been developed. All beyond classical MAPF algorithms focus on relaxing one or multiple of
these assumptions. This section will only focus on a limited number of methods, which are deemed most
useful for the UAV medical supply delivery problem. The methods that will be discussed are MAPF with
large agents, MAPF with Kinematic Constraints and MAPF using Reinforcement Learning. The use of rein-
forcement learning for MAPF is an emerging field and considered to be state-of-the-art. The methods and
techniques discussed in this section will not be considered for the trade-off in section 5.9. This is because the
discussed techniques can often be applied to multiple MAPF algorithms and are therefore seen as possible
extensions to the to-be selected algorithm.

5.7. Beyond Classical MAPF 67

5.7.1. MAPF with Large Agents
For classical MAPF methods, the geometry of agents is ignored, resulting in agents being represented by a
point, occupying only one vertex in the graph G. In reality, an agent will occupy more than one vertex at ev-
ery time step, excluding any virtual boundaries involved for an agent. Li et al [57] propose Multi-Agent Path
Finding for Large Agents (LA-MAPF). LA-MAPF is harder to solve than MAPF, as agents are more likely to
have conflicts. The geometrical shape of an agent is defined by Si . An example of a geometrical shape of an
agent at vertex v = (3,3) with an 1.5×1.5 square shape, can be described as follows: S1(v) = {(x(1), x(2))|0 ≤
x(j) − v (j) ≤ 1.5, j = 1,2}. The configuration space of agent ai , is the sub-graph Gi = (Vi ,Ei). The sub-graph
is part of the graph in which the agent is able to move. The geometric shape of each agent is assumed to
be fixed and centred around a reference point. It is assumed that the geometrical shape cannot undergo
transformations, such as rotations. The definitions of conflicts is also generalised. A vertex conflict is rep-
resented by a five-element tuple (ai , a j ,u, v, t) and an edge conflict is represented by a seven-element tuple,
(ai , a j ,u1,u2, v1, v2, t).

Li et al [57] adapt CBS for LA-MAPF, by changing the conflict detection function initially. However, if nor-
mal splitting of nodes is used, many intermediate CT Nodes are generated, which is inefficient. This can be
resolved by adding multiple constraints in a single CT node expansion, resulting in a new algorithm called
Multi-Constraint CBS (MC-CBS). The constraints added resolve multiple related conflicts in a single CT node
expansion, resulting in a smaller cost tree. A vertex or edge constraint for agents ai and a j are mutually dis-
junctive iff any pair of conflict free paths satisfies at least one of the two imposed constraints. This means
that there does not exist a conflict free path, in which both imposed constraints are violated. A set of two
constraints is mutually disjunctive iff each constraint in one set is mutually disjunctive with every constraint
in the other set, which helps with constraint propagation. Two child nodes are generated when a conflict is
resolved, including the existing constraint set as well as two additional constraint sets, denoted as C1 and
C2, which include core constraints to resolve the conflict (similar to classical CBS) and enhanced constraints
that ensure that both constraint sets are mutually disjunctive. Different strategies can be employed to choose
the constraint sets. Examples of constraint set building methods are the asymmetric approach, symmetric
approach, and the maximisation of costs of child nodes. The asymmetric approach only adds a constraint
to the left child node of size one {(ai ,u, t)} and a large constraint set {(a j , v ′, t |ai , a j ,u, v ′, t)} to right child
node. The symmetric approach adds the same constraint set to both agents by choosing a point p inside the
overlap area. All vertices the shape of the agent occupies are included in the constraint set, including point
p. The maximisation of cost of the child nodes uses the insight from ICBS using preferring cardinal conflicts,
as described in subsection 5.4.3. For MC-CBS, a search for the pair of constraints with highest possible cost
is conducted. Li et al [57] demonstrate that MC-CBS outperforms classical CBS up to three times for different
map dimensions and topologies.

5.7.2. MAPF with Kinematic Constraints
Besides, the possibility that agents can occupy more than vertex at every time step, another extension to
MAPF is to incorporate the kinematic constraints of agents during path finding. UAVs are highly maneuver-
able, but are not able to stop immediately in real-world scenarios. Therefore, extending MAPF to include
kinematic constraints allows us for modelling of real-world constraints.

Hönig et al. [44] introduce MAPF-POST in order to allow for the modelling of kinematic constraints. For classi-
cal MAPF, the move actions of agents are only depended on their current location. However, for MAPF-POST,
the speed and orientation of the agent are taken into account using state parameters. To incorporate speed
and direction, the underlying graph becomes directed, which enforces agents to transverse certain edges in
one direction only. First, a collision-free MAPF plan is constructed for all agents, similar to classical MAPF.
Afterwards, the MAPF plan is converted to a data structure called the Temporal Plan Graph (TPG). TPG is a
directed acyclic graph, G = (V ,E), where each vertex v ∈ V represents an agent entering a location, which is
called an event. Each edge (v, v ′) represents a temporal precedence between events v and v ′, where event
v needs to be scheduled before event v ′. By use of two types of temporal precedences imposed by the TPG,
agents will not collide if agents execute a plan-execution schedule. The first type precedence is that each
agent will enter locations in the order given by the MAPF plan. The second type is that for each pair of agents
that enter the same location, the order in which the agents enter the location is enforced from the MAPF plan.
The TPG does not discretise time and specifies a partial order among all events. This allows for the incorpo-
ration of maximum velocity and imperfect plan execution of agents. After constructing the TPG, the next step

68 5. Multi Agent Pathfinding

is augmenting the graph. This is done by adding additional vertices to provide guaranteed safety distances
between all agents. These additional vertices are called safety markers. The following step is to convert the
TPG into a Simple Temporal Network (STN). STN is a directed acyclic graph G ′ = (V ′,E ′), where each vertex
represents an event and each edge is a temporal constraint between two events. The constraints have a lower
and upper bound, to ensure that event v is scheduled no later than event v ′. Using STN allows for the mod-
elling of both minimum and maximum speeds for agents. The final step is to calculate the plan-execution
schedule, which can be done by using graph-based optimisation or linear programming. Using MAPF-POST
allows for the integration of kinematic constraints and can be used for multiple MAPF algorithms.

5.7.3. Reinforcement Learning for MAPF

The last beyond MAPF algorithm category that will be discussed is the use of reinforcement learning for MAPF.
With Artificial Intelligence (AI), and reinforcement learning (RL) as a sub-field, being a hot topic these last
years, the use of RL can offer benefits to MAPF algorithms. RL uses rewards and/or penalties as feedback
mechanism to train agents to interpret its environment and make decisions afterwards. Making use of RL
allows agents to potentially plan more efficient routes, especially in environments were many agents are in-
volved and scalability can only be achieved by using sub-optimal algorithms. An overview of recent work on
multi agent reinforcement learning for path planning is presented in Table 5.1. It can be noted from recent
work that various reinforcement learning methods are used, mainly focusing on small environments. For 2D
environments, the number of agents can be up to 1024 [17, 84], but for 3D environment the maximum num-
ber of agents is 16 [86]. 16 UAV agents could be sufficient for modelling the UAV Medical Supply Delivery,
however Semnani et al. [86] only model this on a very small grid (8 X 8 X 4), which is not representable for the
problem at hand. To our knowledge, no prior work exist that uses reinforcement learning for MAPF in large
3D environments. Therefore, the use of reinforcement learning for the UAV medical supply delivery problem
is currently outside of the scope of this thesis, due the fact that the current methods are not mature enough
to allow to be used in large open environments incorporating large scale UAV operations.

Table 5.1: Overview of papers using reinforcement learning for MAPF

Authors Year Modelling Method Map Max. # Agents

Wang et al. [113] 2021
Deep Reinforcement Learning
(Decentralised)

2D
Grid 100 X 100

4 UAV Agents

Damani et al. [17] 2021
Reinforcement and imitation learning
(Decentralised)

2D
Grid 160 X 160

1024 Agents

Semnani et al. [86] 2020
Reinforcement learning and Force-based
motion planning (Decentralised)

3D
Grid 8 X 8 X 4

16 agents

Qie et al. [79] 2019
Reinforcement learning Target assignment
and path planning

2D 5 UAV Agents

Li et al. [59] 2019
Q-learning (Reinforcement learning)
(Decentralised)

3D 4 UAV Agents

Sartoretti et al. [84] 2019
Reinforcement and imitation learning
(Decentralised)

2D
Grid 160 X 160

1024 Agents

5.8. MAPF Algorithms used for UAV path planning

After elaborating on both optimal and sub optimal classical MAPF algorithms, as well as looking at beyond
classical MAPF algorithm extensions, this section will discuss papers using MAPF for UAV path planning and
coordination. An overview of related work can be seen in Table 5.2. It must be noted that only limited papers
are available that combine MAPF and UAV Operations, with F. Ho [40–42] contributed the most in terms of
written papers. Therefore, the used algorithms are biased towards the choice of the author. This section
will only discuss the most relevant segment of two papers. First, in which is the conflict resolution via re-
planning, take-off scheduling and speed adjustment by Ho et al. [42], and the modelling of large agents and
spatio-temporal pruning by Ho et al. [40].

5.8. MAPF Algorithms used for UAV path planning 69

Table 5.2: Overview of papers using MAPF algorithms for the planning and coordination of UAVs

Authors Year Modelling Method
Map
Dimensions [km]

Key Observations

Liu et al [60] 2023 Multi-CBS (Centralised) 500 x 500 Sparse A* used for low level CBS

Choudhury et al [15] 2021 ECBS (Centralised)
12 x 12
20 x 20

Task allocation via VRP

Ho et al. [42] 2021 ECBS (Centralised) 12.8 x12.8
Conflict Resolution via replanning,
takeoff schedulling, speed adjustment

Ho et al. [41] 2020 ECBS (Decentralised) 12.8 x 12.8
Conflict Resolution via
prioritisation and negotiation

Ho et al. [40] 2019
CBS, ECBS, CA*
(Centralised)

12.8 x 12.8
Modelling large agents using computational
geometry method
Spatio-Temporal Pruning

5.8.1. Conflict Resolution
First, Ho et al [42] have developed a strategic pre-flight conflict detection and resolution (CDR) using a MAPF
Model. The selected MAPF algorithm is ECBS. ECBS itself is briefly explained in subsection 5.6.3. Besides the
standard re-planning MAPF algorithm use to resolve conflicts, take-off scheduling and speed adjustment are
introduced as additional methods to resolve conflicts. The introduction of both methods allows to relax two
assumptions made in standard MAPF problems. First, the start time can be delayed, instead of having a fixed
start time of an UAV, making the start time variable. Next, the incorporation of speed adjustments, relaxes
the assumption that an agent has a constant speed during the flight path. The agent will be able to fly at
maximum speed, with the option of decreasing its speed on given flight path segments. Re-planning, take-off
scheduling and speed adjustment can be used to solve different collision types, but all have its drawbacks.
An overview of this is given in Table 5.3. The aforementioned CDR methods are tested on a 12.8 km by 12.8
km map representing Tokyo with the number of UAV operations ranging from 500 to 3000 within 1 hour. The
simulation demonstrate that re-planning and take-off scheduling offer only minor differences compared to
using all three CDR methods, concerning the average delay per operation. It must be noted that this algorithm
can only be used in an offline setting, as all operations are delivered in one batch. For the UAV medical supply
delivery problem, CDR in an online setting would allow to also model emergency deliveries. This one of the
main use cases of medical supply delivery and therefore has great importance.

Table 5.3: Conflict Resolution methods proposed by Ho et al [42], the conflict types they can resolve and their drawbacks.

Conflict
Resolution

Conflict Type
Ability

Drawbacks

Re-planning
Head on
Cross/Pursuit

Additional battery consumption required
Spatial modifying flight plan
Generate infeasible operations, especially for start/goal collisions

Take-Off
Scheduling

Head on
Cross/Pursuit
Close to start/goal

More delays for head on conflicts due to late start time
High total task completion time

Speed
Adjustment

Cross/Pursuit Generate infeasible operations, especially for start/goal collisions

5.8.2. Modeling Large UAV Agents
Next, Ho et al [40] present an extension of CBS and ECBS that allows the modelling of large UAV agents with di-
verse geometry, allowing agents to occupy more than one voxel (volumetric pixel, representing a 3D volume).
The straightforward approach would be to consider all the voxels an agent would occupy at each time step
and determine if two agents have at least one voxel in common between time step t and time step t+1. For
large maps with many agents involved this method becomes computational expensive, as at every time step
all intersected voxels need to be determined as well as verifying if none of the intersected voxels is occupied
twice. This also leads to agents occupying more space than actual needed. This can be seen in the left figure
(a) in Figure 5.9. A more efficient method is the so called computational geometry method that makes use of
geometrical considerations to detect conflicts. This method makes use of conflict intervals, similar to SIPP, as
discussed in subsection 5.4.4. The time to collision tC within the time interval [ta , tb] is computed to detect
a conflict between agents whose paths segments overlap and can be obtained by solving Equation 5.1 [40],
with vi and v j the velocity of the agents and pi and p j the positions of the agents at the given time step.

70 5. Multi Agent Pathfinding

∥∥pi (tC)−p j (tC)
∥∥2 = (

ri + r j
)2

i.e.
(
pi (ta)+ vi · tC − (

p j (ta)+ v j · tC
))2 = (

ri + r j
)2

(5.1)

If the roots of Equation 5.1 [40] are real and positive a collision has occurred, where the time of the collision
is tC =Min(troot1, troot2). The conflict interval is given in Equation 5.2 [40]. A visual representation of the
computational geometry method is shown in the right figure (b) of Figure 5.9.

IC = [tC ;Min(tb ;Max(troot 1; troot 2))] (5.2)

Figure 5.9: Left figure (a) displays conflict interval for the voxels intersection method. Right figure (b) displays conflict interval for the
computational geometry method. Figures taken from Ho et al. [40]

5.8.3. Spatio-Temporal Pruning
Besides the computational geometry method, Ho et al [40] propose another method to reduce the compu-
tational effort for conflict detection and resolution. This method is called Spatio-Temporal Pruning. The
search space contains N (N−1)

2 states in order to detect any conflict between all pairs of operations. Spatio-
Temporal pruning reduces the search space, as two operations might have no time or spatial intersection.
For each operation Oi a subset potential conflicts is determined, Oconflict

i . This is done by considering spa-
tial and temporal information of the given operation, for which the pseudocode is given in Algorithm 4. The
aforementioned conflict detection for large agents is afterwards performed on the reduced set of operations.

Algorithm 4 Spatio-Temporal Pruning algorithm, which defines the subsets of agents in potential conflicts,
taken from Ho et al [40]

1: Data: O set of operations, Oi with associated Ti time interval and agent size ri

2: Result: ∀Oi ∈O,OConflict
i ⊆O

3: for Oi ∈O do
4: # Determine if temporal overlap between Oi and O j

5: if Ti ∩T j 6= ; then
6: # Determine if spatial overlap during common time interval
7: if ShortestDistance(Oi ,O j ,Ti ∩T j) ≤ ri + r j then
8: Determine if the potential conflict is on the outbound and/or return path of each operation;
9: Add Oi in Oconflict

j and O j in Oconflict
i

5.9. Comparison of MAPF Algorithms
This section will give an overview of the state-of-the-art classical MAPF Algorithms based on the solver classes
defined in section 5.2. The algorithms have been extensively discussed in section 5.3-section 5.6. In order to
determine the best suited MAPF algorithm for the UAV Medical Delivery Problem, a trade-off is performed.
This trade-off is performed on the following criteria, which are ranked in order of importance. This includes a
weighted score as well, to demonstrate its importance. If applicable, a reference is made to the requirements
of the proposed system for medical UAV delivery, presented in section 4.3.

• Performance Urban Area: This criteria relates to how well the algorithm performs, focusing on success-
rate, for map topologies representing urban areas (REQ-ENV-01). This will mainly consist of large open

5.9. Comparison of MAPF Algorithms 71

areas, few bottlenecks, with possibility for large number of involved agents (REQ-PC-04). The success-
rate is the percentage of solutions found within a 5 minute time frame, as e.g. shown on the lefthand
side of Figure 5.6.

• Suitable for online use: This criteria considers, if the algorithm is suited for Online Use, which is
needed for the real-time re-planning of UAVs due to path deviations, delays, and new imposed con-
straints (REQ-PC-02, REQ-PC-03).

• Suitable for Prioritisation: To allow for mission prioritisation of emergency missions (REC-PC-03), the
algorithm should be suited to incorporate prioritisation, which is judged by this criteria.

• Completeness: Finding a solution for any configuration of agents is a desired property (REQ-PC-01),
which is assessed by this metric. It only takes into account completeness for grids representing an
urban environment (REQ-ENV-01).

• Computational Efficiency: This measure assesses the required run time needed in order to return a
collision-free solution, needed to allow for real-time performance (REC-PC-02)

• Complexity of Implementation: This is a measure to assess the complexity involved with implement-
ing the algorithm

• Scalability: This measure considers how well the algorithm can maintain computational efficiency
when the number of agents is increased (REQ-PC-04) or environment size is enlarged (REQ-ENV-02,
REQ-ENV-03).

• Optimality: The optimality guarantees can be divided into 3 main categories, which are no optimal so-
lutions guaranteed, (bounded) sub-optimal solutions guaranteed, and optimal solutions guaranteed.
For (bounded) sub-optimal algorithms a distinction can be made, between non-adjustable and ad-
justable bounds. Optimal solutions will result in shorter delivery time and more efficient routes.

• Maturity: This criteria evaluates the level of maturity involved for a MAPF algorithm, demonstrating
how well-developed and tested the algorithm is.

In order to reduce the overall size of the trade-off, a selection state-of-the-art MAPF algorithms has been made
from different solvers classes, described in section 5.3-section 5.6. It must be noted optimal-reduction based
MAPF algorithms and rule-based MAPF algorithms have not been included within the trade-off. Rule-based
MAPF algorithms are not selected due to the fact that adapting the objective function to sum-of-cost is not
trivial, and the algorithms are only suitable for small, dense graphs. This is the opposite topology of a graph
representing an urban environment. Next, discussed rule-based MAPF algorithms require special properties
for the underlying graph in order to work, making it inapplicable for modelling the UAV medical delivery
problem. For example, TASS [50] is only complete for tree graphs and BIBOX [99] requires bi-connected
graphs. An overview of the selected MAPF algorithms included key characteristics are presented in Table 5.4.

For the purpose of comparing and selecting the most suitable MAPF algorithm for the problem at hand, a
weighted trade-off is performed, which can be seen in Table 5.5. The performance in urban area, suitabil-
ity for online use and suitability for prioritisation are deemed most important for the delivery of medical
supplies in urban environment. This is due to the fact that online use and prioritisation allow for planning
of emergency missions. These criteria have therefore a weighted score of 3. Completeness, computational
efficiency, complexity of implementation and scalability are afterwards seen as important criteria and have
received a score of 2. Optimality of the obtained solution is deemed less important, as optimal solutions are
often time-consuming, which can lead to infeasible methods for real-world scenarios. Also the maturity of
the algorithm is deemed less important. Mature algorithm offer the benefit of having multiple available ex-
tensions, but could be less suitable for the problem at hand. A score of either 1, 2 or 3 is assigned to each
criteria for all algorithms.

It can be seen in Table 5.5 that CO-WHCA* is deemed the most suitable MAPF algorithm for the delivery of
medical supplies in urban environment. The key strengths of this algorithm is that it can be used for online
planning and replanning of operations, allows for mission prioritisation, is computationally efficient, and is
easily scalable. This comes with the cost of providing no guarantees regarding the optimality and complete-
ness of the solution. By strategically placing the planning windows around conflicts, deadlock situations can
be minimised. Also by adjusting the prioritisation scheme, better solutions can be obtained. CO-WHCA*
makes use of a two level search in order to plan the paths of agents. First, a centralised planning method
is used to find possible conflicts and provide the initial path to the UAV agent. Afterwards, re-planning is
possible if necessary. PBS is deemed the second most suitable MAPF algorithm. The algorithm provides no
guarantees regarding its completeness, although does provide near optimal solutions. The algorithm is less

72 5. Multi Agent Pathfinding

suited for online use and is deemed more difficult to implement compared to CO-WHCA*. A possible ex-
tension of CO-WHCA* could be to make use of PBS for the first level conflict detection and resolution. This
could possibly decrease the cost of the solution by planning more optimal paths in the initial phase, while
still allowing for prioritisation of agents. However, the combination of both algorithms does increase the
complexity of implementation. It must be noted that also different trade-off methods, such as using equal
weights for all criteria and/or using assigned scores based on a 1-3-9 scale, do not affect the final trade-off
results of CO-WHCA* and PBS.

Table 5.4: Overview of selected state-of-the-art MAPF algorithms

MAPF Algorithm Optimallity Characteristics

A* + OD + ID Optimal

Well studied algorithm best suited for open map topologies with
small number of agents.
Relatively easy to implement algorithm, used for several low-level
search algorithms.
Search space grows exponential with number of agents.

ODrM* Optimal

Increased computational performance compared to A* + OD + ID,
but more complexity involved for implementation.
Algorithm is not as extensively studied and implement for low-level
search as A* (+OD + ID).

ICTS Optimal

Efficient algorithm for finding solutions for maps with large open
areas, by quickly finding open spaces for agent movements.
Algorithm only offers extension using pruning techniques, less mature
than A* extensions and CBS.

ICBS Optimal

Well-studied algorithm for finding solutions for maps with few open areas
and many bottlenecks.
Cost tree grows exponential with number of agents for classical CBS.
CBS extensions allow for improved performance in open environments,
with the cost of adding complexity for implementation.

SIPP Optimal

Algorithm suited for dynamic environments, allowing for multiple
possible trajectories of dynamic obstacles.
Algorithm suited for actively waiting but not actively avoiding obstacles.
Suitable for use in low-level search, implementation less trivial compared
to A* extensions.

(CO)-WHCA* Suboptimal

Well-studied and easy to implement decoupled algorithm.
Allows for prioritisation of agents and online use.
No optimallity and completeness guarantees.
Efficient algorithm for large open areas, with several options to avoid
deadlocks.

ECBS
Bounded
Suboptimal

Increased computational performance compared to CBS, with
adjustable optimallity bound. Allows for slightly increased cost.
Distribution of bound w over high and low-level search is not trivial,
and difficult to predict how it affects its performance.

PBS
Bounded
Suboptimal

Increased computational performance compared to CBS, with
results near optimal.
Allows for prioritisation of agents, including user-defined order

Table 5.5: MAPF algorithm trade-off using weighted scores

Weight A* + OD + ID ODrM* ICTS ICBS SIPP CO-WHCA* ECBS PBS
Performance Urban Area 3 2 2 3 2 1 2 2 2
Suitable for Online Use 3 1 1 1 1 1 3 1 2
Suitable for Prioritisation 3 2 2 1 1 1 3 1 3
Completeness 2 3 3 3 3 2 1 3 1
Computational Efficiency 2 1 2 1 1 3 3 3 3
Complexity of Implementation 2 3 2 2 2 2 3 1 2
Scalability 2 1 2 1 1 3 3 3 3
Optimality 1 3 3 3 3 3 1 2 2
Maturity 1 3 2 1 3 1 3 2 2
Total Score 37 38 33 32 33 48 36 43

5.10. Simulation Software 73

5.10. Simulation Software
Lastly, In order to simulate the path planning and coordination of UAVs in the urban environment, as de-
scribed in the previous chapters, an agent-based modelling software tool needs to be selected. This tool
allows us to simulate the complex system by representing the individual agents as well as their interactions.
From this, emergent properties and patters can be analysed, giving important insights. The benefit of using
ABM, is that allows us to model complex and non-linear systems by defining agent characteristics and be-
haviours. An agent based model comprises of three elements, which are the agents, the environment, and
the imposed rules. The agents will be able to act autonomously in response to their surrounding in order to
achieve their internal goal. The environment will be modelled using a well-defined topology, using for in-
stance a square or hexagonal grid. An urban environment can be modelled using Geographic Information
System (GIS) data to replicate existing buildings. The behavioral rules can be modelled after the real world
actors on which the agents are based. [5]

This section will give an overview of ABM tools that could be used for the UAV Medical Supply Delivery Prob-
lem. It is beneficial if the tool is both open-source and allows to program in Python in order to allow the
thesis to be finished in time, without the need of learning a new programming language. An overview of four
simulation tools is given in Table 5.6. The tools will be discussed in a more detail below.

Table 5.6: Overview of Simulation Tools adapted from Antelmi et al [5] applicable to the UAV Medical Delivery Problem

Simulation
Tool

Programming
Language

Simulation
Environment

Visualisation
Open
Source

Documentation Phase

AgentPy Python
Grid, continuous,
network, GIS

2D Yes Good Deployed

Bluesky Python Continuous 2D Yes Good Deployed
SoSID Python Grid, Continuous 2D No Limited Development

MESA Python
Grid, continuous,
network, GIS

2D, 3D Yes Extensive Deployed

NetLogo Netlogo, Python
Grid, continuous,
network, GIS

2D, 3D Yes Extensive Deployed

First, Agentpy [32] is an open-source Python library that can be used for developing and analysing ABM us-
ing Jupyter Notebooks, making it an easy to use tool. It combines both having a user-friendly interface with
writing code in Python. Even though AgentPy is well suited for modelling and analysis of complex systems, it
only allows for the modelling of 2D environments, making it less suitable to model the problem at hand. [5]

Second, Bluesky [43] is different to Agentpy, as it is not a global ABM tool. The tool is developed to simulate,
visualise, and analyse air traffic operations using a Python framework. Bluesky was initially developed for
the simulation of conventional aviation, but has been extended to allow for the integration of UAM services.
This includes drone-specific route following modes, geofencing, and geovectoring. UAM services have been
modelled in Vienna for the Metropolis II project [68], demonstrating that could also be used for the Medical
Delivery Problem in Rotterdam. The visualisation is in 2D, but BlueSky can be used for the modelling of 3D
operations.

Third, SoSID [51] is a python modelling and simulation toolkit designed for the rapid development of case
studies of Systems of Systems Inverse Design (SoSID) developed by DLR. The tool is built on-top of Mesa.
Systems of Systems is defined as a set of systems that interact with each other as well as enable capabilities
that are unique compared to individual components of systems. SoSID allows aircraft designers to quan-
tify how top-level requirements will influence the operational environment. Currently two case studies have
been verified using the system, which are wildfire suppression and collaborative design of UAM System of
Systems. The tool itself is currently still in development, but could allow easy modelling of UAM operations,
as an ABM simulation is specifically designed for this use case.

Fourth, Mesa [66] is an agent-based modelling tool, which has an open-source Python Library. It can be used
for creating, visualising and analysing simulations and is one of the most used ABM libraries, due to its ease
of use and its accessibility. Several extensions to Mesa libraries exist, such as Mesa-Geo [112] and Mesa-3D
allowing for incorporating GIS data and 3D visualisation into the software framework. Different simulation

74 5. Multi Agent Pathfinding

environments can be used, such as a square or hexagonal grid or a continuous map. It must be noted that
for Mesa the standard space is 2D. A 3D grid structure can potentially be modelled in Mesa, by extending the
current framework, however this is not trivial. [5]

Lastly, Netlogo [103] is considered the standard platform for developing ABM, and allows for integration with
many programming languages, including Python. Netlogo can be used to model 3D visualisations as well as
incorporating GIS data usage, also allowing to use visual programming language, making it very easy to use.
However, the downside to this is that Netlogo does have significant limitations regarding its model complex-
ity. [5]

A trade-off between the different simulation tool has been performed, which can be seen in Table 5.7. AgentPy
has the benefit of being an easy to use ABM tool, as it can be used in Jupyter Notebooks. However, it does not
allow for the modelling of 3D, making the tool infeasible to use. Next, SoSID is also deemed infeasible to use
as the tool is currently still in development, and is not easy to use due to its lack of documentation. Another
downside is that is not open-source. Lastly, Netlogo is also deemed not suitable, as it does not allow the
modelling of complexity that is needed within this thesis. BlueSky and MESA are both deemed suitable tools
to use for the modelling of the UAV Delivery problem. The tools have comparable trade-off scores, however
integrating 3D operations in Mesa is less trivial compared to BlueSky. Furthermore, Bluesky is specifically
designed for air traffic operations. The Metropolis II project [68] has demonstrated successful modelling of
UAM operations in Vienna, showing proof of concept. Therefore, BlueSky has been selected as simulation
tool.

Table 5.7: Trade-off table for the selection of Simulation tool

Simulation Tool Maturity Ease of Use Allow Complexity Allow 3D Modelling
AgentPy + + + + + - - -
BlueSky + + + - + + + +
SoSID - - - - + - + +
MESA + + + - + + + -
NetLogo + + + + - - + +

6
Research Proposal

This chapter will elaborate on the research proposal of path planning for medical urban air mobility services.
The proposal is based on the extensive background information provided in the previous chapters. First, the
research gaps will be discussed in section 6.1. Next, the research objective will be presented in section 6.2. An
overview of all research questions and their sub-questions are given in section 6.3.

6.1. Research Gaps
Urban Air Mobility (UAM) is a rapidly emerging industry, which focuses on the transportation of passengers
and cargo within the urban environment using Unmanned Aerial Vehicles (UAVs). In response to the in-
creasing demand of UAM services, methods are required for autonomous flight planning and coordination
of multiple UAVs in order to ensure safe and efficient operations. One of the most promising UAM services,
is the delivery of medical supplies. Delivery of medical supplies has the benefit of having a high social ac-
ceptance and offering benefit to society [22]. UAVs have only limited payload capacity, making it well suited
to delivery of medical supplies, such as medicine, emergency (blood) supplies, and vaccines. Medical supply
delivery via UAVs has already been in operations in rural environment since 2016 offered by Zipline [123]. In-
tegrating a similar system within a 3D urban environment introduces new challenges and constraints, adding
complexity to the path planning and coordination of UAVs. Placement of restricted and limited access areas,
such as imposed no-flying zones, recreational areas, or urban obstacles heavenly influence the path plan-
ning of UAVs. Virtual boundaries can be created by using keep-out geofencing methods. To allow for medical
emergency missions in urban environment, keep-out geofences need to be dynamically adjustable for se-
lected, e.g. emergency, UAVs only. Combining this with the need of prioritisation and real-time re-planning
of emergency missions an extra layer of complexity is added. Multi-agent Pathfinding is well suited to ensure
safe operation, as it allows for path planning and coordination of multiple agents within a shared environ-
ment.

This thesis will add in the following manner to research. The modelling of UAV operations using multi-agent
pathfinding, focusing on 3D and real-world urban environment, is relatively unexplored. This work will focus
on translating CO-WHCA* from 2D to 3D, including possible novel extensions and adaptations. Besides,
within literature the focus for medical supply delivery has been on developing vehicle routing models, also
called drone delivery, for last mile delivery [53, 69, 80]. These models are often small in scale and do not
represent the travelled path by UAVs accurately. Lastly, this work will be innovative in the way dynamically
adjustable geofencing will be developed and evaluated for no-fly zones based on mission prioritisation and
the insights that can be obtained from it. Therefore the three main research gaps are as follows:

1. Multi-agent Pathfinding in 3D and Real-world Environment is relatively unexplored
2. The travelled path of UAVs for drone delivery models is often not represented accurately
3. The use of dynamically adjustable no-fly zones (geofences) is relatively unexplored

75

76 6. Research Proposal

6.2. Research Objective
Following from the research gaps, described in section 6.1, the primary focus of this work is to develop a
drone delivery model in a 3D environment representing the travelled paths of UAVs. The selected use case will
be the delivery of medical supplies in the Rotterdam Area. A more accurate representation of the real world
environment can be obtained by using dynamically adjustable no-fly zones. This allows for the incorporation
of emergency missions with more direct paths, similar to how HEMS operate. Therefore, the main research
objective of this work is specified as follows:

Main Research Objective

To develop and evaluate an online path planning and coordination mechanism in 3D for a cooper-
ative fleet of autonomous UAVs delivering medical supplies in the Rotterdam Area with dynamically
adjustable geofences

6.3. Research Questions
This section will give an overview of the main research questions as well as related sub questions needed to
obtain the main research objective. If applicable, the sub-questions will be linked to the requirements and
assumptions made in section 4.3.

1. How can the operational environment for medical UAV delivery be modelled?

• What are the key variables and parameters that need to be taken into account when modelling the
operational environment for medical UAV delivery? (REQ-ENV-01, REQ-ENV-02)

• What assumptions can be made regarding the locations of medical facilities and warehouses in
Rotterdam?

• How can a complex 2D city structure be modelled into a simplified 3D environment? (REQ-ENV-
02)

• How can the airspace structure and no-fly zones within Rotterdam be modelled? (REQ-ENV-03,
REQ-ENV-04)

• How can dynamically adjustable (no-)fly zones be modelled to allow for UAV separation and emer-
gency missions? (REQ-ENV-03, REQ-ENV-04)

2. How can different actors in UTM be represented in an agent based model?

• What are relevant operational requirements and constraints for medical UAV delivery that need
to be taken into account for each agent? (REQ-DEL-01, REQ-DEL-02)

• How will UTM communication between different agents (Authority, Operator, UAV, Customer)
take place? (REQ-VEH-02)

• Which information needs to be shared between UAVs to allow for successful (re-)planning and
coordination? REQ-PC-01 – REC-PC-04

• How can UAV performance (e.g. speed, range, payload) be modelled? (REQ-VEH-01, REQ-VEH-
03, REQ-VEH-04)

3. How can demand for medical supplies for different medical facilities be modelled?

• Which data can be utilised to model the demand of medical supplies for medical facilities?
• Which medical items will be suitable for UAV delivery and which operational constraints will need

to be taken into account? (REQ-DEL-01, REQ-DEL-02, REQ-VEH-01)

4. How can an online path planning and coordination mechanism be developed to allow for efficient
and safe operations in urban environment?

• How can multi-agent path finding be used for modelling 3D UAV operations? (REQ-PC-01 – REC-
PC-04)

• How can safe separation between UAVs as well as (virtual) obstacles be taken into account during
path finding? (REQ-PC-01, REQ-PC-02)

6.3. Research Questions 77

• How can mission prioritisation be incorporated in the path (re-)planning of UAVs? (REQ-PC-03)
• How can uncertainty (e.g. minor delays, weather) be incorporated into path (re-)planning of

UAVs? (REQ-PC-03)

5. How can the performance of the implemented path planning and coordination mechanism be anal-
ysed and explained?

• Which metrics and performance indicators can be utilised to evaluate the performance of the path
planning and coordination model? (REQ-PC-01 – REQ-PC-04)

• How does the selection of warehouses and medical facilities influence the obtained results? (ASS-
DEL-01, ASS-DEL-02)

• How can the model be used to provide insights into the modelling of other UAM services?

III
Supporting work

78

1
Path Planning and Coordination

Specifications

In this chapter, we briefly discuss the different functions present in the proposed path planning and coordi-
nation mechanism. The selected method is Windowed Cooperative Safe Interval Path Planning (WC-SIPP).
This chapter will focus on the newly introduced or adjusted function, which differentiates our method from
the original SIPP method, introduced by Philips and Likhachev [75].

1.1. findPath
The findPath function is called in WC-SIPP, when a path of a new agent needs to be planned. This function
takes as input the starting position, time, speed, heading of the agent. The graph representation of the envi-
ronment is also taken into account. In our approach, the start position is dependent on the planning window
and therefore taking into account the current speed and heading is important to ensure that only feasible mo-
tions are performed by the UAV agent. The starting positions of agents could therefore be at the warehouse
location or at a vertex in the environment, when already in operation. The pseudo-code of this function can
be found in Algorithm 5. Besides the different input information, the function is not altered compared to the
original findPath function from Philips and Likhachev [75].

1.2. getSuccessors
The getSuccessors function is used when finding a path for an agent using SIPP. Successors are created in the
graph search to find a path from a start position to a goal position, with each successor representing a state
that can be reached from the current state by taking a valid action. For this function several adjustments are
made compared to the original function proposed by Philips and Likhachev [75]. First, for each configura-
tion, it is checked if a motion is feasible considering the kinematic constraints. This is done to ensure that the
trajectory is also valid considering the kinematics of the UAV agent. If the motion is considered to be infeasi-
ble given the kinematic constraints, the configuration is disregarded. Kinematic constraints are for example
that a motion is not feasible given the time to accelerate/decelerate based on the edge length or having a too
high turn speed. Furthermore, the function is adapted to include that the facility positions are seen as safe
spaces. Lastly, it is checked if a collision occurs and if the separation distance is violated during flight.

1.3. possibleMoves
During the generation of successors for a state, possible moves from the current state to a new state are gen-
erated. In our model, a distinction can be made for the current position being on a vertex or on an edge. If
the current position is a vertex, the valid neighbours will be neighbouring edge positions. The agent is not al-
lowed to wait, so therefore the current position is not considered as a possible successor. For each successor,
the state is defined by its location and speed. UAV agents are only allowed to change speed at vertex positions.
Therefore, when generating successors for a vertex position, the number of possible successors is the number
of neighbouring edges times the number of different travelling speeds. In our case, the UAV has a minimum
speed of 2 [m/s] and a maximum speed of 18 [m/s] with an acceleration of 2 [m/s2] [21]. This indicates that

79

80 1. Path Planning and Coordination Specifications

Algorithm 5 Function findPath

1: Input:
2: nst ar t : start position
3: tst ar t : start time
4: Vst ar t : start speed
5: ψst ar t : start heading
6: G(V ,E): Graph Urban Environment
7: Output:
8: Pai : Path for agent ai

9: Function:
10: OPE N =;, C LOSED =;
11: sst ar t = (nst ar t , tst ar t , Vst ar t , ψst ar t)
12: f(sst ar t) = h(sst ar t)
13: insert sst ar t into OPE N
14: while sg oal is not expanded do
15: s ← state from OPE N with minimal f -value
16: remove n from OPE N , insert n to C LOSED
17: successor s = g etSuccessor s(s)
18: for each s′ in successor s do
19: if s′ was not visited before: then
20: f(s’) = g(s’) = ∞
21: if g(s’) > g(s) + c(s,s’): then
22: g(s’) = g(s) + c(s, s’)
23: f(s’) = g(s’)+ h(s’)
24: insert s’ into OPE N with
25: return path

Algorithm 6 SIPP Function getSuccessors

1: Input:
2: current state s, Graph Urban Environment G(V ,E), Safe Intervals for each cfg SI ,
3: Separation List SL
4: Output:
5: successor s
6: Function:
7: successor s = ;
8: for each moti on in possibleMotions: do
9: cfg = configuration of moti on applied to s

10: tmoti on = time to perform moti on
11: if cfg is not a feasible motion considering kinematic constraints: then
12: Continue
13: tst ar t = time(s) + tmoti on

14: tend = endTime(SI(s)) + tmoti on

15: for each safe interval SI in cfg: do
16: if startTime(SI(s)) > tend or endTime(SI(s)) < tst ar t then
17: Continue
18: t = earliest arrival time at cfg during interval SI
19: if position in cfg is not a facility position: then
20: if collision at t for cfg: then
21: Continue
22: if separation distance is violated for motion: then
23: Continue
24: s’ = state of cfg with SI and t
25: insert s’ into successors
26: return successor s

1.4. checkSeparation 81

per neighbouring edge, 9 different speed options are available. If the current state position is an edge, only
one possible successor is generated, which is the upcoming node position with the current edge speed.

After generating possible motions, it is checked if the motion is also feasible considering the kinematic con-
straints. First, it is checked if the motion is possible considering the turn speed restrictions. At a node, the
heading change is calculated. If the turn speed is larger than the allowed turn speed based on the heading
change, the successor is disregarded. Second, we verify if the possible motion is feasible considering the ac-
celeration of the UAV. For example, if the current state has a speed of 18 [m/s] and the successor state has a
speed of 2 [m/s] with an edge length of only 20 meters, the possible motion is deemed to be infeasible. This as
the UAV is not able to decelerate to 2 [m/s] during the length of this edge. Third, if the successor state would
result in a motion where the altitude is changed, it is checked if the altitude can be reached within the time
of travelling on the edge. If not, the successor is disregarded.

1.4. checkSeparation
In the process of generating successors, there is a check to ensure that active UAV agents maintain separa-
tion during potential movements. This is done using the checkSeparation function. The separation distance
between UAVs is 32 meters in horizontal direction and 25 feet in vertical direction. The UAS operator keeps
track of each UAV of its position during flight. The positions are discretised per time step of 1 second and con-
tain the location expressed in latitude, longitude and altitude. The positions of all active UAVs are stored in a
separation list. During the generation of successors for each feasible motion considering the kinematic con-
straints, it is checked if during that motion the separation distance is violated. This means, for example, that
if a motion on an edge would take 10 seconds to perform, for each second during that motion, the distance
to other active UAVs would be calculated. If the distance between UAVs during this motion is less than the
defined separation distance, the successor is disregarded. It must be noted that this process is computation-
ally heavy, as for every possible successor the separation distance between UAVs needs to be calculated for
every second of the performed motion. For future research, more advanced methods should be introduced
to decrease the amount of calculations needed to ensure separation.

1.5. updateDynamicObstacles
After paths of agents with a higher priority are planned, the paths of these agents are stored as dynamic
obstacles. The combined list of dynamic obstacles is used to determine the safe intervals for both vertices
and edges in order to avoid collisions while planning paths for agents with lower priorities. As agents are able
to spend a longer period of time on an edge, it is important to implement safe intervals on edges as well. This
in order to avoid conflicts where agents transverse the same edge at the same time in opposite directions. In
our model, agents are able to follow each other on the same edge if they are travelling in the same direction.
This is allowed as long as the distance between these agents is larger than the safety separation distance.
Therefore, a safety interval is only imposed in one direction, being the opposite travel direction of the UAV
agent.

2
Overview of Scenarios

In this chapter, we present an overview of various scenarios and their corresponding independent variable
settings. This chapter organizes the scenarios accounting for each experiment, which are detailed in subse-
quent sections.

The remainder of this page is intentionally left blank due to formatting reasons

82

2.1. Experiment A Scenarios 83

2.1. Experiment A Scenarios

Table 2.1: Overview of scenarios used for experiment A, including all independent variable settings

Scenario
Urban

Environment
Type

Demand
Rate

Urgency
Distribution
for Packages

Priority
Planning

Order

Number of
Unexpected
Obstacles

Number
of Layers

Window
Size

1 Small 2 25 MTRT 0 3 20
2 Small 4 25 MTRT 0 3 20
3 Small 6 25 MTRT 0 3 20
4 Large 2 25 MTRT 0 3 20
5 Large 4 25 MTRT 0 3 20
6 Large 6 25 MTRT 0 3 20
7 Small 2 25 MTRT 0 3 30
8 Small 4 25 MTRT 0 3 30
9 Small 6 25 MTRT 0 3 30

10 Large 2 25 MTRT 0 3 30
11 Large 4 25 MTRT 0 3 30
12 Large 6 25 MTRT 0 3 30
13 Small 2 25 MTRT 0 3 40
14 Small 4 25 MTRT 0 3 40
15 Small 6 25 MTRT 0 3 40
16 Large 2 25 MTRT 0 3 40
17 Large 4 25 MTRT 0 3 40
18 Large 6 25 MTRT 0 3 40

2.2. Experiment B Scenarios

Table 2.2: Overview of scenarios used for experiment B, including all independent variable settings

Scenario
Urban

Environment
Type

Demand
Rate

Urgency
Distribution
for Packages

Priority
Planning

Order

Number of
Unexpected
Obstacles

Number
of Layers

Window
Size

1 Small 2 25 MTRT 0 3 40
2 Small 4 25 MTRT 0 3 40
3 Small 6 25 MTRT 0 3 40
4 Large 2 25 MTRT 0 3 40
5 Large 4 25 MTRT 0 3 40
6 Large 6 25 MTRT 0 3 40
7 Small 2 25 MTRT 0 1 40
8 Small 4 25 MTRT 0 1 40
9 Small 6 25 MTRT 0 1 40

10 Small 2 25 MTRT 0 5 40
11 Small 4 25 MTRT 0 5 40
12 Small 6 25 MTRT 0 5 40
13 Large 2 25 MTRT 0 1 40
14 Large 4 25 MTRT 0 1 40
15 Large 6 25 MTRT 0 1 40
16 Large 2 25 MTRT 0 5 40
17 Large 4 25 MTRT 0 5 40
18 Large 6 25 MTRT 0 5 40

84 2. Overview of Scenarios

2.3. Experiment C Scenarios

Table 2.3: Overview of scenarios used for experiment C, including all independent variable settings

Scenario
Urban

Environment
Type

Demand
Rate

Urgency
Distribution
for Packages

Priority
Planning

Order

Number of
Unexpected
Obstacles

Number
of Layers

Window
Size

1 Small 2 25 MTRT 0 3 40
2 Small 4 25 MTRT 0 3 40
3 Small 6 25 MTRT 0 3 40
4 Large 2 25 MTRT 0 3 40
5 Large 4 25 MTRT 0 3 40
6 Large 6 25 MTRT 0 3 40
7 Small 2 25 MTRT 5 3 40
8 Small 4 25 MTRT 5 3 40
9 Small 6 25 MTRT 5 3 40

10 Large 2 25 MTRT 5 3 40
11 Large 4 25 MTRT 5 3 40
12 Large 6 25 MTRT 5 3 40
13 Small 2 25 MTRT 10 3 40
14 Small 4 25 MTRT 10 3 40
15 Small 6 25 MTRT 10 3 40
16 Large 2 25 MTRT 10 3 40
17 Large 4 25 MTRT 10 3 40
18 Large 6 25 MTRT 10 3 40
19 Small 2 25 MTRT 15 3 40
20 Small 4 25 MTRT 15 3 40
21 Small 6 25 MTRT 15 3 40
22 Large 2 25 MTRT 15 3 40
23 Large 4 25 MTRT 15 3 40
24 Large 6 25 MTRT 15 3 40
25 Small 2 25 MTRT 20 3 40
26 Small 4 25 MTRT 20 3 40
27 Small 6 25 MTRT 20 3 40
28 Large 2 25 MTRT 20 3 40
29 Large 4 25 MTRT 20 3 40
30 Large 6 25 MTRT 20 3 40

2.4. Experiment D Scenarios 85

2.4. Experiment D Scenarios

Table 2.4: Overview of scenarios used for experiment D, including all independent variable settings

Scenario
Urban

Environment
Type

Demand
Rate

Urgency
Distribution
for Packages

Priority
Planning

Order

Number of
Unexpected
Obstacles

Number
of Layers

Window
Size

1 Small 2 25 MTRT 0 3 40
2 Small 4 25 MTRT 0 3 40
3 Small 6 25 MTRT 0 3 40
4 Large 2 25 MTRT 0 3 40
5 Large 4 25 MTRT 0 3 40
6 Large 6 25 MTRT 0 3 40
7 Large 2 10 MTRT 0 3 40
8 Large 4 10 MTRT 0 3 40
9 Large 6 10 MTRT 0 3 40

10 Large 2 50 MTRT 0 3 40
11 Large 4 50 MTRT 0 3 40
12 Large 6 50 MTRT 0 3 40
13 Large 2 10 RT 0 3 40
14 Large 4 10 RT 0 3 40
15 Large 6 10 RT 0 3 40
16 Large 2 25 RT 0 3 40
17 Large 4 25 RT 0 3 40
18 Large 6 25 RT 0 3 40
19 Large 2 50 RT 0 3 40
20 Large 4 50 RT 0 3 40
21 Large 6 50 RT 0 3 40
22 Large 2 10 R 0 3 40
23 Large 4 10 R 0 3 40
24 Large 6 10 R 0 3 40
25 Large 2 25 R 0 3 40
26 Large 4 25 R 0 3 40
27 Large 6 25 R 0 3 40
28 Large 2 50 R 0 3 40
29 Large 4 50 R 0 3 40
30 Large 6 50 R 0 3 40

3
Variability of Simulation

One of the key considerations in experimental design when considering a multi-agent system is determin-
ing the appropriate number of experimental runs to obtain meaningful results. This is especially important
when randomness is introduced in scenarios. This is the case in our work, as packages are requested by the
healthcare facility agent using a Poisson Distribution. Therefore, the coefficient of variation (CV) is used as a
statistical measure to asses the variability within a dataset relative to its mean. The stabilisation of the coeffi-
cient of variation indicates that a sufficient number of simulations is performed to assess the distribution of
the model output. The coefficient of variation can be calculated using Equation 3.1.

CV = σ(o)

µ(o)
(3.1)

Every scenario is characterised by a unique subset of independent variables, and carried out a total of 100
simulation runs. For all scenarios the same set of random seeds is used in order to ensure uniformity in inputs
across scenarios, allowing for direct comparisons between them. However, it is important to note that due to
the implementation of our path planning and coordination mechanism bottlenecks could occur within the
simulations. The occurrence of a bottleneck makes the simulation unsuccessful. To ensure a fair comparison
between results across different scenarios, we adhered to using identical sets of seeds. This means that for
certain experiments, the number of simulations available for comparison is reduced. Therefore, we opted
to select 100 simulation runs per scenario, as this resulted in a constant coefficient of variance. Only for
experiment C, a total of 200 simulation runs per scenario was necessary to ensure stability of the coefficient
of variance. Considering the size of our study only the most variable scenarios per experiment are shown,
where the variability was observed visually.

3.1. Experiment A
The coefficient of variation for different KPIs is shown in subsequent figures, considering the small environ-
ment with a demand rate of 2 and a window size of 20 for experiment A.

Figure 3.1: Coefficient of variation for
experiment A, KPI Computational Time

Figure 3.2: Coefficient of variation for
experiment A, KPI Explored Nodes

Figure 3.3: Coefficient of variation for
experiment A, KPI Average Speed

86

3.2. Experiment B 87

Figure 3.4: Coefficient of variation for
experiment A, KPI Traveled Distance

Figure 3.5: Coefficient of variation for
experiment A, KPI Travel Time

Figure 3.6: Coefficient of variation for
experiment A, KPI Delivery Time

3.2. Experiment B
The coefficient of variation for different KPIs is shown in subsequent figures, considering the small environ-
ment with a demand rate of 4 and 1 available layer.

Figure 3.7: Coefficient of variation for
experiment B, KPI Computational Time

Figure 3.8: Coefficient of variation for
experiment B, KPI Explored Nodes

Figure 3.9: Coefficient of variation for
experiment B, KPI Average Speed

Figure 3.10: Coefficient of variation for
experiment B, KPI Traveled Distance

Figure 3.11: Coefficient of variation for
experiment B, KPI Travel Time

Figure 3.12: Coefficient of variation for
experiment B, KPI Delivery Time

3.3. Experiment C
The coefficient of variation for different KPIs is shown in subsequent figures, considering the small environ-
ment with a demand rate of 2, with 0 unexpected obstacles for experiment C.

Figure 3.13: Coefficient of variation for
experiment C, KPI Computational Time

Figure 3.14: Coefficient of variation for
experiment C, KPI Explored Nodes

Figure 3.15: Coefficient of variation for
experiment C, KPI Average Speed

88 3. Variability of Simulation

Figure 3.16: Coefficient of variation for
experiment C, KPI Traveled Distance

Figure 3.17: Coefficient of variation for
experiment C, KPI Travel Time

Figure 3.18: Coefficient of variation for
experiment C, KPI Delivery Time

3.4. Experiment D
The coefficient of variation for different KPIs is shown in subsequent figures for the large environment, with
a request time priority planning order, 50% urgency distribution, and a demand rate of 2.

Figure 3.19: Coefficient of variation for
experiment D, KPI Computational Time

Figure 3.20: Coefficient of variation for
experiment D, KPI Explored Nodes

Figure 3.21: Coefficient of variation for
experiment D, KPI Average Speed

Figure 3.22: Coefficient of variation for
experiment D, KPI Traveled Distance

Figure 3.23: Coefficient of variation for
experiment D, KPI Travel Time

Figure 3.24: Coefficient of variation for
experiment D, KPI Delivery Time

4
Additional Experiment A Results

In this chapter, additional results are presented for experiment A. The aim of this experiment is to investigate
the impact of the window sizes used for WC-SIPP on the performance of the algorithm.

4.1. Performance WC-SIPP
In our research paper, we presented the computational time and explored nodes for various window sizes for
the large environment. In this section, the computational time and explored nodes for various window sizes
and demand rates are visualised in Figure 4.1 and Figure 4.2 considering the small environment. Here it is
illustrated that for every demand scenario, a window size of 40 offers better computational time performance
compared to the other window sizes. The average speed KPI is also shown in Figure 4.3 and Figure 4.3 for the
small and large environments respectively. Here a difference in average speed can be observed for different
window sizes. A statistical analysis is performed using the Kruskal Wallis statistical test, which demonstrates
that there is a significant difference considering the computational time, explored nodes and average speed.
This is true for all demand rates and environments, except for 2 scenarios. This is for the small environment
with a demand rate of 6 for the computational time KPI, and for the large environment with a demand rate of
2 for the average speed KPI. The p-values can be seen in Table 4.1.

Figure 4.1: Computational time with varying window sizes
and demand rates for the small environment

Figure 4.2: Explored nodes with varying window sizes and
demand rates for the small environment

89

90 4. Additional Experiment A Results

Figure 4.3: Average speed with varying window sizes and
demand rates for the small environment

Figure 4.4: Average speed with varying window sizes and
demand rates for the small environment

Table 4.1: Statistical analysis comparing the performance of the algorithm for window sizes 20, 30, and 40, varying the environment
type and demand rate. Values given in the table are p-values obtained from the Kruskal Wallis statistical test

Environment Small Large
Demand Rate 2 4 6 2 4 6

KPI
Computational Time 3.4E-06 6.11E-03 0.62 3.7E-08 1.9E-12 3.7E-14
Explored Nodes 1.0E-04 5.1E-19 6.7E-11 1.4E-07 5.0E-15 1.4E-25
Travel Distance 0.94 0.87 0.99 0.86 0.66 0.70
Travel Time 0.98 0.99 0.94 0.92 0.74 0.86
Average Speed 4.59E-07 3.56E-43 1.64E-24 0.34 1.32E-10 1.03E-23
Delivery Time 0.99 0.99 0.99 0.97 0.76 0.75

Following the Kruskal-Wallis test, the Vargha-Delaney test is used to analyse the effect size of the observed
significant difference. An overview of the A-values is given in Table 4.2, which shows for the computational
time a negligible to small effect. For the explored nodes a small effect is observed, and for the average speed,
a negligible to moderate effect is seen.

Table 4.2: Effect size analysis comparing the performance of the algorithm for window sizes 20 and 40, varying the environment type
and demand rate. Values given in the table are A-values obtained from the Vargha-Delaney statistical test

Environment Small Large
Demand Rate 2 4 6 2 4 6

KPI
Computational Time 0.65 S 0.56 N 0.51 N 0.62 S 0.61 S 0.59 S
Explored Nodes 0.62 S 0.62 S 0.62 S 0.62 S 0.61 S 0.49 S
Average Speed 0.34 S 0.30 M 0.32 M 0.47 N 0.43 S 0.38 S

5
Additional Experiment B Results

This chapter will provide supporting results from experiment B, where the focus has been on investigating
the scalability and performance of multi-layer path planning.

5.1. Performance WC-SIPP
In our research paper, we presented the increase in computational time and explored nodes for an increasing
number of available layers for the large environment. In Figure 5.1 and Figure 5.2 the computational time and
explored nodes for an increasing number of available layers for the small environment can be seen. Similar
to the large environment, it is demonstrated that for an increasing number of layers, the computational time
and explored nodes are significantly increasing.

Figure 5.1: Computational time with varying number of
layers and demand rates for the small environment

Figure 5.2: Explored nodes with varying numbers of layers
and demand rates for the small environment

Furthermore, the computational time for both the small and large environment is visualised in Figure 5.3
and Figure 5.4 respectively using a contour plot. These plots give a comprehensive view of how the com-
putational time varies for different combinations of layers and demand rates. It can be seen that for path
planning in multiple layers, the number of layers has a larger influence on the computational time compared
to the demand rate. Especially for the large environment, the computational time is increasing rapidly when
the number of layers increases. This underlies the conclusion that more efficient methods need to be consid-
ered for larger and more complex environments, as otherwise multi-agent path planning in 3D environments
could become infeasible.

91

92 5. Additional Experiment B Results

Figure 5.3: Computational time with varying number of
layers and demand rates for the small environment

Figure 5.4: Computational time with varying number of
layers and demand rates for the large environment

Following from these insights, the Vargha-Delaney effect size test is used to analyse the effect size increasing
the number of layers has on the computational time, explored nodes and average speed. The A-values for
comparing 1 and 3 layer environments, can be found in Table 5.1. The A-values for comparing 3 and 5 layers
can be found in Table 5.2. Here it can be seen that when considering the computational time, a large effect is
observed when increasing the number of layers from 1 to 3 and from 3 to 5. For the explored nodes, a mod-
erate to large effect is observed. This is in line with the graphical representation of the computational time
and explored node with an increasing number of layers. For the average speed, a negligible effect is observed.
So even though a statistically significant difference is measured when increasing the number of layers, the
effect on the average speed is not significant, when considering its effect. This difference in average speeds
for a varying number of available layers per demand rate is visualised in Figure 5.5 and Figure 5.6 for the
small and large environments respectively. These figures support that even though differences are statisti-
cally significant, the differences are marginally. Therefore, the increased speed does not lead to a significant
improvement in travel time or delivery time.

Table 5.1: Statistical analysis comparing the performance of the algorithm for the small and large environment with 1 and 3 layers,
varying the demand rates. Values given in the table are A-values obtained from the Vargha-Delaney effect size test.

Environment Small Large
Demand Rate 2 4 6 2 4 6

KPI
Computational Time 0.83 L 0.81 L 0.82 L 0.91 L 0.94 L 0.79 L
Explored Nodes 0.69 M 0.69 M 0.69 M 0.70 M 0.70 M 0.70 M
Average Speed 0.54 N 0.52 N 0.55 N 0.53 N 0.56 N 0.56 N

Table 5.2: Statistical analysis comparing the performance of the algorithm for the small and large environment with 3 and 5 layers,
varying the demand rates. Values given in the table are A-values obtained from the Vargha-Delaney effect size test.

Environment Small Large
Demand Rate 2 4 6 2 4 6

KPI
Computational Time 0.098 L 0.06 L 0.11 L 0.03 L 0.02 L 0.11 L
Explored Nodes 0.27 M 0.27 M 0.27 M 0.25 L 0.26 L 0.25 L
Average Speed 0.43 N 0.46 N 0.44 N 0.46 N 0.43 L 0.43 S

5.1. Performance WC-SIPP 93

Figure 5.5: Average speed with varying number of layers and
demand rates for the small environment

Figure 5.6: Average speed with varying number of layers and
demand rates for the large environment

The remainder of this page is intentionally left blank due to formatting reasons

94 5. Additional Experiment B Results

5.2. Heatmaps

This section gives insight into the flown routes for UAV agents, which are presented using heat maps. In this
section only the results for 1 layer and 3 layer environment are shown, to demonstrate the difference between
operating in 1 layer and 3 layer environment. This is shown for both the small and large environments. As
can be seen for both environments, the bottom layer is utilised most by UAVs during operations. The second
and third layers are predominantly used to avoid collisions at frequently visited areas.

Figure 5.7: Heatmap of the flown paths for the small
environment with 1 available layer, for all demand scenarios,

showing the number of times a node and edge is visited.
Layer 1 is shown

Figure 5.8: Heatmap of the flown paths for the small
environment with 3 available layers, for all demand

scenarios, showing the number of times a node and edge is
visited. Layer 1 is shown

Figure 5.9: Heatmap of the flown paths for the small
environment with 1 available layer, for all demand scenarios,

showing the number of times a node and edge is visited.
Layer 2 is shown

Figure 5.10: Heatmap of the flown paths for the small
environment with 3 available layers, for all demand

scenarios, showing the number of times a node and edge is
visited. Layer 3 is shown

5.2. Heatmaps 95

Figure 5.11: Heatmap of the flown paths for the large
environment with 1 available layer, for all demand scenarios,

showing the number of times a node and edge is visited.
Layer 1 is shown

Figure 5.12: Heatmap of the flown paths for the large
environment with 3 available layers, for all demand

scenarios, showing the number of times a node and edge is
visited. Layer 1 is shown

Figure 5.13: Heatmap of the flown paths for the large
environment with 1 available layer, for all demand scenarios,

showing the number of times a node and edge is visited.
Layer 2 is shown

Figure 5.14: Heatmap of the flown paths for the large
environment with 3 available layers, for all demand

scenarios, showing the number of times a node and edge is
visited. Layer 3 is shown

6
Additional Experiment C Results

This chapter will provide supporting results from experiment C, where the aim of the experiment has been to
assess the effectiveness of the online path planning and coordination mechanism to plan paths in dynamic
environments. Before showing the additional results, the unexpected obstacle locations for both environ-
ments are illustrated.

6.1. Unexpected Obstacles Placement
The figures in this section present the selected vertices at which unexpected obstacles can be introduced. The
majority of the unexpected obstacles are located in the bottom layer, as this layer is mostly utilised by the UAV
agents. The locations were selected after conducting an analysis, where the most frequently used vertices by
UAVs were observed. Vertices that are direct neighbours of warehouse or healthcare facility locations are not
selected as possible locations where unexpected obstacles can appear. This choice has been made to avoid
infeasible operations. The locations of unexpected obstacles for the small environment in layers 1 and 2 are
shown in Figure 6.1 and Figure 6.2 respectively. For the large environment, the unexpected obstacles in layers
1 and 2 are illustrated in Figure 6.3 and Figure 6.4 respectively.

Figure 6.1: Graph representation for the small environment
with blue nodes being warehouse locations, red nodes being
healthcare facilities and orange nodes being locations where

unexpected obstacles could be introduced for layer 1.

Figure 6.2: Graph representation for the small environment
with orange nodes being locations where unexpected

obstacles could be introduced for layer 2

96

6.2. Performance WC-SIPP 97

Figure 6.3: Graph representation for the large environment
with blue nodes being warehouse locations, red nodes being
healthcare facilities and orange nodes being locations where

unexpected obstacles could be introduced for layer 1.

Figure 6.4: Graph representation for the large environment
with orange nodes being locations where unexpected

obstacles could be introduced for layer 2

6.2. Performance WC-SIPP

For the third experiment, unexpected obstacles are introduced, where the number of unexpected obstacles
ranges from 0 to 20. Using the Kruskal Wallis statistical test, a significant difference was measured for the
computational time for both the small and large environments. Using the Vargha-Delaney effect size test,
the effect size of the measured difference was negligible. The computational time for both the small and
large environment for varying numbers of unexpected obstacles under different demand rates are shown in
Figure 6.5 and Figure 6.6 respectively. From these figures, it can be clearly seen that differences are marginal.
This is also the case for the average speed in the small environment, which can be seen in Figure 6.7.

Figure 6.5: Computational time with varying number of
unexpected obstacles and demand rates for the small

environment

Figure 6.6: Computational time with varying number of
unexpected obstacles and demand rates for the large

environment

98 6. Additional Experiment C Results

Figure 6.7: Average speed with varying number of unexpected obstacles and demand rates for the small environment

7
Additional Experiment D Results

This chapter will provide supporting results from experiment D, where the focus was on investigating the
effect of different priority planning ordering methods to assess the performance of the path planning algo-
rithm.

7.1. Comparison urgent versus standard mission types
First, this section demonstrates the effect of different urgency distribution for the mission type and request
time priority planning order. The subsequent figures underline the finding that for different urgency distri-
bution rates, no significant difference can be found when comparing KPIs from urgent missions to standard
missions. For illustration purposes, only one scenario has been selected, which is for a demand rate of 6.

Figure 7.1: Computational time with
varying urgency distributions

comparing urgent and standard
missions for a demand rate of 6, and

large environment

Figure 7.2: Explored nodes with varying
urgency distributions comparing urgent

and standard missions for a demand
rate of 6, and large environment

Figure 7.3: Average speed with varying
urgency distributions comparing urgent

and standard missions for a demand
rate of 6, and large environment

Figure 7.4: Travel distance with varying
urgency distributions comparing urgent

and standard missions for a demand
rate of 6, and large environment

Figure 7.5: Travel time with varying
urgency distributions comparing urgent

and standard missions for a demand
rate of 6, and large environment

Figure 7.6: Delivery time with varying
urgency distributions comparing urgent

and standard missions for a demand
rate of 6, and large environment

99

100 7. Additional Experiment D Results

7.2. Comparison of Priority Planning Order
Second, additional results are provided to demonstrate the effect of different priority planning orders. The
subsequent figures underpin the finding that for different priority planning ordering methods, no significant
difference can be found when comparing KPIs from urgent missions to standard missions. For illustration
purposes, only one scenario has been selected, which is for a demand rate of 6, and urgency distribution of
50%.

Figure 7.7: Computational time with
varying priority planning orders
comparing urgent and standard

missions for a demand rate of 6, urgency
distribution of 50%, and large

environment

Figure 7.8: Explored Nodes with varying
priority planning orders comparing
urgent and standard missions for a

demand rate of 6, urgency distribution
of 50%, and large environment

Figure 7.9: Average Speed with varying
priority planning orders comparing
urgent and standard missions for a

demand rate of 6, urgency distribution
of 50%, and large environment

Figure 7.10: Travel distance with varying
priority planning orders comparing
urgent and standard missions for a

demand rate of 6, urgency distribution
of 50%, and large environment

Figure 7.11: Travel time with varying
priority planning orders comparing
urgent and standard missions for a

demand rate of 6, urgency distribution
of 50%, and large environment

Figure 7.12: Delivery time with varying
priority planning orders comparing
urgent and standard missions for a

demand rate of 6, urgency distribution
of 50%, and large environment

Bibliography

[1] M. Ahmadimanesh, A. Tavakoli, A. Pooya, and F. Dehghanian. Designing an optimal inventory manage-
ment model for the blood supply chain: synthesis of reusable simulation and neural network. Medicine,
99(29), 2020.

[2] Z. Ali and K. Yakovlev. Safe interval path planning with kinodynamic constraints. arXiv e-prints, pages
arXiv–2302, 2023.

[3] P. Amit. Introduction to a*, May 2014. URL http://theory.stanford.edu/~amitp/GameProgram
ming/AStarComparison.html.

[4] A. Andreychuk, K. Yakovlev, E. Boyarski, and R. Stern. Improving continuous-time conflict based search.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(13):11220–11227, May 2021.

[5] A. Antelmi, G. Cordasco, G. DAmbrosio, D. De Vinco, and C. Spagnuolo. Experimenting with agent-
based model simulation tools. Applied Sciences, 13(1), 2023. ISSN 2076-3417.

[6] AT&T. Taking 5g to new heights, 2022. URL https://about.att.com/story/2022/5G-drone-prog
ram.html. Accessed on 09-05-2023.

[7] M. Barer, G. Sharon, R. Stern, and A. Felner. Suboptimal variants of the conflict-based search algorithm
for the multi-agent pathfinding problem. In Proceedings of the International Symposium on Combina-
torial Search, volume 5, pages 19–27, 2014.

[8] Blade Urban Air Mobility Inc. Get to the airport in 5 minutes., 2023. URL https://www.blade.com/
airport. Accessed on 25-04-2023.

[9] Z. Bnaya and A. Felner. Conflict-oriented windowed hierarchical cooperative a. In 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3743–3748. IEEE, 2014.

[10] A. Botea, D. Bonusi, and P. Surynek. Solving multi-agent path finding on strongly biconnected digraphs.
Journal of Artificial Intelligence Research, 62:273–314, 2018.

[11] E. Boyarski, A. Felner, R. Stern, G. Sharon, E. Shimony, O. Bezalel, and D. Tolpin. Improved conflict-
based search for optimal multi-agent path finding. 24th International Joint Conference on Artificial
Intelligence, 2015.

[12] E. Boyrasky, A. Felner, G. Sharon, and R. Stern. Dont split, try to work it out: Bypassing conflicts in multi-
agent pathfinding. Proceedings of the International Conference on Automated Planning and Scheduling,
25(1):47–51, Apr. 2015.

[13] A. Candra, M.A. Budiman, and R.I. Pohan. Application of a-star algorithm on pathfinding game. Journal
of Physics: Conference Series, 1898(1):012047, jun 2021.

[14] A. Chakrabarty, C.A. Ippolito, J. Baculi, K.S. Krishnakumar, and S. Hening. Vehicle to vehicle (v2v) com-
munication for collision avoidance for multi-copters flying in utm–tcl4. In AIAA Scitech 2019 Forum,
page 0690, 2019.

[15] S. Choudhury, K. Solovey, M.J. Kochenderfer, and M. Pavone. Efficient large-scale multi-drone delivery
using transit networks. Journal of Artificial Intelligence Research, 70:757–788, 2021.

[16] A. Cornell, B. Kloss, DJ Presser, and R. Riedel. Tdrones take to the sky, potentially disrupting last-mile
delivery, 2023. URL https://www.mckinsey.com/industries/aerospace-and-defense/our-in
sights/future-air-mobility-blog/drones-take-to-the-sky-potentially-disrupting-
last-mile-delivery. Accessed on 25-04-2023.

101

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
https://about.att.com/story/2022/5G-drone-program.html
https://about.att.com/story/2022/5G-drone-program.html
https://www.blade.com/airport
https://www.blade.com/airport
https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/future-air-mobility-blog/drones-take-to-the-sky-potentially-disrupting-last-mile-delivery
https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/future-air-mobility-blog/drones-take-to-the-sky-potentially-disrupting-last-mile-delivery
https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/future-air-mobility-blog/drones-take-to-the-sky-potentially-disrupting-last-mile-delivery

102 Bibliography

[17] M. Damani, Z. Luo, E. Wenzel, and G. Sartoretti. Primal2: Pathfinding via reinforcement and imitation
multi-agent learning - lifelong. IEEE Robotics and Automation Letters, 6(2):2666–2673, 2021.

[18] M. de Bok and L. Tavasszy. An empirical agent-based simulation system for urban goods transport
(mass-gt). Procedia Computer Science, 130:126–133, 2018. ISSN 1877-0509. The 9th International Con-
ference on Ambient Systems, Networks and Technologies (ANT 2018) / The 8th International Confer-
ence on Sustainable Energy Information Technology (SEIT-2018) / Affiliated Workshops.

[19] B. de Wilde, A.W. ter Mors, and C. Witteveen. Push and rotate: a complete multi-agent pathfinding
algorithm. Journal of Artificial Intelligence Research, 51:443–492, 2014.

[20] Dji. Dji mavic 2 enterprice, 2023. URL https://www.dji.com/nl/mavic-2-enterprise. Accessed
from https://www.dji.com/nl/mavic-2-enterprise on 02-05-2023.

[21] DJI. Matrice 600 specs, 2024. URL https://www.dji.com/nl/matrice600. Accessed on 28-03-2024.

[22] European Union Aviation Safety Agency (EASA). Study on the societal acceptance of urban air mobility
in europe. Technical report, EASA, 03 2021.

[23] European Union Aviation Safety Agency (EASA). Easy access rules for unmanned aircraft systems. Tech-
nical report, EASA, 09 2022.

[24] Margaret Eichleay, Emily Evens, Kayla Stankevitz, and Caleb Parker. Using the unmanned aerial vehicle
delivery decision tool to consider transporting medical supplies via drone. Global Health: Science and
Practice, 7:500–506, 2019.

[25] E. Erdem, D. Kisa, U. Oztok, and P. Schüller. A general formal framework for pathfinding problems with
multiple agents. Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI 2013, 07 2013.

[26] H. Eskandaripour and E. Boldsaikhan. Last-mile drone delivery: Past, present, and future. Drones, 7
(2), 2023. ISSN 2504-446X.

[27] Federal Aviation Administration. Unmanned aircraft system traffic management: Concept of opera-
tions v2.0. Technical report, FAA, 03 2020.

[28] A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg, G. Sharon, N.R. Sturtevant, G. Wagner,
and P. Surynek. Search-based optimal solvers for the multi-agent pathfinding problem: Summary and
challenges. In Symposium on Combinatorial Search, 2021.

[29] C. Ferner, G. Wagner, and H. Choset. Odrm* optimal multirobot path planning in low dimensional
search spaces. In 2013 IEEE International Conference on Robotics and Automation, pages 3854–3859,
2013.

[30] B. Fletcher. Wingcopter 198 specifications, 2021. URL https://www.fiercewireless.com/5g/t-
mobile-s-5g-off-to-drone-races. Accessed on 09-05-2023.

[31] D. Foead, A. Ghifari, M.B. Kusuma, N. Hanafiah, and E. Gunawan. A systematic literature review of
a* pathfinding. Procedia Computer Science, 179:507–514, 2021. ISSN 1877-0509. 5th International
Conference on Computer Science and Computational Intelligence 2020.

[32] J. Foramitti. Agentpy: A package for agent-based modeling in python. Journal of Open Source Software,
6(62):3065, 2021.

[33] Gemeente Rotterdam. Drones, 2023. URL https://www.rotterdam.nl/drones. Accessed on
12-06-2023.

[34] D. Gilon, A. Felner, and R. Stern. Dynamic potential searcha new bounded suboptimal search. In
Proceedings of the International Symposium on Combinatorial Search, volume 7, pages 36–44, 2016.

[35] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. Sturtevant, R.C. Holte, and J. Schaeffer. Enhanced
partial expansion a*. J. Artif. Int. Res., 50(1):141187, may 2014. ISSN 1076-9757.

[36] Google Earth. Map showing rotterdam, 2023. URL earth.google.com/web/. Accessed on 12-06-2023.

https://www.dji.com/nl/mavic-2-enterprise
https://www.dji.com/nl/mavic-2-enterprise
https://www.dji.com/nl/matrice600
https://www.fiercewireless.com/5g/t-mobile-s-5g-off-to-drone-races
https://www.fiercewireless.com/5g/t-mobile-s-5g-off-to-drone-races
https://www.rotterdam.nl/drones
earth.google.com/web/

Bibliography 103

[37] M. Haklay and P. Weber. Openstreetmap: User-generated street maps. IEEE Pervasive Computing, 7(4):
12–18, 2008.

[38] Health Strategies Consultancy LLC. Follow the pill: Understanding the us commercial pharmaceutical
supply chain, 2005.

[39] K. Heineke, B. Kloss, and R. Riedel. The future of air mobility: Electric aircraft and flying taxis, 2023.
URL https://www.mckinsey.com/featured-insights/the-next-normal/air-taxis. Accessed
on 25-04-2023.

[40] F. Ho, A. Goncalves, A. Salta, M. Cavazza, R. Geraldes, and H. Prendinger. Multi-agent path finding for
uav traffic management: Robotics track. Autonomous Agents and Multiagent Systems 2019, 2019.

[41] F. Ho, R. Geraldes, A. Gonçalves, B. Rigault, B. Sportich, D. Kubo, M. Cavazza, and H. Prendinger. Decen-
tralized multi-agent path finding for uav traffic management. IEEE Transactions on Intelligent Trans-
portation Systems, 23(2):997–1008, 2020.

[42] F. Ho, A. Gonçalves, B. Rigault, R. Geraldes, A. Chicharo, M. Cavazza, and H. Prendinger. Multi-agent
path finding in unmanned aircraft system traffic management with scheduling and speed variation.
IEEE Intelligent Transportation Systems Magazine, 14(5):8–21, 2021.

[43] J. Hoekstra and J. Ellerbroek. Bluesky atc simulator project: an open data and open source approach.
International Conference for Research on Air Transportation, 06 2016.

[44] W. Hoenig, T. K. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian, and S. Koenig. Multi-agent path finding
with kinematic constraints. Proceedings of the International Conference on Automated Planning and
Scheduling, 26(1):477–485, Mar. 2016.

[45] J. Holden and N. Goel. Uber elevate: Fast-forwarding to a future of on-demand urban air transporta-
tion. Technical report, Uber, 10 2016.

[46] M. Husár, J. Švancara, P. Obermeier, R. Barták, and T. Schaub. Reduction-based solving of multi-agent
pathfinding on large maps using graph pruning. In Proceedings of the 21st International Conference
on Autonomous Agents and Multiagent Systems, AAMAS ’22, page 624632, Richland, SC, 2022. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems. ISBN 9781450392136.

[47] K. Jacobs, S. Warner, M. Rietra, L. Mazza, J. Buvat, A. Khadikar, S. Cherian, and Y. Khemka. The last-
mile delivery challenge: Giving retail and consumer product customers a superior delivery experience
without impacting profitability. Technical report, Capgemini, 01 2019.

[48] Joby Aviation. Electric aerial ridesharing, 2023. URL https://www.jobyaviation.com/. Accessed
on 25-04-2023.

[49] Sudip Karki and Hari Sagar Ranjitkar. Comparison of a*, euclidean and manhattan distance using in-
fluence map in ms. pac-man, 2016.

[50] M. Khorshid, R. Holte, and N. Sturtevant. A polynomial-time algorithm for non-optimal multi-agent
pathfinding. In Proceedings of the International Symposium on Combinatorial Search, volume 2, pages
76–83, 2011.

[51] S. Kilkis, P.S. Prakasha, N. Naeem, and B. Nagel. A python modelling and simulation toolkit for rapid
development of system of systems inverse design (sosid) case studies. In AIAA Aviation 2021 Forum,
page 3000, 2021.

[52] J. Kim and E. Atkins. Airspace geofencing and flight planning for low-altitude, urban, small unmanned
aircraft systems. Applied Sciences, 12(2), 2022. ISSN 2076-3417.

[53] P. Kitjacharoenchai, B. Min, and S. Lee. Two echelon vehicle routing problem with drones in last mile
delivery. International Journal of Production Economics, 225:107598, 2020. ISSN 0925-5273.

https://www.mckinsey.com/featured-insights/the-next-normal/air-taxis
https://www.jobyaviation.com/

104 Bibliography

[54] J. Koetsier. Wing drone delivery in 2024: capable of handling tens of millions of deliveries for millions
of consumers, March 2023. URL https://www.forbes.com/sites/johnkoetsier/2023/03/11/w
ing-drone-delivery-in-2024-capable-of-handling-tens-of-millions-of-deliveries-
for-millions-of-consumers/. Accessed on 25-04-2023.

[55] K. Korosec. Zipline is now the national drone service provider for rwanda, December 2022. URL https:
//techcrunch.com/2022/12/15/zipline-is-now-the-national-drone-service-provider
-for-rwanda/. Accessed from on 25-04-2023.

[56] D. Kritchanchai and W. Meesamut. Developing inventory management in hospital. International Jour-
nal of Supply Chain Management, 4(2):11–19, 2015.

[57] J. Li, P. Surynek, A. Felner, H. Ma, T. K. Kumar, and S. Koenig. Multi-agent path finding for large agents.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):7627–7634, Jul. 2019.

[58] Lilium GmbH. Introducing the first electric vehicle take-off and landing jet, 2023. URL https://lili
um.com/jet. Accessed on 25-04-2023.

[59] X. Liu, Y. Liu, Y. Chen, and L. Hanzo. Trajectory design and power control for multi-uav assisted wireless
networks: A machine learning approach. IEEE Transactions on Vehicular Technology, 68(8):7957–7969,
2019.

[60] X. Liu, Y. Su, Y. Wu, and Y. Guo. Multi-conflict-based optimal algorithm for multi-uav cooperative path
planning. Drones, 7:217, 03 2023.

[61] J. Lloyd and J. Cheyne. The origins of the vaccine cold chain and a glimpse of the future. Vaccine, 35
(17):2115–2120, 2017. ISSN 0264-410X. Building Next Generation Immunization Supply Chains.

[62] R. Luna and K.E. Bekris. Efficient and complete centralized multi-robot path planning. In 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 3268–3275, 2011.

[63] H. Ma. Graph-based multi-robot path finding and planning. Current Robotics Reports, 3:1–8, 09 2022.

[64] H. Ma, G. Wagner, A. Felner, J. Li, T.K. Kumar, Satish, and S. Koenig. Multi-agent path finding with dead-
lines: Preliminary results. In Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS ’18, page 20042006, Richland, SC, 2018. International Foundation for
Autonomous Agents and Multiagent Systems.

[65] H. Ma, D. Harabor, P.J. Stuckey, J. Li, and S. Koenig. Searching with consistent prioritization for multi-
agent path finding. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):7643–7650, Jul.
2019.

[66] D. Masad and J. Kazil. Mesa: an agent-based modeling framework. In 14th PYTHON in Science Confer-
ence, volume 2015, pages 53–60. Citeseer, 2015.

[67] S.A.H. Mohsan, M. Khan, F. Noor, I. Ullah, and M. Alsharif. Towards the unmanned aerial vehicles
(uavs): A comprehensive review. Drones, 6, 06 2022.

[68] A. Morfin Veytia, C.A. Badea, J. Ellerbroek, J. Hoekstra, N. Patrinopoulou, I. Daramouskas, V. Lappas,
V. Kostopoulos, A. Vidosavljevic, J. van Ham, E. Sunil, P. Alonso, J. Terrazas, D. Bereziat, A. Vidosavlje-
vic, and L. Sedov. Metropolis ii: Benefits of centralised separation management in high-density urban
airspace. SESAR Innovation Days, 12 2022.

[69] M. Moshref-Javadi, A. Hemmati, and M. Winkenbach. A truck and drones model for last-mile delivery:
A mathematical model and heuristic approach. Applied Mathematical Modelling, 80:290–318, 2020.
ISSN 0307-904X.

[70] V. Narayanan, M. Phillips, and M. Likhachev. Anytime safe interval path planning for dynamic environ-
ments. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4708–4715.
IEEE, 2012.

[71] Port of Rotterdam. Drone port of rotterdam: U-space airspace prototype; whitepaper. Technical report,
Port of Rotterdam, 2023.

https://www.forbes.com/sites/johnkoetsier/2023/03/11/wing-drone-delivery-in-2024-capable-of-handling-tens-of-millions-of-deliveries-for-millions-of-consumers/
https://www.forbes.com/sites/johnkoetsier/2023/03/11/wing-drone-delivery-in-2024-capable-of-handling-tens-of-millions-of-deliveries-for-millions-of-consumers/
https://www.forbes.com/sites/johnkoetsier/2023/03/11/wing-drone-delivery-in-2024-capable-of-handling-tens-of-millions-of-deliveries-for-millions-of-consumers/
https://techcrunch.com/2022/12/15/zipline-is-now-the-national-drone-service-provider-for-rwanda/
https://techcrunch.com/2022/12/15/zipline-is-now-the-national-drone-service-provider-for-rwanda/
https://techcrunch.com/2022/12/15/zipline-is-now-the-national-drone-service-provider-for-rwanda/
https://lilium.com/jet
https://lilium.com/jet

Bibliography 105

[72] "Port of Rotterdam". Eerste drone-vertiport in nederland in gebruik genomen, 05 2023. URL https:
//www.portofrotterdam.com/nl/nieuws-en-persberichten/eerste-drone-vertiport-in
-nederland-in-gebruik-genomen. Accessed on 13-06-2023.

[73] M. Pachayappan and B. Sundarakani. Drone delivery logistics model for on-demand hyperlocal mar-
ket. International Journal of Logistics Research and Applications, 0(0):1–33, 2022.

[74] D. Paresh. Amazons drone delivery dream is crashing, 2023. URL https://www.wired.com/story/
crashes-and-layoffs-plague-amazons-drone-delivery-pilot/. Accessed on 27-05-2023.

[75] M. Phillips and M. Likhachev. Sipp: Safe interval path planning for dynamic environments. In 2011
IEEE international conference on robotics and automation, pages 5628–5635. IEEE, 2011.

[76] I. Pohl. Heuristic search viewed as path finding in a graph. Artificial Intelligence, 1(3):193–204, 1970.
ISSN 0004-3702.

[77] PostNL. Bezorging van medische goederen aan huis, 2023. URL https://www.postnl.nl/zakelijk
e-oplossingen/health/medische-goederen-aan-huis/. Accessed on 11-05-2023.

[78] QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation,
2009. URL http://qgis.osgeo.org.

[79] H. Qie, D. Shi, T. Shen, X. Xu, Y. Li, and L. Wang. Joint optimization of multi-uav target assignment and
path planning based on multi-agent reinforcement learning. IEEE Access, 7:146264–146272, 2019.

[80] B. Rabta, C. Wankmüller, and G. Reiner. A drone fleet model for last-mile distribution in disaster relief
operations. International Journal of Disaster Risk Reduction, 28:107–112, 2018. ISSN 2212-4209.

[81] M. Ribeiro, J. Ellerbroek, and J. Hoekstra. Review of conflict resolution methods for manned and un-
manned aviation. Aerospace, 7(6), 2020. ISSN 2226-4310.

[82] Rijksoverheid and LVNL. Official no-fly zones provided by the dutch central government, 2023. URL
https://map.godrone.nl/. Accessed on 12-06-2023.

[83] Q. Sajid, R. Luna, and K. Bekris. Multi-agent pathfinding with simultaneous execution of single-agent
primitives. In Proceedings of the International Symposium on Combinatorial Search, volume 3, pages
88–96, 2012.

[84] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T.K. Kumar, S. Koenig, and H. Choset. Primal: Pathfinding via
reinforcement and imitation multi-agent learning. IEEE Robotics and Automation Letters, 4(3):2378–
2385, 2019.

[85] O. Schneider, S. Kern, F. Knabe, I. Gerdes, D. Delahaye, A. Vidosavljevic, P. van Leeuwen, D. Nieuwen-
huisen, E. Sunil, J. Hoekstra, and J. Ellerbroek. Metropolis urban airspace design. Technical report,
DLR, 10 2014.

[86] S.H. Semnani, H. Liu, M. Everett, A. de Ruiter, and Jonathan P. How. Multi-agent motion planning for
dense and dynamic environments via deep reinforcement learning. IEEE Robotics and Automation
Letters, 5(2):3221–3226, 2020.

[87] X. Shang, G. Zhang, B. Jia, and M. Almanaseer. The healthcare supply location-inventory-routing prob-
lem: A robust approach. Transportation Research Part E: Logistics and Transportation Review, 158:
102588, 2022. ISSN 1366-5545.

[88] G. Sharon, R. Stern, M. Goldenberg, and A. Felner. The increasing cost tree search for optimal multi-
agent pathfinding. Artificial Intelligence, 195:662–667, 01 2011.

[89] G. Sharon, R. Stern, A. Felner, and N. Sturtevant. Meta-agent conflict-based search for optimal multi-
agent path finding. In Proceedings of the 5th Annual Symposium on Combinatorial Search, SoCS 2012,
Proceedings of the 5th Annual Symposium on Combinatorial Search, SoCS 2012, pages 97–104, Decem-
ber 2012. ISBN 9781577355847. 5th International Symposium on Combinatorial Search, SoCS 2012 ;
Conference date: 19-07-2012 Through 21-07-2012.

https://www.portofrotterdam.com/nl/nieuws-en-persberichten/eerste-drone-vertiport-in-nederland-in-gebruik-genomen
https://www.portofrotterdam.com/nl/nieuws-en-persberichten/eerste-drone-vertiport-in-nederland-in-gebruik-genomen
https://www.portofrotterdam.com/nl/nieuws-en-persberichten/eerste-drone-vertiport-in-nederland-in-gebruik-genomen
https://www.wired.com/story/crashes-and-layoffs-plague-amazons-drone-delivery-pilot/
https://www.wired.com/story/crashes-and-layoffs-plague-amazons-drone-delivery-pilot/
https://www.postnl.nl/zakelijke-oplossingen/health/medische-goederen-aan-huis/
https://www.postnl.nl/zakelijke-oplossingen/health/medische-goederen-aan-huis/
http://qgis.osgeo.org
https://map.godrone.nl/

106 Bibliography

[90] G. Sharon, R. Stern, A. Felner, and N.R. Sturtevant. Conflict-based search for optimal multi-agent
pathfinding. Artificial Intelligence, 219:40–66, 2015. ISSN 0004-3702.

[91] D. Silver. Cooperative pathfinding. Proceedings of the 1st Artificial Intelligence and Interactive Digital
Entertainment Conference, AIIDE 2005, pages 117–122, 01 2005.

[92] D. Silver. Cooperative pathfinding. In Proceedings of the aaai conference on artificial intelligence and
interactive digital entertainment, volume 1, pages 117–122, 2005.

[93] T. Standley. Finding Optimal Solutions to Cooperative Pathfinding Problems, page 173178. AAAI’10.
AAAI Press, 2010.

[94] T. Standley and R. Korf. Complete algorithms for cooperative pathfinding problems. In Proceedings
of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume One, IJ-
CAI’11, page 668673. AAAI Press, 2011. ISBN 9781577355137.

[95] S.H.W. Stanger, N. Yates, R. Wilding, and S. Cotton. Blood inventory management: Hospital best prac-
tice. Transfusion Medicine Reviews, 26(2):153–163, 2012. ISSN 0887-7963.

[96] R. Stern. Multi-Agent Path Finding – An Overview, pages 96–115. Springer International Publishing,
Cham, 2019. ISBN 978-3-030-33274-7.

[97] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li, D. Atzmon, L. Cohen, T. Kumar, E. Bo-
yarski, and R. Barták. Multi-agent pathfinding: Definitions, variants, and benchmarks. In Proceedings
of the International Symposium on Combinatorial Search (SoCS), pages 151–159, 06 2019.

[98] E. Sunil, J. Hoekstra, J. Ellerbroek, F. Bussink, D. Nieuwenhuisen, A. Vidosavljevic, and S. Kern. Metropo-
lis: Relating airspace structure and capacity for extreme traffic densities. In 11th USA/EUROPE Air Traf-
fic Management R&D Seminar, 06 2015.

[99] P. Surynek. A novel approach to path planning for multiple robots in bi-connected graphs. In 2009 IEEE
International Conference on Robotics and Automation, pages 3613–3619, 2009.

[100] P. Surynek. Towards optimal cooperative path planning in hard setups through satisfiability solving. In
PRICAI 2012: Trends in Artificial Intelligence, pages 564–576, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[101] J. Thayer and W. Ruml. Faster than weighted a*: An optimistic approach to bounded suboptimal search.
ICAPS 2008 - Proceedings of the 18th International Conference on Automated Planning and Scheduling,
pages 355–362, 01 2008.

[102] J. Thayer and W. Ruml. Bounded suboptimal search: A direct approach using inadmissible estimates.
IJCAI International Joint Conference on Artificial Intelligence, pages 674–679, 01 2011.

[103] S. Tisue and U. Wilensky. Center for connected learning and computer-based modeling northwestern
university, evanston, illinois. NetLogo: A Simple Environment for Modeling Complexity, Citeseer, 1999.

[104] H. Ullah, N.G. Nair, A. Moore, C. Nugent, P. Muschamp, and M. Cuevas. 5g communication: An overview
of vehicle-to-everything, drones, and healthcare use-cases. IEEE Access, 7:37251–37268, 2019.

[105] UPS. Ups operates first ever u.s. drone covid-19 vaccine delivery, 2023. URL https://about.ups.
com/us/en/our-stories/innovation-driven/drone-covid-vaccine-deliveries.htmls.
Accessed on 25-04-2023.

[106] Velomedi. Bezorgservice voor apotheken, 2023. URL https://velomedi.nl/. Accessed on 11-05-
2023.

[107] Verizon. 5g-powered drone monitoring, 2023. URL https://www.verizon.com/business/resou
rces/5g/5g-business-use-cases/autonomous-machines/drone-monitoring/. Accessed on
09-05-2023.

[108] Volocopter GmbH. Volocity: The air taxi that’s a cut above, 2023. URL https://www.volocopter.c
om/solutions/volocity/. Accessed on 25-04-2023.

https://about.ups.com/us/en/our-stories/innovation-driven/drone-covid-vaccine-deliveries.htmls
https://about.ups.com/us/en/our-stories/innovation-driven/drone-covid-vaccine-deliveries.htmls
https://velomedi.nl/
https://www.verizon.com/business/resources/5g/5g-business-use-cases/autonomous-machines/drone-monitoring/
https://www.verizon.com/business/resources/5g/5g-business-use-cases/autonomous-machines/drone-monitoring/
https://www.volocopter.com/solutions/volocity/
https://www.volocopter.com/solutions/volocity/

Bibliography 107

[109] G. Wagner and H. Choset. M*: A complete multirobot path planning algorithm with performance
bounds. In Proceedings of (IROS) IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3260 – 3267, September 2011.

[110] G. Wagner and H. Choset. Subdimensional expansion for multirobot path planning. Artificial Intelli-
gence, 219:1–24, 2015. ISSN 0004-3702.

[111] T.T. Walker, N.R. Sturtevant, and A. Felner. Extended increasing cost tree search for non-unit cost do-
mains. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI-18, pages 534–540. International Joint Conferences on Artificial Intelligence Organization, 7 2018.

[112] B. Wang, V. Hess, and A. Crooks. Mesa-geo: A gis extension for the mesa agent-based modeling frame-
work in python. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoSpatial Sim-
ulation, GeoSim ’22, page 110, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450395373.

[113] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and L. Hanzo. Multi-agent deep reinforcement learning-
based trajectory planning for multi-uav assisted mobile edge computing. IEEE Transactions on Cogni-
tive Communications and Networking, 7(1):73–84, 2021.

[114] X. Wang, Z. Yan, and L. Zhong. Centralized and decentralized methods for multi-robot safe navigation.
In 2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE),
pages 150–159. IEEE, 2022.

[115] J. Weise, S. Mai, H. Zille, and S. Mostaghim. On the scalable multi-objective multi-agent pathfinding
problem. In 2020 IEEE Congress on Evolutionary Computation (CEC), pages 1–8, 2020.

[116] Wing Aviation LLC. Better delivery., 2023. URL https://wing.com. Accessed on 25-04-2023.

[117] Wingcopter. Wingcopter 178 specifications, 2021. URL https://wingcopter.com/wp-content/up
loads/2021/02/Technical-Details-Wingcopter-178-Heavy-Lift-A-Delivery-Variant-1
-1.pdf. Accessed on 02-05-2023.

[118] Wingcopter. Wingcopter 198 specifications, 2023. URL https://wingcopter.com/wingcopter-19
8#specs. Accessed on 02-05-2023.

[119] K. Yakovlev and A. Andreychuk. Any-angle pathfinding for multiple agents based on sipp algorithm. In
Proceedings of the International Conference on Automated Planning and Scheduling, volume 27, pages
586–594, 2017.

[120] G. Yang, X. Lin, Y. Li, H. Cui, M. Xu, D. Wu, H. Rydén, and S. Redhwan. A telecom perspective on the
internet of drones: From lte-advanced to 5g. ArXiv, 03 2018.

[121] J. Yu and S.M. LaValle. Optimal multirobot path planning on graphs: Complete algorithms and effective
heuristics. IEEE Transactions on Robotics, 32(5):1163–1177, 2016.

[122] Y. Zeng, Q. Wu, and R. Zhang. Accessing from the sky: A tutorial on uav communications for 5g and
beyond. Proceedings of the IEEE, 107(12):2327–2375, 2019.

[123] Zipline. Welcome to the best delivery experience not on earth., 2023. URL https://www.flyzipline
.com. Accessed on 25-04-2023.

[124] Zorgkaart Nederland. Zorgaanbieders in rotterdam, 2023. URL https://www.zorgkaartnederland
.nl/. Accessed on 08-06-2023.

https://wing.com
https://wingcopter.com/wp-content/uploads/2021/02/Technical-Details-Wingcopter-178-Heavy-Lift-A-Delivery-Variant-1-1.pdf
https://wingcopter.com/wp-content/uploads/2021/02/Technical-Details-Wingcopter-178-Heavy-Lift-A-Delivery-Variant-1-1.pdf
https://wingcopter.com/wp-content/uploads/2021/02/Technical-Details-Wingcopter-178-Heavy-Lift-A-Delivery-Variant-1-1.pdf
https://wingcopter.com/wingcopter-198#specs
https://wingcopter.com/wingcopter-198#specs
https://www.flyzipline.com
https://www.flyzipline.com
https://www.zorgkaartnederland.nl/
https://www.zorgkaartnederland.nl/

	List of Figures
	List of Tables
	List of Abbreviations
	I Scientific Paper
	II Literature Study previously graded under AE4020
	Introduction
	Urban Air Mobility
	Urban Air Mobility Services
	Urban Air Vehicle delivery services
	Delivery Companies

	Urban Air Mobility Vehicle Types
	Unmanned Aircraft System Traffic Management
	UTM Airspace
	UTM Architecture
	UAV Communication

	Urban Air Mobility Selected Use Case
	UAV Medical Supply Delivery
	Agents in Multi-Agent System

	Environment Modelling
	Rotterdam Area Environment
	Medical Facilities
	Warehouses
	Rotterdam Restricted/Limited Access

	Geofencing
	Demand Modelling

	Concept of Operations
	Operational Framework
	Existing system
	Proposed System

	System Objectives
	System Requirements & Assumptions
	Requirements
	Assumptions

	Multi Agent Pathfinding
	Introduction to Multi Agent Pathfinding
	Problem Definition
	Centralised & Distributed Pathfinding
	Objective Functions

	MAPF Algorithms Overview
	Optimal Reduction-based MAPF Algorithms
	Optimal Search-based MAPF Algorithms
	Extensions of A*
	The Increasing Cost Tree Search
	Conflict Based Search
	Safe Interval Path Planning

	Rule-based MAPF Algorithms
	Bounded Sub-Optimal Search-based MAPF Algorithms
	Extensions of A*
	The Increasing Cost Tree Search
	Conflict Based Search

	Beyond Classical MAPF
	MAPF with Large Agents
	MAPF with Kinematic Constraints
	Reinforcement Learning for MAPF

	MAPF Algorithms used for UAV path planning
	Conflict Resolution
	Modeling Large UAV Agents
	Spatio-Temporal Pruning

	Comparison of MAPF Algorithms
	Simulation Software

	Research Proposal
	Research Gaps
	Research Objective
	Research Questions

	III Supporting work
	Path Planning and Coordination Specifications
	findPath
	getSuccessors
	possibleMoves
	checkSeparation
	updateDynamicObstacles

	Overview of Scenarios
	Experiment A Scenarios
	Experiment B Scenarios
	Experiment C Scenarios
	Experiment D Scenarios

	Variability of Simulation
	Experiment A
	Experiment B
	Experiment C
	Experiment D

	Additional Experiment A Results
	Performance WC-SIPP

	Additional Experiment B Results
	Performance WC-SIPP
	Heatmaps

	Additional Experiment C Results
	Unexpected Obstacles Placement
	Performance WC-SIPP

	Additional Experiment D Results
	Comparison urgent versus standard mission types
	Comparison of Priority Planning Order

	Bibliography

