TUDelft

Ensemble Techniques for DFA Learning
DFA Ensembles without Suitability Metrics

Georgios Tsampikos Kontos!
Supervisor(s): Sicco Verwer!, Simon Dieck!
IEEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 15, 2025

Name of the student: Georgios Tsampikos Kontos
Final project course: CSE3000 Research Project
Thesis committee: Sicco Verwer, Simon Dieck, Merve Gurel

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Deterministic Finite Automata (DFAs) are interpretable classification models, typi-
cally learned through merging states of a large tree-like automaton, an Augmented
Prefix Tree Acceptor (APTA), according to heuristic suitability metrics. This paper
introduces an ensembling approach for DFAs that does not depend on such heuristics.
Starting from the APTA, we construct diverse automata by applying randomized se-
quences of state merges, while avoiding repetition of merges whenever possible. We also
propose a novel graph-connectivity-based metric for inter-model variety. Experimental
results on the STAMINA competition datasets yield improved predictive performance
compared to models learned using state-of-the-art heuristics on sparse datasets, as well
as a tight connection between inter-model variety and performance.

1 Introduction

Deterministic Finite Automata (DFAs) and their variants are interpretable models that can
be utilized for classification and prediction purposes. Originating from the theory of com-
putation [1], DFAs have several applications [2] in engineering advancements. For example,
finite automata have previously been used for cybersecurity protocol analysis in the case of
HTTP [3] and in lexical representation [4] for natural language processing.

The standard passive learning approach to DFA learning [5] involves building a tree-structured
automaton from the data, and then merging suitable states to simplify the automaton.
Heuristic rules determine the best merges to apply. The rules could either be specific to the
domain of state merging, like Evidence-Driven State Merging (EDSM) [6], or well-established
statistical rules like the Akaike Information Criterion (AIC) [7]. While heuristics have proved
very effective, they are also prone to overfitting on the training data.

Given the broad applicability of DFAs, improving their performance and generalization is
of great interest from a scientific standpoint. This motivates the exploration of ensemble
learning approaches, which have been more successful than traditional models in dealing with
imbalanced and noisy data [8]. In this paper, we investigate the construction of ensembles
of DFAs that do not employ any suitability heuristic. Instead of creating a single automaton
by selecting the "best" merge at every step, we aim to construct multiple diverse automata
by randomly merging states. A similar algorithm has been developed for another type of
interpretable model, decision trees, in the form of Extremely Randomized Trees [9].

We construct ensembles of DFAs by applying different merges on the automata from the
early stages and exploring as many diverse sequences of merges as possible. We also examine
the effect of imposing a uniqueness constraint on the merges applied to each automaton,
where the same two states are not allowed to be merged in the construction of several
DFAs. Furthermore, we introduce a new metric for inter-model variety by constructing a
weighted graph from prediction outputs and evaluating the strength of connections between
its vertices. The predictive performance and model diversity of the proposed algorithms are
evaluated on datasets of various sparsity levels.

Section 2 introduces the main concepts of DFA learning and the problem formulation. Our
novel ensemble algorithm is presented in section 3. The conducted experiments and their
results are displayed in section 4. Section 5 discusses the experiment outcomes. Section 6
concludes the contribution of this paper.



2 Background and Problem Formulation

This section provides the necessary background for understanding the problem tackled in
this paper. Subsection 2.1 formally defines DFAs and the standard approach to learning a
DFA from data. Finally, subsection 2.2 presents the issue of a random ensemble for DFA
learning.

2.1 Learning Deterministic Finite Automata

A DFA is a machine that, given a string of input symbols, processes the string one symbol
at a time by transitioning within a finite set of states, and determines whether to accept the
string by the final state. More formally:

Definition 1. [10] A Deterministic Finite Automata (DFA) is a 5-tuple (Q,X, 9, qo, F),
where:

e ( is the finite set of states,

> is the finite set of symbols the automation understands, called the alphabet,

6:Q x X — @ is the transition function,

qo € @ is the initial state,

o [ C (Q is the set of accept states.

SO0

%O. \tf

) 3-state DFA ) Prefix Tree

Figure 1: (a) A simple 3-state DFA. In this example, Q@ = {qo0,¢1,¢2} and ¥ = {0,1}.
The starting state, gg, is noted by a plain incoming arrow. The set of accepting states is
the singleton F' = {q1}, and a double circle denotes every accepting state. The transition
function, 4§, is given by the arrows and their labels. (b) An example of an augmented prefix
tree acceptor. A set of positive samples that would generate this APTA is {011,010,11}.
In this APTA, states ¢4 and ¢g could be merged.

The common (passive) approach to learning a DFA from data begins with building a tree-
shaped automaton. An example of such a DFA is shown in Figure 1b. This tree-shaped
DFA can be defined as follows:

Definition 2. [11] An Augmented Prefix Tree Acceptor (APTA) is a DFA such that the
computations of two strings, s and s', reach the same state q if and only if the two strings
share the same prefiz until they reach q.



APTAs are considered augmented because they may contain states that are yet unknown
whether they are accepting or rejecting. After the APTA is constructed, its states are
merged iteratively until no merge is possible, to identify a smaller DFA. Following the red-
blue framework, every state of the APTA is colored either red or blue. There are two types
of operations: merging a red state with a blue state and upgrading a blue state to a red state.
Two states, p and ¢, can only be combined into one if they are consistent; if p is accepting
and ¢ is rejecting, or vice versa, the merge is not possible. Different heuristics, including
Evidence-Driven State Merging (EDSM) [6] and Alergia [12], can be used to determine
which operations are most suitable. For the remainder of this paper, we refer to both types
of operations (merging two states or changing the color of a state) as merges.

2.2 Problem Statement

In this paper, we propose an ensemble approach to DFA learning that operates without
relying on suitability heuristics. After constructing the APTA A from the (training) data,
we generate multiple DFAs by applying different sequences of merges to A until no more
merges are possible. Because no heuristic is used to guide the merge selection, all valid
merges are considered equally reasonable.

While the individual DFAs produced by this ensemble method are expected to underper-
form in comparison to automata learned using state-of-the-art heuristics, the ensemble may
benefit from the increased diversity among its members. The inter-model variety can be
leveraged through prediction aggregation methods, such as the majority vote.

The premise of our approach is that diversity among models can lead to better generalization,
particularly in scenarios where the training data is sparse. In such settings, models guided
by heuristics are prone to overfitting and can result in poor predictive performance. By
contrast, an ensemble of DFAs can capture a broader range of patterns, thereby reducing
systematic errors and enhancing robustness.

3 Ensembling by Randomized State Merging

The contributions of this work are presented in this section. Subsection 3.1 explains the
trivial approach of creating randomized DFAs independently. An auxiliary data structure
used for controlling merge sequences is defined in subsection 3.2. In subsection 3.3, an
ensemble algorithm that balances how many DFAs repeat the same merges is introduced.
Subsection 3.4 demonstrates how this approach can be modified to avoid merging the same
states in different ensembles.

3.1 Independent Merge Sampling

The most straightforward approach to constructing an ensemble for DFAs is to perform
thoroughly and independently random sequences of merges. Starting from the initial APTA
A, at each step a merge is drawn uniformly at random and applied, until there are no more
possible merges. This procedure is repeated independently to produce the desired number
of DFAs.

Compared to more involved approaches, this method is efficient and straightforward. It
places no assumptions on which merges are likely to be beneficial. However, the merge
sequences for each DFA are chosen independently, meaning that inter-model variety is not



Figure 2: Visualization of independent merge sampling for creating two DFAs. The original
APTA A is depicted in the leftmost DFA. The merges selected for the first DFA are shown
in yellow, and the merges selected for the second DFA are shown in green.

encouraged in any way. As such, this algorithm serves as a reference point for assessing the
impact of inter-model variety on the ensemble’s performance.

3.2 Merge Trees: A Data Structure for Managing Merge Sequences

While iterative DFA construction is well-suited for independent merge sampling, it poses
significant challenges when attempting to enhance the ensemble’s inter-model variety. De-
signing each new DFA to be as diverse as possible from those already in the ensemble is
an inherently difficult task. In intermediate steps, automata still contain redundant states,
making comparisons with entirely constructed DFAs skewed and uninformative. The alter-
native approach of constructing entire terminal DFAs at each iteration and evaluating their
similarity with the models already in the ensemble would require executing complete merge
sequences repeatedly, resulting in very high computational complexity.

To design more structured ensemble methods that aim to maximize the inter-model variety,
a systematic way to track and organize merge selections is required. We introduce the merge
tree, a tree-like data structure that compactly represents merge sequences from the original
APTA and remembers which DFAs of the ensemble have applied each merge. Merge trees
are formally described by the following definition:

Definition 3. A merge tree T is a rooted tree that encodes sequences of state merges per-
formed to construct finite automata from an APTA A. Fach node in T corresponds to a
partial sequence of merges, representing an (intermediate) automaton. FEach edge from a
parent to a child is labeled by the merge operation that transforms the parent’s DFA into the
child’s DFA. The root corresponds to the initial automaton A. The children of each node
correspond to the DFAs obtainable by a single feasible merge from the DFA associated with
the parent node.

Maintaining a merge tree enables efficient and incremental exploration of merge sequences.
Prefixes of merge sequences can be reused to reduce redundancy. Rather than constructing



(@0 (aro)

(ar.as) (@) (@4)

Figure 3: (Partial) merge tree. The levels of the tree are presented left to right, with the
leftmost node being the root. Here, the original APTA is the same as that of Figure 2. Every
edge of the tree is labeled with the corresponding pair of states that should be merged to
transition to the child state from its parent state.

DFAs sequentially, we can build multiple automata in parallel by making shared interme-
diate decisions. A thorough exploration of the tree ensures that only essential merges are
performed, thereby avoiding unnecessary computation. The task of constructing an ensem-
ble with high inter-model variety reduces to the problem of selecting diverse leaves of the
merge tree.

3.3 Balanced Merge Tree Exploration

Using the previously described merge tree data structure, we can construct an ensemble of
n automata by exploring different branches in a balanced manner. The core idea of the
Balanced Merge Tree Exploration (BMTE) algorithm is to encourage structural diversity by
selecting different merge paths for different automata.

We build all the automata of the ensemble by performing a level exploration of the merge
tree. The tree is explored depth-first, so that reverting merges, which for deep trees increase
the computational complexity, are avoided whenever possible. Every visited node maintains
a set of DFAs that have followed the corresponding sequence of merges (the path from the
root to the node). We say that those automata are live on the node. Naturally, all n
automata are live on the root. We call visited nodes that are assigned at least one DFA
selected, and visited nodes that are not assigned any automata skipped.

The algorithm maintains a stack of selected nodes and processes them sequentially. Initially,
the stack only contains the root. If the node in hand is a leaf, it is added to the ensemble. If
it is an inner node, the algorithm allocates all the live DFAs of the node along its children.
The allocation is randomized, but it seeks to distribute the live DFAs evenly across the
children, covering as many branches of the merge tree as possible. An example of such an
allocation is shown in Figure 4. Once the allocation is complete, all selected children are
added to the stack. This algorithm continues until n DFAs are added to the ensemble.

In theory, an unfortunate allocation may lead to live DFAs arriving at the same leaf. In
that case, only one of those DFAs would be added to the ensemble, and hence, the desired
number of automata will not be reached. We can bypass this process by retrieving the nodes



01.234567,89.10

~—
0126910 ‘
_—— T _— B
06 110 29 37 458
L

ofiolcfalafio

Figure 4: An example of a balanced allocation. The 11 DFAs that are live in the root are
distributed across its two children, so that the left child receives 6 DFAs and the right child
receives 5. The same logic is followed for the rest of the nodes. The rightmost node of
the third level has three live DFAs (4, 5, and 8) and four children. As a result, one of the
children (third from left to right) is skipped.

of the merge tree that were skipped during allocation and performing a random walk until
we reach the leaves. In practice, this situation is improbable.

If the original APTA has m states, then the number of possible state merges is bounded
by O(m?), as there exist m(m — 1) pairs of distinct states. This implies that to reach
a terminal DFA from the APTA, at most O(m?) must be performed. If a merge can be
performed and reverted in O(k) time, then the theoretical time complexity of the BMTE
algorithm is O(nm?k). In practice, backtracking branches of the merge tree allows us to
reduce the number of merges we apply and revert.

3.4 Repeated Merges and Branch Pruning

The BMTE approach is designed to cover a wide variety of merge sequences by encouraging
divergence among the DFAs in merge sequences from the early stages of the merge pro-
cess. However, a key limitation is that identical merges can still occur in different levels of
branches, leading to structural similarities between the DFAs. This can, in some cases, re-
duce the inter-model variety, as structural similarities may be related to language similarities
[13].

For example, let node ¢ have three live DFAs, 0,1,2, and two feasible merges, a and b,
resulting in child nodes ¢, and ¢, respectively. The algorithm might assign DFA 0 to ¢,
and DFAs 1 and 2 to ¢,. If merge a is also feasible at ¢, one of the DFAs from ¢, might be
allocated to the corresponding child, ¢;,. Although the DFAs corresponding to ¢, and ¢y,
follow different merge sequences and hence are not identical, they may exhibit structural
overlap, since they both include the merge a in their merge sequence. This undermines the
inter-model variety of the ensemble by increasing the likelihood of similar automata being
constructed.

To address this issue, we maintain a global memory of previously performed merges. When-
ever a DFA is added to the ensemble, we add all the merges in its merge sequence to the
memory. Then, before allocating the live selections of a selected node to its children, we
examine the merges that lead to those children. If a child’s defining merge is already present
in the memory, we prune the child, eliminating it from the allocation process.

In the latter stages of the algorithm, when the memory becomes large, it is possible that all
of the children of a selected node are pruned. In that case, a dead end occurs; we cannot
allocate the live DFAs to the children without repeating some merges. Instead, we maintain
a set of DFAs that reach dead ends, and whenever a child of a selected node is skipped, we



assign it one of these DFAs. The process is detailed in Algorithm 1. The theoretical time
complexity has the same asymptotic bound as BMTE, namely O(nm?2k).

Algorithm 1: Balanced Merge Tree Exploration with Branch Pruning
Input: An APTA A and number of estimators n
Output: A list £ of n DFAs

1 Initialize: € « [ ], memory <« (), afloat «+ [ |;

2 Create root node with n DFAs; push it onto stack next_nodes;

3 Set is_reset < FALSE, prev_node < None;

4 while nezt_nodes not empty and |€| < n do

5 node < pop from next_nodes;

6 if is_reset then

7 L Undo merges of prev_node on A; apply merges of node;
else

L Apply node .merge to A;

10 Initialize children of node; prune those with merges in memory;

11 if node is a leaf then

12 ‘ Add merges in node.sequence to memory; add DFA to &;

13 else

14 if all children pruned then

15 ‘ Add DFAs in node.1live to afloat;

16 else

17 Allocate live DFAs to children; push selected children to next_nodes;
18 if afloat not empty then

19 L Allocate afloat DFAs to skipped children; push them to next_nodes;

20 Set is_reset < TRUE; prev_node < node;

21 return &

4 Experimental Setup and Results

This section documents the experiments conducted to assess the effectiveness of the pro-
posed methods. Subsection 4.1 details the experimental setup, including the data and
computational environment used to run the experiments. The metrics used to quantify the
performance and model diversity of the proposed algorithm are described in subsection 4.2.
The results are presented and analyzed in subsection 4.3.

4.1 Experimental Setup

To evaluate the effectiveness and performance of the balanced exploration algorithm pro-
posed in subsection 3.3 and its pruning variant proposed in subsection 3.4, we compare
them against two baseline methods. The first is an isolated DFA constructed by EDSM [6],
a state-of-the-art heuristic for state merging, which uses positive and negative samples to
examine state equivalence by separating states into two groups (blue and red states). The
second approach is the random walk method for DFA ensembling, described in subsection



3.1, which ensembles DFAs without coordination. For all methods, the ensemble size is set
to 100 estimators. Given the inherited randomness of the ensemble algorithms, we repeated
each experiment 10 times and averaged the results.

Our experiments are conducted on 20 independent datasets derived from the STAMINA
competition [14]. These datasets are generated by state machines that represent software
models. The varying sparsity (ratio of positive samples), alphabet, and sample size of these
datasets make them a reliable benchmark suite for DFA inference. We split each set into a
training and test with an 80/20 proportion, maintaining the sparsity of the original dataset.
The training sets are used to construct the DFAs and ensembles, while the test sets are
reserved exclusively for evaluation.

All experiments are conducted using FlexFringe [15], a C++ framework for learning finite
state machines from data. FlexFringe includes a built-in implementation of the EDSM algo-
rithm, which can be used directly. Both ensemble approaches are implemented as extensions
to FlexFringe as part of this paper.

The experiments were conducted in the Delft Blue supercomputer [16], utilizing 12 comput-
ing cores with 3 GB of memory allocated to each core.

4.2 Evaluation Metrics

We evaluate the ensemble methods in terms of both predictive performance and inter-model
diversity. In other words, we are not only interested in how accurate the aggregate pre-
dictions of an ensemble are, but also in how much the predictions of each automaton in
the ensemble differ. In this subsection, we summarize the metrics used to quantify these
attributes.

In the context of recognizing the outputs of an automaton, positive and negative samples
do not have specific meanings. We can measure how effective an algorithm is in capturing
true positive and true negative samples by the sensitivity and specificity metrics:

TP TN (1)
TP+ FN’ TN + FP
The average of the sensitivity and specificity gives us the balanced accuracy, which is a
performance metric suitable for imbalanced classification tasks:

Sensitivity = Specificity =

Sensitivity 4+ Specificity

Balanced Accuracy = 5

2)

Inter-model variety measures are not as well-established as predictive performance metrics.
One way to quantify the similarity between two automata is by calculating how often they
wrongly agree. The double fault ratio captures the common mistakes between a pair of
automata. For two DFAs A and B, the double fault ratio is defined as:

Double Fault 4 j; — [Misclassified 4 ]r\wf Misclassified g| 3)

where N is the sample size, a high double fault ratio indicates not only that the two DFAs
are correlated, but that they also harm the overall performance of the ensemble.

We can measure how much the models in the ensemble agree on a single sample by calculating
the entropy for that sample. For a data point x, the entropy can be calculated as:

Entropy(x) = —Paccept (.’L‘) 10g Paccept (:17) — Preject (CL‘) 10g Preject (-T> (4)



where paccept (), Preject () are the ratios of models in the ensemble that accept or reject the
sample. High entropy indicates greater disagreement on the given point.

Neither of the above metrics provides a comprehensive view of the entire ensemble’s diversity
across a whole dataset. To this end, we introduce a global measure of the ensemble’s
coherence, which we define as follows:

Definition 4. Given an ensemble £, construct a weighted graph G = (V, E,w), in which
each vertexr represents a model of the ensemble and each edge is weighted by the fraction
of predictions on which the connected models agree. The agreement connectivity of the
ensemble is defined as the algebraic connectivity[17] of G. We use the notation «(E).

The algebraic connectivity of a graph G reflects how connected the graph is. It can be calcu-
lated as the second smallest eigenvalue of the Laplacian matrix of G, Lg, where the Laplacian
is the difference between the weighted diagonal degree matrix, Dg and the weighted adja-
cency matrix, Ag: Lg = Dg—Ag. The agreement connectivity for an ensemble & of n models
satisfies 0 < a(€) < n, based on lower and upper bounds of the algebraic connectivity of a
connected graph [18].

Algebraic connectivity has previously been used in network analysis [19] to determine how
difficult it is for the network to be broken down into independent components. Similarly,
agreement connectivity measures how difficult it is to partition the ensemble into groups
of models that behave differently. If an ensemble has high agreement connectivity, all its
models agree with each other to a large extent. On the other hand, models in an ensemble
with low agreement connectivity often deviate from the consensus.

4.3 Experimental Results

The construction of ensembles requires significantly more computation than building a sin-
gleton DFA using EDSM. Ensemble construction by random walk and balanced merge tree
exploration requires approximately the same computational resources as the complexity of
allocating the live DFAs across the children is negligible. In practice, the introduction of
pruning results in a significant improvement in runtime, despite the two algorithms having
the same asymptotic bounds, as the latter DFAs are constructed very quickly due to the
limited number of merge options. The standard deviation of the balanced accuracy across
the various iterations of the experiments barely exceeds 0.06, suggesting robust results.

Figure 5 presents the balanced accuracy scores of the various algorithms for each dataset.
Figures 6, 7, and 8 show the inter-model variety scores of the ensembles. The datasets
are plotted in increasing density. A complete view of the evaluation metrics is available in
Appendix A.

In terms of predictive accuracy (Figure 5, BMTE and random walk ensembles perform the
best on the majority of datasets. For inter-model variety, BMTE and random walk also
outperform pruning BMTE across all metrics, while achieving near identical results with
one another.

5 Discussion

The experimental findings show that ensemble-based approaches to DFA learning achieve
comparable performance to heuristically learned DFAs. Ensembles appear to outperform



104 —#— EDSM

—e— Random Walk

—e— Balanced Merge Tree Exploration (BMTE)
BMTE-+Pruning

0.9

e
3

Balaned Accuracy
o
2

e
Y

0.5 1 J

0.4

0375 0.400 0.425 0.450 0.475 0500 0525 0550 0575
Density

Figure 5: Balanced Accuracy

automata learned by EDSM in imbalanced and sparse datasets, where the evidence-driven
strategy of EDSM fails to generalize. In those cases, ensembles excel by aggregating pre-
dictions from diverse automata, thereby recovering more true positives, which translates
to better balanced accuracy scores, as shown in Figure 5. However, EDSM maintains an
edge for denser datasets, approaching near-perfect accuracy in some cases. Overall, en-
semble methods generalize better than EDSM and avoid overfitting; still, they are more
computationally intense as they examine a vast amount of possible merges.

The results also show that different ensemble methods vary in effectiveness and robustness.
The Random Walk ensembles and the BMTE algorithm consistently outperform the BMTE
pruning variant. For sparser datasets, the random walk ensemble performs the best on
average, while it produces near identical results with BMTE for denser inputs. The balanced
allocation of automata across different merges restricts the effect of noisy models on the
overall performance by ensuring that only a limited number of DFAs follow the same merges.
This results in more robust predictions, as the balanced accuracy scores of BMTE exhibit a
lower standard deviation. In contrast, the independent construction of DFAs in the random
walk ensemble can result in near-duplicate models, particularly when a small number of
feasible merges is available in the early steps. The extreme randomness and independence
of DFAs learned by this method also increase the volatility of the algorithm. Furthermore,
while BMTE with pruning outperforms the baseline for sparser inputs, it fails to generalize
as well as the other two approaches in denser datasets.

A key insight from our findings is that ensemble performance is tightly linked to the inter-
model variety. BMTE and random walk ensembles outperform the pruning version of BMTE
across all inter-model variety metrics and also consistently achieve better predictive perfor-
mance. The agreement connectivity and double fault metrics, particularly for BMTE with
branch pruning, indicate that ensembles with strongly agreeing automata make many of the
same mistakes, leading to lower generalization and worse predictions. The ensembles that
perform better are those that include diverse automata, which all capture different patterns
from the training inputs.

Even though the pruning augmentation of BMTE appears to enhance diversity by eliminat-

10



—&— Random Walk
1 —e— Balanced Merge Tree Exploration (BMTE)
0.8 BMTE+Pruning

o o ° o
e I Y 3

Double Fault Ratio (Pairwise Average)

°
@

0.2

0.1+

0375 0.400 0.425 0.450 0.475 0500 0525 0550 0575
Density

Figure 6: Double Fault Ratio

ing repeated merges and pushing the ensemble to explore distinct refinements to the original
automaton, our results reveal the opposite: pruning harms the diversity of the prediction,
especially in terms of entropy. This counterintuitive observation demonstrates the distinc-
tion between structural and behavioral diversity. Pruning might avoid identical merges, but
it does not guarantee a difference in behavior on unseen data. Additionally, the aggressive
pruning mechanism may prematurely cut off the high variance of the merge tree. The re-
curring appearance of merges at different levels of the merge tree could also suggest their
increased impact on the DFA’s performance. As a result, pruning constructs ensembles that
not only tend to agree but also fail together quite often.

6 Conclusions and Future Work

This paper presents an ensembling technique for DFA learning that does not rely on merge
suitability heuristics. Starting from the Augmented Prefix Tree Acceptor (APTA) originally
learned from the data, our algorithm organizes the space of automata reachable from the
APTA in a merge tree, a hierarchical structure where every transition corresponds to a
merge of states. The different sequences of state merges that result in the other models in
the ensemble are selected such that as many branches of the tree as possible are explored. A
modification of the algorithm, which prevents the same merge being performed in different
stages by pruning branches of the merge tree, is also proposed.

Moreover, we also introduce a new global metric for the inter-model variety of ensemble
classifiers, agreement connectivity, which constructs a graph that details how strongly every
pair of models in the ensemble agree. We define the agreement connectivity of an ensemble
as the algebraic connectivity of the corresponding graph, which measures how strongly
connected its vertices are, and hence, how often the ensemble is close to a consensus. The
lower the value of the agreement connectivity, which is always non-negative, the greater the
diversity across the automata of the ensemble.

Our experimental studies suggest that the proposed algorithm outperforms the state-of-

11



104

0.8 4

0.6 4

—&— Random Walk
—e— Balanced Merge Tree Exploration (BMTE)
BMTE-+Pruning

Entropy

0.4

0.2

0.0 4

0375 0.400 0.425 0.450 0.475 0500 0525 0550 0575
Density

Figure 7: Prediction Entropy

the-art suitability heuristics in sparse inputs, while achieving comparable performance in
terms of balanced accuracy in denser datasets. These results support that random walk and
balanced merge tree exploration ensembles generalize better than individual heuristically
learned models, which are more prone to overfitting on biased training data, and models
that prune branches of the merge tree, which hinder inter-model variety.

—e— Random Walk

—e— Balanced Merge Tree Exploration (BMTE)
BMTE+Pruning

£

Agreement Connectivity
= @
3 8

=3
3

% — ¢ "

0375 0.400 0.425 0.450 0.475 0500 0.525 0550 0575
Density

Figure 8: Agreement Connectivity

In the future, our ensemble algorithm may apply to probabilistic variants of deterministic
automata (PDFAs), which are theoretically complex but have more real-world applications.
The balanced tree exploration can combine with suitability heuristics to balance exploration
and exploitation in the merge tree. Additionally, the agreement connectivity metric could
extend to regression problems by modifying the graph’s weight function.

12



Responsible Research

Ethical Considerations

As with all data-driven algorithms, there exists the danger of misusing automata. If the
proposed algorithms are used in sensitive domains, such as behavior prediction or inference
of personal data, they can lead to unethical and malicious programs for surveillance or
manipulation. While machine learning models capture patterns and make predictions based
on the analytical representations of their inputs, the danger of misuse lies in the applications
to which they are put.

Ensembling automata also hinders the overall interpretability of the aggregated predictions.
For a single DFA, it is easy to understand its structure and the reasons it accepts or rejects
strings. On the other hand, large ensembles contain many automata with varying struc-
tures and diverse predictions. The introduction of multiple models and randomness makes
interpretations of the algorithm’s outcomes significantly more complicated.

Data Availability and Experiment Reproducibility

The research for this paper has been conducted in adherence with the principles of respon-
sible and reproducible research. The data, code, and results used or generated in this study
are structured and shared in a transparent and reusable manner.

The code of this research is built on the FlexFringe framework, which is publicly available
on GitHub. This repository also includes the datasets from the STAMINA competition that
are used in the experiments of section 4. These datasets are synthetically generated and do
not originate from real-world data, eliminating privacy concerns.

The modifications to FlexFringe that incorporate the algorithms proposed in this paper are
available here. The replication of this work is ensured by sharing the complete experimental
pipeline. Apart from the boilerplate FlexFringe code, this repository includes:

e an implementation of the newly introduced data structures and ensemble algorithms.

dataset splits into training and test sets.

a Jupyter notebook used to generate these splits.

the DFA ensembles generated during the experiments.

predictions of each ensemble on the corresponding test sets.

a Jupyter notebook used for performance evaluation.

scripts for running experiments across the datasets and submitting jobs to DelftBlue.

References

[1] M. Sipser, Introduction to the Theory of Computation. International Thomson Publish-
ing, 1st ed., 1996.

[2] E. Gribkoff, “Applications of deterministic finite automata,” UC' Dawis, pp. 1-9, 2013.

13


https://github.com/tudelft-cda-lab/FlexFringe
https://github.com/GeorgeKontos14/FlexFringe

13l

4]

[5]
(6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K. L. Ingham, A. Somayaji, J. Burge, and S. Forrest, “Learning dfa representations of
http for protecting web applications,” Computer Networks, vol. 51, no. 5, pp. 1239-1255,
2007.

M. Gross, “The use of finite automata in the lexical representation of natural language,”
in LITP Spring School on Theoretical Computer Science, pp. 34-50, Springer, 1987.

K. P. Murphy, “Passively learning finite automata,” tech. rep., 1996.

K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of the abbadingo one dfa learn-
ing competition and a new evidence-driven state merging algorithm,” in International
Colloguium on Grammatical Inference, pp. 1-12, Springer, 1998.

H. Akaike, “Akaike information criterion,” in International encyclopedia of statistical
science, pp. 25-25, Springer, 2011.

X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble learning,” Frontiers
of Computer Science, vol. 14, pp. 241-258, 2020.

P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Machine learning,
vol. 63, pp. 3—42, 2006.

M. O. Rabin and D. Scott, “Finite automata and their decision problems,” IBM journal
of research and development, vol. 3, no. 2, pp. 114-125, 1959.

M. J. Heule and S. Verwer, “Exact dfa identification using sat solvers,” in Grammatical
Inference: Theoretical Results and Applications: 10th International Colloquium, ICGI
2010, Valencia, Spain, September 13-16, 2010. Proceedings 10, pp. 66-79, Springer,
2010.

R. C. Carrasco and J. Oncina, “Learning stochastic regular grammars by means of
a state merging method,” in International Colloquium on Grammatical Inference,
pp. 139-152, Springer, 1994.

P. Grachev, R. Bezborodov, I. Smetannikov, and A. Filchenkov, “Exploring the relation-
ship between the structural and the actual similarities of automata,” in Proceedings of
the 3rd International Conference on Machine Learning and Soft Computing, pp. 81-86,
2019.

N. Walkinshaw, B. Lambeau, C. Damas, K. Bogdanov, and P. Dupont, “Stamina: a
competition to encourage the development and assessment of software model inference
techniques,” Empirical software engineering, vol. 18, no. 4, pp. 791-824, 2013.

S. Verwer and C. A. Hammerschmidt, “Flexfringe: a passive automaton learning pack-
age,” in 2017 IEEE international conference on software maintenance and evolution
(ICSME), pp. 638-642, IEEE, 2017.

Delft High Performance Computing Centre (DHPC), “DelftBlue Supercomputer (Phase
2).” https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2, 2024.

M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak mathematical journal,
vol. 23, no. 2, pp. 298-305, 1973.

14


https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2

[18] D. Spielman, “Spectral graph theory,” Combinatorial scientific computing, vol. 18,

no. 18, 2012.

[19] A. Jamakovic and P. Van Mieghem, “On the robustness of complex networks by us-
ing the algebraic connectivity,” in International conference on research in networking,
pp- 183-194, Springer, 2008.

A Detailed Results

Tables 1, 2, and 3 show statistics for the sensitivity, specificity, and balanced accuracy of
the different algorithms, respectively. Tables 4, 5, and 6 show statistics for the inter-model
variety metrics of the ensembles. EDSM-learned DFAs are excluded from these tables, as
they are stand-alone models, not ensembles.

Table 1: Sensitivity

Dataset | EDSM | Random Walk BMTE BMTE + Pruning

Mean S.D. | Mean S.D. | Mean S.D.
1 0.940 | 0.926 0.017 | 0.906 0.030 | 0.740 0.064
2 0.973 | 0.898 0.007 | 0.897 0.013 | 0.739 0.070
3 0.965 | 0.986 0.003 | 0.981 0.005 | 0.841 0.078
4 0.977 | 0.932 0.014 | 0.950 0.024 | 0.710 0.059
5 1.000 | 0.890 0.013 | 0.853 0.018 | 0.664 0.065
6 0.529 | 0.628 0.024 | 0.591 0.011 | 0.556 0.031
7 0.457 | 0.712  0.042 | 0.649 0.054 | 0.490 0.036
8 0.584 | 0.734 0.039 | 0.691 0.047 | 0.535 0.046
9 0.964 | 0.888 0.008 | 0.906 0.030 | 0.784 0.136
10 0.846 | 0.771 0.025 | 0.746 0.051 | 0.609 0.049
11 0.619 | 0.723 0.016 | 0.714 0.055 | 0.598 0.021
12 0.303 | 0.467 0.069 | 0.472 0.056 | 0.391 0.047
13 0.443 | 0.631 0.074 | 0.629 0.037 | 0.477 0.036
14 0.520 | 0.561 0.026 | 0.558 0.023 | 0.497 0.035
15 0.545 | 0.586 0.049 | 0.595 0.022 | 0.554 0.036
16 0.381 | 0.749 0.142 | 0.551 0.093 | 0.459 0.110
17 0.463 | 0.512 0.041 | 0.568 0.026 | 0.513 0.060
18 0.545 | 0.645 0.033 | 0.622 0.027 | 0.561 0.049
19 0.531 | 0.572 0.038 | 0.592 0.084 | 0.536 0.055
20 0.618 | 0.587 0.022 | 0.611 0.019 | 0.573 0.068

Table 2: Specificity
Dataset | EDSM | Random Walk BMTE BMTE + Pruning

Mean  S.D. Mean S.D. | Mean S.D.
1 0.957 | 0.966 0.006 | 0.946 0.019 | 0.759 0.058
2 0.985 | 0.946 0.007 | 0.946 0.008 | 0.697 0.083

15

Continued on next page



Dataset | EDSM | Random Walk BMTE BMTE + Pruning
Mean S.D. | Mean S.D. | Mean S.D.
3 0.961 | 0.958 0.005 | 0.960 0.006 | 0.844 0.087
4 0.966 | 0.954 0.013 | 0.949 0.017 | 0.671 0.074
5 0.977 | 0.882 0.016 | 0.827 0.027 | 0.607 0.067
6 0.493 | 0.581 0.025 | 0.548 0.010 | 0.516 0.029
7 0.531 | 0.640 0.017 | 0.633 0.026 | 0.556 0.029
8 0.604 | 0.718 0.032 | 0.691 0.033 | 0.572 0.048
9 0.964 | 0.946 0.010 | 0.930 0.010 | 0.763 0.161
10 0.857 | 0.822 0.022 | 0.757 0.052 | 0.540 0.054
11 0.558 | 0.793 0.035 | 0.762 0.071 | 0.537 0.027
12 0.486 | 0.603 0.019 | 0.616 0.025 | 0.575 0.036
13 0.522 | 0.579 0.020 | 0.598 0.023 | 0.548 0.026
14 0.532 | 0.569 0.021 | 0.563 0.016 | 0.511 0.032
15 0.500 | 0.549 0.057 | 0.568 0.035 | 0.510 0.048
16 0.643 | 0.689 0.013 | 0.706 0.020 | 0.680 0.055
17 0.386 | 0.434 0.072 | 0.523 0.044 | 0.462 0.059
18 0.488 | 0.644 0.055 | 0.599 0.046 | 0.507 0.051
19 0.500 | 0.542 0.041 | 0.559 0.081 | 0.503 0.063
20 0.529 | 0.455 0.038 | 0.499 0.038 | 0.445 0.089
Table 3: Balanced Accuracy
Dataset | EDSM | Random Walk BMTE BMTE + Pruning
Mean S.D. Mean S.D. Mean S.D.
1 0.9487 | 0.9459 0.0085 | 0.9259 0.0216 | 0.7498 0.0605
2 0.9794 | 0.9220 0.0060 | 0.9215 0.0087 | 0.7180 0.0763
3 0.9631 | 0.9721 0.0034 | 0.9708 0.0038 | 0.8426 0.0816
4 0.9718 | 0.9431 0.0122 | 0.9494 0.0177 | 0.6906 0.0666
5 0.9885 | 0.8859 0.0141 | 0.8399 0.0199 | 0.6357 0.0660
6 0.5107 | 0.6046 0.0246 | 0.5695 0.0086 | 0.5362 0.0299
7 0.4937 | 0.6757 0.0281 | 0.6414 0.0385 | 0.5231 0.0324
8 0.5944 | 0.7262 0.0343 | 0.6908 0.0397 | 0.5535 0.0470
9 0.9642 | 0.9170 0.0071 | 0.9180 0.0178 | 0.7733 0.1483
10 0.8514 | 0.7968 0.0211 | 0.7511 0.0499 | 0.5747 0.0516
11 0.5886 | 0.7579 0.0251 | 0.7383 0.0594 | 0.5671 0.0236
12 0.3944 | 0.5347 0.0442 | 0.5436 0.0400 | 0.4831 0.0413
13 0.4824 | 0.6053 0.0462 | 0.6134 0.0295 | 0.5124 0.0312
14 0.5262 | 0.5647 0.0231 | 0.5609 0.0171 | 0.5043 0.0333
15 0.5227 | 0.5678 0.0530 | 0.5816 0.0274 | 0.5320 0.0420
16 0.5119 | 0.7187 0.0754 | 0.6288 0.0440 | 0.5694 0.0819
17 0.4247 | 0.4728 0.0560 | 0.5456 0.0339 | 0.4871 0.0593
18 0.5166 | 0.6442 0.0404 | 0.6108 0.0348 | 0.5342 0.0502
19 0.5153 | 0.5569 0.0392 | 0.5755 0.0826 | 0.5195 0.0592
20 0.5735 | 0.5210 0.0294 | 0.5551 0.0276 | 0.5091 0.0775

16




Table 4: Double Fault Ratios

Dataset | Random Walk BMTE BMTE -+ Pruning

Mean S.D. Mean S.D. Mean S.D.

0.6271 0.0142 | 0.6857 0.0361 | 0.7453 0.0608
0.6422 0.0162 | 0.7004 0.0455 | 0.7161 0.0760
0.7805 0.0138 | 0.8195 0.0295 | 0.8406 0.0820
0.5229 0.0196 | 0.6458 0.0653 | 0.6911 0.0662
0.1282 0.0024 | 0.1370 0.0103 | 0.3606 0.0669
0.2321 0.0028 | 0.2395 0.0094 | 0.4619 0.0305
0.2177 0.0039 | 0.2263 0.0123 | 0.4671 0.0332
0.2066 0.0032 | 0.2107 0.0206 | 0.4421 0.0529
9 0.5866 0.0195 | 0.7611 0.0907 | 0.7687 0.1500
10 0.1782 0.0067 | 0.1783 0.0284 | 0.4171 0.0487
11 0.3696 0.0087 | 0.4329 0.1038 | 0.5633 0.0262
12 0.2427 0.0032 | 0.2938 0.0369 | 0.4954 0.0380
13 0.2308 0.0041 | 0.2408 0.0072 | 0.4743 0.0313
14 0.2763 0.0025 | 0.3094 0.0197 | 0.4989 0.0338
15 0.2389 0.0077 | 0.2753 0.0200 | 0.4616 0.0419
16 0.2073 0.0066 | 0.2524 0.0280 | 0.3844 0.0753
17 0.2488 0.0060 | 0.3048 0.0155 | 0.4783 0.0613
18 0.2892 0.0083 | 0.3574 0.0335 | 0.5257 0.0492
19 0.2397 0.0056 | 0.2593 0.0563 | 0.4669 0.0604
20 0.2400 0.0049 | 0.2696 0.0200 | 0.4670 0.0741

0 O Ui Wi =

Table 5: Prediction Entropy

Dataset | Random Walk BMTE BMTE + Pruning

Mean S.D. Mean S.D. Mean S.D.

0.6473 0.0236 | 0.5283 0.0607 | 0.0071 0.0082
0.6312 0.0271 | 0.4982 0.0789 | 0.0328 0.0136
0.4327 0.0269 | 0.3423 0.0544 | 0.0164  0.0156
0.8078 0.0200 | 0.6208 0.0922 | 0.0068 0.0088
0.8314 0.0091 | 0.7612 0.0459 | 0.0097  0.0133
0.9837 0.0015 | 0.9382 0.0200 | 0.0163 0.0200
0.9661 0.0019 | 0.8996 0.0299 | 0.0471 0.0195
0.9737 0.0027 | 0.8807 0.0536 | 0.0295 0.0282
9 0.7343 0.0252 | 0.4084 0.1542 | 0.0351 0.0307
10 0.9299 0.0095 | 0.8286 0.0705 | 0.0378 0.0275
11 0.9164 0.0046 | 0.7884 0.1098 | 0.0503 0.0426
12 0.9429 0.0053 | 0.7601 0.0686 | 0.0642 0.0275
13 0.9776 0.0023 | 0.9069 0.0274 | 0.0572 0.0268
14 0.9793 0.0026 | 0.8798 0.0416 | 0.0400 0.0299
15 0.9876 0.0015 | 0.8591 0.0540 | 0.0562 0.0220
16 0.9574 0.0091 | 0.7580 0.0821 | 0.0957  0.0534

0 O Ui Wi

Continued on next page

17




Dataset | Random Walk BMTE BMTE + Pruning
Mean S.D. Mean S.D. Mean S.D.
17 0.9877 0.0036 | 0.8498 0.0300 | 0.0623 0.0347
18 0.9780 0.0037 | 0.8164 0.0620 | 0.0752 0.0299
19 0.9839 0.0042 | 0.8247 0.0957 | 0.1114 0.0321
20 0.9960 0.0107 | 0.8558 0.0679 | 0.1064 0.0431
Table 6: Agreement Connectivity
Dataset | Random Walk BMTE BMTE + Pruning
Mean S.D. | Mean S.D. | Mean S.D.
1 53.97  2.17 | 58.03 0.02 | 94.39 8.10
2 53.41  0.60 | 62.23 0.01 | 71.07 11.56
3 58.11  3.52 | 69.27 0.00 | 85.83 11.23
4 50.30  0.81 | 55.37 0.02 | 94.86 9.06
5 51.22  1.08 | 53.27 0.02 | 93.17 11.02
6 4891 0.24 | 49.03 0.01 | 85.96 18.63
7 4879  0.36 | 49.22 0.04 | 63.51 16.87
8 48.52  0.64 | 48.34 0.04 | 91.08 13.36
9 49.54  0.70 | 55.12 0.02 | 74.00 18.58
10 48.78  0.62 | 50.30 0.05 | 68.16 20.59
11 50.84  0.87 | 52.11 0.06 | 70.92 19.54
12 48.93  1.02 | 48.01 0.04 | 62.97 13.83
13 48.50 0.34 | 48.24 0.03 | 61.11 18.40
14 48.35  0.31 | 48.65 0.02 | 71.30 20.04
15 4779 035 | 47.06 0.03 | 59.68 17.28
16 47.18  0.62 | 45.97 0.04 | 59.80 14.50
17 48.01 0.36 | 48.45 0.03 | 60.72 19.61
18 4778  0.35 | 47.93 0.03 | 56.08 14.60
19 47.57  0.43 | 46.11 0.08 | 46.30 3.62
20 46.28  0.83 | 45.19 0.03 | 58.69 19.27

18




	Introduction
	Background and Problem Formulation
	Learning Deterministic Finite Automata
	Problem Statement

	Ensembling by Randomized State Merging
	Independent Merge Sampling
	Merge Trees: A Data Structure for Managing Merge Sequences
	Balanced Merge Tree Exploration
	Repeated Merges and Branch Pruning

	Experimental Setup and Results
	Experimental Setup
	Evaluation Metrics
	Experimental Results

	Discussion
	Conclusions and Future Work
	Detailed Results

