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Uncertainty-Driven Distributional Reinforcement Learning
for Flight Control

Marek Homola∗, Yifei Li† and Erik-Jan van Kampen ‡

Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
Delft University of Technology, P.O. Box 5058, 2600GB Delft, The Netherlands

In the rapidly evolving aviation sector, the quest for safer and more efficient flight operations
has historically relied on traditional Automatic Flight Control Systems (AFCS) based on
high-fidelity models. However, such models not only incur high development costs but also
struggle to adapt to new, complex aircraft designs and unexpected operational conditions. As
an alternative, deep Reinforcement Learning (RL) has emerged as a promising solution for
model-free, adaptive flight control. Yet, RL-based approaches pose significant challenges in
terms of sample efficiency and safety assurance. Addressing these gaps, this paper introduces
Returns Uncertainty-Navigated Distributional Soft Actor-Critic (RUN-DSAC). Designed to
enhance the learning efficiency, adaptability, and safety of flight control systems, RUN-DSAC
leverages the rich uncertainty information inherent in the returns distribution to refine the
decision-making process. When applied to the attitude tracking task on a high-fidelity, non-
linear fixed-wing aircraft model, RUN-DSAC demonstrates superior performance in learning
efficiency, adaptability to varied and unforeseen flight scenarios, and robustness in fault tolerance
that outperforms the current state-of-the-art SAC and DSAC algorithms.

Nomenclature

S = State-space
A = Action-space
R = Reward mapping
𝑅(𝑠, 𝑎) = Reward function as a function of state 𝑠 and action 𝑎
P = Stochastic state transition dynamics
𝛾 = Discount factor
𝑄 𝜋 = Action-value function under policy 𝜋
𝜋∗ = Optimal policy
H = Entropy of the policy
L𝜋 = Policy loss function
𝑍 = Random variable representing the return distribution
𝜏 = Quantile level
Ψ = Risk measure function
𝜇, 𝜎𝑄 = Parameters in RUN-DSAC for handling uncertainty
𝑄𝑉

𝜃
= Modified action-value function incorporating uncertainty

𝑉 = True airspeed [m/s]
𝛼 = Angle of attack [deg]
𝛽 = Angle of sideslip [deg]
𝜙, 𝜃, 𝜓 = Roll, pitch, and yaw angles, respectively [deg]
𝑝, 𝑞, 𝑟 = Roll, pitch, and yaw rates, respectively [deg/s]
𝑋𝑒, 𝑌𝑒, ℎ = Translational positions in the local tangent plane (horizontal coordinates and altitude) [m]
𝛿𝑒, 𝛿𝑎, 𝛿𝑟 = Elevator, aileron, and rudder deflections, respectively [deg]
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I. Introduction

In the dynamically advancing world of aviation, ensuring the safety and efficiency of flight operations remains
paramount. Traditional automatic flight control systems (AFCS) have been the cornerstone of aviation for decades,

leveraging established control algorithms and techniques. Yet, these systems are increasingly limited by their dependence
on intricate, high-fidelity models of system dynamics [1]. Developing, validating, and verifying these models is
resource-intensive, involving careful system identification through computational simulations, scaled wind tunnel
measurements, and flight tests [2]. Moreover, this challenge escalates with growing complexity in the design and control
of novel aerospace configurations, such as V-shaped flying wings [3, 4], vertical take-off and landing (VTOL) systems
[5, 6], aircraft with morphing wings [7, 8], ornithopters [9, 10], and designs with high-aspect-ratio wings introducing
significant dynamics non-linearity due to increased structural flexibility [11, 12]. Hence, there is an intensifying
urgency for model-free control techniques that streamline the development cycle and minimize the reliance on extensive
model identification and validation. Furthermore, traditional AFCS, which are constrained by predetermined design
assumptions, are susceptible to failure in unforeseen situations like adverse weather or system malfunctions [13, 14].
Incidents, such as the 2009 Air France Flight 447 crash [15], emphasize the critical need for more intelligent and
adaptable autonomous aerospace systems that can ensure safe operation under uncertain circumstances.

Extensive research has focused on reducing model fidelity requirements to enable more autonomous systems. Robust
control techniques like H∞-synthesis [16, 17] ensure closed-loop stability even in the presence of model uncertainties
and disturbances, but at the expense of very conservative control performance [18, 19]. Nonlinear Dynamic Inversion
(NDI) offers a popular alternative by inverting system dynamics to formulate control laws [20]. However, its limitations
lie in sensitivity to modeling errors, uncertainties, and the accuracy of the system’s state estimates. Sensor-based
approaches, such as Incremental NDI (INDI) [21] and Incremental Backstepping (IBS) [22], mitigate the dependence
on global models and instead rely on incremental control models derived from sensor measurements. This approach
improves robustness to model imperfections, increasing adaptability and fault tolerance [23–25]. Nevertheless, INDI
and IBS methods face challenges related to sensor synchronization and filtering. This research proposes an alternative
solution based on bio-inspired Artificial Intelligence — Reinforcement Learning (RL).

Deep RL, leveraging deep neural networks (DNN) to approximate complex functions [26], offers a promising avenue
for designing autonomous flight control systems capable of learning without explicit a-priori knowledge of system
dynamics. These Deep RL agents adaptively refine their actions through continuous interaction with the environment in
order to achieve objectives such as trajectory tracking or fuel economy [27]. Yet, implementing RL in flight control
presents notable challenges. First, RL algorithms necessitate extensive data samples to converge, which becomes even
more challenging due to the complexity and high dimensionality of flight control tasks [28]. Secondly, the safety-critical
nature of flight control raises concerns regarding the reliability and safety of the converged RL control policies [29].

Several methods have been proposed to address these challenges. Online incremental Approximate Dynamic
Programming (ADP) methods like Incremental Dual-Heuristic Programming (IDHP) demonstrate sample-efficient
online learning and adaptive control but face generalization and dimensionality limits [30, 31]. Hierarchical RL flight
controllers offer a solution to dimensionality but at the cost of complicating policy learning and added hyperparameter
complexity [28, 32]. In the domain of safety, Shielded RL introduces a specialized ’shield’ controller to regulate flight
path angles, yet its reliance on predefined safety rules restricts adaptability [33]. Alternatively, the Soft Actor-Critic
(SAC) algorithm has shown potential for robust flight control and adaptability to unforeseen failures but suffers from
training inconsistencies and low convergence success rates [34]. Building upon SAC, Distributional SAC (DSAC) was
introduced, learning the full returns distribution rather than just the expected value. DSAC’s improved sample efficiency
and robustness in flight control [35, 36] serve as the impetus for this research.

In conventional DSAC algorithms, action selection is governed by the mean of the learned return distribution [37–39].
However, this underutilizes the valuable information embedded in the distribution. To fill this void, previous studies have
explored using these distributions to distort the expectations and synthesize risk-sensitive policies, improving the safety
of RL-based flight controllers [35, 40]. Building on these foundations, we introduce Returns Uncertainty-Navigated
DSAC (RUN-DSAC), a novel variant designed to exploit the returns uncertainty for more informed decision-making.
Our methodology offers an alternative to other uncertainty-aware approaches, such as Bayesian methods, which suffer
from scalability issues [41] and rely on an accurate selection of a prior distribution [42–44].

This research advances intelligent flight control systems through four key contributions: First, it extends previous
research [35] by validating DSAC’s superior learning efficiency and stability over SAC in flight control, while exploring
its robustness in previously untested generalization scenarios and fault conditions. More importantly, we introduce
the novel uncertainty-driven RUN-DSAC algorithm, enabling the synthesis of sample-efficient and safe flight control
policies. Thirdly, the study reveals that prioritizing low-uncertainty state-action pairs during learning markedly improves
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both learning performance and exploration safety, resulting in superior tracking performance with improved fault
tolerance and robustness to unseen flight conditions. Lastly, we show that while favoring high-uncertainty may hinder
learning performance, it leads to policies with heightened resilience to perturbations in unexpected flight conditions.

II. Background
First, the core principles of RL need to be defined, including the notions of Maximum Entropy RL and Distributional

RL. Additionally, the flight control task is formalized within the context of RL.

A. Fundamentals of Deep Reinforcement Learning
RL represents a bio-inspired machine learning methodology that relies on an iterative trial-and-error mechanism for

deriving optimal control policies. In this framework, an autonomous agent incrementally refines its decision-making
proficiency in a specific task domain through continuous interactions with the environment [27]. This sequential decision-
making process is conceptualized as a Markov Decision Process (MDP), defined by the setM ∼ ⟨S,A,R,P, 𝛾⟩. Here,
𝑆 ⊂ R𝑛 defines the state-space,A ⊂ R𝑚 the action-space, R : S×A → R the reward mapping, 𝑃 : S×A×S → [0, 1]
the stochastic state transition dynamics, and 𝛾 ∈ (0, 1) the discount factor. At each discrete time-step 𝑡, the agent
selects an action 𝑎𝑡 ∈ A according to the policy 𝑎 ∼ 𝜋(·|𝑠) depending on the current state 𝑠𝑡 . It then observes the
state-transition tuple 𝑇𝑡 = ⟨𝑠, 𝑎, 𝑟, 𝑠′⟩, with the instantaneous reward 𝑟 = 𝑅(𝑠, 𝑎) and the subsequent state 𝑠′.

The agent’s objective is to identify the optimal policy 𝜋∗ that maximizes the expected return, defined as the expected
sum of discounted rewards over a sequence of decisions. This objective is facilitated by employing 𝑄 𝜋 : S × A → R,
which estimates the expected return from the given state 𝑠 upon selecting action 𝑎 and thereafter following policy 𝜋 ∈ Π,
as given by Equation 1.

𝑄 𝜋 (𝑠, 𝑎) = E𝜋

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )
]
| 𝑎𝑡 ∼ 𝜋(·|𝑠𝑡 ), 𝑠𝑡+1 ∼ P(·|𝑠𝑡 , 𝑎𝑡 ), 𝑠0 = 𝑠, 𝑎0 = 𝑎 (1)

To enable systematic convergence through iterative algorithms, 𝑄 𝜋 can be formulated using the contractive Bellman
equation [45], as given by Equation 2.

T 𝜋𝑄(𝑠, 𝑎) = E[𝑅(𝑠, 𝑎)] + 𝛾EP, 𝜋 [𝑄(𝑠′, 𝑎′)] (2)

Deep RL integrates DNNs for function approximation in both value-based and policy-based RL frameworks, as well
as in hybrid actor-critic architectures. Value-based methods like DQN use DNNs to estimate the action-value function
𝑄 𝜃 (𝑠, 𝑎) ≈ 𝑄(𝑠, 𝑎), thus implicitly defining the policy, predominantly in discrete action spaces [46, 47]. Conversely,
policy-based approaches directly approximate the optimal policy 𝜋𝑤 (𝑠) ≈ 𝜋∗ (𝑠) and are suited for continuous action
spaces, albeit at the cost of higher variance and slower convergence [48]. Nonetheless, recent advancements such
as TRPO and PPO have partly mitigated these limitations [49, 50]. Actor-critic methods synergize the strengths of
both approaches - the critic evaluates the action-value function, providing an estimate of the expected return that
aids in reducing the variance of the policy optimized by the actor [51]. This enables efficient handling of complex,
high-dimensional, continuous control tasks. State-of-the-art actor-critics, such as SAC, have demonstrated robust
performance and fast convergence in intricate control environments [52].

B. Soft Actor-Critic (SAC)
In contrast to traditional RL that solely focuses on maximizing cumulative reward, Maximum Entropy RL methods like

SAC aim to optimize a modified objective function that balances reward accumulation with policy entropy maximization,
as given by Equation 3. Maximizing the entropy termH(𝜋𝑤 (·|𝑠𝑡 )) promotes more effective exploration of the state
space and increases policy robustness.

𝐽 (𝜋) = E𝜋

[ ∞∑︁
𝑡=0

𝛾𝑡 [𝑅(𝑠𝑡 , 𝑎𝑡 ) + 𝛼𝑇H(𝜋𝑤 (·|𝑠𝑡 ))]
]

with H(𝜋𝑤 (·|𝑠)) = E𝑎∼𝜋𝑤 [− log(𝜋𝑤 (𝑎 |𝑠))] (3)

This leads to the formulation of a soft Bellman equation, as given by Equation 4. Here, 𝛼𝑇 is a temperature parameter
that controls the trade-off between maximizing the expected return and maximizing the entropy, thereby influencing the
degree of stochasticity and exploration in the policy 𝜋.

T 𝜋
𝑆 𝑄(𝑠, 𝑎) = E [𝑅(𝑠, 𝑎)] + 𝛾EP, 𝜋 [𝑄(𝑠′, 𝑎′) − 𝛼𝑇 log 𝜋(𝑎′ |𝑠′)] (4)
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Haarnoja et al. [53] introduce dynamic adaptation of 𝛼𝑇 to attain a specified target entropy H̄ , thereby improving
exploration efficiency and reducing hyperparameter sensitivity. The target entropy H̄ is typically set in correspondence
with the action space dimension, H̄ = −𝑚. The loss function for optimizing this adaptive 𝛼𝑇 is detailed in Equation 5.
In this formulation, B denotes a mini-batch of transitions T drawn from the experience replay buffer D = {T0,T1, ...},
which is characteristic for off-policy RL methods.

LB (𝛼𝑇 ) = EB
[
𝛼𝑇H̄ − 𝛼𝑇 log 𝜋𝑤 (𝑎 |𝑠)

]
(5)

To mitigate action-value function overestimation, SAC employs a double-critic architecture [54]. This entails training
two parallel Q-functions, 𝑄 𝜃1,2 (𝑠, 𝑎), and computing the temporal-difference (TD) error 𝛿 based on the minimum
of the two Q-values (Equation 6). Alongside these behavioral Q-networks, SAC also maintains target Q-networks,
parameterized by 𝜃. These networks undergo slower updates, achieved through incremental adjustments via Polyak
averaging with a step size 𝜁 , thereby enhancing learning stability.

LB
𝑄
(𝜃𝑖) = EB [𝛿2

𝑖 ] with 𝛿𝑖 = 𝑟 + 𝛾(1 − 𝑑)
(
min
𝑖=1,2

𝑄 𝜃𝑖
(𝑠′, 𝑎′) − 𝛼 log 𝜋𝑤 (𝑎′ |𝑠′)

)
−𝑄 𝜃𝑖 (𝑠, 𝑎), 𝑎′ ∼ 𝜋𝑤 (·|𝑠′) (6)

In SAC, the actor employs a stochastic policy represented by an 𝑚-dimensional multivariate Gaussian distribution
with diagonal covariance, where the mean vector 𝜇𝑤 ∈ R𝑚 and covariance diagonal 𝜎𝑤 ∈ R𝑚 are modeled by a DNN
with parameters 𝑤. Furthermore, the reparameterization trick is employed to facilitate backpropagation through the
stochastic policy [53], where the action 𝑎 is reparametrized as a deterministic function of the policy parameters and an
independent Gaussian noise variable 𝜖 . To bound action domain, a tanh squashing function is applied post-sampling, as
in Equation 7. While the actor is stochastic during training, it opts for deterministic actions in the evaluation phase by
selecting the mean vector 𝜇𝑤 .

𝑎𝑤 (𝑠) = tanh (�̃�𝑤 (𝑠)) with �̃�𝑤 (𝑠) ∼ N (𝜇𝑤 (𝑠), 𝜎𝑤 (𝑠)) (7)

Finally, the policy loss function used to update the actor’s parameters is detailed in Equation 8.

LB𝜋 (𝑤) = EB
[
𝛼 log 𝜋𝑤 (𝑎𝑤 (𝑠) |𝑠) − min

𝑖=1,2
𝑄 𝜃𝑖 (𝑠, 𝑎𝑤 (𝑠))

]
(8)

C. Distributional Reinforcement Learning
Unlike classical RL’s focus on optimizing the expected sum of rewards, Distributional RL aims to learn the full

probability distribution over returns. This is formalized as 𝑍 : S ×A → Z, whereZ denotes the space of action-value
distributions with finite moments for each state-action pair, as defined by Equation 9 [55].

Z B
{
𝑍 : S × A → 𝒫(R) | E

[
∥𝑍 (𝑠, 𝑎)∥ 𝑝

]
< ∞ ∀(𝑠, 𝑎), 𝑝 ≥ 1

}
(9)

This leads to the formulation of the distributional Bellman operator T 𝜋
𝐷

: Z → Z [37], as articulated in Equation 10.
Here, the notation 𝑋 D= 𝑌 signifies that random variables 𝑋 and 𝑌 follow identical distributions.

T 𝜋
𝐷 𝑍 (𝑠, 𝑎) D= 𝑅(𝑠, 𝑎) + 𝛾𝑍 (𝑠′, 𝑎′) (10)

The T 𝜋
𝐷

operator is established to be contractive under a 𝑝-Wasserstein metric [37], given in Equation 11. This metric
measures the optimal cost of transforming one probability distribution into another within a specified metric space [56].
Here, the quantile functions 𝐹−1

𝑋
(𝜏) and 𝐹−1

𝑌
(𝜏) are formulated as 𝐹−1

𝑍
(𝜏) = inf{𝑧 ∈ R : 𝜏 ≤ 𝐹𝑍 (𝑧)}, where 𝐹𝑍 (𝑧)

represents the cumulative distribution function and 𝜏 the quantile fraction.

𝑊𝑝 (𝐹𝑋, 𝐹𝑌 ) =
(∫ 1

0

𝐹−1
𝑋 (𝜏) − 𝐹−1

𝑌 (𝜏)

𝑝
𝑑𝜏

)1/𝑝
(11)

Various techniques for parameterizing return distributions have been proposed, such as categorical distributions [37]
and quantile regression [38]. The present study employs Implicit Quantile Networks (IQN), selected for their capacity
to flexibly model complex, multi-modal return distributions while maintaining parametric and computational efficiency
[39]. IQN implicitly approximate the continuous quantile function 𝐹−1

𝑍
(𝜏) by passing quantile fractions, stochastically

sampled from a uniform distribution (𝜏 ∼ 𝑈 ( [0, 1])), through a DNN to derive corresponding quantile values. The
comparison between the traditional return expectation estimation and the IQN’s approximation of 𝐹−1

𝑍
(𝜏) for randomly

sampled 𝜏 is depicted in Figure 1.
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Fig. 1 Comparison of traditional (left) and distributional (right) approaches in representing the returns for a
particular state 𝑠 and selected action 𝑎 at discrete time-step 𝑡, inspired by Dabney et al. [39].

D. Distributional Soft Actor-Critic (DSAC)
DSAC extends SAC through the incorporation of an IQN critic 𝑍𝜏 (𝑠, 𝑎; 𝜃) to approximate the return distribution

function [57, 58]. This fusion of maximum entropy learning with distributional critics has been demonstrated to be
effective in learning high-dimensional continuous control tasks [57]. Modeling the returns distribution also facilitates the
generation of risk-sensitive policies, which were shown to enhance the safety of RL-based flight control in a quadcopter
[40] and a business jet [35].

In accordance with the T 𝜋
𝐷

operator (Equation 10), the TD-error 𝛿𝑘
𝑖 𝑗

for a given pair of quantile fractions 𝜏𝑖 and
𝜏𝑗 is specified by Equation 12. Here, 𝑘 ∈ {1, 2} represents the index of each 𝑍𝜏-network within the double-critic
framework, with 𝜏𝑖, 𝑗 = (𝜏𝑖, 𝑗 + 𝜏𝑖+1, 𝑗+1)/2, 𝜃𝑘 and �̄� denoting parameter vectors for the target quantile and policy
networks, respectively.

𝛿𝑘𝑖 𝑗 = 𝑟 + 𝛾
[

min
𝑘=1,2

𝑍 �̂�𝑖 (𝑠′, 𝑎′; 𝜃𝑘) − 𝛼 log 𝜋(𝑎′ |𝑠′; �̄�)
]
− 𝑍 �̂� 𝑗

(𝑠, 𝑎; 𝜃𝑘) with 𝑎′ ∼ 𝜋𝑤 (·|𝑠′), 𝜏𝑖 , 𝜏𝑗 ∼ 𝑈 ( [0, 1]) (12)

Parameter vector 𝜃 is optimized via quantile regression, employing the weighted pairwise Quantile Huber Loss as given
by Equation 13 [59], where 1 represents the indicator function. This loss function transitions from a quadratic to a
linear form at a specified threshold 𝜅, conferring robustness to outliers compared to conventional mean squared error.

𝜌𝜅𝜏 (𝛿) =
��𝜏 − 1{ 𝛿<0}

��L𝜅 (𝛿) with L𝜅 (𝛿)
{

1
2𝛿

2 if |𝛿 | ≤ 𝜅
𝜅( |𝛿 | − 1

2 𝜅) otherwise
and 1{ 𝛿<0}

{
1 if 𝛿 < 0
0 otherwise

(13)

Consequently, for a set of 𝑁 independent quantile fractions, the critic loss function is formalized as in Equation 14.

LB𝑍 (𝜃) =
𝑁−1∑︁
𝑖=0

𝑁−1∑︁
𝑗=0
(𝜏𝑖+1 − 𝜏𝑖)𝜌𝜅�̂� 𝑗

(𝛿𝑘𝑖 𝑗 ) (14)

The policy 𝜋𝑤 in DSAC adheres to the parametrization structure inherent to SAC. However, DSAC’s critics output
a distribution of returns, hence a transformation function Ψ : Z → R is employed to convert this distribution into a
scalar action-value function 𝑄. While this risk measure function Ψ can be implemented as a risk-neutral expectation
E[·], it may also be realized through alternative functions such as a Wang transform [60], enabling the modulation of
risk sensitivity by skewing the critic’s estimated returns distribution towards either more risk-averse or risk-seeking
behaviors [39]. The resultant distorted action-value 𝑄𝑟 is incorporated into the distributional policy loss function, as
specified by Equation 15.

L𝜋 (𝑤) = EB
[
𝛼 log 𝜋𝑤 (𝑎𝑤 (𝑠) |𝑠) −𝑄𝑟

𝜃 (𝑠, 𝑎𝑤 (𝑠))
]

with 𝑄𝑟
𝜃 (𝑠, 𝑎𝑤 (𝑠)) = Ψ

[
min
𝑖=1,2

𝑍𝜃𝑖 (𝑠, 𝑎𝑤 (𝑠))
]

(15)

E. Reinforcement Learning for Flight Control
The fixed-wing aircraft flight control poses a highly complex problem with non-linear and highly-coupled transition

dynamics with 6 degrees of freedom (DOF). In general terms, the flight control problem can be defined by Equation 16.

¤𝑥 = 𝑓 (𝑥, 𝑢, 𝑡) + 𝑤 ≈ 𝑓 (𝑥, 𝑢) + 𝑤 (16)

Here, 𝑓 symbolizes the non-linear transition dynamics governed by the aircraft’s equations of motion, with the state
vector 𝑥 ∈ R𝑛 and control input vector 𝑢 ∈ R𝑚 as its arguments. To concentrate on the system’s inherent dynamics,
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quasi-stationarity is assumed, thus excluding explicit time dependence from 𝑓 . The additive term 𝑤 ∈ R𝑛 accounts for
stochastic disturbances, modeling the system’s inherent noise and aerodynamic perturbations. For analytical tractability,
the dynamics is often decoupled into longitudinal and lateral components, each with its own subset of DOF.

To formulate a flight trajectory tracking control task as an MDP, the dynamic state vector 𝑥 must be augmented with
tracking errors with respect to the desired flight trajectories 𝜏ref. Furthermore, some flight states may be unobservable,
uncertain, or distorted by measurement noise, leading to a Partially Observable MDP (POMDP). Hence, it is imperative
to distinguish between the RL state vector 𝑠, which reflects the observations of the agent, and the true dynamic state
vector 𝑥. Actions 𝑎 may either directly correspond to control inputs 𝑢 or represent incremental control commands to
refine input smoothness, with the actual control inputs 𝑢 incorporated into the state vector [34]. The reward function is
usually designed to penalize deviations from the reference trajectory 𝜏ref proportionally to the absolute 𝑅(𝑠, 𝑎) ∝ |𝜏ref−𝑥 |
or the squared tracking error 𝑅(𝑠, 𝑎) ∝ (𝜏ref − 𝑥)2.

The application of RL to partially observable flight control systems introduces significant challenges. The Markov
property assumption, which states that the future state transition P(𝑠′ |𝑎, 𝑠) is fully predictable from the observation
vector 𝑠, is invalidated by incomplete state observability, which impedes the formulation of predictive and reliable control
policies. Additionally, the high dimensionality of the state-action space demands highly sample-efficient algorithms
capable of generalizing across diverse flight conditions. Flight control’s safety-critical nature further constrains the use
of exploratory methods, as suboptimal actions during online in-flight learning or when encountering unobserved states
after training could lead to catastrophic outcomes. All these factors culminate in a pronounced simulation-to-reality
gap, where RL agents trained in simulations may falter in real-world flight scenarios, emphasizing the need for
safety-prioritizing agents that are both sample efficient and robust to environmental uncertainties. The proposed
RUN-DSAC algorithm addresses these challenges by integrating uncertainty quantification into the decision-making
framework of the RL agent, enhancing sample efficiency and safety.

III. Methodology
This section details the RUN-DSAC framework and the implementation of the aircraft control task addressed.

A. Returns Uncertainty-Navigated Distributional Soft Actor-Critic (RUN-DSAC)
RUN-DSAC extends DSAC by embedding uncertainty quantification into policy decisions, enhancing control

strategies in complex and uncertain environments.

1. The Principle of RUN-DSAC
Building upon DSAC, the RUN-DSAC algorithm presents an innovative approach to adaptive control in uncertain

environments. While DSAC distorts the value distribution to encode risk preferences implicitly, RUN-DSAC refines
this method by explicitly adjusting policy decisions based on quantified uncertainty. This approach draws inspiration
from Liu et al. [40], who estimated right truncated variance (RTV) using DSAC’s quantile functions to modulate the
distortion function for risk-adaptive flight control of a quadcopter. In contrast, RUN-DSAC computes variance from the
full distribution of returns for a comprehensive understanding of returns variability, while it explicitly channels this
information into the actor’s policy derivation.

Research in risk-sensitive RL recognizes variance V[·] as an intuitive and comprehensive metric for uncertainty,
fluctuation, and decision robustness [61–63]. Additionally, Bellemare et al. [37] show that the distributional Bellman
operator T 𝜋

𝐷
contracts in the second moment of the discounted returns, asserting that convergence in value distribution

space concomitantly yields accurate variance estimations. To incorporate variance into the learning objective, RUN-
DSAC shifts the focus from solely optimizing the expected return, Ψ(𝑍) = E[𝑍], to balancing the mean against the
standard deviation, Ψ(𝑍) = E[𝑍] + 𝜇

√︁
V[𝑍]. The Q-function is thus modified as in Equation 17, where 𝑄 𝜃 represents

the expected return and 𝜎𝑄 is the standard deviation, scaled by the uncertainty modulation factor 𝜇, which balances the
mean and standard deviation in the objective. This modified value then guides the policy update.

𝑄𝑉
𝜃 (𝑠, 𝑎) = 𝑄 𝜃 (𝑠, 𝑎) + 𝜇𝜎𝑄 (17)

The standard deviation 𝜎𝑄, representing the variability in returns, is approximated with Equation 18.

𝜎𝑄 =

√√√
𝑁−1∑︁
𝑖=0
(𝜏𝑖+1 − 𝜏𝑖)

[
𝑍 �̂�𝑖 , 𝜃 (𝑠, 𝑎) −𝑄(𝑠, 𝑎)

]2 (18)
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The coefficient 𝜇 determines the agent’s risk preference. A positive 𝜇 inclines the policy towards actions with high
variance in returns, promoting risk-affine exploration, which will be referred to as Risky. Conversely, a negative 𝜇
induces risk-averse tendencies by favoring lower-variance actions, thereby enhancing the predictability and safety of the
policy, and will be referred to as Conservative. As the agent’s familiarity with the environment evolves, the initial high
variance due to exploratory actions naturally diminishes. To reflect this maturation, 𝜇 is programmed to linearly decay
to zero across 𝑁RUN learning episodes.

The architecture of the RUN-DSAC algorithm is depicted in Figure 2, with the corresponding pseudocode detailed
in subsection V.B.

Fig. 2 Returns Uncertainty-Navigated Distributional Soft Actor-Critic (RUN-DSAC) architecture.

2. Actor and Critic Design
The actors used in this work are modeled as DNNs with a sequence of hidden layers that approximate a stochastic

multivariate tanh-Gaussian policy with state inputs 𝑠, as depicted in Figure 3. The final hidden layer’s output splits
into two streams, one estimating the mean 𝜇 and the other computing the logarithm of the standard deviation log𝜎,
which is then exponentiated to derive 𝜎. The actions 𝑎 are produced by sampling from N(𝜇, 𝜎) and applying a tanh
function to ensure boundedness within the action space. However, during deterministic policy evaluation, such as in
post-training assessments, the network defaults to tanh(𝜇) for consistent, non-stochastic output. Finally, the network
applies reparametrization to facilitate gradient-based optimization during back-propagation.

The DSAC critics employ IQNs to estimate the return distribution 𝑍𝜃 , as depicted in Figure 4. Here, states 𝑠 and
actions 𝑎 are embedded in the Ψ layer. Concurrently, 𝑁 randomly sampled quantile fractions 𝜏 ∼ 𝑈 ( [0, 1]) undergo
cosine embedding Φ, as given by Equation 19, with parameters 𝑤𝑖 𝑗 , 𝑏 𝑗 , and Sigmoid activation 𝜎. These embeddings
are elementwise-multiplied through Hadamard product [39], followed by layer normalization to ensure consistent output
scaling and numerical stability [64], before progressing through hidden layers 𝐻 to the output layer 𝐹. Parameters are
optimized iteratively with the Adam stochastic gradient descent (SGD) [65] using the quantile Huber loss (Equation 13).

𝜙 𝑗 (𝜏) = 𝜎
(
𝑁−1∑︁
𝑖=0

cos(𝜋𝑖𝜏)𝑤𝑖 𝑗 + 𝑏 𝑗

)
(19)

3. Policy Regularization
Deep RL controllers often learn policies with insufficient action smoothness, leading to high-frequency control

signal oscillations. In aviation control systems, such oscillatory actions compromise tracking performance while
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Fig. 3 Multivariate tanh-Gaussian policy. Fig. 4 Implicit quantile network (IQN) architecture,
inspired by Dabney et al. [39].

precipitating overheating, increased power consumption, and actuator failure. This issue can be addressed using
incremental control strategies, where the agent’s actions are cumulative adjustments [34]. Such an approach, however,
escalates dimensionality, negatively impacting sample efficiency. Instead, the present paper employs the Conditioning
for Action Policy Smoothness (CAPS) regularization technique to achieve smoother control policies without increasing
problem complexity [66].

The CAPS methodology uses regularization to minimize the policy function’s Lipschitz constants both temporally
and spatially, as reflected in the temporal smoothness term L𝑇 (Equation 20) and the spatial smoothness term L𝑆 (
Equation 21). Here, | |.| |2 represents the Euclidean norm, with L𝑇 enforcing action consistency across successive time
steps and L𝑆 term promoting action equivalence for analogous states.

L𝑇 = | |𝜋(𝑠𝑡 ) − 𝜋(𝑠𝑡+1) | |2 (20) L𝑆 = ∥𝜋(𝑠) − 𝜋(𝑠)∥2 with 𝑠 ∼ 𝑁 (𝑠, 𝜎CAPS) (21)

The hyperparameters 𝜆𝑆 and 𝜆𝑇 balance action smoothness and policy improvement, as given in Equation 22,
leading to a smoother control policy when integrated with the loss function, as in Equation 23.

LCAPS
𝜋 = 𝜆𝑇L𝑇 + 𝜆𝑆L𝑆 (22) L𝜋 (𝑤) = EB

[
𝛼 log 𝜋𝑤 (𝑎𝑤 (𝑠) |𝑠) −𝑄𝑉

𝜃 (𝑠, 𝑎𝑤 (𝑠)) + L
CAPS
𝜋

]
(23)

B. Flight Attitude Control
This subsection delves into the attitude control of a Cessna Citation II, employing the DASMAT simulation model.

1. Simulation Environment
This study examines the attitude control of a Cessna Citation II using DASMAT, a validated high-fidelity aircraft

simulation model featuring fully-coupled, non-linear dynamics [67]. DASMAT models 12 dynamic states 𝑥 ∈ R12, as
defined in Equation 24. These include three airspeed components (true airspeed 𝑉 , angle of attack 𝛼, and angle of
sideslip 𝛽), three angular velocities (roll 𝑝, pitch 𝑞, and yaw 𝑟 rates), and three Euler angles for angular orientation
(roll 𝜙, pitch 𝜃, and yaw 𝜓). Also, translational positions in the local tangent plane are quantified through horizontal
coordinates 𝑋𝑒 and 𝑌𝑒, and altitude ℎ.

𝑥 = [𝑝, 𝑞, 𝑟, 𝑉, 𝛼, 𝛽, 𝜙, 𝜃, 𝜓, ℎ, 𝑋𝑒, 𝑌𝑒]𝑇 ∈ R12 (24)

The agent’s control input 𝑢 ∈ R3, defined in Equation 25, exclusively controls aerodynamic surface deflections: elevator
𝛿𝑒, aileron 𝛿𝑎, and rudder 𝛿𝑟 . The corresponding actuator deflection limits are given by Equation 26 [68], which define
the control policy’s action space. Thrust is regulated by a separate inner loop for velocity regulation, thereby reducing
the overall control problem complexity. These dynamic states and control inputs are illustrated in Figure 5.

𝑢 = [𝛿𝑒, 𝛿𝑎, 𝛿𝑟 ]𝑇 ∈ R3 (25)
A = [−17◦, 15◦]︸        ︷︷        ︸

𝛿𝑒

× [−19◦, 15◦]︸        ︷︷        ︸
𝛿𝑎

× [−22◦, 22◦]︸        ︷︷        ︸
𝛿𝑟

∈ R3 (26)

The simulation operates at a refresh rate of 𝑓𝑠 = 100 Hz. It assumes ideal sensors and models actuators through
low-pass filter dynamics, coupled with predetermined deflection saturation limits.
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Fig. 5 Cessna Citation II’s dynamic states and flight control surfaces, showing the body frame (𝑋𝑏, 𝑌𝑏, 𝑍𝑏) at
an attitude defined relative to the inertial frame (𝑋𝑒, 𝑌𝑒, 𝑍𝑒). Yaw (𝜓) is set to zero for clarity. (Adopted from

Seres and van Kampen [35].)

2. Controller Architecture
The control diagram in Figure 6 shows the feedback loop between the non-linear RL agent and the controlled plant.

The agent directly controls actuator deflections based on the observation vector 𝑠 defined in Equation 27, which is a
subset of the state vector 𝑥 augmented by the tracking error 𝑒, as specified in Equation 28.

𝑠 = [𝜃𝑒, 𝜙𝑒, 𝛽𝑒, 𝑝, 𝑞, 𝑟, 𝛼]𝑇 ∈ R7 (27) 𝑒 = [𝜃𝑒, 𝜙𝑒, 𝛽𝑒] = [𝜃ref − 𝜃, 𝜙ref − 𝜙, 𝛽ref − 𝛽] ∈ R3 (28)

The reward function 𝑟, detailed in Equation 29 and inspired by Dally and van Kampen [34], penalizes the 𝐿1
norm of attitude tracking error, where a scaling parameter 𝑐𝑟 compensates for the lower magnitude of sideslip error by
proportionally weighting its influence.

𝑟 (𝑠, 𝑎) = −1
3
∥clip [𝑐𝑟 ⊙ 𝑒,−1, 1] ∥1 with 𝑐𝑟 =

6
𝜋
[1, 1, 4]𝑇 ∈ R3 (29)

Additionally, three soft constraints were implemented to enforce the flight envelope, specified as ℎ ≥ 100 m, |𝜃 | ≤ 60◦

Fig. 6 RL-based flight attitude controller architecture. Fig. 7 Random cosine-smoothed step
sequences, applied as training reference
signals for pitch 𝜃ref and roll 𝜙ref during

a single episode.

and |𝜙| ≤ 75◦. Constraint violations trigger premature episode termination and incur a substantial sparse negative
reward 𝑟𝑝, proportional to the remaining time frames as outlined in Equation 30. A positive constant 𝑐𝑝 scales the
penalty for early termination, with an empirically optimized value of 𝑐𝑝 = 2. These constraints were observed to guide
the agent towards desired behaviors, effectively improving the sample efficiency.

𝑟𝑝 = −𝑐𝑝 𝑓𝑠 (𝑡max − 𝑡) (30)
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C. Experiment Design
This paper compares the uncertainty-driven RUN-DSAC with the original DSAC in flight attitude control tasks.

Additionally, these algorithms are benchmarked against SAC, a state-of-the-art RL algorithm that previously demonstrated
fault-tolerant flight control capabilities, but exhibited inconsistencies in offline training convergence and heightened
sensitivity to stochastic processes and hyperparameters [34]. Essentially, three approaches to uncertainty management are
contrasted: SAC, which operates without uncertainty information; DSAC, which models uncertainty; and RUN-DSAC,
which actively leverages modeled uncertainty for decision-making.

Table 1 Optimized hyperparameters for SAC, DSAC and RUN-DSAC agents.

Shared DSAC (Additional)

Hidden layers structure ℎ̄ 64x64 Num. of quantiles 𝑁𝑞 32
Actor learning rate - 1·10−3 Num. of cosine neurons |𝜙| 64
Critic learning rate - 4.4·10−4 𝜏 embedding activation - Sigmoid
Discount factor 𝛾 0.98 Huber regression threshold 𝜅 1.0

Entropy target H̄ -3 RUN-DSAC (Additional)

Batch size |B| 256 Initial uncertainty modulation factor 𝜇init 1 or -1
Memory buffer size |D| 106 Uncertainty modulation decay horizon 𝑁𝜇 125
Non-linear activation - ReLU
Polyak step size 𝜁 0.995
Policy regularization L𝑇 , L𝑆 , 400

Table 2 Evaluation scenarios assessing generalization capabilities and fault-tolerance.

Identifier Scenario Description

N0 Nominal Trim condition consistent with training (h = 2000 m, V = 90 m/s).

G1 Wind Gust 15 ft/s vertical wind gust sustained for 3 seconds.
G2 Noisy Signal Gaussian noise sensor models applied to the observations (Table 3).
G3 High Dynamic Pressure Trim condition changed to h = 2000 m, V = 150 m/s.
G4 Low Dynamic Pressure Trim condition changed to h = 10000 m, V = 90 m/s.
G5 Near-stall The pitch angle reference 𝜃ref set to 40◦ at t = 35 s.

F1 Ice Accretion on Wings Lift curve decreased by 30%, drag coefficient incremented by 0.06.
F2 Center of Gravity Shifted Aft Center of gravity shifted aft by 0.25 m.
F3 Center of Gravity Shifted Forward Center of gravity shifted forward by 0.25 m.
F4 Saturated Aileron Aileron deflection constrained to ±1◦.
F5 Saturated Elevator Elevator deflection constrained to ±2.5◦.
F6 Damaged Elevator Elevator effectiveness coefficient decreased by 70%.
F7 Jammed Rudder Rudder immobilized at a 15◦ deflection.

The agents are trained in 30-second episodes using randomly generated pitch 𝜃ref and roll 𝜙ref reference signals,
starting from a trimmed flight at h = 2,000 m and V = 90 m/s. These reference signals are formulated as cosine-smoothed
step functions, with their amplitudes uniformly sampled from 15 discrete levels within [-20◦, 20◦] for 𝜃ref and [-35◦,
35◦] for 𝜙ref. Figure 7 illustrates an instance of such a signal set, while the sideslip reference 𝛽ref is set to zero. After
each episode, average returns are evaluated by averaging the rewards accumulated over 10 independent trajectories T
sampled under the current policy.
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Table 3 Gaussian noise parameters for sensor models derived from the PH-LAB aircraft in-flight data [69].

Signal Unit Noise (𝜎2) Bias

𝑝, 𝑞, 𝑟 rad/s 4.0×10−7 3.0×10−5

𝜃, 𝜙 rad 1.0×10−9 4.0×10−3

𝛼 rad 4.0×10−10 -

The hyperparameters configured for the agents are listed in Table 1. The first column lists hyperparameters refined
through rigorous tuning, with H̄ , 𝜁 , L𝑇 , and L𝑆 values adopted from literature [34, 35, 70]. These proved optimal for
all three agents. DSAC’s additional parameters are inspired by Ma et al. [57], who also observed that employing Sigmoid
over ReLU activation improves the smoothness of quantile fractions embedding. For RUN-DSAC, 𝜇init was selected such
that uncertainty is effectively captured during learning, while 𝑁𝜇 was determined through iterative experimentation.

After training, the agents’ learning performance is contrasted in terms of sample efficiency, return convergence, and
consistency. Quantifying sample efficiency necessitates caution. Relying on a single metric, such as samples required to
reach a certain return threshold, can lead to misleading interpretations, as different threshold choices may yield varied
outcomes. To mitigate bias and ambiguity, a diverse set of metrics is employed, encompassing: average returns at the
final episode (M1), average returns post-100 episodes (M2), sample count required to achieve average returns of -2000
on filtered learning curves (M3), area between learning curves and the 𝑥-axis (M4), and the sample count required for
the gradients of filtered learning curves to remain within ±30 (M5).

Additionally, the robustness of each agent’s policy is assessed across various unseen flight scenarios, as detailed in
Table 2. First, agents’ tracking performance is evaluated under the baseline scenario 𝑁0, which replicates training flight
conditions to establish a performance benchmark. Subsequent scenarios, inspired by literature [34], were selected for
their relevance to flight attitude control, complexity, and compatibility with the DASMAT framework. Generalization
capability scenarios (𝐺) evaluate the agents’ adaptability to untrained flight regimes, such as variations in dynamic
pressure. From these, 𝐺1 simulates a wind gust with velocity derived from MIL-F-8785C standards [71], while 𝐺2
evaluates robustness to sensor noise simulated by realistic sensor models as outlined in Table 3 [69]. Fault tolerance
scenarios (𝐹) probe fault-robustness by introducing variations in the controlled plant to simulate in-flight failures.

Each agent is evaluated on identical tasks, using extended episodes of 𝑡max = 80 s with predefined cosine-smoothed
step sequences in pitch and roll reference maneuvers, mirroring training signals. For a fair comparison of tracking
proficiency across all controllers, the normalized mean absolute error (nMAE) metric is employed. This involves
normalizing 𝜃𝑒 and 𝜙𝑒 tracking errors against the peak amplitudes of the evaluation reference signals, while 𝛽𝑒 is
normalized to the range of [-5◦, 5◦].

IV. Results and Discussion
This section presents findings on learning efficiency, fault tolerance, and robustness under various flight conditions,

evaluated for SAC and three variants of distributional agents: DSAC, Conservative RUN-DSAC, and Risky RUN-DSAC.
Unless stated otherwise, the mean and standard deviation of the results are calculated from ten independent evaluations.
Line graphs display the average across policies as a bold line, with shaded areas representing standard deviations. In
general, the SAC and RUN-DSAC agents are benchmarked against the baseline DSAC agent, with statistical significance
in performance differences assessed using a 𝑡-test under the assumption of normally distributed samples.

A. Learning Performance
The learning curves for each policy are illustrated in Figure 8a. Distributional agents consistently converge to higher

return levels in line with those documented in prior research [34–36]. Conversely, SAC underperforms, yielding returns
over threefold lower than DSAC and demonstrating greater variance. These deficiencies are attributable to SAC’s lower
convergence success rate and pronounced sensitivity to stochastic processes like initialization, as noted by Dally and van
Kampen [34]. Nevertheless, contrary to their selective reporting of outcomes from only converged SAC policies, this
paper presents unfiltered results.

The learning curve of Conservative RUN-DSAC demonstrates the effectiveness of integrating Q-value uncertainty
into decision-making for enhanced sample efficiency as evidenced by its rapid ascent. Furthermore, prioritizing
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predictable policies results in reduced variance in learning curves and the highest average converged returns, as indicated
by M1 in Table 4. This suggests that Conservative RUN-DSAC learned to track the training attitude reference signals
more accurately and consistently compared to other agents. Comparative analysis in Table 4 also highlights Conservative
RUN-DSAC outperforming DSAC across all five learning performance metrics, with four displaying statistically
significant differences. The largest improvement of 54.5% is observed in the M5 metric, which is visualized in Figure 8b.
While the Conservative RUN-DSAC’s learning curve slope is the fastest to converge to the metric boundary, it also
shows the least oscillations, which suggest a consistent and predictable learning performance that is highly desirable in
the safety-focused flight control domain.

Conversely, Risky RUN-DSAC’s slow convergence and initially high variance suggest that promoting uncertainty
impedes learning performance. This variance arises from the algorithm’s exploratory nature and the reward function
design, which terminates the training flight prematurely and imposes high penalties when the flight envelope is violated
(Equation 30). Figure 8c compares the mean flight duration per episode, revealing that Risky RUN-DSAC initially
experiences more frequent and earlier violations, but achieves "crash-free" flight after approximately 125 episodes
(coinciding with the decay of 𝜇 to 0). In contrast, Conservative RUN-DSAC achieves this stability in about 25 episodes,
emphasizing its safety advantage. SAC trails significantly, requiring the entirety of 250 episodes to achieve crash-free
flight. Finally, although this study focuses on offline training, the characteristics of Conservative RUN-DSAC render
it potentially suitable for online flight control, particularly for in-flight fault management, where sample-efficient,
predictable and safe learning is paramount.

(a) Learning curves. (b) Learning curve slopes. (c) Episodic flight time.

Fig. 8 Comparison of learning performance, with curves smoothed using a Gaussian kernel with a window
length of 10. Dashed lines and yellow shading indicate performance metric thresholds.

Table 4 Assessment of agent learning efficiency across five metrics includes mean scores with standard
deviations, percent difference from DSAC, and p-values for significance (bold for 𝑝 < 0.05). Green indicates an

improvement, red a decline.

M1 (Final) M2 (Returns) M3 (# Episodes) M4 (Area) M5 (Gradient)

DSAC Value -308.1 -626.4 ± 254.4 16.8 ± 6.0 (20.8 ± 5.3)·104 183.2 ± 56.7
Value -1369.5±187.9 -1926.0 ± 676.4 69.1 ± 47.1 (59.0 ± 7.3)·104 230.9 ± 27.0
Difference -344.5% -207.5% +311.3% +183.7% +26.0%SAC
𝑝-value 1·10−10 2·10−4 9·10−3 6·10−10 4·10−2

Value -447.7±167.0 -1528.2 ± 998.8 37.8 ± 32.8 (36.0 ± 12.4)·104 162.1 ± 48.0
Difference -45.3% -144.0% +125.0% +73.1% -11.5%

RUN-DSAC
(Risky)

𝑝-value 5·10−2 2·10−2 7·10−2 3·10−3 4·10−1

Value -253.1±28.0 -398.5 ± 88.6 9.1 ± 4.0 (12.9 ± 1.6)·104 83.3 ± 55.1
Difference +17.9% +36.4% -45.8% -37.9% -54.5%

RUN-DSAC
(Conserv.)

𝑝-value 2·10−1 3·10−2 5·10−3 4·10−4 1·10−3
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B. Tracking Performance
Learning curves provide an initial assessment of training effectiveness but do not fully represent control capabilities.

Hence, the trained policies are evaluated against reference signals that mirror training conditions (Figures 9-12). The
observed attitude tracking performance of the agents aligns with the learning curves presented in Figure 8a. SAC shows
limited tracking accuracy with high variance in policies, reflected in an nMAE of 23.53±4.40%. This, along with large
oscillations in its response, renders it aerodynamically and structurally unsuitable for flight control. In comparison,
DSAC substantially outperforms SAC with smoother actions and an nMAE nearly four times smaller at 5.95±1.15%,
marking a significant improvement (𝑝 = 2 · 10−6 < 0.05).

Fig. 9 State time-traces of the SAC policy in the
nominal scenario.

Fig. 10 State time-traces of the DSAC policy in the
nominal scenario.

Most notably, Conservative RUN-DSAC achieves the highest signal tracking accuracy and the least variability,
evidenced by a reduction in nMAE to 3.95±0.42%, surpassing DSAC by 33% (𝑝 = 4 · 10−4 < 0.05). This improved
tracking accuracy and response predictability affirm the benefits of integrating uncertainty information into decision-
making to enhance the efficiency and safety of intelligent flight controllers. Conversely, Risky RUN-DSAC shows higher
tracking error and state variability, with a 57% higher nMAE of 9.36±2.48% compared to DSAC (𝑝 = 3 · 10−3 < 0.05).
These distinct results of the RUN-DSAC variants validate theoretical expectations: the Conservative RUN-DSAC’s focus
on predictability yields lower policy variability, while the exploration-driven Risky variant shows increased variability.

The distributional agents’ state time-traces also reveal dynamic couplings between the principal axes, particularly
where 𝜙 maneuvers influence 𝜃 and 𝛽 tracking. The agents have adapted to exploit this coupling for enhanced control,
reflected in the coordinated control surface deflections. However, this learned coupling can lead to undesired outcomes
when actuator inputs are unintentionally correlated, which is especially notable in the Conservative RUN-DSAC agent.
Here, the agent’s initial sharp elevator deflection (for trim adjustment) inadvertently triggers corresponding aileron and
rudder deflections, despite zero roll and yaw references. This causes transient roll and yaw rates that the agent swiftly
neutralizes, yet a residual 2◦ roll offset and approximately 3◦ under-correction in the 30◦ 𝜙ref steps persist. In contrast,
DSAC and Risky RUN-DSAC, which are less impacted by unintentional coupling, reach full roll reference but with
compromised pitch precision.

The under-correction observed in Conservative RUN-DSAC is attributed to its inclination towards familiar, albeit
more conservative, actions, thus favoring strategies with proven past efficacy even when they are suboptimal for the
current situation. Additionally, this agent might implicitly prioritize precise pitch control over roll due to the greater
risks associated with pitch deviations, such as their impact on aerodynamic forces and stall potential. This explains its
superior performance in pitch tracking compared to other distributional agents at the cost of under-correcting roll.
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Fig. 11 State time-traces of the Risky RUN-DSAC
policy in the nominal scenario.

Fig. 12 State time-traces of the Conservative
RUN-DSAC policy in the nominal scenario.

C. Generalization Capability
The preceding section highlights the Conservative RUN-DSAC’s reliance on the confidence in pre-learned strategies.

However, this potentially impairs its adaptability to novel scenarios, which motivates an evaluation of the agents’
robustness in untrained flight conditions. While prior research demonstrated enhanced safety in a near-stall scenario
through distorting DSAC returns [35], this study investigates the impact of embedding return uncertainty into policy
training on stall robustness, and expands the scope with four additional case studies simulating unforeseen common
flight conditions.

Figure 13 presents the agents’ generalization performance, with a separate ordinate for G5 due to its higher nMAE
scores and a distinct evaluation reference signal. In all scenarios, Conservative RUN-DSAC achieves the highest attitude
tracking accuracy and the lowest result variance among agents, with statistical significance (𝑝 < 0.05). Conversely,
the Risky variant underperforms compared to DSAC in all scenarios and exhibits higher variance (except in G3),
with statistically significant differences in G1 and G2. SAC, consistent with its learning curve shown in Figure 8a,
demonstrates significantly the lowest performance and highest variance across policies.

Fig. 13 Attitude tracking nMAE and its standard deviation across various generalization scenarios.
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The Stall (G5) scenario is selected to showcase the generalization capability of distributional agents in flight control.
This scenario is particularly relevant due to the substantial uncertainty inherent in near-stall conditions, which stems
from the agents’ lack of exposure to dynamics altered by unobserved airspeed and altitude states, or abrupt loss of lift.
This uncertainty is directly correlated with heightened flight safety risks, potentially leading to loss-of-control (LOC)
incidents. The G5 task entails a sustained high pitch-up maneuver to induce near-stall conditions, with zero roll and
sideslip references. Figures 14 and 15 respectively illustrate the longitudinal response of distributional agents and
analyze the average rewards and return distributions these agents experience during flight.

High pitch angles significantly affect aircraft aerodynamics, leading to decreased airspeed and increased altitude.
At 𝑡 = 40 𝑠, the aircraft is commanded to reach a 40◦ 𝜃ref, extending beyond the training conditions. As Figure 15
shows, this unfamiliar state is marked by a decline in expected returns and heightened variance, indicating increased
uncertainty in agents’ performance. Notably, the Conservative RUN-DSAC agent, with the highest expected returns and
lowest variance, demonstrates the greatest confidence and tracking performance (reflected in the highest rewards) in
this Stall scenario. Contrarily, although the Risky variant exhibits the lowest confidence based on its expected returns
and variance, it outperforms DSAC in managing the high pitch angle reference at 𝑡 = 40 𝑠, as evidenced by higher
rewards. This suggests that while Risky RUN-DSAC’s exploratory strategy is less effective in nominal conditions, it can
be advantageous in unexpected scenarios.

While attempting to attain the high pitch angle reference, the agents encounter aerodynamic instabilities and
stall-induced oscillations. Interestingly, the distributional agents display varying oscillation intensities in their responses:
DSAC shows the most significant oscillations, followed by the Conservative RUN-DSAC, while Risky RUN-DSAC
demonstrates the least oscillatory behavior. This pattern remains consistent across other near-stall flight scenarios,
including those affected by wind gusts (G1) or ice-accretion faults leading to the reduction of maximal lift (F1).

The oscillation differences among agents can be explained by correlating each agent’s actor DNN to a gain
parameter 𝐾 in classical control theory. 𝐾 influences a system’s reaction to error signals: a high gain 𝐾 triggers
aggressive responses, potentially causing instability or oscillations, whereas a low gain 𝐾 yields conservative reactions.
Risky RUN-DSAC seems to adopt a policy with a higher 𝐾, enhancing responsiveness to counteract the diminished
aerodynamic efficiency and damping under decreased dynamic pressure in near-stall scenarios (caused by lower
velocity and increased altitude). In contrast, DSAC, with a lower 𝐾 , demonstrates less responsive behavior with larger,
possibly delayed corrections. This results in inadequate error compensation, leading to more pronounced oscillations.
Conservative RUN-DSAC exhibits intermediate characteristics.

Fig. 14 Longitudinal state time traces of DSAC (left),
Risky RUN-DSAC (middle), and Conservative

RUN-DSAC (right) policies in the stall scenario.

Fig. 15 Average rewards, state
means and variances collected by

distributional agents during flight in
the stall scenario.
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Fig. 16 Pitch rate time traces for DSAC (top row), Risky RUN-DSAC
(middle row), and Conservative RUN-DSAC (bottom row) for the low

dynamic pressure (left column) and high dynamic pressure (right
column) scenarios.

Fig. 17 Kernel density estimation of
𝛼 experienced by various distributional

agents during a single training run.

To validate the proposed gain analogy, a similar response pattern is anticipated in the low dynamic pressure
scenario (G4), whereas the opposite is expected under conditions of increased dynamic pressure (G3) due to enhanced
aerodynamic effectiveness. In the latter case, the aggressive, high-𝐾 control of the Risky variant could exacerbate
oscillations, while the low-𝐾 control of DSAC and Conservative RUN-DSAC is likely to stabilize the system more
effectively. This hypothesis is supported by Figure 16, which contrasts the pitch rate responses of the distributional
agents under both low and high dynamic pressure conditions.

While the gain analogy partially explains the heightened oscillations of the Conservative RUN-DSAC relative to the
Risky variant for low dynamic pressure scenarios, it falls short in explaining similar response disparities in scenarios
with nominal dynamic pressure but altered aircraft dynamics (e.g., F5 or F7). Hence, an alternative hypothesis is that
the Conservative RUN-DSAC’s focus on predictability may predispose it to overfit to training scenarios, leading to
suboptimal and instability-prone policies under altered conditions. In contrast, the Risky RUN-DSAC’s emphasis on
uncertainty promotes exposure to a broader range of states and actions, bolstering robustness to novel scenarios and
reducing susceptibility to instability, albeit with trade-offs in tracking precision and increased policy variance.

Supporting this hypothesis, a Gaussian kernel-smoothed density estimation of 𝛼 distributions experienced by each
agent during training is illustrated in Figure 17. This analysis reveals that the Risky RUN-DSAC has encountered a
wider range of 𝛼, including extremes, which better prepares it for scenarios like 𝐺5. In contrast, the Conservative
RUN-DSAC’s experience is more restricted, with less frequent encounters of extremes than DSAC, underpinning its
propensity to overfitting and increased vulnerability to instabilities in unforeseen scenarios.

D. Fault Tolerance
Assessing agents in diverse in-flight fault scenarios is imperative for ensuring safety, as modeling every conceivable

failure for offline training is impractical. Figure 18 illustrates the performance of these agents in such evaluations. The
Conservative RUN-DSAC consistently outperforms other agents in all seven fault scenarios, with statistically significant
improvements over DSAC (𝑝 < 0.05) in all but F7. Conversely, the Risky variant underperforms relative to DSAC in
every scenario, with statistically significant disparities in F1, F3, F4, and F6. SAC exhibits the lowest performance and
the highest policy variance.

Despite its superior tracking performance and reduced policy variance, Conservative RUN-DSAC was observed to
exhibit heightened sensitivity to changes in aircraft dynamics caused by failures, particularly those affecting control
surface functionality, compared to the other distributional agents. This sensitivity results in marked disturbances in
attitude states, contrasted by minimal oscillations in Risky RUN-DSAC, with DSAC exhibiting intermediate behavior.
This reinforces the hypothesis of Conservative RUN-DSAC’s overfitting tendency: policies refined during training
become compromised under substantially altered dynamics.

The disparity in disturbance patterns is particularly evident in the F7 scenario, which is characterized by high
nMAE scores due to persistent sideslip bias. Figures 19 and 20 compare the state trajectories of the Risky and
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Fig. 18 Attitude tracking nMAE and its standard deviation across various in-flight fault scenarios.

Conservative RUN-DSAC variants, respectively. Here, both agents unsuccessfully attempt to counteract the stuck rudder
by commanding deflections in the opposite direction. However, the rudder control signal triggers aileron deflections
due to the learned roll-yaw coupling, counterbalancing the negative roll induced by the dihedral effect. This stabilizes
𝛽 at ∼ 10◦ and arrests further roll, but introduces a negative roll angle offset, subsequently impacting pitch tracking
through pitch-roll coupling. These unusual flight dynamics cause pronounced oscillations in Conservative RUN-DSAC’s
response, in contrast to the minimal disturbances in Risky RUN-DSAC. Thus, while Conservative RUN-DSAC’s policies
are highly optimized for trained scenarios, they prove inadequate under substantially altered control conditions.

Fig. 19 State time-traces of the Risky RUN-DSAC
policy in the immobilized rudder scenario.

Fig. 20 State time-traces of the Conservative
RUN-DSAC policy in the immobilized rudder

scenario.

17

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
27

93
 



V. Conclusion
This paper introduces the Returns Uncertainty-Navigated Distributional Soft Actor-Critic (RUN-DSAC) algorithm

to advance model-free flight controllers for non-linear, fully-coupled aerospace dynamics. The integration of uncertainty
quantification within the RL decision-making framework contributes to the synthesis of intelligent, adaptive, and
safety-centric autonomous flight controllers.

We show that RUN-DSAC, particularly its Conservative variant, significantly enhances learning efficiency and
attitude tracking accuracy in trained flight conditions over state-of-the-art algorithms like SAC and DSAC. The
improvement is attributed to the algorithm’s ability to leverage the full distribution of returns, prioritizing actions with
minimal uncertainty. This approach leads to more predictable and stable policies, which are crucial in the safety-critical
domain of aviation.

In scenarios involving unforeseen flight conditions and in-flight system failures, Conservative RUN-DSAC continues
to showcase superior tracking performance. However, its tendency to overfit to training conditions results in increased
sensitivity and heightened oscillations under significantly altered flight dynamics. In contrast, the Risky RUN-DSAC
variant, which promotes exploration by favoring actions with higher uncertainty, displays robustness in novel and
unexpected scenarios at the cost of reduced precision and increased variance in trained policies. This dichotomy between
the Conservative and Risky variants of RUN-DSAC underscores a fundamental trade-off in RL-based flight control: the
balance between the tracking accuracy and predictability of learned policies in familiar scenarios, and their adaptability
and robustness in unforeseen circumstances.

In conclusion, while RUN-DSAC demonstrates significant potential in model-free flight control, its real-world
applicability necessitates comprehensive validation. The reliability of these results is contingent on the simulation
model’s fidelity and the breadth of scenarios tested. Critical model parameters, particularly those governing aircraft
dynamics and environmental interactions, may fail to fully capture the complexities of actual flight conditions. The
performance of RUN-DSAC in more extreme or untested scenarios also remains uncertain, and any unforeseen
interactions or emergent behaviors could pose substantial safety risks. Therefore, the algorithm’s deployment in a real
Cessna Citation II would require rigorous validation under a broader spectrum of conditions, more detailed modeling of
aircraft and sensor dynamics, and robust safeguards against the unpredictable nature of real-world aviation environments.

A. Significance of Contributions
Improving learning performance and robustness of offline RL algorithms by leveraging uncertainty quantification in

decision-making, this research stands as a valuable advancement in AI-driven model-independent aerospace control
technologies. RUN-DSAC paves the way for efficient, robust, and adaptive intelligent flight controllers requiring minimal
human-domain knowledge, contributing to bridging the simulation-to-reality gap. This work not only enhances the
safety and reliability of fault-tolerant autonomous flight controllers but also establishes a foundation for the application
of AI in various safety-critical domains.

B. Recommendations
Online Flight Control: Given the promising attributes observed in Conservative RUN-DSAC, future research

should explore its application in online flight control settings, assessing its real-time adaptability and effectiveness in
dynamically adjusting to changing flight conditions and emergencies.

Hyperparameter optimization: Further optimization of RUN-DSAC’s hyperparameters, particularly the newly
introduced 𝜇init and 𝑁𝜇, could enhance its performance. Adjusting 𝜇init to decay from a high positive value to a negative
value across certain 𝑁𝜇 could balance the exploration needed for robust performance with the conservatism required for
policy predictability.

6-DOF Flight Control: Leveraging the learning efficiency of Conservative RUN-DSAC, its application in full
6-DOF flight control is promising. A hierarchical approach, integrating uncertainty assessments at different control
levels, could effectively address the curse of dimensionality inherent to high-dimensional control tasks.

Flight-Test Validation: With RUN-DSAC showing potential for robust real-system control, validation in rigorous
flight tests is crucial to bridge the simulation-to-reality gap. Initial efforts should focus on employing techniques like
domain randomization and robustness training in high-fidelity simulations, followed by trials on scaled-down models.

Application Beyond Flight Control: The successful application of RUN-DSAC in flight control suggests its potential
in other complex domains, such as advanced Air Traffic Management. Its predictability and safety-centric approach
could improve airspace efficiency by safely reducing aircraft separation standards.
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Appendix
The RUN-DSAC is outlined in algorithm 1. First, the replay buffer D, network parameters and the temperature

parameter 𝛼𝑇 are initialized. Furthermore, initial (pre-training) ⟨𝑠, 𝑎, 𝑟, 𝑠′, 𝑑⟩ transitions are collected using a randomly
initialized policy and stored in D. The algorithm is run for 𝑁eps episodes, with each episode executing 𝑁trans transitions
using the current policy 𝜋𝑤 (·|𝑠).

Algorithm 1 RUN-DSAC algorithm
Hyperparameters: 𝑁𝑞 , |B|, 𝜁 , H̄ , 𝜆𝑆 , 𝜆𝑇 , 𝜎, 𝜅, 𝜇init, 𝜇fin, 𝑁RUN
Input: M = ⟨S,A,P,R, 𝛾⟩, 𝑁eps, 𝑁trans
Result: 𝑍𝜃𝑘 (𝑠, 𝑎), 𝜋𝑤 (𝑠)
Initialize replay buffer D
Initialize actor and critic parameters 𝜃1, 𝜃2, 𝑤, target parameters 𝜃1 ← 𝜃1, 𝜃2 ← 𝜃2, �̄� ← 𝑤

Initialize temperature 𝛼𝑇
Collect initial trajectories T and store in the replay buffer D
for episode← 1 to Neps do

for transition← 1 to Ntrans do
Collect a ⟨𝑠, 𝑎, 𝑟, 𝑠′, 𝑑⟩ transition using 𝜋𝑤 (·|𝑠)
Sample a mini-batch B 𝑖.𝑖.𝑑.∼ D
Generate quantile fractions 𝜏𝑖 , 𝑖 = 0, . . . , 𝑁𝑞 , 𝜏𝑗 , 𝑗 = 0, . . . , 𝑁𝑞

Sample 𝑎′ ∼ 𝜋�̄� (·|𝑠′)
for i← 0 to 𝑁𝑞 − 1 do

𝜏𝑖 ← 𝜏𝑖+𝜏𝑖+1
2

for j← 0 to N𝑞 − 1 do
𝜏𝑗 ←

𝜏 𝑗+𝜏 𝑗+1
2

y𝑖 ← mink=1,2 𝑍 �̂�𝑖 , 𝜃𝑘
(𝑠′, 𝑎′)

𝛿𝑘
𝑖 𝑗
← 𝑟 + 𝛾 [𝑦𝑖 − 𝛼𝑇 log 𝜋�̄� (𝑎′ |𝑠′)] − 𝑍 �̂� 𝑗 , 𝜃𝑘 (𝑠, 𝑎), 𝑘 = 1, 2

end
end
𝐽𝑍 (𝜃𝑘) ← 1

𝑁𝑞

∑𝑁𝑞−1
𝑖=0

∑𝑁𝑞−1
𝑗=0 (𝜏𝑖+1 − 𝜏𝑖)𝜌

𝜅
�̂� 𝑗
(𝛿𝑘

𝑖 𝑗
), 𝑘 = 1, 2

Update 𝜃𝑘 with ∇𝐽𝑍 (𝜃𝑘), 𝑘 = 1, 2 (using ADAM)
Update 𝜃𝑘 ← 𝜁𝜃𝑘 + (1 − 𝜁)𝜃𝑘 , 𝑘 = 1, 2
Sample new actions �̃� ∼ 𝜋𝑤 (·|𝑠) with reparametrization trick
𝑄(𝑠, �̃�) ← ∑𝑁−1

𝑖=0 (𝜏𝑖+1 − 𝜏𝑖) min𝑘=1,2𝑍 �̂�𝑖 , 𝜃𝑘 (𝑠, �̃�)

𝜎𝑄 ←
√︃∑𝑁−1

𝑖=0 (𝜏𝑖+1 − 𝜏𝑖)
[
𝑍 �̂�𝑖 , 𝜃 (𝑠, 𝑎) −𝑄(𝑠, 𝑎)

]2

𝜇← max(𝜇init − (𝜇init − 𝜇fin) episode
𝑁RUN

, 0)
L𝑇 ← ∥𝜋𝑤 (𝑠) − 𝜋𝑤 (𝑠′)∥2 L𝑆 ← ∥𝜋𝑤 (𝑠) − 𝜋𝑤 (𝑠)∥2 with 𝑠 ∼ N(𝑠, 𝜎)
𝐽𝜋 (𝑤) ← 𝛼𝑇 log(𝜋𝑤 (�̃� |𝑠)) −

(
𝑄(𝑠, �̃�) + 𝜇𝜎𝑄

)
+ 𝜆𝑇L𝑇 + 𝜆𝑆L𝑆

Update 𝑤 with ∇𝐽𝜋 (𝑤) (using ADAM)
Update �̄� ← 𝜁𝑤 + (1 − 𝜁)�̄�
𝐽H (𝛼𝑇 ) ← 𝛼𝑇H̄ − 𝛼𝑇 log(𝜋𝑤 (�̃� |𝑠))
Update 𝛼𝑇 with ∇𝐽H (𝛼𝑇 ) (using ADAM)

end
Store the collected trajectories T in the replay buffer D

end

For critic network training, two quantile fraction sets are generated, one for the current and the other for the target
value distribution estimates. New actions are then sampled from the target policy 𝜋�̄� (·|𝑠′), followed by the computation
of the temporal difference error 𝛿𝑘

𝑖 𝑗
for each quantile fraction pair. The critic loss function 𝐽𝑍 (𝜃𝑘) is subsequently

evaluated and used to update the critic networks’ parameters. The target parameters are softly updated with a mixing
coefficient 𝜁 . Next, reparametrized action samples �̃� are drawn to calculate the expected return 𝑄(𝑠, �̃�) and the return
variance 𝜎𝑄 is derived. Additionally, the uncertainty modulation factor 𝜇 is linearly decayed, and the smoothness losses
L𝑇 and L𝑆 are computed. These components are used to formulate the policy loss function 𝐽𝜋 (𝑤) and its gradient
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∇𝐽𝜋 (𝑤) is used to update the policy network parameters 𝑤 and to softly update the target parameters �̄�. Furthermore,
the algorithm adaptively adjusts the temperature parameter 𝛼𝑇 by minimizing a loss function that is designed to align
the current policy’s entropy with a predefined target level H̄ . Finally, the newly acquired ⟨𝑠, 𝑎, 𝑟, 𝑠′, 𝑑⟩ transitions,
collectively known as trajectories, are added to the replay buffer D.
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