

Design of a wireless data
transmission system for

Super E-paper

Implementing and testing the software and hardware

CONFIDENTIAL

M.D. de Jong
C.J. Kruit

Delft, June 2010.

Design of a wireless data
transmission system

Implementing and testing the software and hardware

M.D. de Jong - 1354647

C.J. Kruit - 1354655

Delft University of Technology
Faculty Electrical Engineering, Mathematics and Computer Science

Mekelweg 4

2628 CD Delft
Tel: +31 (0)15 27 84568

ewi.tudelft.nl

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 iv

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 v

Preface

As students Electrical Engineering from the TU Delft, we have had the opportunity to use our
theoretical knowledge in practice for the last two months within the scope of the Bachelor
thesis. Our goal was to create software and hardware to transmit an image from a computer to
a Super E-paper wirelessly and test the software and hardware.

In this report, we expect the reader to have some basic knowledge of microcontrollers and RF
communication. Readers who are mainly interested in creating the software are referred to
chapter 4. If only the hardware is of interest, chapters 5 and 6 should be read. Chapters 7, 8
and 9 are especially interesting for readers who are interested in testing the software and
hardware.

We would like to thank the following persons for their help with this thesis:

• Ryoichi Ishihara, for his guidance during the project.
• Jaber Derakhshandeh Kheljani, for his help with RF communication.
• Martin Schumacher, for his support during the development of the transmission kit.
• Willem Zwetsloot and Joost van Meerwijk, for developing the testing facility.
• Gerard Janssen, for his information on RF communication.
• Wim Blokzijl, for improving the structure of this thesis.
• All the participants in the test group, for testing our software.

Delft, June 11 2010
M. D. de Jong
C.J. Kruit

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 vi

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 vii

Summary

Whether it is possible to create a compact and user friendly kit in order to wirelessly send an
image to a Super E-paper device, is investigated throughout this thesis. DIMES and the
Compartment Engineering are developing a Super Electronic Paper Display (Super E-paper).
The Super E-paper is an improved version of the old E-paper. The Super E-paper will have a
paper-like appearance and will be in full colour. Next to this improvement it will also be able
to integrate fully flexible hardware, for instance a solar cell and a Radio Frequency module.

The goal of our research is to determine whether it is possible to create a kit that uses one-
way radio-frequency communication to transmit an image without loss of quality to a receiver
connected to a Super E-paper, which is controlled by a user-friendly and very simple
computer program. One-way communication is used, so one image can be ‘broadcasted’ to
multiple E-papers. Trade offs are made which hardware components are used to get the
smallest amount of power consumption and still have a high quality and error free wireless
communication system. The desired kit consists of the following three components:

• An easy to use computer program to transmit an image
• A transmitter
• A receiver

We developed such a kit which uses the low-budget radio-frequency module nRF24L01+
developed by Nordic. Even though these modules support two-way communication, only a
one-way communication network is used to determine whether this is possible.

A wireless transmission is never without errors. Therefore Error Control methods have
to be used. Two methods are implemented in this system namely: a Cyclic Redundancy Check
and a Repetition Code. This combination enables the RF modules to transmit an image with
very high quality when the Bit Error Rate is 3,2 x 10-3 or better.

Because the modules need to communicate with a computer and a Super E-paper, an
Arduino Duemilanove Board is used as a bridge to the RF module. We chose a
microcontroller for this function, because it simplifies the implementation of error control and
it offers more testing capabilities.

To be able to send any kind of format of a picture or a PDF file, a user friendly
program is designed in MATLAB. The program is capable of either sending a single picture
or a slide show and is tested in two stages. The first test group was focused on the
functionality where after a second group tested the revised version on user friendliness.
Eventually an easy to use and bug free program is developed.

Tests have also shown, by improving the Quality factor and the speed of the transistors
used to create the circuit, theoretically the receiver can be implemented onto the Super E-
paper. Changing the receiver will not affect the rest of the developed kit and can therefore still
be used.

Even though the used modules can only guarantee a high quality transfer within a radius of 28
meters, the developed kit does prove that one-way communication can be used in order to
successfully transmit an image to a Super E-paper. By replacing the antenna of the transmitter
with one that has a higher gain, the radius can easily be increased. Another possibility is to
transmit with more power. Both changes will not change the outcome of this thesis and the
rest of the kit can still be used. Theoretically it is also possible to implement the receiver onto
the Super E-paper without losing compatibility with the developed kit.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 viii

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 ix

Table of Contents

Preface v

Summary vii

1. Introduction 1

2. Program of Requirements 3
2.1 Requirements regarding the software 3
2.2 Requirements on the hardware 3
2.3 Requirements on the overall system 3

Part I: Preliminary work

3. The different Error Control methods 5
3.1 Automatic Repeat reQuest techniques 5

3.1.1 Adding a parity bit 5
3.1.2 Adding a Cyclic Redundancy Check 5
3.1.3 Stop-and-Wait Protocol 6
3.1.4 Go-back-N Protocol 6
3.1.5 Selective Repeat Protocol 6

3.2 Forward Error Correction techniques 6
3.2.1 A repetition code 7
3.2.2 The Single Error-Correcting Hamming Code 7
3.2.3 Binary Cyclic Encoding 8

3.3 Why use a one-way or two-way transmission system 9
 3.3.1 The two-way transmission system 9
 3.3.2 The one-way transmission system 9
3.4 Conclusion 9

Part II: Designing

4. The Transmission Software 11
4.1 The choice for writing the program in MATLAB 11

 4.1.1 Demands on the functionality 11
 4.1.2 Expertise of the programmers 11
 4.1.3 Determining the best programming language 11

4.2 Installing the transmission software 12
4.3 Using the software with the Global User Interface 12

 4.3.1 Sending a single picture 13
 4.3.2 Sending a slideshow 15
 4.3.3 The Help-function 16

4.4 Implementation of the program 16
 4.4.1 Brief introduction into MATLAB 16
 4.4.2 Functions in the program 17
 4.4.3 Output from the computer 19

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 x

4.5 Additional Programs 19
4.6 Stand-alone application 20
4.7 Summary 21

5. The RF Modules 23

5.1 Choosing the modules 23
5.2 Introduction to the Serial Peripheral Interface 23

 5.3 Interfacing with the nRF24L01+ through SPI 25
5.3.1 Pins on the nRF24L01+ 25
5.3.2 The instruction set 26

 5.4 Structure of a packet 27
 5.5 Configuring the nRF24L01+ modules 28
 5.5.1 Registers for necessary functionality 29
 5.5.2 Registers for redundant functionality 29
 5.6 Summary 30

6. Controlling the RF modules with an Arduino 31
6.1 The reason we used an Arduino Board 31
6.2 The end result 32

6.2.1 Communication program 1: Computer to Transmitter 32
6.2.2 Communication program 2: Receiver to FPGA board 34

Part III: Testing

7. Testing the Transmission Software 37
7.1 Testing Method 37
7.2 Testing and improving Version 1.0 37
 7.2.1 Ghostscript couldn’t be installed from the CD 38
 7.2.2 Not all PDF files could be opened by the program 38
 7.2.3 Converting PDF files of multiple pages could take 39
 very long and couldn’t be stopped
 7.2.4 The transmission of the image to the Arduino stopped 39
 after some time
 7.2.5 The converted PDF file couldn’t be saved 39

 7.2.6 Finding the transmitter only once 39
7.2.7 Open the GUI in the centre of the screen 39

7.3 Testing Version 2.0 39
7.3.1 Testing results 40
7.3.2 Evaluation 40

7.4 Conclusion 40

8. Testing whether the received image is valid or not 41

 8.1 Summary of error control 41
 8.2 Testing method 41
 8.2.1 Stage 1: Investigating the Bit Error Rate 41
 8.2.2 Stage 2: Full quality 42
 8.2.3 Stage 3: High quality 43
 8.3 Testing the quality 43
 8.3.1 Missing pixels 43

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 xi

 8.3.2 ′High quality′ 43
 8.3.3 The testing program 44
 8.4 Hypothesis 46
 8.4.1 Stage 1: Investigating the Bit Error Rate 46
 8.4.2 Stage 2: Full quality 46
 8.4.3 Stage 3: High quality 47
 8.5 Test Results 47
 8.5.1 Stage 1: Investigating the Bit Error Rate 47
 8.5.2 Stage 2: Full Quality 47
 8.5.3 Stage 3: High Quality 48
 8.6 Conclusion 50

9. Testing the Modules in combination with a PSP Screen 51
 9.1 The Setup and Test Results 51
 9.1.1 Applied changes with reference to the first test program 51
 9.1.2 The Test Results 51
 9.2 How to implement on the real Super E-paper 52
 9.2.1 The circuit of the used Receiver 52
 9.2.2 The possible circuit on the Super E-paper 53
 9.3 Conclusion 54

10. Conclusions and recommendations 55
 10.1 Conclusions 55
 10.1.1 Software 55
 10.1.2 Hardware 55
 10.2 Recommendations 56
 10.2.1 Improving the software 56
 10.2.2 Improving the Error Control 56
 10.2.3 Improving the hardware 57

Bibliography 59

Appendices 63

 Appendix A: MATLAB Codes 64
 A.1 The transmission software 64
 A.2 The receive software 93

 Appendix B: Tutorial programming an Arduino 103
 B.1 How to program an Arduino Board 103
 B.1.1 What is needed to be able to program an Arduino Board? 103
 B.1.2 The programming language of an Arduino Board 103
 B.1.3 How to upload a program to an Arduino Board 103
 B.2 Communication program 1: Computer to Transmitter 107
 B.3 Communication program 2: Receiver to FPGA 108

 Appendix C: Choosing a port 111
C.1 Requirements 111
C.2 The parallel port 111

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 xii

C.3 The serial port 112
C.4 The Universal Serial Bus 112
C.5 USB with Virtual Com Port 113

 C.6 Comparing the ports 113

 Appendix D Correspondence about cursor behaviour in edit text 115

 Appendix E: Enquiries 117

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 1

1. Introduction

The advertisement sector is eager to replace paper posters with electronically changeable E-
papers. DIMES and the Compartment Engineering are developing a Super Electronic Paper
Display (Super E-paper). The Super E-paper is an improved version of the old E-paper. The
Super E-paper will have a paper-like appearance and will be in full colour. Next to this
improvement it will also be able to integrate fully flexible hardware, for instance a solar cell
and a Radio Frequency module.

Super E-paper is perfect for the advertisement sector. Advertising companies have to
replace their posters very often, because their customers only rent them for a few days or
weeks. If the advertisement companies were to replace their posters with Super E-paper, they
wouldn’t have to replace the posters anymore. Instead, they could simply refresh them every
week with a new image. This way, they wouldn’t have to waste money on paper, ink and
distribution of the posters, which could easily save them hundreds of thousands of euro’s a
year.

Our studies [1] have shown that advertisement companies would like to use E-paper
only indoors, for example in shopping malls, because there is very little vandalism in these
malls. If they would use E-paper outdoors, vandals would break them. This would only
increase costs for these firms. Because E-papers would be mostly used in malls, users need to
transmit their advertisement images to the E-papers within a close range. This creates the
need for a sending module, which allows an advertisement company to change the image on
their E-papers. Accompanying software should make it possible to do this from a computer,
connected to a transmitting module.

It would be useful to use one-way communication for this purpose. One-way
communication means data is transmitted from a location to receiving location, but the
receiver can’t send data back to the transmitter. This is for example the case in television
broadcast: Television shows are broadcasted from one location to all houses who can receive
them. This would be useful for transmitting images, because one transmitter could change the
screen of all E-papers in a shopping mall at once by ‘broadcasting’ the image to all E-papers.

The goal of our research is to determine whether it is possible to create a kit that uses one-way
radio-frequency communication to transmit an image without loss of quality to a receiver
connected to an E-paper, by using a user-friendly and very simple computer program. Such a
kit would make it cost-effective and simple for an advertisement company to change the
images of their posters by simply selecting an image on their computer, and transmitting it to
their E-paper(s). We will develop such a kit, consisting of these components:

• A computer program, where the user can select an image to transmit.
• An RF transmitter.
• An RF receiver

In our research, we will investigate to what extent the computer program is user-
friendly and how much quality is lost by transmitting an image using radio frequency (RF)
modules. The first part will be investigated through a test group. All participants in this test
group have to install the program on their computer and use it to transmit an image. A postal
survey will show if the test group found our program user-friendly.

The second part will be investigated by reading the received data with a computer. By
comparing the received data to the transmitted data, an Error Rate could be calculated. A low
Error Rate means the quality of the received picture is still very high, where a high Error Rate

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 2

implies a very low quality. If the Error Rate is very high, we will investigate how to improve
this.

There are a few very important requirements on the software. Mainly, the software
should be very easy to use. The user should not be able to make mistakes which cause errors
in the program. Also, the software should work on many different computers. Since most
computers are operated by Windows, we will make the software compatible with Windows
computers.

The main requirement on the hardware is the ability to transmit an image with one-
way communication without the loss of quality. This is very difficult to achieve, because the
receiver can’t inform the transmitter if some data isn’t received. That data loss will
immediately cause loss of pixels and thus loss of quality. This has to be prevented.

This report is composed of the following chapters. Chapter 2 will describe the requirements
and limiting conditions of this research in more detail. Chapter 3 will explain techniques for
controlling errors in wireless communication. In chapter 4 it will be determined which port is
best to use for communication between the computer and the transmitter module in this
research. We will explain the working of the transmission software in chapter 4. Chapter 5
will describe how the RF modules work. To communicate with these modules, a
microcontroller is used to form the bridge between the computer and the RF modules. The
microcontroller will be discussed in chapter 6. Chapter 7 will investigate the user-friendliness
of the software. In chapter 8 will be investigated how the quality of the transmission can be
improved with the techniques for controlling errors, discussed in chapter 3. The results of this
chapter are further investigated with a simulation of a Super E-paper in chapter 9. Finally,
chapter 10 will discuss the results of our research and make recommendations for future
development and investigation.

Figure 1.1: A possible setup for transferring a picture.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 3

2. Requirements

The advertisement sector is eager to replace paper posters with electronically changeable E-
papers that can be updated from a distance. We will develop a kit that uses one-way radio-
frequency communication to transmit an image without loss of quality to a receiver connected
to an E-paper, which is controlled by a user-friendly and very simple computer program. In
order to make well-grounded decisions for developing this kit, all requirements on the system
should be known. This chapter will describe these requirements on both the software and the
hardware.

2.1 Requirements on the software

The software should meet the following requirements:

• The software should be easy to use.
• It should allow the user to select any image or PDF file on the computer.
• The software has to transmit the image or PDF to (an) E-paper(s) when the user wants.
• The software needs to resize the image to the right format.
• Borders should be added to the image if the user provides an image with very different

proportions. Adding borders will maintains those proportions.
• The E-paper can be hung 2 ways: with the longest side vertically or horizontally

(orientation). The software should be compatible with both ways.
• A preview area should be embedded in the software to show how the image will be

displayed on the E-paper. The preview area must show the right orientation and the
optional borders.

• It must be able to send multiple pictures in succession. The user should determine the
time between the presentation of two images.

• The program must inform a user about the progress during the transmission.
• The user must be able to abort the transmission at any time.
• The software should access a port (for instance a serial, parallel or USB port) to write

data to a transmitter.
• The software must convert the image into an RGB format, so the receiver does not

need to perform any more operations on the received data.

2.2 Requirements on the hardware

The hardware should meet the following requirements:

• The hardware should be able to read the data coming from the computers port.
• The hardware should transmit this data wirelessly from one location to another using

one-way communication.
• The hardware should be able to send an image without loss of quality.
• The hardware should work from the moment it is connected to the computer.
• Interaction with the software should not require user interaction.
• The data must be delivered in a special order and via a serial UART connection.

2.3 Requirements on the overall system.

The total system should be simple in use and send high quality images to the E-paper.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 4

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 5

3. The different Error Control methods

Wireless connections are far more sensitive to external influences than wired connections.
External influences could be other transmitting devices or weather conditions. Because of
these influences the wireless connection will suffer from data losses. To be able to set up a
reliable connection, some kind of Error Control method has to be implemented.

Paragraph 1 will evaluate a Automatic Repeat request techniques, useful in two-way
communication. Paragraph 2 will discuss Forward Error Control, which can be used in one-
way communication. Paragraph 3 compares the advantages and disadvantages of a one and
two-way wireless connection. Finally, paragraph 4 will explain which Error Control method
was used throughout this research.

3.1 Automatic Repeat reQuest techniques

In Automatic Repeat reQuest (ARQ) the receiver will send an acknowledgment for correctly
receiving a data block, or request the transmitter for a retransmission otherwise. In order to
decide whether the data is correct, the receiver has to be able to check it. That’s why some
Error Detection bits need to be added.
 First we discuss two different ways to add Error Detection bits where after we discuss
three ARQ protocols (a more detailed description about these topics can be found in [2]).

3.1.1 Adding a Parity Bit

Description
One of the simplest ways of encoding data is by adding a Parity Bit. A Parity Bit is a bit
which is added to the data and checks to number of bits with the logical value ‘1’. There are
two different ways of determining whether to set this bit or not. You can either set the Parity
Bit when the sum of bits with value ‘1’ is even or odd. This way the receiver can check if the
data is ‘right’ or ‘wrong’ and can send an acknowledgement or a request for retransmission to
the transmitter.

Disadvantages
Although this method is widely used and very easy to implement, it is not capable of
detecting every occurring error. Summing all bits with value ‘1’ can only detect an odd
number of errors, because the Parity Bit will not change if an even number of errors occurs. In
that case, the receiver will think the data is correct.

3.1.2 Adding a Cyclic Redundancy Check

Description
A different method of encoding data is by adding a Cyclic Redundancy Check (CRC). A CRC
code is a bit more complicated than the Parity Bit.
 First, the transmitter and receiver will determine a fixed series of bits with which they
will divide the data before transmitting. These bits are called the CRC code. Using bitwise
division a ‘Remainder’ will remain. Secondly, this Remainder will be added to the original
data and transmitted. Finally, after receiving the data the Remainder will be calculated again
and compared to the transmitted Remainder.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 6

Disadvantages
Even though this method is capable of detecting multiple errors, also this technique can’t
exclude them all. For example, the CRC will be wrong whenever the data is correctly
transmitted but the Remainder contains an error. Another situation in which the CRC could be
wrongly evaluated is when the data and Remainder contains errors. In this situation it is
possible the corrupted data still holds a valid Remainder and thus won’t be detected as wrong.

3.1.3 Stop-and-Wait protocol
The Stop-and-Wait protocol is a very intuitive way of sending and receiving data. The
transmitter will send his data and waits until, either he gets an acknowledgment or a time-out
occurs (this happens whenever it took too long to get an acknowledgment). Upon arrival of an
acknowledgment the transmitter will send new data.

This method looks a lot like a simple conversation between two people. When one of
them asks a question he’ll wait for a respond and if it takes to long he will probably ask it
again.

Whenever the data is correctly transmitted but the acknowledgment is not, the
transmitter will send the same data again. Because the receiver can’t distinguish whether the
acquired data is new or old, it will always process the data as new. To get rid off this problem,
including a single-bit sequence number will suffice.

3.1.4 Go-Back-N protocol
A Go-Back-N protocol is a bit more difficult than the Stop-and-Wait protocol. The receiver
includes within the acknowledgment the number of the next expected data block. Unlike the
Stop-and-Wait protocol this protocol does not wait for the acknowledgments before sending
new data.
 Though the Go-Back-N protocol does not wait for the acknowledgments it does use
them as confirmations. When a data block is sent, a timer is set and is terminated by the
acknowledgment of this block. In the mean time the transmitter will keep on sending new data
blocks with a predefined window, which is the maximum amount of data blocks that are send
before receiving any acknowledgment. Whenever a timer runs out, because the right
acknowledgment is not yet returned, the transmitter will “go back” and starts with
transmitting the unacknowledged data block.
 The disadvantage of this protocol is that the data blocks sent after an error has
occurred have to be retransmitted as well.

3.1.5 Selective Repeat protocol
The Selective Repeat protocol is almost the same as the Go-Back-N protocol. Two things are
essentially different. First, the receiver does not only store the data blocks that are
sequentially received but all the error free data blocks. Which brings us to the second
difference: only the data blocks that weren’t correctly received are retransmitted.

3.2 Forward Error Correction techniques

Forward Error Correction (FEC) techniques encode the data in a way the receiver can detect
and correct any errors that occurred during transmission. Because these methods don’t need
any acknowledgments it is very useful in a one-way connection.
 Encoding data often means adding extra bits to the data stream. In this case these extra
bits will help the receiver to detect and correct any errors in the data. There are many different

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 7

ways to encode data with FEC techniques. Three of the most used techniques are described in
this paragraph.

3.2.1 A Repetition Code

Description
Repetition Codes are one of the simplest encoding schemes. As the name suggests, the
transmitted binary code is repeated. This can be done in to ways. One-way is to transmit every
byte multiple times. The second way is bitwise multiplication, which means that every bit
separately is send over more than once, before transmitting the next bit. For example, the data
block containing “10011010” can be send over as “111-000-000-111-111-000-111-000” if the
multiplicity is equal to three.

Disadvantages
This way a single error can be detected and corrected within every triplet. It isn’t hard to see
that if you raise the number of the bitwise multiplicity, it is possible to correct more errors.
Though this sounds rewarding to simple raise the number of bits to cope up with a higher Bit-
Error-Rate (BER), you’ll have to consider the fact that a longer data block needs a wider
bandwidth or more time to be send over. See also [3].

3.2.2 The Single Error-Correcting Hamming Code

Description
Error Correction Hamming Codes can be described using matrices. In order to correct a single
error the minimum distance of the correction code must be three (also see [3]).
 The principle of this encoding scheme is as follows. First construct a parity check
matrix. Its size depends on the data block size and can be calculated with: 2log (1)n k n≥ + + .
Here n will be the number of columns in the matrix and k is the data block size. Having
calculated the column size the number of rows is easy to find: number of rows n k= − . The
first k columns are arbitrarily chosen with the restriction they are nonzero, unique and filled
with at least two ones. The last n – k columns are filled with the identity matrix.
 When the parity check matrix is chosen a generator matrix is made. The first k
columns are the identity matrix where after the transpose of the parity check (without the
identity matrix) is placed. Two possible matrices are stated in figure 3.1 for an eight bit data
block.

1 1 1 0

0 0 1 1

1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0

0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1

1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0

1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0

1 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0

0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1

0 0 1 0

0 0 0 1

TH G

 = =

Figure 3.1: A possible transpose parity check matrix (HT) and a generator matrix (G).

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 8

 The generator matrix is used by the transmitter to encode the data blocks. This is done
by multiplying the data block with the generator matrix. For example see figure 3.2.

 [] []1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0D E DG= = =

Figure 3.2: The original data block (D) and the encoded version (E) which is acquired by multiplying the
original data block with the generator matrix (G).

 The parity check matrix is used by the receiver to decode the incoming data blocks.
Just as encoding, decoding also uses matrix multiplication to be able to determine whether the
received data is correct or how to modify if not. This is done as shown in figure 3.3.

[] []1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0TR E S R H= = = = =
Figure 3.3: The received data block (R) and the outcome of the multiplication of the received data block with the

transpose parity check matrix (S) which is zero when no errors have occurred.

If the outcome of S is not equal to zero, an error has occurred. Comparing this result to the
rows of TH the position of the error bit can be found. If S equals the ith row an error occurred
at the ith bit of the received data block. This is illustrated in figure 3.4. More information can
be found in [3].

Figure 3.4: The received data block (R) has an error. The error bit can be determined by calculating S and

determining which row in HT has the same value. The number of the row for which this is true, is the number of
the bit that is wrongly received (in this case the highlighted bit).

Disadvantages
Just like the Repetition Code this encoding scheme also needs a larger bandwidth when more
than one error needs to be detected and corrected and it will take more time to transmit.

3.2.3 Binary Cyclic Encoding

Description
Binary Cyclic codes are a subclass of linear block codes as the one mentioned above. Even
though these methods are more complicated than linear block codes, it does have advantages.
 Because Binary Cyclic codes are complex but have a mathematical structure, more
sophisticated Error Correction methods can be created. Another great advantage is that

[]1 0 1 1TS R H= =

1 1 1 0

0 0 1 1

1 1 0 0

0 1 1 0

1 0 1 0

1 0 0 1

1 0 1 1

0 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

TH

 =

[]1 1 0 0 1 0 0 0 1 1 0 0R =

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 9

encoding and decoding are easily realised using simple shift registers with feedback
connections.

Disadvantages
Though Binary Cyclic codes do have some advantages it is still too complex for easy
implementation in our software and beyond the scope of this thesis. More information about
Binary Cyclic codes can be found in [3] and [4].

3.3 Using one-way or two-way communication

As explained in the previous paragraphs, ARQ is a useful technique if two-way transmission
is possible. One-way transmission requires the FEC techniques. But what are the main
advantages and restrictions of the two different transmission systems? This question will be
answered in this paragraph.

3.3.1 The two-way transmission system
In order to have a two-way transmission both the transmitter and the receiver should be
capable of transmitting and receiving data. When these two options are combined into one
device, this device is called a transceiver. Having such a system enables the use of the ARQ
methods, like the ones stated above.

The big advantage of an ARQ method is when an error is detected a request for
retransmission is returned. When the data is correctly received the transmission will go on.
Here also lies the restriction that you are only able to achieve a completely correct data
transfer when the BER is sufficiently small since no correction code is included.

This restriction does not add up to every type of ARQ method. There is also a Hybrid
Automatic Repeat reQuest (HARQ) method which combines the two methods, a FEC and
ARQ method, together and thus is capable of recovering errors without asking for
retransmission. Though, this type of Error Control is much more complex than the ones stated
above and a more detailed explanation of a HARQ method can be found in [5].

3.3.2 The one-way transmission system
Unlike in a two-way transmission system only one transmitter and one receiver are needed in
order to have a one-way transmission system. In order to correct any errors a FEC technique
has to be used, because the receiver can’t send anything back to the transmitter.
 The down side of only being able to receive is that it’s not possible to fix any errors
that can’t be repaired with the used Error Correction method. If the connection is of a pore
quality there isn’t much that can be done to still receive proper data.
 Nevertheless, one way transmission systems are widely used because they are easy to
implement, have lower power consumption than when using transceivers and are cheap.

3.4 Conclusion and application

Our main goal is to determine whether it is possible to send a photo or image over a one-way
transmission system without having ‘noticeable’ errors. This means the transmission is a
success if the received picture is almost 100% the same as the transmitted one. More on this
topic can be found in chapter 8.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 10

 This research focuses on one-way communication, because this communication allows
one transmitter to transmit data to multiple receivers at once. Two-way communication
requires acknowledgements and retransmissions. This is only useful if one transmitter is
communicating with one receiver. However, we are looking for a technique to ‘broadcast’ an
image to multiple E-papers, since advertisement companies have to spread many copies of the
same poster.

Error Control in this research
The transmission kit designed for this thesis uses a Cyclic Redundancy Check and a repetition
code, by transmitting the same packet multiple times. The CRC will guarantee with great
certainty that only valid data is forwarded to the E-paper. If a transmitted packet contains
errors, the CRC will recognize them and the receiver will discard the packet. Because of the
repetition code, the same packet will be retransmitted multiple times.

Depending on the deterioration of the signal, there is a good chance a packet is never
transmitted correctly. In this case, data is missing and the image will miss pixels. By adding
addresses to the pixel, the receiver can recognize which pixels are missing. This way, the E-
paper can easily set the right data to the right pixel. Another advantage of adding addresses to
the pixels is the ability to rearrange them if they were received out of order. There is a chance
that packets are received out of order. This is detectable and correctable by adding addresses.
 The Error Control used in this research is extensively tested. The results of these tests
are discussed in chapter 8.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 11

4. The Transmission software

This chapter gives a detailed description of the implementation and the working of the
transmission software. The goal of the transmission software is to read an image, resize it and
send it over a USB port to the Arduino microcontroller, which should be connected to the
computer.

The chapter is divided into seven paragraphs. In paragraph 1, the choice of the
programming language will be explained. Paragraph 2 will explain how a user can install the
software, followed by paragraph 3 about transmitting an image or a slideshow using the
software’s Global User Interface (GUI). Paragraph 4 will describe how the program is
written by explaining its actions when a button is clicked in the GUI. In order to transmit the
image, some other programs or functions are necessary. They will be discussed in paragraph
5. Paragraph 6 will deal with compiling the program and transforming it into a stand-alone
application, so users can run the program without needing to buy any other software. To
conclude this chapter, a short recapitulation will be given in paragraph 7.

4.1 The choice for writing the program in MATLAB

In the beginning of writing a program, the most important decision to make is the choice for a
programming language. This choice will have great influence on the final result, since each
programming language has its own advantages and disadvantages and enables different
options. The choice for a programming language is based on the functionality of the language
and the expertise of the programmer.

4.1.1 Demands on the functionality
There are three important demands on the functionality of the language. The first demand
deals with the communication with the hardware. In order to transmit data over a wireless
channel, a computer program has to be able to control an external device. A transmitter will
be connected to one of the computer ports, so the program has to write data via this port to the
transmitter. Multiple ports can be used for this purpose. A virtual COM port is used for this
research. The choice for a virtual COM port and more information about this port is given in
appendix C.

The second demand relates to the ability to read and edit an image and write it to the
port. Preferably, the language should have predefined functions to read and edit images,
because good understanding of image formats is beyond the scope of this thesis.

Finally, there need to be developing tools available for the programming language in
order to create a GUI. End users will require a simple GUI to operate the program.

4.1.2 Expertise of the programmers
In order to write the program efficiently, the programmers should write the program in a
language with which they are familiar. This limited the choice to a few programming
languages. We have experience with Java, MATLAB, C++ and to a lesser degree with Basic.

4.1.3 Determining the best programming language.
Java, MATLAB and C++ meet all of the requirements stated above. Our final choice was a
comparison between these three languages. We chose for MATLAB, because it seemed very
convenient to write to and read from virtual COM ports and to read and edit images with
MATLAB.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 12

4.2 Installing the transmission software

The software can be installed from a CD. On this CD, a map and four files are present:

• MCRInstaller.exe
• gs871w32.exe
• PictureTransmitterV2.exe
• Help.doc

These files contain the software needed to run the program correctly. The map ′Driver′
contains a driver that needs to be installed for correct communication with the transmitter.
When the microcontroller is connected to the USB port of a computer for the first time, a
dialog box will ask the user to install the driver. The user has to select the folder on the CD in
this dialog box. When this is done, the same dialog box will open and this action needs to be
taken again before the driver is properly installed.

When this is done, the user will have to execute the files on the CD in a specific order.
First, the MCRInstaller.exe has to be executed, installing the MATLAB environment that is
needed to run the entire program on the computer. If the user wants to be able to open PDF
files, gs871w32.exe has to be executed next. This installs Ghostscript, a free interpreter of the
PDF language. When these installations are completed, the actual transmission software
should be copied to a folder on the computer. After this action, the software is ready to be
opened by executing PictureTransmitter.exe.

4.3 Using the program with the Global User Interface

When the program is started, the
user will have to log in with his
personal username and password
(see figure 4.1a). This is necessary
to make sure that the owner of an
E-paper can use the program to
transmit an image only to his own
E-paper. The program will
recognize the user and prepare to
send data to his E-papers. Next,
the main window shown in fig.
4.1b opens. In this window are a
few pushbuttons visible, some
radio buttons, a large white box
and some text fields.

Fig. 4.1b: Main window

Fig.4.1a: Logging in

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 13

4.3.1 Sending a single picture
The program can transmit images as a single picture or as a slideshow. These different modes
can be selected with the buttons on top. The default is the ‘Single Picture’ function, for
sending a single image to an E-paper. The program allows the user to select a picture from
their computer, show a preview, rotate it, add or delete borders and send it to an E-paper.

A picture is selected using the Browse button. Pushing this button opens a panel where
the user can select an image in any image file format or a PDF. This window is shown in
figure 4.2.

When a file is selected and opened using Open, the text field next to the Browse button will
show the path of the file. Clicking Preview will show a preview of the image instead of the
big white box. This is shown in figure 4.3. If the selected file was a PDF, the program will
need to convert this file to an image. This will take some time and can’t be aborted since the
program ′Ghostscript′ is used for this action (see paragraph 5). The user will be informed
when the program is converting and when the program is done.

The program is going to show the image on an E-paper of 480 by 272 pixels. Pictures can be
shown with the long side vertically (portrait) or with the long side horizontally (landscape).
To give the correct preview, the user has to specify which rotation is intended. This can be
done by selecting one of the two radio buttons in the Orientation box, Landscape or Portrait.

Fig. 4.2: Selection window

Fig. 4.3: A fitted image is shown in Landscape (left) and Portrait (right)

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 14

The size of an E-paper is predefined. The user can enter the size of his E-paper under ‘Height’
and ‘Width’, but since we can only test this program on a screen of 272 by 480 pixels, these
values are locked in the program. The image will be resized to these proportions. This can be
done by simply fitting the image into a window of 480 by 272 pixels, or by adding black
borders to the picture and then resize it to the right size. In the first case,

the picture will be altered in the way a television show is altered when it is watched on a wide
screen TV: the image is stretched or contracted to the right proportions and then shrinked or
enlarged to the right size. The original proportions will be lost. This will give a strange,
distorted image if the proportions were very different from the proportions of the E-paper, but
it will be a good option if the proportions agree almost. The second option will maintain the
original proportions and fill the E-paper with an undistorted image. All the unused pixels are
set to black. This is shown in figure 4.4.

The Send Picture button actually sends the image to
the E-paper. When this button is pressed, the
program will first try to establish a connection with
the transmitter. When the transmitter is found, the
image will be prepared for the transmission. A dialog box will inform the user of this action,
as seen in figure 4.5. Closing this dialog box will cancel the process. When the program is
done, the transmission is started. A red wait bar will inform the user of the progression of the

transmission (figure 4.6). If the user
decides to abort the transmission, he
can click on the Cancel button. The
program will immediately stop
transmitting and the new image will
not be shown on the E-paper. Finally,
a dialog box will inform the user if the
transmission was successful.

Fig. 4.4: A Landscape image is shown with borders (right) and fitted (left)

Fig. 4.5: Dialog box

Fig. 4.6: A wait bar (top) indicates the progress made with
the transmission. A dialog box indicates whether the
transmission was aborted (bottom left) or completed (bottom

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 15

4.3.2 Sending a Slideshow
The window changes when the Slideshow button is clicked, as shown in figure 4.7. The
preview area disappears and more Browse buttons and text fields appear. This window can be
used to transmit a slideshow: a series of pictures that are subsequently displayed on the E-
paper. Up to three pictures can be selected using the three Browse buttons as described in
section 4.3.1. The text field under Seconds between pictures is used to tell the E-paper
hardware how much time one picture should be showed before going on to the next picture.
However, this function requires that the E-paper can store up to four pictures: the three
pictures for the slideshow and a new picture when that is transmitted.

Our testing facility was made by other students and could only store one picture, so we
altered our design. The slideshow is now showed as soon as the first picture is transmitted to
the e-paper. The Seconds between pictures button isn’t used at this moment, but that could be
easily changed in future versions of this program.

Since all pictures of the slideshow are displayed on the same E-paper, the orientation
is the same for all pictures. For simplicity, all pictures need to have the same resizing
properties too. When the pictures are selected, you’re ready to transmit. Clicking Send
Slideshow will start the transmission.

The user receives the same information when sending a slideshow as when sending a
single picture. The progress will be shown using a red wait bar and a dialog box will appear
when the transmission completes or errors occur.

Fig. 4.7: Slideshow window

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 16

4.3.3 The Help-function
The Help button on top of the interface displays a simple help file when it is clicked. This
gives the user a brief and simple explanation on how to use the program. For a more detailed
explanation, the user is referred to the Readme.doc file.

4.4 Implementation of the program

The Global User Interface is started when the program is executed. This GUI controls the
program and executes functions. To explain this, we will first give a small introduction into
MATLAB. Readers who have experience with MATLAB may want to skip this part and
continue with section 4.4.2. Some knowledge of programming and linear algebra is required
for understanding the rest of this chapter. The actual code is available in appendix A.1, with a
description of each function.

4.4.1 Brief introduction into MATLAB
MATLAB is a high-level language and interactive environment that enables users to perform
computationally intensive tasks faster than with traditional programming languages [6].
MATLAB performs these tasks with functions: The user specifies input variables, a function
and a place to store the output. MATLAB then calculates the output and executes other tasks
given by the function. A function can be a simple task, such as adding two numbers. A more
complex function might be calculating the inverse of a matrix. The input variable, or input
argument, is the matrix to be inverted. The function is called inv . If the user stores a matrix in
‘A’ and wants to invert it and store the inverse matrix in ‘B’, then a valid MATLAB syntax
would be B = inv(A).

A function can also be more complex and doesn’t always need input arguments or
return an output, such as the fwrite function. This function can be used for multiple purposes,
depending on its input variables. We use this function in our program to send data over a
serial COM port. If ‘s’ represents an opened serial COM port, and we would like to write the
number 1000 to this port, then this function would perform this task for us. A valid syntax
would be fwrite(s,1000) . The function will not return an output, but instead it will perform
the write operation: it will write the data (the number 1000) to the serial port and send it to an
external device.

MATLAB users can make their own functions using m-files. An m-file is an ASCII
text file with MATLAB code in it [7]. The user starts by giving the function a name and add
input and output arguments if necessary. The rest of the m-file describes what task has to be
performed when the function is called.

A function can be composed of other functions, just like a mathematical function. For
example, calculating how much percent 20 is of 300 could be done by calling 2 functions. The
first would divide 20 by 300, the second would multiply the result by 100. This could be
encapsulated in one function called percentage :

function p = percentage(a,b)

fraction = a/b;
p = fraction * 100;
Now p = percentage(20,300) will return the result in ‘p’. The semicolon at the end means
we don’t want MATLAB to print the result on the screen, but just store it in ‘p’.
A Global User Interface is also a function in MATLAB. The function doesn’t always need
input or output variables, but it will open a window containing the GUI. Our GUI can be

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 17

opened by typing its name, GUI_BEP, in MATLAB’s command window. The main window,
shown in figure 4.1, will open.

A GUI has some properties which can be specified when it is created. An example of
such a property is the position: the window can open anywhere on a screen, so the ‘position’
property specifies where it has to be opened. Another example of a property is its visibility: A
GUI can be made invisible by setting the value of property ‘visible’ to ‘Off’. Changing this
value to ‘On’ makes the GUI visible and usable.

One of the outputs of a GUI is usually its ‘handle’. A handle is a callable association
to a MATLAB function [8]. In the case of a GUI, this means that a handle can be used to
change properties of an already opened GUI, for example to change its ‘visible’ value. This
could be done by the MATLAB code

set(< Handle>, 'Visible' , 'On');

4.4.2 Functions in the program
As discussed in the previous paragraph, a GUI is just another function in MATLAB. And just
like any other function, it can call other functions and it can be called by other function. In our
case, the GUI is called by the function PictureTransmitter .

PictureTransmitter
The function PictureTransmitter has no input or output variables, but opens the
function Login. The user is asked to enter his username and password by this function.
If the username and password are correct, PictureTransmitter opens GUI_BEP,
containing the GUI. It immediately sets its ‘Visible’ property to ‘Off’, making the GUI
disappear from the user’s screen and preventing any interaction with it.
PictureTransmitter then sets its position to the centre of the screen and makes the GUI
visible, enabling the user to interact with it.

Login
The function Login will open a figure with two editable text fields where the username
and password can be entered, two static text fields where the strings “username” and
“password” are showed and a button that will check if the username and password are
correct when it is clicked. This function shows all characters that are entered in the
password box as an asterisk.

GUI_BEP
The function GUI_BEP may have a variable number of input arguments, setting some
of its properties. When called, the function creates the window containing the GUI and
all objects in it, such as the buttons, text fields and images shown in figure 4.1. All
objects are created by creation functions, setting some of their properties. Visibility is
one of these properties. In fact, all buttons shown in figure 4.1 and figure 4.7 are
present at all times, but their creation functions determine whether they are visible
when the program starts.

Every time a button is pushed, the program executes a function associated to
that button, the so called ′callback′ function. The following sections will describe what
happens when each button is clicked.

Single Picture

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 18

The button Single Picture sets all buttons, text fields and the white preview section
from figure 4.1 visible and all other objects invisible. This way, only the objects useful
for sending one single picture are visible and usable.

Slideshow
This button has the same functionality as the Single Picture button, but it only sets the
objects visible that are needed for sending the slideshow.

Help
The Help button sets all buttons and text fields invisible, except for the buttons Single
Picture and Slideshow. It also displays a text with some information on how to use the
program.

Browse
Browse is the common word for searching a file on the computer. This is done with
the function uigetfile , which opens the dialog box where the user can search for a
picture to transmit. All image formats and the PDF format are supported, but the user
can narrow the search down by selecting only one format to be shown. Which types
are specified as input for the uigetfile function. The function returns the filename
and its path, which is used to set the edit text next to the browse button. If no file is
selected, the field is filled with the same path as before. If there was no path in the edit
text, the field is filled with a reference to the browse button.

Preview
The Preview button checks which file is selected in the edit text and displays that file
instead of the white box or any other image shown on that location. To do this, the
handles of the radio buttons are read. These determine the orientation of the image and
how the image is resized (with or without borders). If the file is a PDF, it is converted
into an image. Further information on this topic can be found in paragraph 5.
 If the user hasn’t specified a file in the edit text, the Preview button takes no
action. If a PDF file is previewed, the converted file will be stored so it won’t have to
be converted again before transmission.

Send Picture
Just as Preview, this button reads the edit text, converts a PDF to JPG and resizes the
image. However, it doesn’t show the image after this is done. Instead, the function
sendData is called with the resized image and the baud rate as input arguments. This
function takes the following actions:

1. Search for the external transmission device using the function handshake.
2. Transforming the picture into 3 matrices containing the RGB values. For

example: element (i,j) from the matrix ‘red’ determines how much red is
present in the pixel of the image on row i and column j. This is necessary,
because the receiver is connected to a testing facility made by other students,
that requires these values to show the image.

3. Open and initialize the port found with handshake. The address of the
receiver is passed on to the transmitter. This address is connected to the
username used to log in.

4. Add an address byte to every pixel. The receiver can use this byte to show a
pixel in the correct place.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 19

5. Open a wait bar.
6. Write the data to the port and update the wait bar after every 1000 write

operations. If the Cancel button on the wait bar is clicked, close the wait bar
and abort the write operation when the wait bar is updated.

7. Delete the wait bar after the write operation is done or cancelled.
8. Close the port.
9. Inform the user of completion or failure of the write operation with a dialog

box.

During these actions, the user gets to see dialog boxes with information about the
progress of the program. These dialog boxes are opened with the function
showinfowindow [9], which sets the title of the dialog box and the content.
Two try/catch statements are used in sendData . These statements are used to make
sure the program has predictable behaviour in case of errors and prevent undesirable
behaviour. When an error occurs during a write operation, the try/catch statements
make sure that the wait bar is deleted and the port is closed. Without these statements,
the wait bar and port would remain open in case of an error until the operating system
forces them to close.

Send Slideshow
This button has almost the same functionality as Send Picture. However, when
multiple images are selected, these are transmitted after each other.

4.4.3 Output from the computer
As discussed in chapter four, the microcontroller is connected to the computer through a USB
port. A driver that creates a virtual COM port needs to be installed on the computer.
MATLAB can write data to this virtual COM port. The driver then sends this data to the USB
port. The output will be further discussed in chapter seven.

4.5 Additional programs

The program uses Ghostscript [10] in order to convert a PDF file to a JPG file. Ghostscript is
a free interpreter of the PDF language and can be called from MATLAB if it is installed on
the computer of the end user. Our program uses the function ghostscript [11] to call the
interpreter. This function needs only the ghostscript commands as input arguments and gives
them to the interpreter if it is installed. The function ghostscript was written by Oliver
Woodford and can be found in the export_fig package on MATLAB’s File Exchange. We
implemented this function into our program, because it searches Ghostscript on the user’s
computer in an efficient way, calls it using MATLAB’s system function and lets it execute
the commands given by the input arguments.

Our program uses the function pdf2jpg to convert a PDF to a JPG. This function calls
ghostscript with the following input arguments:

ghostscript(['-sDEVICE=jpeg -dNOPAUSE -dBATCH -dSAFER -r600x600 -
dLastPage=1 "-sOutputFile=tempim' pdfName '.jpg" ' '"' path '"']);

-sDEVICE=jpeg Activate the driver that produces JPG files from PDF files.
-dNOPAUSE Do not wait for user input, just execute the commands

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 20

-dBATCH Exit the interpreter upon processing of the last file.
-dSAFER Enables some security checks
-r600x600 Set output to 600dpi
-dLastPage=1 Convert only the first page
-sOutputFile= <fileName.jpg> Name the output file filename.jpg
-Path Store the output file in Path

These commands were established with [12] and [13]. The input arguments are read by
Ghostscript and will perform the conversion. The output is an image in JPG format, stored in
the same directory as the original file. This file is deleted after it is used by the program.

The function showinfowindow was written by Panagiotis Moulos. His function displays a
dialog box with a title and user-defined message. It is quite similar to MATLAB’s message
box, only it omits the OK button and it always opens in the centre of the screen.

The last program we used is the driver that creates a virtual COM port. We use this to write
data to a USB port combined with MATLAB’s ability to write data to serial ports. The driver
was created by Future Technology Devices International Ltd. (FTDI) and can be downloaded
for free at their site [14]. When the user inserts the microcontroller into the USB port, he is
automatically prompted to install the driver. The user needs to give the location of the driver
on its computer twice for the microcontroller to work properly.

4.6 Stand-alone application

The program MATLAB is needed to run m-files on a computer. The function
pictureTransmitter is an m-file and can only be run by MATLAB. However, a stand-alone
application can be created using the MATLAB Compiler and a C/C++ compiler, for example
the Borland or Lcc-win32 compilers.

The MATLAB compiler uses the C/C++ compiler to create an executable file, which
will compile the entire program and all used toolboxes. Eventually, multiple files are created.
The most important file is PictureTransmitterV2.exe. This is the executable file, which starts
the program.

A MATLAB stand-alone application actually isn’t a stand-alone application. The
program uses a lot of MATLAB’s predefined functions. For this purpose, MATLAB created
the MATLAB Compiler Runtime (MCR). This program can be deployed royalty-free and
enables the execution of MATLAB files on computers without an installed version of
MATLAB. The version of the MCR should be the same as the version of MATLAB used to
create the application. For more information, see [15].

Running an executable usually opens a Command Prompt, the command-line
interpreter of Windows. The Command Prompt tells the user to wait while it is extracting the
CTF file and starts the GUI. When the GUI is running, any information that it would normally
be displayed in MATLAB’s command window is shown in the Command Prompt. However,
the Command Prompt reminds users of the old and difficult MS-DOS operating system,
which may confuse them. Our program suppresses the appearance of the Command Prompt,
so only the GUI appears on the screen. This is done by adding the following command to the
options file before compilation [16]:

set LINKFLAGS=%LINKFLAGS% -subsystem windows

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 21

The options file can be found and opened with these commands:

cd(prefdir)
edit compopts.bat

In a nutshell, this means that the user needs 2 files to run a MATLAB stand-alone application.
He first needs to install the MCR by opening MCRinstaller.exe. When this is done, he can run
the EXE file, PictureTransmitter.exe. This will open the GUI. Our users need to install
Ghostscript as well if they would like to transmit a PDF file.

4.7 Summary

PictureTransmitter.exe will open a window where users can select images to transmit to their
E-papers. It can send a single picture or a slideshow of up to three pictures with an adjustable
pause between two pictures. The user is continuously provided with information about the
progress of the program.

The program was written in MATLAB, because of MATLAB’s image processing
capabilities and write functions. The end user needs the MCR to execute
PictureTransmitter.exe. For writing data to the serial port, a virtual COM port has to be
created with the FTDI driver. In order to import PDF files, the user will need to install the
program Ghostscript as well.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 22

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 23

5. The RF modules

Radio frequency modules are used to transmit the image from the computer to the E-papers.
This chapter gives a complete description on choosing and working with RF modules. The
next chapter will discuss how the data from the computer will be send with these modules.

First of all, paragraph 1 will discuss which modules are used for this research.
Paragraph 2 will give a brief introduction into the Serial Peripheral Interface, since good
understanding of this communication interface is very important for the rest of this chapter.
Paragraph 3 will explain how a microcontroller can communicate with the modules followed
by a description of the packets that are transmitted in paragraph 4. In paragraph 5 will be
discussed how the modules should be configured before they can be used in this research.
Paragraph 6 will give a short recapitulation of this chapter, before the implementation of the
configuration and communication with a microcontroller will be discussed in chapter 7.

5.1 Choosing the modules

First of all, we need to choose RF modules that can transmit the
data from one microcontroller to another. Since our experience with
RF modules is limited, we will need modules with very good
documentation such as a clear datasheet, examples of application
circuits and a manual on how to configure them.

The search for cheap but reliable RF modules that meet
these demands led to the Nordic nRF24L01+ Transceiver modules
[17]. A breakout board of these modules is available, which gives a
module that only needs to be connected to a microcontroller. All
other supporting circuitry such as a clock, voltage regulator and
antenna is already present on the board.

The nRF24L01+ modules use a Serial Peripheral Interface (SPI) to communicate with
the microcontroller. The next paragraph will give a brief introduction to SPI communication.
Readers that are familiar with SPI may want to continue with paragraph 3.

5.2 Introduction to the Serial Peripheral Interface (SPI)
The following paragraph is based on [17] and [18].

The SPI-bus is a serial communications interface with four wires used by many
microprocessors. These wires are:

• SCK – Serial Clock: a 50% duty cycle clock generated by the master.
• MOSI – Master Out Slave In: The line for writing data from the master to the slave.
• MISO – Master In Slave Out: The line for writing data from the slave to the master.
• CSn – Chip Select not: an optional control line, signalling the channel is active.

Sometimes called Slave Select (SS).

Fig. 5.1: A nRF24L01+

Transceiver. Source:
Sparkfun Electronics

[17]

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 24

Two devices communicating with SPI operate the same clock. The master device creates the
clock and the slave uses the clock to latch the data in or out. The transmitting device uses one
edge of the clock to change the bit on the MOSI or MISO line. The receiver uses the other
edge of the clock to read the bit on the same line. Communication is only possible when CSn
is low.

Communication from master to slave can run parallel with communication from slave
to master. This is called full-duplex. Both the master and the slave have an 8-bit shift register,
connected to each other as depicted in figure 5.3. The slave writes a bit from the shift register
to the masters’ shift register using the MISO line. The master can shift this bit in and shift
another one out using the MOSI line. This way, a distributed 16-bit register is formed.

As mentioned before, the transmitter uses one edge of the clock to shift a bit out and the
receiver uses the other edge of the clock to shift it in. A pair of parameters called clock
polarity (CPOL) and clock phase (CPHA) determines on which edge the data is shifted out
and on which edge it is shifted in. Each of the two parameters has two possible states, which
allows for four possible combinations. All combinations are incompatible, so a master/slave
pair must use the same parameter values to communicate [21]. Figure 5.4 shows the effect of
the clock polarity and phase on the communication.

Fig. 5.3: SPI interface with shift registers.

Source: Wikipedia [20]

Fig. 5.2: SPI communication between one master and one slave.

Source: http://embedded.com/columns/beginerscorner/9900483?_requestid=245610 [19]

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 25

5.3 Interfacing with the nRF24L01+ through SPI
The following is based on [21] and [22].

5.3.1 Pins on the nRF24L01+
As shown in figure 5.5, the transceiver breakout board has eight
pins. Two pins, GND and VCC, are for powering the modules. A
supply voltage of 3.3V to 7.0V is allowed. A microcontroller can
communicate with the nRF24L01+ trough the SPI interface with
the pins MISO, MOSI, SCK and CSN. The other two pins, CE and
IRQ, are also used for communication with a microcontroller.

CE is always an input for the transceiver. It has different
functions, depending on what mode the transceiver is in. The
module can either be in transmitter mode or in receiver mode.
When it is a receiver, CE orders the module to monitor the air and
receive packets when it is high. If the device is a transmitter, CE
orders the device to send a packet.

IRQ is the Interrupt ReQuest pin. This pin can be used to signal to the microcontroller
that:

• A packet is received
• A packet is transmitted correctly
• A packet can’t be transmitted correctly

The microcontroller should consult the module to figure out which of these situations has
occurred. As will be discussed in paragraph four, the module can be configured to use the
IRQ pin only for one or two of these events. Using the IRQ pin is optional. The
microcontroller can also use polling: keep checking if one of the events has occurred by
‘asking’ the module.

Fig. 5.4: Effect of clock polarity (CPOL) and clock phase (CPHA) on SPI communication. When CPHA = 0

the data is sampled on the red lines and changed on the blue lines. For CPHA = 1, the opposite is true.
Source: Wikipedia [20]

Fig. 5.5: A nRF24L01+

Transceiver. Source:
Sparkfun Electronics

[17]

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 26

Command name Command word
(binary) # Data bytes Operation

R_REGISTER 000A AAAA 1 to 5 LSByte
first

Read command and status
registers. AAAAA = 5 bit Register

Map Address

W_REGISTER 001A AAAA 1 to 5 LSByte
first

Write command and status
registers. AAAAA = 5 bit Register
Map Address Executable in power

down or standby modes only.

R_RX_PAYLOAD 0110 0001 1 to 32 LSByte
first

Read RX-payload: 1 – 32 bytes. A
read operation always starts at byte

0. Payload is deleted from FIFO
after it is read. Used in RX mode.

W_TX_PAYLOAD 1010 0000 1 to 32 LSByte
first

Write TX-payload: 1 – 32 bytes. A
write operation always starts at byte

0 used in TX payload.

FLUSH_TX 1110 0001 0 Flush TX FIFO, used in TX mode

FLUSH_RX 1110 0010 0

Flush RX FIFO, used in RX mode
Should not be executed during

transmission of acknowledge, that
is, acknowledge package will not be

completed.

NOP 1111 1111 0 No Operation. Might be used to
read the STATUS register

Table 5.1: A part of the instruction set for the nRF24L01+ modules. Source: Nordic Semiconductor [22]

5.3.2 The instruction set
Communicating with the transceivers is done by sending instructions from the instruction set
(or command set) to the transceiver. The complete instruction set can be found in the
datasheet, see [22]. The most important instructions are showed in table 5.1. These
instructions read data from or write data to some of the registers in the transceivers. The
nRF24L01+ modules have 30 registers, each having an address of five bits. Some of these
registers are used to specify the properties of the data transmission, such as the frequency and
target address. Others are used to determine whether the device is a transmitter or a receiver.
The STATUS register contains information about what’s going on with the module at a given
moment. More on these registers can be found in paragraph four.

To send a command, CSn should be made low to enable communication. Then the
command byte has to be sent. Whenever a command is sent, the nRF24L01+ will always
return the contents of the STATUS register. If the microcontroller performs a read command,
it will have to send more bytes to the module than just the command itself. For every byte the
microcontroller wants to receive from the module, it has to write a dummy byte to the module
containing no information. This is necessary, because SCK is needed to send data from the
slave to the master. When the microcontroller (master) sends a byte to the module (slave), it
automatically uses SCK. This enables the module to send data back.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 27

The following instructions can be sent to the nRF24L01+:

• R_REGISTER: The microcontroller can call the content of a register with the
instruction R_REGISTER. As can be seen in table 5.1, this is done by sending
000A AAAA to the module, where A AAAA is the address of the register. The
module instantly returns the content of the STATUS register as usual. When the
microcontroller sends more bytes, the content of the register is returned. If the register
contains five bytes, the microcontroller will have to send five dummy bytes to the
module to get all information from the module.

• W_REGISTER: Data can be written to a register using the instruction W_REGISTER.
The command byte for this instruction is 001A AAAA, where A AAAA is again the
address of the register. After the instruction, the data that needs to be stored in the
register is sent.

• R_RX_PAYLOAD: When data is received, this will be stored in RX FIFO (first in, first
out). The FIFO can contain data from three received packets (see paragraph 5.4). To
read this data into the microcontroller, the instruction R_RX_PAYLOAD is used. To
execute this command, CE will have to be used. Remember that in receiver mode, CE
is high when the module is scanning for packets. To read received packets, CE has to
be made low temporarily. After this is done, the operation can be executed by sending
the command byte, followed by as many dummy bytes as the payload width is. The
FIFO will return the first received data. If more data is present in the FIFO, this should
be read as well. When the FIFO is empty, CE can be made high again to make the
module monitor the air.

• W_TX_PAYLOAD: To transmit data, the TX FIFO is used. This FIFO contains the data
that has to be transmitted to the receiver. This FIFO can be filled using the instruction
W_TX_PAYLOAD. The number of bytes in the payload should match the payload length
of the receiver. When there is data in the TX FIFO, the microcontroller needs to order
the module to transmit it. This is done with the CE. In transmit mode, CE is normally
kept low. By making it high, the transmitter sends all packets in the FIFO to the
receiver.

• FLUSH_TX & FLUSH_RX: These commands may be used to clear all data in the
FIFO’s. This might be useful do after setup.

• NOP: this means no operation. Nothing will change, but the transceiver will return the
SETUP register. This is a very useful instruction if polling is used.

The nRF24L01+ has more instructions. Those instructions are however not used in our
research and knowledge of these instructions isn’t useful for a better understanding of the
modules. Therefore, these instructions won’t be discussed here. Interested user can find them
in the datasheet of the nRF24L01+, see [22].

5.4 Structure of a packet

The data in the TX FIFO is transmitted as a packet. This is a block of bytes that is send to the
receiver and contains the data. The structure of such a packet is shown in figure 5.6. This
figure shows that a packet consists of:

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 28

Fig. 5.6: Structure of a packet. Source: Nordic Semiconductor [29]

• A preamble
• An address
• A Packet Control Field
• The Payload
• CRC field

 The preamble is a byte of alternating zeros and ones. It is used to let the receiver know
that what it is hearing is the beginning of a packet and not just noise.

 The transmitter will add an address to the data to send it to just one receiver, viz. the
receiver that listens to that address. The address of our transmitter should therefore match the
address of our receiver. Compare this to calling someone’s name in a crowd, before giving
that person a message. If you wouldn’t call his name first, nobody would know who you are
addressing. If you use only his first name, there is a strong possibility that there is another
person with the same name who will also listen to the message and think he is addressed.
When you use his first- and surname, this possibility decreases significantly. This could be
compared to using a longer address (i.e. more bytes) for the receiver: the more bytes used, the
smaller the probability of an error.

The Packet Control Field tells the receiver how many bytes the payload is long, how
many times this packet has been sent before (in case of retransmission combined with auto
acknowledgement) and if the auto acknowledgement function is enabled.

The payload is the actual data. This field may be one to 32 bytes long. The receiver
needs to know the length of this field to understand the packet.

The last field is the CRC field. CRC means Cyclic Redundancy Check and is
discussed in chapter three.

5.5 Configuring the nRF24L01+ modules

As was discussed before, the nRF24L01+ modules have 30 registers. All of them have an
address of five bits. Some of these registers are used to specify the properties of the data
transmission, for example the frequency, the data rate and the structure of a packet. Others
can be used to determine whether the device is a transmitter or a receiver. This paragraph will
discuss the registers that are used in this research. These registers need to be set before and
during the transmission, to configure the nRF24L01+ modules and to determine how the
modules will interact with each other. Only a brief overview of these registers will be given.
Readers who would like more detailed information are referred to the tutorial from Ball [21]
and the datasheet [22].

Before we start our overview of the registers, it should be mentioned that this research
only requires a part of the functionality of the nRF24L01+ modules. Our goal is to determine
if it is possible to transmit a picture from an RF transmitter to an RF receiver, using one-way
communication. Because the nRF24L01+ modules are transceivers, it is possible to make
them alternate between transmitter mode and receiver mode. This way, the receiver could
send an acknowledgement back to the transmitter once the data is received correctly or it
could ask the transmitter to send the data again in case of errors. Since we are using one-way
communication, the receiver can’t ask for a retransmission. Furthermore, it is possible to use

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 29

multiple transmitters to send data to one transmitter using multiple pipes. These pipes may be
compared to multiple roads, all leading to the same location, but coming from a different
location. With pipes, it is possible to receive messages from different transmitters. Even
though this could all be done with these modules, that functionality is not wanted in this
research and needs to be disabled. The registers where this is done will be discussed in section
5.5.2, but we will not give detailed information about these functions.

5.5.1 Registers for necessary functionality
Address 0x00 refers to the register CONFIG. This register must be given a value different
from its reset value to make the device do anything. It contains the PWR_UP bit, which is
initially zero. This bit must be set to make communication possible. This register also
determines whether the device is a transmitter or a receiver by setting the PRIM_RX bit. As
was mentioned before, there are three events that can cause an interrupt: receiving a packet,
sending a packet correctly and failing to send a packet correctly. Not all of these events
necessarily cause an interrupt on the IRQ pin. The CONFIG register determines which events
do and which don’t. Finally, CONFIG also sets the CRC scheme.

Address 0x03 refers to the register SETUP_AW. This is where the address width is set.
The actual address is set in register 0x0A for the receiver and in 0x10 for the transmitter.
Registers 0x0B to 0x0F set receiver addresses for other pipes, but this function isn’t used in
this research as mentioned before.

The length of the payload is set with register RX_PW_P0 with address 0x11. Off
course, every pipe has its own register for setting the payload length. These have addresses
0x12 to 0x16, but aren’t used in this research. All of these registers have reset value 0x00,
meaning that no data can be transmitted since the payload length is zero. Some other value
must be written to RX_PW_P0 to enable communication.

Register 0x05 tells the device which frequency is used. The lowest frequency is 2,400
GHz, but this register allows the user to use other frequencies up to 2,527 GHz.

RF_SETUP is the register that contains all necessary parameters to set up the RF
section of the 24L01, such as the RF power level and the data rate. All reset values are fine
for this research, so it is not necessary to write to this register. Only the data rate could be
decreased from 2 Mbps to 1Mbps, to decrease the error rate at the cost of bandwidth.

Finally, we discuss one of the most important registers: STATUS. If an interrupt
occurs, this register will tell the microcontroller what actually happened. If the bit RX_DR is
set, data is received and RX FIFO can be read. TX_DS signals that a packet was transmitted
successfully. MAX_RT is set when the maximum number of retries is reached. This is only
used in combination with acknowledgements, which aren’t used in this research. TX_FULL
will be set when TX FIFO is full.

5.5.2 Registers for redundant functionality
The registers discussed in this section, need to be set once to disable functionality that is not
used in this research. An example of such a register is EN_AA with address 0x01. This
enables ‘Auto Acknowledgment’, which obviously isn’t possible in one-way communication.
All bits in this register need to be cleared.
 Since there are no acknowledgements, retransmission is out of the question. This
means the number of retries needs to be set to zero by clearing all bits in the register
SETUP_RETR at address 0x04.
 Only one pipe will be used to communicate from the transmitter to the receiver, all
other pipes have to be disabled. This is done by writing the value 0x01 to the register
EN_RXADDR with address 0x02.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 30

The nRF24L01+ has more registers. Those registers are not used in our research and
knowledge of these registers isn’t useful for a better understanding of the modules. Therefore,
these registers won’t be discussed here. Interested user can find them in the datasheet of the
nRF24L01+, see [22].

5.6 Summary

Nordic nRF24L01+ transceiver modules have been used for this research. These modules
communicate with a microcontroller using SPI. An instruction set is used to enable
communication between the microcontroller and the transceiver. Before the transceiver can be
used, it will have to be configured with these instructions. Data can be sent to a transceiver in
transmitter mode. The transceiver will transmit the data in a packet to a receiver, which is
another transceiver in receiver mode. This module can store the data and send it to another
microcontroller. The receiver would be able to send an acknowledgement back to the
transmitter when the packet is delivered correct. However, this research focuses on one-way
communication. This means that acknowledgements are out of the question, so this
functionality has to be disabled.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 31

6. Controlling the RF modules with an Arduino

A Serial Peripheral Interface (SPI) is needed to communicate with the transmitter. Our
research used Arduino microcontrollers for this conversion. This chapter will describe how
the Arduinos are programmed for the conversion and how they are used to simplify the
implementation of Error Control.

An Arduino isn’t the only device that allows USB to SPI conversion. Therefore,
paragraph 1 will explain why we chose an Arduino for this function. Paragraph 2 discusses
how the Arduino’s are programmed. This paragraph will show that the Arduino also
configures the RF modules and adds redundancy to the data.

6.1 The reason we used an Arduino Board

The transmitter requires a SPI interface to read and transmit the data. However, the computer
will write the data to a USB port. Therefore, we need to build a bridge between the computer
and the transmitter that converts the USB output to a SPI output.
 For this purpose, there are two sorts of devices one could use. The first is a SPI
shortcut. This device allows a user to control SPI pins over USB without involving any
programming. See for an example [23]. The second device is a microcontroller with both
USB and SPI connections. This device can perform many tasks, but it will have to be
programmed before it will perform this simple conversion.
 The SPI shortcut would obviously be sufficient for the conversion. However, a
microcontroller costs about the same and has many other applications. For example, it would
enable us to write a small test program to test the transmitter without using the computer. This
could be very helpful in the designing process, because the transmitter and receiver could be
tested without the transmission program. Because the program was under construction and
could not yet test the transmitter, the decision was made to use a microcontroller for the
conversion. On top of that, a microcontroller might simplify the implementation of error
control.

There are many types of microcontrollers on the market. We would require a microcontroller
that could test the RF modules and the data coming from the USB. A microcontroller that is
programmable with a high-level programming language would be preferred, since this creates
the possibility to write simple test programs in little time.
 The most popular and best supported microcontrollers are the Microchip PIC and the
Atmel AVR. The functionality for these is about the same, so we made a decision based on
the complexity of writing a program. We decided to use an Arduino board, which is
inexpensive and has a simple and clear programming environment. It only needs wires to be
connected to a USB port and to the transmitter. The Arduino has a FT232R chip which
changes a USB to a serial UART interface. As we will see in the next paragraph, this has
great advantages for testing the signal coming from the computer. But most importantly: the
USB and the SPI connections are present on the board, so the Arduino meets all of our
demands.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 32

6.2 The end result

This paragraph will explain how the Arduino’s are programmed. The first Arduino is
programmed for Serial to SPI conversion, which is needed for the communication between
the computer and the transmitter. The second Arduino is programmed for SPI to Serial
conversion, which is needed for the communication between the Receiver and an FPGA board.

The Computer-Transmitter communication program will be discussed first, where
after the Receiver-FPGA board communication program is described.

A tutorial how to program an Arduino can be found in Appendix B.

6.2.1 Communication program 1: Computer to Transmitter
The main goal of the first program is: convert the incoming serial data into outgoing SPI data.
Other important functions of this program are to configure the Transmitter (the nRF24L01+
module), to add redundancy and create a payload that consists of four bytes.

A global overview of the program is given in figure 6.1 and it is explained in three
steps below. The actual program is stated in Appendix B.2.

Step 1: Initialisation
In order to create a SPI output the transfer() function is used which can be found in the Spi
library. This function automatically generates a synchronised clock with the output data as
described in chapter 5.2: Introduction to the Serial Peripheral Interface (SPI).
 Additional libraries are needed to initialise the transmitter: the mirf and nRF24L01
library. Using the functions provided by these libraries, the number of bytes in a packet and
the communication channel are set. The config() function configures the applied settings
and powers up the nRF24L01+ module in the Receiver Mode.

Because the nRF24L01+ module is a transceiver, a couple of settings have to be
changed in order to exclusively use it as a transmitter. First, the automatic acknowledgment
function has to be disabled in order to set up a one-way communication network. Next to
disabling the automatic acknowledgments the number of communication pipes has to be
reduced to one, for the same reason. As an effect of these changes the retransmission function
has to be disabled as well. Finally, the module has to be set into the Transmitter Mode.

Step 2: Setting the transmission address
When the initialisation is done, the program waits for the user to login in order to set the
transmission address. If the login was successful, the upcoming serial bytes will be converted
into SPI and transferred to the transmitter.

Step 3: Transmission
The payload in each transmitted packet consists of four bytes: an Address byte and the Red,
Green and Blue values of a pixel. This means every packet contains the data to set one pixel.
This is useful, because the packets might be received out of order. This could change the
order of the Red, Green and Blue values, and the Address. Transmitting the data of one pixel
in one packet makes sure that the data is received in the right order. The address byte is
included in order to cope with the loss of packets due to wireless transmission and discarding
of wrong packets by using the CRC. With the address, the receiver is still able to reconstruct
the image by setting the pixels in the right order.
 To create such a packet the four in sequence bytes are stored in an array and
transmitted as one packet. Because a Repetition Code is used as well, the packet is send

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 33

multiple times instead of once. More information about the CRC and Repetition code can be
found at chapter 3. Chapter 9 describes the increase in quality due to this Error Control.

Figure 6.1: A state diagram of the program for the

 communication between Computer and Transmitter.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 34

6.2.2 Communication program 2: Receiver to FPGA board
The main purpose of the second program is: convert the incoming SPI data into Serial output
data. Another important task is selecting the right packets to forward.
 The program is schematically explained in figure 6.2 where a more detailed
explanation is given below. The actual program can be found in Appendix B.3.

Step 1: Initialisation
To be able to convert the incoming SPI data into Serial output data the print() function is
used, which is a standard function within the Arduino program. This does not mean that no
additional libraries are needed. The same libraries are used as in the first communication
program: mirf , nRF24L01 and Spi .
 These libraries are needed in order to change the nRF24L01+ module into a Receiver.
First the number of bytes in a packet and the communication channel need to be set to the
same properties as in the first program. Second, the receive address is set equal to the
transmitting address of the Transmitter. Where after the config() function is used in order to
apply the changed settings.
 By disabling the automatic acknowledgment and automatic repeat functions and
reducing the number of pipes to one; the module is changed into a Receiver.

Step 2: Receiving
After initialisation the Receiver waits for incoming packets. Because of the Repetition Code a
single packet is received multiple times. Storing the previous five addresses (which is the first
byte of a packet) and comparing them to the received one will allow the program to forward a
packet only once.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 35

Receive Program

Config()

Disable automatic

acknowledgement

and automatic

repeat functions

Reduce

number of

pipes to one

Applies all

 changed settings

Set number of bytes

in a packet and

communication

channel

New data

available?

print()

Serially forward

the packet byte

for byte

Picture

completely

received?

Done

Yes

No

Yes

No

Set Receive

address

Figure 6.2: A state diagram of the communication program

between the Receiver and FPGA board.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 36

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 37

7. Testing the Transmission Software

The goal of our research is to determine whether it is possible to create a kit that uses a low-
budget radio-frequency module to transmit an image without loss of quality to a receiver
connected to an E-paper, which is controlled by a user-friendly and very simple computer
program.

This chapter will describe how the user-friendliness of the software was tested before
and after the final version of the software was created. The program described in chapter 4
was actually the second version, since the first version of the program still contained some
bugs and wouldn’t work properly on every system. In this chapter, version 1.0 will refer to an
earlier version of the same computer program. Version 2.0 is the current version.

7.1 Testing Method

The first version of the program was working perfectly on the computers it was created on.
However, it could still contain some bugs when it would be used on other computers. For this
purpose, the first version of the program will be tested on functionality on other computers by
independent persons. Any bugs will be fixed and other tips from the test group will be
considered for the next version of the program.

To test the functionality in this first stage, some persons that weren’t involved with the
development of the software were given a CD with all needed software (including the drivers),
a manual on how to install and use the program and a form to fill in all bugs they found and
all tips they had for improving the program. One of the programmers will always be present
to observe the testers and to help them proceed after they found a bug.

By fixing all bugs in the first testing stage, the operation of version 2.0 should be
flawless. In this second stage, a group of 15 persons is asked to test the user-friendliness of
the program. They will receive all needed software and hardware just like the employees of
the advertisement companies. After they used the program to transmit an image, their opinion
about the user-friendliness will be asked with a survey. This survey is shown in appendix E.
The result of the survey will be discussed in paragraph 3.

If the testers in the second stage are unsatisfied with the software, a third version will
be developed and tested in the same way the second version was developed and tested. This
process will be repeated until a program is developed that satisfies the demands on user-
friendliness and simplicity. If the testers suggest minor improvements but are satisfied with
the rest of the program, those minor improvements will be implemented, but there is no need
to test the software again.

7.2 Testing and improving Version 1.0

For testing version 1.0 of the program, a group of eight people was loaned a CD with all
needed software, a USB cable and the Arduino microcontroller. The microcontroller was
needed in order to test the handshake function of the transmission software: the software
needs to find the Arduino on its own, without user intervention.
A few bugs were found during the first testing stage. Especially importing and editing PDF
files needed some debugging. These bugs were found during the first testing stage:

1. Ghostscript couldn’t be installed from the CD.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 38

2. Not all PDF files could be opened by the program.
3. Converting PDF files of multiple pages could take very long and couldn’t be stopped.
4. The transmission of the image to the Arduino stopped after some time.
5. The converted PDF file couldn’t be saved.

The test group also had three tips to improve the user-friendliness in version 2.0:

6. Remember to which port the transmitter is connected, so it only has to be found once.
7. Open the GUI in the centre of the screen directly after start-up.

7.2.1 Ghostscript couldn’t be installed from the CD
The installation of Ghostscript was done by opening the file
gs871w64.exe. This resulted in the error shown in figure 7.1.
The error was caused by using the wrong Ghostscript
version. gs871w64.exe should only be used on computers
with a 64-bits processor and a 64-bits version of windows.
Many computers still use a 32-bits version of windows. This
requires the file gs871w32.exe in order to install Ghostscript.
Since gs871w32.exe can also be executed on 64-bits
versions of Windows, this file will be supplied with the
transmission software. The testers could download the right file from the Ghostscript website,
so they were still able to test the rest of the program.

7.2.2 Not all PDF files could be opened by the program
Some users had no problem selecting and opening PDF files with the transmission software.
However, other users got nothing on there screen when they wanted to preview a PDF file. In
the command window, the following error from Ghostscript was found:

GPL Ghostscript 8.54 (2006-05-17)

Copyright (C) 2006 artofcode LLC, Benicia, CA. All rights reserved.
This software comes with NO WARRANTY: see the file PUBLIC for details.
Error: /undefinedfilename in (pdf.pdf.jpg)
Operand stack:

Execution stack:
 %interp_exit .runexec2 --nostringval-- --nostringval-- --nostringval-- 2 %stopped_push --

nostringval-- --nostringval-- --nostringval-- false 1 %stopped_push
Dictionary stack:
 --dict:1124/1686(ro)(G)-- --dict:0/20(G)-- --dict:70/200(L)--
Current allocation mode is local
Last OS error: No such file or directory
GPL Ghostscript 8.54: Unrecoverable error, exit code 1

Ghostscript tells the user that the filename he selected doesn’t exist, even though the selected
file does exist. The problem appeared to be caused by passing the wrong filename to
Ghostscript in the function jpg2pdf .
 After investigating which files were converted by the program and which files weren’t,
the simple conclusion could be drawn that files with interspaces in the filename or the path
weren’t converted and files without interspaces were converted. Ghostscript uses a space
between commands and apparently reads the part of the filename after the space as a new
command. Only the part before the space is read as the filename. This problem was solved by
adding quotes around the commands that are passed to Ghostscript. This way, everything
between quotes is read as an entire command, solving our problem.

Fig. 7.1: Error during Ghostscript

installation.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 39

7.2.3 Converting PDF files of multiple pages could take very long and couldn’t be stopped
A tester accidentally selected a PDF file containing a hundred pages. Ghostscript tried to
create a picture that had all pages underneath each other. Since there is no use for displaying
multiple PDF pages, a command was added to jpg2pdf that made sure only the first page of a
PDF file will be converted to an image and only that page will be used by the rest of the
program. This command is -dLastPage=1 and is explained in chapter 4.

7.2.4 The transmission of the image to the Arduino stopped after some time
During the transmission of the data to the Arduino, the transmission was stopped and an error
message was shown to the user. This bug is caused by the function fwrite in MATLAB
2007a, see [24]. The function fwrite will timeout sporadically. Since the transmission
software uses this function thousands of times, chances that it will timeout and produce an
error are very high. The problem was fixed by adding a patch to MATLAB, but the compiler
can’t compile this patch into the stand-alone application. The only way to solve this bug was
to use MATLAB 2008a or higher to compile the program and create a stand-alone application.
We used MATLAB 2008b to recompile our program, which fixed the bug. However, version
2008b of the MATLAB Compiler Runtime (MCR) is needed to run the program now.

7.2.5 The converted PDF file couldn’t be saved
This problem was actually caused by the computer running the program. When a PDF file is
converted to a JPG file, the result needs to be saved on the computer before MATLAB can
access it. Since PictureTransmitter.exe was copied from the CD to a folder on the computer,
this usually doesn’t give any problems because the user has privileges to write files to this
folder. However, when the user tries to convert a PDF file while PictureTransmitter.exe is
found in a folder that is write-protected, Ghostscript cannot save the image it created and will
give an error. This problem cannot be solved, since Ghostscript needs to save the image. We
added a line to the user manual, saying the program needs to be copied to a folder that is not
and will not be write-protected.

7.2.6 Finding the transmitter only once
When Send Picture or Send Slideshow is pressed, the software calls the function handshake
to find the transmitter. By storing the output of handshake in the GUI, there is no need to call
this function again when another picture is transmitted.

7.2.7 Open the GUI in the centre of the screen
When the GUI is opened, it first shows itself on the right of the screen before it is set to the
centre. This gives the user a strange first impression of the program, so this was fixed in
version 2.0.

7.3 Testing Version 2.0

For testing version 2.0 of the program, a group of fifteen people was asked to test the software
at the development location or to test the software at home. In the last case, a tester was
loaned a CD with all needed software, a USB cable and the Arduino microcontroller. The
microcontroller was still needed in order to test the handshake function from the transmission
software. However, the improvement from section 7.2.6 worked and the handshake function
is only called once. The test group was asked to use the program to transmit an image, and to

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 40

fill out an enquiry about the user friendliness of the software. These enquiries can be found in
appendix E.

7.3.1 Testing results
The most important results are as follows:

• The software is very user-friendly. The style and layout is very basic, but that fits the
basic functionality of the program.

• No testers had problems with finding the Slide Show.
• One tester clicked on the button Single Picture without realizing he was already there,

but soon figured out the purpose of this button after he pressed Send Slideshow.
• All errors with finding PDF files have been solved.
• Installing the MCR and starting up the software takes much time.
• Using the software does not require a manual.
• It would be preferable to log in by pressing ‘enter’ instead of clicking ‘Log in’ in the

Login screen.
• The cursor in the password box is always set back to the beginning.
• The average rating the software got from the testers was an 8 on scale from 1 to 10.

7.3.2 Evaluation
The users thought the software was easy to use and was properly designed for this
functionality. However, they did recommend some improvements. We investigated whether it
was possible to improve the program based on their remarks. This led to the following
conclusions:

• Making it possible to log in by pressing enter was a minor improvement, this was
easily implemented in the software and there is no need to test this again.

• The cursor in the password box must always be set back to the beginning of the box
after the asterisk is showed. This was not the case in MATLAB 2007a, the program
we developed the software in. However, MATLAB 2008b must be used to create the
standalone application and this version of MATLAB always sets the cursor back to the
beginning of the box [25]. On our request, Mathworks is working on a fix for this
problem. Until they fixed this bug, the cursor is always set back to the beginning of
the field.

• MATLAB standalone applications need the MATLAB Compiler Runtime (MCR) to
execute. There is no workaround for this and thus there is no way to speed up the
installation or the start-up time of the program since this is a problem of the MCR.

7.4 Conclusion

Based on the testing results and the evaluation of these results, we can conclude that the
software is indeed very user-friendly. Logging in is now also possible by pressing enter, but
there is no need to start another testing procedure to test this new functionality. The
installation takes some time, but needs to be done once and has no influence on further use of
the program. Therefore, we conclude that the software has passed this test for user-
friendliness.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 41

8. Testing the quality of the transmission

One of the goals of this research is to determine whether it is possible to create a kit that uses
one-way radio-frequency communication to transmit an image without loss of quality to a
receiver connected to an E-paper. This chapter will describe how the quality of the
transmission was tested and will discuss the results.

Paragraph 1 starts with a short recapitulation of the methods of error control, as
described in chapter three. Paragraph 2 will discuss how the tests will be done. We will see
that determining the quality of an image is tricky. Paragraph 3 will explain how the quality
can be determined objectively and explain how can be tested whether the quality is
sufficiently high. A hypothesis is formulated in paragraph 4 founded on probability calculus.
Paragraph 5 will show the results of the testing procedure. Finally, paragraph 6 will check
the hypothesis and draw conclusions.

8.1 Summary of error control

Wireless data transmission will inevitably lead to loss of data. Nevertheless, it is still possible
to show an image with high quality. In this research, this was done by using CRC, adding
redundancy and adding an address byte to the data. The CRC checks the received data for
errors. If a package is transmitted with errors, it is discarded. Because of the redundancy, the
same data will be transmitted multiple times. This is done to lower the probability a packet is
not received.
 If none of the packets with data for the same pixel is received, the pixel can’t be set.
The address byte lets the receiver know which pixel is missing. Because of this addressing,
the receiver can still set the rest of the data to the right pixel. Since the address of the data is
stored in one byte, 256 different addresses can be assigned. That way, 256 pixels in a row
need to be missing for the pixels to be shifted.

8.2 Testing method

The transmission will be tested in three stages. The goal of these tests is to determine whether
the developed kit and the used methods of error control can transmit an image to an E-paper
without loss of quality. The first stage will investigate which Bit Error Rate (BER) can be
achieved with the nRF24L01+ modules. The second stage will investigate at which BER it is
still possible to transmit an image without errors using Error Control. The third and final stage
will test at which BER it is still possible to transmit an image with sufficiently high quality.

8.2.1 Stage 1: Investigating the Bit Error Rate
The quality of a wireless transmission is normally tested by comparing the received data with
the transmitted data. In digital systems, the measure of deterioration is usually taken to be the
Bit Error Rate (BER). This is the number of bits that were received wrong, relative to the
total number of transmitted bits. When large numbers of bits are transmitted, the BER will
approach the probability of bit error Pe. The lower the BER, the better the transmission.
 A good BER can be achieved by using an antenna with high gain, by increasing the
power with which the data is transmitted and by decreasing the propagation loss during the
transmission. The nRF24L01+ modules have an ANT-2.45-CHP antenna and transmit data
with a maximum output power of 0 dBm. These are constants throughout the investigation.
The propagation loss depends on the path between the transmitter and the receiver and is

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 42

different when the modules are used in different environments. The propagation loss will be
high when the distance is big and there are a lot of obstacles between the transmitter and
receiver. When the modules are in close proximity of each other, the loss will be very low.
Noise created by other wireless transmissions will also increase the propagation loss. If the
propagation loss is very high, the BER will increase as well.
 To get an objective overall picture of the capabilities of the nRF24L01+ modules, the
BER is measured at different locations in a gallery when there are no obstacles between the
transmitter and receiver. However, because the measurements are indoors, reflection from the
walls will play an important part. By increasing the distance between the modules and
measuring the number of received packets at every location, the BER can be found at multiple
distances.
 The measurements will be done by transmitting three images of 30 by 30 pixels from a
varying distance. After these three transmissions, the distance is increased and the images will
be transmitted again. The BER can be calculated from the number of received packages as
follows:

Let Pe (BER) be the probability that a bit is transmitted wrong. The

probability that a packet is transmitted correctly equals 1- Pe. There are

97 bits in one packet (see chapters 5 and 6). The probability that a

packet is transmitted correctly is given by:

P[Packet Correct] = (1 - Pe)97

If every packet is transmitted once and in total 900 packets are

transmitted for every image, the expected number of received packets is

given by:

E[# Correct Packets] = P[Packet Correct] x # Transmitted Packets (8-2)

If many packets are transmitted, the number of correctly received

packets will approach the expected value described above. This way, Pe

can be calculated with the following formula:

8.2.2 Stage 2: Full quality
The second stage will investigate at which BER it is still possible to transmit an image
without errors using Error Control. This is the minimum BER needed to transmit an image if
full quality is required by the receiver. To test this, 60 images of 30 by 30 pixels (900 packets)
will be transmitted.

Obviously, this minimum BER will increase if more redundancy is added. In RF
communication, a BER of 10-3 can be achieved indoors [26] if an antenna with a good gain
and enough power is used. It would be preferable to achieve Full Quality transmission with
this BER. Paragraph 3 will explain how much redundancy theoretically should be added to
achieve this. The hypothesis that is formulated in that paragraph will be tested in this stage.

Since transmitting bits is a stochastic process, errors will always occur when large
amounts of data are transmitted. Therefore, we will define ‘error free’ transmission as a
transmission where 95% of the transmitted images will be without errors. The BER will vary
with the distance between the receiver and transmitter. To find the BER where an image can
be transmitted without errors, the measurements need to be done at different locations. The

(8-1)

(8-3)

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 43

wanted BER is found at the largest distance where error free transmission is possible. By
transmitting another 60 images without error control, the BER can be determined accurately
at this location.

8.2.3 Stage 3: High quality
The third and final stage will test at which BER (and thus at which location) it is still possible
to transmit an image with sufficiently high quality. To do this, a scientific definition of “high
quality” is necessary, which allows us to determine objectively when an image is transmitted
with sufficient quality. Furthermore, a test program is needed to test the received image for
this property. Both the definition of “high quality” and the development of the testing
program will be discussed in paragraph 3.

Measuring at which BER the quality is sufficiently high is done in the same way as
full quality is measured, but with the use of the test program. 60 images of 30 by 30 pixels
will be transmitted. The received images will be compared to the transmitted images using the
test program. The program will determine whether or not the quality is high enough. The final
result will be the BER where 95% of the images passed this test.

8.3 Testing the quality

8.3.1 Missing pixels
The address bytes allow a receiver to set received data to the right pixel. When data for a pixel
is missing, this pixel can be skipped so the other pixels can be set with the right data.
However, a value has to be assigned to the missing pixel when the image is showed. To
achieve maximum quality, the missing pixel is set to the value of an adjacent pixel. This
increases the quality, because adjacent pixels are often alike. This correcting protocol is
showed in figure 8.1.

Address1 R1 G1 B1 Address2 R2 G2 B2 Address4 R4 G4 B4

Address1 R1 G1 B1 Address2 R2 G2 B2 …Address4 R4 G4 B4

Address4 R4 G4 B4

Figure 8.1: In the original data array the first two packets are received in order but packet number three is

missing which will dislocate all the other packets and ruins the image. In the second data array the addresses
are rearranged in the correct order filling up the not received packets with the packet next to it.

8.3.2 ′High quality′
To test if the quality of the image is high enough, a testing program is necessary that also
takes into account the visual aspects and that evaluates the quality of the picture objectively.
Because the correcting protocol might set missing pixels to a value near its actual value, a
simple Packet Error Rate (PER) check wouldn’t suffice to check the image for high quality.
To determine whether the quality is high enough, two aspects have to be tested:

In order received packet Not in order received packet

Original data array

Corrected data array

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 44

• Are there enough packets received?
• Were the missing packets corrected properly?

The first property is tested by calculating the PER: how many pixels could be set correctly
with the received data? The second property is more difficult to test. When are the missing
packets corrected properly?

The received image will be presented in eight bit RGB
colours. This means every pixel can be set with three bytes of
data, where every byte represents the intensity of respectively
red, green and blue. Changes in the lower four bits of one byte
will not change the image drastically. This is shown in figure
8.2. The left half of this figure is filled with RGB values
(255,50,50). The right side is filled with (240,50,50). It is
hardly noticeable if a missing pixel is assigned the colour of
the right half, when it should have the colour of the left half.

Therefore, we define properly corrected pixels as
pixels where the upper four bytes are correct. An image with many missing pixels may still be
of high quality if all the errors in the image can be found in the lower four bits of a byte. On
the other hand, a program with very few errors can still be of low quality if all errors can be
found in the upper four bits. Now, a proper definition of ‘high quality’ can be given.

The definition of ‘high quality’ used from now on is the following: less than 1% of the
upper four bits in every byte of the image may be wrong compared to the original image and
more than 95% of the packets must be received. Images that meet these requirements can
hardly be distinguished from the original images. Obviously, it requires some difficult
calculations to determine whether an image meets these requirements. The individual bits of
RGB values have to be compared. This requires a testing program, which will be discussed in
the next section.

8.3.3 The testing program
The operation of the testing program is showed by a state diagram in figure 3. This program
was developed in MATLAB by means of three functions: received.m,

errorCorrection.m and getRGB.m . This section will discuss the operation of the program
and the three functions, but not the actual implementation of these functions. The code for this
program can be found in appendix A.2.

The main function that is used is received.m . This function needs the COM port on
which the Arduino is linked, the specific Baud rate, the RGB-values of the transmitted images
for comparison and a Show bit which can be set when the received images need to be shown.
With the first three variables the received data, the percentages and numbers of successfully
received bits and the errors that occurred in the lower and higher four bits can be determined.

The COM port and the Baud rate are used to communicate with the Arduino and
therefore used to receive any data. When the number of received bytes is lower than expected
a second function is used. The errorCorrection.m function. This function uses the address,
which is send with every pixel, in order to rearrange the received packets. An example of this
process is given in figure 8.1. This way the received pixels will be in the right place on the
screen and the missing pixels will be replaced with the same pixel that is closest to it. After
rearranging the pixels the addresses are removed. The errorCorrection.m function only
needs the incoming data as input and will return an array without the addresses as output.
 After the correction, the array is compared to the original RGB-values which are
located in the third input variable. When no correction was needed, the same

Fig. 8.2: Changes in the lower

four bits are hard to see.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 45

errorCorrection.m function will only strip the received data from the addresses where after
the comparison is done.
 During the comparison the number of well received bits per byte are counted and
stored in an array. Also the number of errors in the lower four bits is monitored per byte.
Having these two arrays, simple calculations can be done to get the desired percentages and
numbers of successfully received bits and the errors in the lower/higher four bits.
 In the end of the receive.m function the getRGB.m function is called if the Show bit is
set. This function rearranges the received data array into RGB-values to recreate the received
image. The function needs the number of columns and the received data without the addresses
as its inputs.

Figure 8.3: A State Diagram of the whole process of receiving an image.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 46

8.4 Hypothesis

8.4.1 Stage 1: Investigating the Bit Error Rate
The nRF24L01+ modules use very little power and a pretty simple antenna to transmit the
data. According to the vendors’ website, the modules can reliably transmit data over 100
meters with a Baud rate of 250.000 baud using auto acknowledgment. However, we are using
one-way communication, test the modules indoors and use a higher Baud rate. It is therefore
expected that the range will be substantially lower than 100 meters. On top of that, it is
expected that the BER will deteriorate if the distance between the transmitter and receiver is
increased.

8.4.2 Stage 2: Full quality
It would be preferable to show a full quality picture when the Bit Error Rate is equal to or
larger than 10-3. This can be achieved by adding more redundancy to the data, but this
automatically means the transmission will take longer. The redundancy that should be added
to the data to achieve Full Quality transmission with BER ≥ 10-3 can be calculated as follows:

Let Pe (BER) be again the probability that a bit is transmitted incorrect.

The probability that a packet is transmitted correctly is given by:

P[Packet Correct] = (1 - Pe)97

The probability that a packet is not transmitted correctly is

P[Packet Wrong] = 1 - (1 - Pe)97

If redundancy is added, the same packet is transmitted n times. The

data for one pixel isn’t received if all n packets contain errors. The

probability that this happens and therefore a pixel is missing is given by

P[Pixel Missing] = [1 - (1 - Pe)97] n

and

P[Pixel Data Received] = 1 - P[Pixel Missing]

Full Quality is achieved when 95% of the images is transmitted without

errors. Each image is composed of 900 packets. This means:

P[Pixel Data Received] 900 ≥ 0,95

Rewriting the above formula’s and solving for n yields:

For Pe = 10-3 this yields n = 4.1, meaning each packet has to be sent 5 times to transmit an
error free image with this BER.

(8-4)

(8-5)

(8-6)

(8-7)

(8-8)

(8-9)

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 47

8.4.3 Stage 3: High quality
For most applications it is not necessary to have Full Quality. A higher BER would be
allowed if High Quality is good enough. It is to be expected that the same redundancy level as
in stage 2 would allow a higher BER in stage 3.

8.5 Test Results

8.5.1 Stage 1: Investigating the Bit Error Rate
The results from stage 1 are showed in Graph 8.1. The number of received packets was
measured as discussed in paragraph 2. From this received number of packets, the Bit Error
Rates have been calculated and are shown as the blue dots in the graph. Except for the two
measurements at a distance of 12 meters, the BER was never higher than 0,004 when the
distance between the transmitter and receiver was no more than 25 meter.

8.5.2 Stage 2: Full Quality
In this stage was investigated at which BER it is still possible to transmit an image without
errors using Error Control. The hypothesis was that sending each packet five times would lead
to Full Quality reception at a BER of 10-3. 24 meters was the largest distance where Full
Quality was found with this redundancy. As shown in graph 8.2, only three out of 60
measurements led to a reception of less than 900 packets. This is within the 95% interval.

Bit Error Rate / Distance

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Distance in meters

B
E

R

Graph 8.1: The Bit Error rate measured with a varying distance between the transmitter and the receiver.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 48

In order to calculate the Bit Error Rate at this point, 60 images of 900 packets were
transmitted. From the received number of packets, the BER was calculated using the method
from stage 1. The result of this measurement is shown in graph 8.3. The average BER found
at this distance was 4,4 x 10-4. This is a better BER than 10-3, which means that the hypothesis
needs to be rejected: more redundancy is needed to achieve Full Quality when the BER is 10-3.

8.5.3 Stage 3: High Quality
The third stage tested with which BER it is still possible to transmit an image with sufficiently
high quality. The definition of ‘High Quality’ was: less than 1% of the upper four bits in every
byte of the image may be wrong (a) compared to the original image and more than 95% of the
packets must be received (b). 28 meters was the largest distance where High Quality was
found. Graph 8.4a shows the result of part a. Three measurements did not pass this test. Graph

Measured BER at 24 meter without redundancy

0

0,0001

0,0002

0,0003

0,0004

0,0005

0,0006

0,0007

0,0008

0,0009

0,001

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Number of measurement

B
E

R

Graph 8.3: The Bit Error rate measured at 24 meters without using redundancy.

Received packets at 24 meter using Error Control

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Number of measurement

P
ac

ke
ts

 r
ec

ei
ve

d

Graph 8.2: Number of received packets.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 49

8.4b shows the results of test b. Only one measurement did not pass this test, but this was one
of the measurements that did not pass test a. These results are within the 95% interval.

In order to calculate the Bit Error Rate at this point, another 60 images of 900 packets were
transmitted. From the received number of packets, the BER was calculated using the method
from stage 1. The result of this measurement is shown in graph 8.5. The average BER found
at this distance was 3,2 x 10-3. This is worse than 10-3, which means that unlike Full Quality,
High Quality is achievable when the BER is 10-3.

Percentage of errors in upper four bits

0

0,2

0,4

0,6

0,8

1

1,2

1 6 11 16 21 26 31 36 41 46 51 56 61

Number of measurement

P
er

ce
nt

ag
e

Percentage of missing packets

0

1

2

3

4

5

1 6 11 16 21 26 31 36 41 46 51 56

Number of measurements

P
er

ce
nt

ag
e

Graph 8.4a (left) shows the percentage of errors in the upper four bits at a distance of 28 meters. Graph 8.4b
(right) shows the percentage of missing packets. Both measurements were performed with Redundancy. Only

three measurements did not pass the test for High Quality.

Measured BER at 28 meters without redundancy

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Number of measurement

B
E

R

Graph 8.5: The Bit Error rate measured at 28 meters without using redundancy.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 50

8.6 Conclusion

The goal of these tests was to determine whether it is possible to transmit an image without
loss of quality to a receiver using the developed kit and the methods of error control. In stage
1, an overall picture of the nRF24L01+ capabilities was obtained. The modules have a BER
less than 0,004 when the distance between the transmitter and receiver was no more than 25
meter. In stage 2, the hypothesis that Full Quality could be achieved with a BER of 10-3 by
transmitting every packet 5 times had to be rejected: a BER of 4,4 x 10-4 is necessary to
obtain Full Quality. Stage 3 proved that High Quality can be achieved with a BER of 10-3,
confirming the hypothesis that a lower BER is needed for High Quality with respect to Full
Quality.

Now what does this mean for the main problem of this thesis? The nRF24L01+
modules are clearly only capable of High Quality transmission when the transmitter and
receiver are in very close proximity of each other. Without obstacles, a distance of 28 meters
was the maximum. If these modules were used in a mall, the obstacles between the transmitter
and receiver and the noise due to other wireless transmissions would probably even decrease
this maximum distance. However, the tests also proved that this Error Control is capable of
transmitting an image with High Quality when a BER of 10-3 is achieved. By using an
antenna with more gain and by using more power for the transmission, a BER of 10-3 is
certainly achievable with RF communication [26]. So with better hardware and more power,
it should be possible to transmit an image without loss of quality to a receiver connected to an
E-paper using one-way radio-frequency communication.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 51

9. Testing the Modules in combination with a PSP Screen

The transmission characteristics were calculated in the previous chapter. Another test was
done in combination with an FPGA board which is connected to a PSP screen. With the help
of Joost Meerwijk and Willem Zwetsloot [see 27] we were able to simulate the communication
with a Super E-paper.
 In the first paragraph the setup is explained where after the test results will be
evaluated. The second paragraph will be about the changes that have to be made in order to
communicate with the actual Super E-paper. In the end a conclusion will be given whether it
is possible to implement a receiver on a Super E-paper.

9.1 The Setup and Test Results

In order to test whether the communication between the Transmitter and Receiver which is
attached to a FPGA board still works, the following setup is created:

Figure 9.1: The global setup we used in order to test the communication with an FPGA

board, which is connected to a PSP screen, and the Transmitter. The combination
of the FPGA board [28] and PSP screen [29] simulate the actual Super E-paper.

9.1.1 Applied changes with reference to the first test program
The same programs created in the previous chapter were used during this test with the
exception of one. The developed “Super E-paper” system does not yet support the rearranging
technique which uses the addresses in order to reallocate the pixels. Though this technique
can not be used, all other redundancy methods still can. Therefore, only the addresses needed
to be removed from transmission.

The order in which the data was send also needed to change, because of the manner in
which the data was stored by the FPGA. Instead of Red, Green and Blue the order needed to
change into Green, Blue and Red.

9.1.2 The Test Results
As expected the Bit Error Rate did not change with respect to the results given in the previous
chapter. As a consequence of the absence of the rearranging function the received picture did
shift whenever a pixel was missing. See for example figure 10.2.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 52

Figure 9.2: A picture without the rearranging function (a) and the same picture which does use the rearranging

function designed in the previous chapter (b). The original picture is displayed in c.

Despite no rearranging function is used the test did prove a picture can be send to a “Super E-
paper”. If all packets are received the picture was shown perfectly. Therefore, the test was still
a success.

9.2 How to implement on the real Super E-paper

The test was successful but still has to be decided whether it is possible to implement the
receiver onto the real Super E-paper. This decision will be based on whether the used receiver
can be implemented on the Super E-paper.
 First the circuit of the Receiver will be explained where after the possibility for
implementing it on the Super E-paper will be evaluated.

9.2.1 The circuit of the used Receiver
In figure 9.2 the total circuit of the Receiver is shown where in figure 9.2 a block diagram is
given only of the nRF24L01+ chip.

Figure 9.2: A schematic of the Receiver [30].

a b c c

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 53

Figure 9.3: A block diagram of the nRF24L01+ chip which is located on the Receiver [22].

More information about the used Receiver can be found at [22].

The crucial parts that are needed in order to receive are: an Antenna, a LNA, a RF Synthesiser,
a filter and a GFSK Demodulator.

Obviously an antenna is needed in order to receive any incoming data. Because the
incoming data is a low power signal it needs to be amplified in order to recover the original
signal. The incoming data will therefore be amplified by the Low Noise Amplifier (LNA). To
be able to filter the useful information out of the incoming signal, the amplified signal is
mixed with a Radio Frequency Synthesiser. The signal is past through a Gaussian Frequency
Shift Keying Demodulator in order to create binary data. Once the input signal is converted to
binary data, it is stored into the FIFOs (First In First Out) and can be read out via SPI.

9.2.2 The possible circuit on the Super E-paper
As explained in the previous paragraph the most important components needed to recreate the
Receiver are an Antenna, a LNA, an RF Synthesiser, a filter and a GFSK Demodulator. Only
these components are necessary to implement on the Super E-paper, because the binary data
created by this circuit can directly be stored into the memory or immediately used. Are these
components realisable on the Super E-paper? This question will be answered in this paragraph.

Research has shown it is possible to create a 433MHz ISM band RF amplifier (more
information can be found at [31]). The needed RF receiver has to be at the 2.4Ghz band. To
create such a receiver the Quality factor (Q-factor) has to be improved and the speed of the
transistors has to be increased.

The Q-factor is defined as:

(9-1)

0f is the resonant frequency and B is the 3-dB bandwidth. The larger the value of the Q-factor,
the smaller the bandwidth will be [4].
 To be able to process the incoming data the transistors, which are used to create the
whole circuit, need to be fast enough. The speed at which the 433MHz RF amplifier still
worked is to slow to create a 2.4GHz receiver. To increase the speed of the transistors the

0fQ
B

=

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 54

single grain Silicon substrate can be replaced by an insulating glass or plastic substrate.
Another way to increase the speed is to use smaller transistors.

The answer to the question whether it is possible to implement the necessary components on
the Super E-paper is: Yes, when these changes (a higher Q-factor and a higher operating
frequency of the transistors) are met, theoretically a 2.4GHz RF receiver can be implemented
on the Super E-paper.

9.3 Conclusion

The test with a simulation of the Super E-paper was a success. Even though the rearranging
function could not be used, the test did prove a picture could be send to a “Super E-paper”.

By evaluation of the necessary components in the nRF24L01+ module, the Receiver,
and with the help of previous research results, another conclusion can be drawn. When the Q-
factor and the operating speed of the transistors are raised, theoretically a 2.4GHz RF receiver
can be implemented on the Super E-paper. After implementation on the Super E-paper
everything else, the Transmission program and Transmitter, can still be used.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 55

10. Conclusions and recommendations

The goal of this research was to determine whether it would be possible to create a kit that
uses one-way radio-frequency communication to transmit an image without loss of quality to
a receiver connected to an E-paper, by using a user-friendly and very simple computer
program. This chapter contains the conclusions that can be drawn based on this research and
recommendations for further research and improvements on the developed kit.

Paragraph 1 will discuss the conclusions based on the test results from chapters 8 and
9. Paragraph 2 will explain how the developed kit could be further improved and how further
research could lead to better Error Control.

10.1 Conclusions

It is possible to use one-way radio-frequency communication to transmit an image without
loss of quality to a receiver connected to an E-paper. We developed a kit to test this, which
consists of four components:

• A computer program, where the user can select an image to transmit.
• An RF transmitter.
• A microcontroller, which acts as a bridge between the computer and the transmitter.
• An RF receiver, which has to the pass the image to the hardware of the E-paper.

For testing purposes, we added another microcontroller to acts as a bridge between the RF
receiver and the hardware of the E-paper. The performance of both the hardware and the
software was tested and will be discussed in the following sections.

10.1.1 Software
The developed software was tested by a test group. This test group was very positive about
the software. The software is very user-friendly. It was developed in MATLAB and turned
into a standalone application so the software can be used without having to install MATLAB.
The software allows a user to send any image or PDF file on his computer to all his E-papers.
By logging in with a username and password, the software makes sure that only the users’ E-
papers receive the image. The program continuously informs the user about the progress
during the transmission and allows the user to abort the transmission at every given moment
accept when converting a PDF file to an image.

10.1.2 Hardware
The developed hardware is able to transmit an image with very high quality over distance
shorter than 28 meters using one-way radio-frequency communication. Increasing the
distance will increase the Bit Error Rate, which means that too many errors will occur and not
enough data will be received to show an image of high quality. If an advertisement company
wants to change all its E-papers within a larger radius, that will only be possible if an antenna
with more gain and more power is used. In reality, using an antenna with more gain and more
power should be able to guarantee an error rate less than 10-3, which means that less than
0,1% of the transmitted bits may contain errors. If this error rate is achieved, the Error Control
used in this research will be able to guarantee high quality transmission. Therefore it is
possible to create a kit that uses one-way radio-frequency communication to transmit an

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 56

image without loss of quality, but the kit developed in this research can only do this within a
short range.

10.2 Recommendations

Even though the goals of this thesis are met, some further research and development can be
done to make the software more user-friendly and to increase the quality of the transmission.

10.2.1 Improving the software
The test group responsible for testing the software had one important remark to improve the
user-friendliness of the software. Most of all, they would like the software to open faster and
install easier. This can’t be achieved in MATLAB. Writing the program in a different
language might solve this problem, but that might also make the image processing more
complicated.

The speed of the transmission could be improved as well. One obvious improvement
might be applied. In this thesis, the picture is transmitted by storing the image in three
matrices: one for the intensity of red, one for green and one for blue. This was done, because
the receiving side needed the image in this format to show it on a screen. However, file
compression could reduce the size of an image enormously. Our software should be able to
transmit an image in a different format, for instance jpeg. This would mean less data has to be
transmitted to show the same image and thus the transmission time would decrease linearly
with the decrease in file size. However, this requires E-paper hardware that understands jpeg
files and that is able to show a jpeg file, even if some bytes are missing due to transmission
errors.

The last improvement that could be made requires knowledge of USB ports. We used
a virtual COM port to send the data from the computer to the transmitter. This requires the
installation of drivers. Furthermore, the device has to be connected to the computer before the
software is started. It would be preferable to make full use of the USB port functionalities.
USB is capable of recognizing a connected device at any given moment when the computer is
running. It should be able to implement this so called hot plugging into the software. See
appendix C for more information on this topic.

10.2.2 Improving the Error Control
When a packet is send with the current protocol, the transmission is either a success or a
failure. Each packet is transmitted multiple times. If the transmission is a success, the packet
is passed on to the E-paper. If it is a failure, the packet is discarded. This might be improved
by using redundancy in a different way. The following alternatives might be tested:

• Instead of retransmitting packets, another repetition code might be used as forward
error control by transmitting every bit multiple times within a byte (like discussed in
section 3.2.1). CRC is no longer necessary with this technique. The big advantage of
that repetition code is the big increase in received number of packets. Packets that
contain only a single error are no longer rejected by a CRC. On top of that, the
repetition code might be able to fix the error. However, this technique also has big
disadvantages. For instance, there is no guarantee that the received data is correct.
This means that a pixel might be given a completely wrong value if one of the four
upper bits from a byte is transmitted wrong. Furthermore, an error in the address of a
pixel might set the data to the wrong pixel. We wrote a transmission and testing

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 57

program to test which redundancy method would be optimal. The bitwise redundancy
could easily be implemented into our program. However, due to problems with timing
the decision was made to exclude these tests from our research. The files necessary to
perform this research can be found in appendix A.

• A combination of both techniques is also a possibility: transmitting packets with a
repetition code and a CRC in the payload. When the same number of bits is
transmitted, this might increase or decrease the quality of the transmission compared
to the error control used in this research.

• Another option might be varying the length of the payload within a packet. When a
packet is lost, the entire payload is lost. If the payload contains 32 bytes, a whole lot
more data is lost compared to a payload of 4 bytes. However, every payload requires
the same number of address bytes to target the right receiver and the same number of
bytes in the Packet Control Field. The packet will be lost if there are errors in these
fields. By increasing the payload size, fewer bits have to be transmitted to the receiver
per byte of data. This might mean fewer errors can occur and more packets will make
it to the receiver. However, increasing the packet size will increase the chance on a
failed transmission significantly. An optimal packet size should be found theoretically
and experimentally.

10.2.3 Improving the hardware
The hardware can be improved in two ways. One way is to use an antenna with a higher gain.
The same transmitter module could be used as in this thesis, but with a different antenna.
Secondly, more power could be used to transmit the data.

Both changes would improve the Bit Error Rate. With these changes, it should be
possible to transmit data over a larger distance with a Bit Error Rate of less then 10-3, making
one-way communication using radio-frequency possible.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 58

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 59

Bibliography

Chapter 1:
[1] M. de Jong, C.J. Kruit and others (June 2010) “Business Plan Reflex.” TU Delft.

Chapter 3:
[2] Piet van Mieghem, Data Communications Networking..Amsterdam:
 Techne Press, 2006, pp. 54-71.

[3] K. Sam Shanmugam, Digital and Analog Communication Systems. New York:

John Wiley & Sons, 1979, pp. 443-496.

[4] Leon W. Couch, II, Digitaland Analog Communication Systems, 7th ed. Upper Saddle

River: Pearson Prentice Hall, 2007, pp 19-24 and 246-247.

[5] Emina Soljanin, Ruoheng Liu, Predrag Spasojevic. “Hybrid ARQ with Random

Transmission Assignments”. In Advances in Network Information Theory: DIMACS
Workshop Network Information Theory, v. 66. Piscataway: DIMACS series in discrete
mathematics and theoretical computer science, 2004, pp. 321-335 .

Chapter 4:
[6] The Mathworks (May 16 2010) MATLAB - The Language Of Technical Computing.

Available: http://www.mathworks.com/products/matlab/

[7] The Mathworks (May 17 2010) Creating Scripts with the MATLAB Editor/Debugger.

Available:
http://www.mathworks.com/academia/student_center/tutorials/creating_scripts.html

[8] Matlab Support (April 20 2010). Function Handles. Available:

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/f2-38133.html

[9] Moulos, Panagiotis (June 13 2007). Showinfowindow. MATLAB Central. Available:

http://www.mathworks.com/matlabcentral/fileexchange/25471-maximize

[10] Artifex Software (May 11 2010). Gs871w32. Ghostscript. Available:

http://www.ghostscript.com/

[11] Woodford, Oliver (April 20 2010). Ghostscript. MATLAB Central. Available:

http://www.mathworks.com/matlabcentral/fileexchange/23629-exportfig

[12] University of Wisconsin (April 28 2010). How to use Ghostscript. Available:

http://pages.cs.wisc.edu/~ghost/doc/cvs/Use.htm

[13] Pfeifle, Kurt (April 28 2010). Tech Tip: Using Ghostscript to Convert and Combine

Files. Linus Journal. Available: http://www.linuxjournal.com/content/tech-tip-using-
ghostscript-convert-and-combine-files

[14] FTDI (March 31 2010) D2XX Drivers. http://www.ftdichip.com/Drivers/D2XX.htm

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 60

[15] The Mathworks (May 16 2010) Working with the MCR.
http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/f12-999353.html

[16] The Mathworks (May 12 2010) Bug 217007. Bug report. Available:

http://www.mathworks.com/support/bugreports/217007

Chapter 5:
[17] Sparkfun Electronics (May 24 2010). Available:

http://www.sparkfun.com/commerce/product_info.php?products_id=691

[18] ePanorama (24 May 2010). “Serial buses information page.” Available:

http://www.epanorama.net/links/serialbus.html

[19] D. Kalinsky & R. Kalinsky (January 2 2010). “Introduction to Serial Peripheral

Interface.” Embedded systems design. Available:
http://embedded.com/columns/beginerscorner/9900483?_requestid=245610

[20] Wikipedia (24 May 2010). “Serial Peripheral Interface Bus,” Available:

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

[21] Brennen Ball (2007). “Tutorial 0: Everything You Need to Know about the nRF24L01

and MiRF-v2.” DIY Embedded. Available:
http://www.diyembedded.com/tutorials/nrf24l01_0/nrf24l01_tutorial_0.pdf

[22] nRF24L01+ Single Chip 2.4GHz Transceiver Product Specification v1.0 (September

2008). Available:
http://www.nordicsemi.com/files/Product/data_sheet/nRF24L01P_Product_Specificati
on_1_0.pdf

Chapter 6:
[23] Sparkfun (April 27 2010) Available:

http://www.sparkfun.com/commerce/product_info.php?products_id=9235

Chapter 7:
[24] Mathworks (May 19 2010). Bug 250986. Bug reports. Available:

http://www.mathworks.com/support/bugreports/250986

[25] Davide Ferraro. Correspondance about cursor behaviour in edit text. June 8 2010.
 See appendix D.

Chapter 8:
[26] G. Janssen. Correspondence about improving the Bit Error Rate. June 1 2010.

Chapter 9:
[27] Joost Meerwijk, Willem Zwetsloot (June 2010) “Design of an electronic billboard.

Complementing R:eFlex’ business plan” TU Delft.

[28] DigilentInc (June 8 2010) Available:

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,799&Prod=S3BOA
RD

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 61

[29] MicksXboxModS (June 8 2010) Available:

http://www.micksxboxmods.com/store/images/psp_tft_1000_series.JPG

[30] Sparkfun (December 2009) Available:

http://www.sparkfun.com/datasheets/Wireless/Nordic/nRF24L01-Chip-v11.pdf

[31] Ryoichi Ishihara and others, “An Assessment of µ-Czochralski, Single-Grain Silicon

Thin-Film Transistor Technology for Large-Area, Sensor and 3-D Electronic
Integration”, IEEE Journal of Solid-State Circuits, vol. 43, no. 7, pp. 1563-1576, July
2008.

Appendix B:
 [32] Arduino (Mei 12 2010) Available:
 http://arduino.cc/en/Main/ArduinoBoardDuemilanove

Appendix C:
[33] Discovery (19 May 2010) “How Parallel Ports Work,” How stuff works, Available:
 http://computer.howstuffworks.com/parallel-port1.htm

[34] Computer Hope, (19 May 2010) “What's hot-swappable or can be unplugged while

computer is on?” Available: http://www.computerhope.com/issues/ch001059.htm

[35] Wikipedia (19 May 2010)“Parallelle Poort,” Available:

http://nl.wikipedia.org/wiki/Parallelle_poort

[36] Discovery (19 May 2010) “How Serial Ports Work,” How stuff works, Available:

http://computer.howstuffworks.com/serial-port.htm/printable

[37] Ergo Canada, (19 May 2010) Available:

http://www.ergocanada.com/ergo/tips/serial_port.jpg

[38] D. Anderson and D. Dzatko, “Universal Serial Bus System Architecture,” Addison-

Wesley, 2001, pp. 13-24 and pp. 141-156.

[39] RAD Data Communications (5 May 2010) Available:

http://www3.rad.com/networks/2000/usb/maintxt.htm#USB_Protocol

[40] A. Ricci Bitti (19 May 2010) “USB type-A plug,” Available:

http://www.riccibitti.com/pc_therm/usb_pc_therm.htm

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 62

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 63

Appendices

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 64

Appendix A: MATLAB Codes

A.1 The transmission software

change_value.m

%CHANGE_VALUE Change the value assigned to a uniqu e variable in a file
%
% Examples:
% fail = change_value(value)
% fail = change_value(value, variableName)
% fail = change_value(value, variableName, filePa th)
%
% Function to change the value assigned to a variab le in a text file. The
% assignment must exist already, and must be on a l ine on its own. For
% example:
% variableName = 'string';
% variableName = -0.756e-8;
% Note that there must be one or more spaces either side of the = sign.
% Only the first such assignment is changed.
%
% IN:
% value - The value to be assigned to the variabl e.
% variableName - String containing the name of th e variable whose value
% is to be set. Default: name of v ariable given as value.
% filePath - Full path of the file to change. Def ault: path of calling
% file.
%
% OUT:
% fail - true if change failed, false otherwise.
%== =======================
% Copyright (c) 2009, Oliver Woodford
% All rights reserved.
%
% Redistribution and use in source and binary forms , with or without
% modification, are permitted provided that the fol lowing conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the fol lowing disclaimer.
% * Redistributions in binary form must reprodu ce the above copyright
% notice, this list of conditions and the fol lowing disclaimer in
% the documentation and/or other materials pr ovided with the
% distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT O WNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPEC IAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NE GLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWAR E, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
%

function fail = change_value(value, variableName, f ilePath)
% Check for missing inputs
if nargin < 3
 % Get the filename of the calling function
 filePath = dbstack;
 filePath = which(filePath(2).file);
 if nargin < 2
 % Get the variable name
 variableName = inputname(1);
 end
end
fail = true;
% Read in the file

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 65

fh = fopen(filePath, 'rt');
if fh < 0
 return
end
fstrm = fread(fh, '*char')';
fclose(fh);
% Find the path
first_sec = regexp(fstrm, ['[\n\r]+ *' variableName ' += +'], 'end',...
 'once');
second_sec = first_sec + regexp(fstrm(first_sec+1:e nd), ';? *[\n\r]+',...
 'once');
if isempty(first_sec) || isempty(second_sec)
 return
end
% Create the changed line
if ischar(value)
 str = '''%s''';
else
 str = '%1.50g';
end
str = sprintf(str, value);
% Save the file with the value changed
fh = fopen(filePath, 'wt');
if fh < 0
 return
end
fprintf(fh, '%s%s%s', fstrm(1:first_sec), str, fstr m(second_sec:end));
fclose(fh);
fail = false;
return

contains.m

function pos = contains(string, part)

% function pos = contains(string, part)
% If the charachters in "part" are contained in "st ring" in the same order,
% a '1' is returned. '0' otherwise.

Lp = length(part);
Ls = length(string);

if Lp > Ls
 pos = 0;
else
 pos = 0;
 for i = 1:(Ls - Lp + 1)
 for k = 1:Lp
 if string(i+k-1) ~= part(k)
 break
 end

 if k == Lp
 pos = 1;
 break
 end
 end

 if pos == 1
 break
 end

 end
end

endsWith.m

function pos = endsWith(string, part)

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 66

% If "string" ends with the charachters in "part", a '1' is
% returned. 0 otherwise.

Lp = length(part);
Ls = length(string);

if Lp > Ls
 pos = 0;
else
 pos = [];
 for i = 1:Lp
 if string(Ls - Lp + i) == part(i);
 pos = 1;
 else
 pos = 0;
 break
 end
 end
end

get3bytes.m

function [byte1 byte2 byte3] = get3bytes(byte)

% This function will encode bytes. Every bit in a b yte will be send three
% times, which will be usefull for transmitting dat a over a channel with a
% high BER. The start- and stopbits won't be send t hree times, but still
% before and after every byte of data.

bit = 0;
byte1 = uint8(0);
byte2 = uint8(0);
byte3 = uint8(0);

for j = 1:8
 bit = bitget(byte,j);
 if bit == 1
 if j == 1
 byte1 = bitset(byte1,1);
 byte1 = bitset(byte1,2);
 byte1 = bitset(byte1,3);
 elseif j == 2
 byte1 = bitset(byte1,4);
 byte1 = bitset(byte1,5);
 byte1 = bitset(byte1,6);
 elseif j == 3
 byte1 = bitset(byte1,7);
 byte1 = bitset(byte1,8);
 byte2 = bitset(byte2,1);
 elseif j == 4
 byte2 = bitset(byte2,2);
 byte2 = bitset(byte2,3);
 byte2 = bitset(byte2,4);
 elseif j == 5
 byte2 = bitset(byte2,5);
 byte2 = bitset(byte2,6);
 byte2 = bitset(byte2,7);
 elseif j == 6
 byte2 = bitset(byte2,8);
 byte3 = bitset(byte3,1);
 byte3 = bitset(byte3,2);
 elseif j == 7
 byte3 = bitset(byte3,3);
 byte3 = bitset(byte3,4);
 byte3 = bitset(byte3,5);
 else
 byte3 = bitset(byte3,6);
 byte3 = bitset(byte3,7);
 byte3 = bitset(byte3,8);
 end
 end

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 67

end

getName.m

function Name = getName(path)

% Name returns the filename of a function specified by the path in "path".
% Example:
% Name = getName('H:\Desktop\BAP\Test.pdf')
%
% Returns: Name = Test.pdf

Name = path;

L = length(path);
for i = 0:(L-1)
 if path(L-i) == '\'
 Name = path(L-i+1:L);
 break
 end
end

ghostscript.m

function varargout = ghostscript(cmd)
%GHOSTSCRIPT Calls a local GhostScript executable with the input command
%
% Example:
% [status result] = ghostscript(cmd)
% ghostscript('-sDEVICE=jpeg -dNOPAUSE -dBATCH -d SAFER -r600x600
% -sOutputFile=p%08d.jpg Testpdf.pdf')
%
% Attempts to locate a ghostscript executable, fina lly asking the user to
% specify the directory ghostcript was installed in to. The resulting path
% is stored for future reference.
%
% Once found, the executable is called with the inp ut command string.
%
% This function requires that you have Ghostscript installed on your
% system. You can download this from: http://www.gh ostscript.com
%
% IN:
% cmd - Command string to be passed into ghostscr ipt.
%
% OUT:
% status - 0 iff command ran without problem.
% result - Output from ghostscript.

%% Disclaimer
% Copyright (c) 2009, Oliver Woodford
% All rights reserved.
%
% Redistribution and use in source and binary forms , with or without
% modification, are permitted provided that the fol lowing conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the fol lowing disclaimer.
% * Redistributions in binary form must reprodu ce the above copyright
% notice, this list of conditions and the fol lowing disclaimer in
% the documentation and/or other materials pr ovided with the
% distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT O WNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPEC IAL, EXEMPLARY, OR

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 68

% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NE GLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWAR E, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
%% End disclaimer

% Thanks to Jonas Dorn for the fix for the title of the uigetdir window on
% Mac OS.

% Thanks to Nathan Childress for the fix to the def ault location on 64-bit
% Windows systems.

% Call ghostscript
drawnow;
[varargout{1:nargout}] = system(sprintf('"%s" %s', gs_path, cmd));
drawnow;
return

function path = gs_path
% Return a valid path
% Start with the currently set path
path = current_gs_path;
% Check the path works
if check_gs_path(path)
 return
end
% Check whether the binary is on the path
if ispc
 bin = 'gswin32c.exe';
else
 bin = 'gs';
end

drawnow;

if check_store_gs_path(bin)
 path = bin;
 return
end
% Search the obvious places
if ispc
 default_location = 'C:\Program Files\gs\';
 dir_list = dir(default_location);
 if isempty(dir_list)
 % Possible location on 64-bit systems
 default_location = 'C:\Program Files (x86)\ gs\';
 dir_list = dir(default_location);
 end
 executable = '\bin\gswin32c.exe';
 ver_num = 0;
 % If there are multiple versions, use the newes t
 for a = 1:numel(dir_list)
 ver_num2 = sscanf(dir_list(a).name, 'gs%g') ;
 if ~isempty(ver_num2) && ver_num2 > ver_num
 path2 = [default_location dir_list(a).n ame executable];
 if exist(path2, 'file') == 2
 path = path2;
 ver_num = ver_num2;
 end
 end
 end
else
 path = '/usr/local/bin/gs';
end
if check_store_gs_path(path)
 return
end
% Ask the user to enter the path
while 1
 if strncmp(computer, 'MAC', 3) % Is a Mac
 % Give separate warning as the uigetdir dia logue box doesn't have a
 % title
 uiwait(warndlg('Ghostscript not found. Plea se locate the program.'))
 end

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 69

 base = uigetdir('/', 'Ghostcript not found. Ple ase locate the program.');
 if isequal(base, 0)
 % User hit cancel or closed window
 break;
 end
 base = [base filesep];
 bin_dir = {'', ['bin' filesep], ['lib' filesep] };
 for a = 1:numel(bin_dir)
 path = [base bin_dir{a} bin];
 if exist(path, 'file') == 2
 break;
 end
 end
 if check_store_gs_path(path)
 return
 end
end
showinfowindow('Make sure Ghostscript is installed. ','Ghostscript not found')
drawnow;
error('Ghostscript not found.');

function good = check_store_gs_path(path)
% Check the path is valid
good = check_gs_path(path);
if ~good
 return
end
%Update the current default path to the path found
if change_value(path, 'current_gs_path_str', [mfile name('fullpath') '.m'])

 return
end
return

function good = check_gs_path(path)
% Check the path is valid
[good message] = system(sprintf('"%s" -h', path));
good = good == 0;
return

function current_gs_path_str = current_gs_path
current_gs_path_str = 'C:\Program Files\gs\gs8.54\b in\gswin32c.exe';
return

GUI_BEP.m

function varargout = GUI_BEP(varargin)
%% GUI_BEP M-file for GUI_BEP.fig
% GUI_BEP opens is the Gobal User Interface that allows you to
% transmit an image to an e-paper.
%
% H = GUI_BEP returns the handle to a new GUI_BEP or the handle to
% the existing singleton*.
%
% GUI_BEP('CALLBACK',hObject,eventData,handles,.. .) calls the local
% function named CALLBACK in GUI_BEP.M with the g iven input arguments.
%
% GUI_BEP('Property','Value',...) creates a new G UI_BEP or raises the
% existing singleton*. Starting from the left, p roperty value pairs are
% applied to the GUI before GUI_BEP_OpeningFcn ge ts called. An
% unrecognized property name or invalid value mak es property application
% stop. All inputs are passed to GUI_BEP_Opening Fcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to hel p GUI_BEP

% Last Modified by GUIDE v2.5 09-Jun-2010 18:09:57

%% Begin initialization code - DO NOT EDIT

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 70

gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @GUI_BEP_Openi ngFcn, ...
 'gui_OutputFcn', @GUI_BEP_Outpu tFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

%% --- Executes just before GUI_BEP is made visible .
function GUI_BEP_OpeningFcn(hObject, eventdata, han dles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future v ersion of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GUI_BEP (see VARARGIN)

% Choose default command line output for GUI_BEP
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes GUI_BEP wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to th e command line.
function varargout = GUI_BEP_OutputFcn(hObject, eve ntdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future v ersion of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles stru cture
varargout{1} = handles.output;

%% --- Executes on button press in pushbutton1 = Br owse.
function pushbutton1_Callback(hObject, eventdata, h andles)
[fileName, Path] = uigetfile({'*.jpg;*.jpeg;',...
 'Picture Files (*.jpg,*.jpeg)';'*.g if',...
 'GIF bestanden (*.gif)';'*.bmp',...
 'Bitmap (*.bmp)';'*.pdf',...
 'Adobe PDF files';'*.*','All Files (*.*)'},...
 'Select an image');
if fileName == 0
 % Als het uigetfile window wordt weggeklikt, ko mt er 'Browse->>' in de
 % edit text te staan.
 if isempty(get(handles.edit1,'string'))
 set(handles.edit1,'string','Browse ->>');
 setappdata(handles.pushbutton2,'PDFCheck',0);
 end
else
 % Als er een bestand wordt geselecteerd, komt d at in de edit text te
 % staan.
 set(handles.edit1,'string',[Path fileName]);
 setappdata(hObject,'Check',1);
 setappdata(handles.pushbutton2,'PDFCheck',0);
end

%% --- Executes on button press in pushbutton2 = Pr eview.
function pushbutton2_Callback(hObject, eventdata, h andles)
fileName = get(handles.edit1,'string'); % Get filename from edit text
deletepdf = 0;

if isempty(fileName)|| contains(fileName,'Browse -> >')

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 71

 return;
end

 PDFCheck = getappdata(handles.pushbutton2,'PDFC heck');

 Lengte = get(handles.edit7,'string');
 % No comma's should be used. Changed to points by this for loop.
 for i = 1:length(Lengte)
 if Lengte(i) == ','
 Lengte(i) = '.';
 end
 end
 Lengte = floor(str2double(Lengte)); %Rou nded
 if isempty(Lengte)
 Lengte = 120;
 end

 Breedte = get(handles.edit8,'string');
 % No comma's should be used. Changed to points by this for loop.
 for i = 1:length(Breedte)
 if Breedte(i) == ','
 Breedte(i) = '.';
 end
 end
 Breedte = floor(str2double(Breedte)); %Rou nded
 if isempty(Breedte)
 Breedte = 120;
 end

 if endsWith(fileName,'.pdf') % Test if a pdf is selected
 deletepdf = 1;
 if PDFCheck == 1
 deletepdf = 0;
 PDF = getappdata(handles.pushbutton2,'P DF');
 fileSource = PDF;
 else
 pdffileName = pdf2jpg(fileName); % Convert pdf to image
 fileSource = uint8(imread(pdffileName)) ;
 delete(pdffileName);
 end
 setappdata(handles.pushbutton2,'PDFCheck',1);
 setappdata(handles.pushbutton2,'PDF',fileSo urce);

 else
 fileSource = uint8(imread(fileName));
 end

 if get(handles.No, 'Value') == 0
 if get(handles.Portrait,'Value') == 1
 % Used for Portrait with black borders. 3 means turned over 270
 % degrees.
 New_Image = turnImage(resize(fileSource, 1,1,Lengte,Breedte),3);
 else
 % Used for Landscape with black borders .
 New_Image = resize(fileSource,0,1,Lengt e,Breedte);
 end
 else
 if get(handles.Portrait,'Value') == 1
 % Used for Portrait without borders. 3 means turned over 270
 % degrees.
 New_Image = turnImage(resize(fileSource, 1,0,Lengte,Breedte),3);
 else
 % Used for Landscape without borders.
 New_Image = resize(fileSource,0,0,Lengt e,Breedte);
 end
 end

 imshow(New_Image);

%% --- Callback for edit text 'browse'
function edit1_Callback(hObject, eventdata, handles)
setappdata(handles.pushbutton2,'PDFCheck',0);

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 72

%% --- Executes during object creation, after setti ng all properties.
function edit1_CreateFcn(hObject, eventdata, handle s)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,...
 'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

%% --- Executes on button press in pushbutton3 = Se nd Data.
function pushbutton3_Callback(hObject, eventdata, h andles)
fileName = get(handles.edit1,'string');

if isempty(fileName)|| contains(fileName,'Browse -> >')
 return;
end

global username
foundCom = getappdata(handles.pushbutton10,'foundCo m');
PDFCheck = getappdata(handles.pushbutton2,'PDFCheck ');
deletepdf = 0;

if endsWith(fileName,'.pdf') % Test if a pdf is selected
 deletepdf = 1;
 if PDFCheck == 1
 deletepdf = 0;
 PDF = getappdata(handles.pushbutton2,'P DF');
 fileSource = PDF;
 else
 pdffileName = pdf2jpg(fileName); % Convert pdf to image
 fileSource = uint8(imread(pdffileName)) ;
 delete(pdffileName);
 end
 setappdata(handles.pushbutton2,'PDFCheck',1);
 setappdata(handles.pushbutton2,'PDF',fileSource);
else
 fileSource = uint8(imread(fileName));
end

Lengte = get(handles.edit7,'string');
% No comma's should be used. Changed to points by t his for loop.
 for i = 1:length(Lengte)
 if Lengte(i) == ','
 Lengte(i) = '.';
 end
 end
 Lengte = floor(str2double(Lengte));
 if isempty(Lengte)
 Lengte = 120;
 end

Breedte = get(handles.edit8,'string');
% No comma's should be used. Changed to points by t his for loop.
 for i = 1:length(Breedte)
 if Breedte(i) == ','
 Breedte(i) = '.';
 end
 end
 Breedte = floor(str2double(Breedte));
 if isempty(Breedte)
 Breedte = 120;
 end

 if get(handles.No, 'Value') == 0
 if get(handles.Portrait,'Value') == 1
 % Same as in preview, only this time th e image isn't turned
 % because the screen is written row by row.
 New_Image = resize(fileSource,1,1,Lengte ,Breedte);
 else
 New_Image = resize(fileSource,0,1,Lengt e,Breedte);
 end
 else
 if get(handles.Portrait,'Value') == 1
 New_Image = resize(fileSource,1,0,Lengte ,Breedte);
 else
 New_Image = resize(fileSource,0,0,Lengt e,Breedte);
 end

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 73

 end

% Send data to Arduino
foundCom = sendData(New_Image, 28800,hObject,userna me,foundCom);
setappdata(handles.pushbutton10,'foundCom',foundCom);

%% --- Executes during object creation, after setti ng all properties.
%% --- Initializes axes 4
function axes4_CreateFcn(hObject, eventdata, handle s)
% hObject handle to axes4 (see GCBO)
% eventdata reserved - to be defined in a future v ersion of MATLAB
% handles empty - handles not created until afte r all CreateFcns called

% Hint: place code in OpeningFcn to populate axes4
axes(hObject);
New_Image = 255*ones(480,480); % Create a white window
imshow(New_Image);

%% --- Executes on button press in pushbutton8 = mi ddelste Browse
function pushbutton8_Callback(hObject, eventdata, h andles)

[fileName, Path] = uigetfile({'*.jpg;*.jpeg;','Pic ture Files (*.jpg, *.jpeg)';'*.gif','GIF
bestanden (*.gif)';'*.bmp','Bitmap (*.bmp)';'*.pdf' ,'Adobe PDF files';'*.*','All Files
(*.*)'},'Select an image');
if fileName == 0
 % Als het uigetfile window wordt weggeklikt, ko mt er 'Browse->>' in de
 % edit text te staan.
 if isempty(get(handles.edit4,'string'))
 set(handles.edit4,'string','Browse ->>');
 end
else
 % Als er een bestand wordt geselecteerd, komt d at in de edit text te
 % staan.
 set(handles.edit4,'string',[Path fileName]);
 setappdata(hObject,'Check',1);
end

function edit4_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after settin g all properties.
function edit4_CreateFcn(hObject, eventdata, handle s)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,...
 'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
set(hObject,'Visible','Off');

%% Pushbutton9 callback = bovenste browse
% --- Executes on button press in pushbutton9.
function pushbutton9_Callback(hObject, eventdata, h andles)

[fileName, Path] = uigetfile({'*.jpg;*.jpeg;','Pic ture Files (*.jpg, *.jpeg)';'*.gif','GIF
bestanden (*.gif)';'*.bmp','Bitmap (*.bmp)';'*.pdf' ,'Adobe PDF files';'*.*','All Files
(*.*)'},'Select an image');
if fileName == 0
 % Als het uigetfile window wordt weggeklikt, ko mt er 'Browse->>' in de
 % edit text te staan.
 if isempty(get(handles.edit5,'string'))
 set(handles.edit5,'string','Browse ->>');
 end
else
 % Als er een bestand wordt geselecteerd, komt d at in de edit text te
 % staan.
 set(handles.edit5,'string',[Path fileName]);
 setappdata(hObject,'Check',0);
end

function edit5_Callback(hObject, eventdata, handles)

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 74

% --- Executes during object creation, after settin g all properties.
function edit5_CreateFcn(hObject, eventdata, handle s)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,...
 'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
set(hObject,'Visible','Off');

%% --- Executes on button press in pushbutton10 = S end Slideshow
function pushbutton10_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton10 (see GCBO)
% eventdata reserved - to be defined in a future v ersion of MATLAB
% handles structure with handles and user data (see GUIDATA)
fileName3 = get(handles.edit1,'string');
fileName2 = get(handles.edit4,'string');
fileName1 = get(handles.edit5,'string');

global username

 try
 [fileName1 fileName2 fileName3 n] = simplify(fi leName1,fileName2,fileName3);
 catch
 showinfowindow('No files selected, please sele ct one or more pictures.','Error');
 return;
 end

Lengte = get(handles.edit7,'string');
% No comma's should be used. Changed to points by t his for loop.
 for i = 1:length(Lengte)
 if Lengte(i) == ','
 Lengte(i) = '.';
 end
 end
 Lengte = floor(str2double(Lengte));
 if isempty(Lengte)
 Lengte = 120;
 end

Breedte = get(handles.edit8,'string');
% No comma's should be used. Changed to points by t his for loop.
 for i = 1:length(Breedte)
 if Breedte(i) == ','
 Breedte(i) = '.';
 end
 end
 Breedte = floor(str2double(Breedte));
 if isempty(Breedte)
 Breedte = 120;
 end

foundCom = getappdata(hObject,'foundCom');

deletepdf1 = 0;
deletepdf2 = 0;
deletepdf3 = 0;

if endsWith(fileName1,'.pdf') && n > 0 % Te st if a pdf is selected
 deletepdf1 = 1;
 fileName1 = pdf2jpg(fileName1); % Co nvert pdf to image
 pdfim1 = fileName1;
end

if endsWith(fileName2,'.pdf') && n > 1 % Te st if a pdf is selected
 deletepdf2 = 1;
 fileName2 = pdf2jpg(fileName2); % Co nvert pdf to image
 pdfim2 = fileName2;
end

if endsWith(fileName3,'.pdf') && n > 2 % Te st if a pdf is selected
 deletepdf3 = 1;
 fileName3 = pdf2jpg(fileName3); % Co nvert pdf to image
 pdfim3 = fileName3;
end

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 75

if n == 0
 return;
elseif n == 1
 fileName1 = imread(fileName1);
 if get(handles.No, 'Value') == 0
 if get(handles.Portrait,'Value') == 1
 % Same as in preview, only this time th e image isn't turned
 % because the screen is written row by row.
 New_Image = resize(fileName1,1,1,Lengte, Breedte);
 else
 New_Image = resize(fileName1,0,1,Lengte ,Breedte);
 end
 else
 if get(handles.Portrait,'Value') == 1
 New_Image = resize(fileName1,1,0,Lengte, Breedte);
 else
 New_Image = resize(fileName1,0,0,Lengte ,Breedte);
 end
 end

foundCom = sendData(New_Image,28800,hObject,usernam e,foundCom);

elseif n == 2
 % Same as in preview, only this time the image isn't turned because
 % the screen is written row by row.
 fileName1 = imread(fileName1);
 fileName2 = imread(fileName2);
 New_Image = zeros(Lengte,Breedte,3,n);
 if get(handles.No, 'Value') == 0
 if get(handles.Portrait,'Value') == 1
 New_Image(:,:,:,1) = resize(fileName1,1, 1,Lengte,Breedte);
 New_Image(:,:,:,2) = resize(fileName2,1, 1,Lengte,Breedte);
 else
 New_Image(:,:,:,1) = resize(fileName1,0 ,1,Lengte,Breedte);
 New_Image(:,:,:,2) = resize(fileName2,0 ,1,Lengte,Breedte);
 end
 else
 if get(handles.Portrait,'Value') == 1
 New_Image(:,:,:,1) = resize(fileName1,1, 0,Lengte,Breedte);
 New_Image(:,:,:,2) = resize(fileName2,1, 0,Lengte,Breedte);
 else
 New_Image(:,:,:,1) = resize(fileName1,0 ,0,Lengte,Breedte);
 New_Image(:,:,:,2) = resize(fileName2,0 ,0,Lengte,Breedte);
 end
 end

foundCom = sendData(New_Image,28800,hObject,usernam e,foundCom);

else
 fileName1 = imread(fileName1);
 fileName2 = imread(fileName2);
 fileName3 = imread(fileName3);
 New_Image = zeros(Lengte,Breedte,3,n);

 % Same as in preview, only this time the image isn't turned because the
 % screen is written row by row.
 if get(handles.No, 'Value') == 0
 if get(handles.Portrait,'Value') == 1
 New_Image(:,:,:,1) = resize(fileName1,1, 1,Lengte,Breedte);
 New_Image(:,:,:,2) = resize(fileName2,1, 1,Lengte,Breedte);
 New_Image(:,:,:,3) = resize(fileName3,1, 1,Lengte,Breedte);
 else
 New_Image(:,:,:,1) = resize(fileName1,0 ,1,Lengte,Breedte);
 New_Image(:,:,:,2) = resize(fileName2,0 ,1,Lengte,Breedte);
 New_Image(:,:,:,3) = resize(fileName3,0 ,1,Lengte,Breedte);
 end
 else
 if get(handles.Portrait,'Value') == 1
 New_Image(:,:,:,1) = resize(fileName1,1, 0,Lengte,Breedte);
 New_Image(:,:,:,2) = resize(fileName2,1, 0,Lengte,Breedte);
 New_Image(:,:,:,3) = resize(fileName3,1, 0,Lengte,Breedte);
 else
 New_Image(:,:,:,1) = resize(fileName1,0 ,0,Lengte,Breedte);
 New_Image(:,:,:,2) = resize(fileName2,0 ,0,Lengte,Breedte);
 New_Image(:,:,:,3) = resize(fileName3,0 ,0,Lengte,Breedte);

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 76

 end
 end

foundCom = sendData(New_Image,28800,hObject,usernam e,foundCom);
end

setappdata(hObject,'foundCom',foundCom);

if deletepdf1 == 1
 delete(pdfim1);
end

try

if deletepdf2 == 1
 delete(pdfim2);
end

if deletepdf3 == 1
 delete(pdfim3);
end

catch
 return;
end

%% Tabblad Single Picture
% --- Executes on button press in pushbutton13.
function pushbutton13_Callback(hObject, eventdata, handles)

New_Image = 255*ones(480,480); % C reate a white window
imshow(New_Image);

% Set only all necessary objects visible
set(handles.pushbutton2,'Visible','On');
set(handles.pushbutton3,'Visible','On');
set(handles.pushbutton8,'Visible','Off');
set(handles.pushbutton9,'Visible','Off');
set(handles.pushbutton10,'Visible','Off');
set(handles.edit4,'Visible','Off');
set(handles.edit5,'Visible','Off');
set(handles.edit6,'Visible','Off');
set(handles.edit7,'Visible','On');
set(handles.edit8,'Visible','On');
set(handles.text4,'Visible','Off');
set(handles.text5,'Visible','Off');
set(handles.text6,'Visible','Off');
set(handles.text7,'Visible','Off');
set(handles.text8,'Visible','Off');
set(handles.text9,'Visible','Off');

set(handles.pushbutton1,'Visible','On');
set(handles.edit1,'Visible','On');
set(handles.text1,'Visible','On');
set(handles.uipanel3,'Visible','On');
set(handles.uipanel4,'Visible','On');

set(handles.text11,'Visible','Off');
set(handles.text12,'Visible','Off');
set(handles.text13,'Visible','Off');
set(handles.text14,'Visible','Off');
set(handles.text15,'Visible','Off');
set(handles.text17,'Visible','On');
set(handles.text18,'Visible','On');
set(handles.text19,'Visible','On');

%% Tabblad Slideshow
% --- Executes on button press in pushbutton14.
function pushbutton14_Callback(hObject, eventdata, handles)

z = 85*ones(1,480); % Create a white wi ndow
h = imshow(z);

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 77

% Set only all necessary objects visible
set(handles.pushbutton2,'Visible','Off');
set(handles.pushbutton3,'Visible','Off');
set(handles.pushbutton8,'Visible','On');
set(handles.pushbutton9,'Visible','On');
set(handles.pushbutton10,'Visible','On');
set(handles.edit4,'Visible','On');
set(handles.edit5,'Visible','On');
set(handles.edit6,'Visible','On');
set(handles.edit7,'Visible','On');
set(handles.edit8,'Visible','On');
set(handles.text4,'Visible','On');
set(handles.text5,'Visible','On');
set(handles.text6,'Visible','On');
set(handles.text7,'Visible','On');
set(handles.text8,'Visible','On');
set(handles.text9,'Visible','On');

set(handles.pushbutton1,'Visible','On');
set(handles.edit1,'Visible','On');
set(handles.text1,'Visible','On');
set(handles.uipanel3,'Visible','On');
set(handles.uipanel4,'Visible','On');

set(handles.text11,'Visible','Off');
set(handles.text12,'Visible','Off');
set(handles.text13,'Visible','Off');
set(handles.text14,'Visible','Off');
set(handles.text15,'Visible','Off');
set(handles.text17,'Visible','On');
set(handles.text18,'Visible','On');
set(handles.text19,'Visible','On');

% --- Executes during object creation, after settin g all properties.
function text5_CreateFcn(hObject, eventdata, handle s)
set(hObject,'Visible','Off');

% --- Executes during object creation, after settin g all properties.
function pushbutton8_CreateFcn(hObject, eventdata, handles)
set(hObject,'Visible','Off');

% --- Executes during object creation, after settin g all properties.
function text4_CreateFcn(hObject, eventdata, handle s)
set(hObject,'Visible','Off');

% --- Executes during object creation, after settin g all properties.
function pushbutton9_CreateFcn(hObject, eventdata, handles)
set(hObject,'Visible','Off');

% --- Executes during object creation, after settin g all properties.
function text6_CreateFcn(hObject, eventdata, handle s)
set(hObject,'Visible','Off');

% --- Executes during object creation, after settin g all properties.
function text7_CreateFcn(hObject, eventdata, handle s)
set(hObject,'Visible','Off');

% --- Executes during object creation, after settin g all properties.
function pushbutton10_CreateFcn(hObject, eventdata, handles)
set(hObject,'Visible','Off');
setappdata(hObject,'Check',0);
setappdata(hObject,'Transmitter',0);
setappdata(hObject,'n',0);
setappdata(hObject,'foundCom',[])

% --- Executes during object creation, after settin g all properties.
function text8_CreateFcn(hObject, eventdata, handle s)
set(hObject,'Visible','Off');

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 78

function edit6_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after settin g all properties.
function edit6_CreateFcn(hObject, eventdata, handle s)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,...
 'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
set(hObject,'Visible','Off');

% --- Executes during object creation, after settin g all properties.
function text9_CreateFcn(hObject, eventdata, handle s)
set(hObject,'Visible','Off');

%% --- Executes on button press in pushbutton16 = H elp
function pushbutton16_Callback(hObject, eventdata, handles)
z = 85*ones(1,480); % Create a white wi ndow
h = imshow(z);

% Set only all necessary objects visible
set(handles.pushbutton1,'Visible','Off');
set(handles.pushbutton2,'Visible','Off');
set(handles.pushbutton3,'Visible','Off');
set(handles.pushbutton8,'Visible','Off');
set(handles.pushbutton9,'Visible','Off');
set(handles.pushbutton10,'Visible','Off');
set(handles.edit1,'Visible','Off');
set(handles.edit4,'Visible','Off');
set(handles.edit5,'Visible','Off');
set(handles.edit6,'Visible','Off');
set(handles.edit7,'Visible','Off');
set(handles.edit8,'Visible','Off');
set(handles.text1,'Visible','Off');
set(handles.text4,'Visible','Off');
set(handles.text5,'Visible','Off');
set(handles.text6,'Visible','Off');
set(handles.text7,'Visible','Off');
set(handles.text8,'Visible','Off');
set(handles.text9,'Visible','Off');
set(handles.uipanel3,'Visible','Off');
set(handles.uipanel4,'Visible','Off');

set(handles.text11,'Visible','On');
set(handles.text12,'Visible','On');
set(handles.text13,'Visible','On');
set(handles.text14,'Visible','On');
set(handles.text15,'Visible','On');
set(handles.text17,'Visible','Off');
set(handles.text18,'Visible','Off');
set(handles.text19,'Visible','Off');

% --- Executes during object creation, after settin g all properties.
function text11_CreateFcn(hObject, eventdata, handl es)
set(hObject,'Visible','Off');

% --- Executes during object creation, after settin g all properties.
function text12_CreateFcn(hObject, eventdata, handl es)
set(hObject,'Visible','Off');

% --- Executes during object creation, after settin g all properties.
function text13_CreateFcn(hObject, eventdata, handl es)
set(hObject,'Visible','Off');

% --- Executes during object creation, after settin g all properties.
function text14_CreateFcn(hObject, eventdata, handl es)
set(hObject,'Visible','Off');

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 79

% --- Executes during object creation, after settin g all properties.
function text15_CreateFcn(hObject, eventdata, handl es)
set(hObject,'Visible','Off');

function edit7_Callback(hObject, eventdata, handles)

%setappdata(handles.pushbutton2,'PDFCheck',0);

% --- Executes during object creation, after settin g all properties.
function edit7_CreateFcn(hObject, eventdata, handle s)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,...
 'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit8_Callback(hObject, eventdata, handles)
%setappdata(handles.pushbutton2,'PDFCheck',0);

% --- Executes during object creation, after settin g all properties.
function edit8_CreateFcn(hObject, eventdata, handle s)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,...
 'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes during object creation, after settin g all properties.
function pushbutton2_CreateFcn(hObject, eventdata, handles)

setappdata(hObject,'PDFCheck',0);
setappdata(hObject,'PDFfile',0);

% --- Executes on button press in Landscape.
function Landscape_Callback(hObject, eventdata, han dles)

%setappdata(handles.pushbutton2,'PDFCheck',0);

% --- Executes on button press in Portrait.
function Portrait_Callback(hObject, eventdata, hand les)

%setappdata(handles.pushbutton2,'PDFCheck',0);

% --- Executes on button press in Yes.
function Yes_Callback(hObject, eventdata, handles)

%setappdata(handles.pushbutton2,'PDFCheck',0);

% --- Executes on button press in No.
function No_Callback(hObject, eventdata, handles)

%setappdata(handles.pushbutton2,'PDFCheck',0);

handshake.m

function [Com message] = handshake(Rate,time,GUIHan dle)

% Handshake tries to find the Arduino by sending a message over all
% available COM ports. Only the Arduino will reply with the correct
% response.
% The Arduino has to respond within 'time'-seconds, with 100 milliseconds as
% default value.

if nargin < 3
 GUIHandle = 1; % Handshake moet vanuit een GUI aangeroepen worden.

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 80

end
if nargin < 2
 time = 0.1;
end
if nargin < 1
 Rate = 28800;
end

drawnow;
msg = showinfowindow('Searching Transmitter Module. This might take some time. Close this
window to stop searching.');

if ~isempty(instrfind)
 fclose(instrfind);
end

% Initialize Com with a number, it will become a st ring if the Arduino is
% found
Flag = 0;

% Search for all available serial ports
serialinfo = instrhwinfo('serial');

% Put all ports as strings in 'ports'. For example: Ports = ['COM1';
% 'COM3']
ports = serialinfo.SerialPorts;
hello = uint8(122);
drawnow;

% Every time a wrong port is greeted, a warning wil l be send, so turn
% warnings off temporary.
warning off all;
try

 for i = 1:length(ports)
 shake = ports(i);

 % Create Virtual COM port
 s1 = serial(shake, 'Baudrate', Rate,'Timeou t',time);
 try

 fopen(s1); % Open Port
 try
 pause(2.1); % Pause needed for t he Arduino

 if ~ishandle(msg) || ~ishandle(GUIH andle)
 Flag = 2;
 break
 end
 drawnow;

 fwrite(s1,hello); % Send greeting
 answer = fread(s1,1); % Scan for response
 if answer == uint8(85) % Ardu ino should answer with
 % 85 = 01010101
 Com = char(shake); % If t he answer is received: Arduino found
 Flag = 1;
 fclose(s1); % Close the C OM port connected to the Arduino
 break
 end
 fclose(s1);
 catch
 fclose(s1); % Always close the COM port, even when there are errors
 drawnow;
 end
 catch
 drawnow;
 end
 end

 if ishandle(msg)
 close(msg)
 end

 warning on all;

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 81

catch
 warning on all;
 if ishandle(msg)
 close(msg)
 end
end

message = 1;

if Flag == 0 && ishandle(GUIHandle)
 message = showinfowindow('Transmitter Module no t found. Exit this program and restart it
with the Transmitter Module connected.','Error');
 drawnow;
 Com = []; % Test for this with 'isempty(Com) '
elseif Flag == 2
 Com = [];
elseif ishandle(GUIHandle)
 %message = ['Transmitter Module found at ' Com] ;
 %message = showinfowindow(message,'Transmitter found');
 drawnow;
else
 Com = [];
 drawnow;
end

Login.m

function [tf UNG] = Login(str,username,time_out,a,b)
N = nargin;

if N < 2
 str = '0000';
 username = 'serv1';
 time_out = 3600; % Stay in uiwait for 1 hour.
 a = 600;
 b = 600;
elseif N < 3
 time_out = 3600;
 a = 600;
 b = 600;
elseif N < 5
 a = 600;
 b = 600;
end

defaultBackground = get(0,'defaultUicontrolBackgrou ndColor');
S.PWG = []; % Store the pasword entered.
S.fh = figure('units','pixels',...
 'position',[a b 320 100],...
 'menubar','none',...
 'color',defaultBackground,...
 'name','Verify Password.',...
 'resize','off',...
 'numbertitle','off',...
 'name','Log in');
S.untx = uicontrol('style','text',...
 'units','pix',...
 'position',[5 75 105 20],...
 'string','Username:',...
 'fontweight','bold',...
 'horizontalalign','left',...
 'fontsize',11);
S.un = uicontrol('style','edit',...
 'units','pix',...
 'position',[110 75 200 20],...
 'backgroundcolor','w',...
 'tooltipstring',' Enter your usern ame here.',...
 'tag','usernametxt',...
 'HorizontalAlign','left');
S.tx = uicontrol('style','text',...
 'units','pix',...
 'position',[5 45 105 20],...
 'string','Password:',...

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 82

 'fontweight','bold',...
 'horizontalalign','left',...
 'fontsize',11);
S.ed = uicontrol('style','edit',...
 'units','pix',...
 'position',[110 45 200 20],...
 'backgroundcolor','w',...
 'tooltipstring',' Enter your passw ord here.',...
 'HorizontalAlign','left',...
 'KeyPressFcn',{@ed_kpfcn,S});
S.li = uicontrol('style','pushbutton',...
 'units','pix',...
 'position',[80 10 180 25],...
 'string','Log in',...
 'horizontalalign','left',...
 'fontsize',10,...
 'HorizontalAlign','left',...
 'callback',{@ed_call,S},...
 'KeyPressFcn',{@ed_callenter,S});

uicontrol(S.un) % Put a blinking cursor in usernam e box.
uiwait(S.fh,time_out) % Suspend other execution un til return is pressed.

if ishandle(S.fh)
 close(S.fh) % In case the user timed out.
end

 function [] = ed_callenter(varargin)
 [h,S] = varargin{[1,3]}; % Get calling han dle and structure.
 CC = get(S.fh,'currentcharacter'); % The c haracter user entered.
 num = int8(CC); % Change to a number

 if num == 13 % This is 'return'
 ed_call();
 return;
 end
 end

function [] = ed_call(varargin)
 UNG = get(S.un,'string');
 if strcmp(str,S.PWG) && strcmp(username,UNG) % Correct password
 tf = true;
 close(S.fh);
 return;
 else
 tf = false; % Incorrect password
 msg = msgbox('Incorrect username and/or pas sword','Mistake');
 end
end

 function [] = ed_kpfcn(varargin)
 [h,S] = varargin{[1,3]}; % Get calling han dle and structure.
 CC = get(S.fh,'currentcharacter'); % The c haracter user entered.
 num = int8(CC); % Change to a number

 if num == 13 % This is 'return'
 ed_call();
 return;
 end

 E = get(h,'string'); % the string of the e dit box.
 % Any key handling other than the return ke y should be handled
 % in the following if else block.
 if num == 8 % Backspace pressed, update pa ssword and screen.
 set(h,'string',E(1:end-1));
 S.PWG = S.PWG(1:end-1);
 % Do nothing when delete and arrows are pre ssed
 elseif num == 127 || num == 28 || num == 29 || num == 30 || num == 31
 elseif ~isempty(num)
 set(h,'string',[E,'*']) ; % Print an asterisk in gui.
 S.PWG = [S.PWG CC];
 end
 set(h,'KeyPressFcn',{@ed_kpfcn,S})
 end

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 83

end

pdf2jpg.m

function imageName = pdf2jpg(path)

% Transforms the pdf file in fileName to a jpg.
% The new jpg file has name "imageName".

con = showinfowindow('Converting PDF, please wait.' ,'Converting');
drawnow;
pdfName = getName(path);
try
 ghostscript(['-sDEVICE=jpeg -dNOPAUSE -dBATCH -dSAFER -r600x600 -dLastPage=1 "-
sOutputFile=tempim' pdfName '.jpg" ' '"' path '"']) ;

 drawnow;
 imageName = ['tempim' pdfName '.jpg'];
 close(con);
catch
 if ishandle(con)
 close(con);
 end
 showinfowindow('Unable to convert PDF images.', 'Error 401');
 rethrow(lasterror);
end

PictureTransmitter.m

function PictureTransmitter()

% PictureTransmitter opens the login screen and ope ns the GUI if the
% GUI if the password and username are correct. Pic tureTransmitter then sets
% the position of the GUI to the middle of the scre en, before it makes the
% GUI visible.

 global username;
 screensize=get(0,'screensize');
 winwidth=320;
 winheight=100;
 screenwidth=screensize(3);
 screenheight=screensize(4);
 winpos=[0.5*(screenwidth-winwidth),...
 0.5*(screenheight-winheight),winwidth,wi nheight];
 pause(0.1);
 drawnow;
 try
 [log UNG] = Login('0000','serv1',300,wi npos(1),winpos(2));
 catch
 close all;
 return
 end

 if (log == 1)
 username = UNG;
 G = GUI_BEP('Units','pixels','Visible', 'off');
 screensize=get(0,'screensize');
 winsize=get(G,'Position');
 winwidth=winsize(3);
 winheight=winsize(4);
 screenwidth=screensize(3);
 screenheight=screensize(4);
 winpos=[0.5*(screenwidth-winwidth),...
 0.5*(screenheight-winheight),winwidt h,winheight];
 set(G,'Position',winpos,'Visible','on') ;
 pause(0.1);
 else
 close all;
 return

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 84

 end
end

resize.m

function [New_Image] = resize(fileName, portrait, b order, Lengte, Breedte)

% Function will resize the image specified by fileN ame to the size Lengte
% x Breedte.
%
% fileName: The name of the file to be resized incl uding it's extension.
% If the file is not in the Current Direc tory, the path should
% be specified here as well. For example:
% D:\TU\Afbeeldingen\MacbethValuessRGB.jp g
% portrait: 1 if picture has to be displayed as por trait, 0 for Landscape.
% border: Can be omitted if Lengte en Breedta are omitted. Valid values
% are 0 and 1.
% For 1, the image is fitted into a Lengt e x Breedte matrix. For
% 0, the original
% proportions are preserved and black bor ders are added to the
% image to make
% it fit in the requested matrix.
% Lengte: Defines the length of the requested ima ge.
% Breedte: Defines the width of the requested imag e.

if nargin < 5
 Breedte = 480;
end

if nargin < 4
 Lengte = 272;
end

if nargin < 3 %If border isn't specified, fit the image to 272 x 480 without borders
 border = 0;
end

if nargin < 2 % If Portrait is'nt specified, hand le as Landscape picture
 portrait = 0;
end

%% Read image into a uint8 matrix, turn if Portrait
warning off all;
try

 %Image = uint8(imread(fileName));
 Image = fileName;

 if portrait == 1
 Image = turnImage(Image,1);
 end

%% Het resizen naar 272 x 480 zonder zwarte banden
 if border == 0
 New_Image = imresize(Image, [Lengte Breedte]);
 drawnow;

%% Het resizen naar 272 x 480 met zwarte banden

 elseif border == 1
 [imL imB imD] = size(Image);
 props = imL/imB; % Proportio ns of input image
 spec = Lengte/Breedte; % Proportio ns of the wanted image

 if props > spec % = Borders on the side

 % Create a black matrix to fit the image in
 New_Image = zeros(Lengte,Breedte,imD, 'uint 8');

 % Calculate the new width of the image with out borders
 nieuweBreedte = ceil(Lengte*imB / imL);

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 85

 % Create the new image without borders
 tempImage = imresize(Image, [Lengte nieuweB reedte]);

 % Create borders on both sides
 startb = ceil((Breedte - nieuweBreedte)/2);
 if startb == 0
 startb = 1;
 end
 New_Image(1:Lengte,startb:(nieuweBreedte+st artb-1),:) = tempImage;
 drawnow;

 elseif props < spec % = Borders on the top an d bottom

 % Create a black matrix to fit the image in
 New_Image = zeros(Lengte,Breedte,imD,'uint8 ');

 % Calculate the new width of the image with out borders
 nieuweLengte = ceil(Breedte*imL / imB);

 % Create the new image without borders
 tempImage = imresize(Image, [nieuweLengte B reedte]);

 % Create borders on both sides
 startl = ceil((Lengte - nieuweLengte)/2);
 if startl == 0
 startl = 1;
 end
 New_Image(startl:(nieuweLengte+startl-1),1: Breedte,:) = tempImage;
 drawnow;
 else
 % If proportions are already good,just resi ze.
 New_Image = imresize(Image, [Lengte Breedte]);
 drawnow;
 end

%% Een error geven indien border verkeerd gespecifi ceerd is
 else
 error('Invalid input character for ''border'' f ield');
 end

 warning on all;

catch
 warning on all;
 rethrow(lasterror);
end

sendData.m

function foundCom = sendData(New_Image, Rate, GUIHa ndle, username, Com)

 % New_Image: De afbeelding(en) die moet worden ver zonden. Eerst imread
 % gebruiken.
 % Rate: De Baudrate waarmee de bits door de U SB poort worden
 % verzonden
 % GUIHandle De Handle van de GUI waaruit deze fun ctie aangeroepen wordt.
 % Username Username, nodig om de juiste receiver te adresseren
 % Com COM poort waar de data heen wordt ges chreven.
 % foundCom Als de COM poort gevonden is, wordt d eze opgeslagen.

if nargin < 5
 Com = 'not';
end

if nargin < 4
 username = 'serv1';
end

if ~ishandle(GUIHandle)
 return

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 86

end

msg1 = 1;

if instrfind ~= 0
 fclose(instrfind);
end

%% Poorten zoeken
if ~contains(Com,'COM')
 [Com message] = handshake(Rate,0.1,GUIHandle);
 if isempty(Com)
 foundCom = [];
 return
 end
else
 msg1 = showinfowindow('Connecting to transmitte r.','Preparing');
 s = Serial(Com,'Baudrate',Rate);
 fopen(s)
 try
 pause(2)
 fwrite(s,uint8(122))
 %close(msg1);
 drawnow;
 back = fread(s,1);
 fclose(s)
 catch
 fclose(s);
 rethrow(lasterror);
 end
 if 85 == back
 else
 if ishandle(msg1)
 close(msg1);
 end
 [Com message] = handshake(Rate,0.1,GUIH andle);
 if isempty(Com)
 foundCom = [];
 return
 end
 end
end
foundCom = Com;
drawnow;
% Com = 'COM8';

%% R,G en B waardes bepalen van Image
if ishandle(msg1)
 close(msg1);
end
msg1 = showinfowindow('Transmitter found, preparing transmission. Close this window to
abort.','Preparing');
drawnow;
if ~ishandle(GUIHandle)
 return
end

% imL = 272, imB = 480, imD = 1 voor zwart/wit en i mD = 3 voor kleur
[imL imB imD aantal] = size(New_Image);

 if imL ~= 272 || imB ~= 480
 warning('Image Dimensions aren''t 272x480') ;
 end

 red = ones(imL,imB,1,aantal);
 green = ones(imL,imB,1,aantal);
 blue = ones(imL,imB,1,aantal);

for dias = 1:aantal

 if imD == 1 % Zwart/Wit
 red(:,:,:,dias) = uint8(New_Image(:,:,1,dia s));
 green(:,:,:,dias) = uint8(New_Image(:,:,1,d ias));
 blue(:,:,:,dias) = uint8(New_Image(:,:,1,di as));
 elseif imD == 3 % Kleur

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 87

 red(:,:,:,dias) = uint8(New_Image(:,:,1,dia s));
 green(:,:,:,dias) = uint8(New_Image(:,:,2,d ias));
 blue(:,:,:,dias) = uint8(New_Image(:,:,3,di as));
 else
 error('RGB values can''t be determined');
 end;
 drawnow;
 if ~ishandle(GUIHandle) || ~ishandle(msg1)
 return
 end
end

%% Poorten openen

 % Als er poorten open zijn, worden deze nu gesl oten.
 if instrfind ~= 0
 fclose(instrfind);
 end

 % Virtuele Compoort uitgang aanmaken
 s1 = serial(Com, 'Baudrate', Rate,'outputBuffer Size',5000);
 drawnow;
 % Poort openen
 fopen(s1);
 try
 drawnow;
 if ~ishandle(GUIHandle) || ~ishandle(msg1)
 fclose(s1);
 return
 end

 % Wachten i.v.m. microcontroller
 for i = 1:5
 pause(0.5);
 if ~ishandle(GUIHandle) || ~ishandle(ms g1)
 fclose(s1);
 return
 end
 end
 %username = uint8('serv1');
 fwrite(s1,username); % Set Receiver adsress
 if ishandle(msg1)
 close(msg1);
 end
 drawnow;

%% Waitbar openen
 defaultBackground = get(0,'defaultUicontrol BackgroundColor');
 sendMsg = 'Sending in progress. Click ''Can cel'' or close this window to stop
transmitting.';

 msg2 = waitbar(0,sendMsg,'Name','Sending',' color',defaultBackground,
'CreateCancelBtn','setappdata(gcbf,''canceling'',1) ;');

 try
 setappdata(msg2,'canceling',0);
 abort = 0;
 drawnow;
 if ~ishandle(GUIHandle)
 fclose(s1);
 return
 end
%% RGB naar poort schrijven

 for dias = 1:aantal

 Adres = 0;
 Packet = zeros(1,4000);
 Teller = 0;
 %Vector = []; %For testing purposes onl y

 while (strcmp(s1.TransferStatus,'idle') == 0)
 drawnow;

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 88

 if getappdata(msg2,'canceling')
 abort = 1;
 drawnow;
 break
 end
 end

 if abort == 1
 return
 end

 for i = 1:imL
 for j = 1:imB
 if Teller ~= 1000

 Teller = Teller + 1;
 beg = (Teller * 4)-3;
 Packet(beg) = Adres;
 Packet(beg+1) = red(i,j ,1,dias);
 Packet(beg+2) = green(i ,j,1,dias);
 Packet(beg+3) = blue(i, j,1,dias);

 else

 Teller = 1;
 %Vector = [Vector Packe t]; % For testing only

 while (strcmp(s1.Transf erStatus,'idle') == 0)
 drawnow;
 if getappdata(msg2 ,'canceling')
 abort = 1;
 drawnow;
 break
 end
 end

 fwrite(s1,[Packet]);

 % Update Waitbar
 msg2 = waitbar((((dias- 1)*imL*imB)+(((i-1)*imB) +
j))/(imL*imB*aantal));
 drawnow
 if ~ishandle(GUIHandle)
 abort = 1;
 break
 end
 %Vector = [Vector fread (s1,80)]; % For testing only
 beg = (Teller * 4)-3;
 Packet(beg) = Adres;
 Packet(beg+1) = red(i,j ,1,dias);
 Packet(beg+2) = green(i ,j,1,dias);
 Packet(beg+3) = blue(i, j,1,dias);

 end

 if Adres > 254
 Adres = 0;
 else
 Adres = Adres + 1;
 end
 if getappdata(msg2,'ca nceling')
 abort = 1;
 drawnow;
 break
 end

 end
 drawnow;
 if ~ishandle(GUIHandle)
 abort = 1;
 break
 end
 if abort == 1
 break
 end

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 89

 end

 fwrite(s1,Packet(1:(4*Teller)));
 %Vector = [Vector Packet] % For test ing only

 if abort == 1
 drawnow;
 break;
 end
 msg2 = waitbar(dias/aantal);
 drawnow;
 if ~ishandle(GUIHandle)
 abort = 1;
 break
 end
 if dias < aantal
 pause(15);
 end

 end
 pause(0.1);
 delete(msg2);

 %Always close a waitbar!
 catch
 delete(msg2);
 abort = 1;
 end
 fclose(s1);

 catch
 fclose(s1); % S1 moet altijd gesloten wor den, ook als er errors zijn.
 if ishandle(msg1)
 close(msg1);
 end
 abort = 1;
 drawnow;
 end
 drawnow;

%% Bevestiging
 if abort == 0 && ishandle(GUIHandle)
 showinfowindow('Sending complete.', 'Done');
 drawnow;
 elseif ishandle(GUIHandle)
 showinfowindow('Unable to finish tr ansmission.','Stopped');
 drawnow;
 else
 close all;
 end

showinfowindow.m

function f = showinfowindow(msg,wtitle)

%
% SHOWINFOWINDOW creates a small dialog window whic h displays a
% user-defined message. It is quite like MATLAB's m sgbox but without an OK
% button. Although msgbox could be used for the sim ple display of a message
% that informs the user about a process being perfo rmed (and is not
% expected to last long, else a waitbar/timebar cou ld be used but at a cost
% of running time), the presence of the OK button t hat closes the window on
% press could be annoying. SHOWINFOWINDOW resolves this problem by removing
% the button. Additionally, if you wish to write a script or create a GUI
% where you do not wish the user to accidenatlly hi t the close button in the
% upper right corner of the window, you can remove the comment on line 82 of
% the code concerning the 'CloseRequestFcn' propert y of the dialog. However,
% if you do that you must assign a handle to showin fowindow so you
% can change its 'CloseRequestFcn' property to 'clo sereq' when your process

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 90

% is done or else you might end up with a non-closi ng window! If that
% happens, one way to resolve this could be to use the findobj function:
%
% non_closing_window_handle = findobj('CloseRequest Fcn','');
% set(non_closing_window_handle,'CloseRequestFcn',' closereq')
% close(non_closing_window_handle)
%
% Syntax:
%
% showinfowindow
% h = showinfowindow
% showinfowindow(msg)
% h = showinfowindow(msg)
% showinfowindow(msg,wtitle)
% h = showinfowindow(msg,wtitle)
%
% showinfowindow and h = showinfowindow without any input arguments create
% an example.
%
% showinfowindow(msg) and h = showinfowindow(msg) d isplay the user-defined
% message msg
% which should be a character string or a cell arra y of strings.
%
% showinfowindow(msg,wtitle) and h = showinfowindow (msg,wtitle) display the
% user-defined message msg which should be a charac ter string or a cell
% array of strings. This time the window has the ti tle wtitle
%
% Examples
%
% h1 = showinfowindow('Running - Please wait...');
%
% h2 = showinfowindow({'This is a long message for a long process.',...
% 'It is displayed in two line s.'},'Long message');
%
%== ========
%
% Author : Panagiotis Moulos (pmoulos@eie.gr)
% First created : May 7, 2007
% Last modified : June 11, 2007
%
% Copyright (c) 2007, Panagiotis Moulos
% All rights reserved.
%
% Redistribution and use in source and binary forms , with or without
% modification, are permitted provided that the fol lowing conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the fol lowing disclaimer.
% * Redistributions in binary form must reprodu ce the above copyright
% notice, this list of conditions and the fol lowing disclaimer in
% the documentation and/or other materials pr ovided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT O WNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPEC IAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NE GLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWAR E, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.

%

% Check input arguments
if nargin<1
 msg='Example of showinfowindow.m';
 wtitle='Example';
elseif nargin<2
 wtitle='Info';
end
if ~iscell(msg)
 msg={msg};

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 91

end

% Set default sizes
DefFigPos=get(0,'DefaultFigurePosition');
MsgOff=7;
FigWidth=125;
FigHeight=50;
DefFigPos(3:4)=[FigWidth FigHeight];
MsgTxtWidth=FigWidth-2*MsgOff;
MsgTxtHeight=FigHeight-2*MsgOff;

% Initialize dialog window
f=dialog('Name',wtitle,'Units','points','WindowStyl e','normal','Toolbar',...
 'none','DockControls','off','MenuBar','non e','Resize','off',...
 'ToolBar','none','NumberTitle','off');%,'C loseRequestFcn','');

% Initialize message
msgPos=[MsgOff MsgOff MsgTxtWidth MsgTxtHeight];
msgH=uicontrol(f,'Style','text','Units','points','P osition',msgPos,...
 'String',' ','Tag','MessageBox','Hor izontalAlignment',...
 'left','FontSize',8);
[WrapString,NewMsgTxtPos]=textwrap(msgH,msg,75);
set(msgH,'String',WrapString)
delete(msgH);

% Fix final message positions
MsgTxtWidth=max(MsgTxtWidth,NewMsgTxtPos(3));
MsgTxtHeight=min(MsgTxtHeight,NewMsgTxtPos(4));
MsgTxtXOffset=MsgOff;
MsgTxtYOffset=MsgOff;
FigWidth=MsgTxtWidth+2*MsgOff;
FigHeight=MsgTxtYOffset+MsgTxtHeight+MsgOff;

DefFigPos(3:4)=[FigWidth FigHeight];
set(f,'Position',DefFigPos);

% Create the message
AxesHandle=axes('Parent',f,'Position',[0 0 1 1],'Vi sible','off');
txtPos=[MsgTxtXOffset MsgTxtYOffset 0];
text('Parent',AxesHandle,'Units','points','Horizont alAlignment','left',...
 'VerticalAlignment','bottom','Position',txtPos ,'String',WrapString,...
 'FontSize',8,'Tag','MessageBox');

% Move the window to the center of the screen
set(f,'Units','pixels','Visible','off'); % Made invisible by Mark
screensize=get(0,'screensize');
winsize=get(f,'Position');
winwidth=winsize(3);
winheight=winsize(4);
screenwidth=screensize(3);
screenheight=screensize(4);
winpos=[0.5*(screenwidth-winwidth),0.5*(screenheigh t-winheight),...
 winwidth,winheight];
set(f,'Position',winpos,'Visible','on'); % Made visible by Mark

% Give priority to displaying this message
drawnow;

simplify.m

function [f1, f2, f3, n] = simplify(file1, file2, f ile3)

% Simplify checks wheter file1, file2 and file3 are empty and reorders them
% so the filenames will be in the front of the vect or. n returns the number
% of non-empty filenames.

if isempty(file1)| (contains(file1, 'Browse ->>'))
 if isempty(file2)| (contains(file2, 'Browse ->> '))
 if isempty(file3)| (contains(file3, 'Browse ->>'))
 pause(0.1);
 else
 n = 1;
 file1 = file3;

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 92

 end
 else
 file1 = file2;
 if isempty(file3)| (contains(file3, 'Browse ->>'))
 n = 1;
 else
 n = 2;
 file2 = file3;
 end
 end
else
 if isempty(file2)| (contains(file2, 'Browse ->> '))
 if isempty(file3)| (contains(file3, 'Browse ->>'))
 n = 1;
 else
 n = 2;
 file2 = file3;
 end
 else
 if isempty(file3)| (contains(file3, 'Browse ->>'))
 n = 2;
 else
 n = 3;
 end
 end
end
drawnow;
f1 = file1;
f2 = file2;
f3 = file3;

turnImage.m

function New_Image = turnImage(Old_Image,factor)

% This function will turn a RGB or grayscale image Old_Image 90xfactor
% degrees. If factor is not specified, the image wi ll be turned 90 degrees.
% Old_Image has to be given in matrix form, so it h as to be read by imread.

if nargin < 2
 factor = 1;
end

 [imL imB imD] = size(Old_Image);
 if imD == 3 % In case of an RGB image
 Red = rot90(Old_Image(:,:,1),factor);
 Green = rot90(Old_Image(:,:,2),factor);
 Blue = rot90(Old_Image(:,:,3),factor);
 New_Image = zeros(imB,imL,imD,'uint8');
 New_Image(:,:,1) = Red;
 New_Image(:,:,2) = Green;
 New_Image(:,:,3) = Blue;
 elseif imD == 1 % In case of a black/white image
 New_Image = rot90(Old_Image,3);
 else
 error('Image doesn''t contain RGB or grayscale values');
 end

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 93

A.2 The receive software

errorCorrection.m

function [COR] = errorCorrection(IN)

ERR = IN;
lERR = length(ERR);
COR = -1*ones(1,(lERR/4*3));
lCOR = length(COR);

j = 0;
for i = 1:4:(lERR-3)
 address = uint32(ERR(i)); %Get the address and
 k = address + j*256; %rearrange the received
 if COR(k*3+1) == -1 %bytes in a way only the
 COR(((k*3)+1):((k*3)+3)) = ERR((i+1):(i+3)) ; %RGB values are stored on
 end %the right place of the
 if address == 255 %picture.
 j = j+1
 end
end

for i = 1:3:lCOR-2
 if COR(i) == -1
 if i<(lCOR-2)
 step = 3;
 count = 0;
 while ((i+step)<(lCOR-2)) && (COR(i+ste p) == -1) %Look for unreceived pixels.
 step = step+3;
 count = count+1;
 end
 if count == 0
 COR(i:(i+2)) = COR((i+step):(i+step +2)); %If only one pixel is missing
 else %copy the pixel next to it.
 if i ~= 1
 left = floor(count/2);
 l = left;
 right = count;
 else
 left = 0;
 right = count;
 end
 while left >= 0 %If there is more than one
 COR((i+left*3):(i+left*3+2)) = COR((i-3):(i-1)); %pixel missing the
 left = left-1; %pixel will be equal to the
 end %nearest pixel.
 while right > l
 COR((i+right*3):(i+right*3+2)) = COR((i+step):(i+step+2));
 right = right-1;
 end
 end
 else
 COR(i:i+2) = COR(i-3:i-1);
 end
 end
end

COR = uint8(COR);

% Designed code for a Repetition Code with bitwise multiplicity.
%
% if nargin < 2
% ErrorControl = 0;
% else
% ErrorControl = EC;
% end
% lERR = length(ERR);
% RX = zeros(1,3600);
% RX(1:lERR) = ERR;

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 94

%
%if ErrorControl == 0
% for i = 1:4:(length(RX)-3)
% v = (i-1)/4;
% if mod(v,2) == 0
% if RX(i) == 0
% elseif i == 1
% if RX(1) ~= 0 && RX(1) ~= 255
% if RX(2) == 0
% RX(1:end-1) = RX(2:end);
% elseif RX(2) == 255
% RX(5:end) = RX(2:end-3);
% elseif RX(3) == 0
% RX(1:end-2) = RX(3:end);
% elseif RX(3) == 255
% RX(5:end) = RX(3:end-2);
% elseif RX(4) == 0
% RX(1:end-3) = RX(4:end);
% elseif RX(4) == 255
% RX(5:end) = RX(4:end-1);
% elseif RX(5) == 0
% RX(1:end-4) = RX(5:end);
% elseif RX(5) == 255
% 'First pixel not received '
% elseif RX(6) == 0
% RX(1:end-5) = RX(5:end);
% elseif RX(5) == 255
% 'First pixel not receive d'
% elseif RX(5) == 0
% RX(1:end-4) = RX(5:end);
% elseif RX(5) == 255
% 'First pixel not receive d'
% elseif RX(5) == 0
% RX(1:end-4) = RX(5:end);
% elseif RX(5) == 255
% 'First pixel not receive d'
% end
% end
% else
% if RX(i) == 255
% RX(i+4:end) = RX(i:end-4);
% elseif RX(i -1) == 0
% RX(i:end) = RX(i-1:end-1);
% elseif RX(i-1) == 255
% RX(i+4:end) = RX(i-1:end-5);
% elseif RX(i-2) == 0
% RX(i:end) = RX(i-2:end-2);
% elseif RX(i-2) == 255
% RX(i+4:end) = RX(i-2:end-6);
% elseif RX(i-3) == 0
% RX(i:end) = RX(i-3:end-3);
% elseif RX(i-3) == 255
% RX(i+4:end) = RX(i-3:end-7);
% end
% end
% else
% if RX(i) == 255
% else
% if RX(i) == 0
% RX(i+4:end) = RX(i:end-4);
% elseif RX(i -1) == 255
% RX(i:end) = RX(i-1:end-1);
% elseif RX(i-1) == 0
% RX(i+4:end) = RX(i-1:end-5);
% elseif RX(i-2) == 255
% RX(i:end) = RX(i-2:end-2);
% elseif RX(i-2) == 0
% RX(i+4:end) = RX(i-2:end-6);
% elseif RX(i-3) == 255
% RX(i:end) = RX(i-3:end-3);
% elseif RX(i-3) == 0
% RX(i+4:end) = RX(i-3:end-7);
% end
% end
% end
% end

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 95

% else
% for i = 1:12:(length(RX)-11)
% v = (i-1)/12;
% if mod(v,2) == 0
% if RX(i:i+3) == 0
% else
% if RX(i:i+3) == 255
% if i>12 && RX(i-12) == 0
% RX(i-12:end-12) = RX(i:e nd);
% else
% RX(i:end-12) = RX(i+12:e nd);
% end
% elseif RX(i-1:i+1) == 0
% RX(i-1:end-1) = RX(1,i:end);
% elseif RX(i-1:i+1) == 255
% RX(i-1:end-1) = RX(1,i:end);
% elseif RX(i-2:i) == 0
% RX(i-2:end-2) = RX(1,i:end);
% elseif RX(i-2:i) == 255
% RX(i-2:end-2) = RX(1,i:end);
% elseif RX(i-3:i-1) == 0
% RX(i-3:end-3) = RX(1,i:end);
% elseif RX(i-3:i-1) == 255
% RX(i-3:end-3) = RX(1,i:end);
% elseif RX(i-4:i-2) == 0
% RX(i-4:end-4) = RX(1,i:end);
% elseif RX(i-4:i-2) == 255
% RX(i-4:end-4) = RX(1,i:end);
% elseif RX(i-5:i-3) == 0
% RX(i-5:end-5) = RX(1,i:end);
% elseif RX(i-5:i-3) == 255
% RX(i-5:end-5) = RX(1,i:end);
% elseif RX(i-6:i-4) == 0
% RX(i-6:end-6) = RX(1,i:end);
% elseif RX(i-6:i-4) == 255
% RX(i-6:end-6) = RX(1,i:end);
% elseif RX(i-7:i-5) == 0
% RX(i-7:end-7) = RX(1,i:end);
% elseif RX(i-7:i-5) == 255
% RX(i-7:end-7) = RX(1,i:end);
% elseif RX(i-8:i-6) == 0
% RX(i-8:end-8) = RX(1,i:end);
% elseif RX(i-8:i-6) == 255
% RX(i-8:end-8) = RX(1,i:end);
% elseif RX(i-9:i-7) == 0
% RX(i-9:end-9) = RX(1,i:end);
% elseif RX(i-9:i-7) == 255
% RX(i-9:end-9) = RX(1,i:end);
% elseif RX(i-10:i-8) == 0
% RX(i-10:end-10) = RX(1,i:end);
% elseif RX(i-10:i-8) == 255
% RX(i-10:end-10) = RX(1,i:end);
% elseif RX(i-11:i-9) == 0
% RX(i-11:end-11) = RX(1,i:end);
% elseif RX(i-11:i-9) == 255
% RX(i-11:end-11) = RX(1,i:end);
% end
% end
% else
% if RX(i:i+3) == 255
% else
% if RX(i:i+3) == 0
% if i>12 && RX(i-12) == 255
% RX(i-12:end-12) = RX(i:e nd);
% else
% RX(i:end-12) = RX(i+12:e nd);
% end
% elseif RX(i-1:i+1) == 255
% RX(i-1:end-1) = RX(1,i:end);
% elseif RX(i-1:i+1) == 0
% RX(i-1:end-1) = RX(1,i:end);
% elseif RX(i-2:i) == 255
% RX(i-2:end-2) = RX(1,i:end);
% elseif RX(i-2:i) == 0
% RX(i-2:end-2) = RX(1,i:end);
% elseif RX(i-3:i-1) == 255

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 96

% RX(i-3:end-3) = RX(1,i:end);
% elseif RX(i-3:i-1) == 0
% RX(i-3:end-3) = RX(1,i:end);
% elseif RX(i-4:i-2) == 255
% RX(i-4:end-4) = RX(1,i:end);
% elseif RX(i-4:i-2) == 0
% RX(i-4:end-4) = RX(1,i:end);
% elseif RX(i-5:i-3) == 255
% RX(i-5:end-5) = RX(1,i:end);
% elseif RX(i-5:i-3) == 0
% RX(i-5:end-5) = RX(1,i:end);
% elseif RX(i-6:i-4) == 255
% RX(i-6:end-6) = RX(1,i:end);
% elseif RX(i-6:i-4) == 0
% RX(i-6:end-6) = RX(1,i:end);
% elseif RX(i-7:i-5) == 255
% RX(i-7:end-7) = RX(1,i:end);
% elseif RX(i-7:i-5) == 0
% RX(i-7:end-7) = RX(1,i:end);
% elseif RX(i-8:i-6) == 255
% RX(i-8:end-8) = RX(1,i:end);
% elseif RX(i-8:i-6) == 0
% RX(i-8:end-8) = RX(1,i:end);
% elseif RX(i-9:i-7) == 255
% RX(i-9:end-9) = RX(1,i:end);
% elseif RX(i-9:i-7) == 0
% RX(i-9:end-9) = RX(1,i:end);
% elseif RX(i-10:i-8) == 255
% RX(i-10:end-10) = RX(1,i:end);
% elseif RX(i-10:i-8) == 0
% RX(i-10:end-10) = RX(1,i:end);
% elseif RX(i-11:i-9) == 255
% RX(i-11:end-11) = RX(1,i:end);
% elseif RX(i-11:i-9) == 0
% RX(i-11:end-11) = RX(1,i:end);
% end
% end
% end
% end
% end
%
% COR = uint8(RX);

getRGB.m

function getRGB(COL,IN)

a = 1;
c = 1;
d = 1;
for k = 1:3
 for i = k:3:(length(IN)-3+k)
 if k == 1
 r(a) = IN(i); %Get th e Red values and store in an array.
 a = a+1;
 elseif k == 2
 g(c) = IN(i); %Get th e Green values and store in an array.
 c = c+1;
 else
 b(d) = IN(i); %Get th e Blue values and store in an array.
 d = d+1;
 end
 end
end
j = 1;
for i = 1:COL:length(r)-COL+1
 R(j,:) = r(i:i+COL-1); %Combin e the retrieved R,G and B values into
 G(j,:) = g(i:i+COL-1); %a thre e dimensional RGB matrix.
 B(j,:) = b(i:i+COL-1);
 j = j+1;
end

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 97

imshow(RGB);

Receive.m

function [Received NumberGood PercentageGood Number L4Wrong PercentageL4Wrong NumberH4Wrong
PercentageH4Wrong NumberReceived] = receive(COM, Ba udrate, Number, RGBImage, Show)

%% Enable serial connection

clc;
s = serial(COM,'Baudrate',Baudrate,'inputBufferSize ', 600000); %Create a serial port with a

 %buffersize of 600000.
fopen(s); %Open the serial port.
if nargin<4 %The Show bit is optional, when left out
 show = 0; %the image will not be shown.
else
 show = Show;
end
pause(1);

%% Receiving data

 [Row Col Dep] = size(RGBImage); %The dimensions of the original Image.

b = 0;
 RX = -1*ones(1,522240); %The number of bytes that will be
received.
 j = 1;
 k = 0;
 NumberReceived = -1;
 n = 0;
 while n < 522240 %As long as there are less bytes received
 n = s.BytesAvailable; %as expected, wait for new data.
 if (n == k) && (n ~=0) %If the number of available bytes hasn't
 if b < 200 %changed for at most 200 seconds the
 b = b+1 %program will stop checking for new
 pause(1); %available data and continues with
 else %the rest of the program.
 'Error: Less bytes received'
 break;
 end

 end
 k = n;
% elseif n > 0
% r = fread(s,n);
% r = r';
% %length(r)
% %length(RX(i:n+i-1))
% RX(i:n+i-1) = r;
% i = i+n;
% r = [];
% if RX(1) == -1
% rx = fread(s,1);
% if rx(1) > 15
% while(true)
% n = s.BytesAvailable;
% if n > 2
% fread(s,3);
% break;
% else
% pause(0);
% end
% end
% else
% RX(j) = rx(1);
% j = j+1;
% end
% else
% RX(j) = fread(s,1);
% j = j+1
% end
% end

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 98

 end
 NumberReceived = j;
 RX = uint8(fread(s,n)); %Store the available bytes in
 lRX = length(RX); %RX.
 if lRX < 522240 %If the available bytes is less
 RX(lRX+1:522240) = 0; %than expected, RX is extended to
 end %the right size with zeros.

% else
% RX = -1*ones(1,2088960);
% i = 1;
% while length(RX)<2088960
% n = s.BytesAvailable;
% if n > 0
% r = fread(s,n);
% RX(i:n) = r;
% i = n;
% % RX = [RX fread(s,1)];
% elseif n == 0 && RX(1) ~= -1
% if a == 0
% t = timer('ExecutionMode','fixedRate', 'Period',1,'TimerFcn','a = a+1');
% elseif a >= 3;
% stop(t);
% delete(t);
% 'Error: Less bytes received'
% break;
% end
% end
% end
%
% RX = uint32(RX);
% lRX = length(RX);
% for i = 1:lRX/4
% for j = 1:4:(lRX-2)
% RX3(i) = RX(j)*65536 + RX(j+1)*256 + RX(j+2) + RX(j+3);
% end
% end
% lRX3 = length(RX3);
% if lRX3 ~= lRGB*4
% error('Number of received bytes are not e qual to the expected number: /nReceived
number of bytes = ' + lRX4 + '/nExpected number of bytes = ' + lRGB);
% end
% end

fclose(s); %Close the serial port.

% R = uint8(ones(1,100));
% G = uint8(ones(1,100));
% G(1:2:99) = 0;
% B = uint8(ones(1,100));
% B(2:2:100) = 0;
%
% RGB(:,:,1) = R;
% RGB(:,:,2) = G;
% RGB(:,:,3) = B;

% RGBSend(1,1:3:(300-2)) = R;
% RGBSend(1,2:3:(300-1)) = G;
% RGBSend(1,3:3:(300)) = B;
%
%
% RGBSErrControl = [];
% for i = 1:300
% [byte1 byte2 byte3] = get3bytes32(RGBSend(i)) ;
% RGBSErrControl = [RGBSErrControl byte3 byte2 byte1];
% end
%
% if ErrorControl == 0
% RX = RGBSend;
% lRX = length(RGBSend);
% else
% RX = RGBSErrControl;
% lRX = length(RGBSErrControl);
% for i = 1:3:(lRX-2)
% n = ceil(i/3);
% RX3(n) = RX(i)*65536 + RX(i+1)*256 + RX(i +2);

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 99

% end
% lRX3 = length(RX3);
% end

% RX = RECEIVED;
% lRX = length(RX);
%
% R = uint8(zeros(1,length(lRX/4*3)));
% j = 1;

try
 'Checking for errors...'
 R = errorCorrection(RX,Number); %Check for any errors and correct
 'Successfully checked' %if needed, also deletes the addresses.
catch
 Received = RX;
 NumberGood = -1;
 PercentageGood = -1;
 NumberL4Wrong = -1;
 PercentageL4Wrong = -1;
 NumberH4Wrong = -1;
 PercentageH4Wrong = -1;
 msgbox('errors in try/catch');
 return
end

% if CorrectError == 1;
% 'Correcting the errors'
% COR = errorCorrection(RX);
% for i = 1:lRX
% v = mod(i-1,4);
% if v ~= 0
% R(j) = COR(i);
% j = j + 1;
% end
% end
% else
% for i = 1:lRX
% v = mod(i-1,4);
% if v ~= 0
% R(j) = RX(i);
% j = j + 1;
% end
% end
% end

% else
% RX = errorCorrection(RX,1);
% end

lR = length(R)

%% Check the received bytes
j = 1;
RGB = [];
for i = 1:Col:((Row*Col)-Col+1)
 RGB(1,i:(i+Col-1),1) = RGBImage(j,:,1); %Reorganise the RGB values
 RGB(1,i:(i+Col-1),2) = RGBImage(j,:,2); %into a single row array.
 RGB(1,i:(i+Col-1),3) = RGBImage(j,:,3);
 j = j+1;
end

good = zeros(1,lR);
wrong = zeros(1,lR);
for k = 1:3
 for i = k:3:lR-(3-k)
 n = ceil(i/3);
 if R(i) == RGB(1,n,k)
 good(i) = good(i) + 8;
 else
 for j = 1:8
 NEControl = bitget(R(i),j);
 count = NEControl + bitget(RGB(1,n, k),j);
 if (count ~= 1)

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 100

 good(i) = good(i) + 1; %Counts the number of well
 else %received bits.
 if j < 5
 wrong(i) = wrong(i) + 1; %Counts the number of wrongly
 end %received bits.
 end
 end
 end
 end
end

% else
% result = uint8(zeros(1,lRX3));
% good = zeros(1,lRX3);
% wrong = zeros(1,lRX3);
% for i = 1:lRX3
% for j = 1:3:22
% EControl1 = bitget(RX3(i),j);
% EControl2 = bitget(RX3(i),j+1);
% EControl3 = bitget(RX3(i),j+2);
% n = ceil(j/3);
% v = round((EControl1 + EControl2 + EC ontrol3)/3);
% result(i) = bitset(result(i),n,v);
% end
% end
% for k = 1:3
% for i = k:3:lRX3-(3-k)
% n = ceil(i/3);
% if result(i) == RGB(1,n,k)
% good(i) = good(i) + 8;
% else
% for j = 1:8
% count = bitget(RGB(1,n,k),j) + bitget(result(i),j);
% if count ~= 1
% good(i) = good(i) + 1;
% else
% if j < 5
% wrong(i) = wrong(i) + 1;
% end
% end
% end
% end
% end
% end
% end

%% Result

Good = 0;
L4Wrong = 0;

for i = 1:lR
 Good = good(i) + Good;
 L4Wrong = wrong(i) + L4Wrong;
end
PercentageGood = Good / (lR*8) * 100; %Calculate the percentage of
if L4Wrong == 0 %good received bits.
 PercentageL4Wrong = 0;
else
 PercentageL4Wrong = L4Wrong / (lR*8 - Good) * 1 00; %Calculate the percentage of
end %wrongly received bits.

NumberH4Wrong = (lR*8) - Good - L4Wrong; %Number and percentage of
PercentageH4Wrong = NumberH4Wrong / (lR*8) * 100; %errors in the higer four bits.
NumberL4Wrong = L4Wrong; %Number of errors in the lower
NumberGood = Good; %four bits and the number of
 %well received bits.
Received = RX; %The original received data.

% else
% for i = 1:lRX3
% Good = good(i) + Good;

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 101

% L4Wrong = wrong(i) + L4Wrong;
% end
% PercentageGood = Good / (lRX3*8) * 100;
% if L4Wrong == 0
% PercentageL4Wrong = 0;
% else
% PercentageL4Wrong = L4Wrong / (lRX3*8 - G ood) * 100;
% end
% end

if show == 1
 getRGB(Col,R); %Create a RGB matrix and show
end

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 102

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 103

Appendix B: Tutorial programming an Arduino

B.1 How to program an Arduino Board
This paragraph is about how to set up a connection with an Arduino Board in order to upload
the designed programs which establish a USB to SPI conversion and vice versa.

B.1.1 What is needed to be able to program an Arduino Board?
Next to a programming cable and a power supply not much is needed to get started with an
Arduino Board. Arduino has a well organised internet site where everything extensively is
explained [31]. The only thing that has to be done is download the free software and you are
able to upload any program into the ATMEL168 on the Arduino Board.
 The downloaded program is an executable which means there is no need to install
anything onto your computer. Another convenience is that the software is not limited to
Windows but can also be run on Macintosh OSX and Linux operating systems.

B.1.2 The programming language of an Arduino Board
The language that is used is an implementation of Wiring which is based on the Processing
Multimedia Programming Environment. Nevertheless, the programmer is not restricted to that
specific language. Even though the Arduino language is not hard to learn when you’re already
familiar with programming languages like C/C++, VHDL or JAVA, the more experienced
programmers can also add libraries written in C++ or use the AVR-C language.

B.1.3 How to upload a program to an Arduino Board
If the program is complete and it’s ready to be uploaded a couple of settings have to be made
in order to do so. Naturally, the programming cable should be attached to the Arduino and the
computer.

Figure B.1: By clicking on the Verify button the program

will be checked for any programming flaws.

First, the program has to be Verified or Compiled which can be done by clicking on
the Verify button indicated in figure B.1. With this function all errors in the program will be
detected. The errors will be shown in the black box at the bottom of the program and will be
highlighted in the program itself. See for example the detected error in figure B.2.

The Verify button

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 104

Figure B.2: The detected error is described in red at the bottom of

 the picture and is also highlighted within the code in yellow.

Secondly, after successfully compiling the developed program the designated type of
Arduino Board has to be selected. This is done by clicking on the pull down menu Tools
where after the appropriate board can be selected in the Board menu. This is shown in figure
B.3.

Figure B.3: Selecting the right type Arduino Board.

By checking the name on the Arduino Board itself it can be determined which type of
Arduino Board has to be selected. The Arduino Board we used was a Duemilanove and is
displayed in figure B.4.

Detected error

Description detected
error

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 105

Figure B.4: The Arduino Board we used and where to check for the identification name of it. [32]

 Thirdly, the COM port has to be selected on which the Arduino Board is connected.
Finding out which one is used can be a bit more difficult. This is because the used COM port
isn’t the same on every computer. Nevertheless, go to the Control Panel, open the System
menu, click on the Device Manager button which is located in the Hardware tab and the used
COM port can be found under the Ports (COM & LPT) topic. The used port is a USB Serial
Port. An example is shown in figure B.5.

Figure B.5: Determining the COM port on which the Arduino is attached.

When the COM port is known, it can be selected in the Serial Port menu which is located in
the pull down menu Tools (See figure B.6).

The identification name
of the Arduino Board

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 106

Figure B.6: Selecting the COM port on which the Arduino is attached.

 Lastly, when all these settings are made and the program is successfully compiled it is
ready to upload to the Arduino Board. This done by simple clicking on the Upload button
indicated in the image below. When this button is pushed the program will be compiled once
more and checked for any errors. Therefore the first compilation suggested above isn’t
necessary but only recommended so no errors occur during uploading.

Figure B.7: By clicking on the Upload button the program will be

compiled and send to the Arduino Board.

Off course, the order in which the settings are made or compilation is done does not matter
and can be done arbitrary.

The Upload button

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 107

B.2 Communication program 1: Computer to Transmitter

/**
 * Pins:
 * Hardware SPI:
 * MISO -> 12
 * MOSI -> 11
 * SCK -> 13
 *
 * Configurable:
 * CE -> 8
 * CSN -> 7
 */

#include <Spi.h>
#include <mirf.h>
#include <nRF24L01.h>

 byte handshake;
 boolean shaked;
 byte data[4];
 boolean sending = false;
 byte adr[5];

void setup(){
 Serial.begin(28800);
 Serial.flush();
 handshake = 0;
 shaked = false;

 Mirf.csnPin = 7;
 Mirf.cePin = 8;
 digitalWrite(Mirf.cePin,LOW);
 Mirf.init(); // Initializ es pins to communicate with the MiRF module

 Mirf.ceLow();
 Mirf.csnLow();
 Mirf.powerUpTx();
 Mirf.csnHi();

 Mirf.csnLow(); // Pull down chip select
 Spi.transfer(FLUSH_TX); // Write cmd to flush tx fifo
 Mirf.csnHi(); // Pull up c hip select

 Mirf.channel = 80;
 Mirf.payload = 4; // Define pa yload size
 Mirf.config(); // Set paylo ad size and channel

 Mirf.configRegister(EN_AA,0x00); // Disable a uto ack
 Mirf.configRegister(EN_RXADDR,0x01); // En able only 1 pipe
 Mirf.configRegister(SETUP_RETR,0x00); // Di sable retransmission
// Mirf.setTADDR((byte *)"serv1"); // Se t target address, done with serial nowadays
 Mirf.ceLow(); // Set CE Lo w and let the transmitter wait for data

 Mirf.powerUpTx(); // Set to tr ansmitter mode and Power up

 Mirf.csnLow(); // Pull down chip select
 Spi.transfer(FLUSH_TX); // Write cmd to flush tx fifo
 Mirf.csnHi(); // Pull up c hip select

}

void loop(){
 if (shaked) {
 if (Serial.available() > 3) { // If 4 byte s have been received
 data[0] = Serial.read(); // Read inco ming bytes
 data[1] = Serial.read(); // Read inco ming bytes
 data[2] = Serial.read(); // Read inco ming bytes
 data[3] = Serial.read(); // Read inco ming bytes

 for (int i=0; i <= 4; i++){ // Sent 5 ti mes = redundancy

 while(sending){ // Wait for previous packet to be sent

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 108

 Mirf.csnLow();
 uint8_t Status = Spi.transfer(NOP); // Poll status register
 Mirf.csnHi();
 if((Status & ((1 << TX_DS)))){ // If TX_DS is high, the packet has been sent
 sending = false; // Set fla g
 Mirf.configRegister(STATUS,(1 << TX_DS) | (1 << MAX_RT));

 // Clear interrupts by writing a '1'
 }
 }

 Mirf.csnLow(); // Pull down chip select
 Spi.transfer(W_TX_PAYLOAD); // Wr ite cmd to write payload
 Mirf.transmitSync((byte *)&data,Mirf.payl oad); // Write payload
 Mirf.csnHi(); // Pull up c hip select

 Mirf.ceHi(); // Start tra nsmission
 delayMicroseconds(5);
 Mirf.ceLow();

 sending = true;

 }
 }
 }
 else {
 if (Serial.available() > 0) {
 handshake = Serial.read();
 if (handshake != 122){
 while(Serial.available() < 4) {
 }

 adr[0] = (byte)handshake;
 adr[1] = (byte)Serial.read(); // Read incoming bytes
 adr[2] = (byte)Serial.read(); // Read incoming bytes
 adr[3] = (byte)Serial.read(); // Read incoming bytes
 adr[4] = (byte)Serial.read(); // Read incoming bytes
 Mirf.writeRegister(TX_ADDR,adr,mir f_ADDR_LEN);
 shaked = true;

 }
 else {
 Serial.write(85);
 shaked = true;
 }

 }
 }
}

B.3 Communication program 2: Receiver to FPGA

/**
 * An Mirf example which copies back the data it re cives.
 *
 * Pins:
 * Hardware SPI:
 * MISO -> 12
 * MOSI -> 11
 * SCK -> 13
 *
 * Configurable:
 * CE -> 8
 * CSN -> 7
 *
 */

#include <Spi.h>
#include <mirf.h>
#include <nRF24L01.h>

int LED = 8;
uint8_t adres;

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 109

byte oud[] = {-1,-1,-1,-1,-1};

void setup(){

 Serial.begin(115200);
 Serial.flush();
 pinMode(LED,OUTPUT);

 Mirf.csnPin = 14; // Define CSN Pin
 Mirf.cePin = 15; // Define CE Pin
 Mirf.init(); // Initialise CE, CSN and SPI

 Mirf.setRADDR((byte *)"serv1"); // Set address to receive bytes

 Mirf.channel = 80;
 Mirf.payload = 4; // Define Payload size
 Mirf.config(); // Set Payload size and channel

 Mirf.configRegister(EN_AA,0x00); // Disable auto ack
 Mirf.configRegister(EN_RXADDR,0x02); // Enable only one pipe
 Mirf.configRegister(SETUP_RETR,0x00); // Disable retransmission

 adres = 0; // Set first address bit to '0'
}

void loop(){
 digitalWrite(LED,LOW);
 byte data[4]; // Buffer to store data
 if(Mirf.dataReady()){ // Wait until data is ready in the receiver

 do{

 Mirf.getData(data); // Get the data

 if ((data[0] != oud[0]) && (data[0] != oud[1]) && (data[0] != oud[2]) && (data[0] !=
oud[3]) && (data[0] != oud[4])){ // Discard redundant packets
 Serial.print(data[0]); // Send the data to the UART
 //Serial.print(" ");
 Serial.print(data[1]); // Send the data to the UART
 //Serial.print(" ");
 Serial.print(data[2]); // Send the data to the UART
 //Serial.print(" ");
 Serial.print(data[3]); // Send the data to the UART
 //Serial.print(" ");

 oud[4] = oud[3];
 oud[3] = oud[2];
 oud[2] = oud[1];
 oud[1] = oud[0];
 oud[0] = data[0];

 }
 }while(!Mirf.rxFifoEmpty()); // Cont inue reading data until the FIFO is empty
 }
}

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 110

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 111

Appendix C: Choosing a port

A computer uses ports to communicate with external devices. The transmission software will
have to write data to the port that is connected to the transmitter module. The transmission
software will have to be written in a programming language, but not every programming
language can write data easily to every port. Before choosing a programming language and
start programming the transmission software, we will have to decide which port to use to
connect to the transmitter module. The most common ports on modern computers are the
serial port, the parallel port and the Universal Serial Bus (USB), which all have their own
properties.

The first paragraph of this chapter will determine which properties are required for
this research. The second paragraph will discuss the parallel port and compare it to the
requirements. The third paragraph will cover the serial port and the USB will be discussed in
paragraph four. A fourth option is a compromise between USB and serial ports. This involves
a Virtual COM Port (VCP) and is discussed in paragraph five. Finally, paragraph six will
conclude which port is best used in this research.

C.1 Requirements

The employees of the advertisement companies will have to be able to connect the transmitter
module to their computers. This means the port we will choose needs to be present on their
computer. It is therefore of the utmost importance that our module communicates with the
computer through a port that is present on every computer (Criterion 1).

Furthermore, employees have their computers running all day and sometimes even all
night. Therefore it should be possible to connect the module to a running computer, without
needing to restart it. This is called hot-pluggable (Criterion 2).

Our final requirement comes from a programming point of view. It should not be too
difficult to write data to the port, since complicated transmission protocols and handshake
procedures are beyond the scope of this thesis (Criterion 3).

C.2 The parallel port

The parallel port was originally designed to connect printers
to a computer. It has 25 pins, from which eight are used to
send a byte of data to the external device (e.g. a printer). A
few pins are grounds, but the other pins may be used for
various tasks. The eight data pins can write eight bits (one
byte) of data at the same time (parallel). The external device
sets another pin high when the data is received, to let the
computer know that it can send the next byte of data [33].
 Communication over a parallel port is very easy to understand. There are hardly any
protocols involved when writing data over a parallel port, the computer simply sends the data
and waits for the acknowledgement. With many programming languages it is easy to write
data to it. Hot-plugging is not supported with parallel ports [34]. A parallel port is present on
most desktop computers. However, most laptops don’t have a parallel port. Using this port
would be very inconvenient for users with a laptop.

Fig. C.1: A parallel port with

25 pins. Source: Wikipedia [35]

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 112

C.3 The serial port

The serial port (also called COM port) was originally designed to connect modems to a
computer. It has nine pins, from which one is used to transmit data from the computer to an
external device and one is used for receiving data from the external device. If the computer
wants to write a byte to the external device, it will send one bit of the byte at a time. This way,
transmission takes eight times longer than with the parallel port, but the serial port is smaller
and uses fewer cables [36].

Writing data to a serial port is very easy and supported
by almost all programming languages. Almost all
desktop computers still have one or more serial ports.
Even many laptops have at least one serial port.
However, it is expected that the serial port will
disappear completely from computers within a few years.
Many new peripheral devices use USB, which will be
discussed in the next paragraph. If there are no devices
to connect with a serial port, it will be completely
replaced by USB. On top of that, hot
 plugging is not supported with serial ports [34].

C.4 The Universal Serial Bus

The Universal Serial Bus was designed to replace the
serial and parallel ports. USB creates a method of
attaching and accessing peripheral devices that reduces
overall cost, simplifies the attachment and configuration
from the end-user perspective and solves several technical
issues associated with old style peripherals [38].

The USB uses four wires, from which two are used
for data transfer and two are used for power transfer. The
two data wires are called D+ and D- (see figure C.3).
When a logical ‘1’ is written to the port, the voltage of the
D+ wire is made higher than the voltage of the D- wire. A
logical ‘0’ causes the opposite.

Even though USB uses only four pins, it is faster and more reliable than the serial and
parallel ports. This was achieved with the USB protocol. The protocol includes handshake
mechanism, timeout rules and a low control mechanism. Each packet transmitted on the bus
includes check bits and CRC protection. [39] With this protocol, a very low bit error rate is
attained. Even though this protocol makes USB superior to other interfaces, it also makes it
very complex and hard to understand.

Some of the key features that comprise the USB implementation are:

• The low cost of the port.
• Hot pluggable: Devices can be connected while the computer is running, without

requiring user intervention.
• 127 devices can be connected per USB using a hub.
• High speed communication, up to 480 MB/s.
• Peripherals can be powered directly from the cable.
• Error detection and recovery mechanisms.

Fig. C.2: A serial port with 9 pins.

Source: Ergo Canada [37]

Fig. C.3: A Universal Serial Bus.
Source: www.riccibitti.com [40]

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 113

Almost all modern computers have USB ports. Since one USB port can connect 127

devices to a computer, there is always room for another device. The devices are hot pluggable,
but the USB protocol makes writing data to the USB port very complex.

C.5 USB with Virtual COM Port

USB devices are hot pluggable and can be connected to almost every computer. But due to
the USB protocol, it is very difficult to write data to this device. A serial port is actually the
opposite of the USB: it is very easy to write data over a serial port, but it is not hot pluggable
and it is present less and less on modern computers. Combining the best properties of these
two ports would be ideal.

Combining these ports is done with software, creating a Virtual COM Port (VCP). A
driver needs to be installed on the computer to create a VCP. This driver makes the computer
think it has a device connected to a serial port (COM port), while it is actually connected to a
USB port. Data can be written to the virtual COM port. The driver will read this data and use
the USB protocol to send it to the external device. Data coming from the device can be read
trough this virtual COM port as if it was coming from a serial port. So the driver actually
combines the best properties of USB and serial ports. All the requirements are met when
using a USB with a VCP.

C.6 Comparing the ports

All information from the previous paragraphs is summarized in table C.1. This table shows
that the Universal Serial Bus should be used, in combination with drivers that create a Virtual
Com Port on the computer. That is the only way all the requirements are met. The following
chapters discuss the development of transmission software to write data to the USB port
through a VCP and the design of a transmitter module that can be connected to the USB port.

Criterions Parallel Port Serial Port USB USB with VCP

Criterion 1 yes yes yes yes

Criterion 2 no no yes yes

Criterion 3 no no no yes

Table C.1: Comparing the ports using the criteria from §3.1

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 114

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 115

Appendix D: Correspondence about cursor behaviour in edit text

Dear Mr. de Jong,

I've verified this behavior with our development team.
This is an expected behavior. When modifying a string field of and Edit graphic object the
cursor is placed at the beginning of the string:

h = uicontrol('Style','Edit');
uicontrol(h)

%Manually write
%%
set(h,'string','MATLAB')

This changed from R2007b and has been maintained in all following releases. Unfortunately
at this time there's no way to control the cursor position and then there are no workarounds.

From your request I've opened two requests to our development team. A first request is asking
to enable a direct control of the cursor position in the edit field. In this way you should be able
to control the actual position of the cursor directly from code. A second request is demanding
to document the current cursor behavior in product documentation. The development of new
features is directly managed from our development team so I'm not able to know how much
time his may require.

Please let me know if you need any clarification.

Sincerely,

Davide Ferraro
MathWorks

[THREAD ID: 1-CXRPV2]

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 116

Design of a wireless data transmission system M.D. de Jong
 C.J. Kruit

 117

Appendix E: Enquiries

