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Abstract. Graph databases have surged in popularity, and applications 
increasingly employ them to store and retrieve interconnected data. How-
ever, testing graph database-backed applications has distinctive chal-
lenges. Due to the sheer dimension of the graph schema state space, 
testing applications using naive random graph instances is unlikely to 
cover a large portion of an application program. We present PGFuzz, a  
graph transformation-based greybox fuzzer for testing graph database-
backed applications, that is, to the best of our knowledge, the first fuzzer 
to specifically target graph database applications. PGFuzz builds on top 
of state-of-the-art graph generators and utilizes graph transformations 
guided by code coverage to produce application test inputs. PGFuzz’s 
graph transformations are schema-aware and support recently introduced 
graph schema, key, and cardinality constraints. We evaluate PGFuzz on 
graph database applications that we curate from open-source reposito-
ries and show that PGFuzz substantially improves the test coverage of 
graph database-backed applications compared to the state-of-the-art. 

Keywords: graph database applications · graph transformations · 
graph schema constraints · fuzzing · automated testing 

1 Introduction 

The popularity of graph database management systems (GDBMSs) has surged in 
recent years, driven by the increasing need to efficiently store, process, and ana-
lyze complex graph data [ 71]. Due to being custom-built to handle relationship-
centric scenarios, GDBMSs have numerous use cases [ 40,58,70] involving highly 
connected data, ranging from healthcare [ 7,14,38,67], finance [ 15,36,50], to 
transportation [ 39,41,65], and various enterprise applications [ 72]. 

Prominent examples of commercial GDBMSs include both native graph 
and multi-model systems. The former leverage graph data models, such as in 
Neo4j [ 57], MemGraph [ 53], or TigerGraph [ 76], or triple stores, as in Ama-
zon Neptune [ 16], AllegroGraph [ 8], or BlazeGraph [ 21]. Multi-model systems 
mix several models, with the main ones being, for example, wide-column stores 
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
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(JanusGraph [ 46], DataStax [ 27], Titan [ 77], etc.), key-value stores (Hyper-
GraphDB [ 42], DGraph [ 28], RedisGraph [ 69], etc.), document stores (Azure 
Cosmos DB [ 55], ArangoDB [ 13], OrientDB [ 61], etc.) or relational tables (Agens-
Graph [ 20], Db2 Graph [ 43], Oracle Spatial and Graph [ 60], etc.). In this work, we 
target native GDBMSs, represented by the popular Neo4j database, and multi-
model ones, represented by JanusGraph, one of the few GDBMSs equipped with 
not only graph schema, but also advanced integrity constraint mechanisms [ 11]. 

The behavior of graph database-backed applications depends on the con-
tents of the input graph database. Therefore, exercising various executions of 
an application’s logic requires the use of different input graph instances, as they 
can activate different parts of the application logic. Unforeseen input database 
instances may result in unexpected and erroneous application behaviors. 

Ensuring the reliability of graph database applications through testing faces 
significant challenges in terms of validity and effectiveness. First, the database 
instances for the graph database applications must satisfy complicated con-
straints determined by application semantics, which are nontrivial to synthe-
size. Second, effectively exploring the application logic requires generating graph 
database instances that can trigger various parts of the application code. 

An intuitive approach to test graph database-backed applications is to stress-
test them using graph instance generators, such as the state-of-the-art schema-
driven graph generators gMark [ 18] and pgMark [ 75]. However, while these 
schema-driven generators solve the problem of validity, they do not offer effec-
tive testing of the applications. They only generate graphs that comply with a 
given graph data schema, which makes them inherently limited in their cover-
age of all application behaviors. Although most graph databases do not enforce 
schema constraints, these are crucial to data quality [ 22,44], data integration, 
and data exchange [ 19,33]. The application programs process the retrieved 
data and ensure its integrity. As such, they perform operations and substitu-
tions on graph database instances. However, schema-driven graph generators 
often fail to cover all branches of an application, particularly logic involving 
application-specific substitution values. Additionally, these generators produce 
database states independently, without leveraging insights from previously gen-
erated states. This limits their ability to cover complex applications with nested 
branching logic. 

Fuzzing [ 52,82,84] is a popular approach for software testing. Blackbox 
fuzzing treats the program as a black box, i.e., it does not know the internal 
structure and branching of the program and generates test inputs randomly, 
independent of the program logic and the other test inputs. In contrast, white-
box fuzzing [ 35] analyzes the program’s internals to create test inputs. This 
involves examining the program’s branching logic and using satisfiability solvers 
to generate inputs that can trigger specific branches. While blackbox fuzzing may 
struggle to effectively exercise rare or deep code branches by creating inputs that 
can navigate less frequent paths, whitebox fuzzing requires complete knowledge 
of the system being tested and is computationally intensive.
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Greybox fuzzing [ 82] combines both effectiveness and efficiency by utilizing 
information gathered from the program being tested, such as execution branch 
coverage, to generate new test executions. A prominent approach is coverage-
guided greybox fuzzing, which creates new test inputs by modifying previous 
inputs that trigger new coverage during execution. Testing the application with 
these modified test cases allows for more effective exploration of low-frequency or 
deeply nested program paths and helps with the discovery of new paths. Greybox 
fuzzing has been shown to be an effective automated approach for testing various 
application domains [ 52,84]. However, to our knowledge, there are no fuzzers 
designed to generate graph inputs for graph database-backed applications. 

Fuzzing at the input level is often insufficient for graph-backed applications, 
where control flow depends on the structure and content of the database, such as 
missing properties, relationship counts, or specific subgraph patterns. PGFuzz 
addresses this by targeting the database state directly to explore such logic. It 
is the first greybox fuzzer for graph database-backed applications that combines 
schema-aware and constraint-aware graph transformations with coverage-guided 
feedback. To ensure validity, PGFuzz builds on top of state-of-the-art gMark [ 18] 
and pgMark [ 75] graph generators and then mutates the generated instances to 
uncover new application behaviors. To address scalability, PGFuzz operates on 
an in-memory graph model and simulates database calls through a lightweight 
API, avoiding the overhead of actual GDBMS operations and enabling fast, 
efficient fuzzing across large input spaces. 

While PGFuzz is the first greybox fuzzer targeting graph database-backed 
applications, its primary novelty is its use of schema-aware mutations, which pro-
duce input graphs that respect schema-defined structure and types while deliber-
ately violating key and cardinality constraints through targeted property muta-
tions. These mutations, informed by the recent PG-Schema [ 11] language, con-
trast grammar-based fuzzers—which strictly enforce grammatical constraints— 
by intentionally generating graph instances that are syntactically valid, accord-
ing to the schema types, but that violate key and cardinality constraints. This 
allows PGFuzz to thoroughly test the application logic responsible for main-
taining data integrity and schema compliance. 

Testing graph database-backed applications is an underexplored area, and 
there are no openly available sets of such benchmark applications. For the empir-
ical evaluation, we examined open-source applications built on top of Neo4j [ 57], 
one of the most popular graph databases [ 73], and JanusGraph [ 46], one of the 
few graph databases to enforce schema constraints [ 11], and compiled a custom 
benchmark suite for testing database-backed applications. We evaluate PGFuzz 
against existing graph generators for test generation and show its superior cov-
erage. Our tests revealed several bugs in the application programs that manifest 
when using certain graph database instances as input states. 

In summary, this paper makes the following contributions: 

– PGFuzz, the first greybox fuzzer for testing graph database-backed applica-
tions that uses schema and constraint-aware graph transformations to gener-
ate input graph database instances.
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– A benchmark suite collected from real-world graph database-backed applica-
tions that leverage heterogeneous graph structures from various domains. 

– An empirical analysis evaluating PGFuzz against the gMark and pgMark 
state-of-the-art schema-driven graph instance generators. 

void  getTransport  (  Graph  g  )  {  
int  transport_count  =  0;  
List  <  String  >  trsp  =  new  

ArrayList  <  >()  ;  
Node  n  =  

g  .  getNodes  (  "  Centroid  "  ).  get  (0)  ;  
for  (  Edge  e  :  n  .  getEdges  ()  )  {  

if  (  e  .  getLabel  ()  .  equals  (  "DRT  "  ) ||  
e  .  getLabel  ()  .  equals  (  "  WALK  "  ))  {  

trsp  .  add  (  e  .  getLabel  ()  )  ;  
transport_count  +=  1;  }  

} 
String  transport  ;  
if  (  t  ransport_count  ==  2)  {  

transport  =  "  DRT  /  WALK  "  ; }  
else  { 
transport  =  trsp  .  get  (0)  ;  }  

return  transport  ;  
} 

(a) Excerpt from P2 [39]. 

List  <  PaperResponse  >  referers  =  
g  .  getConnectedNodes  
(  paper ,  " cites  "  , true  ) 

.  stream  ()  

.map(  v ->  {  
Map  <  String  ,  String  >  props  =  
v  .  properties  ;  
return  new  PaperResponse  (  
(  String  )  (  v  .  id  +  ""  ),  
(  String  )  props  .  getOrDefault  
( " title"  , "N/A"  ),  

Integer  .  parseInt  (  props  .  getOrDefault  
( " year"  , "N/A"  ))  ,  

Integer  .  parseInt  (  props  .  getOrDefault  
( "  n  umOfPaperReferees  "  , "0"  ))  ,  

Integer  .  parseInt  (  props  .  getOrDefault  
( "  n  umOfPaperReferers  "  , "0"  ))  ,  

Double  .  parseDouble  (  props  .  g  etOrDefault  
( "  pagerank  "  , "0.0"  )));  })  

(b) Excerpt from P3 [3]. 

Fig. 1. Simplified code excerpts from our benchmark applications. 

2 Motivating Examples 

We showcase PGFuzz’s key challenges with an example involving branching 
logic based on the input graph schema and database state, and another handling 
schema-constrained graph instances where the application ensures data integrity. 

Example 1 (Transport Graphs). Graph databases are increasingly used to ana-
lyze existing public transit networks and to construct novel models that improve 
accessibility [ 29,41,65]. In a recent use-case [ 39], GTFS 1 schedule data has been 
used to build and process public transportation graph models in the Neo4j graph 
database. A code snippet from the application is shown in Fig. 1a. Its purpose is 
to analyze the connectivity of the centroid nodes (centers of a tessellated grid 
map) using demand-responsive transport (edges labeled “DRT”) and pedestrian 
routes (edges labeled “WALK”). Note that the first branching condition depends 
on these labels, which are part of the typing schema constraint of the underlying 
graph database. Efficiently producing valid test graph instances that effectively 
cover the application’s branching structure requires custom techniques.

1 GTFS is the standard open data format detailing transit schedules. 
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Fig. 2. Property graph schema for the P2 transport application. 

Example 2 (Citation Graphs). A recent graph database use-case targets the 
analysis of bibliographical citation networks [ 3]. The schema defined by the appli-
cation requires the nodes representing papers to have string values assigned to 
the properties that store their title, year of publication, number of referees and 
referrers, and PageRank. These properties are read by the application logic, 
and default values are substituted when they are missing, as can be seen in the 
code snippet in Fig. 1b. Schema-driven generators like gMark or pgMark typ-
ically generate by design fully schema-compliant instances where all expected 
properties are present, resulting in test inputs that bypass the application logic 
meant to handle missing or incomplete data. PGFuzz overcomes this by deliber-
ately mutating such instances to remove or alter expected properties, triggering 
execution paths that would otherwise remain untested. 

3 Preliminaries 

Graph databases typically use the labeled property graph data model [ 10], i.e., 
a directed multi-labeled multi-graph with properties on nodes and edges. 

Example 3 (Transport Graph). We illustrate the property graph model on our 
running example. In the P2 application, a city’s transit line network is repre-
sented as a property graph. Figure 2 captures the graph database instance for 
the city of Royan’s transport graph. The node colors correspond to their label-
ing. Stoptime nodes (blue) that represent scheduled passage times are linked
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1 CREATE GRAPH TYPE transportationGraphType STRICT { 

2 (aType : Agency {agency_id STRING,...,agency_phone STRING}), 

3 (rType : Route {route_id INT32,...,route_text_color STRING}), 

4 (stimeType : Stoptime {stop_id INT32,..., departure_duration INT32}), 

5 (sType : Stop {stop_id INT32,..., stop_desc STRING}), 

6 (cType : Centroid {centroid_id INT32,...departure_duration INT32}), ... 

7 (:aType)-[:operates]->(:rType), 

8 (:cType)-[:DRT {drt_time INT32, drt_waiting_time INT32}]->(:stimeType), 

9 (:cType) 

10 -[:WALK {distance INT32, walking_time INT32, inter_time INT32}]-> 

11 (:stimeType), ... 

12 FOR (a:Agency) EXCLUSIVE a.agency_id, FOR (s:Stop) MANDATORY s.stop_id, 

13 FOR (rt:Route) SINGLETON o WITHIN (a:Agency)-[o:operates]->(rt), 

14 FOR (c:Centroid) COUNT 2.. OF r WITHIN (s:Stoptime)-[r:DRT|WALK]->(c), 

15 ... } 

Fig. 3. Simplified PG-Schema for the P2 transportation application [39]. 

to specific Stop stations (pink) through arcs labeled LOCATED AT. Tessellation 
Centroid nodes (red) are connected to Stoptime ones via arcs labeled WALK 
and/or DRT, depending on whether these are accessible via pedestrian or, respec-
tively, via demand-responsive routes. Stoptime nodes are inter-connected with 
arcs labeled PRECEDES, denoting temporal ordering, or CORRESPONDENCE, denot-
ing pairwise accessibility using a different line. Each Trip (orange node) encodes 
a mobility plan that comprises passage times (Stoptime nodes) and employs a 
Route (green node) or several, operated by an Agency (brown node) or mul-
tiple ones. The property graph model also allows attaching lists of key-value 
properties on nodes and edges, as can be seen in Fig. 2 discussed next. 

Property Graph Schemas and Constraints. While property graph instances 
represent data stored in a GDBMS, graph schemas and constraints describe their 
structure, typing, and integrity requirements to ensure consistency. Although 
these are crucial for data integration and exchange [ 19], query optimization [ 31], 
and data reliability [ 32], current GDBMSs provide limited support. 

The applications we analyzed are built on top of Neo4j and JanusGraph. 
We consider these systems, as Neo4j is one of the most popular [ 73] GDBMSs  
and JanusGraph is one of the few that can handle not only a priori schema 
constraints but also rich cardinality ones, as surveyed in [ 11]. Although these 
systems provide different levels of support for graph schemas and constraints
- Neo4j is schemaless and JanusGraph is schema flexible and allows explicit or 
implicit schema definitions - both benchmarks use Neo4j and JanusGraph enforce 
these at the application level to maintain data integrity. 

PGFuzz supports graph schema constraints, including key constraints and 
cardinality ones, illustrated with the recent PG-Schema language. Typing con-
straints (PG-Types) specify nodes and edge labels and properties and the rela-
tionship types that can connect certain node labels. Key constraints (PG-Keys) 
ensure that graph objects are uniquely identified and referenced. Identification
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is enforced with the IDENTIFIER keyword, comprising EXCLUSIVE, MANDATORY, and  
SINGLETON, while for referencing, EXCLUSIVE MANDATORY is used. PG-Keys state-
ments are of the form FOR p(x) <qualifier> q(x, ȳ), where <qualifier> is a com-
bination of EXCLUSIVE MANDATORY, SINGLETON, and  p(x), q(x, ȳ) are graph queries. 

We illustrate these in Fig. 3 on the running example. EXCLUSIVE restricts two 
objects from sharing a key value, e.g., no two agencies have the same agency id 
(line 28). MANDATORY enforces that every object must have at least one key, e.g., 
every stop should have a stop id (line 30). SINGLETON enforces that every object 
has at most one key, ensuring that two objects with the same key are identical, 
e.g., every route is operated by a unique agency (lines 32–33). 

Cardinality constraints, introduced in PG-Schema as a PG-Keys extension, 
enforce bounds on the number of graph object instances, e.g., every centroid 
should be connected to a stoptime through at least two edges, labeled ‘DRT’ 
or ‘WALK’ (lines 35–36). The constraints are expressed similarly to PG-Keys, 
using the qualifier COUNT <lower bound>?..<upper bound>? OF to express that the 
number of distinct results returned by q(x, ȳ) must be within the specified range. 

Among existing GDBMSs, JanusGraph provides one of the most compre-
hensive supports for cardinality constraints [ 11]. It allows declaring edge label 
multiplicity, specifying whether at most one (SIMPLE) or multiple (MULTI) edges 
can be defined between any node pair, with MANY2ONE and ONE2MANY respec-
tively allowing at most one outgoing/incoming edge, without constraining the 
number of incoming/outgoing ones. It also allows for property key cardinalities, 
specifying whether a node key can have one or multiple values. 

PGFuzz transformations allow breaking all of the above constraints, as 
detailed in Sect. 4.3. PGFuzz considers test inputs for graph database applica-
tions to be defined by a core fragment of the previous graph schema constraints, 
with typing and key constraints being enforced at the property level. As such, 
each property can be assigned one of the built-in types String, Integer, Double, 
Float, Boolean, with String being the default when no type is provided. Also, 
properties can be flagged as EXCLUSIVE, MANDATORY, or  SINGLETON. Relationship car-
dinality constraints are also supported, enabling the specification of the allowed 
number of edges of a particular type between any two nodes. 

Fig. 4. The workflow of PGFuzz.
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4 The PGFuzz Framework 

Figure 4 illustrates the workflow of the PGFuzz testing framework. The main 
components of PGFuzz are: (1) program instrumentation of the application 
under test to direct the calls to graph databases to PGFuzz Graph API and 
track code coverage, (2) leveraging state-of-the-art graph generators to produce 
graph database input seeds, and (3) using greybox fuzzing to generate new test 
inputs by graph transformations guided by code coverage. 

To avoid the cost of database connection, communication, and state reset-
ting operations at each test execution, PGFuzz maintains an in-memory graph 
structure for the input graph database state. The model is based on a property 
graph model (see Sect. 3) and provides a graph processing API modeled after 
popular graph database query APIs. As shown in Table 1, the  PGFuzz API 
defines the basic methods for accessing and updating graph data. 

We instrument the application under test to redirect the calls to graph 
database operations and instead invoke the API operations on PGFuzz’s inter-
nal graph. Hence, PGFuzz does not use GDBMS executions but directly 
explores the behaviors of the graph database application under test. 

Table 1. PGFuzz API operations. 

Operation Description 
getNodes(String l, String k, String v) return nodes with label l and key-value (k, v) 
getNode(int id) return the node with identifier id 
getLabel(Node n) return the label attached to the node n 
getConnectedNodes(Node n, String l) return all nodes connected to n with edges labeled l 
getNodes(), getEdges() return all nodes/edges 
getNodeEdges(Node n) return all edges attached to the node n 
getIncomingEdges(Node n) return all incoming edges attached to the node n 
getOutgoingEdges(Node n) return all outgoing edges attached to the node n 
getNodePairEdges(Node n1, Node n2) return all edges between nodes n1 and n2 
getEdgeProperty(Edge e, String l) return a property of an edge e labeled l 
getNodeProperty(Node n, String l) return a property of a node n labeled l 
getPropertyValue(String k) return the value of a property k 
addNewNode(), addNewNodes(int c) add a/c new node(s) 
addLabeledNode(String l) add a new node with label  l 
addNode(Node n) add a new node n 
addEdge(Edge e, Node n1, Node n2) add the edge e between nodes n1 and n2 
removeNode(int id) remove  the node with identifier  id 
removeEdge(Edge e) remove the edge e
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4.1 Producing Random Graph Instances 

PGFuzz constructs initial test seeds using the state-of-the-art gMark [ 18] and  
pgMark [ 75] schema-driven graph generators. gMark produces synthetic edge-
labeled graphs based on schema constraints specifying their corresponding typing 
structure. The system also allows the configuration of the size of the graph, the 
number of occurrences for each node or edge label, and the in- and out-degree 
distribution for each relationship type. The pgMark framework builds on top of 
gMark and adds support for generating attributed graphs with node properties. 
In the PGFuzz framework, we use an enhanced version of pgMark, which we 
extended to support the full expressiveness of the property graph model by also 
allowing instances to incorporate edge properties. 

4.2 Greybox Fuzzing for Graph Generation 

PGFuzz collects the graph database states produced by gMark and pgMark 
in a set of test inputs and uses them for testing graph database applications. 
However, these test inputs are generated in a black-box approach, i.e., they 
are produced independently and randomly, not using any information from the 
application under test. Therefore, testing the applications using these graphs as 
test inputs is unlikely to cover all branching logic of the application code. 

PGFuzz offers a greybox approach for generating new graph database 
instances for testing graph database applications. Unlike the graph instance 
generation by gMark and pgMark, PGFuzz employs a greybox feedback loop 
to guide the test generation towards more application code coverage. 

As given in Fig. 4, the greybox fuzzing loop consists of three main steps: 
First, it runs the application under test with a test input. During the execution, 
it collects some greybox information (for PGFuzz, branch code coverage) of the 
execution. Then, it checks whether the execution covers previously unexplored 
branches in the application code. Following the intuition that the test inputs 
similar to the one that triggered new application behavior are also likely to 
trigger new behaviors, the fuzzer mutates that test input to generate new test 
inputs. PGFuzz uses graph transformations to generate new test inputs. 

PGFuzz uses branch code coverage as greybox feedback information from 
the test executions, which is commonly used in testing traditional software sys-
tems [ 82]. As the application programs’ branching logic is based on the input 
graph database state, branch code coverage effectively captures the explored 
parts of the application program. Alternative to code coverage, the framework 
can be extended to use different feedback information from the program, e.g., 
defining fitness functions, to evaluate how likely the test inputs generated from 
an input can trigger new behaviors. 

4.3 Schema-Aware Graph Transformations 

Given a test input, i.e., test graph database instance, that achieves new coverage 
PGFuzz mutates that instance to produce a new instance using novel graph
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transformations that leverage the typing, key, and cardinality constraints of the 
application under test. 

PGFuzz uses graph schema-aware transformations and supports a core frag-
ment of the recent PG-Schema and PG-Keys formalisms, which inform the 
design of the novel GQL graph query standard [ 11,12]. PGFuzz integrates infor-
mation regarding graph typing, key constraints enforced on graph objects, and 
cardinality restrictions, e.g., on the number of edges between node pairs, as 
in JanusGraph: One2One, Many2One, One2Many, Many2Many. This provides vari-
ations of graph instances that comply with application requirements and are 
likely to cover important states. Rather than adding a random label, the trans-
formation can select one that is expected to occur. By design, the transformation 
can leverage information about graph constraints that might not otherwise be 
derived from any arbitrary graph state. Schema-aware transformations adhere to 
the schema when possible but may deviate if no valid candidates are available. 

A B 
E 

E 

A 

B 

C 

E 

E 

A 

B 

C 

E 

E 

Fig. 5. M14 transformations that violate cardinality constraints. Each subfigure shows 
the result of a transformation breaking one of: SIMPLE (maximum one edge between 
two nodes), MANY2ONE (multiple sources to one target), and ONE2MANY (one source to 
multiple targets). Each graph depicts the input test state after the transformation, 
where an added edge leads to the constraint violation. 

PGFuzz transformations are classified into C1, C2, C3, and  C4, depending 
on whether they add, remove, modify graph objects, or violate graph constraints. 
Modifications include adding nodes or edges with arbitrary schema labels (M1,2) 
and assigning arbitrary schema properties (M3). Nodes and their attached edges 
can be removed (M4), as well as edges or properties (M5,6). Node or edge 
labels can be randomly modified (M7,8), along with the keys or property values 
(M9,10). Schema constraints can be broken by removing all nodes or edges of a 
given label (M11,12), altering property typing for arbitrary elements (M13), or 
cardinality constraints by adding or removing instances (M14 in Fig. 5), breach-
ing exclusivity constraints by assigning values to random elements (M15), and 
violating mandatory constraints by setting values to NULL (M16). 

5 Evaluation 

We implement PGFuzz 2 on top of the JQF [ 62] fuzz testing framework for 
Java applications. JQF allows for instrumenting the application under test to
2 The source code of PGFuzz and the evaluation data are available at: https://github. 

com/moudemans/PGFuzz. 

https://github.com/moudemans/PGFuzz
https://github.com/moudemans/PGFuzz
https://github.com/moudemans/PGFuzz
https://github.com/moudemans/PGFuzz
https://github.com/moudemans/PGFuzz
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track code coverage and implement the coverage-guided testing loop. We redi-
rect graph database operations to PGFuzz’s Graph API and then execute the 
instrumented program with generated graph instances as test inputs. We evalu-
ate PGFuzz’s performance compared to state-of-the-art graph instance genera-
tors, in terms of test coverage and the number of unique bugs detected, following 
metrics proposed in [ 51,54]. We test benchmark graph database-backed appli-
cations using baseline graph generators and PGFuzz, measuring branch code 
coverage and the number of distinct bugs discovered. We collect the test results 
on a machine running Windows 11 with Intel(R) Core(TM) i7-13700KF 3.40 GHz 
CPU and 32 GB of memory. 

As baselines, we consider the state-of-the-art gMark and pgMark schema-
driven graph generators for applications leveraging edge-labeled and property 
graphs, respectively. These tools follow a black-box testing strategy, producing 
test inputs independently of each other, as well as of previous test executions. 
PGFuzz exploits a greybox fuzzing framework to incorporate code coverage 
feedback into the test generation and uses schema-aware graph data transfor-
mations to generate new tests. 

Table 2. Benchmark characteristics. 

Code Name Framework Language Characteristics 
P1 Medical Neo4j Python Cardinality 
P2 Transportation Neo4j Python Properties and node labels 
P3 Citation JanusGraph Java Edge properties 
P4 Citation Network JanusGraph Java Relationships 
P5 Pangenomic Neo4j Python Property values 
P6 Pheno4JOut Neo4j Java Property keys and types 
P7 Pheno4J Neo4j Java Property types 
P8 PanTool1 Neo4j Java Property values 
P9 PanTool2 Neo4j Java Unstructured dependencies 

5.1 Benchmarks 

We collected graph database-backed applications from publicly available repos-
itories. The main criterion is ensuring that graph schema, key, and cardinality 
constraints are enforced in the branching logic. We curate eight benchmarks (see 
Table 2) from diverse areas: medical studies (P1), intelligent transportation (P2), 
bibliographical analysis (P3), and genomics (P5-P8), as described below. 

P1 Medical is collected from OpenStudyBuilder [ 1], an open-source appli-
cation to manage clinical data standards and study design specifications. It 
implements CDISC [ 26] standards 3 by providing additional semantics to prevent
3 CDISC develops standards for collecting, sharing, and analyzing clinical trial data. 
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inconsistencies that impede automation scaling. P1 ensures that, when adding 
or modifying nodes, EXCLUSIVE and MANDATORY constraints are preserved. 

P2 Transportation is collected from a study [ 2,39] that evaluates how 
demand-responsive services influence public transportation accessibility. P2 ana-
lyzes the connectivity of central locations on a grid with respect to mass transit 
stations through pedestrian and on-demand routes. Its branching logic depends 
on cardinality constraints on relationships with certain labels and properties. 

P3 Citation is collected from CiteGraph [ 3], an open-source web application 
for visualizing and analyzing citation networks. It enables discovering connec-
tions between papers and authors and evaluating the influence of specific works 
or researchers. P3 gathers citation, collaboration, PageRank metrics, and bib-
liographic meta-data through graph traversals. Its logic for processing data is 
guided by the schema of the underlying property graph. 

P4 Citation Network benchmark is collected from the same repository as 
the P3 Citation. It finds its n-hop references for a given paper by relying on 
specific relationships to be connected with at least n connected components. 

P5 Pangenomic is collected from PanGraph-DB [ 4], an open-source com-
parative pangenomics application that analyzes graph structures representing 
the genomic diversity of species. It inspects genomic family neighborhoods and 
extracts connectivity properties to identify those with similar characteristics. 

P6 Pheno4J1 is collected from Pheno4J [ 56], an open-source application 
that integrates various biological data sources, allowing to visualize and analyze 
relationships between genetic variations and phenotypic traits. Its logic depends 
on the graph schema, as it computes an export format for data exchange. 

P7 Pheno4J2, also collected from Pheno4J, analyses the properties linked 
to phenotypic traits of genomic variants. Its branching logic is determined by 
the edge labels of the different variants and by the properties that capture their 
phenotypic effects. Data integrity is maintained through type conversions. 

P8 PanTool1 is collected from PanTool [ 5], an open-source application that 
analyzes pangenome graphs to evaluate genetic variations across species. It tracks 
and organizes phasing information from genomic sequences represented as nodes. 
Its branching logic depends on MANDATORY key constraints on node properties and 
cardinality constraints on the number of genomes with phasing information. 

P9 PanTool2, also collected from PanTool, analyzes the messenger RNA 
nodes of a genomic graph. Similarly to P8, its branching logic depends on prop-
erty values and MANDATORY key constraints on properties. 

Correctness Specification and Test Oracle. We validate the benchmarks by 
checking whether the application crashes for certain inputs, using this property 
as our test oracle. We identified several bugs in the applications that led to 
crashes, with exceptions being thrown when specific graph database instances 
were used as input. 

5.2 Evaluation Results 

We evaluate PGFuzz by addressing the following main research questions:
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– RQ1. Can the test inputs generated by PGFuzz provide a higher test cov-
erage compared to the state-of-the-art graph instance generators? 

– RQ2. Can the test inputs generated by PGFuzz detect more bugs than the 
state-of-the-art graph instance generators? 

– RQ3. How do different categories of graph transformations contribute to the 
bug detection capability of PGFuzz? 

We answer the research questions by testing the benchmark programs using 
the input graph instances generated by PGFuzz and the state-of-the-art graph 
instance generators gMark and pgMark with the synthetic graph size of 100 
nodes. Due to the randomness of the tests, we conducted each experiment five 
times for 10 min and reported the average results. 

Fig. 6. Test coverage of the benchmarks using PGFuzz and the baseline. 

Test Coverage. Figure 6 shows the branch code coverage of testing the bench-
mark applications using gMark (for P1, which uses an edge-labeled graph), 
pgMark (for P2-P9, which use property graphs), and PGFuzz. The plots do 
not include the coverage results for benchmark P4 since all branches in that 
benchmark program are covered within the first few test cases generated by
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each method. The results show that testing the benchmarks with the black-box 
testing approach using pgMark reaches 40%–85% branch coverage. The broad 
coverage of the application logic achieved with randomly generated instances can 
be attributed to the diversity of graph instances gMark and pgMark produce by 
design, as demonstrated by their empirical evaluation [ 18]. However, the gener-
ated graph instances do not cover much of the code in all benchmarks, e.g., in P6 
and P9. These benchmarks use various instance nodes, edges, relation labels, and 
properties in their application logic and use nested branching on these proper-
ties. Increasing the test coverage of such benchmarks requires exploring a more 
extensive set of graph instances. Coverage-guided fuzzing approaches increase 
the code coverage by generating more graph instances around the instances that 
hit new code branches, hence exploring deeper branches of the applications. 

We answer RQ1 positively: PGFuzz achieves better coverage results in a 
smaller number of test executions for all the benchmark applications. PGFuzz’s 
schema-aware test case generation produces test instances that comply with 
schema types but intentionally break the schema constraints. An example is the 
branching given in Sect. 3 and Fig. 1b, which requires the exploration of graph 
instances that do not necessarily satisfy all the constraints in the graph schema. 
The graph transformation-based mutations of PGFuzz lead to covering the 
application logic with the substituted values for the graph properties. Moreover, 
transforming the instances that cover new branches helps in covering a deeper 
sequence of branching. PGFuzz shows an increase in coverage of up to 57% and 
23% on average, with the highest improvement in benchmarks P6 and P8 that 
have the most complicated branching logic. 

While PGFuzz consistently outperforms the baselines, it does not reach 
100% coverage for all benchmarks. Further analysis of the applications shows 
that P1 has an unreachable condition in a private method, as it has already been 
checked and filtered in an earlier branch. In P3, PGFuzz can reach 100% cov-
erage but cannot consistently cover each branch in all test repetitions. Branches 
that are not consistently reached depend on the presence of a specific node and 
require input graph transformations that enable access but make reaching them 
unlikely. In P9, PGFuzz cannot reach 100% coverage, as doing so would require 
sequential node property IDs, which are highly improbable to occur in both 
randomly generated and transformed inputs. 

Bug Detection. We answer RQ2 positively: PGFuzz detects more bugs than 
testing the applications using the state-of-the-art graph instance generators. In 
our evaluation, PGFuzz found several bugs in the benchmark applications, while 
the baseline approaches failed to detect any of them. 

Table 3 lists the number of distinct bugs PGFuzz discovered. The most fre-
quent errors, encountered 23 times, are due to invalid data types, as the bench-
mark tries to parse integers, booleans, or other types while the property value 
is no longer of that type. Null pointer exceptions occurred 5 times and were 
triggered by certain graph elements no longer being present. The array index 
out of bounds occurred 3 times and was caused by removing graph elements or 
splitting a string that no longer contained a specific character. These errors are
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Fig. 7. Contribution of the transformation categories per error type. 

thrown by the application under test when the contents of the graph instance 
trigger parts of the application code that do not anticipate certain nodes, edges, 
labels, or properties. Although the errors seem simple, they are hard to detect 
as they manifest only with certain contents of the graph instances to hit certain 
branches that are neglected by the developers. 

Overall, PGFuzz is successful at finding bugs, especially with the graph 
transformations that break schema constraints. PGFuzz could expose several 
errors that are caused mainly by changing the graph elements and property 
types, producing possible test inputs that are neglected in the application logic. 

Table 3. Distinct bugs per method causing Null Pointer Exception (NPE), Number 
Format Exception (NFE), Array Index Out of Bounds Exception (AIOBE). 

PGFuzz Error(s) 
P1 2 NPE 
P2 5 AIOBE, NFE 
P3 10 NFE 
P4 1 NPE 
P5 2 NPE 
P6 0 -

P7 4 AIOBE, NFE 
P8 4 AIOBE, NFE 
P9 3 AIOBE, NFE
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Contribution of the Transformation Categories for Bug Detection. To answer 
RQ3, we analyzed the effect of the categories of transformations to detect 
each type of error. Figure 7 shows the number of errors hit by each category 
of transformations for (1) an invalid data type, (2) a null pointer, and (3) an 
array index out-of-bounds exception. Breaking graph constraints (C4), which 
potentially violate the schema constraints of an application, is the most effective 
strategy, detecting the most unique errors in 6 of 8 benchmarks. This under-
scores PGFuzz’s schema-aware graph transformations, which generate schema-
compliant yet semantically unexpected graph instances that violate constraints. 

Compound Transformations. The graph transformations in PGFuzz focus on 
modifying individual graph elements, such as nodes or edges, along with their 
corresponding labels, properties, or values, as described in Sect. 4.3. To evaluate 
the effectiveness of making multiple changes to the graph instances, we intro-
duced compound transformations. We then repeated the tests by incorporating 
these into PGFuzz’s set of transformations. 

Note that compound transformations do not change individual components 
of a graph; instead, they apply multiple modifications at once. Specifically, we 
used compound transformations that involve randomly adding multiple nodes 
and edges in the input graph. This process results in the addition of several new 
nodes, edges, and relationships that are likely to form more complex structures 
such as cycles or triangles. We avoid using transformations that remove subsets 
of graph elements, as such operations can be overly disruptive. 

We repeated the evaluation on the set of benchmarks, enabling compound 
transformations. As given in Fig. 8, the results do not show a significant per-
formance improvement on the application benchmarks. This can be explained 
by the branching logic in graph database applications, which can be covered by 
modifying a single element of the test input graph, e.g., labels or properties. 
Compound mutations can be more beneficial for the applications that branch on 
more specific patterns, e.g., checking for cycles or triangles. 

Threats to Validity. Potential threats to the validity of our findings include 
the representativeness of the curated set of database-backed application bench-
marks and the randomness of the test executions. The generalizability of our 
results highly depends on how representative our evaluation targets are of real-
world application scenarios. As we collect the benchmark suite from open-source 
repositories, we do not cover enterprise applications. However, our benchmark 
applications have diverse graph database schemas and schema constraints. 

An additional threat to the validity may arise from the decision to redirect 
database calls to PGFuzz API operations. The effectiveness of this approach 
depends on the assumption that the API calls accurately represent the behavior 
of the database methods. Any discrepancies between the two could negatively 
impact PGFuzz’s performance. The API operations model all the database calls 
in the benchmark programs used in our experiments. 

Lastly, the experimental results involve multiple sources of randomness. The 
input graph instances are randomly generated by gMark and pgMark, which
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Fig. 8. Test coverage of the benchmarks results using compound transformations. 

are later transformed by PGFuzz. Moreover, the effectiveness of PGFuzz’s 
tests is highly dependent on the applied transformations, which are also selected 
randomly as part of the fuzzing framework. To mitigate randomness, we repeat 
our experiments five times and report averaged results. 

6 Related Work 

Testing Database Systems. Several recent works focus on testing database man-
agement systems [ 9,17,45] and graph databases [ 47,49,83]. Different from these 
works, which target the bugs in the database systems, PGFuzz targets finding 
bugs in the graph database-backed applications. 

Testing Database-Backed Applications. As the behavior of database-backed 
applications depends on the state of the database on which they operate, test-
ing them requires generating test database instances. Earlier works [ 6,30] use  
constraint solving and static analysis for generating program inputs and input 
database states. SynDB [ 63,64] tests database-backed applications using a sym-
bolic database. It generates test inputs and relational database states by con-
sidering all program, query, and database constraints and targeting relational 
databases. Recent work proposes DBGRILLER [ 81], a greybox testing app-
roach for generating test databases for database-backed applications. Similar to
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PGFuzz, DBGRILLER applies small mutations to existing database states 
to create new test instances. However, it is specifically designed for relational 
database applications and does not tackle graph-database-backed applications. 
To our knowledge, PGFuzz is the first greybox fuzzer for generating test inputs 
for graph database-backed applications. 

Fuzz Testing. There is extensive work on generating test input using 
fuzzing [ 52,82,84]. While the first fuzzers, such as American Fuzzy Lop 
(AFL) [ 79] and libFuzzer [ 80], work on the bit-level representation of the input 
seed files, they are not as effective on structured inputs, such as XML and 
JavaScript, as bit-level mutations either disrupt the structure or are unlikely to 
produce changes beneficial to code coverage. Smart fuzzing [ 66] and grammar-
based fuzzing [ 78] operate on test input structures and produce test inputs for 
a given input structure. These approaches have been successfully used to gen-
erate test inputs in various formats [ 34,48,59,74,78]. GraphFuzz [ 37] addresses 
library API testing by modeling executed functions as a dataflow graph and 
applying graph-based mutations to generate new test cases. Although Graph-
Fuzz also uses graph mutations to modify test cases, it is tailored to dataflows 
and fundamentally differs from PGFuzz. Similar to smart and grammar-based 
fuzzers, PGFuzz generates syntactically valid test inputs, satisfying the syn-
tactical schema type of the underlying graph database. Unlike grammar-based 
fuzzers that aim to cover the space of the syntactic structure, enforcing con-
straints in the generated input, PGFuzz can generate test inputs that may 
intentionally break semantic constraints that capture the intended logic of the 
data, such as key and cardinality constraints. This enables targeted testing of 
graph database applications where such constraints play a critical role in ensur-
ing data integrity. 

Graph Databases. Graph transformations have been extensively applied to 
schema evolution, data migration, and interoperability in graph databases. Boni-
fati et al. [ 23] propose a framework for supporting evolving graph schemas, 
which leverages graph rewriting operations to maintain consistency. More recent 
works [ 24,25] adopt a high-level, declarative approach aligned with the GQL 
standard, employing graph pattern matching to support complex migration and 
cleaning tasks. Similarly, schema-aware transformations ensure semantic interop-
erability between diverse graph models such as property graphs and RDF [ 68]. In 
contrast, PGFuzz leverages a lightweight, heuristic use of schema-aware transfor-
mations aimed at generating varied test instances for evaluating the robustness 
of graph database-backed applications. 

7 Conclusion 

The rise of graph database management systems emphasizes the importance 
of testing graph database-backed applications that rely on complex, highly 
interconnected datasets. Our work introduces PGFuzz, the first greybox fuzz-
testing framework designed to specifically address the intricacies of testing graph 
database-backed applications. By incorporating schema-aware transformations
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and leveraging code coverage, PGFuzz offers a promising solution to test-
ing graph database applications. Our empirical evaluations demonstrate that 
PGFuzz significantly outperforms existing state-of-the-art baselines, uncover-
ing more distinct bugs and achieving higher test coverage in graph database 
applications from various domains. PGFuzz opens the promising perspective of 
also incorporating other recently introduced types of graph constraints [ 31]. 
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