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1
Summary

More than half a century after the first application of composite materials in aircraft, the accurate prediction
of their failure remains a pressing and unresolved issue. Another important limitation continues to be the
low transverse strength of unidirectional composite plies, which can lead to premature failure in common
laminates such as the cross-ply. A tool that promises improvements on both of these fronts is computa-
tional modelling. With ever increasing computing power, today’s multi-scale models are able to simulate the
various failure modes across the relevant length scales, and allow a new level of optimization by accurately
determining the contributing material parameters.

To fully exploit this capability, we propose a ‘smart’ framework, combining Design of Experiments, Computa-
tional modelling, and Neural Networks. It is developed with the aim to create analytical surrogate models of
complex material properties, in a fully automated way, and based on a minimum amount of computer sim-
ulations. While such a framework can be universally applied, we will showcase our results for one possible
application: the prediction and optimization of the transverse strength of a unidirectional composite ply.

Generating Statistical Volume Elements of the material at microscale, we use a Computational Micromechan-
ics model to compute the ply’s strength under transverse loading. By Design of Experiments principles, we
then explore the interdependent influences of the main geometrical and material parameters. Finally, we
obtain an analytical surrogate model of the transverse strength by employing a Neural Network.

Putting to use the developed ‘smart’ framework, the effects of the following parameters were studied: con-
stituent strengths (matrix, fiber-matrix-interface), fiber volume fraction, shape of fiber cross-section (circular
or non-circular), and fiber diameter. The results confirm and quantify the primary influence of the con-
stituent strengths, followed by the secondary effect of the fiber volume fraction. Non-circular fiber cross-
sections were found to increase transverse compressive strength, and mixing of different fiber diameters may
increase both tensile and compressive strength.

In addition to presenting the resulting surrogate models, challenges in the development and automation of
the framework are discussed. The underlying Computational Micromechanics model is shown to be mature
and computationally cheap enough, to allow for its automatic exploitation through the developed ’smart’
framework. We further believe that the same may hold true for models at other scales of the Multi-scale
Modelling approach, and make the case for its wider application in the research field of composite materials.
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2
Introduction

Since their inception in the first half of the 20th century, the use of Fiber-Reinforced-Polymer-Composite
(FRPC) materials has seen a sharp rise. In 2015, the market for composite materials worldwide was estimated
at 66.61 billion US$, and expected to grow by a compound annual growth rate of 7.8% over the period from
2018-2023 [1]. Used originally only in military experimental aircraft, composite materials by now have found
widespread use in high quantities in many commercial industries such as aviation, automotive, and sports.

At a baseline level, the specific strength and stiffness of composite materials is much higher compared to
materials commonly used in these industries, e.g. aluminum. Furthermore, FRPCs are anisotropic materials
which can be highly tailored to a given loading cases, for example by adapting the stacking sequence of their
plies accordingly. Both aspects allow for significant weight savings if the composite material/structure can
be properly designed for the specific use case [34].

The anisotropic nature of FRPC materials results from the heterogeneity of the material across different
length scales: the interaction between single fibers and the polymer matrix at microscale, the behavior of
a single ply at mesoscale, and the behavior of stacked plies at macroscale. The advantage of tailorability of
composite materials however comes at the disadvantage of their many complex failure modes, across differ-
ent length scales, and each based on different failure mechanisms.

The accurate prediction of these failure modes remains a challenging issue, as highlighted for example by the
results of the World-Wide Failure Exercise [33]. It can further be summarized that reliable failure prediction is
necessary to be able to accurately and confidently design composite structures, and thus to fully exploit their
outstanding properties and weight saving potential. Furthermore, from a materials science perspective, the
accurate understanding of their failure mechanisms is necessary to be able to design the next generation of
improved FRPC materials.

A powerful methodology, which promises improvements on both fronts, is Multi-scale Modelling [42]. The
anisotropic FRPC material is modeled at each relevant length scale, from micro- to meso- to macro-scale,
including damage modelling of the constituents (fibers, matrix) and the intra- and interply interfaces. Since
it is computationally not yet possible to discretize the fibers and matrix elements of all plies of a composite
structure, material properties are commonly homogenized at each scale, and then passed on to the next
bigger scale as homogenized properties.

Starting with the bottom-most layer, Nanomechanics provide the basis to experimentally characterize the
material properties of the micro-constituents (fibers, matrix, and their interfaces), for example by nano-
indentation. These properties can then form the input for simulations at microscale, modelling the interac-
tion between discrete fibers and the polymer matrix in a field called Computational Micromechanics (CM).
Recent advances in CM have shown that it is possible to accurately model the failure modes which have been
experimentally observed in Unidirectional (UD) FRPC plies, e.g. the initiation and evolution of interfacial
damage and fiber debonding under transverse loading [72][73][13][76][75][48]. Further, these CM models
allow to investigate the different geometrical [30], material [27], and modelling parameters [44], which influ-
ence these failure modes, and based on this make it possible to optimize the strength of a UD FRPC ply.
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Since these simulations have long been computationally expensive, the traditional approach has been to
investigate the effect of each parameter individually, e.g. the effect of the fiber-matrix interface strength (IFS)
or the effect of the fiber volume fraction on transverse failure. To minimize the number of simulations which
have to be run, the interrelated effects however have never been explored, i.e. how does the effect of IFS on
transverse strength depend on the fiber volume fraction?

With today’s computing power it is now possible to explore these interrelated effects, and furthermore it can
be attempted to create an accurate and comprehensive surrogate model of the failure of a composite ply. The
framework that we suggest for this aim is a combination of three distinct methodologies: Design of Experi-
ments (DoE), Computational Micromechanics, and Neural Network (NNs). With such a framework for ’smart’
Computational Micromechanics, we claim to be able to address the challenges involved in creating analytical
surrogate models of complex material properties, in a fully automated way, and based on a minimum amount
of computer simulations.

The idea to combine DoE with computer simulations and a high-dimensional function approximation is a
universal approach. With computing power on a steady rise, we have recently begun to see such method
successfully applied across different fields. In the field of research on composite materials and structures, we
felt particularly inspired by the early example of post-buckling optimization using a combination of a Genetic
Algorithm, Finite Element Analyses (FEAs) and NNs [7], as well as the optimization of a composite airframe
structure for stiffness using a combination of DoE, FEAs, and NNs [23].

Most recently, the first accounts surfaced of this method being applied in the field of CM. Using a combina-
tion of DoE, CM, and NNs, M. Bessa et al. [6] determined the constitutive laws of a nonlinear elastic hetero-
geneous material, derived from the results of 10377 simulations. For their generic material, elliptical particles
are embedded in a matrix, allowed to overlap, and both constituents are assumed to be perfectly bonded. For
the work of this master’s thesis now, we propose said methodology for the realistic case of today’s FRPC ma-
terials. We include a validated damage model of the constituents and their interface, necessary to represent
the relevant failure modes at microscale, and base ourselves on matrix and fiber-matrix interface properties
which have been measured with up-to-date in-situ techniques based on Nanomechanics [59][49]. Since the
low transverse strength of UD FRPC plies continues to be a significant limitation for the efficient use of com-
posite materials [34], and since transverse behavior can be conveniently represented with a 2D model, we
focus on exploring the transverse strength of a UD FRPC ply.

While the proposed methodology could be applied across the different scales of the Multi-scale Modelling
approach for composites, the computational model of the chosen scale defines the individual challenges that
have to be overcome. In any case, full automation of the entire simulation process is a must, since hundreds
to thousands of simulations have to be generated, executed, monitored, and post-processed automatically.
For the specific case of proposed framework for ’smart’ Computational Micromechanics, the damage part of
the chosen CM model introduces particular challenges and modelling parameters that have to be taken into
account.

The objectives of this master’s thesis can be summarized in several research questions, the first one address-
ing the development of the proposed methodology, and the remaining ones addressing the understanding
and improvement of the transverse strength of FRPC materials:

I Can we adapt the combined DoE-CM-NN approach to efficiently generate a comprehensive analytical
surrogate model of a complex material property such as the transverse strength of a UD FRPC ply?

II Putting to use the developed framework, what are the main parameters determining the low transverse
strength of a UD FRPC ply? Can hybridization at fiber-by-fiber level, i.e. the mixing of circular and
non-circular fiber shapes, and the mixing of different fiber diameters improve transverse strength?

III Based on the potential answers found to these last questions through the proposed framework, what
are the most promising directions of research to improve the transverse strength of FRPC materials?

The work of this master’s thesis will try to address all of these questions, to which we shall return to during
the conclusions presented in Chapter 8. Until then, the outline of this document is as follows:



4 2. Introduction

Chapter 3 summarizes and explains the state of the art of the methodologies to be combined. Considering
DoE to be a familiar tool, we restrict ourselves to the discussion of CM and NNs. In the first part, CM is
discussed. We introduce the approach of Multi-scale Modelling and show where CM fit within. Then, the
fundamentals of the used method of Statistical Volume Elements (SVE) and the CM model to be used are
explained in detail. Lastly, we present an example from literature, showing how said model is able to represent
damage up to failure within a UD FRPC ply under transverse loading.
The second part discusses NNs. First, the general field of Machine Learning is introduced, allowing the reader
to situate NNs within this. Then, different NN architectures and alternatives are explained and our choice for
the Multilayer-Perceptron (MLP) is motivated. Following that, the most fundamental working and parame-
ters of a MLP NN are explained, such that the reader can understand the training process which is necessary
to fit a NN to a given dataset. We conclude with presenting an example from literature, the optimization of a
composite airframe structure for stiffness by using a combination of DoE, FEAs, and NNs.

After the discussion of the state of the art in both CM and NNs, the following two chapters discuss how both
methods had to be adapted in order to fit within the proposed framework. Most importantly, every part
of the framework has to run in a fully automatic way, without any user interaction. Chapter 4 details the
challenges in the automation of the CM model. The simulation workflow is presented, together with rules
and adaptations that had to be made to the existing set of CM model and SVE generator tool, in order to fully
automate the simulation process and make it suitable for the conceived ’smart’ framework. Then, Chapter 5
explains all choices that had to be made for the NN implementation. With practical examples, the effects of
the most important parameters on the fitting quality of a NN are explained. Lastly, we motivate and explain
the automated training procedure which was eventually chosen for the NN part of the framework: Cross-
Validation with repeated-5fold.

Having explained both the CM and NN adaptations for the proposed framework, we can then proceed with
presenting the latter in Chapter 6. An overview of the iterative and fully automated workflow of the framework
is given: The user defines which material property relationship (s)he wants to determine, e.g. transverse ten-
sile strength as a function of matrix strength, fiber-matrix interface strength, and fiber volume fraction. The
DoE principles then define which datapoints to compute, i.e. for which combinations of input parameters the
corresponding transverse tensile strength shall be simulated, in order to obtain an approximation function
of said relationship. For any given number of datapoints, the NN is used to generate the surrogate model,
whose accuracy depends on the number of underlying datapoints. The target accuracy set out by the user
then defines the number of datapoints to be simulated, and the automated process ends once said accuracy
is achieved.

After having explained the general working of the framework, Chapter 7 presents the example results gen-
erated with the framework. The first two sensitivity studies characterize the influence of two important
modelling parameters: the number of fibers within the SVEs, and the minimum inter-fiber distance. Both
parameters have an important influence on transverse strength results and have to be fixed a-priori for all
ensuing studies. The main part then covers three different studies characterizing the transverse strength of a
UD FRPC ply through our ’smart’ framework. The first study determines the interrelated effect of the relevant
constituent strengths (matrix, and fiber-matrix interface) and the fiber volume fraction. The last two studies
fix the constituent strengths at the nominal values measured for a AS4/8552 material and explore the effect
of hybridization: mixing of different fiber shapes (circular with 4-lobed) and the mixing of two different fiber
diameters, for varying total fiber volume fractions.

Finally, Chapter 8 summarizes and concludes on our findings and Chapter 9 presents thoughts on how to
continue this work, both short-term and applied to CM, as well as from a wider perspective.



3
State of the Art

As outlined in the introduction, the ’smart’ framework proposed in this master’s thesis is a combination of
three methodologies: Design of Experiments, Computational Micromechanics, and Neural Networks. Each
one of these is their own field of research, so we want to introduce their current state of the art in this chapter.
Considering Design of Experiments a well-established method, we shall focus on the more recent fields of
Computational Micromechanics and Neural Networks. First, we will situate each one of them within their
wider context, respectively Multi-scale Modelling and Machine Learning. The ensuing discussion of each
method aims at giving the reader the necessary baseline to judge the framework presented in the following
chapters. Lastly, we conclude each section with an example from literature, relevant to the proposed frame-
work, and give an outlook at some of the challenges ahead.

3.1. Computational Micromechanics
We shall begin with the discussion of Computational Micromechanics (CM). Overall, the entire framework
rests on the quality of the underlying simulation data, and the ability of the model to capture the transverse
failure modes of a Unidirectional Fiber-Reinforced-Polymer-Composite (UD FRPC) ply. First, we introduce
the approach of Multi-scale Modelling, and situate Computational Micromechanics within that. Then, we
explain the readily developed CM model which has to be adapted for the proposed framework. We cover
the used method of Statistical Volume Elements, explain how they are generated, and by which geometrical
parameters they describe a FRPC material. Following that, we discuss the details of the CM model, including
all material and modelling parameters which are varied later-on, during the studies presented in Chapter 7.
Finally, we introduce the research area of fibers with non-circular cross-sections, and show by way of example
how said CM model has been used to simulate the transverse failure of FRPC materials.

3.1.1. Introduction: Computational Micromechanics within Multi-Scale Modelling
As mentioned in the introduction, Multi-scale Modelling is a state-of-the-art approach to simulate a material
whose behavior is defined across multiple relevant length scales. While this approach can be employed for
many different kinds of materials, in the work of this master’s thesis, we restrict ourselves to the class of com-
posite materials. In this thesis, when writing composite materials we refer to FRPC materials. They commonly
consist of two components, or phases: a high-elongation low-strength matrix material, and low-elongation
high-strength fibers which are embedded in the matrix for reinforcement.

By adjusting the reinforcement phase of fibers, the overall material behavior of the FRPC can be tailored. The
fibers can be short or long, arranged Unidirectional (UD) or randomly dispersed, and different fiber materi-
als offer different mechanical properties for the fiber phase. Since the diameter of a single fiber generally lies
in the range of 3µm to 20µm [79], the behavior of the FRPC material at the level of single fibers is referred
to as the microscopic behavior at microscale, and is studied in the so-called field of micromechanics. Con-
trary, the overall material behavior at the mm-, cm-, or m-scale, is referred to as the macroscopic behavior at
macroscale. Since many FRPC materials further consist of a stacking of anisotropic layers, an intermediate
length scale was introduced, called mesoscale, which refers to the behavior of a single FRPC ply.

5
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engineering community. The standard strategy to tackle this 
problem starts from a numerical analysis of the whole struc-
ture (normally using the fi nite element method) in a global-to-
local approach. This initial evaluation identifi es “hot spots” in 
which damage is likely to occur, and these regions are subjected 
to further refi ned analyses. Non-linear constitutive models 
(as well as damage) are taken into account in these cases using 
phenomenological models for the material behavior. These 
models contain a number of parameters whose values are 
chosen to reproduce the actual material behavior as a result 
of experience and costly testing campaigns. [  10  ]  Although this 
strategy has been in place for many years, it has two obvious 
limitations. Firstly, material innovations in critical regions are 
limited because of the lack of reliable data to assess the onset 
and propagation of damage upon loading. Secondly, extrapola-
tion of current knowledge to different loading/environmental 
conditions is problematic due to the phenomenological nature 
of the models. 

 As opposed to this strategy, a new hierarchical, bottom-up 
approach is being developed to carry out virtual tests of com-
posite materials and structures. [  12  ]  The overall multiscale simu-
lation scheme is depicted in  Figure    2   and takes advantage of the 
fact that composite structures are made up of laminates which 
in turn are obtained by stacking individual plies with different 
fi ber orientation. This leads to three different entities (ply, lami-
nate, and component) whose mechanical behavior is charac-
terized by three different length scales, namely fi ber diameter, 
ply and laminate thickness, respectively. Fiber diameters are of 
the order of 5–10  μ m, while ply thicknesses are in the range 
100–300  μ m and standard laminates are several mm in thick-
ness and above. This clear separation of length scales is very 
useful to carry out multiscale modeling by computing the prop-
erties of one entity (e.g., individual plies) at the relevant length 
scale, homogenizing the results into a constitutive model, and 
passing this information to the simulations at the next length 
scale to determine the mechanical behavior of the larger entity 
(e.g., laminate). Thus, multiscale modeling is carried out 
through the transfer of information between different length 
scales rather than by coupling different simulation techniques.  

 Virtual testing of composites up to the component level is 
thus carried out in three successive steps within the framework 

lives depend. For instance, certifi cation of an airframe structure 
requires  ≈ 10 4  tests of material specimens along with tests of 
components and structures up to entire tails, wing boxes, and 
fuselages. [  9  ,  10  ]  In addition, optimization of composite materials in 
structural applications has to be carried out by a costly and time-
consuming trial-and-error approach. Nevertheless, recent devel-
opments in multiscale simulations, together with increased com-
putational power and improvements in modeling tools, are rap-
idly changing this scenario. Nowadays it is starting to be possible 
to accurately predict, free of adjustable parameters, the behavior 
until failure of composite coupon specimens and simple compo-
nents. The multiscale modeling strategy, begins with the in situ 
measurement of the matrix and interface mechanical properties 
to build up a ladder of the numerical simulations which take 
into account the relevant failure mechanisms at different length 
scales. The main features of this approach to carry out high-
fi delity simulations of the mechanical behavior of composite 
materials and structures are presented below, together with the 
road map to extend this strategy to multi-functional composites.   

 2. Bottom-up Multiscale Modeling Strategy 
for Structural Composites 

 The need for refi ned simulations to predict the mechanical 
behavior of composite structures is well-known in the structural 

     Figure  1 .     (a) Schematic of the different failure micromechanisms in FRP 
as a function of the loading conditions. (b) X-ray computed tomography 
showing different failure micromechanisms in a [90/−45/45/0/45/–45/90] 
composite laminate loaded in tension parallel to the plies with fi bers 
oriented at 0 ° . Fiber fracture is dominant in the 0 °  plies, while matrix 
cracking parallel to the fi bers dictates the failure of the 90 °  and  ± 45 °  plies. 
In addition, matrix cracks led to interface delamination between 45 °  and 
 − 45 °  plies. Adapted from. [  11  ]   

     Figure  2 .     Multiscale simulation strategy to carry out virtual mechanical 
tests of composite materials and structures.  

Figure 3.1: Multi-scale Modelling approach for the design of a composite aircraft structure. Reproduced from [42].

Since the macroscopic behavior of a material is determined by the interaction of its constituents at all lower-
order length scales, today’s state-of-the-art simulation approach for FRPC materials aims to consider all rel-
evant material scales and is called Multi-scale Modelling [42]. However, with today’s simulation capabilities
it is yet impossible to compute a single model which contains details of all length scales, e.g. to simulate a
multi-layer FRPC under tension with finite elements discretizing every single fiber. Instead, the approach
taken today is to model the material behavior at lower level scale, and then pass volume averaged properties
to the material model at the next higher scale [87].

This process is often referred to as homogenization, or regularization, and the so-obtained properties are
called effective properties. Averaging of the material properties at each length scale is based on a statisti-
cally representative volume of the material, either a single large so-called Representative Volume Element or
several smaller so-called Statistical Volume Elements (SVE) [87]. In summary, the goal of Computational
Micro/Macromechanics, i.e. Multi-scale Modelling, can be stated as to determine relationships between the
microstructure and the macroscopic response or "structural property" of a material, using models on the mi-
croscale that are as simple as possible [87].

Figure 3.1 [42] illustrates the concept of Multi-scale Modelling applied bottom-up to the design of a compos-
ite structure. First, Nanomechanics provide the properties of the pure constituents of the FRPC, i.e. of the
fiber, matrix and interface. Then, Computational Micromechanics simulate the interaction between fibers
and matrix in several SVEs, which is to be chosen representative of the next bigger length scale: a single UD
FRPC ply/lamina. Computational Mesomechanics then are used to extract effective properties of a single ply
passed on to simulations at the scale of a multi-ply laminate, here termed computational mechanics. The
process further extends to the scale of subcomponent, component and eventually the final structure.

The ensuing work of this master’s thesis is confined to the scale of Computational Micromechanics, i.e. sim-
ulations of 2D SVEs of a UD FRPC, at microscale, and under transverse loading. The following section shall
now provide a description of the model to be used.

3.1.2. The Computational Micromechanics Model to be Adapted
For the work of this master’s thesis, Computational Micromechanics (CM) will provide the baseline, based on
which a Neural Network then creates a surrogate model of the ply property to be approximated. As every CM
model requires experimental validation of its modelling assumptions for significance of its results, a validated
and readily-developed model will be used for the purposes of this master’s thesis.
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residual stress on a carbon-fibre composite subjected to transverse
tension [9] and shear [10] loadings, using a periodic representative
volume element approach. The response of the micromechanical
models to transverse and shear loadings are shown in
Fig. 3a and b, respectively. While micromechanical modelling pro-
vides a quantitative insight into microscale failure process of com-
posite materials, the vast majority of models assume that the
properties of the constituents are the same as the properties of
the materials in their bulk form, which may not be the case follow-
ing the intensive thermal, mechanical and chemical composite
manufacturing process.

3. Nanoindentation

Nanoindentation has emerged as a useful technique to deter-
mine the in situ constituent properties of composite materials.

Recent technological improvements to the transducer sensitivity
of indentation devices have allowed for the continuous monitoring
of the load and displacement throughout the indentation cycle.
Indentations at the micron scale were first carried out by Fröhlich
et al. [11] and shortly thereafter became commonly used as a tech-
nique for determining the surface properties of materials. The four-
sided pyramidal Vickers tip, shown in Fig. 4a, is the most com-
monly used indenter geometry for traditional hardness testing at
the macro and micro-scales. However, for nanoscale measure-
ments, the three-sided pyramid shape of the Berkovich indenter
(Fig. 4a) is preferred. This tip shape was invented by Russian scien-
tist E.S. Berkovich in the USSR [12] and has the same area-to-depth
ratio as the Vickers tip. The three-sided pyramidal shape of the tip
means that it is more easily manufactured at small scales due to
lack of a ‘chisel’ edge defect at the indenter tip. A typical load-
displacement curve from a nanoindentation test in shown in
Fig. 4b. The theoretical treatment of this load-displacement data

Fig. 3. Micromechanical models of HTA/6376 composite (a) RVE subjected to transverse tension loading, (b) RVE subjected to shear loading (taken from Vaughan and
McCarthy [9,10]).

Fig. 2. Fibrous composite failure mechanisms under (a) fibre direction tensile loading, (b) fibre direction compressive loading, (c) transverse tensile loading, (d) transverse
compressive loading, (e) transverse shear loading and (f) longitudinal shear loading.

784 M. Hardiman et al. / Composite Structures 180 (2017) 782–798

Figure 3.2: Failure modes of a unidirectional fiber-reinforce-polymer-composite ply under a) longitudinal tension, b) longitudinal
compression, c) transverse tension, d) transverse compression, e) transverse shear, f) longitudinal shear. Longitudinal and transverse
refer to the fiber direction. Reproduced from [28].

The CM model to be used has been developed at IMDEA Materials, Madrid, Spain, and builds on the heritage
of pioneering work done by the institute’s researchers in the field of CM using SVEs, as early as 2007 [27].
Key success was the accurate recreation of the different failure mechanisms under transverse loading, by this
novel method [72][73][13][76][75][48], based on constituent properties obtained through nanomechanical in-
situ measurements [28]. Most recently, the simulation capabilities at IMDEA Materials have been extended
by the ability to automatically generate a wide variety of volume elements, incorporating non-circular fiber
shapes [30], which shall be put to use for the work of this master’s thesis.

3.1.2.1. From Ply to Statistical Volume Element
[From Ply to Statistical Volume Element (SVE)] The material to be described by the CM model is a single ply of
a polymer material reinforced with continuous fibers aligned in a single direction. In short, it will be referred
to as a UD FRPC ply. Figure 3.2 [28] gives an overview of all generic failure modes of a UD FRPC ply under a)
tensile loading along the fiber direction, b) compressive loading along the fiber direction, c) tensile loading
transverse to the fiber direction, d) compressive loading transverse to the fiber direction, e) shear loading
transverse to the fiber direction, and f) shear loading along the fiber direction.

After restricting ourselves to CM, the question remains which failure modes to simulate. For practical reasons,
we will restrict ourselves to the transverse behavior, i.e. the behavior under loading transverse to the fiber
direction, cases c)d)e). As outlined in the introduction, the framework developed in this thesis can be easily
transferred to any of the other cases, but three reasons motivate our choice for transverse behavior:

• The failure modes under transverse loading can be captured by computationally less expensive 2D
SVEs, compared to the longitudinal failure modes requiring 3D SVEs. Choosing the less expensive 2D
SVE models allows to compute more datapoints for the training of our NNs, and thereby to incorporate
more input parameters.

• The 2D CM models capturing transverse failure are well matured and established, whereas accurate
models for longitudinal failure, e.g. fiber kinking, are still under development [48].

• Low transverse tensile strength remains a significant limitation of today’s FRPC materials [34], with
strong motivation for improvements. Furthermore, the ply properties of transverse strength are difficult
to predict analytically. Both can be addressed by CM models.

Figure 3.3 shows on the left an optical micrograph of the cross section of a UD FRPC ply. Instead of mod-
elling the actual fiber distribution of the entire ply through a so-called embedded cell, the objective of the SVE
methodology is to find a SVE just big enough to represent the entire ply thickness. As Figure 3.3 shows on the
left, the fibers are dispersed in a random way, leaving aside some of the boundary regions, and therefore the
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Figure 3.3: Optical micrograph of a UD CFRPC ply (left), and example SVE at 70% fiber volume fraction, generated with Vip3r.
Micrograph reproduced from [73].

SVE has to recreate a random fiber distribution representative of the actual fiber dispersion1. The generation
of such a volume element is far from trivial and the Vip3r tool to be used in conjunction with the CM model
has been developed by M. Herraez [30] in the course of his PhD, building on previous developments at IMDEA
Materials. An example volume element generated with said tool is shown in Figure 3.3 on the right. The gen-
eration is implemented in Python and aided by a graphical user interface. The following SVE parameters can
be varied:

1. Fiber Shape: Different fiber shapes are available: circular, polygonal, lobular, elliptic. Further, their
angular orientation can be chosen, either all oriented the same way, or according to a statistical distri-
bution (log, normal, weibull, uniform).

2. Fiber Diameter: Fiber diameters can be varied according to statistical distributions (log, normal, weibull,
uniform).

3. Fiber Volume Fraction: The value of the fiber volume fraction can be set.

4. Fiber Material: Different fiber materials are available, e.g. E-Glass Fiber, AS4-Carbon Fiber (AS4-CF)

For the whole SVE, the following modelling parameters have to be set:

5. SVE Size: The dimensions of the SVE.

6. Minimum Fiber Distance: The minimum distance between two fiber edges.

The first four parameters describe the geometry and fiber material of the FRPC material that the SVE shall
represent. The last two parameters pertain to the SVE methodology. Eventually, the effect of all six of them
has been characterized with the proposed framework, to be presented in Chapter 7. For the interpretation of
the final results, it is important to briefly summarize the current state of knowledge on the influence of the
two methodological parameters SVE size and minimum inter-fiber distance:

• The SVE size has to be chosen such that the SVE contains enough fibers for a statistically representative
model. A common approach in literature is to choose a square SVE with a ratio between SVE width to
fiber diameter of 8 [30] [27]. However, this holds only for a certain fiber volume fraction and for the
specific kind of results computed in these studies. In general, every CM model using SVEs requires its
own sensitivity study to ensure the specific results generated with this model are independent of the
SVE size.

1Research has shown that regular periodic fiber distributions are inadequate to model transverse failure since the minimum inter-fiber
distance is a decisive influence [77][25].
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• The minimum inter-fiber distance (Dmin) has to be fixed at a certain value to ensure correct meshing
of the CM model. While in reality, many fibers in the cross-section of a UD FRPC ply may touch, the
CM model requires a minimum distance between fibers for a matrix element to fit in there. At the same
time, it was found that Dmin has a significant effect on the stress field between fibers and matrix and
thus strongly influences the values of transverse strength obtained by CM with SVEs [77][25]. For results
to be comparable, all SVEs that shall be compared have to maintain a constant value for Dmin.

3.1.2.2. From Statistical Volume Element to Finite Element Model
After generating a statistically representative SVE geometry, the latter has to be transformed into a CM model
that can be simulated under transverse loading, in our case a Finite Element Model (FEM).

3.1.2.2.1 Periodicity Key requirement of the SVE method is the geometric periodicity of the model [69].
This has to be fulfilled in two aspects:

• Fiber dispersion: The SVEs shall be a small but periodic representation of the full volume of the material
to be modeled. Accordingly, the full volume of the material could be obtained by duplicating the SVE,
and translating the copies along the edges of the SVE to form a fitting puzzle. For this to be possible,
the fibers on the edges of the SVE have to be sliced and positioned accordingly, see Figure 3.4, which is
taken into account automatically by the generation algorithm.

• Boundary conditions: During deformation of the SVE under loading, geometric periodicity of the de-
formed SVE has to be ensured. In simple terms, if the deformations of the edges of the single SVE are
not periodic, duplicates of the SVE would not fit together as a jigsaw puzzle anymore and thus render
the single SVE invalid to represent a larger material volume. Geometric periodicity under deformation
is imposed on the SVEs through periodic boundary conditions. For a SVE of depth, length, and height of
w0 ·L0 ·L0, the nodal displacements of opposite SVE edges are constrained by the following equations:

~u(0, X2, X3)−~u(w0, X2, X3) = ~U1 (3.1)

~u(X1,0, X3)−~u(X1,L0, X3) = ~U2 (3.2)

~u(X1, X2,0)−~u(X1, X2,L0) = ~U3 (3.3)

Herein, X1, X2, X3 denote the coordinate axes with 0 < X1 < w0,0 < X2 < L0,0 < X3 < L0, see Figure 3.4.
Three master nodes are defined in the corners of the SVE: M N1(w0,0,0), M N2(0,L0,0), M N3(0,0,L0)
and their displacements are denoted by ~Ui . Transverse tension or compression, i.e. transverse to the
longitudinal fiber axes, is applied on the SVE by imposing ~U2 = (0,±δ2,0), ~U1 = (u1,0,0), ~U3 = (0,0,u3),
with δ2 denoting the tensile/compressive displacement, and u1,u3 being the lateral contractions ac-
cording to Poisson, obtained under the surface integral of the traction vector [30]∫

~tdS =~0, on X1 = 0, and X3 = 0 (3.4)

3.1.2.2.2 Constitutive Material Models The choice of material models for the individual constituents of
the UD FRPC ply is crucial for the FEM to be able to resolve the different failure mechanisms of the ply.
Discretization by finite elements and analysis of the SVEs are carried out in Abaqus/Standard [70].

• Fibers: The fibers are discretized by 6-node fully integrated wedge isoparametric elements (C3D6). The
material properties of the used AS4-CFs are shown in Table 3.1. The behavior of the AS4-CFs was mod-
eled as elastic and transversely isotropic, and fiber fracture was not considered relevant under trans-
verse loading, in accordance with experimental findings on AS4/8552 [27].

E1 (GPa) E2 (GPa) ν12 ν23 G12 (GPa) G23 (GPa) α1 (10−6K −1) α2 (10−6K −1)

AS4-CF 231.6 12.97 0.3 0.46 11.3 4.45 -0.9 7.2

Table 3.1: Material Properties of AS4-CF [31]
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DT ¼ �160 �C induces a residual thermal stress microfield as a
result of the mismatch of the thermo-elastic constants of fibres
and matrix.

2.2. Constitutive models of fibre, matrix and interface

RVE’s are discretized using finite elements in Abaqus/Standard
[21]. The matrix is modelled with 8-node fully integrated brick
isoparametric elements (C3D8), while the fibres are meshed with
6-node fully integrated wedge isoparametric elements (C3D6).
The fibre/matrix interface debonding was simulated with 8-node
cohesive isoparametric elements (COH3D8) inserted at the inter-
faces between fibres and matrix. Perfect and homogeneous contact
between fibres and matrix was assumed without any gaps at the
interface. Carbon fibres behave as linear elastic and transversely
isotropic solids and the thermoelastic constants of AS4 carbon
fibres are reported in Table 1 [22]. They were kept constant with
the deformation imposed during the transverse-to-the-fibres
loading neglecting any possible non-linearity due to non-Hookean
fibre behaviour [23]. In addition, no fibre fracture is taken into
account in agreement with experiments carried out in AS4/8552
[1]. Fibre/matrix interface failure is taken into account using a
cohesive crack approach, Fig. 2a. To this end, cohesive elements
inserted at the interface between fibres are governed by a
mixed-mode traction–separation law where damage onset is
controlled by the following stress criterion [24]:

htni
N

� �2

þ ts
S

� �2

þ tt
S

� �2

¼ 1 ð5Þ

where hi stands for McCaulay brackets defined as hxi ¼ maxð0; xÞ, tn
is the normal traction and, ts and tt are the shear components of the
traction vector. N is the normal strength and S is the shear strength
assumed to be equal in both shear directions s and t. In addition,
damage evolution is governed by a Benzeggagh–Kenane [25] law as

Gc ¼ Gc
n þ Gc

s � Gc
n

� � � 2Gs

Gn þ 2Gs

� �gBK
ð6Þ

where gBK is the Benzeggagh–Kenane power exponent, Gc
n and Gc

s

are the normal and shear fracture energies respectively, and Gn

and Gs the reciprocal work under mixed mode propagation. The
interface parameters used in the simulations are presented in
Table 2 [26]. Finally, the polymer matrix behaviour is modelled
using the Lubliner damaged/plasticity model included in Abaqus/
Standard [21]. This constitutive equation allows the material to
behave as quasi-brittle when subjected to dominant tensile stress
while it shows elasto-plastic behaviour under pressure confinement
and compressive loads. The tensile response is, therefore, linear and
elastic with elastic modulus and Poisson ratio Em and mm until the
tensile failure stress rt0 is reached, Fig. 2b. Beyond this point, a
quasi-brittle softening is induced in the material being Gt the
matrix fracture energy. Under uniaxial compression the response
is linear up to the initial yield limit rc0. Then, stress hardening takes
place until the ultimate stress value is reached rcu, Fig. 2b. The
matrix plasticity/damage model parameters used in the simulations
are reported in Table 3 [19,26].

2.3. Microstructure generation

Four different families of fibre section geometries were consid-
ered in this work as represented in Fig. 3 including standard circu-
lar, lobular (2, 3 and 4-lobed), polygonal (3 and 4 edges) with
smoothed vertex, and elliptical with 0.75 eccentricity ratio. The
equivalent diameter of non-circular fibres was kept constant and
equal to the standard circular fibres (� 7:19 lm for AS4 carbon

Fig. 1. Schematic 2D view of the model showing the detail of the fibres distribution, FEM mesh, cohesive interface and periodic boundary conditions (PBC). The transverse
tension loading case along X2 direction is illustrated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 1
Material properties of AS4 carbon fibres [22].

E1
(GPa)

E2
(GPa)

m12 m23 G12

(GPa)
G23

(GPa)
a1

(10�6 K�1)

a2

(10�6 K�1)

231.6 12.97 0.3 0.46 11.3 4.45 �0.9 7.2

M. Herráez et al. / Composites: Part A xxx (2016) xxx–xxx 3

Please cite this article in press as: Herráez M et al. Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of
unidirectional composites: An approach to virtual materials design. Composites: Part A (2016), http://dx.doi.org/10.1016/j.compositesa.2016.02.026

Figure 3.4: Schematic of the 2D SVE model: coordinate axes, periodic boundary conditions, master nodes, and mesh details. The case
of transverse tension in X2 direction is illustrated. Reproduced from [30].

• Matrix: The matrix is discretized by 8-node fully integrated brick isoparametric elements (C3D8). Me-
chanical behavior of the 8552 Epoxy polymer matrix was modelled through the Lubliner plastic-damage
model provided in Abaqus/Standard [43]. When subjected to predominantly tensile stress, the material
behaves as quasi-brittle, while under compressive loading as elasto-plastic, see Figure 3.5b. Under pure
tensile stress, the matrix material thus behaves linearly with elastic modulus E0 and Poisson ratio νm

until tensile failure atσt0. Under further tensile loading, a quasi-brittle softening occurs with Gt denot-
ing the matrix fracture energy. Under pure compressive stress, the matrix material also behaves linearly
until the compressive yield limitσc0. Then, no brittle softening but stress hardening occurs until the ul-
timate compressive stress limit σcu . The properties of the plastic-damage model chosen for the model
of the 8552 Epoxy polymer matrix are summarized in Table 3.2.

E0 (GPa) νm α (10−6K −1) σt0 (MPa) Gt (J/m2) σc0 (MPa) σcu (MPa)

5.07 0.35 52 121 90 176 180

Table 3.2: Material Properties of Lubliner model for 8552 Epoxy polymer matrix [13]

• Fiber-Matrix-Interface: The fiber-matrix interface is discretized by 8-node cohesive isoparametric ele-
ments (COH3D8), taking into account failure of the interface through a cohesive crack approach. Full
contact between fiber and matrix is assumed and the interface thickness is 1 nm. Behavior of the co-
hesive elements follows a bi-linear mixed-mode traction-separation law [65][12], which couples the
displacement vector ~δ= (δn ,δs ,δt ) separating the top and bottom faces of the cohesive element to the
acting traction vector~t = (tn , ts , tt ), see Figure 3.5a. The subscript n hereby denotes the normal com-
ponent of the displacement/traction vector, and s, t denote its shear components. The initial linear
response of the cohesive element follows the initial elastic stiffness K , which is a numerical parameter
chosen just large enough to "ensure displacement continuity at the interface and to avoid any mod-
ification of the stress fields around the fibers in the absence of damage" [27]. Damage onset is then
defined by the maximum stress criterion [50]:
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( 〈tn〉
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+
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S

)2

= 1 (3.5)

where the McCaulay brackets 〈tn〉 = max(0, tn) take into account that only tensile normal stresses lead
to damage initiation of the cohesive element, i.e. separation. N and S correspond to the normal and
shear strength of the interface, i.e. the peak values of the stress when only acting normal to the interface
or in its shear direction. For simplicity, it is assumed that the same strength S applies in both shear
directions s, t .

After damage initiation has occurred according to Equation 3.5, a linear softening rule for damage evo-
lution applies. Referring to Figure 3.5a, which illustrates the case of a uniaxial stress, the scalar damage
variable 0 ≤ D ≤ 1 constitutes the overall damage in the element, with D = 1 denoting full damage.
Since damage evolution may proceed under combinations of tension/compression and shear within
the cohesive element, a mixed-mode definition based on fracture energies is provided. The energy dis-
sipated within the element due to failure Gc , i.e. the area under the traction-separation curve in Figure
3.5a, is defined according to Benzeggagh-Kenane [5] as:

Gc =Gc
n + (

Gc
s −Gc

n

) ·( 2Gs

Gn +2Gs

)ηBK

(3.6)

where Gc
n ,Gc

s are the critical fracture energies in the case of pure loading normal to the element or in its
shear direction. Gs ,Gn is the corresponding work done by the tractions and the concomitant relative
displacements, and ηBK the Benzeggagh–Kenane power exponent. Abaqus then ensures that the area
under the mixed-mode traction-separation curve equals the specified fracture energy [70]. The values
of the interface parameters used in the CM model are derived from in-situ nanoindentation measure-
ments [59][49] and summarized in Table 3.3 and the resulting traction-separation law is visualized up
to scale in Figure 3.6.

N (MPa) S (MPa) Knn(GPa) Kss (GPa) Gc
n (J/m2) Gc

s (J/m2) ηBK

42 63 100 100 2 30 1.2

Table 3.3: Properties of the fiber/matrix interface [47]

fibre) for comparison purposes. A new set of distributions with 2-
lobed and elliptical fibres aligned in a fixed direction is presented
to study the effect of cross section orientation on the overall
transversal behaviour of the composite material. The detailed
geometry definition of the lobular and polygonal fibres is pre-
sented in Fig. 4a and b, respectively, with the corresponding
dimensions used in the simulations (fillet radii, vertex, etc).

It was assumed that the microstructure of the composite was
given by a indefinite translation of the RVE along the two coordi-
nate axes and thus the fibre positions within the RVE should keep
this periodicity condition. Regular fibre arrangements, as square or
hexagonal packings, can also be used as RVE’s in the analysis
although the microstructure restrictions imposed in this case have
an strong impact on the prediction of damage onset and material
strength [27–29]. Fibre centres were generated randomly and
sequentially according to the nearest neighbour algorithm (NNA)
[30]. No fibre-to-fibre contacts were included in the model and
the position of each new fibre was accepted if the distance
between neighbouring fibre surfaces was greater than 0:05 � df .
The assumptions made on the idealization of the microstructure
could potentially have an impact, for instance, in fibre-to-fibre con-
tacts resulting from a deficient resin impregnation or in highly
clustered fibre dispersions, but these effects are considered out of
scope of this work. This restriction ensures an adequate mesh dis-
cretization of these regions [1,13,14]. In addition, the distance
between the fibre surface and the RVE edges should be greater than
0:15 � df to avoid distorted finite elements during meshing. Fibres
intersecting the RVE edges were split and complemented at the
opposite sides of the square RVE to create a periodic microstruc-
ture. New fibres were added until the desired volume fraction of
50% was reached. The model assumed an homogeneous dispersion
of non-circular fibres within the epoxy matrix and does not take

into account local volume fraction variations related to the pres-
ence of fibre clusters or resin rich regions.

3. Unidirectional ply behaviour prediction

Five random RVE’s for each of the different fibre cross sections
considered were generated for the analysis. Simulations were car-
ried out with Abaqus/Standard [21] within the framework of the
finite deformations theory with the initial unstressed state as ref-
erence. In the first step, the RVE was subjected to a homogeneous
temperature change of �160 �C from the stress-free temperature
down to ambient temperature which was followed by the applica-
tion of the individual loading step (transverse tension and com-
pression along X2 and X3 directions). In addition, simulations
were performed with the same fibre distributions but without
the thermal step to ascertain the effect of residual stresses on the
mechanical performance of the unidirectional plies.

3.1. Ply thermal residual stress

Residual stresses appeared in the simulated RVE’s during the
thermal step due to the mismatch between the thermoelastic con-
stants of the fibres and the matrix. The matrix thermally contracts
more than the fibres during the temperature drop and this strain
incompatibility is solved with the generation of a residual stresses
field at the micro level. The maximum principal stress field upon
cooling is depicted in Fig. 5a for a 3-lobed fibre distribution. This
plot clearly evidences tension and compression stress states in
the matrix and the fibre respectively. Normal (tn or interfacial nor-
mal stress INS) and shear (ts or interfacial shear stress ISS) stresses
are generated also at the fibre/matrix interfaces which could
potentially affect the overall behaviour of the unidirectional ply
in the subsequent loading step. Generally speaking, high compres-
sive normal stresses appeared between two closely neighbour
fibres being then tensile normal stress distribution in this situation
comparatively lower, Fig. 5b. In addition, interfacial shear stresses
appeared surrounding the regions of maximum normal compres-
sive stresses to accommodate the high normal stress gradient
along the fibre/matrix interface, Fig. 5c.

The summary of the maximum interface stresses (normal and
shear) attained during the cooling step for the different fibre cross
shape analysed is presented in Fig. 6. The values, average and stan-
dard deviation, represented in the plot were obtained from the
local maximum of the interface stress obtained in each of the five
realizations computed being the error bars attributed to the fibre
position and spatial distribution.

(a) Cohesive interface (b) Matrix

Fig. 2. Schematics of the linear traction–separation law for the cohesive interface (a) and stress–strain curve for the matrix (b).

Table 2
Material properties of fibre–matrix interface [26].

N (MPa) S (MPa) Enn (GPa) Ess (GPa) Gc
n (J/m2) Gc

s (J/m2) gBK

42 63 100 100 2 30 1.2

Table 3
Parameters of the damaged plasticity model that characterize the matrix [19,26].

Em
(GPa)

mm a
(10�6 K�1)

rt0

(MPa)
Gt

(J/m2)
rc0

(MPa)
rcu

(MPa)

5.07 0.35 52.0 121 90 176 180

4 M. Herráez et al. / Composites: Part A xxx (2016) xxx–xxx

Please cite this article in press as: Herráez M et al. Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of
unidirectional composites: An approach to virtual materials design. Composites: Part A (2016), http://dx.doi.org/10.1016/j.compositesa.2016.02.026

Figure 3.5: Schematic of a) the traction-separation material law of the cohesive fiber-matrix interface, and b) the Lubliner
plastic-damage model of the Epoxy matrix. Reproduced from [30].
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Figure 3.6: Traction-separation law of the cohesive elements used to represent the fiber-matrix-interfaces, for the case of
uni-axial tension [30]. Based on the nominal input values from Table 3.3.

3.1.2.2.3 Thermal Loading Residual thermal stresses were found to significantly influence the transverse
strength and strain-to-failure of UD FRPC plies [78][30][27]. They result from the curing process and the
mismatch of the coefficients of thermal expansion between the fiber and matrix phase, and significantly alter
the initial stress field. Accordingly, the to-be-used CM model incorporates a thermal step of∆T = 160◦C prior
to the mechanical loading step.

3.1.3. Example Results: Transverse Failure of Composites with Non-Circular Fiber Shapes
To conclude our discussion of the CM model to be used in the proposed framework, we shall briefly discuss
some example results, illustrating the model’s capabilities to accurately simulate damage under transverse
loading. Furthermore, we want to introduce non-circular fiber shapes as a research topic of emerging interest,
thus chosen as one of the parameters to be explored in this thesis.

Since the 1980s, new manufacturing methods have been developed which allow to produce fibers of various
cross-sectional shapes: Hollow [35][66][52][53], C [35][66][52][53], oval [17], peanut (two-lobular) [17][51],
kidney [81][82][51][86], ribbon [20], triangular (3-polygonal) [9][18], and tri-lobular [19]. Examples are shown
in Figure 3.7. The question prevails whether non-circular fibers can improve the mechanical properties of
FRPC materials, particularly in transverse direction. Since experiments on transverse strength are difficult
to conduct, let alone to manufacture fibers of different cross-sectional shapes but identical properties, CM
offers the advantage to isolate the shape effect.

Figure 3.7: Examples of manufactured fibers with non-circular cross-section, from left to right: kidney, elliptical, tri-lobular,
octa-lobular. Reproduced from [82][20][19].
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The most thorough micromechanics investigation into the effect of non-circular fiber cross-sections on trans-
verse strength of a FRPC is provided by [30], which is also the model to be adopted for the proposed frame-
work. Seven different fiber shapes were compared: circular, 2-lobed, 3-lobed, 4-lobed, 3-polygonal, 4-polygonal,
and elliptical; also varying the alignment for the 2-lobed and elliptical shapes. Tensile strength higher than
for the circular fiber was only reported for the 2-lobed and elliptical fibers when aligned, i.e. when the tensile
load was applied along the major axis of the aligned fiber cross-sections. However, the proportional decrease
in tensile strength aligned with the minor axis, as predicted by Tsai et al. 1966 [74], was confirmed as well.
Higher compressive strength than for circular fibers was reported for all lobular cross-sections, again more
pronounced for aligned fiber distributions. Figure 3.8 summarizes the found results, including the effect of
a thermal step of δT = 160◦C prior to mechanical loading. X2, X3 refer to the orthogonal axes who span the
area of the 2D SVEs.

In the course of this thesis, we now want to look one step further, and explore the effect of mixing different
fiber shapes. Again, the same aforepresented computational micromechanics model is to be used for that,
and we shall present one example result for a single hybrid SVE under each transverse tensile and compressive
loading2. We will use this to illustrate the capability of the model to represent damage evolution up to failure.

nature. Very interestingly, circular and ellipsoidal fibres presented
the highest thermal residual stress effect (+15~20%) and this effect
can be probably attributed to the larger ratios between the com-
pressive and tensile normal interface stress.

3.3. Ply transverse compressive loading

Experimental evidences demonstrated that unidirectional
plies subjected to transverse compression fail after significant

Fig. 7. Equivalent plastic strain (shown grey-scaled) and interfacial damage (shown red) under transverse horizontal tension ðet ’ 1:0%Þ: (a) circular fibres, (b) 3-polygonal
fibres, (c) 2-lobed aligned fibres, (d) 2-lobed fibres. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(a) Transverse tension strength.

(b) Transverse compression strength.

Fig. 8. Effect of residual stresses on the transverse strength of non circular fibres RVE’s: (a) Tensile strength, (b) compressive strength. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

M. Herráez et al. / Composites: Part A xxx (2016) xxx–xxx 7

Please cite this article in press as: Herráez M et al. Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of
unidirectional composites: An approach to virtual materials design. Composites: Part A (2016), http://dx.doi.org/10.1016/j.compositesa.2016.02.026

Figure 3.8: Transverse strength results for simulations of 2D SVEs of different fiber-cross-section-shapes, with and without
thermal step of δT = 160◦C: a) transverse tension, b) transverse compression. Reproduced from [30].

2Comprehensive results for several SVEs will be shown later on in Section 4.4.1
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Figure 3.9 shows a meshed SVE of the cross-section of a UD ply of intermingled circular and 4-lobed AS4 CFs,
embedded in a 8552 matrix. Figure 3.10 shows the stress-strain curve for the same SVE subjected to transverse
tension. The deformed SVE after a 10% load drop from maximum stress is depicted in Figure 3.11 (deforma-
tion scale factor = 5), i.e. at a strain level of 0.9%. As in the case for circular fibers, final transverse failure under
tension constitutes of a joined band of interface failures. Figure 3.11 highlights the latter by plotting the over-
all scalar stiffness degradation SDEG of the cohesive elements representing the fiber-matrix-interfaces. As can
be readily seen, the horizontally applied transverse tension has eventually created a transverse crack through
the entire height of the SVE, consisting of joined interface failures around single fibers.

Figure 3.12 show the stress-strain curve of the same SVE now failing under transverse compression. In cor-
respondence with results from literature on circular fibers [27], final transverse failure constitutes of one or
several joined shear bands within the matrix, triggered initially by interface failure. Figure 3.13 shows the
plastic strain distribution within the now deformed SVE of Figure 3.9 at the point of maximum stress (defor-
mation scale factor = 1). As can be seen, several shear bands with peaks of plastic strain of up to 44% have
formed throughout the volume of the SVE, leading to a final loss of load-carrying capability.

3.1.4. Summary
We now have introduced the Computational Micromechanics (CM) model to be used as a baseline for the
framework proposed in this thesis. The Design of Experiments approach will eventually be used to auto-
matically command the simulation of varying parameter combinations of said CM model. Finally, a Neural
Network will be used to create a coherent surrogate model, based on the available database of simulated
parameter combinations. In this section, we have introduced and described all geometrical, material, and
modelling parameters of the CM model, which will be varied later on in Chapter 7. Lastly, with an example
from literature we illustrated the capability of the CM model to simulate the two dominant failure modes in
a UD FRPC ply under transverse loading: fiber-matrix interface failure, and shear band formation within the
polymer matrix.

Figure 3.9: Meshed 2D SVE of 50µm x 50µm, mixing circular and 4-lobed fibers of each 15% volume fraction and 8µm
diameter. Mesh size is 0.5µm, minimum inter-fiber distance is 0.2µm.
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Figure 3.10: Stress-strain curve for the SVE from Figure 3.9 subjected to transverse tension. Dashed line after the
maximum stress value.
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Figure 3.11: Deformation of the SVE from Figure 3.9 subjected to transverse tension and shown at the final strain value
computed at 0.9%. The plotted variable is the overall scalar stiffness degradation SDEG of the fiber-matrix interfaces.
Deformation is shown with a scaling factor of 5.
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Figure 3.12: Stress-strain curve for the SVE from Figure 3.9 subjected to transverse compression. Dashed line after the
maximum stress value.
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Figure 3.13: Deformation of the SVE from Figure 3.9 at maximum load-carrying capability, subjected to transverse
compression. The plotted variable is plastic strain PE within the matrix, highlighting the formation of several shear bands.
Deformation is shown unscaled.
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3.2. Neural Networks
The second methodology to be leveraged in the proposed ’smart’ framework is Neural Networks (NNs). Within
the framework, NNs are used to create a surrogate model, based on the results from the Computational Mi-
cromechanics simulations. While the Design of Experiments (DoE) defines which combinations of parame-
ters are simulated, the NNs take the role of creating an analytical fit to the resulting high-dimensional data-
points. In the terminology of Machine Learning, this is referred to as Non-linear Regression, borrowed from
statistics. To be able to understand the adaptation and implementation of NNs for the proposed framework,
we shall explain them in the following sections.

First, we introduce and define the term of Neural Networks, and situate them within the larger field of Ma-
chine Learning. The distinction between algorithms for so-called supervised and unsupervised learning is
explained, and why our framework requires an algorithm of the former kind. After a brief overview of various
NN architectures and alternatives, we can motivate our choice for the popular Multilayer-Perceptron (MLP),
and begin with the explanation of its fundamental yet simple processing unit, the Perceptron. Based on this,
we can derive architecture of the MLP and briefly summarize its so-called training process. The latter is the
key part of any NN: the fitting of the NN to a given dataset in order to create a smooth approximation func-
tion. At this point, we have covered the key NN parameters: hidden_layer_sizes, activation, solver, and tol.
These are later discussed in Chapter 5, when dealing with the challenge of automation and implementation
of the NNs into our framework.

Finally, we conclude the section with a relevant example case from literature: a NN is trained on data from
Finite Element Analysiss (FEAs) of different variants of an aircraft structure, and thereby allows to optimize
the structure for stiffness. While the example uses the same idea of a combined DoE-FEA-NN methodology,
we highlight and focus here on the NN implementation and its challenges.

3.2.1. Introduction and Terminology
In the 1900s, the working of the brain was found to revolve around a fundamental building block, called the
neuron [11]. Estimated to occur around 86 Billion times in the human brain [80], each neuron is a simple unit
able to receive, process, and transmit information in an all-or-nothing way to other neurons. The ensemble
of interconnections of neurons in the brain can be referred to as a Biological Neural Network, and by fact
allows us to learn from experience in order to perform a multitude of tasks.

With the advent of the first computer hardware in the 1940s, the idea to mimic the structure of the brain
as a "highly complex, non-linear, and parallel computer" [29] was born and the first theoretical models of
an Artificial Neural Network were developed and computationally implemented [61]. Today, the following
definition has been proposed by [29]:

"A neural network is a massively parallel distributed processor made up of simple processing units, which
has a natural prospensity for storing experiential knowledge and making it available for use. It resembles
the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning process.

2. Interneuron connection strengths, known as synaptic weights, are used to store the acquired knowl-
edge.

The function used to perform the learning process is called a learning algorithm, the function of which is
to modify the synaptic weights of the network in an orderly fashion to attain a desired design objective."

In the following and throughout this master’s thesis, the term Neural Network will be used referring to an
Artificial Neural Network. Furthermore, NNs are grouped under a broader field within the computer sciences,
termed Machine Learning and just like all Machine Learning algorithms they can be subdivided according to
two simple questions:

• How do they learn from experience? With or without supervision?

• What do they learn to do with the input they are given? To classify it in predefined categories? For
example to judge whether an image shows a cat or a dog. Or to learn to approximate the non-linear
functional relationship between the given inputs and outputs? For example, how the buckling load of
a composite panel depends on the number and wall thickness of the stiffeners.
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The following section shall briefly define the term of Machine Learning, and allow the reader to understand
where NNs fit within. Furthermore, the afordescribed distinction between classification and functional ap-
proximation will be explained in more detail. This will then allow us to understand how a NN can be put to
use with Computational Micromechanics: for Non-Linear Regression through Supervised Learning.

3.2.2. Neural Networks within Machine Learning
Who defined Machine Learning, and as what?
The term Machine Learning first appeared scholarly in 1959, in A.L. Samuel’s paper titled Some studies in
machine learning using the game of checkers [63]. While drawing on previous research from the 1950’s on the
same problematic, he was the first to cast the basic idea of "programming computers to learn from experi-
ence" [63] into the governing term still used today: Machine Learning (ML).

Since 1959, significant advances have been made in this field. A popular example for impactful application of
ML algorithms is self-driving cars: based only on the visual input of cameras [8], NNs have been successfully
trained to drive a car without human interaction. Further ML breakthroughs were achieved in object and
speech recognition [37] [32].

For this brief introduction to ML algorithms, it suffices to see them as the mathematical functions that they
are. Given a set of independent input parameters, they return a set of dependent output values. A ML algo-
rithm is not useful when the exact mathematical function to be represented is known, instead their field of
application is for problems where this is difficult or impossible. Recalling the task of driving a car in traffic, the
number of input parameters to consider is extensive, and the relation between these input parameters and
the final output, i.e. the steering commands, today is impossible to find as an exact mathematical function.

ML algorithms don’t aim to find the exact formulation, but to approximate the underlying input-output rela-
tionship with sufficient accuracy. To achieve this, and contrary to a traditional programming approach, the
ML algorithm shall not have to contain explicit rules such as

if obstacle:
break

Instead, ML algorithms are designed to be able to learn all necessary rules from experience, as independent
as possible from the programmer. How the algorithm is learning from experience provides a useful division
into two major classes: supervised learning, and unsupervised learning.

What is supervised learning, and how is it different than unsupervised learning?
The process of an algorithm learning to approximate a sought-after input-output relationship is classified as
one of the following two [46]:

• Supervised learning: In this case, the sought-after relationship is only known through a limited amount
of discrete datapoints, i.e. known pairs of matching input-output data. Analogous to polynominal
interpolation, these datapoints could be called the interpolation points. In the terminology of ML, they
are called training data. For the example of self-driving cars, the training data would consist of input
data, e.g. speed, position, obstacles, as well as the matching output data, i.e. the corresponding correct
steering commands as given by a human.

During supervised learning, the ML algorithm adapts its intrinsic parameters, based on mathematical
methods, in order to reproduce the shown training data as accurately as possible. Lastly, the so-trained
algorithm can be used to predict the output values for input data which it has not been trained with.
Two major use cases are distinguished:

– The allowable output values are discrete, e.g. the self-driving car algorithm has to predict whether
the detected object in its way is a child or an ape. This problem is called Classification.

– The allowable output values are continuous, e.g. the algorithm has to predict what the correct
steering rates are in order to swerve around the obstacle. Analogous to statistics, this is called
Regression. For a non-linear input-output relationship, it is called Non-linear Regression.

• Unsupervised learning: In this case, the sought-after relationship is completely unknown, i.e. no train-
ing data is available. These methods are usually referred to as data mining, as they focus on extracting
useful information from the input data itself. Two major cases are distinguished:
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– Based on a user-specified similarity measure, the algorithm attempts to classify the data points
into different groups, i.e. clusters. This is called Cluster analysis.

– Based on prior approximate knowledge of what the most important features within the input data
are, the algorithm attempts to reduce the dimension of the input data. This is called Dimension-
ality Reduction.

Which kind of learning process and use case is relevant for the ’smart’ framework to be developed in this thesis?
NNs can be used both with unsupervised and supervised learning, for both Classification and Non-Linear
Regression. The most prominent success cases for NNs, self-driving cars [8], object recognition from images
[37], and speech recognition [32], are largely based on NNs trained through supervised learning and perform-
ing Classification tasks.

In the case of the proposed framework, we want to predict the mechanical properties of a composite mate-
rial, based on training data generated by a Computational Micromechanics model. Accordingly, a supervised
learning approach has to be used, and since mechanical properties are continuous, the necessary way of pre-
dicting them is by Non-Linear Regression. To achieve this with a NN, the network first has to be trained with
pairs of matching input-output data, before it is able to make predictions on input data that it has not been
trained with, a process called generalization.

Before explaining the simple mathematical foundations of NNs, we shall briefly briefly compare two popu-
lar NN architectures with an alternative ML algorithm, and motivate our choice of the so-called Mulitlayer-
Perceptron architecture.

3.2.3. Overview of Neural Network Architectures and Alternatives
Based on the literature review, three common methods for Non-Linear Regression were identified:

• Multilayer-Perceptron (MLP)

• Radial Basis-Function (RBF)

• Support Vector Machines (SVM)

The former two are both NN architectures with inherent differences in: mathematical model of the simple
processing units; allowed arrangement of these units (e.g. number of hidden layers); allowed interaction
between the units (e.g. linear or non-linear); possible training algorithms. Among these three methods, the
MLP has established itself as a reference, being a versatile "global approximator" [29] both for Classification
and Non-linear Regression. More specifically, for the case at hand of predicting the mechanical properties of
a composite material through a NN, with almost no exception all reviewed cases in literature have used the
said MLP architecture.

Why use a Multilayer-Perceptron, and not a different architecture or method?
As aforementioned, the MLP is a standard ML algorithm which has achieved sufficient prediction accuracy
in similar cases. The work of this master’s thesis now aims at extending the use of ML within the field of
Computational Micromechanics, and not to try to introduce a new kind of algorithm. Advantages of the MLP
over the other methods were reported as the following:

• MLP vs. RBF: [29] summarizes that for "approximation of a nonlinear input-output mapping, the MLP
may require a smaller number of parameters than the RBF network for the same degree of accuracy".

• MLP vs. SVM: [29] summarizes that "SVM are currently slower than other neural networks (e.g. multi-
layer perceptrons trained with back-propagation algorithm) for a similar generalization performance."

3.2.4. The Single Perceptron
In order to understand how a Multilayer-Perceptron can be trained to approximate a non-linear function,
we first have to explain the basic processing unit it consists of: the neuron, a terminology borrowed from
Biological Neural Networks. In the case of the MLP, the mathematical model of each neuron is the Perceptron.
First proposed in 1958 as a "probabilistic model for information storage and organization in the brain" [61],
its architecture is illustrated as a block-diagram in Figure 3.14 [29]. One or several inputs x1, x2, ...xm on the
left hand side are processed through three simple units into a single output y :



20 3. State of the Art

• The so-called synapses, again in biological analogy, are the connections from the inputs x1, x2, ...xm to
the next unit, the summing junction. Each synapse takes its input value, multiplies it with the so-called
synaptic weight w , and passes it further to the summing junction.

• The summing junction first sums up all inputs coming from the synapses, each with their synaptic
weight, and then adds a value b, called bias. Its output v is called local field.

v =
m∑

j=1
(w j x j )+b (3.7)

• The activation function, ϕ(v) takes as input the local field and limits the amplitude of the output of
the neuron y . Different types of activation functions can be chosen: threshold, piecewise-linear, or
sigmoid. A key requirement of the MLP learning algorithm is that the activation function must be dif-
ferentiable. A common choice is therefore the logistic function of the sigmoid class, with a > 0 denoting
its slope parameter, and so limiting y to the range of 0 ≤ y ≤ 1. 3

ϕ(a, v) = 1

1+e−av (3.8)

Putting together these three basic units, we obtain the single formula describing the perceptron:

y(x0 = 1, x1, x2, ..., xm , w0, w1, w2, ..., wm) =ϕ(
m∑

j=0
(w j x j )) (3.9)

For simpler annotation, we have recast the bias b as the synaptic weight w0 by defining x0 = 1, as shown in
Figure 3.14. Since the number of inputs x1, x2, ...xm and the single output y are defined by the training data,
the only free parameters of the perceptron are the synaptic weights w0, w1, w2, ..., wm . Thus, the only way the
perceptron can be fitted to a set of training data is by adjusting these synaptic weights, much like a polynomial
is fitted to a curve by adjusting the polynomial coefficients.

Contrary to a polynomial though, the perceptron is very limited in the kind of non-linear functions it can fit:
Only functions which resemble the simple activation function can be fitted by a single perceptron. The com-
mon choices for the activation function like threshold or sigmoid illustrate that the perceptron was primarily
conceived for Classification tasks. For Non-linear Regression, it performs very poor.

However, it was found that when connecting several perceptrons in a certain way, the resulting Multilayer-
Perceptron can indeed fit almost any non-linear function. This leads straight to the next question: How are
these perceptrons arranged to form a Multilayer-Perceptron?

Figure 3.14: Example architecture of a Perceptron, with its overall boundary demarcated in red. Reproduced from [29].

3As to be discussed later-on, this range determines the scaling of the training data.



3.2. Neural Networks 21

3.2.5. From Single Perceptron to Multilayer-Perceptron
Every neuron in a MLP is an identical copy of the same basic processing unit, the percepton of Figure 3.14.
These identical neurons are then arranged in layers to form a MLP, as shown in Figure 3.15. The most simple
network, a single-layer, consists only of the inputs, and the output layer. More layers can be added in between
of the two, called hidden layers, with so-called hidden neurons. The resulting networks are called multilayer
networks, with Figure 3.15 being an example with two hidden layers.

The number of neurons in the input and output layer is equal to the number of input/output parameters of
the function to approximate, but the number of hidden neurons in each hidden layer is a parameter to be
determined by the user. In general, the more complex the input-output relationship to be approximated, the
more hidden layers and hidden neurons are necessary [15].

The propagation of the inputs through the network is generally from left to right, from layer to layer, which
is called a feed-forward network. This means that the inputs pass initially to the neurons of the first hidden
layer, then the second hidden layer, and so forth until they reach the neurons of the output layer. 4

Concerning the interconnection between neurons, this means that neurons within the same layer are not
connected with each other, as shown in Figure 3.15. Instead, each neuron of a given layer receives as input
only the outputs from the preceding layer. For the example of Figure 3.15, any hidden neuron in the first layer
receives all inputs of the input layer. The same holds true for all neurons in the network: Each neuron receives
all the outputs from the preceding layer, the network is so said to be fully-connected. The opposite case, when
some of these connections are omitted, is called partially connected. Further, this is a way to incorporate prior
information, about the function to be approximated, into the neural network [39].

For brevity, the number of layers and neurons in a NN can be summarized with the following annotation:
i −h1−h2− ...−o, where i is the number of input nodes, h1 the number of hidden neurons in the first hidden
layer, h2 the number of hidden neurons in the second hidden layer and so forth, and o is the number of
output neurons. Accordingly, the network shown in Figure 3.15 is a fully-connected, feed-forward, MLP, 4-4-
4-3 network. Having discussed the possible architectures of a MLP network, it is now pertinent to examine
the main question:

How can a MLP network store experiential knowledge?
Recalling the definition of a NN [29] in section 3.2.1, it is by modifying the synaptic weights of all the inter-
neural connections within the network, that it learns to approximate the sought-after input-output relation-
ship. This process is called learning or training, and is automated by a so-called learning/training algorithm.
For the case of the single perceptron, the number of synaptic weights equals the number of inputs. When
connecting several perceptrons to a MLP, the training effort increases sharply, since every perceptron now
has its own set of synaptic weights which shall be modified.

neuron

Figure 3.15: Example architecture of a Multilayer-Perceptron. A single neuron, i.e. Perceptron, is demarcated in dashed red lines,
corresponding to Figure 3.14. Reproduced from [29].

4In contrast, networks where the output of a layer is fed back to a preceding layer, i.e. a feedback loop, are called recurrent networks.
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How to choose the number of hidden layers/neurons?
It has to be pointed out that the learning process modifies only the synaptic weights, not the number of
hidden layers/neurons of the network. The architecture of the NN therefore has to be pre-defined by the user
before starting the learning process. How to decide on the optimal number of hidden layers/neurons does
not follow exact rules unfortunately, but generally requires "an exhaustive experimental study" [29]. A few
general trends however can be summarized:

• As aforementioned, more neurons achieve better approximation [15], up to a certain point of conver-
gence that depends on the complexity of the input-output relationship. Said example of a NN trained
to steer a car only based on visual input, required 27 Million connections and 250000 parameters [8].
Contrary, for the reviewed cases where NNs were used to predict the mechanical properties of a com-
posite material, e.g. buckling load, usually not more than two layers with each less than 10 neurons, or
a single layer of up to 50 neurons were necessary to capture the material behavior [7]. The concomitant
drawback of a higher number of hidden layers and neurons is a steep increase in computation time
required for training.

• Inputs which are more important for the input-output relationship, relative to the other inputs, require
a larger number of neurons for their representation in the network [3].

After having chosen the number of hidden layers and neurons, their synaptic weights have to be modified
during the so-called training process whose basics are explained in the following section.

3.2.6. The Multilayer-Perceptron Training
For the prediction of mechanical properties of composite materials, the approach of supervised learning will
be used to train the MLP network (as stipulated in section 3.2.2). First, the architecture of the MLP net-
work has to be fixed: number of hidden layers, number of hidden neurons. Likewise, initial values for the
synaptic weights and biases of the network have to be chosen, as well as the type of activation functions
for the perceptrons. Introducing already the terminology to be used in Chapter 5, these are the parameters
hidden_layer_sizes and activation. Then, the first set of the training data, i.e. input data for which the cor-
responding output values are known, is passed through the network. The input data is propagated from the
input layer through the hidden layers to the output layer, a process referred to as the forward-pass. Given
the initial values for synaptic weights and biases, the network’s output y can be readily calculated. Then, this
result is compared to the target output values of the fed training data. The difference between the two defines
the so-called total error energy E of the network. Then, the minimization of this term up to a certain tolerance
tol becomes the main objective of the training.

How can the total error energy of a MLP network be minimized?
Accordingly, this can be seen as a continuous optimization problem with the objective being to minimize
a loss function, in this case the total error energy E of the network. Since the number of hidden layers and
neurons, as well as the type of activation function are fixed prior to the training, the loss function at this
point only depends on one set of continuous scalar parameters: the synaptic weights of all neurons in the
MLP network. In more simple terms, the training of a MLP network boils down to the iterative adaption of
its synaptic weights w , in order to minimize the difference between target output (from training data) and
current output calculated by the network. For the minimization of E , the standard choice are gradient-based
optimization algorithms. This is not a coincidence, but taking advantage of the MLP architecture.

MLP networks are mathematical functions y = MLP (x, w) which can be classified as a directed graph. A pe-
culiarity of these is that gradients of the loss function with respect to its parameter w can be easily calculated
through application of the chain rule. This approach was conceived and first proposed in 1986 [62], termed
the error back-propagation algorithm, which today has become the most popular training algorithm for MLP
networks [29], foremost due to its computational efficiency.

When depicting a MLP network as a directed graph, the application of the chain rule can be visualized as a
back-propagation of the error signal through the network, starting from the output layer and moving back-
wards layer-by-layer. To clarify the terminology, back-propagation is therefore an efficient method of com-
putation of gradients in directed graphs, such as MLP networks. However, back-propagation does not say
anything about the rule by which the parameters of the network shall be updated, in order to minimize the
output error. In the general field of mathematics, such rule is referred to as an optimization method, while in
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the field of Neural Networks, this has been termed the learning rule, or solver. Popular gradient-based learn-
ing rules implemented for MLP training are Gradient Descent and Stochastic Gradient Descent, both using
first-order gradients, and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [22] using second-order
derivatives of the loss function.

For reasons of brevity we have to omit a detailed mathematical derivation of the MLP training at this point,
and refer the interested reader to the literature review. On a concluding note, it has to be remarked that the
methodology of training and testing a MLP network is not subject to exact rules. Many different approaches
have been developed, e.g. depending on the number of known input/output data, the nature of the data
(experimental with scatter, or simulation results without scatter), etc. More details of this will be discussed in
Chapter 5, when explaining the training process of the NN implemented for the proposed ’smart’ framework.

After having explained the fundamentals of NNs, their architecture and training, we shall conclude this chap-
ter with an applied example from research on composite materials, using NNs in combination with Finite
Element Analyses (FEA) to predict the stiffness of a composite structure.

3.2.7. Case Study: Material Property Prediction through a trained Multilayer-Perceptron
The literature review summarizes the rather recent history of NNs applied within the field of composite
materials. The necessary foundation was laid in 1986 with the successful development of the error back-
propagation algorithm for MLP networks [62], yet it took until the late 1990s for the first publications on
NNs to appear in the field of composite materials. Due to very limited computational capabilities, they were
restricted to train the NNs on experimental data, often containing too few datapoints to obtain a reliable
generalization of the mechanical properties they were trying to predict [40]. With computational power and
interest in Machine Learning on the rise, the past few years have shown the first success cases of NNs trained
on datapoints generated by simulation. Hereby, it was possible to predict various complex mechanical prop-
erties of composite materials such as their damage behavior [55] or their ballistic limit [4].

This kind of approach has been the inspiration for the work of this master’s thesis, as we propose to apply the
same combined methodology to the field of Computational Micromechanics, specifically including damage
modelling. To illustrate the state of the art found in literature, we shall briefly present one recent success case:
the optimization of a thin-walled composite structure through a NN trained on FEA data [23].

• What is the application?

A thin-walled composite structure, used as part of the elevator in an aircraft, shall be designed for maxi-
mum stiffness and minimum weight. Possible design choices, i.e. input parameters, are the geometrical
features of the structure. Figure 3.16 shows the Finite Element Model of the structure.

It should be noted that the result is raw, so in order to use it in
the next step, it must undergo further geometry processing
(smoothing) in CAD, followed by another FEM verification. This
means, among others, the conversion of STL files to a universal
solid format such as Parasolid or IGES. In addition to this, the opti-
mization program does not provide information about the relation-
ships between individual parameters describing geometry and the
considered result, such as displacement or acceptable stresses. This
data can be obtained using neural networks, which have been used
in the present study. The neural networks are part of a complex
hybrid system which uses the finite element method – obtained
numerical results as input variables.

It must be stressed that the authors have considerable experi-
ence in the use of numerical methods of calculation based on both
artificial intelligence e.g. [10,11,30–35] and finite elements e.g.
[36–42].

In all FEM application ANNs can be applied to improve design-
ing process to get better engineering solutions satisfying different
conditions and requirements. In the present paper these require-
ments are:

� Reducing the weight of the element w.
� Keeping the stiffness of the element on relatively high level,
expressed by maximum displacement umax.

2. Aim of the work

To make air structures as lightweight as possible, they are
mainly made of aluminum or fibrous composites. For example,
thin-walled skins are joined by rivets, bolts or/ and adhesive bond-
ing for girders and ribs. In this way a 3-dimensional (3D) structure
is created with complicated shapes resulting from aerodynamics
requirements. At present, to reduce manufacturing costs of air
structures, the trend is to replace traditional connectors, predomi-
nantly rivets, with structure-integrated connectors enabling fast
assembly by pressure. Nonetheless, to design such a connector or
a whole system of connectors properly, it is necessary to have a
point of reference in the form of an integral structure without
any connectors, as this will provide information about the stiffness
of the whole 3D structure and extremal displacements and stresses
fields. For this reason, this paper is the first step in the research on
methods for eliminating traditionally used mechanical connectors
or adhesive bonding.

The study was performed on a fragment of the elevator used in
the ‘‘Bryza” aircraft manufactured by PZL Mielec. This fragment is a
cubicoid with a height of 60 mm, a width of 165 mm and a length
of 265 mm, made of aluminum with a thickness of 0.8 mm. To
ensure optimal structure, the structure’s geometry was modified
by creating:

� system of ribs, situated under different angles in relation to side
of the cuboid,

� different thickness of ribs,

� set of holes inside of the ribs,
� set of holes inside of the side walls of the cuboid.

Since it was difficult to predict the values of hole radius, rib
thickness and their angle of inclination relative to the side walls,
therefore we performed over 160 FEM simulations for different
geometrical configurations of dimensions applied.

3. Description of the investigated models

As mentioned in the previous section, the fragment of real air
structure was modified by the formation of holes and ribs under
different inclinations in order to reduce its weight w. The structure
is loaded at 20 points located on two planes forming ribs in a real
structure (Fig. 2). The specified loads system corresponds to the
real state of loading during airplane flight in the considered box.
It causes complex state of stress including bending and torsion.

The exact position of the points on each place is shown in Fig. 3.
Besides the application of forces, it was also important to

remove relevant degrees of freedom:

– point RP-5 – uy = uz = 0,
– point RP-8 – ux = uy = uz = 0,
– point RP-18 – uz = 0.

Table 1 lists the real forces components of the structure loaded
with in the FEM modeling. To apply the load, it was however nec-
essary to do partitioning, so the forces are applied in the simulation
to square surfaces with the dimensions 0.8 � 0.8 mm. If the given
forces were applied to the very nodes of the finite element mesh,
this would lead to plasticization and generation of high strains,
which would interrupt the computations.

Fig. 4 shows the geometrical parameters, i.e. 4 individual vari-
ables of the presented model, which are modified in the simula-
tions. They are:

(a) (b) 

Fig. 1. Example of geometry optimization.

RP-5

RP-8

RP-18

forces
components

uy

ux uz

Fig. 2. 3D view of the structure with marked points of application of forces.

590 J. Gajewski et al. / Composite Structures 159 (2017) 589–599

Figure 3.16: FEM of the composite structure. Reproduced from [23].
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• What was predicted?

A single continuous output was predicted: The stiffness of the structure, defined as the displacement
umax at a specific point of the structure under the applied loading.

• What was the available data for training/testing of the NN?

The NN was trained/tested with FEA data, consisting of 160 simulations with different combinations of
the input parameters, generated according to Design of Experiments (DoE) principles.

• What was chosen as the inputs and outputs of the NN?

The extracted output from the simulations was the stiffness of the structure, as well as its weight as
a secondary result. Four geometrical input parameters were chosen, as illustrated in Figure 3.17, and
with ranges as summarized in Table 3.4.

Input Parameter Range

Rib Wall Thickness 0.2...2mm
Rib Angle α 0°...82.5°
Side Hole Diameter 0...25mm
Rid Hole Diameter 0...25mm

Table 3.4: Input parameters and ranges of the dataset to which the NN is fitted [23]

• What was the chosen NN architecture?

A fully connected, feed-forward multilayer-perceptron was chosen as NN architecture.

• Which kind of learning rule was used?

Only one kind of learning rule was investigated, Limited Broyden–Fletcher–Goldfarb–Shanno [41], an
implementation of the BFGS algorithm that minimizes memory usage.

The numerical computations were run for two model variants:

1. The first variant involved loading 4 quantitative input variables.
They were: rib wall thickness, the angle of rib inclination rela-
tive to the side walls, side hole diameter and rib hole diameter
(due to practical reasons we used the values of hole radius – see
Figs. 4, 11, 12 and 17–20). The output variable was the struc-
ture’s deformation under the applied load.

2. The second variant, the input variables included 2 quantitative
input variables, i.e. side hole and rib hole diameters, as well as 2
qualitative variables, i.e. the defined rib angles and wall
thicknesses.

The tests were conducted for networks with radial basis
functions (RBF) and multi-layer perceptrons (MLP) as these
networks – based on the results of previous research by the
authors [10,11,31–33,44] – are best suited for solving this

(a) rib thickness t (b) side hole radius rs 

(c) rib hole radius rr (d) rib angle α 

Fig. 4. Modifications of the examined geometrical parameters.

Fig. 5. Finite element mesh.

Fig. 6. Distribution of the resultant displacements and deformed geometry.

Table 2

umax

[mm]
Weight w
[g]

Box with holes in side walls 0,2335 283
Box with holes in side walls and with ribs 0,2310 298
Box with holes in side walls and with holes in ribs 0,2323 293
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Figure 3.17: Geometric input parameters of the FEA/NN. Reproduced from [23].
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• How many hidden layers and neurons were chosen?

The number of hidden layers was kept constant to one. The number of neurons in the single hidden
layer was varied from three to ten, as well as different choices for the activation function in the hidden
and output layer were tried. Table 3.5 summarizes the results with Btest i ng denoting the coefficient of
determination familiar from statistics. A maximum value of Btest i ng = 1 is equal to a perfect fit to the
testing data. Comparing the different parameter choices, no main trend can be observed, but it can be
noted that a simple 4-3-1 MLP network was able to achieve the best fit.

Network Btest i ng Activation (hidden) Activation (output)

4-5-1 0.953 Logistic Logistic
4-3-1 0.94 Logistic Exponential
4-10-1 0.94 Exponential Tanh
4-8-1 0.95 Logistic Exponential
4-3-1 0.96 Logistic Exponential

Table 3.5: Comparison of the quality of the NN fit, for varying number of hidden neurons, and different
activation functions. Btest i ng denotes the coefficient of determination familiar from statistics, with a
maximum value of Btest i ng = 1 equal to a perfect fit to the testing data. Reproduced from [23].

• What was the final predicted result?

The final result is the trained NN, which is an analytical approximation of the stiffness of the structure,
as a function of all five input parameters as listed in Table 3.4. Since it is difficult to plot 5-dimensional
data, Figure 3.18 shows by way of example the determined maximum displacement umax , plotted over
rib hole radius and rib angle α, just two of the five input parameters. The remaining parameters, side
hole diameter and rib wall thickness, were fixed at certain values. The same plot can be created for any
other combination of the input parameters, thereby allowing to understand the underlying relation-
ship between the input parameters and the output. Lastly, the obtained analytical continuous function
allows any kind of common mathematical operation on it, with finding the global maximum/minimum
just being the most simple one.

A neural network calculates the output values based on input
variables. It must be remembered that the factor which plays a sig-
nificant role in the case of a perceptron model described by the
number of neurons in the input, hidden layer and output (e.g.
MLP 12-14-1) are the specified values of weights for neural con-
nections modified during the training process. This enables
approximation of even very complex non-linearities.

5.1. First variant – analyses with 4 quantitative input variables

The input data included the following parameter ranges:

� rib wall thickness t = 0.2 mm � 2 mm,
� rib angle a = 0� � 82.5�,
� side hole diameter 2rs = 0 � 25 mm,
� rib hole diameter 2rr = 0 � 25 mm.

The available experimental data obtained from the FEM analysis
were divided into 3 groups. 60% of cases were assigned to the
group of training data, 20% to the validation set, and the remaining

Fig. 13. Displacement umax versus thickness t and rib angle a.

Fig. 14. Weight w versus thickness t and rib angle a.

Fig. 15. Relationship between the computed and predicted displacement umax.

Fig. 16. Relationship between the predicted and real weights w.

Fig. 17. Displacement umax versus rib hole radius rr and rib angle a.
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Figure 3.18: NN approximation of the maximum displacement umax of the composite structure, depending on the rib
hole radius and rib angle α. Reproduced from [23].
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• What were the main conclusions?

The main goal of predicting the overall response of the composite structure through a synergy of DoE,
FEAs and NNs was achieved. Trained with the results of 160 FEAs, the MLP network was used to create
a surrogate model which relates the stiffness of the structure with the relevant five geometric input
parameters through an analytical function. The latter can then easily be exploited for optimization of
the structure through common mathematical operations. What was not discussed in this paper was the
accuracy of the surrogate model. It is missing a discussion on how the number of necessary datapoints
was determined, and by which measure the combinations of input parameters were generated, i.e. a
regular grid filling the parameter space, or a random distribution. Overall however, the outlined case
served as an inspiring example of the kind of automated and comprehensive surrogate model that can
be achieved by the used methodology combining Design of Experiments, Computational Modelling,
and Neural Networks.

3.2.8. Summary
In this second part of the chapter on the state of the art, we have introduced Neural Networks (NNs) as the
other key methodology to be put to use in the proposed ’smart’ framework. The mathematical fundamentals
of the chosen Multilayer-Perceptron architecture have been laid out together with its training process. This
will serve as the basis for Chapter 5, discussing the practical challenges of implementing and automating
the NN training for the framework. Lastly, we presented a recent example from literature which served as
an inspiration for the work of this master’s thesis. Herein, a NN was trained on 160 datapoints generated by
Finite Element Analyses to create a 5D surrogate model of the stiffness of a composite structure.

3.3. Summary
Hereby, we conclude the chapter on the state of the art. We have explained in all necessary detail two of the
three methodologies to be combined for the framework of this thesis: Computational Micromechanics (CM),
and Neural Networks (NNs). The third methodology, Design of Experiments is considered well-established
and touched upon later in Chapter 6. In the first part, we explained the CM model that is the fundamental
element of the proposed framework. It is used to generate the datapoints describing the transverse strength
of the modeled material, and it is exactly these datapoints to which the NN will be fitted. In the second
part, we explained the theory and practice of NNs, as necessary to understand by which principles they can
approximate a non-linear relationship such as the transverse strength of a UD FRPC ply.

The following two chapters shall now discuss the challenges and implications of adapting these methodolo-
gies, CM and NN, to the framework proposed in this thesis. Foremost, the entire framework has to run auto-
matically without any user interaction required. This is due to the fact that an accurate surrogate model of a
complex material property, such as transverse strength, requires many datapoints to rest upon. As to be dis-
cussed in the following chapter, every datapoint further requires several simulations to obtain a statistically
significant result. In consequence, thousands of simulations have to be generated, run and post-processed
automatically. Lastly, also the NN training has to be fully automated since the NN approximation is used to
judge whether more datapoints are necessary to improve the quality of the surrogate model.

After having addressed the automation of the CM and NN part in Chapter 4 and Chapter 5, we can then
proceed with the presentation of the workflow and implementation of the entire framework in Chapter 6.
Lastly, we may present five example studies performed with the ’smart’ framework in Chapter 7.



4
Automation of Computational

Micromechanics

This chapter shall detail the automation of the Computational Micromechanics (CM) simulations, necessary
to generate the fundamental database of the proposed framework. Based on this database, the final surro-
gate model can then be constructed through a Neural Network. The underlying CM model discussed in this
chapter has been introduced in Chapter 3, Section 3.1. First, an overview of the simulation workflow is given,
listing its four main steps: 1) Generation of a Statistical Volume Element (SVE), 2) Definition of the Finite
Element Model in Abaqus, 3) Running of the simulation, 4) Post-Processing of the simulation results.

For each step, we discuss on a very practical level the used tools and data formats, as well as encountered
challenges when adapting the simulation workflow to full automation. Furthermore, we point out the pa-
rameter choices which the user has to make at each step. Eventually, it is exactly these parameters which we
later vary and study in Chapter 7 with the proposed framework. Therefore, we also discuss and justify the
nominal values which are assumed for the baseline CM model, such as mesh size, SVE size, and minimum
inter-fiber distance.

Lastly, the damage modelling introduces significant numerical complexity into the CM model, resulting in a
statistical spread of the results depending on the fiber distribution in each SVE. In consequence, simulations
for a single combination of model parameters have to be repeated several times for different SVE realizations
in order to obtain a statistically significant result. The implications of this on the post-processing strategy are
explained with the aid of some example simulation results in the last section of this chapter.

4.1. Overview of the Simulation Workflow
Figure 4.1 illustrates the different steps of the workflow of the CM simulations:
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Figure 4.1: Workflow of the Computational Micromechanics simulations. Step 1: Generation of a SVE through Viper. Step 2 & 3:
Definition of the FEM in Abaqus and execution of the simulation. Step 4: Post-Processing of the simulation results. Steps 1-4 are
repeated until 5 valid SVE results have been obtained, but no more than 10 attempts are made.
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1. Generation of a SVE of the UD FRPC ply in question: This is automated through the tool Vip3r [30],
developed by M. Herraez for IMDEA Materials, and implemented in Python. The result of this step is a
*.txt file describing the geometry of the SVE and listing the fiber materials.

2. Definition of the FEM in Abaqus:

• Generation of mesh based on SVE geometry

• Association of constituents with their material properties and failure models

• Generation of periodic boundary conditions

• Definition of thermal step prior to mechanical loading

• Definition of transverse mechanical loading step: tension or compression

This process is also automated through a Python script developed at IMDEA Materials. The result of
this step is a *.cae and *.inp file defining the Abaqus simulation to be run, and a *.txt file defining the
periodic boundary conditions to be applied.

3. Running of the simulation: The simulation is run in parallel on 6 Central Processing Units (CPUs) and
with a Fortran subroutine to stop the simulation as soon as the load drops by more than 10%, with
respect to the maximum load attained.

4. Post-Processing of the simulation results: A multitude of results are stored for each simulation, but
for now the final data of interest is the maximum load obtained during the transverse loading, i.e. the
maximum transverse tensile/compressive strength of the UD FRPC ply in question.

This procedure for a single SVE finally has to be repeated for 5 to 10 different SVE realizations, each of a
statistically different fiber distribution and in consequence resulting in a slightly different transverse strength
value. Details of this will be discussed in Section 4.4.

4.2. Step 1: Generation of a Statistical Volume Element
First, a SVE of the UD FRPC ply to be modelled has to be generated. For this, the Vip3r tool from M. Herraez
[30] has been used, offering a wide array of geometrical input parameters to be varied, see Section 3.1.2.1.

4.2.1. SVE Generation through Vip3r
For the proposed framework, thousands of SVEs have to be generated automatically, so the Python script be-
hind Vip3r had to be used instead of the GUI. To automate the creation of different kinds of SVEs, the RVE.py
file was modified, with code listing 4.1 showing the part added to the script. Line 2 displays the geometrical
input parameters which can be varied with this specific implementation:

• Dmin: minimum inter-fiber distance

• FVolF : total fiber volume fraction

• RFiberFrac: fraction of round fibers (the remainder of fibers is considered lobular)

• LobularDiam: diameter of the lobular fibers (round fibers are kept at a nominal diameter of 8µm)

• Height, Width: height and width of the SVE

The remainder of the code listing illustrates how Vip3er can be utilized to automatically generate SVEs based
on these input parameters. Vip3r is able to generate a wide array of SVE geometries, for different fiber shapes,
and up to very high fiber volume fractions of >70%. This is achieved by various algorithms implemented
in the tool, including compaction and stirring steps. The iterative fiber placement algorithm further has
to find a SVE geometry which satisfies opposing conditions, like high fiber volume fraction and minimum
inter-fiber distance. As a result, the final SVE proposed by Vip3r may in some cases have overwritten one of
the conditions, therefore requiring some additional verification measures as to be explained in the following
section.
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4.2.2. Measures of Valid SVE Generation
Three errors have to be caught in order to automatically generate valid SVEs with Vip3r:

• First, it has to be verified that Vip3r actually complies with the minimum inter-fiber distance as defined
through variable Dmin, see line 35. While this generally goes well for circular fibers, it was found that
for mixing of different fiber shapes, the condition might never be met. Specifying initially Dmi n =
0.35µm constantly resulted in a final Dmi n ≤ 0.2µm, in the case of mixing round and lobular fibers. As
mentioned before in Chapter 3, Section 3.1.2.1, it is important to maintain a constant value for Dmin
in order for transverse strength results to be comparable. Further details of this will be discussed in
Chapter 7, Section 7.3.2.

• Second, fibers may overlap after the iterative fiber placement process has come to an end. This condi-
tion is checked in line 40.

• Third, in rare cases the final SVE may miss some of the periodic fibers on its edges. This can be verified
by calculating the nearest neighbour for every fiber, see line 46, which results in an error if periodic
fibers are missing.

These three errors occur at different frequencies, and were only discovered iteratively during the work of this
master’s thesis. The ’smart’ framework proposed in this thesis requires a fully automated simulation scheme
which can generate thousands of valid SVEs without user interaction. For that, a very necessary requirement
is to detect and circumvent all of the errors described above, and furthermore to do so in an automated way.
Fortunately, the implementation of these countermeasures proved to be simple yet effective.

1 . . .
2 def main(Dmin, FVolF , RFiberFrac , LobularDiam , Height , Width , directory , filename ) :
3

4 L = Width # 8.15
5 H = Height # 8.15
6 rve_size = ( L , H)
7 RFiberFrac = np . around ( RFiberFrac , decimals =1)
8

9 # Define f i b e r s e t s
10 f i b e r s e t s = [ { ’Geometry ’ : CIRCULAR, ’ Parameters ’ : [ ] , ’ Vf ’ : FVolF * RFiberFrac ,
11 ’ Phi ’ : S t a t i s t i c a l (UNIFORM, ( 0 . , 180.) ) ,
12 ’ df ’ : S t a t i s t i c a l (NORMAL, ( 8 . 0 , 0) , not_negative=True ) ,
13 ’ Material ’ : Material . L i s t [ 1 ] } , # CF AS−4
14

15 { ’Geometry ’ : LOBULAR, ’ Parameters ’ : [ 4 ] , ’ Vf ’ : FVolF * (1 − RFiberFrac ) ,
16 ’ Phi ’ : S t a t i s t i c a l (UNIFORM, ( 0 . , 180) ) ,
17 ’ df ’ : S t a t i s t i c a l (NORMAL, ( LobularDiam , 0) , not_negative=True ) ,
18 ’ Material ’ : Material . L i s t [ 1 ] } ]
19

20

21 t i n i t = time . time ( )
22 dn1 = [0.00001]
23 while not Dmin <= min(dn1) <= Dmin* 1 . 1 :
24

25 # i n i t i a l i z e myMicrostructure . v al id ( )
26 myMicrostructure = Microstructure ( rve_size=rve_size , f i b e r s e t s = f i b e r s e t s , gen_algorithm =(DYNAMIC, )

, tolerance=Dmin, optPeriod=FULL)
27

28 # while f i b e r s are overlapping : regenerate SVE
29 while not myMicrostructure . v al i d ( ) :
30 myMicrostructure = Microstructure ( rve_size=rve_size , f i b e r s e t s = f i b e r s e t s , gen_algorithm =(

DYNAMIC, ) , tolerance=Dmin, optPeriod=FULL)
31

32 # now f i b e r s are NOT overlapping : analyze dn1
33 # BUT! SVE can in rare cases be non−periodic ( periodic f i b e r s missing ! )
34 t r y :
35 dn1 = myMicrostructure . analyzeNearestNeighbour ( neighbour =1 , show_plot=False )
36 except IndexError , message : # i f NOT periodic
37 print ’ERROR: SVE not periodic ; regenerated ’
38 dn1=[0.00001]
39 print ’Dmin: ’ + s t r (min(dn1) )
40 . . .

Listing 4.1: Modification of RVE.py script to automate and parameterize the SVE generation
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4.2.3. Final Result
The final result of Step 1 of the simulation workflow is a *.txt file describing the SVE geometry and denoting
the material of each fiber. An example *.txt file is shown in listing 4.2. Most parameters are self-explanatory.
PHI denotes the rotation of the nominal fiber cross-section shape, thus only relevant for non-circular fibers.
In the case of lobular fibers, PARAMETERS describes the number of lobes. PERIOD and Nf are descriptors
of the periodic fibers on the edge of the 2D SVE, which are split up such that the SVE can be duplicated and
put together like a jig-saw puzzle. By the end of Step 1, the user has made choices for the following input
parameters:

• Geometrical Parameters:

– minimum inter-fiber distance Dmin; nominally 0.35 µm

– total Fiber Volume Fraction (FVolF); nominally 50%

– Mixing of fibers: either of different diameters, shapes, or materials; defined by mixing ratio, i.e.
Round Fiber Fraction (RFF); nominally 1 (only round fibers)

– SVE dimensions; nominally 50 µm x 50 µm

• Material Parameters:

– Choice of materials for the fibers: AS4-CF

1 # INDEX MATERIAL SIZE PHI x0 y0 PERIOD Nf SHAPE PARAMETERS
2 1 CF−AS4 8.000 +157.359 36.325 13.650 0 1 CIRCULAR
3 2 CF−AS4 8.000 +158.160 30.469 48.640 2 1 CIRCULAR
4 3 CF−AS4 8.000 +158.160 30.469 −1.360 4 0 LOBULAR 4.000
5 . . .

Listing 4.2: Final *.txt file describing an example SVE with circular and 4-lobed fibers (shortened)

4.3. Step 2: Definition of the Finite Element Model in Abaqus
The objective of Step 2 of the simulation workflow is

• first, the translation of the SVE geometry and fiber materials defined in the *.txt file of Step 1 into a
Finite Element Model in Abaqus, and

• second, the definition of the loading which the aforedefined SVE geometry shall undergo, all the while
respecting the periodic boundary conditions as described in Section 3.1.2.2.1.

Both steps are automated through a Python script developed at IMDEA Materials, which had to be adapted
to the specific needs of this work. The following input parameters were implemented for this step:

1. Mesh size of the SVE; nominally 0.5 µm

2. Material properties of the matrix and the fiber-matrix interfaces; nominally as described in Tables 3.2
and 3.3

3. Magnitude and sign of the displacement-controlled mechanical loading step, imposed on the SVE dur-
ing the simulation

4.3.1. Mesh Size
The mesh size was chosen such that nominally exactly one mesh element is placed between two fibers, at the
point of minimum inter-fiber distance (nominally 0.35µm). This is in accordance with literature, and results
in about 100 elements around the circumference of each fiber (nominal diameter 8µm), see Figure 3.9 for
example. As discussed in Section 3.1.3, transverse failure is always triggered by interfacial debonding, which
is why the mesh size around the interfaces, and at the point of minimum inter-fiber distance may influence
the result for overall transverse strength of the SVE. As part of the work of this thesis, a mesh sensitivity study
was performed. When only looking at maximum stress, its value depends much less than expected on the
mesh size around and in between fibers. Even for a very coarse mesh, with only 6 mesh elements around the
circumference of the fibers, the value for maximum stress did not change significantly.
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4.3.2. Scaling of Matrix and Interface Strength
Some of the performed studies to be discussed in Chapter 7, involve scaling of the strength of the matrix and
the fiber-matrix interfaces. The nominal properties of both are stated in Tables 3.2 and 3.3. The aim of the
scaling is to increase or decrease the strength by a linear scaling factor.

For the cohesive elements of the fiber-matrix-interfaces, linear scaling is easily implemented. The normal
and shear strengths N , S are just multiplied with the scaling factor, and the critical fracture energies Gc

N , Gc
S

are multiplied with the square of the scaling factor in order to preserve the shape of the traction-separation
curve. The initial elastic stiffness K is kept unchanged. Please refer to Section 3.1.2.2.2 and Figure 3.6 for
further illustration.

The same concept has been applied to the material model of the matrix described in Section 3.1.2.2.2. All
features defining the strength of the matrix were scaled such that the relative damage behavior remains the
same, i.e. ratio between shear and normal strength, and only the overall strength is scaled linearly. By default,
the material model of the matrix is more complicated, but can be scaled by applying the same principles
than for the cohesive elements: linear scaling in the stress values defining the yield/compressive limit and
hardening, and scaling to the power of 2 for the fracture energies.

In Chapter 7, when referring to the strengths of the matrix and fiber-matrix interfaces, only the scaling factor
will be denoted. A scaling factor of 1 is equal to the material models defined in Section 3.1.2.2.2 and with
values according to Tables 3.2 and 3.3. All other scaling factors not equal to 1 are calculated relative to these
baseline values, according to the aforedescribed rationale.

4.3.3. Definition of Thermal and Mechanical Loading
As motivated in Section 3.1.2.2.3, a nominal thermal step prior to the mechanical transverse loading was im-
plemented for all simulations. With a temperature differential of ∆T = 160◦C, this induces the important
thermal residual stress field generally found after the curing process of composites. The final mechanical
loading step is subsequently applied displacement-controlled. In the nominal case, 1.5% of tensile strain or
7% of compressive strain were applied. When scaling the strengths of the matrix and interface, these values
have to be adapted of course. To minimize computation time, all simulations were run together with a For-
tran subroutine, which cuts the simulation as soon as the load drops by 10% relative to the maximum load
obtained.

4.3.4. Final Result
The final result of Step 2 of the simulation workflow is a *.cae and *.inp file defining the Abaqus simulation to
be run, and a *.txt file defining the periodic boundary conditions to be applied. By the end of Step 2, the user
has made additional choices for the following input parameters:

• Geometrical Parameters:

– Mesh size; nominally 0.5 µm

• Material Parameters:

– Strength of the matrix and fiber-matrix interfaces; nominally as listed in Tables 3.2 and 3.3

• Simulation Parameters:

– Displacement of mechanical loading; nominally 1.5% under tension or 7% under compression

4.4. Step 3 & 4: Running and Post-Processing of the Simulation
The simulations are run on a desktop computer with 6 physical and 12 virtual CPUs. At every time, two
simulations using each 6 virtual CPUs were run in parallel. For this configuration, the computation time for
a single SVE with nominal input parameters (particularly SVE and mesh size) falls between a range of 10 to
30 minutes, with simulations of transverse compressive loading on the upper end of this scale. An example
result, i.e. stress-strain curve, is presented in Figure 3.10. The effect of the Fortran subroutine can be readily
seen, cutting of the simulation as soon as the load drops by 10% relative to the maximum load obtained.
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4.4.1. Stochastic Effects of Fiber Distribution on Damage Modelling
At this point, the stochastic nature of the fiber distribution within a SVE has to be reminded. As touched
upon in Section 3.1.2.1, a random distribution of fibers within the SVE is necessary in order to obtain statis-
tically significant results comparable with experiments of UD FRPC plies. Figure 4.2 shows an example of six
different realizations of a SVE with the same geometrical parameters 1:

• Dmin: 0.2µm

• FVolF: 30%

• RFF : 0.5 (thus equal fractions of round and 4-lobed fibers)

• LobularDiam: 8µm (same for circular fibers)

• Height, Width: 50µm x 50µm

The top left SVE of sim_1 is the one familiar from Figure 3.9, while the remaining five are different realizations
for the same geometrical SVE parameters. Since the fibers are placed randomly by the automatic SVE gener-
ation tool Vip3r [30], every realization of a SVE has a different fiber distribution, particularly noticeable in the
case of low fiber volume fraction, as can be readily observed in Figure 4.2.

A general approach when aiming to simulate a single Representative Volume Element (RVE) is to choose
the number of geometric elements within the RVE sufficiently high, such that two realizations only lead to
insignificantly different results. Hereby it is up to the user to define and decide the accuracy which is needed.
For a fixed fiber size and fiber volume fraction the only parameter left to tune is the RVE size. When the results
of interest are for example the elastic properties of the FRPC ply represented through the RVE, it was found
that this approach is indeed feasible. After a sensitivity study, the size of the RVE is fixed and a single RVE may
from now on be considered sufficient to determine the elastic behavior of the represented FRPC material [6].

In our case however, we model the damage and failure behavior of each constituent of the FRPC material,
which has been shown to strongly depend on the fiber distribution, see Section 3.1.2.1. In consequence, a
very large RVE would be necessary to reduce the statistical spread of transverse strength results to a minimum.
For an example case of circular fibers at FV ol F = 50% under transverse tension, this was achieved only for
a RVE size greater than 200µm x 200µm, at 16 times higher computational cost than for the nominal size
later to be chosen as 50µm x 50µm. In such a case that the computation of a single RVE is computationally
too expensive, an alternative approach may be used. In order to obtain statistically significant results with a
"small" volume element, several realizations may be generated and simulated. To be precise, the RVEs in this
case must be referred to as Statistical Volume Elements. Then, the results from all SVEs are averaged, with the
standard deviation of the results indicating the accuracy of the obtained mean value.

To illustrate this further, Figure 4.3 shows the stress-strain curves of the six different SVE realizations of Figure
4.2 subjected to transverse tension. The stress-strain curve of sim_1 is the one familiar from Figure 3.10. As
noted in the legend of the figure, the stress-strain curve of sim_5 was disregarded since it has a local maximum
before the global stress maximum, a rule to be explained later-on in Section 4.4.3. The average maximum
stress value can now be calculated from sim_1..4 & sim_6 as 57.76 MPa, with a standard deviation of 2.96
MPa, i.e. 5.1%. The average strain at maximum stress is 0.72% with a standard deviation of 0.076, i.e. 10.6%.

4.4.2. SVE Parameter Choices
When using the approach of SVEs, the user has to decide on two parameters: the size of the SVE, and the
number of realizations to evaluate. The former defines the range of the statistical spread of results, and the
latter the accuracy and confidence up to which the spread can be determined. Based on a performed sensi-
tivity study, presented in Chapter 7, Section 7.1.2, and in accordance with literature [27][30][55], the nominal
SVE size for the simulations of this master’s thesis was set to 50µm x 50µm. For the nominal fiber diame-
ter of 8µm, this results in 15, 25, and 35 fibers for a FVolFs of 30%, 50% and 70%. Furthermore, 5 good SVE
realizations were evaluated for each UD FRPC ply in question, based on findings in literature [55][27][57].

The adequacy of these assumptions is defined by the type of result which shall be computed, and the desired
accuracy. Generally, it was found that the relative deviation of the strain results is much larger than those of
the stress results. Furthermore, non-circular fiber shapes introduce a new geometrical feature into the SVE:
1For explanation of the parameters, see Section 4.2.
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Figure 4.2: Six different SVE realizations for the same geometrical parameters: Dmin=0.2µm; FVolF=30%; RFiberFraction=0.5;
LobularDiam=8µm (same for circular fibers); Height, Width=50µm x 50µm.
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Figure 4.3: Stress-strain curves for the six SVE realizations of Figure 4.2. Sim_5 has been disregarded due to its local maximum before its
global maximum. Of the remaining five simulations, the average maximum stress value is 57.76 MPa, with a standard deviation of 2.96
MPa. The average strain at maximum stress is 0.72% with a standard deviation of 0.076.
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the angular orientation of the cross-section. When representing a FRPC material with non-circular fibers, any
SVE has to be large enough to capture the statistical variations in both fiber position and orientation. Last but
not least, for a fixed SVE size, the observed spread of the transverse strength results depends on the Fiber
Volume Fraction, i.e. defining the number of fibers in the SVE. The validity of our SVE size of 50µm x 50µm
for FVolFs as low as 30% is discussed in general terms in Section 7.1.2. Furthermore, for every performed
parametric study, the standard deviation of the five strength results is recorded, see Listing 4.3, and used to
judge the validity of our assumptions after each study. For example:

• The SVEs of Figure 4.2 sustain under transverse tension a maximum macroscopic stress of 57.76 MPa ±
5.12% (standard deviation), see Figure 4.3. As to be shown in Chapter 7, in one study we evaluate what
kind of effect the scaling of the IFS has on the maximum stress value. It was found that scaling the IFS
can easily double the overall strength of the SVEs. In this case, a standard deviation of 5% for a single
datapoint is insignificant.

• In another case, we evaluate what kind of effect the FVolF has on the maximum stress value. In this case,
the value of the maximum stress changes to much lower extent compared to scaling of the IFS, in the
order of only 15%. Accordingly, a standard deviation of 5% for a single datapoint becomes significant.

At this point, it has to be remarked that the example results shown in Figure 4.3 correspond to the "worst"
case, of lowest FVolF and non-circular fiber cross-sections. Based on the findings of the sensitivity study in
Section 7.1.2, results for fiber volume fractions lower than 40% were generally disregarded. In most other
cases, the obtained standard deviations for transverse strength with the nominal SVE size of 50µm x 50µm
are well below 2%. Details will be discussed in Chapter 7, specific to each study.

4.4.3. Post-Processing Rules
As mentioned in the previous section, five good SVE realizations are required for every combination of input
parameters to be simulated. Good realizations are considered those which produce results which are in line
with the other realizations based on the same parameters. Figure 4.3 shows the stress-strain curves of six
different SVE realizations subjected to transverse tension. Every stress-strain curve starts with same slope
i.e. Young’s Modulus up to the point of failure initiation, which can be at slightly lower or higher strain levels,
depending on the stochastic distribution of fibers within the SVE. After the non-linear part of the stress-strain
curve, the point of maximum stress is reached, followed by a more or less pronounced load-drop. Especially
for the shown case of low fiber volumes and non-circular fibers, the stress-strain curves show a noticeable
spread in their non-linear parts up to maximum stress, which can be reduced by increasing the SVE size,
albeit at increased computational cost.

Throughout the thousands of simulations of this thesis, it was observed that in some cases, the stress-strain
curves show local maxima before the global maximum, which generally leads to a maximum stress and strain
higher than for all other SVEs of the same batch. In the example of Figure 4.3, this is the case for sim_5,
although more pronounced deviations have been observed in other cases. In particular, this was usually only
observed for low FVolFs, and could further be attributed to a limitation of our SVE generation tool Vip3r.

This tool was developed to create SVEs of FRPC materials with high FVolFs, as they are most common in
engineering applications. To position the fibers in a random way within the SVE, Vip3r starts by putting each
one fiber in each corner of the SVE, as can be seen as a commonality of all the SVEs shown in Figure 4.2. For
SVEs of high FVolF, this is not noticeable and furthermore does not alter the simulations under transverse
loading. For FV ol F < 40% however, it is visually noticeable as a regular feature of the otherwise random
fiber distributions. More significantly, in some cases it was observed that transverse failure may concentrates
around the cornering fibers, which is not judged appropriate. These simulations usually result in a first stress
maxima around the mean value of the other SVE realizations of the same batch, but then reach a second
stress maxima at a much higher value.

In order to automatically avoid such alterations of the averaged results, the post-processing scripts were sim-
ply adapted such that simulations with local stress maxima before their global stress maximum are automat-
ically discarded. Lastly, in single cases it was observed that failures in the automatic mesh generation may
result in stress-strain curves with wrong Young’s Modulus and final failure occurring much earlier than for
good SVE realizations. In order to automatically disregard such outliers, the ensemble of final results were
cleared from single maximum stress values off by more than 40% from the average.
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4.4.4. Final Result
The final result of Step 4 of the simulation workflow is a single line *.txt file, containing the synthesized results
for the simulated datapoint. This term is introduced to describe the combination of the input parameters of
the modeled UD FRPC ply, plus the corresponding transverse strength results which were obtained. Exactly
these readily computed datapoints then later form the database to which the NN is fitted, relating the input
parameters to the transverse strength with the sought-after surrogate model.

Listing 4.3 shows the datapoint, i.e. results file for the SVEs of Figure 4.2, having been subjected to transverse
tension. The first three lines describe the relevant geometrical input parameters of the SVEs of this batch: the
fraction of round fibers RFiberFrac (= 1 - fraction of 4-lobed fibers), the total fiber volume fraction FVolF, and
the minimum inter-fiber distance Dmin. All other parameter were kept at their nominal values, as specified
throughout this chapter. Lines 4 to 7 then note the averaged results for maximum stress and strain obtained
for this combination of input parameters, as well as the corresponding standard deviations.

Lines 8 to 13 are additional outputs for automatic diagnostics. For the computation of any datapoint, five
good SVE realizations are required, and a maximum of 10 attempts are allowed as explained before. If after
simulating 10 SVEs, no 5 acceptable stress-strain curves are obtained, the computation of this datapoint is
aborted and Flag_abortion set to 1. The total number of SVE realizations generated for this datapoint is
outputted in line 9 as nSVEs. Line 10 denotes the number of SVEs whose simulations achieved full strain.
This was sometimes observed in the compression case for up-scaled matrix strength, with the load often
not dropping significantly after the point of maximum stress. Line 11 denotes how many SVE results were
disregarded because of local maxima before the global maximum. Lines 12 and 13 denote the number of
SVEs whose results were disregarded for being an outlier, as defined in the previous section.

1 RFiberFrac 0.4970
2 FVolF 30.0821
3 Dmin 0.2112
4 Max_stress_avg 57.7575
5 Max_stress_std 2.9575
6 Strain_at_max_stress_avg 0.7219
7 Strain_at_max_stress_avg 0.0762
8 Flag_abortion 0.0000
9 nSVEs 6.0000

10 nSVEs_ful l_strain 0.0000
11 nSVEs_local_max 1.0000
12 nSVEs_outlier_stress 0.0000
13 nSVEs_outlier_strain 0.0000

Listing 4.3: Final results file of a single datapoint for the SVEs of Figure 4.2 subjected to transverse tension

4.5. Summary
Hereby, we conclude the chapter on the automation and adaptation of the Computational Micromechanics
(CM) simulations for the proposed framework. The simulation workflow has been explained step by step,
including the used tools, nominal choice of parameters, and the challenges encountered on the way towards
full automation. Regarding the latter, the damage modelling part of the used CM model introduces the biggest
challenges. Even more so, because the model has to perform correctly over a wide range of parameter val-
ues, which are later-on varied for the parametric studies presented in Chapter 7. Necessary post-processing
rules have been introduced, which for example automatically disregard stress-strain curves with a local stress
maximum before the global stress maximum. Furthermore, in order to obtain statistically significant results,
five Statistical Volume Elements are generated and simulated for every set of input parameters. The obtained
standard deviation of the transverse stress results can then be used to monitor and judge the accuracy of the
CM model, which will be discussed again in Chapter 7 for every study.

After having explained the adaptations of the CM model, the next chapter shall now discuss the Neural Net-
work (NN) implementation for the ’smart’ framework. Again, the main challenge is to fully automate the
process, which on the NN side amounts to the choice of the right parameters and training procedure. Even-
tually, whenever a new datapoint has been simulated, by the simulation workflow explained in this chapter,
the NN shall automatically be fitted to the database. A side-result from its training process of Cross-Validation
can then serve as a measure whether more datapoints have to be computed.
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Implementation of Neural Networks

This chapter shall detail the implementation and automation of Neural Networks (NNs) for the proposed
’smart’ framework. Within the framework, the NN takes the role of a universal approximation function, which
must be able to approximate the unknown, non-linear, and high-dimensional transverse strength relation-
ship, based on a very limited amount of datapoints. In order to do so without any user interaction required,
the definition of the NN architecture and the training process must be both robust and automatic. A particu-
lar challenge in this is to avoid both underfitting and overfitting of the NN, at the same time.

Building on the theory of NNs introduced in Section 3.2, this chapter explains with very practical examples
all choices which have to be made by the user to correctly implement a NN. First of all, our choice for the
open-source distribution scikit-learn is motivated. Then, all parameters of the used MLPRegressor class are
explained, together with minimal examples illustrating their influence on the quality of the NN fit. The main
challenge consists of defining an automated training process, which can correctly fit the NN to any kind of
dataset. To understand the challenges involved, we explain the training process in more detail, define what
underfitting and overfitting means, and why the available database has to be split into so-called training and
testing data. Then, we compare three popular training methods to be able to motivate our final choice for
Cross-Validation with repeated-5Fold. After a detailed example illustrating how said method can train a NN
in a fully automated way, we conclude with another important step of our training process: the scaling of the
training data.

5.1. Choosing a Neural Network Library and Programming Language
The theory of NNs, as outlined in Section 3.2, has been readily implemented in programming language. Both
commercial as well as open-source libraries exist. A popular example of the former is the Matlab Neural
Network Toolbox [16], commercially available since the 1990s, which provides a conveniently complete set
of NN functionalities: pre- and post-processing of data, training of shallow and deep networks, choice of
different training algorithms, etc. However, forefront research on NNs today is often being shared through
open-source distributions, with Google’s TensorFlow [2] being a popular variant made available in 2015 and
focusing on deep learning, i.e. NNs with hidden layers in the numbers of hundreds. Keras [14] and scikit-learn
[54] are two more examples of widespread open-source NN libraries, both of them written in Python.

The problem at hand in this master’s thesis requires a NN for function approximation, i.e. non-linear regres-
sion. As mentioned in Section 3.2.5, not more than one or two hidden layers were necessary to accurately
approximate any of the reviewed cases where relationships between material properties were approximated.
Further, no advanced NN architectures such as convolutional or recurrent NNs were necessary to achieve
sufficient approximation accuracy. Since the implementation of a shallow, fully-connected, feed-forward NN
can be found in several open-source NN libraries, the work of this master’s thesis was confined to the use
of open-source code. Both libraries TensorFlow and Keras focus on deep learning, therefore scikit-learn and
accordingly Python were chosen as the NN library and programming language for this master’s thesis.

The use of an open-source software brings about the attractive advantage of being able to debug down to the
bottom-most layer of the source-code, thus the opportunity to fully understand the computations behind
(in contrast to commercial codes like Matlab Neural Network Toolbox, or even Abaqus). On the downside,

36
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bugs may arise and there is not more support other than the bug reporting option of scikit-learn on the open
software repository github, and the list of developers and supporters continuously working on fixing them
without being paid for it. Limitations of the scikit-learn library for the specific use case of this master’s thesis
were discovered, as well as relevant bugs in the current version of the library. Both however could be circum-
vented, or did not have such a significant effect that the use of another library would have been necessary.
Details are discussed in the following sections.

5.2. Choosing the Right Neural Network Parameters
As mentioned in Section 3.2.3, the Multilayer-Perceptron (MLP) has become a standard NN architecture, both
for Classification and Non-linear Regression. Dealing with the latter problem in the course of this master’s
thesis, the scikit-learn library offers a readily implemented MLPRegressor class. In general terms, it allows to
define a NN architecture and training process. The latter in mathematical terms amounts to the minimization
of the total error energy E of the NN for a given set of training data, as touched upon in Section 3.2.6 and
explained in more detail in the literature review.

1 c l a s s sklearn . neural_network . MLPRegressor ( hidden_layer_sizes =(100 ,) , act ivat ion =relu , solver=adam, alpha
=0.0001 , batch_size=auto , learning_rate=constant , l e a r n i n g _ r a t e _ i n i t =0.001 , power_t =0.5 , max_iter
=200 , s h u f f l e =True , random_state=None, t o l =0.0001 , verbose=False , warm_start=False , momentum=0.9 ,
nesterovs_momentum=True , early_stopping=False , v a l i d a t i o n _ f r a c t i o n =0.1 , beta_1 =0.9 , beta_2 =0.999 ,
epsilon=1e−08)

Listing 5.1: scikit-learn MLPRegressor class

As shown in Listing 5.1, the MLPRegressor class consists of many parameters for which values have to be
chosen by the user. Only for the right choice of parameters will the NN fit the training data in the desired
way. Figure 5.1 illustrates the fitting of a 1-15-1 MLP NN to the datapoints marked as blue dots. The orange

line marks the reference function f (x) = cos− (10·x)2

9 , which in this case has been perfectly approximated by
the NN. A total of 918 iterations, i.e. forward and backward passes of the training data were necessary for
convergence towards a minimum of the total error energy E . The corresponding parameter choices in this
case are

• hidden_layer_sizes = 15, i.e. a single hidden layer with 15 neurons

• activation = logistic sigmoid function

• solver = L-BFGS

• alpha = 0.0001

• tol = 0.0001
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Figure 5.1: Fitting of a 1-15-1 MLP NN to the datapoints marked as blue dots. Reference function f (x) = cos− (10·x)2

9
drawn as orange line. Parameters of the MLPRegressor are: hidden_layer_sizes = 15; activation = logistic sigmoid
function; solver = L-BFGS; alpha = 0.0001; tol = 0.0001
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In the following, the many parameter choices to be made for the MLPRegressor class shall be explained, and
their severe influence on the quality of the NN approximation be highlighted. To understand where these
parameters fit within the concept of the MLP NN, please refer to Section 3.2. For more detailed mathematical
derivations, please refer to the literature review.

5.2.1. hidden_layer_sizes
The number of hidden layers, as well as the number of neurons per hidden layer, is denoted by the parame-
ter hidden_layer_sizes. Using the annotation introduced in Section 3.2.5, a 3-4-1 network only has a single
hidden layer of four neurons, while the number of neurons in the input and output layer is determined by
the training data. In this case, three neurons in the input layer for three inputs, and one neuron in the output
layer for a single output. The corresponding choice for the hidden_layer_sizes parameter would be (4).

As highlighted in Section 3.2.5, the number of hidden layers and hidden neurons is decisive for the ability of
the NN to approximate the function underlying the training data. As mentioned in the previous Section 5.1,
our case of Non-linear Regression does not require a NN architecture with more than a single hidden layer.
Conveniently, this leaves as a single free parameter the number of neurons in the hidden layer.

The results of the literature review with regard to this latter choice were experimentally confirmed in this
work: Too few neurons may result in a NN which is unable to match a complicated function, independent of
all other parameter choices, which is referred to as underfitting. On the other extreme, once a NN contains
more neurons than at least necessary to fit a certain function, then the risk of overfitting prevails. In the
context of NNs, overfitting refers to the NN assuming a more complex fit to the training data than necessary.
Both underfitting and overfitting are illustrated in Figure 5.2, on the left and right respectively, through a 1-1-1
and 1-200-1 NN trained on the same dataset as shown in Figure 5.1.
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Figure 5.2: Underfitting of a 1-1-1 MLP NN (left), and overfitting of a 1-200-1 MLP NN (right) to the datapoints marked as

blue dots. Reference function f (x) = cos− (10·x)2

9 drawn as orange line. Other parameters of the MLPRegressor are kept
constant: activation = logistic sigmoid function; solver = L-BFGS; alpha = 0.0001; tol = 0.0001

Two remarks are due at this point:

• Prior to the training of the NN, it is not possible to deduce the number of neurons necessary to ad-
equately fit the function underlying the training data. Instead, an experimental approach is always
required, which underlines the need for an automated process which is able to judge the quality of the
NN approximation. This quality has to be measured twofold, how well the NN matches the training
data in the points of the training dataset, i.e. avoiding underfitting, and whether overfitting occurs in
between the points of the training data.

• The results shown in Figure 5.2 are strongly depending on the value chosen for alpha, the L2 regular-
ization term to be discussed later-on.

5.2.2. activation
The activation function, see Section 3.2.4. The MLPRegressor class offers the following function choices:

• identity function
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• logistic sigmoid function

• hyperbolic tan function

• rectified linear unit function

The use of the identity function and rectified linear unit function is limited to the input and output layers, or
when deviating from the classical feed-forward NN architecture. Therefore, in our use case, only the logistic
sigmoid function and hyberbolic tan function are relevant. The same activation function is chosen for all
hidden neurons. For the simple example shown in Figure 5.1, the choice of activation function for the hidden
layer does not produce a visible change. For larger datasets and fitting in more than one variable, e.g. (x,y,z)
data, slight differences can be observed between NNs using tanh or logistic activation functions in their hid-
den layer. Throughout this thesis, it was generally observed that using the logistic function results in a slightly
better approximation.

In general, the choice of tanh or sigmoid activation function has a much less significant effect on the quality of
the NN fit than the number of hidden neurons, or the choice of the L2 regularization term. In the experience
of this work, tanh vs. sigmoid may slightly alter the shape or smoothness of the NN fit, but does not lead to
severe over- or underfitting rendering the results useless. Attention has to be paid since the input range of
the activation function determines the later-on scaling of the inputs of the training data. For both tanh and
sigmoid function, the input range with high gradients lies centered around x = 0. Details of the scaling of the
input data, and why it is necessary are explained later-on in Section 5.3.4.

5.2.3. solver
The learning rule, i.e. gradient-based optimization algorithm, as described in Section 3.2.6, is denoted by the
parameter solver. The MLPRegressor class offers implementations of the following algorithms:

• Limited Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [22][41][85]

• Stochastic Gradient Descent (SGD) [29][56]

• ADAM [36], a popular variant of SGD

Aside from the NN architecture, the choice of the learning rule i.e. optimization algorithm is central to the
design of a NN and exerts a major impact on the results. The MLPRegressor class of scikit-learn offers most
refined capabilities, such as early stopping and batch-learning 1, only for the solvers SGD and ADAM. How-
ever, as the first attempts of data fitting with the MLPRegressor and SGD/ADAM solver revealed in this work,
both solvers fail to converge for small datasets. Figure 5.3 illustrates the fit of the same 1-15-1 MLP NN as
described in Figure 5.1, only changing the solver to SGD (left) and ADAM (right). In both cases, the NN is not
able to fit the training data, and the training process aborts after 3/412 iterations for SGD/ADAM.

1See literature review Section 2.4 for more details.
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Figure 5.3: Misfitting of a 1-15-1 MLP NN to the datapoints marked in blue through the solver SGD (left), and ADAM

(right). Reference function f (x) = cos− (10·x)2

9 drawn as orange line. Other parameters of the MLPRegressor are kept
constant: activation = logistic sigmoid function; alpha = 0.0001; tol = 0.0001
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Since the size of the training set remains below 150 in the course of the work of this master’s thesis, the use
of SGD/ADAM solver was thus barred. Being bound to the use of the L-BFGS solver restricts the number of
parameters of the MLPRegressor class for which values have to be chosen by the user. On a positive side, this
simplifies i.e. accelerates the search for an optimal NN architecture, which in practice requires "an exhaustive
experimental study" [29], as to be seen later-on. On a negative note, the pre-implemented early stopping
method for SGC/ADAM, a common technique to avoid overfitting, is not available when using L-BFGS.

It was attempted to implement an early stopping rule for the L-BFGS solver by defining a custom stopping
criterion. This requires incremental training of the NN, verifying the stopping criterion at every step, and then
either resuming or stopping the training process. Unfortunately, a bug prevailed in the MLPRegressor class
when using the necessary functionality warmstart in combination with the L-BFGS solver 2, thus rendering
it impossible to implement and use the method of early stopping. Instead, an alternative method to prevent
overfitting was implemented, called Cross-Validation, described later-on in Section 5.3.2.2.

5.2.4. alpha
The scaling factor of the L2 regularization term, which is added to the total error energy E of the NN. At
this point it shall be recalled that the learning of the NN boils down to the optimization algorithm trying to
minimize the total error energy E of the NN, for a given set of training data. An error energy term of zero
means that the NN matches exactly the training data. However, this does not say anything about the quality
of the approximation in between points of the training data, i.e. overfitting may well be prevalent. Now, the
L2 regularization term L2 of a vector of synaptic weights w = [b, w1, w2, ..., wm]T of a NN is defined as

L2(w ) = w2
1 +w2

2 + ...+w2
m (5.1)

By adding the L2 term to the total error energy E , the solver will accordingly try to minimize both. Large
values for the synaptic weights will thus be penalized, which is equal to penalizing the NN when taking the
shape of a more complex function. The alpha term of the MLPRegressor class is simply the scaling factor of
the L2 term. The choice of alpha further has a major influence on overfitting, being illustrated in Figure 5.4.
The fitting of three different MLP NNs to the datapoints marked in blue is shown. The NNs only differ among
each other in the number of neurons in their hidden layer. Compared to the NN shown in Figure 5.1 however,
the L2 regularization factor alpha was set to zero, thus not penalizing large weights. When comparing Figure
5.1 with Figure 5.4, it can be noticed that the latter shows only slight indices of overfitting which are shown
more pronounced for the 1-47-1 NN. By further adding just one more hidden neuron, the overfitting becomes
predominant and renders the NN approximation useless. Two concluding remarks can be made:

• The extent of overfitting of an unregularized MLP NN does not scale linearly with the number of hidden
neurons. Increasing the latter from 47 to 48 in the example of Figure 5.4 suddenly increases overfitting.

• With all other parameters chosen reasonably, the factor of the regularization term alpha and the num-
ber of hidden neurons are the two main parameters influencing the quality of the NN fit to a dataset.
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Figure 5.4: Overfitting of a 1-15-1, 1-47-1, and 1-48-1 MLP NN, from left to right, and from slight to moderate to severe.

Reference function f (x) = cos− (10·x)2

9 drawn as orange line. No L2 regularization was used, i.e. alpha = 0. The other
parameters of the MLPRegressor are kept constant: activation = logistic sigmoid function; solver = L-BFGS; tol = 0.0001

2scikit-learn v0.19, April 2018
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5.2.5. tol
The stopping i.e. convergence criterion for the solver. As soon as the total error energy E does not reduce by
the value of tol from one interation to the next one, the solver stops and assumes convergence. In the course
of the work of this thesis, this parameter was kept at its default value of 0.0001.

5.2.6. random_state
Generally, the initial values of the synaptic weights and biases of a NN are assigned at random. This means
that two different initializations of the same NN will lead to different initial values of the synaptic weights and
biases, and thus to a different progression of the learning process, i.e. the adaptation of the synaptic weights
and biases through the optimization algorithm. In order to be able to reproduce and compare results, the
random_state parameter allows to initialize the weights and biases with the same random draw of numbers.

5.2.7. Summary
The above discussed all necessary parameters which have to be set by the user in order to define a NN through
the MLPRegressor class. All other parameters shown in Listing 5.1 are either not applicable to / not available
for the L-BFGS solver, or insignificant for this discussion. In summary, for our case of training a MLP NN for
a Non-linear Regression, it suffices to determine the values of only two NN parameters:

• hidden_layer_sizes

• alpha

5.3. Defining and Automating the Training Process of a Neural Network
The previous section explained all basic parameters which have to be set for the MLPRegressor class, in order
to define the architecture of the MLP NN. Aside from that, the training process of the NN has to be defined.
The detailed mathematical derivations of the training process can be found in the literature review Section
2.4. In short, the training process of a MLP NN follows four steps:

1. Choose the basic parameters for the MLPRegressor class: All parameters described in the previous sec-
tion have be chosen by the user, a-priori to the training.

2. Present the training data to the NN: The aforedefined NN is presented with the training data. Either
the NN is fitted to all available datapoints, or the available database is split into training data and
testing data. In all preceding examples, e.g. Figure 5.1, the NN was trained with all available datapoints.
However, in most practical NN applications with larger datasets and more than a single variable, the
available database is split such that overfitting can be evaluated automatically, see next step.

3. Verify the quality of the NN fit to the available data: After the NN has been trained, i.e. fitted to the
training data, the quality of the fit has to be evaluated. The quality of a NN approximation to a dataset
has to be judged by answering two questions:

• How well does the NN match the datapoints that it has been trained with, at the exact points of
the training data? (underfitting)

• How well does the NN approximate in between the datapoints that it has been trained with? (over-
fitting)

For the previously shown simple example cases, e.g. Figure 5.1, the quality of the NN approximation
could be verified visually through plotting. However, for problems with larger datasets and more than
a single variable, this kind of manual verification is not feasible anymore. Instead, automated meth-
ods have to be used, which requires to hold-out part of the available dataset from training/fitting, as
mentioned in the previous step.

4. Restart the NN training process if the quality of the NN approximation is inadequate: Judging by quality
measures introduced to answer the two questions of the previous step, the training process may have
to be repeated with a different choice for the basic parameters for the MLPRegressor class. In this case,
back to the start of the training process.
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As can be seen, the training process revolves around the challenge to find the ideal combination of MLPRe-
gressor parameters (step 1) and training method (step 2/3), in order to avoid both over- and underfitting.
Since there are no fixed rules for either one, the training process in practice is an iterative process, during
which a range of parameter combinations are tried before settling with the best one. In order to explain
the final training process that has been implemented for the work of this master’s thesis, the most common
strategies for avoiding underfitting and overfitting must be briefly explained.

5.3.1. Avoiding Underfitting
Underfitting of a NN trained with a certain dataset can be easily measured and thus prevented. The difference
between the points of the training data and the approximation of the NN at the same points can be calculated
and compared for different NNs. Measures of the goodness of the fit are manifold, for example the coefficient
of determination B [84], which briefly surfaced in Section 3.2.7. By comparing different NNs based on their
goodness of fit, a NN can be designed with MLPRegressor parameters such that underfitting is prevented.

5.3.2. Avoiding Overfitting
The same aforedescribed method to prevent underfitting does not work for the opposite case. As illustrated in
the example of Figure 5.4, when overfitting occurs all datapoints of the training dataset are perfectly matched
(Btr ai ni ng ≈ 1), while at the same time the approximation of the NN in between the datapoints starts to di-
verge. Several techniques have been developed to detect or avoid this, three popular variants being:

• Early Stopping

• Cross-Validation

• Bayesian Regularization

The first two methods, Early Stopping and Cross-Validation, both require to hold-out part of the available
dataset for the purpose of verifying that no overfitting is occurring. Bayesian Regularization on the other
hand is able to circumvent overfitting without such a division. Therefore, it is most valuable for problems
with small datasets, and where new datapoints are unavailable or expensive to obtain. The kind of parametric
studies performed in the course of this master’s thesis stay below 150 datapoints, so certainly a small dataset
compared with classical ML problems (which are often the Classification type, not Non-Linear Regression).
Therefore, Bayesian Regularization was the first-choice candidate to be implemented in the framework of
this thesis to avoid overfitting.

The concept of Bayesian Regularization avoids the necessity of computationally expensive Cross-Validation,
by converting the Non-linear Regression into a "well-posed statistical problem in the manner of a ridge re-
gression" [10]. MLP NNs designed and trained by Bayesian Regularization are claimed to be more robust
in terms of overtraining or overfitting [10], and example cases reviewed in the course of the literature
review confirmed that they achieved among the best results [84].

However, while this method is readily implemented in commercial packages such as the Matlab Neural
Network Toolbox [16], it is missing for scikit-learn [54] and all other reviewed open-source library except
auto-sklearn [21], which is in development status and only available for Linux. Aside from that, open-
source libraries of Bayesian Optimization algorithms are available, but would have to be tied into the
framework of scikit-learn.

Since the next best method Cross-Validation yielded good results throughout the whole span of work of
this master’s thesis, the effort of switching to Linux, or manually implementing a Bayesian Optimization
algorithm into scikit-learn was deemed disproportional to the certain gain in computation speed and
the uncertain gain in quality of the NN approximations. Therefore, the method of Cross-Validation was
eventually implemented for the framework developed in this master’s thesis. In order to motivate this
choice over Early-Stopping, we want to briefly outline and discuss the commonalities and differences of
their working.

The procedure of holding out part of the available data is fundamental to the learning process of NNs when
using Early Stopping or Cross-Validation: The available dataset is first randomly split into training data and
testing data, commonly by a ratio of 70/30% or 80/20% [84]. Then, the NN is fitted to the training data,
while the quality of the fit is measured afterwards by comparing the withheld testing data with the trained
NN approximation at the same points.
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The rationale for detecting overfitting is that an overfitted NN will predict very poorly on unseen testing data,
which lies in between the training data. For the example of Figure 5.4, the NN was fitted to all datapoints.
Imagine another point of the reference function, in between the blue dots of training data, and that now
the quality of the approximation of the trained NN would be tested at this point. As can be seen, the NN
function would be far off the reference function at this intermediate point, thus indicating overfitting. The
training procedure of splitting up the available dataset into training and testing data is the same for both Early
Stopping and Cross-Validation. The differences come in the following steps:

• Early Stopping tries to avoid overfitting by stopping the iterative fitting of the NN to the training data,
as soon as it detects the beginning of overfitting on the testing data.

• On the other hand, Cross-Validation does not stop the fitting process, it only is a tool to detect overfitting
once the fit to the training data is completed. When trying different combinations of parameters for the
MLPRegressor class, Cross-Validation can be used to measure and compare the extent of overfitting for
each case. This eventually allows to choose the MLPRegressor which results in the least overfitting.

So far, both methods seem equally adequate to circumvent overfitting. The following two sections now shall
explain the two methods in more detail, such that our preference for Cross-Validation can be motivated.

5.3.2.1. Early Stopping
For early stopping, the iterative training of the NN is stopped as soon as the accuracy of the NN predictions
with respect to the testing data decreases, for example measured by a decrease of the value of the coefficient
of determination B. To remind, a perfect fit is equal to a B value of 1, lower values (negative possible) indicate
worse fit. Generally, any B < 0.9 is a very poor fit.

To illustrate the practical complications of the Early-Stopping method, the following example is made: Figure
5.5 shows the familiar case of Figure 5.1 repeated, now dividing the available dataset into training and testing
data, and stopping at different increments of the iterative fit of the NN to the training data3. The points of
testing data, shown as ’X’, are omitted from the fitting of the NN. At any given increment of the NN fit to
the training data, the current quality of approximation of the NN can be measured, both with respect to the
training data (Btr ai n), and to the unseen testing data (Btest ). Final convergence of the fit to the training data
is achieved when the total error energy E of the NN does not change by more than the value of tol from one
iteration to the next one, in this case after 975 iterations.
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Figure 5.5: Iterative training of the 1-15-1 MLP NN of Figure 5.1, now with two datapoints held out for testing. The final
NN approximation is plotted at four different increments of the iterative training process. The annotated Bal l values refer
to the case if all datapoints would have been used for training.

Now the method of Early Stopping assumes that Btr ai n steadily converges towards a value of 1, and that Btest

initially increases steadily, and then at some point starts to decrease again. This first divergence is thought to
occur when the NN starts to overfit, and therefore the training process should be stopped at this point. That in
practice this point is not easy to make out is illustrated by Figure 5.6. It shows the convergence behavior of the

3For details on the iterative training process, please refer to Section 2.4 of the literature review.
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Btr ai ni ng and Btest i ng values, recorded throughout the iterative training process. Both eventually converge
towards a value of B = 1, which indicates that no underfitting, and no significant overfitting is present, as can
also be deduced visually from Figure 5.1.

Figure 5.6 further shows that the gradient of Btest i ng changes several times, which makes it difficult to define
a simple stopping criterion. Stopping the training process at any of the first four local maxima of Btest i ng

at ni ter = 22,165,368,512, is visualized in Figure 5.5. The final NN approximation one would end up with
ranges from very poor to acceptable. In practice, in order to avoid stopping the iterative fit to the training
data too early, a third dataset is held-out from the training process, called the validation data. In summary,
the available dataset is split into training, testing, and validation data, commonly by 60/20/20% [23]. Fitting
of the NN to the training data is stopped as soon as Btest i ng decreases. Then, to verify that the fitting was not
stopped too early, Bval i d ati on is computed.

Overall, the Early Stopping method requires to hold out a large share, e.g. 40% of the available data from the
training of the NN. Therefore, it is more advantageous to use this method when a large database is available,
or when the generation of new datapoints is cheap. Alternatives which require to hold-out a smaller share
of the available data to circumvent overfitting are Cross-Validation and Bayesian Regularization, described
hereafter.
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Figure 5.6: Values of the coefficient of determination B plotted over the number of iterations in the training process of the
1-15-1 MLP NN of Figure 5.1. Two datapoints were held out for testing data see Figure 5.5, i.e. calculation of Btest , the
remaining were used for training of the NN and calculation of Btr ai n . The training converged after 975 iterations
according to the convergence criterion defined by the MLPRegressor parameter tol.

5.3.2.2. Cross-Validation
For cross-validation, the fitting of the NN to the training data is completed as usual until convergence set out
by the parameter tol. The held-out testing data is then used to calculate Btest i ng , or an equivalent quality
measure. Its value indicates overfitting of the trained NN approximation, for example B < 0.9.

At this point, it has to be reminded that the splitting up of the available data into training and testing data
is generally done at random. Therefore, the values of Btest i ng are of stochastic nature as well. To obtain
meaningful results, the aforedescribed procedure is repeated several times for different random splits of the
available database. Then, the mean of the quality measure is taken as the final result. A minimal example
shall now be presented to illustrate the methodology of Cross-Validation.

Different than the example of Figure 5.1, we will now use five datapoints obtained with our baseline Compu-
tational Micromechanics model, with two instead of one input parameter. In the field of ML, the input pa-
rameters are called features and the output values targets. Each one of the five datapoints thus consists of two
features and one target. The first feature is the Fiber Volume Fraction of the modeled FRPC material and is var-
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ied from 30% to 70%. The second feature is the Interface Strength, i.e. the factor by which the strength of the
fiber-matrix interfaces is scaled linearly, varying from 1 to 10. The target is the transverse tensile strength, as
computed with our CM model described in Section 3.1.2. Details of the computation are not relevant for this
discussion, only that overall, every datapoint eventually has the format σtr ansver se,tensi le = f (FV ol F, I F S).

A MLP NN shall now be fit to this database of five points, in order to produce a continuous function as an ap-
proximation of the simulated material behavior. To evaluate overfitting through Cross-Validation, the avail-
able dataset of five points is randomly split by a ratio of 80/20% into training data (four datapoints) and testing
data (one datapoint). After fitting the NN to the four datapoints of the training data, the quality of the fit in
between the training data is evaluated with the testing datapoint: The difference between the reference value
of σtr ansver se,tensi l e (target of testing datapoint) and the prediction of the trained NN at the same values of
the FV ol F, I F S features is calculated.

Then, this training process is repeated for a different random split of the available database. Borrowed from
statistics, this is called repeated-kFold, as the database is split into k folds, in our case 5 folds, and this process
is repeated 5 times. By this, it is ensured that every fold, i.e. group of datapoints of the database, has once
served as testing data. This repetition is also the reason for the name of the method, Cross-Validation.

Figure 5.8 finally shows the said method applied to the example set out above. The five different folds of the
available database result in five different trained NNs. For each case, Figure 5.8 indicates the four datapoints
of the training data as blue dots, and the testing datapoint as a red X. The quality of the trained NN is eval-
uated as aforedescribed. Since the coefficient of determination B is only defined for datasets of two or more
datapoints, a different quality measure was used. The relative error Er el is defined as

Er el =
|σpr edi ct i on −σr e f er ence |

σr e f er ence
(5.2)

and simply puts in relation the difference between predicted and actual stress value (or any other entity), to
the actual value. Every subplot of Figure 5.8 shows the relative error Er el in its title. As can be seen, their
values vary significantly, from 0.09 to 1.7, depending on which datapoint was used for testing. Their mean
value, i.e. the mean relative error in this case is 0.53, so on average the NN prediction at the testing datapoint
is 53% off its reference value. So far, so good, but the question remains:

How does this now help with the issue of choosing the right MLPRegressor parameters?
First, it has to be reminded that the NN approximations shown in Figure 5.8 are based on an a-priori fixed set
of parameters for the MLPRegressor. In this case: hidden_layer_sizes=100, alpha=0.0001, activation=tanh,
solver=L-BFGS, tol=0.00001. Any change in the choice of parameters may result in a significantly worse or
better NN approximation to the same five datapoints. What is achieved by the presented Cross-Validation
method is that it gives a quality measure at hand to quantify such a change of the quality of the approximation:
A higher mean relative error indicates a worse fit, i.e. overfitting.

For example, Figure 5.9 shows the same procedure of Figure 5.8 repeated for different, more overfitting prone
parameters for the MLPRegressor: hidden_layer_sizes=(100,10), alpha=0. Using the Cross-Validation method
with repeated-5fold as before, the NNs with two hidden layers display a mean relative error of 0.57, compared
to the 0.53 of the previous case. According to the rationale introduced before, the parameters of the second
NNs achieve overall a worse fit to the available database than the first NNs with 100 hidden neurons in a single
layer. Comparing the subplots of both examples visually, it can be noticed that the NNs with two hidden layers
show pronounced overfitting: they match the training datapoints exactly, but fail to interpolate in between
these datapoints with a simple surface.

With the shown method of Cross-Validation, it is thus possible to evaluate the quality of the MLP NN ap-
proximations resulting from different combinations of MLPregressor parameters. It remains up to the user
to predefine the grid of parameter combinations to be evaluated through the Cross-Validation method. As
has been concluded in Section 5.2.7, for our case of Non-linear Regression, the array of parameters for the
MLPRegressor shown in 5.1 can be broken down to just two parameters whose values have to be chosen:

• hidden_layer_sizes

• alpha
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Choosing for example five values for each parameter results in 25 different NN configurations to be evaluated
through Cross-Validation. For a repeated-5fold procedure, this further amounts to 25 ·5 = 125 runs of training
a NN with the 4 datapoints of the training data. While for such few training points, this does still not amount
to much computation time, it was found that for later cases with more than 50 datapoints, the computation
time increased significantly. Using parallel computation on 6 CPU’s, it may take up to half an hour to evaluate
all 25 possible NN parameter combinations.

To showcase the utility of this method with the aforedescribed example, the following parameter grid was
evaluated:

• hidden_layer_sizes: (10),(30),(40),(60),(80),(100)

• alpha: 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 0.8

Within a computation time of 126 seconds, the Cross-Validation method with repeated-5fold procedure deter-
mined the best parameter combination to be alpha=0.00001, hidden_layer_sizes=30. This achieved a mean
relative error of 0.48, yet lower than the 0.53 achieved through manual optimization based on visual inspec-
tion of the NN fitting.

5.3.3. Summary
This lengthy discussion of methods for MLP NN training and optimization was necessary to coherently moti-
vate why Cross-Validation eventually is the method of choice for the work of this master’s thesis. As outlined
above, it allows to automatically optimize the NN approximation to a given dataset, by determining the nec-
essary MLPRegressor parameters for that. As will be discussed in Chapter 6, Section 6.5, the results of Cross-
Validation further can be used to determine how many datapoints are necessary to approximate an unknown
function up to a predefined accuracy.

To conclude this section on the training and optimization process of a NN, a last important issue shall be
highlighted: scaling of training data. As has been touched upon before, when explaining the effect of the acti-
vation function on the NN approximation quality, scaling of the training data is an important pre-processing
step in the learning process of a MLP NN.

5.3.4. Scaling of Training Data
Figure 5.7 shows two NNs fitting the same five datapoints familiar from Figure 5.8. Both NNs share the same
parameters for the MLPRegressor class: hidden_layer_sizes = 10; alpha = 0.1; activation = logistic sigmoid
function; solver = L-BFGS; tol = 0.00001. The only difference lies in the pre-processing of the training data:
Both NNs are fitted to all five available datapoints, only for the NN shown on the left of Figure 5.7, the features
of the training data were linearly scaled prior to the training process, to fall between a range of -1 and 1.

The differences in the quality of the NN approximations for scaled and unscaled training data can be readily
observed in Figure 5.7. Both achieved a very close fit to the training data, with Btr ai ni ng ,scaled = 0.9990 and
Btr ai ni ng ,unscal ed = 0.9987, although the former required 90 iterations, and the latter 2777 iterations until
convergence. This difference indicates the underlying issue of unscaled training data.

The basic mathematical derivations of the fitting of a MLP NN to a set of datapoints have to be recalled at this
point, see Section 3.2.4. The features of the training data, in this case FV ol F = 30...70 and I F S = 1...10 are
passed through the NN feed-forward. After summing all weighted inputs of a neuron, they are passed through
the activation function, see Figure 3.14. In this case this is the logistic sigmoid function, whose sensitive
region lies between −4 ≤ x ≤ 4. Accordingly, any input higher or lower than this will result in a saturated
response of the activation function. In order for the NN to learn to fit the training data, it has to adapt the
synaptic weights such that each neuron gives the right output. In the case of unscaled features of the training
data, whose values lie outside of the range of −4 ≤ x ≤ 4 as in the example of Figure 5.7, many iterations and
extremely large values for the weights are necessary to bring the input of the neurons into the sensitive area
of the activation function.

In consequence, the iterative training process may take much longer than necessary, and the final NN ap-
proximation may be of very poor quality as is the case in the example of Figure 5.7. For the ensuing work of
this master’s thesis, the scaling of the features of the training data was therefore implemented as a mandatory
pre-processing step.
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Figure 5.7: Illustration of the effect of scaling of the training data. Both subplots show the same 2-10-1 MLP NN, fitted to
the five datapoints of the preceding example in Figure 5.8. The common parameters for the MLPRegressor class are:
hidden_layer_sizes = 10; alpha = 0.1; activation = logistic sigmoid function; solver = L-BFGS; tol = 0.00001. The NN on the
left was fitted to training data whose features FV ol F and I F S were linearly scaled to fall in between -1 and 1. In
consequence, the left NN only needs 90 iterations for a good fit, compared to the 2777 iterations of the NN on the right for
a much worse fit.

5.4. Summary
Hereby, we conclude the chapter on the implementation and automation of Multilayer-Perceptron Neural
Networks (MLP NNs) for the proposed ’smart’ framework. We have discussed in its necessary detail all choices
which had to be made for setting up the required robust and automated NN architecture and training process.
First off, we motivated our choice for the open-source NN library scikit-learn and explained, how with some
simple rules the large number of parameters of the MLPRegressor class can be boiled down to just two: alpha
and hidden_layer_sizes. With some basic assumptions about the possible ranges of these two parameters,
we can design a fully automated training process, based on the method of Cross-Validation and the procedure
of repeated-5fold. Eventually, this allows us to implement our MLP NN into the proposed ’smart’ framework,
where it has to approximate the unknown, non-linear, and high-dimensional relationship between transverse
strength and its dependant input parameters. Our NN implementation is equipped to do so in an automated
way, and based on a very limited amount of datapoints, circumnavigating both underfitting and overfitting.

After having explained both the adaptations of the Computational Micromechanics model in Chapter 4 and
of the Neural Networks part in this chapter, we can now finally proceed with the most exciting part of this
work. In the following chapter, we show how these two methodologies are combined and joined with the
Design of Experiments approach, to form the proposed framework for ’smart’ Computational Micromechan-
ics. Eventually, in Chapter 7 then we can show how the framework was put to use: to perform automated
parametric studies of the transverse strength of a UD FRPC ply, and to determine simple but comprehensive
analytical surrogate models of the underlying relationships.
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Figure 5.8: Illustration of the Cross-Validation method with 5fold procedure. The available database consists of five points: two features
FVolF & IFS, and one target Transverse Tensile Strength. Training data is shown as blue dots, testing data as red X. The parameters of the
MLPRegressor are: hidden_layer_sizes=100, alpha=0.0001, activation=tanh, solver=L-BFGS, tol=0.00001. The relative error of the
trained NN at the position of the testing datapoint is annotated above each plot. The mean relative error is 0.53.
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Figure 5.9: Illustration of the Cross-Validation method with 5fold procedure, detecting overfitting. The available database consists of
five points: two features FVolF & IFS, and one target Transverse Tensile Strength. Training data is shown as blue dots, testing data as red
X. The parameters of the MLPRegressor are: hidden_layer_sizes=(100,10), alpha=0, activation=tanh, solver=L-BFGS, tol=0.00001. The
relative error of the trained NN at the position of the testing datapoint is annotated above each plot. The mean relative error is 0.57.



6
Creating a Framework for ‘Smart’
Computational Micromechanics:

Synergy of DoE, CM and NNs

This chapter shall detail the proposed ’smart’ framework, combining a Design of Experiments (DoE) ap-
proach with the modelling capabilities of Computational Micromechanics (CM), and the universal approxi-
mation capability of Neural Networks (NNs). Based on a user-specified number of input parameters to vary,
the DoE method fills the parameter space iteratively with datapoints which shall be computed, i.e. com-
binations of input parameters for which the corresponding transverse strength shall be simulated. These
simulations are then carried out with the CM model, and the NN is used to create a comprehensive surrogate
model of the underlying functional relationship.

First, we present an overview of the workflow of the entire framework, which allows us to precisely situate the
familiar CM and NN pieces, presented in Chapter 4 and Chapter 5, within the framework. Then, we explain
the remaining new pieces of the framework, focusing on the DoE implementation and its interplay with the
other two methodologies. Based on a practical example of the NN fitting to a given dataset of 10 datapoints,
we can now show how the mean relative error, calculated during the NN training=fitting process, can serve as
a measure to decide how many datapoints we need, in order to obtain a sufficiently accurate surrogate model.
After discussing some of the challenges towards automating this decision, we conclude with presenting an
example of a final result of the framework: the surrogate model of the transverse tensile strength of a UD
FRPC ply, as a function of the constituent strengths and the Fiber Volume Fraction.

6.1. Overview of the Framework
Figure 6.1 shows a schematic overview of the entire work-flow of the framework. Starting with the user-
defined parameters to be varied and their corresponding value ranges, the DoE centered process computes
datapoint by datapoint in an iterative manner, until the NN fit to the ensemble of datapoints reaches a certain
accuracy. The final result is then this sufficiently accurate NN fit, i.e. the final surrogate model.

The simulation workflow of the CM model, as presented in Chapter 4, is now shown embedded into the
framework on the right of Figure 6.1, Steps 2-4. The readily-simulated datapoints are straight fed into the NN,
presented in Chapter 4 and now implemented as Step 5 within the framework, see left side of Figure 6.1. From
top to bottom the entire framework can be divided into the following steps:

• Initialization: Definition of input parameters and their value ranges: The user defines in a simple Mas-
ter.txt file the input parameters to be investigated in this study, for example the strengths of the con-
stituents (matrix, fiber-matrix interface) and the Fiber Volume Fraction, including their value ranges.
The final result of this study will then be an analytical surrogate model, relating these input parameters
to the transverse strength of a UD FRPC ply.

50
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Figure 6.1: Workflow of the proposed framework for ’smart’ Computational Micromechanics.
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• Step 1: Determination of the next datapoint to be simulated: Based on common DoE principles, our
so-called point-generator determines the next combination of input parameters, i.e. the next datapoint
to be simulated.

• Steps 2 to 4: Generation of SVE’s, Simulation, and Post-Processing: Based on the specific values of
the input parameters for this datapoint, the SVEs are generated, simulated under transverse tension or
compression, and once fice valid results have been generated, a single final averaged strength value is
calculated. These steps were detailed in Chapter 4.

• Step 5: NN fit to all computed datapoints: As soon as a minimum number of datapoints has been
simulated, they are automatically fitted to a NN. The optimal values for the parameters of the NN are
automatically determined through Cross-Validation, as discussed in Section 5.3.2.2 and to be illustrated
later-on in Section 6.4. The result of Step 5 is a NN approximation of the input-output relationship
between the input parameters specified initially, and the transverse strength of the UD FRPC ply.

• Step 6: Accuracy calculation of the NN approximation: The accuracy of the NN fit to the given num-
ber of datapoints can judged based on the mean relative error, calculated during the NN training by
Cross-Validation. If the accuracy is considered insufficient, i.e. a too high mean relative error, another
datapoint is commanded to be simulated, and the process restarts with Step 1. If sufficient, i.e. below a
user-defined threshold, the final result is achieved.

• Final Result: Once the user-defined accuracy threshold is achieved by the NN approximation in Step 6,
the final result has been achieved: a sufficiently accurate analytical approximation of the input-output
relationship between the input parameters specified initially, and the transverse strength of the UD
FRPC ply. A convenient visualization of such a function can be a 3D plot.

The entire process is automated through a central custom made Python script, depicted in black in the center
of Figure 6.1. This script is commands the different steps of the whole process, calls the other Python scripts
necessary for that. Steps 2 to 4 were explained in detail in Chapter 4, while Step 5 was explained in Chapter 5.
The remaining new steps shown in Figure 6.1 are specific to the iterative DoE process and shall be explained
hereafter.

6.2. Initialization
The starting point of every parametric study is the definition of the input parameters which shall be varied,
and in between which ranges of values. For the example of Figure 6.1, the corresponding Master.txt files is
shown in Listing 6.1. Each line defines the name of the parameter to be varied, together with its lower and
upper bound. For this example study, three input variables have been chosen:

• Geometrical Parameters:

– FVolF: Total fiber volume fraction, with 30% ≤ FV ol F ≤ 70%

• Material Parameters:

– IFS: Scaling factor of the strength of the fiber-matrix interfaces, with 0.75 ≤ I F S ≤ 8

– MS: Scaling factor of the strength of the matrix, with 0.5 ≤ MS ≤ 4

All other parameters of the SVE generation and the CM model have been fixed at their nominal values, as
listed in Chapter 4. For this particular study, transverse tension was the chosen loadcase. Accordingly, the
function to be approximated becomes

σtr ansver se,tensi on = f (FV ol F, I F S, MS) (6.1)

with σtr ansver se,tensi on denoting the transverse strength of the UD FRPC ply, and FV ol F , I F S, and MS de-
noting the input parameters as defined with their value ranges above.

1 ParameterName LowerBound UpperBound
2 IFS 0.75 8
3 MS 0.5 4
4 FVoLF 30.0 70.0

Listing 6.1: Master.txt file of the example shown in Figure 6.1 - defining the input parameters to be varied and their value ranges
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Following the definition of the input parameters and the loading case, two pivotal questions arise:

1. How many datapoints are necessary to approximate Equation 6.1 with sufficient accuracy?

2. Which datapoints, i.e. interpolation points, are necessary for that?

The former question is addressed in Section 6.5 - Step 6, but first we shall discuss the latter question.

6.3. Step 1: Determination of the Next Datapoint
In the case of the parametric studies performed for this master’s thesis, the function to be approximated
is unknown and involves several inputs which have to be related to a single output variable. Since we are
dealing with relations between material properties and geometrical parameters, no higher order functions are
expected. Since we further can simulate any kind of combinations of input parameters, we are free to choose
which datapoints to compute within the bounds of the parameter space, as defined in the file Master.txt, and
how many of them.

Assuming no prior knowledge about the function to be approximated, several so-called space-filling design
methods have been developed [67], filling every region of the parameter space equally with sample points.
The most simple way to do this is with an evenly-spaced grid. For high-dimensional functions, different
measures exist to define the distance between points, with a common choice being the Euclidian distance.
The reviewed cases of DoEs applied in the field of composite structures used such a regular grid to sample
the parameter space [38]. An alternative and more complex approach is to introduce a random component
to the regular grid [64], with example methods being Latin Hypercube Sampling [45] and Sobol Sequence [68].

Since the author was not aware of these latter methods until the very end of the master’s thesis, and since the
regular grid seemed to achieve good results in the reviewed literature [38], such a regular space-filling method
was chosen for the proposed ’smart’ framework. Since the author was not able to find a readily available open-
source implementation for the problem of equally spacing points in n-dimensions in an iterative manner, a
simple point generator algorithm was developed in Python. By way of example, Figure 6.2 shows a so-created
distribution of 69 sample points, within the parameter space defined in Listing 6.1. To briefly explain the
working of the developed algorithm, we will refer to minimal examples in 2D and 3D in the following section.
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Figure 6.2: Equally spaced distribution of 69 datapoints within the input parameter space defined in Listing 6.1.
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6.3.1. Point Generator Algorithm
For simplicity, a brute force approach was chosen, positioning at random 50000 points within the parameter
space, calculating the distances between these new points and the existing points, and then settling with the
best match. Distances between two points in n-dimensions were calculated as the euclidian distance, and
best match was defined as the point which is as far away as possible from all existing points, i.e. maximizing
the minimum Euclidian distance. The reviewed example from [38] used a seemingly complex "sequential
multi-objective optimisation based on a goal attainment method scheme" [38][24], and did not disclose his
code publicly. Since the brute force approach yielded both accurate and fast results, no further attempts were
made to develop an exact analytical method. For an extension of the proposed framework to higher numbers
of input parameters (>6), the computation time of the algorithm may become limiting, and a faster/exact
algorithm may have to be implemented.

Figure 6.3 illustrates the iterative working of the algorithm. On the left side, a single point (x1, y1) = (0,0) was
given as a baseline. Then, the algorithm added iteratively 9 more points, each time at the location furthest
away from all other points. On the right hand side of Figure 6.3, the same is repeated in three dimensions,
i.e. for three input parameters. Given two points (x1, y1, z1) = (0,0,0), (x2, y2, z2) = (1,1,1), the algorithm
determines four more points, each at maximum equal distance to all preceding points. In the 3D example, it
shall be noted that for two baseline points in two opposing corners of the cube, none of the following points
are positioned exactly in one of the other 6 corners.
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Figure 6.3: Left: Results from point generator algorithm in 2D: Baseline of (x1, y1) = (0,0), followed by 9 more iterations. Right: Results
in 3D: Baseline of (x1, y1, z1) = (0,0,0), (x2, y2, z2) = (1,1,1) followed by 4 more iterations.

To summarize from an outside perspective, Step 1 of the proposed framework takes as input all datapoints
which already have been computed, and returns a single new datapoint, i.e. combination of input param-
eters, to be simulated in the coming iteration. For the very first iteration, two datapoints are defined as the
baseline. For the example outlined in Listing 6.1, these would be (0.75,0.5,30.0) and (8,4,70.0), analog to Fig-
ure 6.3 on the right hand side. In general, the first baseline datapoint takes as coordinates all lower bounds of
the parameter space, and the second datapoint all upper bounds.

6.4. Step 5: Neural Network Fit to all Computed Datapoints
The final result of Step 4 is the averaged strength value of the last simulated combination of input parameters.
This combination of input parameters and the resulting strength value forms a complete datapoint. Together
with all previously computed datapoints, they constitute the currently available database of the parametric
study, which is the input for Step 5. The output of Step 5 is then a NN fitted to this database, i.e. the current NN
approximation of the sought-after input-output relationship, in this example Equation 6.1. In the following
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step, Step 6, the accuracy of the current NN approximation is then used to judge whether more datapoints
have to be computed, in order to improve this accuracy. Since the chosen measure of accuracy in Step 6 is a
side-result of the training process in Step 5, we shall briefly illustrate the latter with a practical example.

Details of the NN implementation for the framework are explained and motivated extensively in Chapter 5. In
brief, the input parameters of the database are first linearly scaled from their original ranges to fall in between
a range of -1 and 1, see Section 5.3.4. Then, before any training of the NN may begin, the NN architecture has
to be defined, i.e. the parameters of the MLPRegressor have to be chosen. As outlined in Section 5.3.2.2,
only two parameters have to be considered: hidden_layer_sizes, and alpha. For a detailed explanation of
these parameters, please refer to Section 5.2 and Section 5.3.2.2. Conveniently, the chosen training method
of Cross-Validation now does not require to know a-priori the exact values to choose for these parameters,
which is also impossible to know. Instead, a range of values are considered for each parameters, and so a
wide array of NN architectures will be evaluated and compared. For the example presented throughout this
chapter, the following parameter ranges are evaluated:

• hidden_layer_sizes: (10), (20), (40), (60), (80), (100)

• alpha: 0.00001, 0.0001, 0.001, 0.01, 0.1 ,0.2, 0.3, 0.5, 0.7, 0.8

Now, according to the procedure of repeated-5Fold, the database is split into training and testing data by a
ratio of 80/20%. The first NN, i.e. hidden_layer_sizes=10, alpha=0.00001, is fitted to the training data, and
its approximation accuracy is calculated with the testing data. To illustrate this with some real numbers, we
shall take an example database of 10 datapoints: the first 10 sample points within the parameter space shown
in Figure 6.2, based on the input parameters defined in Listing 6.1.

For this database, the aforedescribed first NN achieves a mean relative error of 44.9%1. Then, this process
is repeated four more times for different splits of the database into training and testing data. Said NN so
achieves mean relative errors of 41.9%, 4.1%, 9.2%, and 133.1%. Eventually, the mean relative errors of all
splits are averaged and form a single value describing the approximation accuracy of the first NN, in this case
an average mean relative error of 46.6%.

However, this was only the evaluation of the first NN, i.e. of the first combination of MLPRegressor parameters
as listed above. This whole training process is now repeated for all other NN architectures which were set out
initially. For each one, the average mean relative error is calculated, describing the overall accuracy of its fit
to the database. This allows finally to choose the single set of MLPRegressor parameters which results in the
best NN approximation of Equation 6.1, for the given amount of datapoints.

Figure 6.4 shows visually the average mean relative error plotted over all NN architectures which were eval-
uated through Cross-Validation in this example. In line with the findings of the literature review [29], no
general rule can be deduced which could tell the user a-priori which kind of parameters may result in the
best trained NN. Throughout the work of this thesis, it was noticed that generally two kinds of combinations
of the two parameters result in the best NN approximations: high number of neurons plus high alpha, or the
opposite case of only a few neurons and a small alpha.

For the parameter grid of this example, the best NN so found has 40 hidden neurons and a scaling factor
of the L2 regularization term of 0.00001, i.e. hidden_layer_sizes=40, alpha=0.00001. This NN architecture
achieves an average mean relative error of 33%. However, it has to be noted that this result strongly depends
on the size of the database. The above results were calculated for a small database of 10 datapoints. For
increasing size of the database, the mean relative error generally decreases as expected: An infinite number
of interpolation points would leave little to do for the surrogate model, and little to gain from the whole
framework. As discussed in the following section on Step 6, this can be used to answer the second pivotal
question of the DoE part of the ’smart’ framework: How many datapoints are necessary to approximate the
sought-after input-output relations, in this example Equation 6.1, with sufficient accuracy?

6.5. Step 6: Accuracy Calculation of the Neural Network Approximation
The average mean relative error calculated in Step 5 was for a database of 10 datapoints. As mentioned, its
value generally decreases for increasing size of the database. This is a useful property, which we shall use
to determine the minimum number of datapoints, necessary to approximate Equation 6.1 with a certain

1Throughout this master’s thesis, the measure of mean relative error based on Equation 5.2 was used for comparing the quality of a fit.
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Figure 6.4: Cross-Validation results for training of various NNs on a database of 10 points in 4D. The measure of accuracy of the NN fit to
the database, i.e. the average mean relative error, is plotted over the two parameters of the MLPRegressor class which were evaluated:
hidden_layer_sizes and alpha. Every combination of parameters corresponds to a different NN architecture. Best results are achieved
for 40 hidden neurons and a scaling factor of the L2 regularization term of 0.00001, resulting in an average mean relative error of 33%.

accuracy. To illustrate this, Figure 6.5 shows the average mean relative error of Step 5, but now for a database
between 8 and 69 datapoints. On the x-axis, the number of datapoints used for the NN fitting is written. In
total, 69 datapoints were simulated, corresponding to the sample points shown in Figure 6.2. On the y-axis,
two measures are written.

The main result is the average mean relative error of the Cross-Validation method, as summarized in the
previous section and in more detail in Section 5.3.2.2. For every iteration, i.e. every number of available dat-
apoints, the average mean relative error of the best NN approximation is plotted in Figure 6.5 in red. Looking
at the example of the previous section, for a database of 10 datapoints, the best combination of MLPRegressor
parameters yielded a mean relative error of 33%. It is now up to the user to define the accuracy up to which
she seeks to approximate Equation 6.1 with this parametric study. For the example of Figure 6.5, a target
accuracy of 10% was set, and in total 69 datapoints were simulated.

The second result plotted in Figure 6.5 is the computation time of the NN training process. Cross-Validation
is a computationally expensive method, especially for large datasets and NNs with many hidden layers and
hidden neurons. For reference, the computation time of the NN training has been recorded and is drawn in
pink over the number of datapoints in Figure 6.5.

6.5.1. Challenges Towards Full Automation
An explicit objective for the proposed ’smart’ framework of this master’s thesis is full automation. Ideally, the
user only has to specify the function that she is interested in, i.e. inputs & output, and the target accuracy
of the approximation that she seeks. Then, the process automatically determines how many datapoints are
necessary to achieve this accuracy, and runs by itself until the approximation function has been determined.
All this is possible with the proposed framework, but Figure 6.5 suggests that the question of how many data-
points? may need a more complex criterion. It can be seen that the average mean relative error does converge
to a minimum value, but not steadily. The set out accuracy of 10% mean relative error is first reached for 31
datapoints, but then diverges again up to 14% until "final" convergence after 63 datapoints.
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Figure 6.5: Cross-Validation score, i.e. average mean relative error, and NN computation time plotted over the number of datapoints
used for NN fitting of Equation 6.1. The vertical green line is drawn at a value of 10%.

As can be seen, the definition of an exact measure of accuracy is challenging and up for discussion. During
the presentation of results in the following chapter, the plot of Figure 6.5 will be shown for more studies,
which lays a better foundation for subsequent discussion. The presentation of results in Section 7.2 will
further show that the minimum value for the average mean relative error, as possible to be achieved with a
reasonable amount of datapoints, differs from one to another study. Significant influence is ascribed to the
load-case, tension or compression, and the choice of input parameters to vary. This leads to the fact that it
may not be straightforward for the user to define a-priori a target accuracy, as this value may not be possible
to achieve.

Lastly, the target accuracy has to be chosen relative to the extent of the strength effect to be approximated. In
the example of Equation 6.1, the transverse tensile strength eventually varies between 33 MPa and 361 MPa,
i.e. by a factor of > 10 over the specified ranges of the input parameters, as to be seen in Figure 6.6. Therefore,
a target accuracy of 10% is very low compared to the overall extent of the strength variations. If the user is
only interested in the overall effect of I F S and MS on the transverse tensile strength, a target accuracy of 30%
may well be enough. Referring to Figure 6.5, this would reduce the necessary number of datapoints from 31
to 20, thus a reduction in datapoints and furthermore in overall computation time of about one third 2.

With regard to the objective of implementing a fully automated process for parametric studies, the target
accuracy could also be automatically determined. A fixed relative target accuracy could be defined, e.g. fixed
at a value of 5%. This would mean that the parametric study is stopped as soon as the average mean relative
error is smaller than 5% of the entire strength variation over the simulated input parameter space.

For the example of Equation 6.1, the absolute strength variation is 328 MPa, thus relative to the minimum
strength value of 33 MPa, this amounts to a change of 994%. Multiplied with the relative target accuracy of
5%, this would result in a mean relative error of 49.7%. Referring to Figure 6.5, the parametric study may
in this case already be stopped after 10 datapoints. Whether such a coarse approximation of Equation 6.1 is
sufficient is up to the user to decide. It depends on whether a coarse but global approximation of the function
is sought-for, or a finer approximation up to local details.

2The computation time of the CM model is much higher than the one of the NN training.
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6.6. Final Result
The final objective of the proposed framework is to obtain a global approximation function of the input-
output relationship, based on a minimum amount of datapoints. For the example used throughout this
chapter, we obtain as a final result a trained NN, representing the function

σtr ansver se,tensi on = f̃ (MS, I F S,FV ol F ) (6.2)

Herein, f̃ (...) now denotes the found approximation function, describing the material property relationship
of the simulated UD FRPC plies. The trained NN is an analytical function, albeit a very complex one, and
results are thus best visualized through a plot. Since Equation 7.3 has three input variables and one output
variables, it is difficult to visualize all input variables at the same time. Figure 6.6 shows Equation 7.3 for a
fixed FVolF of 70%. The contour lines of the surface are plotted on the respective planes.

Recalling the discussion of the previous section, the NN approximation depends strongly on the size of the
database. The plot of Figure 6.6 corresponds to a database of 69 points, i.e. the maximum number of points
that have been simulated for this parametric study. Figure 6.7 now shows the same results for a smaller
database, i.e. if the study would have been stopped earlier. Results are shown for a database of 10, 21, 32,
and 69 datapoints. These values have been chosen with reference to Figure 6.5 and the discussion of the
preceding section.

The question had been formulated whether 10 datapoints are sufficient to approximate Equation 6.1. As
Figure 6.7 shows, 10 datapoints are sufficient to capture the global minimum and maximum of the func-
tion. To be fair, this is not a general rule, but due to the fact that the first two datapoints to compute,
MS, I F S,FV ol F = (0.5,0.75,30.0) and (4.0,8.0,70.0), happened to result in the global minimum and maxi-
mum tensile strength. At the same time, the NN approximation with 10 datapoints fails to show the linear
slopes as seen for 69 datapoints, as well as the asymptotic behavior for low values of MS and increasing I F S.
These differences can be explained with the distribution of integration points by equal spacing. For only 10
datapoints, none may have been positioned in the corner of MS, I F S = (0.5,5...8) yet, thus the NN obviously
can only extrapolate in this area.
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Figure 6.6: Plot of the NN approximation of Equation 6.1, for a fixed FVolF of 70%, and based on 69 datapoints. The contour lines of the
3D surface are projected onto the planes of the plot.
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Figure 6.7: Plots of the NN approximation of Equation 6.1, for a fixed FVolF of 70%, and based on 10, 21, 32, and 69 datapoints.

On a last note, and as mentioned before in Section 6.3, parametric studies with very computationally expen-
sive datapoints may benefit from an improved scheme to determine the best positions of the interpolation
points. Such a scheme might take into account the local gradient of the approximation function, and so
achieve a better approximation for the same number of datapoints. For the parametric studies performed
within this master’s thesis however, limited to a maximum of four input parameters, the computation of the
necessary amounts of datapoints was yet cheap enough to not require such a rule.

6.7. Summary
Hereby, we conclude the chapter presenting the proposed framework for ’smart’ Computational Microme-
chanics. We have unveiled the overall workflow of the framework, combining a Design of Experiments (DoE)
approach with a Computational Micromechanics (CM) model and a Neural Network (NN), in order to obtain
a surrogate model of the transverse strength of a UD FRPC ply. Further, we could show where the CM and
NN method fit within the framework, and how they interact with the DoE method. The latter has to answer
two important questions: Which datapoints shall be computed, and how many? We address the first question
with a regular grid sampling of the parameter space, for which we developed a simple algorithm in Python.
The second question is more ambiguous. We showed how to use the average mean relative error, a result of
the training process of the NN, to judge the convergence of the surrogate model. Still, it remains up to the
user to define the required accuracy, and so the necessary number of datapoints which have to be simulated.

After having presented the proposed ’smart’ framework, both as a whole as well as its three underlying method-
ologies, we can now finally present the five performed example studies in the following chapter.



7
’Smart’ Prediction of Composite Ply

Properties: Transverse Strength

The proposed ’smart’ framework, as presented in the previous chapter, is universal in the sense that its De-
sign of Experiments (DoE) and Neural Network (NN) parts can operate on any kind of data. By having im-
plemented our Computational Micromechanics (CM) model, we restrict ourselves to its specific predictive
capabilities: the behavior of a UD FRPC ply under transverse loading up to failure. Still, the CM model gener-
ates a wealth of data for every simulation, with the stress-strain curve only being a very simple and descriptive
example. In order to implement, test and demonstrate the capabilities of the proposed framework within the
given timeframe, we had to limit ourselves to a single value of the stress-strain curve, eventually choosing
maximum stress, i.e. the transverse strength of the simulated UD FRPC ply, for reasons outlined in Chapter 2.

However, with the same already generated data, it would be equally possible to exploit other output variables
of interest, thinking for example about strain, strain energy, or to let the NN approximate the entire stress-
strain curve [7]. Choices beyond that are left to the imagination of the reader, within the bounds of the used
CM model, or even further, by replacing it with any other computer model. More ideas for future work, short
and longterm will be discussed in Chapter 9. In the ensuing chapter now we shall present the five example
studies which we performed with the framework, relating the transverse strength to all geometrical, material,
and modelling parameters which we considered most relevant.

First, two sensitivity studies are presented which were necessary to characterize the used methodology of
Statistical Volume Element (SVEs) for our specific use case. The influence of the SVE size, i.e. the number of
fibers within the SVE, as well as the influence of the minimum inter-fiber distance Dmin on the transverse
tensile strength were investigated. Based on these results, appropriate nominal values were chosen for these
two parameters for the following studies.

Then, three studies were performed to characterize the transverse strength of a UD FRPC ply, and to explore
possible ways of improving today’s FRPC materials in this regard. First and foremost, the dominant param-
eters determining transverse strength are the constituent strengths, i.e the strengths of the matrix and the
fiber-matrix-interface. Accordingly, the first study explores the effect of these two parameters. After deter-
mining the surrogate model of these primary effects, we explored the influence of fiber-by-fiber hybridiza-
tion. The second study mixes fibers with circular and 4-lobed cross-sections within the same SVE, and the
last study mixes two different fiber diameters. To obtain a complete picture, all studies varied fiber volume
fraction as an additional parameter and were performed for both transverse tensile and compressive loading.

7.1. Methodological Findings
Before being able to characterize transverse strength with the developed framework, we shall use it to char-
acterize the influence of two important modelling parameters, common to all simulations to be performed:

• minimum inter-fiber distance, and

• number of fibers within the SVE, which for a fixed fiber diameter value boils down to the size of the SVE

60
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As revealed in the literature review and summarized in Section 3.1.2.1, both have a significant influence on
the obtained transverse strength values for the used method of SVEs at microscale. The size of the SVE is an
important parameter for the SVE methodology in general, whereas the minimum inter-fiber distance is a pa-
rameter specific to the modelling of FRPC materials at microscale. The following two sections shall describe
the studies which were performed to investigate the influence of these two parameters.

7.1.1. Transverse Strength as a Function of Minimum Inter-fiber Distance and IFS
One of the findings of the literature review is the significant effect of the minimum inter-fiber distance on
results generated by CM using SVEs. In order to confirm this effect and measure its magnitude for our model,
a parametric study was performed varying the following two input parameters and ranges:

• Geometrical Parameters:

– Dmin: minimum inter-fiber distance: 0.1µm to 0.75µm

• Material Parameters:

– IFS: fiber-matrix interface strength: 0.5 to 8

The IFS was added as a second parameter, in order to evaluate the effect of Dmin over the different possible
failure regions to be explored in another study, see Section 7.2.1. Figure 7.1 shows two example SVEs gener-
ated for this study now. On the left, for the lower limit of Dmi n = 0.1µm, and on the right for the upper limit
Dmi n = 0.75µm. The final approximation function to be found becomes

σtr ansver se,tensi on = f̃ (Dmi n, I F S). (7.1)

A total of 26 datapoints were computed and none of them aborted. Since we are only varying two input pa-
rameters, no pre-defined stopping criterion was used to determine the necessary number of datapoints, but
this was checked visually based on Figure 7.2. The latter shows the spatial distribution of the 26 datapoints,
as well as the final NN approximation of Equation 7.1. Since the magnitude of the IFS effect is of much greater
magnitude than the Dmin effect, Figure 7.2 shows on its right side a slice of the surface on the left, at a fixed
IFS value of 1. Several observations can be readily made:

• As expected, the magnitude of the IFS effect on transverse tensile strength is much greater than the
effect of Dmin. This makes it difficult to judge the latter, but Figure 7.2 shows on its right side that
the minimum inter-fiber distances changes the transverse tensile strength by 5MPa for the chosen pa-
rameter ranges. Relative to the nominal strength obtained at I F S = 1, this is about 10%. For our later
studies minor effects like the mixing of circular and 4-lobed fibers under tension, see Section 7.3.3, this
is very significant. For the study of the primary effects of the constituent strengths however, a change
of 5MPa is much less significant, as to be seen in Section 7.2.

0

50

Figure 7.1: Two SVEs generated through Vip3r [30], with minimum inter-fiber distance of 0.1µm on the left, and 0.75µm
on the right.
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• For increasing IFS, the total magnitude of the effect first remains constant at about 5MPa, thus di-
minishing in comparison with the overall strength increase. For the upper limit case of I F S = 8, i.e.
the matrix-dominated failure region see Section 7.2.1, the effect of Dmin disappears. Apparently, the
minimum inter-fiber distance affects only the failure of the interfaces. When these are assumed to be
perfectly bonded, the minimum inter-fiber distance has no effect on the failure of the matrix ligaments
between the fibers.

• Lastly, it has to be noted that some datapoints are unusually close to each other, see Figure 7.2. This
was the result of an issue with an earlier version of the point generator algorithm, used in this study
performed early on. For subsequent studies, this was corrected. However, it does not change the quality
of the presented results.

Concluding, all following studies shall be performed at the same fixed value for the minimum inter-fiber
distance. Thereby, we can eliminate the shown influence of Dmin, and ensure that results are comparable.
As mentioned before, we will use a nominal value of Dmi n = 0.35µm, identical to the original model of M.
Herraez [30]. The studies on hybrid FRPC materials will further show that it is still important to be aware
of the magnitude of the Dmin effect. For the study on mixing circular and 4-lobed fibers in Section 7.3, the
SVE generator Vip3r consistently deviated from the specified value of Dmi n = 0.35µm, such that the final
results are obtained at a lower value of Dmi n = 0.2µm. The study on mixing two different fiber diameters in
Section 7.4 also highlights that Dmin is an important influence, when explaining why the SVEs of mixed fiber
diameters generally fail around the larger fibers.
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Figure 7.2: NN approximation of Equation 7.1 for a total of 26 datapoints. The output variable transverse tensile strength is plotted over
the two input variables minimum inter-fiber distance Dmin and fiber-matrix interface strength IFS. On the right hand side, a slice of the
NN calculated surface is presented at I F S = 1, for better visualization of the effect of Dmin.

7.1.2. Transverse Strength as a Function of SVE Size and Fiber Volume Fraction
As previously discussed in Section 4.4.2 and Section 4.4, another important parameter for all simulations
based on the method of SVE is the number of fibers within the volume element. For a fixed fiber diameter, in
our case 8µm, the number of fibers within the SVE is determined by the size of the SVE, in our case nominally
50µm x 50µm. To validate this choice over the whole range of investigated FVolFs, a study was performed
with the following two input parameters and ranges:

• Geometrical Parameters:

– SVE size: 30µm to 100µm

– FVolF: 30% to 70%

• Material Parameters: none
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For this sensitivity study we are interested in two output variables: First, we want to know how the transverse
tensile strength depends on the SVE size, such that we can choose a SVE big enough for this dependence to
be sufficiently small. Further, we want to make sure that our chosen SVE size is valid over the whole range
of FVolFs simulated in the course of the following studies. As to be seen, for low FVolFs, we will run into
limitations of the SVE generator Vip3r, which was not primarily designed for such applications.

Second, we are interested in the relative standard deviation of the transverse strength results, calculated for
the each five SVEs computed for each datapoint. As discussed in Section 4.4.2, this deviation should generally
converge towards a minimum when increasing the number of fibers within the SVE. Accordingly, we can use
its value to monitor the quality of our results. In this study for example, it helps us to illustrate the inadequacy
of Vip3r for low FVolFs in Figure 7.4 on the right. For all following studies, we will keep plotting this deviation
to have a visual check of the quality of the results, over the entire parameter space.

For illustration, Figure 7.3 shows two example SVEs of 100µm x 100µm generated for this study. On the left,
for FV ol F = 30%, and on the right for FV oLF = 70%. The minimum SVE size of 30µm is indicated in red, and
the eventually chosen nominal size of 50µm in green. Summarizing, the final approximation function to be
found becomes

(
σtr ansver se,tensi on ,

Sσtr ansver se,tensi on

σtr ansver se,tensi on

)
= f̃ (SV Esi ze ,FV ol F ) (7.2)

Contrary to the previous studies, the function to be approximated now has two output variables: the famil-
iar transverse tensile strength σtr ansver se,tensi on , plus the relative standard deviation, with S denoting the
standard deviation of the mean transverse tensile strength values, from a sample size of 5. NNs are able to
approximate any kind of function with n input variables and m output variables. On a practical level, it was
however found that it is easier to just split the multi-output NN function into each one function for each
output variable, in this case two individual NN functions [7].

Eventually, a total of 17 datapoints were computed and none of them aborted. Just like in the previous stud-
ies, the number of necessary datapoints was determined visually by monitoring the shape of the 3D sur-
face together with the positions of the datapoints. Figure 7.4 shows the two surfaces approximating the two
output variables of Equation 7.2, as well as the spatial position of the datapoints. On the left, the trans-
verse tensile strength σtr ansver se,tensi on is drawn, and on the right the relative standard deviation of the
latter. For better readability, both plots show the contour lines at fixed values for the FVolF, i.e. FV ol F =
35,40,45,50,55,60,65%, projected onto the vertical plane.

Figure 7.3: Two SVEs of 100µm x 100µm generated through Vip3r [30]. On the left for FV ol F = 30%, on the right for
FV ol F = 70%. Marked in red is the lower end SVE size used in this study, i.e. 30µm. Marked in green is the nominal SVE
size of 50µm used throughout this master’s thesis.
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The effect of FVolF on transverse tensile strength will be discussed later-on in Section 7.2.1. Of primary in-
terest now is the convergence of the strength values for fixed FVolF, when varying the SVE size: The contour
lines of the left plot of Figure 7.4 show that generally the transverse tensile strength values do not change
by more than 2MPa for varying SVE size. For higher FVolFs, the mean values converge steadily when in-
creasing the SVE size, e.g the three bottom-most contour lines of the left plot for FV ol F = 65,60,55%. This
changes for lower FVolFs, such that no converged value can be deduced, e.g. for the uppermost contour line
at FV ol F = 35%.

The same trends are repeated in the right plot of Figure 7.4. As expected, when fixing the FVolF, increasing
the SVE size decreases the relative standard deviation. Likewise, when fixing the SVE size, decreasing the
FVolF decreases the number of fibers in the SVE and the deviation increases. However, the plot shows one
exception to these general rules of the SVE methodology: For low FV ol F ≤ 40%, increasing the SVE size first
results in a decrease of the deviation, but then its value increases again. This unexpected diverging trend
towards FV ol F = 30%,SV Esi ze = 100µm is attributed to the limitations of Vip3r for low FVolFs, as previously
discussed in Section 4.4.3. The algorithm to position the fibers at random within the SVE always starts with
putting one fiber in each corner. While for high FVolFs, this does not significantly distort the random fiber
distribution, see Figure 7.3 on the right, it is visually noticeable for low FVolFs, see Figure 7.3 on the left or
Figure 4.2. Based on the right plot of Figure 7.4, we deduce that the results for low FV ol F ≤ 40% shall be
considered as non-converged for all following studies.

On an ending note, the magnitude of the shown effects shall be put into perspective. Both the change in
strength for varying SVE size, as well as the relative standard deviations of the strength values are lower than
4%. This value has to be judged individually for each one of the following studies. When studying the effect
of scaled constituent strengths on transverse strength in Section 7.2, the overall magnitude of this effect is
>100%, thus rendering deviations of 4% insignificant. However, for the studies characterizing the much less
pronounced hybrid effect in Section 7.3 and Section 7.4, the results of Figure 7.4 have to be well considered.
The developed ’smart’ framework in its proposed first version requires a fixed SVE size. As a compromise
between computation time and accuracy, we chose a nominal value of 50µm x 50µm for all following studies.
Referring to Figure 7.4, the so-generated results can be considered well-converged for all cases except low
FV ol F < 40%. An evolution of the proposed framework may consider to automatically adapt the SVE size
based on the FVolF. A simple rule could be to keep the number of fibers within the SVE constant. A more
complex rule could be to maintain a constant standard deviation of the strength results.
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Figure 7.4: NN approximation of Equation 7.2 for a total of 17 datapoints. On the left, the mean value of the transverse tensile strength is
plotted over the two input variables FVolF and SVE size. On the right, the relative standard deviation of the datapoints is plotted over
the same two input variables. For better readability, the contour lines at fixed values for the FVolF, i.e. FV ol F = 35,40,45,50,55,60,65%,
are projected onto the vertical plane.
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7.1.3. Summary
Hereby, we conclude the presentation of the two sensitivity studies which were performed to characterize the
used SVE methodology for the following studies. The effect of the two most important modelling parameters
was quantified, i.e. minimum inter-fiber distance Dmin and SVE size. We could show that both can influence
transverse tensile strength results by <5%. To minimize their effect, we maintain a nominal Dmin of 0.35µm
throughout the following studies, and fix the SVE size at 50µm x 50µm, which gives well converged results for
FV ol F > 40%. Finally, we could illustrate an apparent limitation of Vip3r to generate valid SVEs with fully
random fiber distributions for very low Fiber Volume Fractions.

After having determined the nominal values for these two important parameters of the used SVE method,
we can now proceed with using the developed framework for its main task: to characterize the transverse
strength of a UD FRPC ply.

7.2. Transverse Strength as a Function of MS, IFS, and FVolF
The first study investigates the main parameters which determine the transverse strength of a UD FRPC
ply: the strengths of its constituents. Within our SVEs, these are the fibers, matrix, and the fiber-matrix
interface. For today’s FRPC materials, the strength of the matrix and the interface is much lower than the
transverse strength of the fibers, thus failure of the latter is not considered relevant. This leaves two con-
stituent strengths left for our investigation: MS and IFS. The final result of a study exploring the effect of
these two input parameters on transverse tensile strength would be datapoints with three coordinates (MS,
IFS, σtr ansver se,tensi le ). Many mathematical methods exist to interpolate such a 3D surface, but few to in-
terpolate higher-dimensional data. Therefore, a third input variable was added to be able to showcase the
potential of NNs for global approximation of n-dimensional data, in our case with n = 4. The next best in-
put parameter known to have a significant effect on transverse strength is FVolF, i.e. the total fiber volume
fraction of the SVE. Summa sumarum, the three input parameters of the first parametric study are:

• Geometrical Parameters:

– FVolF: Total fiber volume fraction

• Material Parameters:

– IFS: Scaling factor of the strength of the fiber-matrix interfaces

– MS: Scaling factor of the strength of the matrix

All other parameters are fixed at their nominal values, e.g. circular fibers of 8µm diameter, as outlined in
Chapter 4. The next hurdle is to choose the ranges of each input parameter to be varied. For FVolF, the
maximum may theoretically be 90.8% for a perfect hexagonal pattern. The latter is never achieved in practice,
and a maximum value of 70% is more realistic from a manufacturing perspective [26]. To recreate such dense
but random fiber packing within a SVE is far from easy, but the Vip3r tool developed by M. Herraez is able to
do so [30]. Regarding the minimum FVolF, a minimum value of FV ol F = 30% was chosen after pre-studies
showed numerical issues for values lower than that. Still, results in the range of FV ol F ≤ 40% have to be
interpreted cautiously, as discussed in detail in Section 7.1.2.

For scaling factors of IFS and MS, initial results yielded that the ratio between the two determines the failure
behavior. This again also depends on the loadcase, either tension or compression. In the tension case, final
failure is dominated either by interface failure, or by failure of the matrix in direct vicinity of the interface. For
both tension and compression it was noticed that extreme combinations, e.g. very low IFS together with high
MS, particularly at low FVolFs, result in numerical instabilites and convergence issues. Figure 7.5 shows the
stress-strain curves of each 5 SVEs for such extreme combinations, and subject to tensile loading. All three
cases have a very high ratio of MS to IFS, with increasing FVolF. Both the plots for 30% and 50% FVolF show
numerical issues, and an absence of the required 10% load drop after the maximum load. Only for the case
of 66% FVolF do we finally obtain valid stress-strain curves with the required load drop of 10% to stop the
simulation.



66 7. ’Smart’ Prediction of Composite Ply Properties: Transverse Strength

0.0 0.1 0.2 0.3 0.4 0.5 0.6
St r ainl[%]

0

5

10

15

20

25

30

S
tr

e
ss

l[
M

P
a

]

sim_0

sim_1

sim_2

sim_3

sim_4

0 2 4 6 8 10
St r ainl[%]

0

20

40

60

80

100

S
tr

e
ss

l[
M

P
a

]

sim_0lendedlw ithout lglobal lmax

sim_1lendedlw ithout lglobal lmax

sim_2

sim_3

sim_4lendedlw ithout lglobal lmax

IFS=0.5, MS=2.6, FVolF=30

IFS=0.5, MS=3.6, FVoLF=66

0 2 4 6 8 10
St r ainl[%]

0

5

10

15

20

25

30

35

40

S
tr

e
ss

l[
M

P
a

]

sim_0

sim_1

sim_2,ldisr egar ded

sim_3,ldisr egar ded

sim_4,ldisr egar ded

IFS=0.6, MS=4, FVolF=50

Figure 7.5: Stress-strain curves for each 5 SVEs simulated under tensile loading, but for varying input parameters IFS, MS,
and FVolF. All three cases have a very high MS to IFS ratio. From top to bottom, the FVolF is increased, and only for 66%
FVolF are satisfactory results achieved.
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In order to automatically detect such issues, provisions to the automated implementation of the parametric
studies had to be made, as discussed before in Section 4.4:

• The central Python script which commands the entire parametric study was extended with an abort
criterion, for the case that a certain combination of input parameters would not converge. As explained
in Section 4.4, nominally 5 valid results are required, and if more than 10 attempts have been made, the
computation of this datapoint is aborted.

• As shown in Listing 4.3, the final strength result stored for each datapoint was extended with additional
results for automatic diagnostics. This includes for example the number of SVEs which had to be gener-
ated and simulated until 5 valid stress-strain curves were obtained. These results allow the user to judge
easily for which combinations of input parameters the simulations tend to fail, and thus to adjust their
ranges accordingly if necessary.

As can be seen, the definition of the ranges of the input parameters is a critical step and it requires some
thought on the side of the user. The implementation of the ’smart’ framework has been automated to catch
any simulation difficulties automatically. Lastly, the post-processed data directly indicates to the user whether
his chosen ranges have to be adjusted, and if so in which areas.

7.2.1. Tension
With regard to the previous discussion on numerical issues for certain combinations of input parameters, the
following ranges were chosen:

• FVolF: 30% to 70%

• IFS: 0.5 to 8

• MS: 0.5 to 4

The final approximation function to be found thus becomes

σtr ansver se,tensi on = f̃ (MS, I F S,FV ol F ), (7.3)

analogous to the example presented in Section 6.2 of the previous chapter. A total of 69 datapoints were
simulated, out of which 5 aborted due to local maxima before the global stress maximum. Figure 7.6 shows
the spatial distribution of the 69 datapoints. The aborted datapoints are marked as "x", for all other data-
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Figure 7.6: Equally spaced distribution of the 69 datapoints to approximate Equation 7.4. The 5 aborted datapoints are marked as "x",
i.e. 10 unsuccessful attempts were made to obtain 5 valid results. The color of the points corresponds with the relative standard
deviation, i.e. standard deviation of the five stress values calculated at this combination of input parameters, divided by their mean
stress value.
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points their color indicates the relative standard deviation of the stress result at this datapoint. It is calcu-
lated as the standard deviation divided by the mean value of the five transverse tensile strength values at
this datapoint. As can be seen, the relative standard deviation is generally below 3%, and only once peaks at
8%. Four out of five aborted datapoints occured in the same region of low IFS and high MS, particularly at
low FVolF<40%. In the ensuing discussion, results will be disregarded in this specific region due to a lack of
datapoints for the NN approximation.

Regarding the total number of datapoints, since this was the first full scale study to be performed, no pre-
defined stopping criterion was employed. The plot of the Cross-Validation score over the number of data-
points has already been presented and discussed in Section 6.5, Figure 6.5.

7.2.1.1. Primary Effect of Matrix Strength and Interface Strength
Figure 7.7 shows the final NN function for 69 datapoints, and with the FVolF fixed at 70%. As can be seen, the
surface shows three different zones: A linear slope on the left hand side, a linear slope on the right hand side,
and a transitional zone in the center. These three zones correspond to three different final failure modes of
the simulated UD FRPC ply under transverse tension:

• Interface failure: For today’s FRPCs, final failure under tension is dictated by the failure of the fiber-
matrix interfaces. Figure 7.7 illustrates this readily through the gradient at point MS = I F S = 1: Only an
increase in IFS can increase the overall tensile strength for this combination of MS and IFS.

• Matrix failure: For the theoretical case of very high IFS while MS = 1, final failure of the SVE becomes
dominated by failure of the matrix material near the fiber-matrix interfaces. This is in correspondence
with analytical calculations by Tirosh et al. [71]. They calculated the stress concentration around a
perfectly-bonded ciruclar fiber embedded in a matrix material, and found them at values between 1.53
and 1.74, at a distance of 1.2 · r , with r denoting the fiber radius, for resins with Poisson’s ratio of 0.25
to 0.5. When taking into account several fibers, the maximum tensile stress concentrations were calcu-
lated at values around 2 for FV ol F = 50%, and to occur midway between fibers.

An example point of the matrix failure regime in Figure 7.7 would be (MS, I F S) = (1,8). As can be seen,
only an increase in matrix strength may increase the overall tensile strength at this combination.

• Mixed failure: A third case is defined by the transition between these two failure modes. In Figure 7.7,
this corresponds to the center area of changing gradients, between the two asymptotic slopes on the
left and right side. For these combinations of MS and IFS, the overall tensile strength of the material
can be increased by increasing either one of the two constituent strengths.
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Figure 7.7: NN approximation of Equation 7.3 when trained with 69 datapoints. The input variable FVolF is fixed at 70%. The output
variable transverse tensile strength is plotted over the two input variables matrix strength MS and fiber-matrix interface strength IFS.
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A gradient plot provides an alternative way to easily distinguish the different failure zones. Since the trained
NN is an analytical function, albeit very complex when written out, a gradient map can be readily calculated.
Figure 7.8 shows the gradient plot of Equation 7.3 for a FVolF fixed at 70%. First of all, it illustrates nicely the
separation between the different failure zones. Second, the arrows indicate, for each combination of con-
stituent strengths, the direction which results in the highest gain in transverse tensile strength per increase
in constituent strength. For the nominal example of MS = I F S = 1, marked as a black ’x’, the transverse ten-
sile strength can only be increased by increasing the interface strength. At MS = 1, only for I F S > 2 does an
increase of the matrix strength make sense. To add another experimentally measured datapoint, the red ’x’
illustrates the same AS4/8552 material but after having been exposed to a wet environment until saturation
and under elevated temperatures. Its degraded properties have been measured experimentally and in-situ
as I F S = 0.71 and MS = 0.86 [49][60][59]. As can be seen, environmental degradation of both interface and
matrix strength does not change the conclusion that the transverse tensile strength of today’s FRPC materials
can primarily only be increased by improved interface strength.

Another result of interest could be a plot which easily shows the necessary direction of research in order to
increase the transverse strength of today’s FRPC materials. The shown calculation of gradients assumes that
an increase in matrix strength is as easily achievable as an increase in interface strength. In reality however,
the latter is much more difficult. In order to incorporate that, the gradients could be weighted and so produce
a more realistic indication for future research.

As outlined in the literature review Section 3.3, Figure 3.9, previous research has been investigating the effect
of IFS on overall tensile strength [78]. Vaughan et al. however did only slightly vary the IFS, for a fixed MS. In
comparison with Figure 7.7, his work corresponds to a single vertical slice at a fixed MS, near MS = 1, and for
0.35 < I F S < 2.14 1. As can be seen, the research of Vaughan et al. was confined to the area of fiber-matrix
interface failure. In contrast, Figure 7.7 allows to situate his work in a greater frame, and to show the global
function governing the transverse tensile strength of a UD FRPC ply.
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Figure 7.8: Plot of the gradients of the NN function shown in Figure 7.7. The coloring of the arrows is mapped to the modulus of each
gradient vector, with the colorbar displayed in units of MPa. Marked with a black ’x’ is the nominal AS4/8552 material with
I F S = MS = 1, for a dry environment at room temperature. Marked with a red ’x’ is the same material after exposure to a wet
environment until saturation and under elevated temperatures, with degraded properties I F S = 0.71 and MS = 0.86, as measured
experimentally in-situ by [49][60][59].

1Vaughan et al. assumed a fiber-matrix interface with the same value for normal and shear strength N ,S. The model of this master’s
thesis assumes two different values, see Table 3.3. The comparative range of 0.35 < I F S < 2.14 was calculated relative to the lower value
of normal strength N = 42MPa used in this thesis.
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The plot of Figure 7.7 further showcases the capability of the proposed framework to produce a global an-
alytical approximation based on a minimum amount of simulation. This can be put to use for the search
of new materials. Requiring little a-priori knowledge about the unknown material property relationship, the
developed framework can automatically explore the given parameter space until it has found a sufficiently
accurate global approximation.

For the ensuing studies, the first idea was to just keep adding input parameters in order to showcase the full
potential of the framework for larger parameter spaces. However, as Figure 7.7 showed, all possible combina-
tions of matrix and interface strengths can be reduced to the three cases outlined above. Therefore, ensuing
studies do not have to consider MS and IFS as varying input parameters, but can be performed for fixed val-
ues of these two variables. The most relevant case is of course MS = I F S = 1, i.e. the strength ratio of today’s
CFRPC materials, which we later explore in our studies on fiber-by-fiber hybridization.

Lastly, it has to be noted that Figure 7.7 shows only a single extracted value from each one of the 69 computed
datapoints, i.e. the maximum transverse tensile stress endured. To give a better idea of the results generated,
Figure 7.9 shows the stress-strain curves computed for a single slice of the grid of input parameters. For
FV ol F = 70% and MS = 1, the interface strengths were varied between 1 and 10 2. As discussed before, this
slice of results is sufficient to illustrate all three failure zones. This can readily be seen in Figure 7.8, and shall
now briefly be illustrated with the stress-strain curves of Figure 7.9:

• For I F S = 1, we are within the zone of interface failure. Interface failure triggers initial damage, and
after a short non-linear part of the stress-strain curve due to matrix plasticity, the maximum tensile
load is obtained. After the peak load, the load carrying capability drops rapidly and the simulation is
stopped.
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Figure 7.9: Plot of the stress-strain curves for 5 datapoints subject to transverse tension. Two input parameters were fixed,
FV oLF = 70%, MS = 1, while varying IFS between 1 and 10. Solid lines are used for the curves up to the maximum load peak, dashed
liens until the cutoff criterion of 10% load drop. For high IFS values, the variance between the curves increases significantly, both in
maximum stress and strain-to-failure.

2Additional simulations were performed to cover I F S = 8...10.
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• For I F S = 3, we are within the transition zone. For this combination of constituent strengths, a higher
transverse tensile strength of the SVEs may be obtained by increasing either one of the constituent
strengths. Indeed, Figure 7.8 suggests that at this ratio, matrix failure and interface failure are equally
contributing to the overall strength. The stress-strain curves for I F S = 3 illustrate this by sudden failure
without any non-linear part due to matrix plasticity.

• For I F S > 6, we are within the zone of matrix failure. For this combination of constituent strengths, a
higher transverse tensile strength of the SVEs may only be obtained by increasing the matrix strength.
The stress-strain curves for I F S = 6 show a significant non-linear part before reaching the peak load, as
resulting from the plastic deformation of the matrix between closely neighboring fibers. For I F S > 6,
the maximum peak load does not increase much further, only the strain-to-failure and the variances
between the curves. The latter indicates that for this extreme combination of constituent strengths, the
simulations are increasingly experiencing numerical difficulties due to large deformations of the single
elements between fibers. Results for these border cases thus have to be interpreted with caution.

7.2.1.2. Secondary Effect of Fiber Volume Fraction
It is evident that the primary parameters determining the transverse strength of any FRPC material will be
the constituent strengths. Following that, geometrical effects are playing the next biggest role. Figure 7.10
shows the final trained NN approximating Equation 6.1, with overlaid plots for distinct values of the FVolF
(FV ol F = 30,40,50,60,70%). As discussed earlier in this section, low FVolFs lead to numerical instabilities
and outlier results. Figure 7.6 had already indicated that this still holds true for FV ol F ≤ 40% and Figure
7.10 now reconfirms this visually. It can be seen that for high matrix strengths combined with low interface
strengths, the overall tensile strength results at low FVolF do not fit with the remainder of the data. Therefore,
we will restrict the following discussion to the FVolF range between 40% and 70%.
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Figure 7.10: NN approximation of Equation 7.3 when trained with 69 datapoints. The input variable FVolF is varied between
FV ol F = 30...70%. The output variable transverse tensile strength is plotted over the two input variables matrix strength MS and
fiber-matrix interface strength IFS for each value of FVolF. As can be seen, the surface for FV ol F = 30% does not align with the results
for higher FVolFs in the region of high matrix strength and very low interface strength.
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The overall effect of FVolF on the transverse tensile strength surface is best visualized through contour plots.
Figure 7.11 shows the contour plots in direction of both MS and IFS, for FV ol F = 40% and FV ol F = 70%. On
the left, curves are plotted for fixed IFS, at values I F S = 1,2,3,4,5,6,7. On the right, curves are plotted for
fixed MS, at values MS = 1.0,1.5,2.0,2.5,3.0,3.5. The following can be observed:

• For fixed IFS: As long as increasing the matrix strength yields a higher overall tensile strength, a higher
FVolF increases also the transverse tensile strength.

• For fixed MS: As long as increasing the interface strength is the only means to increase overall tensile
strength, i.e. before entering the transition area of combined failure, until then a higher FVolF decreases
the transverse tensile strength.

Together, the same general trend can be summarized as: In the zones of matrix failure and mixed failure,
higher FVolF results in higher transverse tensile strength. In the zone of interface failure, higher FVolF results
in lower transverse tensile strength. For the two edge cases, failure zones of weak interfaces or weak matrix,
it seems obvious that reducing the volume fraction of the weaker constituent increases the transverse tensile
strength. For the transition zone of mixed failure however, it is surprising that the FVolF effect in this area
is entirely dominated by the same trend than shown in the zone of matrix failure. It is neither the case, that
the FVolF effect is reversed at some medium point within the transition zone, nor at the edge between the
transition zone and the matrix dominated failure zone.

To judge the magnitude of the overall effect of FVolF on transverse tensile strength, Figure 7.12 lastly shows
the difference between the two surfaces for 70% and 40% FVolF, divided by the tensile strength obtained for
40% FVolF. Compared with the contour plot of Figure 7.11, the plot has been rotated around the z-axis for
better readability. Marked in black is the contour line which separates the region of tensile strength increase
through higher FVolF, i.e. positive values, from the opposite region.

First, it has to be noted that for extreme values of either high IFS and low MS, or the opposite case, the simu-
lated results start to diverge significantly. This is due to numerical issues for these extreme combinations of
constituent strengths, as has been illustrated before in Figure 7.5, and will be reiterated for this specific case
in Figure 7.14. Ignoring these peak values, it can be seen that varying the FVolF between 70% and 40% can
change the transverse tensile strength by +20% and -15%. Today’s FRPC materials, i.e. MS = I F S = 1, lie in the
region of interface failure and thus tensile strength decrease for higher FVolF. As can be seen in Figure 7.12
however, the potential to reverse this effect exists, but only for higher values of IFS. If such would be achieved
however, the magnitude of +20% possible gain in transverse strength is significant.
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Figure 7.11: Contour plots of the NN function of Figure 7.10, in direction of both MS and IFS. The FVolF is fixed at 40% and 70% . On the
left, the curves of transverse tensile strength are plotted for fixed IFS, at values I F S = 1,2,3,4,5,6,7. On the right, curves are plotted for
fixed MS, at values MS = 1.0,1.5,2.0,2.5,3.0,3.5.
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Figure 7.12: Plot of the magnitude of the effect of FVolF on transverse tensile strength (TTS). On x- and y-axis, the matrix strength MS
and interface strength IFS are drawn. On the z-axis, the difference between the surfaces from Figure 7.10 for FV ol F = 70% and
FV ol F = 40% is plotted, normalized by the transverse tensile strength values for FV ol F = 40%. The contour line splitting positive from
negative z-values is drawn in black. As can be seen, for extreme combinations of high IFS and low MS, or the opposite case, the
numerical results start to diverge from the rest of the results.

On a last note on Figure 7.12, the magnitude of the +20% and -15% FVolF effect on transverse tensile strength
is much smaller compared to the primary effect of IFS and MS, as shown in Figure 7.7. The smoothness of
Figure 7.12 could be improved, but this would require to simulate more datapoints for the NN training, or to
manually force a NN approximation function of lower order, for example by increasing alpha. For the present
discussion on the secondary effect of FVolF, the results were considered accurate enough.

Putting these results into perspective, today’s CFRPC materials lie well within the interface failure zone, and
thus a higher FVolF decreases transverse tensile strength. Figure 7.13 shows the stress-strain curves up to
maximum stress for 24 SVE FEAs. The constituent strengths are kept at their nominal values, i.e. MS = I F S =
1, while varying the FVolF between 30% and 70%. Note that the 30% results at this combination of MS and IFS
could still be considered valid, as to be judged from Figure 7.10 and Figure 7.4. Figure 7.13 now shows said
effect of higher FVolF decreasing transverse tensile strength in the interface failure zone, but in more detail.
The changing stiffness due to varying FVolF can be observed as well as the decrease of the strain-to-failure
at maximum stress level. Lastly, this overall trend is in line with analytical equations developed to describe
transverse tensile strength as a function of FVolF [34].

Figure 7.14 now shows the same simulations repeated for the matrix failure zone, i.e. MS = 1, I F S = 10 3.
Cross-referencing with Figure 7.10, the results for FV ol F = 30% are judged to be lower than they should,
compared with the remaining results for FV ol F > 40%. It also has to be noted that the variation in both
maximum stress and strain-to-failure increases significantly for higher FVolF. While it is acknowledged that
this may influence the extent of the observed FVolF effect, it is not considered to change the overall direction
of the effect. If all simulations were to be stopped right after damage initiation, e.g. a 10% deviation from their
initial stiffness, then we could still observe the same effect: higher FVolFs increase transverse tensile strength
in the matrix failure zone.

In conclusion, if future research may succeed in increasing the IFS to such an extent that matrix failure be-
comes a relevant damage mechanism for transverse tensile failure, only then will the observed negative effect
of FVolF on transverse tensile strength be reversed.

3Additional simulations were performed to cover I F S = 8...10.
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Figure 7.13: Plot of the stress-strain curves for 5 datapoints subject to transverse tension, and failing by interface failure. Two input
parameters were fixed, MS = I F S = 1, while varying the FVolF between 30% and 70%. The stress-strain curves are plotted up to the
maximum load peak, and variance between the curves belonging to the same datapoint can be noted as very low.

0 1 2 3 4 5
St r ain [%]

0

20

40

60

80

100

120

140

160

180

S
tr

e
ss

 [
M

P
a

]

I FS= 10.0, FVolF= 30...70%

FVolF= 30.0

FVolF= 30.0

FVolF= 30.0

FVolF= 30.0

FVolF= 30.0

FVolF= 40.0

FVolF= 40.0

FVolF= 40.0

FVolF= 40.0

FVolF= 40.0

FVolF= 50.0

FVolF= 50.0

FVolF= 50.0

FVolF= 50.0

FVolF= 50.0

FVolF= 60.0

FVolF= 60.0

FVolF= 60.0

FVolF= 60.0

FVolF= 60.0

FVolF= 70.0

FVolF= 70.0

FVolF= 70.0

FVolF= 70.0

FVolF= 70.0

Figure 7.14: Plot of the stress-strain curves for 5 datapoints subject to transverse tension, and failing by matrix failure. Two input
parameters were fixed, MS = 1, I F S = 10, while varying the FVolF between 30% and 70%. The stress-strain curves are plotted up to the
maximum load peak, and the variance between the curves of the same datapoint is generally higher compared with the MS = I F S = 1
case of Figure 7.13. For increasing FVolF, the variance in maximum stress and strain-to-failure increases further.



7.2. Transverse Strength as a Function of Matrix Strength, Interface Strength, and FVolF 75

7.2.1.3. Summary
Hereby, we conclude the presentation of the results for the study of transverse tensile strength, as a function
of the constituent strengths and the Fiber Volume Fraction. The developed framework was used to deter-
mine the surrogate model which describes this relationship, in an automated way and based on 69 simulated
datapoints.

The surrogate model shows that the primary influences on transverse tensile strength are the constituent
strengths. The ratio of matrix strength to fiber-matrix interface strength was found to define the overall failure
mode of the ply: either by interface failure, matrix failure, or a mixed mode. Today’s CFRPC materials fall well
within the region of dominant interface failure. Accordingly, their transverse tensile strength can only be
increased by improving the strength of the fiber-matrix interfaces. For doubled IFS, the material would enter
a region where increases in matrix strength also start to show a positive effect.

Furthermore, the effect of Fiber Volume Fraction was shown to be of secondary order. Depending on the
values for the constituent strengths, an increase in FVolF can change transverse tensile strength by +20% or -
15%. In general, increasing the volume fraction of the weaker constituent decreases the strength. Accordingly,
today’s CFRPC materials fall well within the region where higher FVolF leads to a strength decrease. For
doubled IFS, this effect could be reversed.

After having covered the tensile loading case, we shall now present the results for the compression case.

7.2.2. Compression
With regard to the preceding discussion on numerical issues for certain combinations of input parameters,
the following ranges were chosen:

• FVolF: 30% to 70%

• IFS: 0.75 to 5

• MS: 0.5 to 5

The final approximation function to be found thus becomes

σtr ansver se,compr essi on = f̃ (MS, I F S,FV ol F ), (7.4)

A total of 115 datapoints were simulated, out of which 12 aborted. Of these 12 aborted datapoints, all failed
due to local maxima before the global maximum. Figure 7.15 shows their spatial distribution. As before, the
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Figure 7.15: Equally spaced distribution of the 115 datapoints to approximate Equation 7.4. The 12 aborted datapoints are marked as
"x", i.e. 10 unsuccessful attempts were made to obtain 5 good results. The color of the points corresponds with the relative standard
deviation, i.e. standard deviation of the five stress values calculated at this combination of input parameters, divided by their mean.
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aborted datapoints are marked as "x", for all other datapoints their color indicates the relative standard vari-
ation of the stress results at this datapoint. As can be seen, the deviation is generally below 5%, with higher
values up to a maximum of 8% only obtained for extreme combinations of MS and IFS. This illustrates how
this deviation can readily serve as a measure of the quality of the obtained results, without having to dive into
the deformation plots of the simulations. It shall also be noted which combinations of MS and IFS lead to
abortion, as readily illustrated on the right side of Figure 7.15. Numerical difficulties are only encountered
for low IFS values, in combination with increasingly high MS values. The correlation between numerical
difficulties and low FVolF is less significant than in the tensile case, see Figure 7.6.

Figure 7.16 shows the Cross-Validation score plotted over the number of datapoints. No pre-defined stopping
criterion was employed, but this study was used to investigate the convergence behavior for many datapoints.
As can be seen, a final minimum value of 5% average mean relative error can be achieved when training the
NN with more than 80 datapoints. In the tensile case, see Figure 6.5, convergence occurred much faster,
already starting from 30 datapoints on, but the eventually obtained minimum remained at a value of 10%.
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Figure 7.16: Cross-Validation score, i.e. average mean relative error, plotted over the number of datapoints used for NN fitting of
Equation 7.4. The vertical green line is drawn at a mean relative error of 5%.

7.2.2.1. Primary Effect of Matrix Strength and Interface Strength
Figure 7.17 shows the final NN approximation of Equation 7.4 for 115 (103) datapoints, plotted with the FVolF
fixed at 70%. The surface resembles the plot of the tension case, see Figure 7.7 and Figure 7.8, in that it
can be divided in the same three zones: interface-dominated failure, matrix-dominated failure, and mixed
failure. However, compared to the tension case, the surface is now shifted: Whereas for the tension case,
the nominal parameter combination MS = I F S = 1 lies well within the interface-dominated failure region, in
the compression case it lies in the mixed failure region, see gradient plot in Figure 7.17. This is in line with
findings from literature [27]. For today’s FRPC materials, transverse tensile failure of a UD ply is dominated
by interface failure. In the compression case however, matrix and interface failure are both contributing.
The gradient plot in Figure 7.17 can now quantify this: At point MS = I F S = 1 both failure mechanisms are
about equally contributing to the transverse compressive strength of the ply. A few general comments shall
be made:

• A first observation is that the surface of Figure 7.17 is less smooth than the in the tension case in two
specific regions:

– The region of low IFS - high MS is not in line with the remainder of results: Consulting Figure 7.15
this is exactly the region where most simulations abort due to numerical difficulties, and thus
where valid interpolation points are scarce. For FV ol F = 70%, the datapoint in this region did
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abort see Figure 7.15 and thus the NN has to approximate the transverse compressive strength in
this region based on interpolation points which are much further away. Since the region of low
IFS - high MS generally did not produce many valid datapoints, the NN approximations in this
region should be disregarded.

– The surface in the opposite region of high IFS - low MS shows some "waviness" compared to the
nearby regions: Consulting Figure 7.15 again, this is a less critical region compared to the opposite
case, i.e. the simulations do not abort. However, it has been noted in Figure 7.15 that the relative
standard deviation of the stress results increases in this region, indicating increasing numerical
difficulties and in consequence less accurate results.

• A second observation is the generally less regular shape of the surface compared to the tensile case. This
can be attributed to the different failure behavior of the SVEs under compression than under tension.
In the tensile case we saw that the SVEs may either fail through

– linked interface-failures, which are governed by the rather simple material model of cohesive ele-
ments (no compressive behavior), or

– matrix failure in the single elements between closely neighboring fibers, thus very localized, or

– mixed failure, combining both failure modes.

In the compressive case now, failure nominally constitutes of one or several shear bands within the
matrix, see Figure 3.13, triggered by interface failures. A general difference to the tensile case is that
many matrix elements are now involved in contributing to final failure. The used material model for
the 8552 Epoxy matrix is much more complex than for the cohesive elements of the interfaces, see
Section 3.1.2.2.2. Increase of strength under confining hydrostatic pressure is one of its features which
is attributed to the more irregular shape of the surface of Figure 7.17.

• A third remark concerns fiber failure: As can be seen in Figure 7.17, the maximum transverse compres-
sive strength computed is greater than 1000 MPa, which renders our initial assumption of neglecting
fiber failure invalid. Keeping this in mind when interpreting the results, this does not render the para-
metric study invalid for other combinations of input parameters, or assuming that fiber strength could
be increased as well. After all, this study aims at characterizing the general theoretical influence of MS
and IFS on transverse compressive strength.
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Figure 7.17: Left: NN approximation of Equation 7.4 when trained with 115 (103) datapoints. The input variable FVolF is fixed at
FV ol F = 70%. The output variable transverse compressive strength is plotted over the two input variables matrix strength MS and
fiber-matrix interface strength IFS. Right: Plot of the gradients of the NN function shown on the left. The coloring of the arrows is
mapped to the modulus of each gradient vector, with the colorbar displayed in units of MPa.
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7.2.2.2. Secondary Effect of Fiber Volume Fraction
Figure 7.18 shows the final trained NN approximating Equation 7.4, with overlaid plots for distinct values of
the FVolF (FV ol F = 30,40,50,60,70%). Compared to the tensile case of Figure 7.11, the effect of the FVolF is
identical in both its sign and regions:

• In the region of matrix-dominated failure, i.e. high IFS and low MS, an increase in FVolF leads to an
increase in transverse compressive strength.

• In the region of interface-dominated failure, i.e. low IFS and high MS, an increase in FVolF leads to a
decrease in transverse compressive strength.

What is different however is the magnitude of the effect of FVolF, particularly in the region of interface-
dominated failure. As discussed before, Figure 7.18 has to be interpreted with care in this region of low IFS
combined with high MS, since very few valid datapoints are available for the NN approximation see Figure
7.15 on the right. Still, the effect of FVolF on transverse compressive strength is well pronounced, even if only
judging for values of I F S > 2.
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Figure 7.18: NN approximation of Equation 7.4 when trained with all 103 datapoints. The input variable FVolF is varied between
FV ol F = 30...70%. The output variable transverse tensile strength is plotted over the two input variables matrix strength MS and
fiber-matrix interface strength IFS for each value of FVolF.

7.2.2.3. Summary
Hereby, we conclude the presentation of the results for the study of transverse compressive strength, as a
function of the constituent strengths and the Fiber Volume Fraction. The developed framework was used
to determine the surrogate model which describes this relationship, in an automated way and based on 103
datapoints.

The surrogate model shows that the primary influences on transverse compressive strength are again the
constituent strengths. As in the tensile case, the ratio of matrix strength to fiber-matrix interface strength was
found to define the overall failure mode of the ply: dominated by interface failure, matrix failure, or a mixed
both. Contrary to the tensile case, today’s CFRPC materials fall within the mixed mode region. In line with
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experimental findings, they fail under a combination of interface failure and shear band formation within the
matrix, the latter being illustrated in Figure 3.13. The surrogate model can now quantify their contributions,
suggesting that matrix and interface contribute equally to the transverse compressive strength. Accordingly,
the latter can be increased by improving the strength of either one of the constituents.

Furthermore, the effect of FVolF was shown to be of secondary order. Depending on the combination of
constituent strengths, an increase in FVolF can change the transverse compressive strength of the ply by
±30%. In general, as in the tensile case, increasing the volume fraction of the weaker constituent decreases
the strength. Today’s CFRPC materials fall within the border of the region where increased FVolF still leads
to a strength decrease. For a slightly increased IFS, the surrogate model suggests that this effect could be
reversed. For completeness, it has to be remarked that the used CM model does not include voids, which in
practice can have a significant influence on experimental results.

After having covered both the tensile and compressive loading case, we can summarize our findings of this
first study.

7.2.3. Summary
Hereby, we conclude the presentation of results for the study of transverse strength, under both tension and
compression, as a function of the constituent strengths and the Fiber Volume Fraction. The developed frame-
work was used to determine the corresponding surrogate models which describe this relationship, in an au-
tomated way, and based on a non-optimized amount of 69 and 103 datapoints respectively.

The surrogate models suggest that for both tensile and compressive loading, the primary variables which
determine transverse strength are the constituent strengths. The ratio between the two defines the domi-
nant failure mode, either interface or matrix failure, or a combined mode. The transverse failure of today’s
CFRPC materials is interface dominated in the tensile case, and of combined mode in the transverse strength.
The surrogate model now quantifies these contributions and can readily suggest the most effective ways to
increase this strength in the near future. Improving the tensile strength is only possible by increasing the
Interface Strength. Improving the compressive strength can be equally achieved by increasing IFS of MS. To
reverse the strength-decreasing effect of high FVolFs, the only way to do so is by improving the IFS.

After having characterized these primary variables defining the transverse strength of a UD FRPC ply, we now
turn to investigate the unknown effect of fiber-by-fiber hybridization. We are most interested in the potential
of this effect on today’s CFRPC materials, therefore we fix the constituent strengths at their nominal values,
and maintain the FVolF as an input parameter. The following two studies now explore the effect of mixing
two different fiber cross-sectional shapes (circular and 4-lobed), and the effect of mixing two different fiber
diameters.

7.3. Transverse Strength as a Function of Fiber Shape and FVolF
In order to characterize the effect of fiber-by-fiber hybridization, in this case mixing fibers of different cross-
sectional shapes, the following two input parameters are chosen:

• Geometrical Parameters:

– FVolF: Total fiber volume fraction

– RFF: Round Fiber Fraction, i.e. the fraction of the FVolF with circular cross-section

• Material Parameters: none

No material parameters were chosen, the constituent strengths were instead fixed at their nominal values
MS = I F S = 1 in order to keep the study applicable to today’s CFRPC materials. The fiber shape to mix with
round fibers was eventually chosen as 4-lobed. This was based on the results from M. Herraez [30], discussed
in Section 3.1.3 and summarized in Figure 3.8.

7.3.1. Choice of Non-circular Fiber Shape
Since we are most interested in increasing the transverse tensile strength, the only non-circular fiber shape
found by M. Herraez to achieve that under both tensile and compressive loading is 2-lobed, aligned. His
simulations were performed at a fixed FVolF of 50%. In our study however we want to vary the FVolF over
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a wide range, and up to 70% as is usually aimed for in industry applications of composite materials. When
generating SVEs with high FVolFs and aligned non-circular fibers, this latter condition is however hard to
fulfill. The algorithms of Vip3r usually succeed in generating a valid SVE, but the alignment condition is
violated for an increasing amount of fibers when going up to 70% FVolF. Figure 3.8 further illustrates that
2-lobed fibers only increase tensile strength if properly aligned. In the unaligned case, the effect reverses and
tensile strength even decreases compared to the case of circular fibers.

In conclusion, to avoid a distortion of results by poorly controlled fiber alignments, it was chosen to use un-
aligned 4-lobed fibers instead of the aligned 2-lobed ones. The former was found as the best non-aligned fiber
shape to increase transverse strength under compression, and ranks second-"best" among all non-aligned
non-circular fiber shapes under tension, although they all decrease transverse tensile strength slightly, see
Figure 3.8.

7.3.2. Controlling Minimum Inter-fiber Distance
During a first round of simulations, it was further observed that by introducing non-circular fiber-cross-
sections, the fiber placement algorithms of Vip3r are unable to maintain the user-defined minimum inter-
fiber distance Dmin, see Section 4.2.1. When specifying the nominal value of Dmi n = 0.35µm, Vip3r could
only generate SVEs with a minimum inter-fiber distance of about 0.2µm. As has been highlighted in Section
7.1.1, the minimum inter-fiber distance has a significant effect on transverse strength, therefore its value has
to be constant among all SVEs which are to be compared within a study. To enforce this for this study, the
RVE.py file had to adapted accordingly, eventually achieving a constant range of 0.2µm < Dmi n < 0.22µm.
Figure 7.19 shows three example SVEs generated for the purposes of this study. From left to right, the fraction
of round fibers is decreased from 1 to 0.5 to 0, while the FVolF stays fixed at 70%. Comparing with Figure 4.2 at
FV ol F = 30%, the much denser packing has to be noted, while both SVEs maintain the same Dmin of about
0.2µm.

Figure 7.19: Three SVEs generated through Vip3r [30], with round fiber fraction decreasing from 1 to 0.5 to 0 from left to
right. Fiber volume fraction is fixed at 70%, minimum inter fiber distance at 0.2µm.

7.3.3. Tension
The following ranges were chosen for the two input parameters:

• FVolF: 30% to 70%

• RFF: 0 to 1, with 0 denoting only round fibers, and 1 only 4-lobed fibers

Regarding the FVolF range, the validity of SVEs generated with only 30% FVolF remains questionable, as dis-
cussed in Section 7.2. To remind the reader of the issue of the cornering fibers, Figure 4.2 shows six example
SVE generations for RF F = 0.5 and FV ol F = 30%. The fiber placement algorithms of Vip3r always start with
positioning one circular fibers in each corner, thereby distorting the random distribution of fibers within the
SVEa for low FVolFs. Keeping this in mind for the interpretation of the final results, the approximation func-
tion to be found becomes

σtr ansver se,tensi on = f̃ (RF F,FV ol F ). (7.5)
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A total of 25 datapoints were simulated, and none of them aborted. To determine the number of datapoints,
no pre-defined stopping criterion was employed. Figure 7.20 shows the spatial distribution of the 25 data-
points, as well as the final NN approximation of Equation 7.5.

The first observation which has to be pointed out is the scale of the observed effects. As can be seen, the effect
of fiber volume fraction on transverse tensile strength is about 12MPa. In contrast, the effect of the round
fiber fraction, i.e. fiber-by-fiber hybridization, is only about 2MPa. Both are relatively small compared to the
average transverse strength of about 50MPa, particularly the effect of hybridization which we are primarily
interested in. As a consequence, the relative standard deviation of the 17 datapoints of up to 5% suddenly
becomes significant. This peak value of 5% is reached only for simulations with FV ol F ≤ 40%, which is
in line with the results of our sensitivity study on the effect of the SVE size for circular fibers, see Figure
7.4. Surprisingly though, in this region of low FVolF, only the mixed SVEs showed such a comparably high
variation, while the SVEs of either only circular or only 4-lobed fibers stayed below 2.5%, just like all other
datapoints.

Fract ion7of7Round7Fibres7[ -]

0.0
0.2

0.4
0.6

0.8
1.0

FVolF7[h]

30
35

40
45

50
55

60
65

70

T
ra

n
sv

e
rse

7T
e

n
sile

7S
t re

n
g

th
7[M

P
a

]

46

48

50

52

54

56

58

0.01

0.02

0.03

0.04

F
ra

ct
io

n
7o

f7
R

o
u

n
d

7F
ib

re
s7

[-
]

0.0

0.2

0.4

0.6

0.8

1.0

FVolF7[h]

30 35 40 45 50 55 60 65 70
545658

Fract ion7of7Round7Fibres7[ -]

0.0
0.2

0.4
0.6

0.8
1.0

FVolF7[h]

30
35

40
45

50
55

60
65

70

T
ra

n
sv

e
rse

7T
e

n
sile

7S
t re

n
g

th
7[M

P
a

]

46

48

50

52

54

56

58

0.01

0.02

0.03

0.04

0.05

Figure 7.20: NN approximation of Equation 7.5 for a total of 25 datapoints. The output variable transverse tensile strength is plotted
over the two input variables fiber volume fraction FVolF and round fiber fraction RFF. The color of the datapoints corresponds with the
relative standard deviation, i.e. standard deviation of the five stress values calculated at this combination of input parameters, divided
by their mean stress value.

A second important observation are the unexpected variations of the mean strength values of the datapoints,
for example when fixing FV ol F = 50% and increasing the fraction of 4-lobed fibers. Based on the results
of M. Herraez in Figure 3.8, the transverse tensile strength is expected to decrease slightly but constantly.
Instead, we can a) see an oscillating behavior between only-circular and only-4-lobed fibers, and b) notice
that both only-circular and only-4-lobed fibers resulted in the same strength value of 52MPa. A more detailed
discussion of these surprising effects is due:

(a) The unexpected variations of trend a) are not specific to FV ol F = 50%, but seem to occur through-
out the range of fiber volume fractions. This is believed to result from a new variable which remained
unnoticed but has been introduced together with non-circular fibers into the SVE geometry: fiber ori-
entation. For circular fibers, this variable does not exist, but one of the findings of M. Herraez [30] was
that the alignment of non-circular fibers has a significant effect on the transverse strength. The unex-
pected strength oscillations observed in Figure 7.20 are believed to result from the distinct distribution
of fiber orientations, which is different for every choice of the two geometrical parameters FVolF or RFF.
Figure 7.19 illustrates this readily. On the right, for only 4-lobed fibers at FV ol F = 70%, most fibers are
aligned like a horizontal square, whereas in the 50/50 mixed case with circular fibers in the center, the
4-lobed fibers are mostly oriented like a diamond. Implicitly, we assumed that the distribution function
of the fiber orientations would resemble a standard deviation around a mean of 0, but we can readily
observe that this is not the case.

(b) On the CM side, thisstudy uses exactly the same modelling approach than the one developed by M.
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Herraez [30]. His results at FV ol F = 50% are that the transverse tensile strength decreases from 59MPa
to 52MPa when replacing all circular fibers with all 4-lobed fibers, see Figure 3.8. This is in direct con-
tradiction with the findings of this study, which shows no change in transverse tensile strength between
the two. Since the same tool Vip3r was used to generate the SVEs, it is assumed that the former study of
M. Herraez did not notice that Vip3r unnoticeable starts to violate the user-specified minimum inter-
fiber distance Dmin when changing from circular to 4-lobed fibers. Since the minimum inter-fiber
distance has a strong effect on the transverse strength, see the sensitivity study presented in Section
7.1.1, this correlates well with the previously reported strength decrease from 59MPa to 52MPa.

Summarizing, in order to correctly compare circular with 4-lobed fibers, and to judge the effect of mixing
on transverse tensile strength, Dmin has to be well controlled, as was the case for this study. However, the
magnitude of the effect was determined as insignificantly small, always less than ±1MPa. Compared to the
original findings of M. Herraez [30] however, this is a positive result, since the reported strength decrease for
4-lobed fibers may now be revoked based on the found results.

For a more accurate evaluation of the small scale effect, it might be necessary to attempt to reduce the ob-
served oscillations of the datapoints. For further studies, we therefore propose to increase the size of the
SVEs, in order to obtain a smoother distribution function of the fiber orientations. Still, it is possible that at
certain FVolFs, and for certain non-circular fiber-shapes, the fibers within the SVEs may favor a certain non-
random distribution, see Figure 7.19 on the right. To test this hypothesis, it would be required to increase the
number of SVEs computed per datapoints, e.g. from now 5 to 10. Further, the distribution functions of the
fiber orientations, i.e. angle over occurrence, should be analyzed to find out whether they change according
to a deterministic pattern, depending on fiber volume fraction and the mixing ratio RFF. Lastly, this could be
repeated for the various non-circular fiber shapes proposed in [30], in order to complete the picture of the
effect of fiber alignment.

For the practical purposes of transverse tensile strength increase through fiber hybridization, this effort is
deemed over-proportional compared to the meager amount of strength gain which could be achieved. On
the other hand, this finding has implications for any kind of simulations with SVEs and non-circular fiber
shapes: The fiber alignment is an important parameter which has to be properly controlled and might exert
a significant influence on your results.

7.3.4. Compression
The same ranges of the input parameters for the tension case were kept for the simulations of the compres-
sion case. The final approximation function to be found becomes

σtr ansver se,compr essi on = f̃ (RF F,FV ol F ). (7.6)

A total of 20 datapoints were simulated, and none of them aborted. To determine the number of datapoints,
no pre-defined stopping criterion was employed. Figure 7.21 shows the spatial distribution of the 20 data-
points as well as the final NN approximation of Equation 7.6. Several observations have to be pointed out:

• First, the magnitude of the hybrid effect is now larger than the effect of fiber volume fraction. This is
opposite to the tension results, where FVolF exerted a larger influence on transverse strength than the
mixing of fiber shapes.

• Furthermore, replacing circular with 4-lobed fibers now consistently results in a strength increase. This
effect increases towards higher FVolFs, with the maximum increase of +27MPa, i.e. +13% obtained for
FV ol F = 70%. This boost of the hybrid effect for increasing FVolF could be attributed to the interlock-
ing of the 4-lobed fibers. They are able to confine the inter-fiber matrix ligaments much more than
circular fibers, and even more so for higher FVolFs. Since the compressive strength of the matrix mate-
rial increases under pressure, the final failure of the SVEs through matrix shear bands may be delayed.

• Interestingly, when using primarily 4-lobed fibers, the usual negative effect of FVolF on strength is re-
versed. Today’s CFRPC materials of circular fibers generally decrease in transverse compressive strength
for increasing FVolF. Figure 7.21 shows this for RF F = 1, which is consistent with our previous results
shown in Figure 7.18 at point MS = I F S = 1. Figure 7.21 now also shows that for the case of RF F = 0,
i.e. only 4-lobed fibers, an increase in FVolF leads to an increase in transvserse compressive strength.
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• The results at FV ol F = 50% are now in line with those of M. Herraez [30], suggesting that the influence
of Dmin on transverse strength is less significant in the compression case than in the tension case.

• As in the tensile case, the effect of the fiber orientations of mixed SVEs persists. In comparison with the
magnitude of the FVolF and hybridization effect which is much larger than in the tensile case, the effect
of fiber orientation becomes insignificantly small. At the same time, also the relative standard deviation
of the datapoints is generally small, less than 3%, and low FVolFs do not to cause less accurate results
in the compression case.

The methodological conclusions of the tensile case also apply to the compression case: To evaluate the hybrid
effect of mixing circular with 4-lobed fibers under compression, the fiber orientation and minimum inter-
fiber distance have to be well controlled. In contrast to the tension case however, the effect of both parameters
is much less pronounced.
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Figure 7.21: NN approximation of Equation 7.5 for a total of 20 datapoints. The output variable transverse compressive strength is
plotted over the two input variables fiber volume fraction FVolF and round fiber fraction RFF. The color of the datapoints corresponds
with the relative standard deviation, i.e. standard deviation of the five stress values calculated at this combination of input parameters,
divided by their mean stress value.

7.3.5. Summary
Hereby, we conclude the presentation of results for the study of the transverse tensile/compressive strength
of a UD CFRPC ply, as a function of the total fiber volume fraction and the fraction of circular versus 4-lobed
fibers. The developed framework was used to determine the corresponding surrogate models which describe
this relationship, in an automated way, and based on a non-optimized amount of 25 and 20 datapoints re-
spectively.

The surrogate models suggest that transverse tensile strength does not change when replacing or mixing cir-
cular fibers with 4-lobed ones, independent of the value for the total fiber volume fraction. For transverse
compressive loading however, the strength increases significantly the more circular fibers are replaced with
4-lobed ones. The higher the total fiber volume fraction, the stronger this increases in transverse compressive
strength. Interestingly, 4-lobed fibers reverse the usual negative effect that high fiber volume fractions have
on the compressive strength of a UD CFRPC ply of circular fibers. For 4-lobed fibers, higher FVolF leads to an
increase in compressive strength.

The generated results complete the findings reported in literature [30]. Instead of a fixed FVolF and only the
edge cases of only circular or only 4-lobed fibers, the determined surrogate models now describe the global
behavior of the effect of 4-lobed fiber shapes, alone or in mixture with circular fibers. A side result of this study
is the awareness of an important parameter of SVEs with non-circular fiber cross-sections: the orientation of
the cross-sections. As was reported in literature, if all fibers are aligned in the same way, this can have a
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significant impact on transverse strength [30]. The performed study now indicates that the distribution of
fiber orientations may further depend on the FVolF, as well as the mixing ratio. The 4-lobed fibers tended
to arrange and interlock in regular ways, resulting in unusually "oscillating" strength results. Further studies
involving non-circular fiber shapes, especially thos which are highly anisotropic, therefore need to carefully
consider and monitor the distribution of fiber orientations.

After having characterized the effect of fiber-by-fiber hybridization for the case of mixing two different fiber
shapes, we now turn to the last study, exploring the effect of mixing two different fiber diameters.

7.4. Transverse Strength as a Function of Fiber Diameter and FVoLF
The previous study explored the mixing of different fiber shapes, and its effect on transverse strength. The
question remains what the effect is of mixing fibers of different diameters. The literature review showed that
experiments have been performed with mixing glass and carbon fibers of different diameters in a single ply
[83]. Most results however focus on longitudinal tension, not the hybrid effect under transverse tension [? ].
Further, most results were produced experimentally, and particularly for transverse tensile testing, significant
scatter is reported which hinders to obtain a reproducible trend [58]. This makes it difficult to come to a
consensus conclusion on the hybrid effect in general, but particularly in the transverse tension case.

Exactly at this point, the advantages of Computational Micromechanics shall be leveraged. This methodology
allows to break down all contributing factors of the hybrid effect, and investigate their influences individually.
For the example of mixing glass and carbon fibers, the final ply will have two different kinds of fiber materials
and diameters, and two different kinds of interfaces between each fiber and the common matrix material.
The effect of mixing different fiber materials, i.e. different Young’s modulus and coefficients of expansion, has
been briefly examined during the pre-studies of this master’s thesis, but no influence on transverse strength
was found. Therefore, as a first step, the ensuing study shall investigate the effect of mixing different fiber
diameters only. Future work could then extend the model by attributing different interfaces to each fiber
diameter.

For the present case of mixing circular fibers of two different cross-sectional diameters, the following input
parameters and ranges are chosen:

• Geometrical Parameters:

– FVolF: Total fiber volume fraction, from 30% to 50% 4

– RFF: 8mm Fiber Fraction, i.e. the fraction of the FVolF with circular fibers of 8mm diameter,
varied between 0 to 1, with 0 denoting only fibers of 2mm diameter

• Material Parameters: none

Just like in the preceding study, no material parameters were chosen and the constituent strengths were fixed
at their nominal values of I F S = MS = 1. The question remains which fiber diameter to mix with our nominal
fibers of 8µm. During preliminary studies we observed the greatest increase in transverse strength for lower
fiber diameters. Therefore we chose a diameter of 2µm for the second set of fibers. Figure 7.22 shows three
example SVEs generated for the purpose of this study. From left to right, the fraction of 8µm fibers (8FF) is
decreased from 1 to 0.5 to 0, while the FVolF stays fixed at 50%. At the same time, the size of the SVEs remains
also fixed at 50µm x 50µm. What seems trivial at first, turns out to touch on the fundamental limitations of the
SVE methodology, when trying to model size-dependent effects. The SVEs for 8F F = 1 and 8F F = 0, shown in
Figure 7.22 on the left and right, shall be adduced to explain these limitations in the following section.

7.4.1. Modelling Size-Dependent Effects with Statistical Volume Elements
At this point we have to discuss a fundamental point of the used methodology of SVEs when simulating the
behavior of a certain material. A seemingly similar yet different approach than what we use in our framework
are the so-called embedded cells. Take for example the case of modelling a cross-ply laminate of three stacked
layers. The outer layers are modeled with only a few elements and homogenized material properties, whereas
the middle layer is modelled in high detail as a large cell containing the real fiber distribution, thus embedded
within the larger model [31]. At first sight, the embedded cell may seem like a very large SVE, embedded with

4Higher FVolF than 50% are generally not possible when decreasing fiber diameter while maintaining the minimum inter-fiber distance
at its nominal value.
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Figure 7.22: Three SVEs generated through Vip3r [30], with 8mm fiber fraction decreasing from 1 to 0.5 to 0 from left to
right. Fiber volume fraction is fixed at 50%, minimum inter fiber distance at 0.35µm, and SVE size at 50µm x 50µm.

non-periodic boundary conditions into a larger model. But what distinguishes such embedded cells from the
SVEs used by our CM model are their length scales and boundary conditions:

• For embedded cells, the user inputs the real values of the material properties for the model, i.e. fiber
diameter, fracture energies, Young’s moduli, and various failure strengths 5. The boundary conditions
for the embedded cell are chosen according to the surrounding elements. In the above example they
are dictated by the adjacent plies, and according to the prescribed loading case.

• For SVEs, it is assumed that the SVEs are a length-scale independent representation of the material. The
material is not discretized as a whole, but a volume just big enough is cut out and taken as represen-
tative of the whole material. For this to work out, the boundary conditions have to be periodic. This
ensures that the deformations of the SVEs are periodic and that the SVEs could be duplicated and put
together like a jig-saw puzzle, indeed representing a larger volume of the material. When looking at
the fiber distribution of any of the SVEs throughout this thesis, there is no information about absolute
values of the sizes, like the fiber diameter or the overall SVE size. This is the case because a fundamental
characteristic of the SVE approach is that the absolute length values do not influence the results, only
the ratio of all length dependent input parameters.

To lay the necessary baseline for the discussion of the results of the ensuing study of mixing different fiber
diameters, we want to take the time now to illustrate the issue of modelling such size-dependent effects with
the used SVE method. Apart from the random distribution of fibers, any of the used SVEs is defined by only
three size-dependent geometrical parameters:

• Fiber diameter

• Inter-fiber distance Dmin

• SVE size

The SVE methodology holds that our transverse strength results shall be independent of the absolute values
for each one of these three geometrical parameters. Instead they only depend on the ratio between these
three values. For example, the transverse strength obtained will be the same for 8µm fibers in a 50µm x 50µm
SVE with Dmi n = 0.35µm, than for 2µm fibers in a 12.5µm x 12.5µm SVE with Dmi n = 0.0875µm. In fact,
both represent the same material, defined by the ratio of their size-dependent geometrical parameters. So the
question arises, how can we model and distinguish two FRPC materials with different fiber diameters when
using SVEs? The answer necessarily has to be that these two different materials must be characterized by
different ratios of the three size-dependent geometrical parameters of their SVEs. For the case of the ensuing
study, a first intuitive choice could be:

• Material 1: 8µm fibers in a 50µm x 50µm SVE with Dmi n = 0.35µm for the nominal FRPC material

5The latter two are generally size independent, all the others are not.
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• Material 2: 2µm fibers in a 50µm x 50µm SVE with Dmi n = 0.35µm for the material of smaller fibers

These two materials correspond with the SVEs shown in Figure 7.22: on the left material 1, on the right ma-
terial 2. This time we changed the fiber diameter, but kept Dmin constant 6. In consequence, we have two
different materials and the transverse strength results for these two materials will be different. However, at
the same time we have to remind ourselves that the material 2 is not a material of 2µm fiber diameter, but
only a material with a different fiber diameter to Dmi n ratio. Material 2 can be equally seen as a material of
8µm fibers and a minimum inter-fiber distance of 1.4µm.

In a previous study we highlighted that increasing Dmi n significantly increases transverse tensile strength,
see Figure 7.2, and accordingly material 2 shows a higher transverse tensile strength than material 1, as our
following results discussion will show. As discussed before, this strength increase has no physical equivalent
in reality. When manufacturing a FRPC ply and observing the fiber distribution of a cross-section, it can be
noted that something like a minimum inter-fiber distance does not exist. In reality, many fibers appear to be
touching, or are very close to touching. A limitation of the CM model used in the proposed framework is that
we can not implement touching fibers, but a small minimum inter-fiber distance Dmi n has to be ensured in
order to mesh the matrix elements in between the fibers, always at least one element.

Summarizing, Dmi n is a necessary geometrical parameter for our model, and it has to be chosen as a fixed
value such that our results are comparable and coherent. Therefore, two SVEs which only differ in their
Dmi n value are not adequate to model two different materials, since we have seen that Dmi n does not exist
in reality and has to be kept equal if results between different models shall be compared.

At this point, we have to clarify a previous statement. The geometry of a SVE is indeed fully defined by the
three size-dependent geometrical parameters listed above, i.e. fiber diameter, inter-fiber distance, and SVE
size. However, the FRPC material represented by the SVEs is defined by the material parameter of its three
constituents (fiber, matrix, interface). We must distinguish between:

• Size-independent material properties

– Strength

– Stiffness

• Size-dependent material properties

– Fracture energies, thus indirectly: max. crack-opening displacement of matrix and interface ele-
ments.

Therefore, in order to fully define and model a material through SVEs and the CM model implemented in the
framework [30], the defining size-dependent parameters are 7:

• Fiber diameter

• Inter-fiber distance

• Fracture energies of matrix and interface elements

In the case of transverse tension, final failure and overall strength are determined by failure of the interfaces.
For such a study, the following two SVEs, i.e. materials, would yield identical results:

• 8µm fibers with Dmi n = 0.35µm and Gc
n = 2J/m2, and

• 2µm fibers with Dmi n = 0.0875µm and Gc
n = 0.5J/m2.

6The fact that we also kept the size of the SVEs constant shall not concern us at this point. A SVE of 12.5µm x 12.5µm would have been
adequate if we want to preserve also the ratio with the SVE size, but larger SVEs have the only effect that the obtained strength result is
more converged, i.e. the standard deviation of the 5 strength results decreases, see Figure 7.4.

7Omitting SVE size at this point in line with the previously presented reasoning.
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Herein, Gc
n denotes the critical fracture energy in the case of pure loading normal to the cohesive elements

of the fiber-matrix interface, as explained in Section 3.1.2.2.2. Only by intentionally not scaling some of the
listed values, can one model a different material. Analog to the example presented above, the SVE on the right
of Figure 7.22 corresponds to the following parameters: 2µm fibers with Dmi n = 0.35µm and Gc

n = 2J/m2.
Again, this is identical to a material/SVEs with 8µm fibers, Dmi n = 1.4µm and Gc

n = 8J/m2. Comparing with
the nominal SVEs used in the ensuing study, this is equal to same fiber diameter, but Dmi n and Gc

n scaled
up by a factor of 4. The undesired but inevitable effect of Dmin has been discussed already in the previous
paragraph. A similar conclusion has to be drawn for the fracture energy of the fiber-matrix interface Gc

n : when
scaled up by a factor of 4, Gc

n results in an unrealistic failure behavior of the SVEs. We shall briefly discuss the
influence of Gc

n on the results presented in this chapter:

Figure 7.14 shows the stress-strain curves for tensile loading and the nominal set of input parameters used
throughout this master’s thesis. With regard to this discussion, they are 8µm fibers, at Dmi n = 0.35µm
and with Gc

n = 2J/m2. All stress-strain curves in Figure 7.14 show the same trend: After a constant slope,
damage starts to initiate at the fiber-matrix interfaces and the slope changes up to the point of maximum
stress, after which the stress generally drops suddenly and drastically.

The value of Gc
n now determines how soon the SVEs fail after damage initiation, i.e. how brittle or ductile

the material behaves. The nominal value of Gc
n = 2J/m2 is relatively high, such that the stress-strain curve

has a noticeable knee, i.e. after the first interfaces have failed, they still bear enough strain-energy to be
dissipated before the stress-strain curve smoothly reaches the point of maximum stress. This is advan-
tageous if one wants to show the progression of the crack growth throughout a SVE, like in Figure 3.11,
but the non-linear part of the stress-strain curve is generally not observed when subjecting a FRPC ply to
transverse tension in a real-world experiment. In this scenario, they generally fail brittle, without a notice-
able non-linear part of the stress-strain curve [34]. Such behavior can also be represented with the used
model, just by decreasing the value of Gc

n . Lastly, it has to be remarked that it is extremely challenging to
determine the exact value of Gc

n through experiments on real AS4/8552 fiber-matrix interfaces. In conse-
quence, when it comes to choosing a value for Gc

n for your model, it is usually guesstimated/determined
such that the resulting failure behavior of the SVEs correlates with experiments.

For the presented studies performed with the proposed framework, the exact value of Gc
n does not play a

significant role because the overall obtained trends are considered to be less influenced by the value of Gc
n .

For the first study, the range of strength values obtained is far greater than the effect that Gc
n could exert,

see Figures 7.13 and 7.14. For the second study of mixing different fiber shapes, the absolute value of the
obtained strength is less important than being able to compare results for different fiber geometries.

Eventually, we now have to put all these effect into the perspective of the current study, trying to model differ-
ent fiber diameters through SVEs. The SVE/material on the right of Figure 7.22 is identical to the SVE/material
on the left of Figure 7.22, only that the minimum inter-fiber distance Dmi n as well as the fracture energies of
the matrix and interface elements, most notably Gc

n , are all scaled by a factor of 4. That increasing Dmi n sig-
nificantly increases transverse tensile strength has been discussed before, and the same has now been pointed
out for Gc

n . The result of both effects combined is now finally shown in Figure 7.23. Each 5 stress-strain curves
are shown for the three SVEs/materials presented in Figure 7.22, subjected to transverse tension.

The purple curves are the results of the nominal SVEs/material 1 used throughout this master’s thesis. In yel-
low are drawn the stress-strain curves of the aforediscussed material 2, which eventually is nothing else than
material 1 with Dmi n and Gc

n scaled by a factor of 4. As can be seen in Figure 7.23, this results in unrealistic
stress-strain curves. Damage initiation occurs at a stress 10MPa higher than for material 1, an effect primarily
attributed to the increased Dmi n. More notably, final failure only occurs after a very elongated section of the
curve. Such behavior can not be expected in reality, and is only due to the dissipation of the large fracture
energy value of the fiber-matrix interfaces of Gc

n = 8J/m2 for material 2.

This lengthy discussion, deemed necessary for the ensuing results presentation, can finally be concluded
with the following:

• The used methodology of SVEs is inadequate to model FRPC material cross-sections of each different
fiber diameters, either only small fibers, or only large fibers. This is due to the inherent length-scale
independent nature of the SVE methodology. An alternative approach would be to use an embedded
cell, if the effect of fiber diameter shall be assessed, not mixing two different fiber diameters.
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• However, what is indeed possible with the used SVE methodology is the modelling of materials mixing
two different fiber diameters, as is the final goal of this study. Figure 7.23 shows that the stress-strain
curves of the SVEs with mixed fiber diameters do agree with behavior observed in experiment. On the
other hand, the gain in transverse strength is of course less pronounced than for the unrealistic case of
8F F = 0, i.e. material 2. In this case of mixing two fiber diameters, the results have to be interpreted
keeping in mind the discussed effect of the minimum inter-fiber distance and the fracture energies
of the constituents. Both are size-dependent input parameters of the SVEs and material model with
significant influence on the transverse strength, but difficult to choose appropriately. With this in mind,
the results of the study can now be presented.
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Figure 7.23: Plot of the stress-strain curves for 8µm fiber fractions of RF F = 0,0.5,1, from left to right, and for each 5 SVE realizations.
The stress-strain curves are plotted up to the point of maximum stress. As can be seen, the SVEs for RF F = 0, with minimum inter-fiber
distance Dmi n and interface fracture energy Gc

n scaled by a factor of 4, result in stress-strain curves with an unrealistic non-linear part
up to failure.

7.4.2. Tension
For the choice of input parameters and their ranges as outlined above in Section 7.4, the approximation func-
tion to be found becomes

σtr ansver se,tensi on = f̃ (8F F,FV ol F ). (7.7)

A total of 17 datapoints were simulated and none of them aborted. As in the preceding study, the number of
datapoints was visually determined. Figure 7.24 shows the spatial distribution of the 17 datapoints as well as
the final NN approximation of 7.7.

The first observation which has to be pointed out is the trend of the observed effects. As can be seen, the
familiar effect of fiber volume fraction remains the same for all simulated materials. Since we fixed I F S =
MS = 1, we are in the region of interface-dominated final failure, and thus having less fibers results in a
slightly higher transverse tensile strength. The effect that we are most interested in however is the one of
mixing the two different fiber diameters. The discussion of the previous section concluded that the results
for the lower limit 8F F = 0, i.e. material 2, have to be discarded. Figure 7.24 illustrates this readily, by the
suddenly peaking strength values when approaching 8F F = 0. The divergence of the surface towards this
limit value can be taken as a practical measure for deciding up to which mixing ratio 8F F the results are valid.
In this case, we might draw this line between 8F F = 0.5 and 8F F = 0.25.
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Figure 7.24: NN approximation of Equation 7.7 for a total of 17 datapoints. The output variable transverse tensile strength is plotted
over the two input variables fiber volume fraction FVolF and 8µm fiber fraction (8FF). The color of the datapoints corresponds with the
relative standard deviation, i.e. standard deviation of the five stress values calculated at this combination of input parameters, divided
by their mean stress value. For better readability, the contour lines at fixed values for the FVolF, i.e. FV ol F = 35,40,45% and
8F F = 0.25,0.5,0.75 are projected onto the vertical plane.

Up to this value, we observe a steady increase in transverse strength between 4...8MPa. The comparison
of stress-strain curves in Figure 7.23 provides a more detailed explanation. For equal mixing of both fiber
diameters, i.e. the curves drawn in green, we can observe that damage initiation occurs slightly later than for
the nominal curves in purple. Second, the softening of the stress-strain curve, up to the point of final failure,
occurs more gradual. When interpreting the former effect, we must take into account the inter-fiber distance,
which is constant throughout the SVEs. As outlined above, what is important for the development of stress
concentrations is the ratio of inter-fiber distance to fiber diameter. Obviously, for the smaller fibers, this
ratio is lower compared to the bigger fibers, and the same may hold for the stress concentrations developed
between closely neighboring fibers.

Another effect of a constant value for Dmi n is that the distributions of the smaller fibers are more regular.
The total volume fraction which is taken up by the sum of the artificial disks of Dmi n around each fiber is
larger for the smaller fibers, as can be readily observed in Figure 7.22 comparing the left and right SVEs. In
consequence, the smaller fibers and constant Dmi n don’t allow for pronounced resin pockets to form, as is
the case for SVEs of larger fibers. Since we are applying a thermal step, significant residual thermal stresses
are created within the SVEs, particularly where regions of resin pockets are next to closely neighboring fibers.
Damage initiation then generally starts in these regions. In consequence, this is one of the contributing effects
to the observation that SVEs of mixed fiber diameters first develop damage around larger fibers, and fail
eventually along their lines as well.

When interpreting the more gradual development of damage up to final failure, we must further take into
account the fracture energy of the interfaces. Replacing a certain volume fraction of larger fibers with smaller
fibers increases the amount of interfaces within a SVE. Scaling the fiber diameter by 4 results in a 4 times
higher sum of the circumferences of all fibers, and accordingly 4 times more interfaces within the SVE. For
the extreme case of 8F F = 0, there are four times more interfaces in the SVE. However, final failure occurs
generally within a vertical band through the SVE, therefore with only 2 times more interfaces participating.
This increased number of interfaces is able to dissipate more fracture energy than in the nominal case. At
this point, we have to acknowledge that the model assumes the same fracture energy Gc

n for all interfaces. An
important question is whether the interfaces of smaller fibers in reality would have the same Gc

n value. For
future work, we therefore recommend to repeat this study for different values of Gc

n for all interfaces, or to
assign smaller values only to the smaller fibers. Both might change the magnitude or trend of the strength
increase as it is shown in Figure 7.24.
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7.4.3. Compression
The same SVEs were subjected to transverse compression, with the approximation function to be found being

σtr ansver se,compr essi on = f̃ (8F F,FV ol F ). (7.8)

A total of 29 datapoints were simulated and none of them aborted. Figure 7.25 shows the spatial distribution
of the 29 datapoints as well as the final NN approximation of 7.8.

As in the tensile case, increasing the amount of smaller fibers increases the overall strength, for all fiber vol-
ume fractions. Contrary to the tensile case, the hybrid effect under compression is stronger than the FVolF
effect, with strength increases between 17...25MPa for mixing in up to 75% of the smaller fibers. Relative to
the mean strength values, the strength increase is between 10...15%, just like in the tensile case.

Different than in the tensile case, the results for only smaller fibers, i.e. 8F F = 0, now fit better with the rest of
the surface. This should not be seen as a positive sign, but more as a sign of caution when interpreting the re-
maining data. Transverse damage starts with interface debonding, which then triggers damage of the matrix
under shear. Final failure consists of a linked shear band within the matrix, all through the SVEs. The value of
the interface fracture energies Gc

n and Gc
s plays a significant role in determining how soon and how severe the

interface failure triggers damage within the matrix, which eventually causes final failure. Lastly, the effect of
the minimum inter-fiber distance Dmin should be considered, although the preceding study suggested that
its influence in the case of compressive loading is less significant, see Section 7.3.4. For future studies, further
investigations into both of these aspects are recommended, in order to substantiate the significant strength
increase found in this study.

Lastly, an interesting observation can be made: For the nominal material used throughout this master’s thesis,
i.e. 8F F = 1, representing today’s FRPC materials, increasing the FVolF decreases the transverse compressive
strength. When adding smaller fibers to the SVEs, this effect steadily reverses, up to the point of 8F F = 0
where an increased fiber volume fraction increases the compressive strength. As discussed before, these last
results represent a different material, far from today’s possibilities. Still, the trend shows that increasing the
fracture toughness of the fiber-matrix interfaces would greatly benefit the transverse compressive strength of
UD CFRPC plies. Up to the point, that high fiber volume fractions would increase the strength, as in the case
of replacing circular with 4-lobed fibers see Section 7.3.4. Since high FVolF are generally also desirable for
best longitudinal properties, this would be especially advantageous.
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Figure 7.25: NN approximation of Equation 7.7 for a total of 29 datapoints. The output variable transverse compressive strength is
plotted over the two input variables fiber volume fraction FVolF and 8µm fiber fraction (8FF). The color of the datapoints corresponds
with the relative standard deviation, i.e. standard deviation of the five stress values calculated at this combination of input parameters,
divided by their mean stress value. For better readability, the contour lines at fixed values for the FVolF, i.e. FV ol F = 35,40,45% and
8F F = 0.25,0.5,0.75 are projected onto the vertical plane.
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7.4.4. Summary
Hereby, we conclude the presentation of results for the study of the transverse tensile/compressive strength
of a UD CFRPC ply, as a function of the total fiber volume fraction and the fraction of bigger to smaller fibers
within the sves. The developed framework was used to determine the corresponding surrogate models which
describe this relationship, in an automated way, and based on a non-optimized amount of 17 and 29 data-
points respectively.

The surrogate models suggest that both transverse tensile and compressive strength could be increased by
up to 10...15 % for mixing smaller fibers with our nominal AS4-CF. However, this rests on the assumption
that the interfaces of the smaller fibers would have the same fracture energies than their larger counterparts.
Furthermore, the influence of the minimum inter-fiber distance Dmin has to be weighed in. Throughout
each SVE, Dmin was kept constant meaning that stress concentrations will focus around the larger fibers.
Since Dmin is a non-physical modelling parameter which does not exist in the reality of actual FRPC plies, its
contribution to the shown hybrid effect should be further assessed in future studies, in particular for tensile
loading. The same holds for the influence of the value of the fracture energies of the smaller fibers.

While the generated results provide a possible first insight into the transverse strength of a hybrid UD CFRPC
ply, they also highlighted the challenges of modelling the effect of size-dependent parameters with the SVE
methodology. The effect of all size-dependent modelling parameters must be well known and considered,
and the minimum inter-fiber distance introduces another undesired influence. A CM model which can con-
sider SVEs with touching fibers, and adequately model the fiber-fiber interface, would be advantageous but
remains for now on the further horizon.

Having presented the results of the last example study, we may now summarize the results of all studies.

7.5. Summary
Hereby, we conclude the chapter presenting the five example studies performed with the proposed frame-
work. For varying input parameters, we determined their functional relationship with the transverse tensile
and compressive strength of a UD FRPC ply. This was achieved by the proposed ’smart’ framework for Com-
putational Micromechanics in an automated way, and based on a user-defined minimum number of sim-
ulated datapoints. As was shown in this chapter, the developed framework can be used to perform a wide
variety of studies in a conveniently automated way. Since it is not limited in the number of parameters to be
explored simultaneously, it can be used to determine global surrogate models, relating for example a complex
ply property such as transverse strength to all dependant parameters deemed relevant by the user.

In the first two studies, we characterized two important modelling parameters of the used Computational
Micromechanics (CM) model and methodology of Statistical Volume Elements (SVEs): minimum inter-fiber
distance Dmin and SVE size. The former was confirmed to have a significant influence on transverse tensile
strength, as reported in literature. In order for results to be comparable, we fixed Dmin at a nominal value
of 0.35µm. The latter, i.e. SVE size, was shown to depend on the Fiber Volume Fraction (FVolF) as expected.
The framework in its current status required a fixed SVE size for all studies to be performed, varying FVolF
over the wide range of 30% ≤ FV oLF ≤ 70%. Based on the results of the second study, we chose a nominal
SVE size of 50µm x 50µm as a compromise between convergence of the results and required computation
time. For FV oLF ≥ 40%, the nominal SVE size results in well converged strength results. For an evolution
of the developed framework, it could be envisaged to implement a variable SVE size. It could be adapting to
the FVolF of the datapoint to be computed, or be increased automatically until every datapoints achieves the
same accuracy.

After having adequately fixed these modelling parameters, three studies were performed with the developed
framework, in order to globally and quantitatively characterize the transverse strength of a UD FRPC ply.

First, the dominant influence of the constituent strengths was confirmed. The ratio of Matrix Strength (MS)
and Interface Strength (IFS) defines the overall failure mode of the ply, either dominated by interface or ma-
trix failure, or a mixture of both. For the tension case, today’s CFRPC materials lie well within the interface-
dominated region. For compressive loading, our results suggest that both constituent strengths are equally
contributing. Recalling the objective to improve the transverse strength of today’s CFRPC materials, for a
steepest increase under both loading conditions, research needs to focus on improving the strength of the
fiber-matrix interface. What might be easier to achieve today is to improve only the matrix strength. Our re-
sults suggest that this would improve the transverse compressive strength of the ply, while keeping the tensile
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strength unchanged. Lastly, the effect of the FVolF was determined. It can be generalized as the following: In-
creasing the volume fraction of the failure-dominating constituent decreases the overall transverse strength.
For today’s CFRPC materials, higher FVolF decreases the overall transverse strength of the ply. Our results
confirm that in the compression case the magnitude of this effect is smaller. In general, the effect could be
reversed for an increased IFS.

The last two example studies were dedicated to exploring the effect of fiber-by-fiber hybridization of a UD
ply of today’s CFRPC materials. To do so, the constituent strengths were fixed at their nominal values MS =
I F S = 1 and new geometrical parameters were introduced.

In a first case, fibers of circular cross-sections were mixed with 4-lobed ones, for varying FVolFs. No significant
change in transverse tensile strength was found. Compared to results from literature [30], this is a positive
outcome, as it revokes a reported tensile strength decrease for 4-lobed fibers. For compressive loading, the
case changes. A significant strength increase of up to +13% was found for increasing fractions of 4-lobed
fibers, most amplified for high FVolFs. For only 4-lobed fibers, the common strength-decreasing effect of
high FVolFs is even reversed. Aside from these findings, it was highlighted that non-circular fiber shapes may
introduce another influential geometrical parameter: the orientation of the cross-section. The results in the
tension case suggested that the latter further depends on the FVolF, as certain fiber shapes like to arrange
in distinct non-random patterns for a given FVolF. That such an alignment may have a significant effect on
transverse strength has been reported in [30] and is re-suggested by our results.

In the last study finally, our nominal circular fibers were mixed with smaller fibers, also circular, again for
varying FVolFs. Significant increases in both transverse tensile and compressive strength were found, for in-
creasing fractions of smaller fibers. At the same time, these results were obtained for the assumption that
both the nominal and the smaller fibers have the same IFS, including fracture energies, i.e. crack-opening
displacement. In particular the latter part is questionable, that the crack-opening displacement be indepen-
dent of the fiber diameter. Further studies are recommended to investigate a possible influence, assigning a
different fracture energy to the smaller fibers. Lastly, the effect of the minimum inter-fiber distance Dmin was
pointed out. In SVEs of mixed fiber diameters, only a single value of Dmin can be imposed. In consequence,
stress concentrations focused around those fibers with smaller Dmin-to-diameter ratio, i.e. the larger fibers.
In summary, while promising results were achieved, we also had to take note of some of the challenges when
trying to model size-dependent effects with the used SVE methodology. In particular, the size-dependent
parameters Dmin and the interface fracture energies have to be well controlled.
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Conclusions

We now have presented all major parts of the work of this master’s thesis. In order to draw conclusions, we
shall turn towards the research questions that we initially set out with in the introduction:

I Can we adapt the combined DoE-CM-NN approach to efficiently generate a comprehensive analytical
surrogate model of a complex material property such as the transverse strength of a UD FRPC ply?

II Putting to use the developed framework, what are the main parameters determining the low transverse
strength of a UD FRPC ply? Can hybridization at fiber-by-fiber level, i.e. the mixing of circular and
non-circular fiber shapes, and the mixing of different fiber diameters improve transverse strength?

III Based on the potential answers found to these last questions through the proposed framework, what
are the most promising directions of research to improve the transverse strength of FRPC materials?

The first question, about the methodological proof-of-concept of the framework, can be answered positively:

• The baseline of the work of this thesis is the approach of combining Design of Experiments (DoE),
Computational Micromechanics (CM), and Neural Networks (NNs). While this idea has been reported
on in literature [7][23][6], it had not yet been applied to the complex problem of failure prediction of a
composite material at ply level. In this work we were now able to show that the CM model required for
this problem is both mature and computationally cheap enough to allow for its automatic exploitation
through such a combined approach. Moreover, the developed framework for ’smart’ Computational
Micromechanics allowed to determine a comprehensive analytical surrogate model of the transverse
strength of a Unidirectional Fiber-Reinforced-Polymer-Composite (UD FRPC) ply.

• Previously, studies of such failure predictions by CM have only explored the effect of one parameter at
a time [30][27][44]. In contrast, the proposed ’smart’ framework now allows to characterize the inter-
related influence of several parameters, at the same time and in a fully automated way. In one of the
performed studies, we so determined the surrogate model that relates the overall transverse strength
of the ply with its main dependencies: Matrix Strength (MS), fiber-matrix Interface Strength (Interface
Strength), and Fiber Volume Fraction (FVolF).

• The question may be raised whether this surrogate model is truly ’comprehensive’, or whether more
input parameters would need to be considered for that. The latter is not a problem for the developed
framework, as it is generally not limited in the number of input parameters to vary. More modelling pa-
rameters may be readily included. In another study not reported herein we added the minimum inter-
fiber distance Dmin to the three parameters mentioned above, a further extension with the fiber-matrix
fracture energies may be interesting to consider as well. The main challenge for increasing numbers of
parameters is expected to be the computation time. For the presented studies in Chapter 7, this was
not an issue yet. In fact, we did not have to care about optimizing the number of datapoints to simulate,
or the computation time of each simulation, or to move our computations to a cluster. For more than
five input parameters however, increasing computation time and these three mitigation strategies are
expected to become more relevant.

93
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The second research question, about insights gained into the transverse strength of a UD FRPC ply, can be
answered with the following:

• The first surrogate model generated with the framework indicates that the main parameters determin-
ing the transverse strength of a UD FRPC ply are the constituent strengths, i.e. MS and IFS. Their ratio
determines which constituent is the dominant contribution to the final failure mode, and this ratio
depends on the loading case. Under tensile loading, the found surrogate model shows that the ratio
of their tensile strength components indicates 1:1 which constituent fails primarily. For today’s AS4-
CF/8552 material for example, the much weaker interface fails first. Accordingly, the only way to in-
crease transverse tensile strength is by increasing the Interface Strength. If the IFS could be increased
up to the value of the MS, the overall failure mode would become an equal mix of matrix and interface
failure.

The situation changes under compressive loading. Again, the ratio of the constituent strengths is deci-
sive, but its value is different than in the tensile case. The determined surrogate model quantifies that
for today’s AS4-CF/8552 material, both constituent strengths are equally contributing to overall fail-
ure. This is surprising because the IFS is only about one third of the value of the matrix strength1. The
explanation is the mixed failure observed in experiments of UD FRPC plies under transverse compres-
sion. Final failure occurs as a combination of interface debonding and the development of shear bands
within the matrix. The results generated by the framework now quantify the contributions of each fail-
ure mode, which turn out to be about equal for today’s AS4-CF/8552 material. In consequence, this
suggests that the transverse compressive strength of these materials could be readily improved by in-
creasing any of the two, either MS or IFS.

Aside from the primary effect of the constituent strengths, a secondary effect on transverse strength
was attributed to the Fiber Volume Fraction (FVolF). For both tensile and compressive loading, it can
be generalized that increasing the volume fraction of the weaker constituent decreases the strength.
Accordingly, today’s AS4-CF/8552 material falls well within the region where higher FVolF leads to a
strength decrease. For increased IFS, this effect could be reversed.

• The second and third surrogate models generated with the framework explored the effect of hybridiza-
tion on the transverse strength of a UD FRPC ply. For this, the constituent strengths were fixed at the
nominal values measured for AS4-CF/8552, i.e. MS = I F S = 1. First, fibers of circular and 4-lobed
cross-sections were mixed, at varying total FVolFs. The results indicate no change of transverse ten-
sile strength. Under compressive loading however, the overall strength increased by up to +13% for
increasing fractions of 4-lobed fibers, an effect showing most amplified for high FVolFs.

In the second part, the nominal AS4-CF were mixed with their counterparts of one fourth the nominal
diameter. The results show notable increases in both transverse tensile and compressive strength, for
increasing fractions of the smaller fibers. In the tension case, this effect is independent of the FVolF,
in the compression case it is intensified for higher FVolF. It has to be remarked that these results were
obtained for the assumption that both the nominal and the smaller fibers have the same IFS, including
fracture energies, i.e. crack-opening displacement. Further studies are recommended to substantiate
this assumption, or to investigate to which extent the observed effect changes if a different fracture
energy is assigned to the smaller fibers.

The third research question asks for suggestions to improve the low transverse strength of today’s FRPC ma-
terials. Based on the obtained results, the following can be summarized:

• The performed studies confirm that the steepest increase in transverse strength can only be achieved
by directly increasing the strength of the matrix or the fiber-matrix interface. For the tensile loading
case, only an increase in IFS can lead to improvements for today’s AS4-CF/8552 material. For the com-
pressive loading case and the same material, both an increase in IFS or MS would equally increase the
transverse compressive strength of the ply.

An improvement of secondary order could be achieved by fiber-by-fiber hybridization. Replacing cir-
cular AS4-CF with 4-lobed fibers of identical properties would have no effect on transverse tensile
strength, but increase the compressive strength of the ply by up to +13%, as suggested by our results.

1Comparing their tensile components.
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Mixing in smaller fibers is indicated to lead to improvements of both tensile and compressive strength
of a AS4-CF/8552 ply. For increased confidence in these latter results however, we recommend an ex-
tension of the performed study, to determine the dependence of these results on the interface fracture
energies of the smaller fibers.



9
Future Work

Based on the findings of this master’s thesis, we want to recommend possible ways to continue this work.
We shall distinguish three categories. First, we recommend ways to further exploit the already generated
data. Second, we lay out options how the performed studies could be extended in promising ways. Third, we
suggest improvements and additions to the developed ’smart’ framework.

Without requiring any extra analyses, only by exploiting the already generated data, we propose the following:

• Exploit strain: As mentioned before, the shown results in Chapter 7 only used a single point of the stress-
strain curve which has been generated for every simulation: the maximum stress. Without requiring
any additional analyses, surrogate models could be generated for the strain at failure, for example. This
property of a Unidirectional Fiber-Reinforced-Polymer-Composite (UD FRPC) ply is equally important
to consider in layups like the cross-ply, where the transversely loaded ply may fail early on due to its low
strain-to-failure. As we have observed and discussed before, the observed variations in strain-to-failure
are higher than for the maximum stress. Therefore, a more precise determination of the surrogate
models for strain-to-failure may require a larger Statistical Volume Element (SVE), and/or a fine-tuning
of the chosen values for the interface fracture energies.

• Exploit strain-energy-at-failure: On the same note, another ply property of interest could be the macro-
scopic strain energy dissipated until failure. This value has been recorded for all performed simulations
and the corresponding surrogate models could be readily generated.

• Approximate the full stress-strain curve: In order to exploit the valuable generated data as much as pos-
sible, another possibility would be to let the Neural Network (NN) approximate the entire stress-strain
curve. An example case has been reported in [7], although the SVE approach used in this thesis would
require some adaptations to this. While a NN generated stress-strain curve would be both impres-
sive and very visual, it would be harder to compare the full stress-strain curvers in higher-dimensional
plots like the ones we showed in Chapter 7. At the same time, the question has to be raised how much
additional information does the full curve provide, which we can not extract in a more distilled way
otherwise? The main point of interest could be the non-linear part of the curve, albeit it generally being
very small for today’s FRPC materials under transverse loading. Still, the full stress-strain curve may aid
in the development of a constitutive description of the material until failure.

• Combine plots: Chapter 7 illustrated the analytical surrogate model obtained for each study and each
loading case. The advantages of having an analytical description of a complex ply property were touched
upon with the gradient plots, but could be explored further. In an example case not reported in this doc-
ument, we combined the plots for transverse tension and compression of the first study on the effect
of the constituent strengths. The combined plot can then be a summation of both, such that the user
can easily and visually optimize for a common maximum of both transverse tensile and compressive
strength. More complex design rules could be imagined, for example to specify a minimum transverse
tensile strength and strain-energy-at-failure, and then to optimize for transverse compression in the
remaining area of possible input parameter combinations.
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• Determine simple constitutive equations: The found surrogate models are already analytical functions
describing the material property relationship that we are interested in. Although they describe a func-
tion which is not too complex, a NN of even just a single layer and ten neurons is already too compli-
cated to write out. Since the underlying function is generally not very complex, it should be attempted
to describe it with a simple, readable and easily understandable equation. Eventually, this could be a
logical next step in the data-driven development of constitutive equations describing frpc materials up
to failure.

With the possibility at hand to extend the performed studies, we propose the following:

• Regarding the first study, the development of a single comprehensive surrogate model characterizing
the transverse strength of a UD FRPC ply:

In the first study, as presented in Section 7.2, we extended the limits of Interface Strength (IFS) and
Matrix Strength (IFS) unrealistically far. This was done since we wanted to determine the overall and
general relationship between the constituent strengths and macroscopic transverse strength. Unsure
how far we would have to extend the values of IFS and MS for that, we ended up with the presented
results. For a follow-up study however, we can now significantly reduce their ranges, covering matrix
or interface degradation in relevant use cases such as HOT/WET, and instead introduce the simulated
loading case as a continuous parameter to vary. A model of longitudinal and in-plane shear [73] as well
as for mixed loading cases [72] has been readily developed at IMDEA Materials and could be imple-
mented. The final goal would be to obtain a single surrogate model describing all failure modes of a
UD FRPC ply which can be modelled with the given 2D or shallow 3D SVE representation.

Lastly, the inclusion of void modelling could improve the accuracy and relevance of our surrogate mod-
els. A relevant modelling strategy has been readily developed at IMDEA Materials [75], and could be
implemented into the used Computational Micromechanics (CM) model.

• Regarding the second study, the mixing of circular and 4-lobed fibers:

In the tensile case, the strength values showed surprising oscillations at small magnitude for fixed Fiber
Volume Fraction (FVolF) but varying mixing ratios. A suspected reason for that is the packing of the
4-lobed fibers, which might depend on the FVolF. To clarify this effect, we suggest to repeat this study
for larger and more SVEs per datapoint, and to record the angular orientation of all fibers within the
SVEs. It is suspected that the distribution of the latter is not uniformly random, but would change in a
deterministic way, depending on the FVolF and the mixing ratio. For the case of 4-lobed fibers the effect
on transverse strength may be small, but that could change for more anisotropic fiber shapes, such as
2-lobed. As shown in [30], a uniform alignment of such non-circular fibers can have a significant effect
on transverse strength of a UD FRPC ply.

• Regarding the third study, the mixing of nominal and smaller fibers:

As mentioned in the conclusions of the previous chapter, the results of this study depend on the value
chosen for the fracture energies of the smaller fibers. In this case, the same value was chosen for both
the nominal and the smaller fibers. It is recommended to assign different values for the fracture en-
ergies of the interfaces of the smaller fibers, e.g. as an additional input parameter to vary. Hereby,
the robustness of the shown results for these modelling assumptions could be quantified, and so the
reported promising hybrid effect could be judged more precisely.

A main goal of this master’s thesis was the development of the proposed framework for ’smart’ Computational
Micromechanics. While the general idea of combining Design of Experiments, Computational Modelling,
and Neural Networks is not new, its specific adaptation to our CM model, including failure modelling of the
constituents, posed a set of unique challenges. To further improve on the developed framework, we propose
the following:

• Implement other space-filling algorithm: As suggested by [64], a space-filling algorithm which com-
bines regular and random features for filling the parameter space may improve the results and conver-
gence speed of the DoE approach. Suggested methods by [6] are Latin Hypercube Sampling [45] and
Sobol Sequence [68].
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• Automatically adapt the SVE size: As discussed in Section 4.4.2 and Section 7.1.2, the size of the used
SVEs determines the accuracy of each datapoint. In the current version of the framework, a fixed value
has been chosen for the size of the SVEs. Since we are varying the FVolF in many studies as one of
the input parameters, it would be beneficial to scale the SVE size according to the FVolF, such that
the number of fibers within the SVE is maintained constant. A more complex rule could be to choose
the SVE size for every datapoint to compute such that the variation of the SVE results reaches a set
minimum value.

• Consolidate the criterion to determine the optimum number of datapoints: As discussed in Section
6.5.1, it is difficult to specify a general rule or threshold accuracy, by which the framework can au-
tomatically determine how many datapoints it has to compute until the results are sufficiently con-
verged. The maximum accuracy which can be reached within a reasonable computation time may vary
between studies, loading cases and the number of input parameters. To find a suitable general criterion
would be advantageous, although the framework in its current form is not significantly hindered by not
having such a criterion. Visual check of the convergence plot by the user is equally sufficient for now.

• Allow irregular parameter grids: The current version of the developed framework can only generate
"regular" parameter spaces, combining all input parameters in all combinations throughout their value
ranges. However, it may be advantageous to be able to specify a-priori to exclude certain areas of the
parameter space. In the case of the first study presented in Section 7.2, it would have been beneficial
to not simulate any combinations of low IFS and high MS, particularly for low FVolFs. The implemen-
tation of a space-filling algorithm which takes such boundary conditions into account is complex, but
has been reported on [38].

• Implement tools for efficient evaluation of high-dimensional data: The example studies performed
with the proposed framework were limited to a maximum of three input parameters and a single out-
put parameter. When further extending the number of input parameters, as proposed above, the visu-
alization and representation of the resulting high-dimensional data will become a challenge. In order
to cope with this, appropriate data-visualization and analysis tools should be implemented into the
framework.
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