

Delft University of Technology

Fuzzing Graph Database Applications with Graph Transformations

Dumbrava, Stefania; Oudemans, Melchior W. M.; Ozkan, Burcu Kulahcioglu

DOI
10.1007/978-3-031-94706-3_7
Publication date
2025
Document Version
Final published version
Published in
Graph Transformation - 18th International Conference, ICGT 2025, Held as Part of STAF 2025,
Proceedings

Citation (APA)
Dumbrava, S., Oudemans, M. W. M., & Ozkan, B. K. (2025). Fuzzing Graph Database Applications
with Graph Transformations. In J. Endrullis, & M. Tichy (Eds.), Graph Transformation - 18th International
Conference, ICGT 2025, Held as Part of STAF 2025, Proceedings: International Conference on Graph
Transformation (pp. 135-156). (Lecture Notes in Computer Science; Vol. 15720 LNCS).
https://doi.org/10.1007/978-3-031-94706-3_7
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-94706-3_7
https://doi.org/10.1007/978-3-031-94706-3_7

Green Open Access added to TU Delft Institutional Repository
as part of the Taverne amendment.

More information about this copyright law amendment
can be found at https://www.openaccess.nl.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the

author uses the Dutch legislation to make this work public.

https://repository.tudelft.nl/
https://www.openaccess.nl/en

Fuzzing Graph Database Applications
with Graph Transformations

Stefania Dumbrava1(B) , Melchior W. M. Oudemans2 ,
and Burcu Kulahcioglu Ozkan2

1 ENSIIE & SAMOVAR - Télécom SudParis, Paris, France
stefania.dumbrava@ensiie.fr

2 Delft University of Technology, Delft, Netherlands

Abstract. Graph databases have surged in popularity, and applications
increasingly employ them to store and retrieve interconnected data. How-
ever, testing graph database-backed applications has distinctive chal-
lenges. Due to the sheer dimension of the graph schema state space,
testing applications using naive random graph instances is unlikely to
cover a large portion of an application program. We present PGFuzz, a
graph transformation-based greybox fuzzer for testing graph database-
backed applications, that is, to the best of our knowledge, the first fuzzer
to specifically target graph database applications. PGFuzz builds on top
of state-of-the-art graph generators and utilizes graph transformations
guided by code coverage to produce application test inputs. PGFuzz’s
graph transformations are schema-aware and support recently introduced
graph schema, key, and cardinality constraints. We evaluate PGFuzz on
graph database applications that we curate from open-source reposito-
ries and show that PGFuzz substantially improves the test coverage of
graph database-backed applications compared to the state-of-the-art.

Keywords: graph database applications · graph transformations ·
graph schema constraints · fuzzing · automated testing

1 Introduction

The popularity of graph database management systems (GDBMSs) has surged in
recent years, driven by the increasing need to efficiently store, process, and ana-
lyze complex graph data [71]. Due to being custom-built to handle relationship-
centric scenarios, GDBMSs have numerous use cases [40,58,70] involving highly
connected data, ranging from healthcare [7,14,38,67], finance [15,36,50], to
transportation [39,41,65], and various enterprise applications [72].

Prominent examples of commercial GDBMSs include both native graph
and multi-model systems. The former leverage graph data models, such as in
Neo4j [57], MemGraph [53], or TigerGraph [76], or triple stores, as in Ama-
zon Neptune [16], AllegroGraph [8], or BlazeGraph [21]. Multi-model systems
mix several models, with the main ones being, for example, wide-column stores
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
J. Endrullis and M. Tichy (Eds.): ICGT 2025, LNCS 15720, pp. 135–156, 2025.
https://doi.org/10.1007/978-3-031-94706-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-94706-3_7&domain=pdf
http://orcid.org/0000-0002-6664-0620
http://orcid.org/0009-0000-5186-2266
http://orcid.org/0000-0002-7038-165X
https://doi.org/10.1007/978-3-031-94706-3_7

136 S. Dumbrava et al.

(JanusGraph [46], DataStax [27], Titan [77], etc.), key-value stores (Hyper-
GraphDB [42], DGraph [28], RedisGraph [69], etc.), document stores (Azure
Cosmos DB [55], ArangoDB [13], OrientDB [61], etc.) or relational tables (Agens-
Graph [20], Db2 Graph [43], Oracle Spatial and Graph [60], etc.). In this work, we
target native GDBMSs, represented by the popular Neo4j database, and multi-
model ones, represented by JanusGraph, one of the few GDBMSs equipped with
not only graph schema, but also advanced integrity constraint mechanisms [11].

The behavior of graph database-backed applications depends on the con-
tents of the input graph database. Therefore, exercising various executions of
an application’s logic requires the use of different input graph instances, as they
can activate different parts of the application logic. Unforeseen input database
instances may result in unexpected and erroneous application behaviors.

Ensuring the reliability of graph database applications through testing faces
significant challenges in terms of validity and effectiveness. First, the database
instances for the graph database applications must satisfy complicated con-
straints determined by application semantics, which are nontrivial to synthe-
size. Second, effectively exploring the application logic requires generating graph
database instances that can trigger various parts of the application code.

An intuitive approach to test graph database-backed applications is to stress-
test them using graph instance generators, such as the state-of-the-art schema-
driven graph generators gMark [18] and pgMark [75]. However, while these
schema-driven generators solve the problem of validity, they do not offer effec-
tive testing of the applications. They only generate graphs that comply with a
given graph data schema, which makes them inherently limited in their cover-
age of all application behaviors. Although most graph databases do not enforce
schema constraints, these are crucial to data quality [22,44], data integration,
and data exchange [19,33]. The application programs process the retrieved
data and ensure its integrity. As such, they perform operations and substitu-
tions on graph database instances. However, schema-driven graph generators
often fail to cover all branches of an application, particularly logic involving
application-specific substitution values. Additionally, these generators produce
database states independently, without leveraging insights from previously gen-
erated states. This limits their ability to cover complex applications with nested
branching logic.

Fuzzing [52,82,84] is a popular approach for software testing. Blackbox
fuzzing treats the program as a black box, i.e., it does not know the internal
structure and branching of the program and generates test inputs randomly,
independent of the program logic and the other test inputs. In contrast, white-
box fuzzing [35] analyzes the program’s internals to create test inputs. This
involves examining the program’s branching logic and using satisfiability solvers
to generate inputs that can trigger specific branches. While blackbox fuzzing may
struggle to effectively exercise rare or deep code branches by creating inputs that
can navigate less frequent paths, whitebox fuzzing requires complete knowledge
of the system being tested and is computationally intensive.

Fuzzing Graph Database Applications with Graph Transformations 137

Greybox fuzzing [82] combines both effectiveness and efficiency by utilizing
information gathered from the program being tested, such as execution branch
coverage, to generate new test executions. A prominent approach is coverage-
guided greybox fuzzing, which creates new test inputs by modifying previous
inputs that trigger new coverage during execution. Testing the application with
these modified test cases allows for more effective exploration of low-frequency or
deeply nested program paths and helps with the discovery of new paths. Greybox
fuzzing has been shown to be an effective automated approach for testing various
application domains [52,84]. However, to our knowledge, there are no fuzzers
designed to generate graph inputs for graph database-backed applications.

Fuzzing at the input level is often insufficient for graph-backed applications,
where control flow depends on the structure and content of the database, such as
missing properties, relationship counts, or specific subgraph patterns. PGFuzz
addresses this by targeting the database state directly to explore such logic. It
is the first greybox fuzzer for graph database-backed applications that combines
schema-aware and constraint-aware graph transformations with coverage-guided
feedback. To ensure validity, PGFuzz builds on top of state-of-the-art gMark [18]
and pgMark [75] graph generators and then mutates the generated instances to
uncover new application behaviors. To address scalability, PGFuzz operates on
an in-memory graph model and simulates database calls through a lightweight
API, avoiding the overhead of actual GDBMS operations and enabling fast,
efficient fuzzing across large input spaces.

While PGFuzz is the first greybox fuzzer targeting graph database-backed
applications, its primary novelty is its use of schema-aware mutations, which pro-
duce input graphs that respect schema-defined structure and types while deliber-
ately violating key and cardinality constraints through targeted property muta-
tions. These mutations, informed by the recent PG-Schema [11] language, con-
trast grammar-based fuzzers—which strictly enforce grammatical constraints—
by intentionally generating graph instances that are syntactically valid, accord-
ing to the schema types, but that violate key and cardinality constraints. This
allows PGFuzz to thoroughly test the application logic responsible for main-
taining data integrity and schema compliance.

Testing graph database-backed applications is an underexplored area, and
there are no openly available sets of such benchmark applications. For the empir-
ical evaluation, we examined open-source applications built on top of Neo4j [57],
one of the most popular graph databases [73], and JanusGraph [46], one of the
few graph databases to enforce schema constraints [11], and compiled a custom
benchmark suite for testing database-backed applications. We evaluate PGFuzz
against existing graph generators for test generation and show its superior cov-
erage. Our tests revealed several bugs in the application programs that manifest
when using certain graph database instances as input states.

In summary, this paper makes the following contributions:

– PGFuzz, the first greybox fuzzer for testing graph database-backed applica-
tions that uses schema and constraint-aware graph transformations to gener-
ate input graph database instances.

138 S. Dumbrava et al.

– A benchmark suite collected from real-world graph database-backed applica-
tions that leverage heterogeneous graph structures from various domains.

– An empirical analysis evaluating PGFuzz against the gMark and pgMark
state-of-the-art schema-driven graph instance generators.

void getTransport (Graph g) {
int transport_count = 0;
List < String > trsp = new

ArrayList < >() ;
Node n =

g . getNodes (" Centroid "). get (0) ;
for (Edge e : n . getEdges ()) {

if (e . getLabel () . equals ("DRT ") ||
e . getLabel () . equals (" WALK ")) {

trsp . add (e . getLabel ()) ;
transport_count += 1; }

}
String transport ;
if (t ransport_count == 2) {

transport = " DRT / WALK " ; }
else {
transport = trsp . get (0) ; }

return transport ;
}

(a) Excerpt from P2 [39].

List < PaperResponse > referers =
g . getConnectedNodes
(paper , " cites " , true)

. stream ()

.map(v -> {
Map < String , String > props =
v . properties ;
return new PaperResponse (
(String) (v . id + ""),
(String) props . getOrDefault
(" title" , "N/A"),

Integer . parseInt (props . getOrDefault
(" year" , "N/A")) ,

Integer . parseInt (props . getOrDefault
(" n umOfPaperReferees " , "0")) ,

Integer . parseInt (props . getOrDefault
(" n umOfPaperReferers " , "0")) ,

Double . parseDouble (props . g etOrDefault
(" pagerank " , "0.0"))); })

(b) Excerpt from P3 [3].

Fig. 1. Simplified code excerpts from our benchmark applications.

2 Motivating Examples

We showcase PGFuzz’s key challenges with an example involving branching
logic based on the input graph schema and database state, and another handling
schema-constrained graph instances where the application ensures data integrity.

Example 1 (Transport Graphs). Graph databases are increasingly used to ana-
lyze existing public transit networks and to construct novel models that improve
accessibility [29,41,65]. In a recent use-case [39], GTFS 1 schedule data has been
used to build and process public transportation graph models in the Neo4j graph
database. A code snippet from the application is shown in Fig. 1a. Its purpose is
to analyze the connectivity of the centroid nodes (centers of a tessellated grid
map) using demand-responsive transport (edges labeled “DRT”) and pedestrian
routes (edges labeled “WALK”). Note that the first branching condition depends
on these labels, which are part of the typing schema constraint of the underlying
graph database. Efficiently producing valid test graph instances that effectively
cover the application’s branching structure requires custom techniques.

1 GTFS is the standard open data format detailing transit schedules.

Fuzzing Graph Database Applications with Graph Transformations 139

Fig. 2. Property graph schema for the P2 transport application.

Example 2 (Citation Graphs). A recent graph database use-case targets the
analysis of bibliographical citation networks [3]. The schema defined by the appli-
cation requires the nodes representing papers to have string values assigned to
the properties that store their title, year of publication, number of referees and
referrers, and PageRank. These properties are read by the application logic,
and default values are substituted when they are missing, as can be seen in the
code snippet in Fig. 1b. Schema-driven generators like gMark or pgMark typ-
ically generate by design fully schema-compliant instances where all expected
properties are present, resulting in test inputs that bypass the application logic
meant to handle missing or incomplete data. PGFuzz overcomes this by deliber-
ately mutating such instances to remove or alter expected properties, triggering
execution paths that would otherwise remain untested.

3 Preliminaries

Graph databases typically use the labeled property graph data model [10], i.e.,
a directed multi-labeled multi-graph with properties on nodes and edges.

Example 3 (Transport Graph). We illustrate the property graph model on our
running example. In the P2 application, a city’s transit line network is repre-
sented as a property graph. Figure 2 captures the graph database instance for
the city of Royan’s transport graph. The node colors correspond to their label-
ing. Stoptime nodes (blue) that represent scheduled passage times are linked

140 S. Dumbrava et al.

1 CREATE GRAPH TYPE transportationGraphType STRICT {

2 (aType : Agency {agency_id STRING,...,agency_phone STRING}),

3 (rType : Route {route_id INT32,...,route_text_color STRING}),

4 (stimeType : Stoptime {stop_id INT32,..., departure_duration INT32}),

5 (sType : Stop {stop_id INT32,..., stop_desc STRING}),

6 (cType : Centroid {centroid_id INT32,...departure_duration INT32}), ...

7 (:aType)-[:operates]->(:rType),

8 (:cType)-[:DRT {drt_time INT32, drt_waiting_time INT32}]->(:stimeType),

9 (:cType)

10 -[:WALK {distance INT32, walking_time INT32, inter_time INT32}]->

11 (:stimeType), ...

12 FOR (a:Agency) EXCLUSIVE a.agency_id, FOR (s:Stop) MANDATORY s.stop_id,

13 FOR (rt:Route) SINGLETON o WITHIN (a:Agency)-[o:operates]->(rt),

14 FOR (c:Centroid) COUNT 2.. OF r WITHIN (s:Stoptime)-[r:DRT|WALK]->(c),

15 ... }

Fig. 3. Simplified PG-Schema for the P2 transportation application [39].

to specific Stop stations (pink) through arcs labeled LOCATED AT. Tessellation
Centroid nodes (red) are connected to Stoptime ones via arcs labeled WALK
and/or DRT, depending on whether these are accessible via pedestrian or, respec-
tively, via demand-responsive routes. Stoptime nodes are inter-connected with
arcs labeled PRECEDES, denoting temporal ordering, or CORRESPONDENCE, denot-
ing pairwise accessibility using a different line. Each Trip (orange node) encodes
a mobility plan that comprises passage times (Stoptime nodes) and employs a
Route (green node) or several, operated by an Agency (brown node) or mul-
tiple ones. The property graph model also allows attaching lists of key-value
properties on nodes and edges, as can be seen in Fig. 2 discussed next.

Property Graph Schemas and Constraints. While property graph instances
represent data stored in a GDBMS, graph schemas and constraints describe their
structure, typing, and integrity requirements to ensure consistency. Although
these are crucial for data integration and exchange [19], query optimization [31],
and data reliability [32], current GDBMSs provide limited support.

The applications we analyzed are built on top of Neo4j and JanusGraph.
We consider these systems, as Neo4j is one of the most popular [73] GDBMSs
and JanusGraph is one of the few that can handle not only a priori schema
constraints but also rich cardinality ones, as surveyed in [11]. Although these
systems provide different levels of support for graph schemas and constraints
- Neo4j is schemaless and JanusGraph is schema flexible and allows explicit or
implicit schema definitions - both benchmarks use Neo4j and JanusGraph enforce
these at the application level to maintain data integrity.

PGFuzz supports graph schema constraints, including key constraints and
cardinality ones, illustrated with the recent PG-Schema language. Typing con-
straints (PG-Types) specify nodes and edge labels and properties and the rela-
tionship types that can connect certain node labels. Key constraints (PG-Keys)
ensure that graph objects are uniquely identified and referenced. Identification

Fuzzing Graph Database Applications with Graph Transformations 141

is enforced with the IDENTIFIER keyword, comprising EXCLUSIVE, MANDATORY, and
SINGLETON, while for referencing, EXCLUSIVE MANDATORY is used. PG-Keys state-
ments are of the form FOR p(x) <qualifier> q(x, ȳ), where <qualifier> is a com-
bination of EXCLUSIVE MANDATORY, SINGLETON, and p(x), q(x, ȳ) are graph queries.

We illustrate these in Fig. 3 on the running example. EXCLUSIVE restricts two
objects from sharing a key value, e.g., no two agencies have the same agency id
(line 28). MANDATORY enforces that every object must have at least one key, e.g.,
every stop should have a stop id (line 30). SINGLETON enforces that every object
has at most one key, ensuring that two objects with the same key are identical,
e.g., every route is operated by a unique agency (lines 32–33).

Cardinality constraints, introduced in PG-Schema as a PG-Keys extension,
enforce bounds on the number of graph object instances, e.g., every centroid
should be connected to a stoptime through at least two edges, labeled ‘DRT’
or ‘WALK’ (lines 35–36). The constraints are expressed similarly to PG-Keys,
using the qualifier COUNT <lower bound>?..<upper bound>? OF to express that the
number of distinct results returned by q(x, ȳ) must be within the specified range.

Among existing GDBMSs, JanusGraph provides one of the most compre-
hensive supports for cardinality constraints [11]. It allows declaring edge label
multiplicity, specifying whether at most one (SIMPLE) or multiple (MULTI) edges
can be defined between any node pair, with MANY2ONE and ONE2MANY respec-
tively allowing at most one outgoing/incoming edge, without constraining the
number of incoming/outgoing ones. It also allows for property key cardinalities,
specifying whether a node key can have one or multiple values.

PGFuzz transformations allow breaking all of the above constraints, as
detailed in Sect. 4.3. PGFuzz considers test inputs for graph database applica-
tions to be defined by a core fragment of the previous graph schema constraints,
with typing and key constraints being enforced at the property level. As such,
each property can be assigned one of the built-in types String, Integer, Double,
Float, Boolean, with String being the default when no type is provided. Also,
properties can be flagged as EXCLUSIVE, MANDATORY, or SINGLETON. Relationship car-
dinality constraints are also supported, enabling the specification of the allowed
number of edges of a particular type between any two nodes.

Fig. 4. The workflow of PGFuzz.

142 S. Dumbrava et al.

4 The PGFuzz Framework

Figure 4 illustrates the workflow of the PGFuzz testing framework. The main
components of PGFuzz are: (1) program instrumentation of the application
under test to direct the calls to graph databases to PGFuzz Graph API and
track code coverage, (2) leveraging state-of-the-art graph generators to produce
graph database input seeds, and (3) using greybox fuzzing to generate new test
inputs by graph transformations guided by code coverage.

To avoid the cost of database connection, communication, and state reset-
ting operations at each test execution, PGFuzz maintains an in-memory graph
structure for the input graph database state. The model is based on a property
graph model (see Sect. 3) and provides a graph processing API modeled after
popular graph database query APIs. As shown in Table 1, the PGFuzz API
defines the basic methods for accessing and updating graph data.

We instrument the application under test to redirect the calls to graph
database operations and instead invoke the API operations on PGFuzz’s inter-
nal graph. Hence, PGFuzz does not use GDBMS executions but directly
explores the behaviors of the graph database application under test.

Table 1. PGFuzz API operations.

Operation Description
getNodes(String l, String k, String v) return nodes with label l and key-value (k, v)
getNode(int id) return the node with identifier id
getLabel(Node n) return the label attached to the node n
getConnectedNodes(Node n, String l) return all nodes connected to n with edges labeled l
getNodes(), getEdges() return all nodes/edges
getNodeEdges(Node n) return all edges attached to the node n
getIncomingEdges(Node n) return all incoming edges attached to the node n
getOutgoingEdges(Node n) return all outgoing edges attached to the node n
getNodePairEdges(Node n1, Node n2) return all edges between nodes n1 and n2
getEdgeProperty(Edge e, String l) return a property of an edge e labeled l
getNodeProperty(Node n, String l) return a property of a node n labeled l
getPropertyValue(String k) return the value of a property k
addNewNode(), addNewNodes(int c) add a/c new node(s)
addLabeledNode(String l) add a new node with label l
addNode(Node n) add a new node n
addEdge(Edge e, Node n1, Node n2) add the edge e between nodes n1 and n2
removeNode(int id) remove the node with identifier id
removeEdge(Edge e) remove the edge e

Fuzzing Graph Database Applications with Graph Transformations 143

4.1 Producing Random Graph Instances

PGFuzz constructs initial test seeds using the state-of-the-art gMark [18] and
pgMark [75] schema-driven graph generators. gMark produces synthetic edge-
labeled graphs based on schema constraints specifying their corresponding typing
structure. The system also allows the configuration of the size of the graph, the
number of occurrences for each node or edge label, and the in- and out-degree
distribution for each relationship type. The pgMark framework builds on top of
gMark and adds support for generating attributed graphs with node properties.
In the PGFuzz framework, we use an enhanced version of pgMark, which we
extended to support the full expressiveness of the property graph model by also
allowing instances to incorporate edge properties.

4.2 Greybox Fuzzing for Graph Generation

PGFuzz collects the graph database states produced by gMark and pgMark
in a set of test inputs and uses them for testing graph database applications.
However, these test inputs are generated in a black-box approach, i.e., they
are produced independently and randomly, not using any information from the
application under test. Therefore, testing the applications using these graphs as
test inputs is unlikely to cover all branching logic of the application code.

PGFuzz offers a greybox approach for generating new graph database
instances for testing graph database applications. Unlike the graph instance
generation by gMark and pgMark, PGFuzz employs a greybox feedback loop
to guide the test generation towards more application code coverage.

As given in Fig. 4, the greybox fuzzing loop consists of three main steps:
First, it runs the application under test with a test input. During the execution,
it collects some greybox information (for PGFuzz, branch code coverage) of the
execution. Then, it checks whether the execution covers previously unexplored
branches in the application code. Following the intuition that the test inputs
similar to the one that triggered new application behavior are also likely to
trigger new behaviors, the fuzzer mutates that test input to generate new test
inputs. PGFuzz uses graph transformations to generate new test inputs.

PGFuzz uses branch code coverage as greybox feedback information from
the test executions, which is commonly used in testing traditional software sys-
tems [82]. As the application programs’ branching logic is based on the input
graph database state, branch code coverage effectively captures the explored
parts of the application program. Alternative to code coverage, the framework
can be extended to use different feedback information from the program, e.g.,
defining fitness functions, to evaluate how likely the test inputs generated from
an input can trigger new behaviors.

4.3 Schema-Aware Graph Transformations

Given a test input, i.e., test graph database instance, that achieves new coverage
PGFuzz mutates that instance to produce a new instance using novel graph

144 S. Dumbrava et al.

transformations that leverage the typing, key, and cardinality constraints of the
application under test.

PGFuzz uses graph schema-aware transformations and supports a core frag-
ment of the recent PG-Schema and PG-Keys formalisms, which inform the
design of the novel GQL graph query standard [11,12]. PGFuzz integrates infor-
mation regarding graph typing, key constraints enforced on graph objects, and
cardinality restrictions, e.g., on the number of edges between node pairs, as
in JanusGraph: One2One, Many2One, One2Many, Many2Many. This provides vari-
ations of graph instances that comply with application requirements and are
likely to cover important states. Rather than adding a random label, the trans-
formation can select one that is expected to occur. By design, the transformation
can leverage information about graph constraints that might not otherwise be
derived from any arbitrary graph state. Schema-aware transformations adhere to
the schema when possible but may deviate if no valid candidates are available.

A B
E

E

A

B

C

E

E

A

B

C

E

E

Fig. 5. M14 transformations that violate cardinality constraints. Each subfigure shows
the result of a transformation breaking one of: SIMPLE (maximum one edge between
two nodes), MANY2ONE (multiple sources to one target), and ONE2MANY (one source to
multiple targets). Each graph depicts the input test state after the transformation,
where an added edge leads to the constraint violation.

PGFuzz transformations are classified into C1, C2, C3, and C4, depending
on whether they add, remove, modify graph objects, or violate graph constraints.
Modifications include adding nodes or edges with arbitrary schema labels (M1,2)
and assigning arbitrary schema properties (M3). Nodes and their attached edges
can be removed (M4), as well as edges or properties (M5,6). Node or edge
labels can be randomly modified (M7,8), along with the keys or property values
(M9,10). Schema constraints can be broken by removing all nodes or edges of a
given label (M11,12), altering property typing for arbitrary elements (M13), or
cardinality constraints by adding or removing instances (M14 in Fig. 5), breach-
ing exclusivity constraints by assigning values to random elements (M15), and
violating mandatory constraints by setting values to NULL (M16).

5 Evaluation

We implement PGFuzz 2 on top of the JQF [62] fuzz testing framework for
Java applications. JQF allows for instrumenting the application under test to
2 The source code of PGFuzz and the evaluation data are available at: https://github.

com/moudemans/PGFuzz.

https://github.com/moudemans/PGFuzz
https://github.com/moudemans/PGFuzz
https://github.com/moudemans/PGFuzz
https://github.com/moudemans/PGFuzz
https://github.com/moudemans/PGFuzz

Fuzzing Graph Database Applications with Graph Transformations 145

track code coverage and implement the coverage-guided testing loop. We redi-
rect graph database operations to PGFuzz’s Graph API and then execute the
instrumented program with generated graph instances as test inputs. We evalu-
ate PGFuzz’s performance compared to state-of-the-art graph instance genera-
tors, in terms of test coverage and the number of unique bugs detected, following
metrics proposed in [51,54]. We test benchmark graph database-backed appli-
cations using baseline graph generators and PGFuzz, measuring branch code
coverage and the number of distinct bugs discovered. We collect the test results
on a machine running Windows 11 with Intel(R) Core(TM) i7-13700KF 3.40 GHz
CPU and 32 GB of memory.

As baselines, we consider the state-of-the-art gMark and pgMark schema-
driven graph generators for applications leveraging edge-labeled and property
graphs, respectively. These tools follow a black-box testing strategy, producing
test inputs independently of each other, as well as of previous test executions.
PGFuzz exploits a greybox fuzzing framework to incorporate code coverage
feedback into the test generation and uses schema-aware graph data transfor-
mations to generate new tests.

Table 2. Benchmark characteristics.

Code Name Framework Language Characteristics
P1 Medical Neo4j Python Cardinality
P2 Transportation Neo4j Python Properties and node labels
P3 Citation JanusGraph Java Edge properties
P4 Citation Network JanusGraph Java Relationships
P5 Pangenomic Neo4j Python Property values
P6 Pheno4JOut Neo4j Java Property keys and types
P7 Pheno4J Neo4j Java Property types
P8 PanTool1 Neo4j Java Property values
P9 PanTool2 Neo4j Java Unstructured dependencies

5.1 Benchmarks

We collected graph database-backed applications from publicly available repos-
itories. The main criterion is ensuring that graph schema, key, and cardinality
constraints are enforced in the branching logic. We curate eight benchmarks (see
Table 2) from diverse areas: medical studies (P1), intelligent transportation (P2),
bibliographical analysis (P3), and genomics (P5-P8), as described below.

P1 Medical is collected from OpenStudyBuilder [1], an open-source appli-
cation to manage clinical data standards and study design specifications. It
implements CDISC [26] standards 3 by providing additional semantics to prevent
3 CDISC develops standards for collecting, sharing, and analyzing clinical trial data.

146 S. Dumbrava et al.

inconsistencies that impede automation scaling. P1 ensures that, when adding
or modifying nodes, EXCLUSIVE and MANDATORY constraints are preserved.

P2 Transportation is collected from a study [2,39] that evaluates how
demand-responsive services influence public transportation accessibility. P2 ana-
lyzes the connectivity of central locations on a grid with respect to mass transit
stations through pedestrian and on-demand routes. Its branching logic depends
on cardinality constraints on relationships with certain labels and properties.

P3 Citation is collected from CiteGraph [3], an open-source web application
for visualizing and analyzing citation networks. It enables discovering connec-
tions between papers and authors and evaluating the influence of specific works
or researchers. P3 gathers citation, collaboration, PageRank metrics, and bib-
liographic meta-data through graph traversals. Its logic for processing data is
guided by the schema of the underlying property graph.

P4 Citation Network benchmark is collected from the same repository as
the P3 Citation. It finds its n-hop references for a given paper by relying on
specific relationships to be connected with at least n connected components.

P5 Pangenomic is collected from PanGraph-DB [4], an open-source com-
parative pangenomics application that analyzes graph structures representing
the genomic diversity of species. It inspects genomic family neighborhoods and
extracts connectivity properties to identify those with similar characteristics.

P6 Pheno4J1 is collected from Pheno4J [56], an open-source application
that integrates various biological data sources, allowing to visualize and analyze
relationships between genetic variations and phenotypic traits. Its logic depends
on the graph schema, as it computes an export format for data exchange.

P7 Pheno4J2, also collected from Pheno4J, analyses the properties linked
to phenotypic traits of genomic variants. Its branching logic is determined by
the edge labels of the different variants and by the properties that capture their
phenotypic effects. Data integrity is maintained through type conversions.

P8 PanTool1 is collected from PanTool [5], an open-source application that
analyzes pangenome graphs to evaluate genetic variations across species. It tracks
and organizes phasing information from genomic sequences represented as nodes.
Its branching logic depends on MANDATORY key constraints on node properties and
cardinality constraints on the number of genomes with phasing information.

P9 PanTool2, also collected from PanTool, analyzes the messenger RNA
nodes of a genomic graph. Similarly to P8, its branching logic depends on prop-
erty values and MANDATORY key constraints on properties.

Correctness Specification and Test Oracle. We validate the benchmarks by
checking whether the application crashes for certain inputs, using this property
as our test oracle. We identified several bugs in the applications that led to
crashes, with exceptions being thrown when specific graph database instances
were used as input.

5.2 Evaluation Results

We evaluate PGFuzz by addressing the following main research questions:

Fuzzing Graph Database Applications with Graph Transformations 147

– RQ1. Can the test inputs generated by PGFuzz provide a higher test cov-
erage compared to the state-of-the-art graph instance generators?

– RQ2. Can the test inputs generated by PGFuzz detect more bugs than the
state-of-the-art graph instance generators?

– RQ3. How do different categories of graph transformations contribute to the
bug detection capability of PGFuzz?

We answer the research questions by testing the benchmark programs using
the input graph instances generated by PGFuzz and the state-of-the-art graph
instance generators gMark and pgMark with the synthetic graph size of 100
nodes. Due to the randomness of the tests, we conducted each experiment five
times for 10 min and reported the average results.

Fig. 6. Test coverage of the benchmarks using PGFuzz and the baseline.

Test Coverage. Figure 6 shows the branch code coverage of testing the bench-
mark applications using gMark (for P1, which uses an edge-labeled graph),
pgMark (for P2-P9, which use property graphs), and PGFuzz. The plots do
not include the coverage results for benchmark P4 since all branches in that
benchmark program are covered within the first few test cases generated by

148 S. Dumbrava et al.

each method. The results show that testing the benchmarks with the black-box
testing approach using pgMark reaches 40%–85% branch coverage. The broad
coverage of the application logic achieved with randomly generated instances can
be attributed to the diversity of graph instances gMark and pgMark produce by
design, as demonstrated by their empirical evaluation [18]. However, the gener-
ated graph instances do not cover much of the code in all benchmarks, e.g., in P6
and P9. These benchmarks use various instance nodes, edges, relation labels, and
properties in their application logic and use nested branching on these proper-
ties. Increasing the test coverage of such benchmarks requires exploring a more
extensive set of graph instances. Coverage-guided fuzzing approaches increase
the code coverage by generating more graph instances around the instances that
hit new code branches, hence exploring deeper branches of the applications.

We answer RQ1 positively: PGFuzz achieves better coverage results in a
smaller number of test executions for all the benchmark applications. PGFuzz’s
schema-aware test case generation produces test instances that comply with
schema types but intentionally break the schema constraints. An example is the
branching given in Sect. 3 and Fig. 1b, which requires the exploration of graph
instances that do not necessarily satisfy all the constraints in the graph schema.
The graph transformation-based mutations of PGFuzz lead to covering the
application logic with the substituted values for the graph properties. Moreover,
transforming the instances that cover new branches helps in covering a deeper
sequence of branching. PGFuzz shows an increase in coverage of up to 57% and
23% on average, with the highest improvement in benchmarks P6 and P8 that
have the most complicated branching logic.

While PGFuzz consistently outperforms the baselines, it does not reach
100% coverage for all benchmarks. Further analysis of the applications shows
that P1 has an unreachable condition in a private method, as it has already been
checked and filtered in an earlier branch. In P3, PGFuzz can reach 100% cov-
erage but cannot consistently cover each branch in all test repetitions. Branches
that are not consistently reached depend on the presence of a specific node and
require input graph transformations that enable access but make reaching them
unlikely. In P9, PGFuzz cannot reach 100% coverage, as doing so would require
sequential node property IDs, which are highly improbable to occur in both
randomly generated and transformed inputs.

Bug Detection. We answer RQ2 positively: PGFuzz detects more bugs than
testing the applications using the state-of-the-art graph instance generators. In
our evaluation, PGFuzz found several bugs in the benchmark applications, while
the baseline approaches failed to detect any of them.

Table 3 lists the number of distinct bugs PGFuzz discovered. The most fre-
quent errors, encountered 23 times, are due to invalid data types, as the bench-
mark tries to parse integers, booleans, or other types while the property value
is no longer of that type. Null pointer exceptions occurred 5 times and were
triggered by certain graph elements no longer being present. The array index
out of bounds occurred 3 times and was caused by removing graph elements or
splitting a string that no longer contained a specific character. These errors are

Fuzzing Graph Database Applications with Graph Transformations 149

Fig. 7. Contribution of the transformation categories per error type.

thrown by the application under test when the contents of the graph instance
trigger parts of the application code that do not anticipate certain nodes, edges,
labels, or properties. Although the errors seem simple, they are hard to detect
as they manifest only with certain contents of the graph instances to hit certain
branches that are neglected by the developers.

Overall, PGFuzz is successful at finding bugs, especially with the graph
transformations that break schema constraints. PGFuzz could expose several
errors that are caused mainly by changing the graph elements and property
types, producing possible test inputs that are neglected in the application logic.

Table 3. Distinct bugs per method causing Null Pointer Exception (NPE), Number
Format Exception (NFE), Array Index Out of Bounds Exception (AIOBE).

PGFuzz Error(s)
P1 2 NPE
P2 5 AIOBE, NFE
P3 10 NFE
P4 1 NPE
P5 2 NPE
P6 0 -

P7 4 AIOBE, NFE
P8 4 AIOBE, NFE
P9 3 AIOBE, NFE

150 S. Dumbrava et al.

Contribution of the Transformation Categories for Bug Detection. To answer
RQ3, we analyzed the effect of the categories of transformations to detect
each type of error. Figure 7 shows the number of errors hit by each category
of transformations for (1) an invalid data type, (2) a null pointer, and (3) an
array index out-of-bounds exception. Breaking graph constraints (C4), which
potentially violate the schema constraints of an application, is the most effective
strategy, detecting the most unique errors in 6 of 8 benchmarks. This under-
scores PGFuzz’s schema-aware graph transformations, which generate schema-
compliant yet semantically unexpected graph instances that violate constraints.

Compound Transformations. The graph transformations in PGFuzz focus on
modifying individual graph elements, such as nodes or edges, along with their
corresponding labels, properties, or values, as described in Sect. 4.3. To evaluate
the effectiveness of making multiple changes to the graph instances, we intro-
duced compound transformations. We then repeated the tests by incorporating
these into PGFuzz’s set of transformations.

Note that compound transformations do not change individual components
of a graph; instead, they apply multiple modifications at once. Specifically, we
used compound transformations that involve randomly adding multiple nodes
and edges in the input graph. This process results in the addition of several new
nodes, edges, and relationships that are likely to form more complex structures
such as cycles or triangles. We avoid using transformations that remove subsets
of graph elements, as such operations can be overly disruptive.

We repeated the evaluation on the set of benchmarks, enabling compound
transformations. As given in Fig. 8, the results do not show a significant per-
formance improvement on the application benchmarks. This can be explained
by the branching logic in graph database applications, which can be covered by
modifying a single element of the test input graph, e.g., labels or properties.
Compound mutations can be more beneficial for the applications that branch on
more specific patterns, e.g., checking for cycles or triangles.

Threats to Validity. Potential threats to the validity of our findings include
the representativeness of the curated set of database-backed application bench-
marks and the randomness of the test executions. The generalizability of our
results highly depends on how representative our evaluation targets are of real-
world application scenarios. As we collect the benchmark suite from open-source
repositories, we do not cover enterprise applications. However, our benchmark
applications have diverse graph database schemas and schema constraints.

An additional threat to the validity may arise from the decision to redirect
database calls to PGFuzz API operations. The effectiveness of this approach
depends on the assumption that the API calls accurately represent the behavior
of the database methods. Any discrepancies between the two could negatively
impact PGFuzz’s performance. The API operations model all the database calls
in the benchmark programs used in our experiments.

Lastly, the experimental results involve multiple sources of randomness. The
input graph instances are randomly generated by gMark and pgMark, which

Fuzzing Graph Database Applications with Graph Transformations 151

Fig. 8. Test coverage of the benchmarks results using compound transformations.

are later transformed by PGFuzz. Moreover, the effectiveness of PGFuzz’s
tests is highly dependent on the applied transformations, which are also selected
randomly as part of the fuzzing framework. To mitigate randomness, we repeat
our experiments five times and report averaged results.

6 Related Work

Testing Database Systems. Several recent works focus on testing database man-
agement systems [9,17,45] and graph databases [47,49,83]. Different from these
works, which target the bugs in the database systems, PGFuzz targets finding
bugs in the graph database-backed applications.

Testing Database-Backed Applications. As the behavior of database-backed
applications depends on the state of the database on which they operate, test-
ing them requires generating test database instances. Earlier works [6,30] use
constraint solving and static analysis for generating program inputs and input
database states. SynDB [63,64] tests database-backed applications using a sym-
bolic database. It generates test inputs and relational database states by con-
sidering all program, query, and database constraints and targeting relational
databases. Recent work proposes DBGRILLER [81], a greybox testing app-
roach for generating test databases for database-backed applications. Similar to

152 S. Dumbrava et al.

PGFuzz, DBGRILLER applies small mutations to existing database states
to create new test instances. However, it is specifically designed for relational
database applications and does not tackle graph-database-backed applications.
To our knowledge, PGFuzz is the first greybox fuzzer for generating test inputs
for graph database-backed applications.

Fuzz Testing. There is extensive work on generating test input using
fuzzing [52,82,84]. While the first fuzzers, such as American Fuzzy Lop
(AFL) [79] and libFuzzer [80], work on the bit-level representation of the input
seed files, they are not as effective on structured inputs, such as XML and
JavaScript, as bit-level mutations either disrupt the structure or are unlikely to
produce changes beneficial to code coverage. Smart fuzzing [66] and grammar-
based fuzzing [78] operate on test input structures and produce test inputs for
a given input structure. These approaches have been successfully used to gen-
erate test inputs in various formats [34,48,59,74,78]. GraphFuzz [37] addresses
library API testing by modeling executed functions as a dataflow graph and
applying graph-based mutations to generate new test cases. Although Graph-
Fuzz also uses graph mutations to modify test cases, it is tailored to dataflows
and fundamentally differs from PGFuzz. Similar to smart and grammar-based
fuzzers, PGFuzz generates syntactically valid test inputs, satisfying the syn-
tactical schema type of the underlying graph database. Unlike grammar-based
fuzzers that aim to cover the space of the syntactic structure, enforcing con-
straints in the generated input, PGFuzz can generate test inputs that may
intentionally break semantic constraints that capture the intended logic of the
data, such as key and cardinality constraints. This enables targeted testing of
graph database applications where such constraints play a critical role in ensur-
ing data integrity.

Graph Databases. Graph transformations have been extensively applied to
schema evolution, data migration, and interoperability in graph databases. Boni-
fati et al. [23] propose a framework for supporting evolving graph schemas,
which leverages graph rewriting operations to maintain consistency. More recent
works [24,25] adopt a high-level, declarative approach aligned with the GQL
standard, employing graph pattern matching to support complex migration and
cleaning tasks. Similarly, schema-aware transformations ensure semantic interop-
erability between diverse graph models such as property graphs and RDF [68]. In
contrast, PGFuzz leverages a lightweight, heuristic use of schema-aware transfor-
mations aimed at generating varied test instances for evaluating the robustness
of graph database-backed applications.

7 Conclusion

The rise of graph database management systems emphasizes the importance
of testing graph database-backed applications that rely on complex, highly
interconnected datasets. Our work introduces PGFuzz, the first greybox fuzz-
testing framework designed to specifically address the intricacies of testing graph
database-backed applications. By incorporating schema-aware transformations

Fuzzing Graph Database Applications with Graph Transformations 153

and leveraging code coverage, PGFuzz offers a promising solution to test-
ing graph database applications. Our empirical evaluations demonstrate that
PGFuzz significantly outperforms existing state-of-the-art baselines, uncover-
ing more distinct bugs and achieving higher test coverage in graph database
applications from various domains. PGFuzz opens the promising perspective of
also incorporating other recently introduced types of graph constraints [31].

Acknowledgments. This work was partially supported by the grant ANR-24-CE25-
1109 (Dumbrava).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. OpenStudyBuilder (2022). https://gitlab.com/Novo-Nordisk/nn-public/
openstudybuilder/project-description

2. Transport Network Graph Database (2022). https://github.com/CathiaLH/
GraphDatabaseCombinedTransportNetwork

3. CiteGraph (2023). https://github.com/citegraph/citegraph
4. PanGraph-DB (2023). https://github.com/jpjarnoux/PanGraph-DB
5. PanTool (2023). https://git.wur.nl/bioinformatics/pantools/
6. Agrawal, P., Chandra, B., Emani, K.V., Garg, N., Sudarshan, S.: Test data gener-

ation for database applications. In: ICDE, pp. 1621–1624. IEEE Computer Society
(2018)

7. Al-Saleem, J., et al.: Knowledge graph-based approaches to drug repurposing for
COVID-19. J. Chem. Inf. Model. 61(8), 4058–4067 (2021)

8. AllegroGraph: AllegroGraph. https://allegrograph.com/. Visited 2024
9. Alvaro, P., Rigger, M.: Automatically testing database systems: DBMS testing

with test oracles, transaction history, and fuzzing. ACM Queue 21(6), 128–135
(2024)

10. Angles, R.: The property graph database model. In: AMW. CEUR Workshop Pro-
ceedings, vol. 2100. CEUR-WS.org (2018)

11. Angles, R., et al.: PG-schema: schemas for property graphs. Proc. ACM Manag.
Data 1(2), 198:1–198:25 (2023)

12. Angles, R., et al.: PG-keys: keys for property graphs. In: SIGMOD Conference, pp.
2423–2436. ACM (2021)

13. ArangoDB: ArangoDB. https://arangodb.com/. Visited 2024
14. Arnoux, J., Bonifati, A., Calteau, A., Dumbrava, S., Gautreau, G.: Integrating

complex pangenome graphs. In: ICDEW, pp. 350–354. IEEE (2024)
15. Atzeni, P., Bellomarini, L., Iezzi, M., Sallinger, E., Vlad, A.: Weaving enterprise

knowledge graphs: the case of company ownership graphs. In: EDBT, pp. 555–566.
OpenProceedings.org (2020)

16. AWS: Amazon Neptune. https://aws.amazon.com/fr/neptune/. Visited 2024
17. Ba, J., Rigger, M.: Testing database engines via query plan guidance. In: ICSE,

pp. 2060–2071. IEEE (2023)
18. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H., Lemay, A., Advokaat, N.:

gMark: schema-driven generation of graphs and queries. IEEE Trans. Knowl. Data
Eng. 29(4), 856–869 (2016)

https://gitlab.com/Novo-Nordisk/nn-public/openstudybuilder/ project-description
https://gitlab.com/Novo-Nordisk/nn-public/openstudybuilder/ project-description
https://gitlab.com/Novo-Nordisk/nn-public/openstudybuilder/ project-description
https://gitlab.com/Novo-Nordisk/nn-public/openstudybuilder/ project-description
https://gitlab.com/Novo-Nordisk/nn-public/openstudybuilder/ project-description
https://gitlab.com/Novo-Nordisk/nn-public/openstudybuilder/ project-description
https://gitlab.com/Novo-Nordisk/nn-public/openstudybuilder/ project-description
https://gitlab.com/Novo-Nordisk/nn-public/openstudybuilder/ project-description
https://gitlab.com/Novo-Nordisk/nn-public/openstudybuilder/ project-description
https://gitlab.com/Novo-Nordisk/nn-public/openstudybuilder/ project-description
https://github.com/CathiaLH/GraphDatabaseCombinedTransportNetwork
https://github.com/CathiaLH/GraphDatabaseCombinedTransportNetwork
https://github.com/CathiaLH/GraphDatabaseCombinedTransportNetwork
https://github.com/CathiaLH/GraphDatabaseCombinedTransportNetwork
https://github.com/CathiaLH/GraphDatabaseCombinedTransportNetwork
https://github.com/citegraph/citegraph
https://github.com/citegraph/citegraph
https://github.com/citegraph/citegraph
https://github.com/citegraph/citegraph
https://github.com/citegraph/citegraph
https://github.com/jpjarnoux/PanGraph-DB
https://github.com/jpjarnoux/PanGraph-DB
https://github.com/jpjarnoux/PanGraph-DB
https://github.com/jpjarnoux/PanGraph-DB
https://github.com/jpjarnoux/PanGraph-DB
https://github.com/jpjarnoux/PanGraph-DB
https://git.wur.nl/bioinformatics/pantools/
https://git.wur.nl/bioinformatics/pantools/
https://git.wur.nl/bioinformatics/pantools/
https://git.wur.nl/bioinformatics/pantools/
https://git.wur.nl/bioinformatics/pantools/
https://git.wur.nl/bioinformatics/pantools/
https://allegrograph.com/
https://allegrograph.com/
https://allegrograph.com/
https://arangodb.com/
https://arangodb.com/
https://arangodb.com/
https://aws.amazon.com/fr/neptune/
https://aws.amazon.com/fr/neptune/
https://aws.amazon.com/fr/neptune/
https://aws.amazon.com/fr/neptune/
https://aws.amazon.com/fr/neptune/
https://aws.amazon.com/fr/neptune/

154 S. Dumbrava et al.

19. Barceló, P., Pérez, J., Reutter, J.L.: Schema mappings and data exchange for graph
databases. In: ICDT, pp. 189–200. ACM (2013)

20. Bitnine. Co., Ltd.: AgensGraph. https://bitnine.net/agensgraph. Visited 2024
21. BlazeGraph: BlazeGraph. https://blazegraph.com/. Visited 2024
22. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional func-

tional dependencies for data cleaning. In: ICDE, pp. 746–755. IEEE Computer
Society (2007)

23. Bonifati, A., Furniss, P., Green, A., Harmer, R., Oshurko, E., Voigt, H.: Schema
validation and evolution for graph databases. In: Laender, A., Pernici, B., Lim,
E.-P., de Oliveira, J. (eds.) ER 2019. LNCS, vol. 11788, pp. 448–456. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-33223-5 37

24. Bonifati, A., Murlak, F., Ramusat, Y.: Transforming property graphs. Proc. VLDB
Endow. 17(11), 2906–2918 (2024)

25. Bonifati, A., Ramusat, Y., Murlak, F., Fejza, A., Echahed, R.: DTGraph: declar-
ative transformations of property graphs. Proc. VLDB Endow. 17(12), 4265–4268
(2024)

26. Clinical Data Interchange Standards Consortium: CDISC (2022). https://www.
cdisc.org/. Visited 2024

27. DataStax: DataStax Enterprise Graph. https://www.datastax.com/products/
datastax-graph. Visited 2024

28. DGraph: DGraph. https://dgraph.io/. Visited 2024
29. Elayam, M.M., Ray, C., Claramunt, C.: A hierarchical graph-based model for

mobility data representation and analysis. Data Knowl. Eng. 141, 102054 (2022)
30. Emmi, M., Majumdar, R., Sen, K.: Dynamic test input generation for database

applications. In: ISSTA, pp. 151–162. ACM (2007)
31. Fan, W.: Dependencies for graphs: challenges and opportunities. ACM J. Data Inf.

Qual. 11(2), 5:1–5:12 (2019)
32. Fan, W., Geerts, F.: Foundations of Data Quality Management. Synthesis Lectures

on Data Management. Morgan & Claypool Publishers (2012)
33. Francis, N., Libkin, L.: Schema mappings for data graphs. In: PODS, pp. 389–401.

ACM (2017)
34. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based Whitebox fuzzing. In:

PLDI, pp. 206–215. ACM (2008)
35. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated Whitebox fuzz testing. In:

NDSS. The Internet Society (2008)
36. Gosnell, D., Broecheler, M.: The practitioner’s guide to graph data. https://www.

oreilly.com/library/view/the-practitioners-guide/9781492044062/. Visited 2024
37. Green, H., Avgerinos, T.: GraphFuzz: library API fuzzing with lifetime-aware

dataflow graphs, vol. 2022, pp. 1070–1081. IEEE Computer Society (2022). https://
doi.org/10.1145/3510003.3510228

38. Gütebier, L., et al.: CovidGraph: a graph to fight COVID-19. Bioinform. 38(20),
4843–4845 (2022)

39. Hasif, C.L., Araldo, A., Dumbrava, S., Watel, D.: A graph-database approach to
assess the impact of demand-responsive services on public transit accessibility. In:
IWCTS@SIGSPATIAL, pp. 2:1–2:4. ACM (2022)

40. Hegeman, T., Iosup, A.: Survey of graph analysis applications. CoRR
abs/1807.00382 (2018)

41. Huang, H., Bucher, D., Kissling, J., Weibel, R., Raubal, M.: Multimodal route
planning with public transport and carpooling. IEEE Trans. Intell. Transp. Syst.
20(9), 3513–3525 (2019)

https://bitnine.net/agensgraph
https://bitnine.net/agensgraph
https://bitnine.net/agensgraph
https://bitnine.net/agensgraph
https://blazegraph.com/
https://blazegraph.com/
https://blazegraph.com/
https://doi.org/10.1007/978-3-030-33223-5_37
https://doi.org/10.1007/978-3-030-33223-5_37
https://doi.org/10.1007/978-3-030-33223-5_37
https://doi.org/10.1007/978-3-030-33223-5_37
https://doi.org/10.1007/978-3-030-33223-5_37
https://doi.org/10.1007/978-3-030-33223-5_37
https://doi.org/10.1007/978-3-030-33223-5_37
https://doi.org/10.1007/978-3-030-33223-5_37
https://doi.org/10.1007/978-3-030-33223-5_37
https://doi.org/10.1007/978-3-030-33223-5_37
https://www.cdisc.org/
https://www.cdisc.org/
https://www.cdisc.org/
https://www.cdisc.org/
https://www.datastax.com/products/datastax-graph
https://www.datastax.com/products/datastax-graph
https://www.datastax.com/products/datastax-graph
https://www.datastax.com/products/datastax-graph
https://www.datastax.com/products/datastax-graph
https://www.datastax.com/products/datastax-graph
https://www.datastax.com/products/datastax-graph
https://dgraph.io/
https://dgraph.io/
https://dgraph.io/
https://www.oreilly.com/library/view/the-practitioners-guide/9781492044062/
https://www.oreilly.com/library/view/the-practitioners-guide/9781492044062/
https://www.oreilly.com/library/view/the-practitioners-guide/9781492044062/
https://www.oreilly.com/library/view/the-practitioners-guide/9781492044062/
https://www.oreilly.com/library/view/the-practitioners-guide/9781492044062/
https://www.oreilly.com/library/view/the-practitioners-guide/9781492044062/
https://www.oreilly.com/library/view/the-practitioners-guide/9781492044062/
https://www.oreilly.com/library/view/the-practitioners-guide/9781492044062/
https://www.oreilly.com/library/view/the-practitioners-guide/9781492044062/
https://www.oreilly.com/library/view/the-practitioners-guide/9781492044062/
https://doi.org/10.1145/3510003.3510228
https://doi.org/10.1145/3510003.3510228
https://doi.org/10.1145/3510003.3510228
https://doi.org/10.1145/3510003.3510228
https://doi.org/10.1145/3510003.3510228
https://doi.org/10.1145/3510003.3510228
https://doi.org/10.1145/3510003.3510228

Fuzzing Graph Database Applications with Graph Transformations 155

42. HyperGraphDB: HyperGraphDB. https://hypergraphdb.org/. Visited 2024
43. IBM: DB2 Graph. https://www.ibm.com/docs/en/db2-warehouse?

topic=applications-db2-graph. Visited 2024
44. Ilyas, I.F., Chu, X.: Data Cleaning. ACM Books, vol. 28. ACM (2019)
45. Ba, J., Rigger, M.: Keep it simple: testing databases via differential query plans.

Proc. ACM Manag. Data 2(3), 188 (2024)
46. JanusGraph: JanusGraph. https://janusgraph.org/. Visited 2024
47. Jiang, Y., Liu, J., Ba, J., Yap, R.H.C., Liang, Z., Rigger, M.: Detecting logic bugs

in graph database management systems via injective and surjective graph query
transformation. In: ICSE, pp. 46:1–46:12. ACM (2024)

48. Borges Jr., N.P., Havrikov, N., Zeller, A.: Generating tests that cover input struc-
ture. In: Software Engineering. LNI, vol. P-310, pp. 85–86. Gesellschaft für Infor-
matik e.V. (2021)

49. Kamm, M., Rigger, M., Zhang, C., Su, Z.: Testing graph database engines via
query partitioning. In: ISSTA, pp. 140–149. ACM (2023)

50. Kertkeidkachorn, N., Nararatwong, R., Xu, Z., Ichise, R.: FinKG: a core financial
knowledge graph for financial analysis. In: ICSC, pp. 90–93. IEEE (2023)

51. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In:
CCS, pp. 2123–2138. ACM (2018)

52. Li, J., Zhao, B., Zhang, C.: Fuzzing: a survey. Cybersecurity 1(1), 1–13 (2018).
https://doi.org/10.1186/s42400-018-0002-y

53. MemGraph: MemGraph. https://memgraph.com/. Visited 2024
54. Metzman, J., Szekeres, L., Simon, L., Sprabery, R., Arya, A.: FuzzBench: an open

fuzzer benchmarking platform and service. In: ESEC/SIGSOFT FSE, pp. 1393–
1403. ACM (2021)

55. Microsoft: Azure Cosmos DB. https://azure.microsoft.com/fr-fr/products/
cosmos-db. Visited 2024

56. Mughal, S., Moghul, I., Yu, J., Clark, T., Gregory, D.S., Pontikos, N.: Pheno4J: a
gene to phenotype graph database. Bioinformatics 33(20), 3317–3319 (2017)

57. Neo4J: Neo4J. https://neo4j.com/. Visited 2024
58. Noy, N.F., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-

scale knowledge graphs: lessons and challenges. Commun. ACM 62(8), 36–43
(2019)

59. Olsthoorn, M., van Deursen, A., Panichella, A.: Generating highly-structured input
data by combining search-based testing and grammar-based fuzzing. In: ASE, pp.
1224–1228. IEEE (2020)

60. Oracle: Oracle Big Data Spatial and Graph. https://www.oracle.com/database/
technologies/bigdata-spatialandgraph.html. Visited 2024

61. OrientDB: OrientDB. http://orientdb.org/. Visited 2024
62. Padhye, R., Lemieux, C., Sen, K., Papadakis, M., Traon, Y.L.: Semantic fuzzing

with zest. In: ISSTA, pp. 329–340. ACM (2019)
63. Pan, K., Wu, X., Xie, T.: Automatic test generation for mutation testing on

database applications. In: AST, pp. 111–117. IEEE Computer Society (2013)
64. Pan, K., Wu, X., Xie, T.: Guided test generation for database applications via

synthesized database interactions. ACM Trans. Softw. Eng. Methodol. 23(2), 12:1–
12:27 (2014)

65. Park, S., Cheng, T.: Framework for constructing multimodal transport networks
and routing using a graph database: a case study in London. Trans. GIS 27(5),
1391–1417 (2023)

66. Pham, V., Böhme, M., Santosa, A.E., Caciulescu, A.R., Roychoudhury, A.: Smart
greybox fuzzing. IEEE Trans. Software Eng. 47(9), 1980–1997 (2021)

https://hypergraphdb.org/
https://hypergraphdb.org/
https://hypergraphdb.org/
https://www.ibm.com/docs/en/db2-warehouse?topic=applications-db2-graph
https://www.ibm.com/docs/en/db2-warehouse?topic=applications-db2-graph
https://www.ibm.com/docs/en/db2-warehouse?topic=applications-db2-graph
https://www.ibm.com/docs/en/db2-warehouse?topic=applications-db2-graph
https://www.ibm.com/docs/en/db2-warehouse?topic=applications-db2-graph
https://www.ibm.com/docs/en/db2-warehouse?topic=applications-db2-graph
https://www.ibm.com/docs/en/db2-warehouse?topic=applications-db2-graph
https://www.ibm.com/docs/en/db2-warehouse?topic=applications-db2-graph
https://www.ibm.com/docs/en/db2-warehouse?topic=applications-db2-graph
https://www.ibm.com/docs/en/db2-warehouse?topic=applications-db2-graph
https://www.ibm.com/docs/en/db2-warehouse?topic=applications-db2-graph
https://janusgraph.org/
https://janusgraph.org/
https://janusgraph.org/
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://memgraph.com/
https://memgraph.com/
https://memgraph.com/
https://azure.microsoft.com/fr-fr/products/cosmos-db
https://azure.microsoft.com/fr-fr/products/cosmos-db
https://azure.microsoft.com/fr-fr/products/cosmos-db
https://azure.microsoft.com/fr-fr/products/cosmos-db
https://azure.microsoft.com/fr-fr/products/cosmos-db
https://azure.microsoft.com/fr-fr/products/cosmos-db
https://azure.microsoft.com/fr-fr/products/cosmos-db
https://azure.microsoft.com/fr-fr/products/cosmos-db
https://azure.microsoft.com/fr-fr/products/cosmos-db
https://neo4j.com/
https://neo4j.com/
https://neo4j.com/
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
http://orientdb.org/
http://orientdb.org/
http://orientdb.org/

156 S. Dumbrava et al.

67. Preusse, M., et al.: COVIDGraph: connecting biomedical COVID-19 resources and
computational biology models. In: SEA-Data@VLDB. CEUR Workshop Proceed-
ings, vol. 2929, pp. 34–37. CEUR-WS.org (2021)

68. Rabbani, K., Lissandrini, M., Bonifati, A., Hose, K.: Transforming RDF graphs
to property graphs using standardized schemas. Proc. ACM Manag. Data 2(6),
242:1–242:25 (2024)

69. RedisGraph: RedisGraph. https://redis.io/. Visited 2024
70. Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., Özsu, M.T.: The ubiquity of large

graphs and surprising challenges of graph processing: extended survey. VLDB J.
29(2–3), 595–618 (2020)

71. Sakr, S., et al.: The future is big graphs: a community view on graph processing
systems. Commun. ACM 64(9), 62–71 (2021)

72. Sequeda, J., Lassila, O.: Designing and building enterprise knowledge graphs. In:
Synthesis Lectures on Data Semantics, and Knowledge. Morgan & Claypool Pub-
lishers (2021)

73. Redgate Software: Neo4J (2024). https://db-engines.com/en/ranking/
graph+dbms. Visited 2024

74. Steinhöfel, D., Zeller, A.: Input invariants. In: ESEC/SIGSOFT FSE, pp. 583–594.
ACM (2022)

75. Thom Hurks: PGMark: a domain-independent tool for generating property graphs
based on a user-defined schema. https://github.com/ThomHurks/pgMark. Visited
2024

76. TigerGraph: TigerGraph. https://www.tigergraph.com/. Visited 2024
77. Titan: Titan. http://espeed.github.io/titandb/. Visited 2024
78. Wang, J., Chen, B., Wei, L., Liu, Y.: Superion: grammar-aware greybox fuzzing.

In: ICSE, pp. 724–735. IEEE/ACM (2019)
79. Website, A.: American Fuzzy Loop. http://lcamtuf.coredump.cx/afl/. Accessed

2024
80. AFL Website: libFuzzer: A library for coverage-guided fuzz testing. http://llvm.

org/docs/LibFuzzer.html. Accessed 2024
81. Yan, C., Nath, S., Lu, S.: Generating test databases for database-backed applica-

tions. In: ICSE, pp. 2048–2059. IEEE (2023)
82. Zeller, A., Gopinath, R., Böhme, M., Fraser, G., Holler, C.: The fuzzing book

(2019)
83. Zheng, Y., et al.: Differential optimization testing of Gremlin-based graph database

systems. In: ICST, pp. 25–36. IEEE (2024)
84. Zhu, X., Wen, S., Camtepe, S., Xiang, Y.: Fuzzing: a survey for roadmap. ACM

Comput. Surv. (CSUR) 54(11s), 1–36 (2022)

https://redis.io/
https://redis.io/
https://redis.io/
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://github.com/ThomHurks/pgMark
https://github.com/ThomHurks/pgMark
https://github.com/ThomHurks/pgMark
https://github.com/ThomHurks/pgMark
https://github.com/ThomHurks/pgMark
https://www.tigergraph.com/
https://www.tigergraph.com/
https://www.tigergraph.com/
https://www.tigergraph.com/
http://espeed.github.io/titandb/
http://espeed.github.io/titandb/
http://espeed.github.io/titandb/
http://espeed.github.io/titandb/
http://espeed.github.io/titandb/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html

	Fuzzing Graph Database Applications with Graph Transformations
	1 Introduction
	2 Motivating Examples
	3 Preliminaries
	4 The PGFuzz Framework
	4.1 Producing Random Graph Instances
	4.2 Greybox Fuzzing for Graph Generation
	4.3 Schema-Aware Graph Transformations

	5 Evaluation
	5.1 Benchmarks
	5.2 Evaluation Results

	6 Related Work
	7 Conclusion
	References

