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Preface

Once upon a time, there was a grand puzzle, but instead of traditional pieces, it was made up of
tiny building blocks known as genes, proteins, and other important parts. This puzzle, much like a
game of Jenga, required a precise arrangement of its pieces to maintain stability. These building
blocks worked together in complex ways to ensure everything in the puzzle, or rather, in living
organisms, ran smoothly. Now, understanding this puzzle was no easy feat. It was incredibly
complex, and sometimes it felt like trying to solve a riddle. But scientists, with their keen eyes
and sharp minds, dedicated themselves to unraveling its mysteries. What they found was truly
fascinating. They discovered that even though the puzzle was intricate, it followed certain rules
that helped predict how it might change over time. Just like mixing different ingredients in a
recipe could create something surprisingly new and delicious, interactions between genes and
proteins, known as "epistasis," led to unexpected outcomes, shaping the course of evolution.
In our budding yeast Jenga game played for six years wewanted to understand how it rebounded
after losing important parts, much like completing a puzzle with a few missing pieces. Through
mathematical models and experiments, we uncovered the hidden mechanisms that yeast used
to stay resilient, much like having spare parts for a broken car. But yeast wasn’t just resilient; it
was also adaptable. It could change not only its own parts but also how those parts were con-
nected to each other. We discovered that there was redundancy in the connections between
pieces, allowing the puzzle to reconfigure itself cleverly after losing a crucial piece, much like a
football team adjusting its strategy when a player gets injured. Furthermore, we developed a
method to predict the impact on the puzzle’s stability after removing two or three pieces. Using
this method, we delved deeper into the roles of specific pieces in maintaining stability and ob-
served how removing certain pieces affected the puzzle differently. We even found that when
the puzzle was almost broken and we tried to fix it by removing another piece, the consequences
rippled across its pieces, with some having a higher chance of disrupting the puzzle than others.
In the end, our journey through the puzzle of budding yeast revealed not only its resilience and
adaptability but also the intricate dance of its pieces and the hidden rules guiding its evolution.
And though our adventure may have ended, the puzzle of life continues to unfold, waiting for
curious minds to continue the game.
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Summary

Biological systems are dynamic andmulti-layered, characterized by internal structures with vary-
ing levels of complexity that are in constant interplay. For instance, the regulated interaction
between gene expression machinery and the biochemical reactions among proteins is crucial
for orchestrating cellular functions. This interplay is essential for maintaining life, even in seem-
ingly "simpler" single-cell organisms, amidst an ever-changing external environment. These in-
teractions create a complex web of connections between different biological organization levels,
making studying such systems enormously challenging. However, the story does not end there;
biological systems have the remarkable ability to evolve. Evolution is fundamental to all living
beings on Earth, enabling the vast diversity of forms, shapes, lifestyles, and colors observed in
nature. Anticipating evolutionary outcomes has long perplexed scientists. In some cases, evo-
lution appears to follow reproducible trajectories, providing opportunities to investigate factors
that may constrain evolutionary paths while controlling for external environmental influences.
One such factor, discovered in the past century, is epistasis, which refers to the variable effect of
a gene mutation depending on the presence or absence of mutations in other genes. This con-
cept has played a pivotal role in shaping our understanding of evolutionary processes. In this
thesis, we examine the effects of epistatic mutations on a genome-wide scale within a specific
evolutionary trajectory.

Our model system for investigating the role of epistatic mutations in evolution is the budding
yeast Saccharomyces cerevisiae, explicitly focusing on the resilience of one of its crucial survival
functions: cell polarization. Budding yeast undergoes asymmetric division by specifying a point
on its membrane where the daughter cell will proliferate. Critical to this process is the precise
establishment of the polarization axis. Cells lacking the BEM1 gene fail to efficiently polarize,
impeding their progression through subsequent stages of the cell cycle essential for survival. Re-
markably, the function of cellular polarization exhibits surprising resilience even in the absence
of critical components like BEM1. Previous studies have demonstrated that populations lacking
the BEM1 gene can rapidly recover by deleting two additional genes, BEM3 and NRP1. This ob-
servation suggests that these genes are epistatic to BEM1, as their effects heavily depend on the
absence of BEM1. Evenmore intriguing is the reproducibility of this recovery, with the samemuta-
tions recurrently observed in multiple experiments. What enables the cell polarization function
to remain resilient following the deletion of a critical component? Furthermore, what are the
implications of mutations that restore the impaired cell polarization function for other cellular
functions and components? Addressing these questions will allow us to elucidate the underlying
principles governing the impact of epistatic mutations on evolutionary constraints.

In chapter 2, we propose that multiple redundant mechanisms coexist within the protein net-
work governing cell polarization, contributing to themodule’s resilience and adaptability. We dis-
covered that redundancy in cell polarization does not stem from individual components or inter-
actions but rather emerges at the functional process level. Even if one submodule becomes non-
functional, the combined action of the remaining submodules maintains an operational mecha-
nism for cell polarization. This resilience is achieved by fine-tuning the protein count within the
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cell, ensuring that the remaining submodules can compensate effectively.

In chapter 3, we utilize the capabilities of Saturated Transposition Analysis in Yeast (SATAY) to
investigate how epistatic mutations occurring during the studied evolutionary trajectory impact
the cell at a genome-wide scale. We describe our methodology for deciphering the genotype-
phenotypemapusing SATAY and demonstrate how thismap can be leveraged to predict epistatic
interactions among genes at a genome-wide scale.

Chapter 4 explores one of the applications of the genotype-phenotype map, focusing on dis-
covering the potential functions of a specific gene. We investigate the role of Nrp1, a protein with
an RNA binding domain (RBD) that lacks an assigned biological function but has been shown to
suppress the deleterious effect of deleting BEM1 in cell polarity. By computing the functional
enrichment of its epistatic partners, we gain insights into the potential functions of NRP1, partic-
ularly in crucial cellular processes such as cell division and spindle morphology.

Chapter 5 uncovers that the initial epistatic mutation along the evolutionary trajectory (BEM3
deletion), which suppresses most of the defects in cell polarity triggered by the deletion of BEM1,
enables a reversal of the fitness effects of the predicted epistatic partners of BEM1. Interestingly,
the epistatic partners that emerge after the deletion of BEM3 are unrelated to cell polarity but
are associated with other cellular processes, such as vesicle traffic and chromosome segrega-
tion. We observed that the epistatic partners of BEM1 exhibit overlapping functions which shows
that predicting compensatory mutations to Δbem1 mutants is a challenging task. However, we
speculate that due to the reversion of fitness effects of multiple mutations following a compen-
satory mutation, such as BEM3, there is a transition to a system that exhibits a higher degree of
functional modularity akin to the unperturbed cell. This transition facilitates the prediction of
subsequent compensatory mutations. Our findings offer insights into the mechanisms underly-
ing adaptability and evolution in biological systems.

In conclusion, these findings underscore the interplay of genes and proteins in shaping cellu-
lar functions, emphasizing the importance of considering genetic and epistatic interactions at a
genome-wide scale in predictive models of evolutionary dynamics.
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Samenvatting

Biologische systemen zijn dynamisch en meerlagig, met interne structuren die worden geken-
merkt door voortdurend veranderende niveaus van complexiteit. Zo dragen bijvoorbeeld de gen-
expressiemachine, biochemische reacties tussen eiwitten endewisselwerking van cellulaire func-
ties, zelfs in ogenschijnlijk "eenvoudigere" eencellige organismen, bij aan het in stand houden
van het leven temidden van een voortdurend veranderende externe omgeving. Deze interacties
creëren een complex web van verbindingen tussen verschillende biologische organisatieniveaus,
waardoor het bestuderen van dergelijke systemen enorm uitdagend is. Maar daar eindigt het
verhaal niet; biologische systemen hebben het opmerkelijke vermogen om te evolueren. Evo-
lutie is fundamenteel voor alle levende wezens op aarde, waardoor de immense diversiteit aan
vormen, vormen, levensstijlen en kleuren in de natuur mogelijk is. Het anticiperen op evolu-
tionaire uitkomsten heeft wetenschappers lange tijd verward. In sommige gevallen lijkt evolutie
reproduceerbare trajecten te volgen, waardoor kansen ontstaan om factoren te onderzoeken
die evolutionaire paden kunnen beperken terwijl externe omgevingsinvloeden worden gecon-
troleerd. Een van deze factoren, ontdekt in de afgelopen eeuw, is epistase, wat verwijst naar
het variabele effect van een genmutatie afhankelijk van de aanwezigheid of afwezigheid van mu-
taties in andere genen. Dit concept heeft een cruciale rol gespeeld bij het vormgeven van ons
begrip van evolutionaire processen. In deze scriptie onderzoeken we de effecten van epistatis-
che mutaties op genoomschaal binnen een specifieke evolutionaire traject.

Ons model systeem voor het onderzoeken van de rol van epistatische mutaties in evolutie is
de budding yeast Saccharomyces cerevisiae, waarbij we ons expliciet richten op de veerkracht
van een van zijn cruciale overlevingsfuncties: celpolarisatie. Budding yeast ondergaat asym-
metrische deling door een punt op zijn membraan aan te geven waar de dochtercel zal prolif-
ereren. Essentieel voor dit proces is het precieze vaststellen van de polarisatie-as. Cellen die het
gen BEM1 missen, polariseren niet efficiënt, waardoor hun voortgang door verdere stadia van
de celcyclus die essentieel zijn voor overleving, wordt belemmerd. Opmerkelijk genoeg vertoont
de functie van celpolarisatie verrassende veerkracht, zelfs in afwezigheid van kritieke componen-
ten zoals BEM1. Eerdere studies hebben aangetoond dat populaties die het BEM1-gen missen,
zich snel kunnen herstellen door twee extra genen te deleten, BEM3 en NRP1. Deze observatie
suggereert dat deze genen epistatisch zijn aan BEM1, aangezien hun effecten sterk afhankelijk
zijn van de afwezigheid van BEM1. Nog intrigerender is de reproduceerbaarheid van dit herstel,
waarbij dezelfde mutaties herhaaldelijk worden waargenomen in meerdere experimenten. Wat
maakt hetmogelijk dat de functie van celpolarisatie veerkrachtig blijft na het verwijderen van een
kritieke component? Bovendien, wat zijn de implicaties van mutaties die de aangetaste celpolar-
isatiefunctie herstellen voor andere cellulaire functies en componenten? Het beantwoorden van
deze vragen stelt ons in staat om de onderliggende principes te verhelderen die de impact van
epistatische mutaties op evolutionaire beperkingen beheersen.

In hoofdstuk 2 stellen we voor dat meerdere redundante mechanismen bestaan binnen het
eiwitnetwerk dat celpolarisatie reguleert, wat bijdraagt aande veerkracht en aanpasbaarheid van
de module. We ontdekten dat redundantie in celpolarisatie niet voortkomt uit individuele com-
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ponenten of interacties, maar eerder op het niveau van het functionele proces ontstaat. Zelfs
als een submodule niet-functioneel wordt, handhaaft de gecombineerde actie van de overge-
bleven submodules een operationeel mechanisme voor celpolarisatie. Deze veerkracht wordt
bereikt door het fijnafstemmen van het eiwitaantal binnen de cel, waardoor de overgebleven
submodules effectief kunnen compenseren.

In hoofdstuk 3maakten we gebruik van demogelijkheden van Saturated Transposition Analy-
sis in Yeast (SATAY) om teonderzoekenhoe epistatischemutaties die optreden tijdens debestudeerde
evolutionaire traject de cel op genoomschaal beïnvloeden. We beschrijven onze methodologie
om de genotype-fenotype map met SATAY te ontcijferen en demonstreren hoe deze map kan
worden gebruikt om epistatische interacties tussen genen op genoomschaal te voorspellen.

In hoofdstuk 4 verkennen we een van de toepassingen van de genotype-fenotypemap, waar-
bij we ons richten op het ontdekken van de mogelijke functies van een specifiek gen. We on-
derzoeken de rol van Nrp1, een eiwit met een RNA-bindend domein (RBD) dat geen toegewezen
biologische functie heeft maar is aangetoond de schadelijke effect van het deleten van BEM1 in
celpolariteit te onderdrukken. Door de functionele verrijking van zijn epistatische partners te
berekenen, krijgen we inzicht in de potentiële functies van NRP1, met name in cruciale cellulaire
processen zoals celdeling en spindle-morfologie.

Hoofdstuk 5 onthult dat de initiële epistatischemutatie langs het evolutionaire traject (BEM3),
die de meeste defecten in de celpolariteit onderdrukt die worden veroorzaakt door de verwi-
jdering van BEM1, een omkering van de fitnesseffecten van de voorspelde epistatische partners
van BEM1. Interessant is dat de epistatische partners die ontstaan na het verwijderen van BEM3
geen verband houdenmet celpolariteit, maar geassocieerd zijn met andere cellulaire processen,
zoals blaasjesverkeer en chromosoomsegregatie. We hebben waargenomen dat de epistatische
partners van BEM1 overlappende functies vertonen, wat aantoont dat het voorspellen van com-
penserende mutaties voor Δbem1 mutanten een uitdagende taak is. We speculeren echter dat
als gevolg van de omkering van fitnesseffecten van meerdere mutaties na een compenserende
mutatie, zoals BEM3, er een overgang is naar een systeem dat een hogere mate van functionele
modulariteit vertoont, vergelijkbaar met de onverstoorde cel. Deze overgang vergemakkelijkt de
voorspelling van daaropvolgende compenserendemutaties. Onze bevindingen bieden inzicht in
de mechanismen die ten grondslag liggen aan het aanpassingsvermogen en de evolutie in biol-
ogische systemen.

Concluderend vergroot dit proefschrift ons begrip van het aanpassingsvermogen en de evo-
lutie van biologische systemen, met implicaties op diverse terreinen, zoals fundamentele weten-
schap, biotechnologie en geneeskunde. De bevindingen onderstrepen het samenspel van genen
en eiwitten bij het vormgeven van cellulaire functies, en benadrukken het belang van het over-
wegen van genetische en epistatische interacties op genoombrede schaal in voorspellendemod-
ellen van evolutionaire dynamiek.
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Resumen

Los sistemas biológicos son dinámicos y multicapa, con estructuras internas caracterizadas por
niveles de complejidad en constante cambio. Por ejemplo, la maquinaria de expresión génica,
las reacciones bioquímicas entre proteínas y la interacción de funciones celulares, incluso en or-
ganismos unicelulares aparentemente "más simples", contribuyen a mantener la vida en medio
de un entorno externo en constante cambio. Estas interacciones crean una compleja red de
conexiones entre diferentes niveles de organización biológica, lo que hace que el estudio de
tales sistemas sea enormemente desafiante. Sin embargo, la historia no termina ahí; los sis-
temas biológicos tienen la notable capacidad de evolucionar. La evolución es fundamental para
todos los seres vivos en la Tierra, permitiendo la vasta diversidad de formas, estructuras, esti-
los de vida y colores observados en la naturaleza. La anticipación de los resultados evolutivos
ha desconcertado a los científicos durante mucho tiempo. En algunos casos, la evolución parece
seguir trayectorias reproducibles, brindandooportunidades para investigar factores que pueden
limitar los caminos evolutivos mientras se controlan las influencias ambientales externas. Uno
de esos factores, descubierto en el siglo pasado, es la epistasia, que se refiere al efecto variable
de una mutación génica dependiendo de la presencia o ausencia de mutaciones en otros genes.
Este concepto ha desempeñado un papel crucial en la formación de nuestra comprensión de
los procesos evolutivos. En esta tesis, examinamos los efectos de las mutaciones epistáticas a
escala genómica dentro de una trayectoria evolutiva específica.

Nuestro sistemamodelo para investigar el papel de lasmutaciones epistáticas en la evolución
es la levadura Saccharomyces cerevisiae, centrándonos explícitamente en la resilencia de una de
sus funciones de supervivencia crucial: la polarización celular. La levadura experimenta una di-
visión asimétrica al especificar un punto en su membrana donde la célula hija proliferará. Es
crítico para este proceso el establecimiento preciso del eje de polarización. Las células que care-
cen del gen BEM1 no pueden polarizarse eficientemente, obstaculizando su progresión a través
de etapas posteriores del ciclo celular esenciales para la supervivencia. Sorprendentemente, la
función de la polarización celular muestra una sorprendente resiliencia incluso en ausencia de
componentes críticos como BEM1. Estudios previos han demostrado que las poblaciones que
carecen del gen BEM1 pueden recuperarse rápidamente al eliminar dos genes adicionales, BEM3
y NRP1. Esta observación sugiere que estos genes son epistáticos a BEM1, ya que sus efectos
dependen en granmedida de la ausencia de BEM1. Aúnmás intrigante es la reproducibilidad de
esta recuperación, con las mismasmutaciones observadas recurrentemente enmúltiples exper-
imentos. ¿Qué permite que la función de la polarización celular permanezca resistente después
de la eliminación de un componente crítico? Además, ¿cuáles son las implicaciones de las muta-
ciones que restauran la función de polarización celular deteriorada para otras funciones y com-
ponentes celulares? Abordar estas preguntas nos permitirá elucidar los principios subyacentes
que rigen el impacto de las mutaciones epistáticas en las limitaciones evolutivas.

En el capítulo 2, proponemos que múltiples mecanismos redundantes coexisten dentro de
la red proteica que regula la polarización celular, contribuyendo a la resistencia y adaptabilidad
del módulo. Descubrimos que la redundancia en la polarización celular no proviene de compo-
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nentes o interacciones individuales, sino que surge en el nivel del proceso funcional. Incluso si un
submódulo se vuelve no funcional, la acción combinada de los submódulos restantes mantiene
un mecanismo operativo para la polarización celular. Esta resistencia se logra ajustando fina-
mente el conteo de proteínas dentro de la célula, asegurando que los submódulos restantes
puedan compensar de manera efectiva.

En el capítulo 3, utilizamos las capacidades del Análisis de Transposición Saturada en Levadura
(SATAY) para investigar cómo las mutaciones epistáticas que ocurren durante la trayectoria evo-
lutiva estudiada impactan la célula a escala genómica. Describimos nuestra metodología para
descifrar el mapa genotipo-fenotipo utilizando SATAY y demostramos cómo este mapa puede
aprovecharse para predecir interacciones epistáticas entre genes a escala genómica.

En el capítulo 4, exploramos una de las aplicaciones del mapa genotipo-fenotipo, centrán-
donos en descubrir las posibles funciones de un gen específico. Investigamos el papel de Nrp1,
una proteína con un dominio de unión a ARN (RBD) que carece de una función biológica asignada
pero se ha demostrado que suprime el efecto perjudicial de eliminar BEM1 en la polaridad celu-
lar. Al investigar las funciones de los genes epistáticos a NRP1, obtenemos información sobre
las posibles funciones de NRP1, especialmente en procesos celulares cruciales como la división
celular y la segregacion de cromosomas.

En el capítulo 5 descubrimos que la mutación epistática inicial a lo largo de la trayectoria
evolutiva (BEM3), que suprime la mayoría de los defectos en la polaridad celular desencadena-
dos por la eliminación de BEM1, permite una reversión de los efectos de en el fenotipo de los
socios epistáticos predecidos por SATAY de BEM1. Curiosamente, los socios epistáticos que sur-
gen después de la eliminación de BEM3 no están relacionados con la polaridad celular, sino que
están asociados con otros procesos celulares, como el tráfico de vesículas y la segregación cro-
mosómica. Observamos que los socios epistáticos de BEM1 exhiben funciones superpuestas, lo
que hace que las mutaciones compensatorias sean difíciles de predecir. Sin embargo, especu-
lamos que debido a la reversión de los efectos en el fenotipo de múltiples mutaciones después
de unamutación compensatoria, como BEM3, hay una transición a un sistemamodular similar a
la célula no perturbada. Esta transición facilita la predicción demutaciones compensatorias pos-
teriores. Nuestros hallazgos ofrecen valiosos conocimientos sobre los mecanismos subyacentes
que sustentan la adaptabilidad y la evolución en los sistemas biológicos.

En conclusión, esta tesis avanza en nuestra comprensión de la adaptabilidad y la evolución de
los sistemas biológicos, con implicaciones en diversos campos como la ciencia básica, la biotec-
nología y la medicina. Los hallazgos subrayan la interacción de genes y proteínas en la configu-
ración de funciones celulares, enfatizando la importancia de considerar las interacciones genéti-
cas y epistáticas a escala genómica en modelos predictivos de dinámicas evolutivas.
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Introduction

The first principle is that you must not fool yourself
– and you are the easiest person to fool.

Richard Feynman

Abstract
This chapter encompasses the "why," "what," and "how" of the thesis investigation. I commence
with a discussion of the general motivation of this thesis, which centers on taking a first step
toward dissecting the genetic underpinnings of complex traits and diseases ("why"). Next, we
define the object of our study: An evolutionary reproducible trajectory that demonstrates the
robustness of the biological function of cell polarity ("what"). We follow with the description of
the areas that form the core of our study: 1. role of protein copy numbers on biological
functions, 2. genetic interaction profiling to uncover gene function and 3. genetic interactions
changes along a compensatory mutational path. In the first area, we harness the capabilities of
using a galactose inducible promoter to control the gene expression of our protein of interest.
For the second and third area we employ an emergent high-throughput methodology:
Saturated Transposition Analysis in yeast, designed to connect gene mutations with their fitness
consequences on a genome-wide scale ("how"). Our chapter culminates with a description of
every chapter’s content and a glossary of pertinent terms within the context of this thesis.
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1. Introduction
1.1. The why: Genetic underpinnings of complex traits and diseases
General motivation
Throughout history, our innate drive to explain the world has led to the creation of scientific
theories that provide fundamental principles for understanding various phenomena. These the-
ories encompass a wide range of topics, from explaining the uniformity of falling objects like
apples and iron balls [1] to understanding the generation of warmth through friction [2]. More-
over, theories have been developed to comprehend and create music [3] and understand the
perception of external stimuli [4]. Additionally, we have devised theories to predict and influ-
ence the behaviors of cellular, animal, and human systems [5–8]. The use of theories extends
to anticipating the properties of objects and living beings, often relying on observations of their
surroundings as a key input for inference. A relatable example from daily life is how individuals
are sometimes judged based on the character of their friends. Those associated with a group
of party-animal friends are often perceived as such, while those belonging to a circle of intellec-
tuals are labeled bookish. Interestingly, rational beings frequently predict a person’s character
based on their family, friends, lifestyle, and hobbies, even without personal acquaintance. This
mindset permeates scientific practice as well. For instance, in the classification mathematical
method of nearest neighbors [9], a certain point is assigned to the group of its closest neighbors
in Euclidean space based on their distance. In biology, we also deduce the properties of certain
molecular function, for example, cell division, by analysing the response of the cellular system to
variations in the concentrations of the different components that have been associated with that
function [10–12]. In addition, it is possible to infer the function of specific DNA sequences (genes)
by examining their associations with related DNA sequences. These associations are called ge-
netic interactions, encompassing all potential relationships between the query gene and other
DNA sequences [13, 14].

The notion of genetic interaction dates back about a century, with its origins traced to Bate-
son [15]. Bateson used this concept to describe instances in which the effect of a particular DNA
sequence variation, also referred to as a genetic variant, is masked by a distinct variant at an-
other genetic locus. The manifestation of the phenotype linked to one genetic variant becomes
evident only in individuals possessing a specific mutation at the second locus [15]. Central to the
genetic interaction concept is the comprehension of how genetic variants influence phenotypes,
as graphically illustrated in panel A) of fig. 1.1.

Through more than a century of extensive investigation, a multitude of methodologies has
been employed to elucidate the intricate mechanisms by which diverse attributes of an organ-
ism, dictated by its genetic constitution, collectively contribute to specific phenotypic outcomes,
also known as genetic traits. It has been seen that even if two individuals carry the same muta-
tion responsible for conditions such as cystic fibrosis or hemophilia, the severity of the disease
can substantially differ due to genetic variations in their backgrounds [16]. Moreover, genome
sequencing studies have brought to light instances where individuals possessing deleteriousmu-
tations remain entirely unaffected, presumably due to other, yet-undiscovered gene variants
within their genomes that confer protection, as depicted in panel B) of fig. 1.1. Furthermore,
many genetic traits, like height, intelligence, and susceptibility to common diseases, are influ-
enced by multiple genes with small individual effects. Studying mutations with weak effects can
shed light on the underlying genetic architecture of such traits.

On the other hand, the type of genetic interactions sheds light on the potential functional
linkage among proteins. Genetic interactions are generally classified into two groups: positive
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1.1. The why: Genetic underpinnings of complex traits and diseases

Figure 1.1. Genetic interactions.A) Abstract representation of the concept of genetic interactions: Oval-shaped objects symbolize genes, and the dashed stroke denotes a mutation in that gene. In the scenariowhere mutations in both gene X and gene Y occur within the organism, if a mutation in gene X results in aspecific phenotype depicted as a circle, and a mutation in gene Y leads to a distinct phenotype representedby a square, the anticipated outcome of their combination would be the straightforward summation of theirindividual phenotypes. However, an unexpected combined phenotype arises when these mutations share agenetic interaction.B) Genetic interactions are pivotal in human health, offering insights into why certain in-dividuals do not develop those conditions despite carrying a mutation responsible for certain diseases. Theoval object lacking a dashed stroke represents a non-mutated gene. C) Description of extreme types of ge-netic interactions. When two mutations combine, and the resultant phenotype is much fitter than expected,reflected in the elevated number of cells, it is considered a suppression type of interaction. Yet, when thecombination of viable mutations renders cell death, it is known as a synthetic lethality interaction. D) Poten-tial functional roles of gene Y can be discerned through an analysis of its genetic interactions. Suppressiveinteractions observed between genes Y and X suggest their association with the same biological pathway ora non-essential protein complex. The synthetic lethality between genes Y and P suggests their involvementin compensatory pathways that contribute to an essential function or their participation within an essentialprotein complex.

and negative. The first concerns mutations that confer a less severe phenotype than expected,
related to the organism’s fitness in the presence of a second mutation. Suppression is consid-
ered an extreme type of positive interaction, where the organism fitness is at least the highest
fitness individual mutation. Negative interactions refer to the opposite behavior of positive ones.
Synthetic lethality is an extreme example of negative interaction in which combining two ormore
mutations leads to the death or non-viability of an organism or cell, even though each mutation
alone would not have this effect, see panel C) from fig. 1.1.

The so-called global genetic interaction landscape is a recent effort [13, 14, 17] to dissect the
effects of a particular gene loss in a broader genetic context. The landscape refers to the collec-
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tion of genetic interactions between different geneswithin the budding yeast genome. Generally,
it represents the relationships between genes that influence various aspects of cellular behavior,
such as growth. The global genetic interaction landscape is represented by a network in which
nodes are genes, and the edges connect genes that share a similar genetic interaction profile. It
has been shown that negative interactors are usually enriched for genes that pertain to the same
biological function. Moreover, negative interactors can also play redundant roles to guarantee
certain essential functions or be part of the same essential complex, see panel D) from fig. 1.1.
Instead, positive interactors are related to nonessential pathways or complex membership.

This tool has predicted the function of unknown genes that fall within or near functionally
enriched regions and thus have a high similarity profile with the rest, for instance, the gene
IPA1. However, for unknown genes with a poor similarity profile, it is difficult to investigate their
function. Furthermore, the alteration of this network upon genetic or environmental changes is
still largely unexplored [18].

1.2. The what: On the biological system, protein copy numbers and genetic
interactions

The biological system: An evolutionary reproducible trajectory that demonstrates the
robustness of the biological function of cell polarity
The cell polarity machinery in budding yeast is considered a robust functional module for sev-
eral reasons, grounded in its essential role in cellular processes such as growth, division, and
response to environmental cues. This machinery enables cells to establish and maintain a polar-
ized state, which is critical for directing growth towards a specific location, ensuring proper cell
division, and enabling cells to respond effectively to their environment. Furthermore, the cell po-
larity machinery is characterized by multiple redundant pathways and feedback loops [10, 19–
22] which are crucial for its resilience, allowing the cell to adapt to various stresses and changes
in the environment. In addition, the components of the cell polarity machinery are highly regu-
lated both spatially and temporally, meaning that their activity is precisely controlled in specific
regions of the cell and at specific times during the cell cycle [23–25]. This tight regulation ensures
that polarity is established correctly and maintained throughout the cell cycle, contributing to
the robustness of the system. Moreover, many components of the cell polarity machinery are
conserved across eukaryotes [26, 27], suggesting that this system has been refined through evo-
lution to be both effective and resilient. Lastly, on a molecular level, the proteins and pathways
involved in establishing cell polarity are highly adaptable, capable of changing their behavior in
response to internal and external cues [28–30]. In this thesis, we study one example of those
molecular level adaptions, see fig. 1.2.

The evolutionary trajectory examined in this thesis was the primary focus of the publication:
"Evolutionary adaptation after crippling cell polarization follows reproducible trajectories" by
Liedewij Laan et al, from 2015. They show that budding yeast possesses evolutionary robust-
ness against physiologically destructive perturbations. Furthermore, their findings suggest that
gene deletion-driven recovery can prompt rapid divergence in the components involved in bio-
logically significant cell functions.

This evolutionary trajectory begins with a crippled mutant bearing a full gene knockout in a
nearly essential gene BEM1, see fig. 1.2. Yeast cells unable to express Bem1 cannot efficiently
redirect the required proteins to the future bud site, resulting in an aberrant budding pattern
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1.2. The what: On the biological system, protein copy numbers and genetic interactions

Figure 1.2. The evolutionary trajectory of yeast cells bearing a complete knockout in BEM1 (depicted by theblue square) from [28] exhibits a consistent acquisition of a loss-of-function mutation in BEM3 (illustratedby the orange square) across all independent experiments. This mutation significantly restores the bem1mutant phenotype to that resembling the wild-type. In half of these independent experiments, the gene
NRP1 (indicated by the green circle) accumulates a loss-of-function mutation, further leading to a phenotypeclosely resembling that of wild-type cells.

and a high death rate [28]. However, through multiple cycles of yeast culturing in a serial dilu-
tion fashion experiment [31], the population fixes three sequential mutations: BEM3, NRP1, and
BEM2. This phenomenon is observed in nine independent lines used in the experiment. In all
the independent experiments, the first mutation,BEM3, acquired a loss of function mutation. In
five lines, the second loss of function mutation, NRP1, shows up. Lastly, a point mutation in the
gene BEM2 is identified only in two lines. Despite this remarkable reproducibility, sequencing
studies at different generations show that eleven more mutations, composed of early stop and
aminoacid substitutions, appear during the trajectory.

Furthermore, [28] shows that the order of thesemutations is crucial and largely influences the
population’s fitness, implying that genetic interactions play a role in such evolutionary outcomes.
Yet, the precise genetic and molecular mechanisms by which the first two mutations have such
a degree of reproducibility and enhance the population’s fitness remain puzzling.

In the aforementioned evolutionary trajectory, Nrp1 appears as a novel protein capable of
restoring the fitness of yeast cells harboring a BEM1 knockout. Yet, a full NRP1 knockout does
not confer any prominent fitness effects in wild-type cells. Currently, its biological function and
connection to polarity establishment are unknown.

We employ modeling, conceptual theory, and experiments, to the described reproducible
trajectory, to manipulate the copy number of Cdc42, the primary regulator of budding yeast po-
larity. Our study suggests that multiple redundant self-organizationmechanisms exist within the
protein network governing cell polarization. These mechanisms contribute to the module’s re-
silience and adaptability (chapter 2). Additionally, we use the genetic interaction profiling ofNRP1
to uncover its function since it is a gene currently associated to cell polarity but it lacks of a spe-
cific biological function. We propose that NRP1 is linked to processes related to prion formation,
endocytosis, and cell cycle checkpoints(chapter 4). Lastly, we investigate how suppression mu-
tations alter the global genetic interaction network following an initial deleterious mutation. We
analyze changes in genetic interactions along a compensatory mutational path to gain insights
into this phenomenon (chapter 5).
Role of protein copy number in biological functions
Protein copy number refers to the total number of copies of a specific protein present in a cell
at any given time. This measure is critical for understanding the cellular abundance of proteins,

13



1

1. Introduction
which in turn influences biological processes, regulatory mechanisms, and the cell’s overall func-
tional state. Protein copy numbers can varywidely among different proteinswithin a cell, ranging
from just a few copies for some regulatory proteins to several thousand copies for structural or
housekeeping proteins.

Such variability in protein abundance plays a significant role in the redundancy and robust-
ness of biological processes: high copy numbers of certain proteins can buffer the effects of mu-
tations or loss of function in individual molecules, ensuring that the overall process or pathway
remains functional [10]. Moreover, this variability also plays a role in the fine-tuning of cellular
processes for instance, a high copy number of a signaling protein could amplify a signal, whereas
a low copy numbermight make the pathwaymore sensitive to small changes in signal molecules
[32–35].
Genetic interaction profiling to uncover gene function
One of the core aspects of this thesis is the use of genetic interaction profiles to decipher the
pathways to which a particular gene may be related.

Genetic interaction profiles have been dissected for about 90% of the yeast genome by the
global genetic interaction network [14, 36, 37]. This large-scale effort assigns function to specific
genes by their similarity pattern of interaction profiles with other genes. Thus, it links a gene
with a function following its associations with other genes through their interaction profiles. This
procedure assumes genes with the same biological pathway possess strongly correlated genetic
interactions.

The conventional experimental assay to determine genetic interactions has been Synthetic
Genetic Arrays(SGA), which is not feasible to reproduce in standard wet labs; a more detailed
explanation is in section 1.3. In this thesis, we used an alternative emergent technique to de-
cipher genetic interactions genome-wide based on transposons called Saturated Transposition
Analysis in yeast (SATAY), which is further explained in section 1.3.

Using genetic interaction profiling to understand the function of unknown genes is not a novel
endeavor [13, 38, 39]. In those studies, weak effect genes appear majorly as genes with few
interactions and low similarity scores with other genes. Yet, a small fraction of them are heavily
connected genes at the core of essential functions like chromosome segregation and ribosome
biogenesis, whichmay reveal thosemodules’ high connectivity and redundancy. However, those
studies are limited by the number of crossings among different single yeast knockouts; thus,
genes with a poor number of interactions may be affected by this fact, which is the case of the
gene NRP1, in which the number of crossings involving this gene spread over only 0.1% of the
yeast genome, namely, about of 600 genes explored. The average number of crossings per gene
in those studies represents 30% of the yeast genome.

In this thesis, I focused on the gene NRP1 as an uncharacterized gene by the global genetic
interaction network that lacks a prominent fitness effect in yeast cells to unveil its functionality
through its genome-wide genetic interaction profile. Previous research [28] has demonstrated
that removing this gene can restore fitness despite its neutrality in wild-type yeast cells. How-
ever, the precise mechanism underlying how the deletion of this unknown protein can restore
function, in this case polarity establishment, remains elusive. Our interest lies in unraveling the
function of this protein in S.cerevisiae and its potential linkage with the polarity module based on
its genome-wide genetic interaction profile.
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1.3. The how: On methods to control protein copy numbers and to identify genetic interactions
Genetic interactions changes along a compensatory mutational path
Genome-scale genetic interaction networks reflect the complexity of how the molecular circuitry
dictates cellular behavior. Nevertheless, the degree to which a specific genetic interaction profile
is modified in response to alterations in environmental or genetic conditions remains largely
unexplored [18].

On the other hand, genetic interactions drive evolutionary change [40]. Thus, identifying dif-
ferences in genetic interactions along a specific evolutionary mutational path can highlight how
adaptive mutations influence molecular functions and cellular behavior. Furthermore, upon the
dissection of how genetic interaction changes after a compensatory mutation, it is possible to
generate basic principles of how evolution acts on themolecular circuitry to predict evolutionary-
relevant mutations.

Current efforts in linking the global genetic network to predict evolutionary compensatory
mutations have been unsuccessful [41], despite the authors claiming they used similar genetic
and environmental conditions to the one used to generate the interaction network. A plausi-
ble explanation for the inability of the global genetic interaction network to successfully predict
relevant compensatory mutations is lacking.

Despite genetic interaction profiles showing a more ample spectrum of possible evolution-
ary relevant mutations (that increase fitness), it also has the potential to anticipate forbidden
possible mutational paths determined by the synthetic lethal pairs. The actual power of genetic
interaction profiles to delineate principles to steer evolution remains to be seen.

In this thesis, we analyzed how the first fixed mutation along the evolutionary trajectory
shapes the genetic interactions genome-wide. Moreover, we are interested in which genetic
proxy serves to predict fitness and thedegree of predictability that genetic interaction landscapes
can have on relevant evolutionary outcomes.

1.3. The how: Onmethods to control protein copy numbers and to identify
genetic interactions

Experimental procedures to control the protein copy numbers in the cell
As experimental scientists studying protein function and its impact on cellular processes, we re-
quire the ability to control and manipulate protein copy numbers within cells. Techniques such
as plasmid-based overexpression or RNA interference (RNAi) can be used to increase or decrease
the levels of specific proteins, respectively [42, 43]. CRISPR-Cas9 Gene Editing is another exam-
ple that allows for precise genomic editing. By targeting gene loci responsible for the expression
of specific proteins, researchers can create knockouts (complete removal of protein expression),
knockins (increased expression by adding copies of a gene), or fine-tuned mutations that affect
the gene’s expression levels. However, thementioned techniques, despite their power onmanip-
ulating gene expression, possess one important drawback which is related to off-target effects
that can lead to unintended mutations, potentially affecting the cell’s phenotype and viability.
During our research, we decided to adopt a rather simpler technique: the application of an in-
ducible promoter to control the expression of our gene of interest, specifically the Gal promoter
[44]. The expression can be ideally tightly controlled by the addition or removal of galactose as
the inducer, and thereby allows to adjust the protein’s copy number in the cell dynamically.

We opted for the gal promoter to control the protein copy number of our protein of interest
due to its technical simplicity compared to RNAi or CRISPR-Cas9 based techniques. The gal pro-
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moter provides adjustable expression levels depending on the inducer concentration and shows
minimal background expression without the inducer, reducing the risk of off-target effects or
protein overexpression toxicity. However, we acknowledge a potential pitfall: leakiness, where
the gene of interest is expressed even without the inducer. This could complicate experiments,
particularly if the protein has a significant impact on the cell at low concentrations.
Experimental procedures to identify genetic interactions
Automated yeast genetics: Synthetic Genetic Arrays. The scientific community has dedicated
significant efforts to unraveling the influence of genetic background on disease development and
drug design, with essential support from extensive research on profiling the genetic interaction
network in various species. A notable achievement in this pursuit is the comprehensive explo-
ration of the global yeast interaction network by researchers such as [13, 14, 45]. The network
was constructed using Synthetic Genetic Array (SGA). SGA is a high-throughput genetic screen-
ing technique used in molecular biology and genetics to analyze genetic interactions between
genes in a genome systematically. It was developed to understand how genes function together
to influence various cellular processes and phenotypes. The main steps of the SGA technique
typically include the creation of mutant libraries, automated mating and selection of double mu-
tants(which requires specialized robotics and automated platforms), and phenotypic analysis (an
automated measure of colony size). For the global genetic interaction landscape, the authors
tested 90% of the yeast genome for all possible pairwise genetic interactions, identifying nearly
1 million interactions, including around 550,000 negative and around 350,000 positive interac-
tions [37]. SGA is a powerful and widely used technique for quantifying genetic interactions, yet
it has disadvantages and limitations. First, the complexity and cost of SGA analysis are significant.
Generating and analyzing numerous yeast double mutants require a sophisticated, untractable
robotic infrastructure to replicate in standard wet labs. The systematic crossing of thousands of
yeast mutants poses logistical challenges and incurs considerable expenses. Another limitation
of SGA analysis is its inherent focus on coding sequences, potentially overlooking non-coding
regions’ regulatory effects on genetic interactions.

SATAY as a new emergent technique for genome-wide genetic interaction profiling. Sat-
urated Transposition Analysis in yeast (SATAY) [39] is a technique that involves saturating the
yeast genome with transposons. Transposons are mobile DNA elements discovered by Barbara
McClintock in the mid-1940s. Transposons are genetic elements capable of regulating gene ac-
tivity [46]. SATAY is part of the realm of methods involving transposon insertion sequencing
(TIS)[47]. TIS combines genome-wide transposonmutagenesis with high-throughput sequencing
to estimate the fitness contribution or essentiality of each genetic component of the specie un-
der study. Furthermore, the vastmajority of TIS studies to date have been performed in bacterial
species[48–50], owing to this ease of genetic manipulation. Yet, several related TIS-like methods
have been developed in fungal[39, 51, 52], mammal[53–56] and archaeal[57, 58] backgrounds.

The basic concept behind SATAY is to induce the production of a transposase enzyme (Ac) that
translocates the transposons (MiniDs, originally fromMaize) to random locations in the genome.
Usually, this system is encapsulated as a plasmid integrated into the yeast cell genome. The
assay begins with constructing a saturated mutant library by introducing the randomly inserted
transposon into a strain of interest, often by transformation. The goal is to create a population of
yeast cells where each cell carries a single transposon insertion in the genome. Generally, when
a transposon hits a genetic component, its translation gets disrupted. When cells are pooled to-
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gether, each genetic component is disruptedmultiple times at different sites. Probing the fitness
effects of these disruptions is part of the assay, where a population containing all the possible
mutations can expand for a few generations. Alternatively, the library can be subjected to a
selective condition, such as gene mutation, to query non-essential features involved in survival
and growth within that new genetic background. Such conditionally important components are
defined by insertions whose frequency significantly changes in the population before and after
the mutational change. Genomic features with disruptive transposon insertions with a decrease
in frequency over experimental selection are assumed to be important for fitness in the test
conditions; such features could include synthetic lethal genes with the test mutation.

Unlike Synthetic Genetic Arrays (SGA), SATAY does not rely on specific robotic setups and is
not limited to coding sequences. Transposon insertions can disrupt entire genes or specific pro-
tein domains, providing valuable information about the importance of different protein regions
for cellular function.

TIS has been effectively utilized to quantify the comprehensive distribution of fitness effects
on a genome-wide scale and extract genetic interactions in bacterial models [59, 60]. Similarly,
SATAY has proven its utility in identifying essential genes, as well as genes associated with drug
resistance, such as rapamycin, and novel regulatory genes involved in the TORC1 pathway [39,
61]. These studies have also touched upon genetic interactions, although their primary focus
was to demonstrate the efficacy of the SATAY technique in achieving these outcomes.

However, there exists a significant gap in research that fully exploits the potential of SATAY to
systematically construct comprehensive genome-wide genetic interaction profiles, particularly in
contexts such as predicting the functions of uncharacterized proteins or unraveling the genetic
reorganization inherent in compensatory pathways. This thesis, therefore, represents a step
towards advancing the utilization of SATAY for genome-wide mapping of genetic interactions
within relevant biological systems.

1.4. Thesis aim and outline
This thesis explores the implications of the evolutionary adaptation of cell polarity from two an-
gles: 1) Analyzing the role of copy number changes of a central regulator of cell polarity, and 2)
Investigating genome-wide genetic interaction changes during the adaptation process by i. deci-
phering the functionality of NRP1 as a gene with weak effects, currently uncharacterized by the
global genetic interaction network, and by ii. analyzing genetic interaction changes following the
main compensatory mutation of the evolutionary trajectory.
The following outline presents the goal and main results of the upcoming chapters.
Chapter 2: "Redundancy and the role of protein copy numbers in the cell polarizationmachinery
of budding yeast."

In Chapter 2, we focus on the question: How can a self-organized cellular function evolve,
adapt to perturbations, and acquire new sub-functions? We tackled this question by combining
modeling, conceptual theory and experiments to propose thatmultiple, redundant self-organization
mechanisms coexist within the protein network underlying cell polarization and are responsible
for the module’s resilience and adaptability.
Chapter 3: "An approach to extract genetic interactions from saturated transposition analysis in
yeast."
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In Chapter 3, we focus on the question: How canwe implement a suitable approach to extract

genetic interactions from Saturated Transposition Analysis in Yeast (SATAY)? In this approach, ge-
netic interactions are derived using a multiplicative fitness model that accounts for fitness vari-
ances across replicates. We envision that the fitness model and resulting genetic interactions
provide a foundation for guiding further investigations using low-throughput experiments.
Chapter 4: "Using genetic interactions from saturated transposition analysis to uncover NRP1’s
function in S.cerevisiae ".

In Chapter 4, we focus on thequestion: What is the biological role of the cell polarity-associated
geneNRP1? And bywhich biological mechanisms theNRP1 knockout can compensate for the loss
of BEM1? We tackled those questions by quantifying whether the RNA binding domain annotated
toNrp1 influences gene expression in differentmutants, and by identifying genome-wide genetic
interaction partners through SATAY, aiming to propose potential biological functions involving
NRP1. We propose that NRP1 is linked in processes related to prion formation, endocytosis, and
cell cycle checkpoints, and our observations hints that NRP1 deletion rescues Δbem1mutants by
either regulating the precise cell size at the START point of the cell cycle or enhancing the Cdc42
exchange from the membrane to the cytosol.
Chapter 5: "Probing the genetic rewiring of a reproducible evolutionary trajectory."

In chapter 5, we focus on the question: How are suppressor mutations changing the global
genetic interaction map with respect to the initial deleterious mutation? Here, we utilized Satu-
rated Transposition Analysis in Yeast (SATAY) to quantify the genetic interactions changes across
genetic backgrounds. We mainly propose that genetic interactions are highly contingent on spe-
cific experimental conditions and suppressor mutation arrival predominantly induces sign epis-
tasis changes in comparison to the initial mutant.

1.5. Glossary
DNA(Deoxyribonucleic Acid): DNA is a molecule that contains the genetic instructions used in
the development, functioning, growth, and reproduction of all living organisms andmany viruses.
It is a long double-stranded helical structure composed of four nucleotide bases: adenine (A),
thymine (T), cytosine (C), and guanine (G).
Gene: A gene is a DNA segment containing the code for a specific protein or functional RNA
molecule. Genes are the fundamental units of heredity and play a crucial role in determining
various traits and characteristics of an organism.
Genetic variant: A genetic variant, also known as amutation or allele, is a specific form of a gene
that differs from the prevalent form (wild-type) found in a population. Genetic variants can result
from changes in nucleotide sequences, and they may or may not have an observable impact on
the phenotype or traits of an individual.
Genetic locus: A genetic locus refers to the specific physical location of a gene or DNA sequence
on a chromosome. It is used to identify and map the positions of genes and genetic markers in
the genome.
Coding sequence: The coding sequence, also known as the coding region or open reading frame
(ORF), is a specific segment of DNA or RNA that contains the instructions for producing a func-
tional protein. In molecular genetics, this region is of particular significance as it encodes the
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amino acid sequence of a protein, which, in turn, determines the protein’s structure and func-
tion. The coding sequence is typically found within a gene, a segment of DNA or RNA that serves
as a unit of heredity. Within a gene, the coding sequence is flanked by non-coding regions, such
as promoter and terminator regions, responsible for regulating the transcription and translation
of the gene.
Transposons: Transposons, also known as transposable elements or jumping genes, are seg-
ments of DNA that have the unique ability to move or transpose within a genome. They were
first discovered by BarbaraMcClintock in the 1940s while studying the genetics of corn plants, for
which she was awarded the Nobel Prize in Physiology orMedicine in 1983. Transposonsmake up
a significant portion of many organisms’ genomes, including humans. They are found in prokary-
otes (bacteria) and eukaryotes (organismswith complex cell structures, including plants, animals,
and fungi). These mobile genetic elements can positively and negatively impact the host organ-
ism’s genome and evolution.
High-throughput techniques: High-throughput techniques refer to experimental methods and
technologies that allow researchers to process large amounts of data or conduct numerous ex-
periments rapidly and efficiently. These techniques are widely used in various scientific fields,
including genomics, proteomics, drug discovery, and systems biology. The key advantage of
high-throughput techniques is their ability to handle multiple samples or data points simultane-
ously, enabling researchers to gather comprehensive and robust data relatively quickly.
Fitness: In biology and evolutionary biology, fitness refers to the measure of an organism’s abil-
ity to survive, reproduce, and pass on its genes to the next generation. It is a central concept in
the theory of natural selection proposed by Charles Darwin and is fundamental to understand-
ing evolution.
Epistasis: Epistasis refers to a phenomenon in genetics where the effect of one gene (or genetic
variant) is modified by the presence or absence of alleles at another gene or genetic locus. In
other words, it describes the interaction between different genes that influences the expression
of a particular trait. Epistasis can manifest in various ways, including masking the effects of one
gene by another, amplifying or diminishing the effects of a gene, or creating novel phenotypic
outcomes that are not predictable based on the individual effects of each gene. Understanding
epistasis is crucial for unraveling the complexities of genetic inheritance patterns and phenotypic
diversity within populations.
Phenotype: The phenotype refers to an organism’s observable physical and biochemical traits,
characteristics, andbehaviors. It results from interactions between anorganism’s geneticmakeup
(genotype) and environmental factors.
Evolution: Evolution is a fundamental concept in biology and refers to the gradual change and
diversification of living organisms over successive generations. It is the central unifying principle
in understanding the history and diversity of life on Earth.
Network: In biology or genetics, a network usually refers to a complex interconnected system
involving genes, proteins, or other biologicalmolecules. These networks can represent various in-
teractions, such as gene regulatory networks, protein-protein interaction networks, or metabolic
pathways, that collectively influence cellular functions and phenotypic outcomes. Network anal-
ysis helps researchers understand the intricate relationships and dynamics within biological sys-
tems.
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Redundancy and the role of protein copy

numbers in the cell polarization machinery of
budding yeast

Strength comes from waiting.

Jose Marti

Abstract How can a self-organized cellular function evolve, adapt to perturbations, and
acquire new sub-functions? To make progress in answering these basic questions of
evolutionary cell biology, we analyze, as a concrete example, the cell polarity machinery of
Saccharomyces cerevisiae. This cellular module exhibits an intriguing resilience: it remains
operational under a genetic perturbation and recovers quickly and reproducibly from the
deletion of one of its key components. Using a combination of modeling, conceptual theory,
and experiments, we propose that multiple, redundant self-organization mechanisms coexist
within the protein network underlying cell polarization and are responsible for the module’s
resilience and adaptability. Based on our mechanistic understanding of polarity establishment,
we hypothesize how scaffold proteins, by introducing new connections in the existing network,
can increase the redundancy of mechanisms and thus increase the evolvability of other
network components. Moreover, our work gives a perspective on how a complex, redundant
cellular module might have evolved from a more rudimental ancestral form.
Chapter published as a peer-reviewed publication: Brauns, F., Iñigo de la Cruz, L., Daalman, W.KG. et al. Redundancy and
the role of protein copy numbers in the cell polarization machinery of budding yeast. Nat Commun 14, 6504 (2023).
Author Contributions: FB, LIC, WD, JH, LL, and EF designed research; FB, JH, and EF designed the theoretical models and
performed the mathematical analyses; LIC, WD, and IB and LL designed and carried out the experiments; FB, LIC, WD, LL
and EF wrote the paper.
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2. Redundancy and the role of protein copy numbers in the cell polarization machinery ofbudding yeast
2.1. Introduction
Biological systems are self-organized. Their function emerges by the collective interplay of many
components—governedbyphysical and chemical processes. Howdo such collective (self-organized)
functions evolve and adapt to strong perturbations such as the loss of essential components [1,
2]?

A striking example for such adaptation is the Cdc42 cell-polarization machinery of Saccha-
romyces cerevisiae (budding yeast). Cell polarization directs cell division of budding yeast through
the formation of a polar zone with high Cdc42 concentration on the membrane (see fig. 2.1 a-
c). Following the knock-out of Bem1, a key player in the Cdc42-interaction network (fig. 2.1 d.),
cells regain their ability to polarize and divide by loss of another component of this network.
This happens rapidly (within 100 generations) and reproducibly [3]. How this recovery works has
remained unclear.

Cell polarization of budding yeast is organized by a complex interaction network (fig. 2.1 d.)
around the central polarity protein Cdc42. Cdc42 is a GTPase that cycles between an active (GTP-
bound) and an inactive (GDP-bound) state. The key features of these two states are that active
Cdc42 is stronglymembrane bound and recruitsmany downstream factors, while inactive Cdc42-
GDP can detach from the membrane to the cytosol where it diffuses freely.

In wild-type (WT) cells, polarization is directed by upstream cues like the former bud-scar
[9–12]. Importantly however, Cdc42 can polarize spontaneously in a random direction in the ab-
sence of such cues [13–15]. What are the elementary processes underlying spontaneous Cdc42
polarization? On the timescale of polarity establishment, the total protein copy number of Cdc42
proteins (as well as its interaction partners) is nearly constant. Hence, to establish a spatial pat-
tern in the protein concentration, the so-called polar zone, the proteins need to be spatially redis-
tributed in the cell by directed transport. There are two distinct, mostly independent, pathways for
directed transport that have been established by experimental and theoretical studies [4, 14–17]:
cytosolic diffusive flux driven by a sustained concentration gradient (Fick’s law) and vesicle-based
active transport along polarized actin cables (Figure 1B,C).

Once a polar zone has been established, the ensuing concentration gradient on the mem-
brane leads to a diffusive flux of proteins away from the polar zone. To maintain the polar zone,
this flux on the membrane must be counteracted continually by (re-)cycling the proteins back
to the polar zone via a flux from the cytosol to the membrane [15, 17, 18] or via vesicle-based
transport [14, 16]. In WT cells, Cdc42-GTP recruits Bem1 from the cytosol which in turn recruits
the GEF (Guanine nucleotide Exchange Factor) Cdc24 (see fig. 2.1 d.) [13, 19]. The membrane-
bound Bem1-Cdc24 complex then recruits more Cdc42-GDP from the cytosol and activates it
(nucleotide exchange) [16]. The hallmark and crucial element of this mutual recruitment mecha-
nism is the co-localization of Cdc42 and its GEF Cdc24 [4, 15, 20–22].

Deletion of Bem1 disrupts localized Cdc42 recruitment and activation [4, 22] and thereby
severely impedes the cells’ ability to polarize and bud [13, 23]. Bem1Δ cells can be rescued by
Bem1 fragments that cannot mediate mutual recruitment of Cdc42 and its GEF Cdc24, but only
confer increased global (homogeneous) GEF activity by relieving Cdc24’s auto-inhibition [24–27].
Even more intriguingly, in experimental evolution, bem1Δmutants are reproducibly rescued by
the subsequent loss of Bem3 [3], one of four knownCdc42-GAPs that catalyze the GTP-hydrolysis,
i.e., switch Cdc42 into its inactive, GDP-bound state. These experimental findings suggests that
there is a hidden Cdc42 polarization mechanism that is independent of GEF co-localization and
is activated by either increased GEF activity or the loss of a Cdc42-GAP.
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2.1. Introduction

Figure 2.1. a. Starting from an initially homogenous distribution of Cdc42, a polar zone forms, marked by ahigh concentration of active Cdc42 on the plasma membrane. There are two pathways of directed transportin the cells: b. Cytosolic diffusive flux driven by a concentration gradient that is sustained by spatially sepa-rated attachment (red arrow) and detachment (blue arrow) zones; c. Vesicle transport (endocytic recycling) isdirected along polar-oriented actin cables. Active Cdc42 directs both cytosolic diffusion (by recruiting down-stream effectors that in turn recruit Cdc42) as well as vesicle transport (by recruiting Bni1 which initiatesactin polymerization). d. Molecular interaction network around the GTPase Cdc42, involving activity regula-tors (GEF, GAPs), and the scaffold protein Bem1 (some components are displayed multiple times for visualclarity, not to imply a chronological order). An effective recruitment term accounts for Cdc42-recruitment tothe membrane directed by Cdc42-GTP facilitated by Cdc42’s interaction partners, for instance Cla4 [4–6] andRsr1 [7]. e. Details of the model and the mathematical implementation are described in the Methods andSupplementary Note 1, from original paper [8]. For simplicity, we do not explicitly account for Cdc42-effectorcomplexes. A model extension accounting for those complexes did not significantly change the results.
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2. Redundancy and the role of protein copy numbers in the cell polarization machinery ofbudding yeast
Here, we develop a mathematical model for the cell polarization module of budding yeast –

synthesizing the insights from a large body of experimental and theoretical literature. Our theo-
retical analysis of this model shows that the cell-polarity module comprises multiple redundant
mechanisms based on reaction–diffusion and potentially vesicle-based transport. It reveals that
in addition to the Bem1-mediated mutual recruitment mechanism, a distinct and latent mech-
anism exists in the Cdc42-polarization machinery. Crucially, this latent mechanism requires ex-
plicitmodeling of the intermediate Cdc42-GAP complex, whichwas not accounted for by previous
models. We show that the latentmechanism operates under different constraints on the protein
copy numbers than the wild-type mechanism and is activated by the loss of Bem3 which lowers
the total protein copy number of GAPs. This explains how cell polarization is rescued in bem1Δ
bem3Δ cells [3], and also reconciles the puzzling experimental findings outlined above. More-
over, we experimentally confirm the predictions of our theory on how cell polarization in various
mutants can be rescued by changing the Cdc42 protein copy number. On the basis of themecha-
nistic understanding of the cell polarizationmodule in budding yeast, we then propose a possible
evolutionary scenario for the emergence of this self-organized cellular function. We formulate
a concrete hypothesis how evolution might leverage scaffold proteins to introduce new connec-
tions in an existing network, and thus increase redundancy of mechanisms within a functional
cellular module. This redundancy loosens the constraints on the module and thereby enables
further evolution of its components, for instance by duplication and sub-functionalization [28].
2.2. Results
As basis for our theoretical analysis, we first need to formulate a mathematical model of the
cells’ Cdc42-polarization machinery that is able to explain Bem1-independent polarization. The
interplay of spatial transport processes (fig. 2.1 b-c) and protein-protein interactions (fig. 2.1 d) is
described in the framework of reaction–diffusion dynamics. The biochemical interaction network
wepropose is based on the quantitativemodel introduced in [17] andmakes severalminimal, but
essential extensions to it. The model accounts for the Cdc42 GTPase cycle and the interactions
between Cdc42, Bem1 and Cdc24 [15]. Extending previous models, we explicitly incorporate the
transient formation of a GAP-Cdc42 complex as an intermediate step in the enzymatic interac-
tion between GAPs and Cdc42 [29]. Explicitly accounting for the GAPs’ enzyme kinetics, which
was neglected in previous models [30–32] is important to account for (partial) GAP saturation
in regions of high Cdc42 concentration, which will play an essential role in our findings. In addi-
tion, we include effective self-recruitment of Cdc42-GDP to the membrane which is facilitated by
membrane-bound Cdc42-GTP. This effective recruitment accounts for vesicle-based Cdc42 trans-
port along actin cables [16, 33, 34] and putative recruitment pathways mediated by Cdc42-GTP
downstream effectors such as Cla4 and Gic1/2[5, 35, 36]. A detailed description of the model,
illustrated in fig. 2.1 d., and an in-depth biological motivation for the underlying assumptions are
given in the supplementary notes 1 from [8].
2.2.1. The Cdc42 interaction network facilitates a latent polarization-mechanism
We first ask whether the proposed reaction–diffusion model of the Cdc42 polarization machin-
ery can explain spontaneous polarization in the absence of Bem1, i.e. without GEF co-localization
with Cdc42. To this end, we perform a linear stability analysis of the model which identifies the
regimes of self-organized pattern formation. A large-scale parameter study (see supplementary
notes 5 [8]) reveals that in the absence of Bem1 there is a range of protein numbers of Cdc42
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Figure 2.2. Regimes of operation of the Bem1-mediated wild-type mechanism and the latent mechanismfor cell polarity. Stability diagrams as a function of GAP- and Cdc42 concentrations in presence and absenceof Bem1 obtained by linear stability analysis (see supplementary notes 3 [8]) of the mathematical modelfor the Cdc42-polarization machinery (see fig. 2.1 and supplementary notes 2 [8]). Shaded areas indicateregimes of lateral instability, i.e. where a spontaneous polarization is possible. A In WT cells, the scaffoldprotein Bem1 is present and facilitates spontaneous polarization by amutual recruitment mechanism that isoperational in a large range of Cdc42 and GAP concentrations [15, 17]. The green point marks the Cdc42 andGAP concentrations of WT cells. B In the absence of Bem1, spontaneous polarization is restricted to a muchsmaller parameter-space region in our model, because the regime of operation of the Bem1-independentmechanism is inherently delimited by a critical ratio of GAP concentration to Cdc42 concentration. The Cdc42and GAP concentrations of bem1Δ cells and bem1Δ bem3Δ are marked by the red cross and blue point,respectively. The experimental observation that bem1Δ cells do not polarize, whereas bem1Δ bem3Δ polarizecan be used to infer a range for the critical GAP/Cdc42-concentration ratio. Increasing the GEF activity ofCdc24 increases this critical ratio (dashed blue line). C Snapshots from numerical simulations showing theconcentration of membrane bound Cdc42-GTP in the final steady state for various mutant and copy numberconditions, corresponding to Videos 1-4 (from supplementary section of [8]). (In panel (iii), the color barrepresents concentrations in the range 0–200 �m−2). (Model parameters were obtained by sampling forparameter sets that are consistent with the experimental findings on various mutants, as described in detailin supplementary notes 5 [8].)

and GAPwhere polar patterns are possible (fig. 2.2B), i.e., that there is a latent polarizationmech-
anism. However, in contrast to the Bem1-dependent mutual recruitment mechanism (fig. 2.2A),
we find that the regime of operation for this latent mechanism is more limited and requires a
sufficiently low GAP/Cdc42-concentration ratio (fig. 2.2B). To validate the results from linear sta-
bility analysis, we performed numerical simulations of the full nonlinear, bulk-surface coupled
reaction diffusions (see fig. 2.2C and videos 1-6 (from [8]); details described in supplementary
notes 3 [8] ).

What is the mechanistic cause for the constraint on the GAP/Cdc42-concentration ratio? To
answer this question, we need to understand how the Cdc42-polarization mechanism works in
the absence of Bem1. As emphasized above, Cdc42-polarization requires twoessential features—
directed transport of Cdc42 to the polar zone and localized activation of Cdc42 there. The first
feature, directed transport, is accounted for in the model by effective recruitment of Cdc42-GDP
to the membrane mediated by active Cdc42 (fig. 2.1d.).
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2. Redundancy and the role of protein copy numbers in the cell polarization machinery ofbudding yeast
2.2.2. GAP saturation can localize Cdc42 activity to the polar zone
How is the second feature, localization of Cdc42 activity to the polar zone, implemented in the
absence of Bem1? Instead of directly increasing the rate of Cdc42 activation in the polar zone (via
recruitment of theGEF Cdc24 by Bem1), localization of activity can also be achieved by decreasing
the rate of Cdc42 deactivation in the polar zone and increasing it away from the polar zone. In
fact, if enzyme saturation limits the net deactivation rate, a simple increase in Cdc42 density
generically leads to a decrease of the Cdc42 deactivation rate (per Cdc42 molecule). Enzyme
saturation of catalytic reactions occurs when the dissociation of the transient enzyme-substrate
complex (here the GAP-Cdc42 complex) is the rate limiting step. The enzymes that are transiently
sequestered in enzyme-substrate complexes are then not available to bind to further substrate
molecules. Indeed, it has been shown that this is the case for GAP-catalyzed hydrolysis of Cdc42
in budding yeast [29]. Furthermore, enzyme saturation requires that a large fraction of enzymes
is sequestered in enzyme–substrate complexes, i.e., that the total enzyme density is sufficiently
low compared to the substrate density, as we found in the linear stability analysis (fig. 2.2B).

In summary, (partial) GAP saturation localizes Cdc42 activity to the polar zone: It decreases
the deactivation rate in the polar zone, where Cdc42 density is high, relative to the remainder
of the membrane, where Cdc42 density is low. This localized Cdc42 activity, in conjunction with
transport of Cdc42 to the polar zone, drives spontaneous cell polarization. Interestingly, enzyme
saturation of Cdc42 hydrolysis is one of the six theoretically possiblemechanisms for pattern for-
mation that were hypothesized by a generic mathematical analysis of feedback loops in GTPase
cycles[37].
2.2.3. The latent polarization-mechanism explains the rescue of Bem1 deletion
The Bem1-independent rescue mechanism requires a sufficiently low GAP/Cdc42-concentration
ratio to be functional (fig. 2.2B). This suggests that bem1Δ cells are not able to polarize because
their GAP protein copy number is too high. Our model predicts that the loss of GAPs can res-
cue cell polarization by bringing their total protein copy number into a regime where the Bem1-
independent mechanism is operational, as indicated by the arrow in fig. 2.2B. This is in accor-
dance with evolution experiments showing that bem1Δ cells are reproducibly rescued by a sub-
sequent loss-of-function mutation of the GAP Bem3 [3]. Bem3 accounts for approximately 25%
of the total protein copy number of all Cdc42-GAPs [38], indicating that bem1Δmutants are close
to the GAP/Cdc42-ratio threshold of the Bem1-independent mechanism. This proximity of the
protein copy numbers to the threshold explains why a low fraction (about 1 in 105) ofmutants are
able to polarize and divide, after BEM1 has been deleted [3]: Protein copy numbers vary stochas-
tically from cell to cell such that a small fraction of cells lies in the concentration regimewhere the
latent polarization mechanism drives spontaneous cell polarization. (For the four Cdc42 GAPs, a
coefficient of variation around 0.14 for cell-to-cell copy-number variability has been reported [39].
This is on the same order of magnitude as the upper estimate of 25% for the GAP protein copy
number reduction required to activate the Bem1-independent rescue mechanism, suggesting
that this mechanism is operational in a fraction of bem1Δ cells.)

Rather than by the loss of a GAP, the GAP/Cdc42-concentration ratio could also be brought
down by an increase of the Cdc42 protein copy number. Yet another optionwould be an increase
of Cdc24’s GEF activity which would increase the critical threshold in GAP/Cdc42-concentration
ratio (see dashed line in fig. 2.2B). However, compared to a loss-of-function mutation, such mu-
tations have a much smaller mutational target size and are therefore much less frequent. More-
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over, onemight wonder why it is specifically Bem3, rather than one of the other GAPs, that is lost
to rescue the bem1Δ strain. Some hints to answer this outstanding question are provided by a
detailed theoretical analysis of the rescuemechanism later in the section Functional submodules
of cell polarization.
2.2.4. Copy number variation experiments confirm theoretical predictions
Based on the GAP/Cdc42-ratio constraint in the rescue mechanism, our theory makes two spe-
cific predictions: (i) Increasing the protein copy number (i.e. overexpression) of Cdc42 will rescue
cell polarization of bem1Δ cells by invoking the Bem1-independent mechanism. (ii) Polarization
of bem1Δbem3Δ cells will break down if the protein copy number of Cdc42 is lowered compared
to the WT level (fig. 2.2B).

To test these model predictions experimentally, we first constructed different yeast strains
with Cdc42, labelled with sfGFP, under an inducible galactose promoter. This allows us to tune
the Cdc42 protein copy number by varying the galactose concentration in the growthmedia [40]:
a bem1Δ strain (yWKD069), a bem1Δ bem3Δ (yWKD070), and a modified WT strain (yWKD065)
(see section 2.4). We confirmed that the sfGFP tag on our inducible Cdc42 does not significantly
alter fitness (see fig. 2.6), in line with literature on viability and localization of another fluorescent
Cdc42 sandwich fusion [41] in budding yeast. As a next step, we inoculated the different strains
at varying galactose concentration in 96well plates, that were placed in a plate reader tomeasure
the cell density over time, and thereby determined the population growth rate (see section 2.4).
For every galactose concentration, the growth rates are normalized to those of WT cells, with
Cdc42 under its native promotor (yLL3a), grown at the same galactose concentration. In fig. 2.3A
the normalized growth rates of the different mutants are plotted. As expected, WT cells grow
at all galactose concentrations. In contrast, WT cells with Cdc42 under the galactose promotor
(yWKD065), do not grow in the absence of Cdc42 (0% galactose concentration), since a failure to
polarize severely impairs cell division and eventually leads to cell death and thus zero growth rate
[13]. Our data show that the WT mechanism is rather insensitive to Cdc42 protein copy number,
even for very low expression of Cdc42, in accordance with theory (Figure 2A).

Ourmodel predicts that bem1Δ cells need the highest Cdc42 protein copy number to polarize,
WT cells will need the least, and the bem1Δ bem3Δ cells should be in between. We indeed find
that the bem1Δ strain (yWKD069) grows in media with 0.1% or higher galactose concentration.
We inoculated these strains at lower galactose concentrations, but never observed growth for
the bem1Δ and the bem1Δbem3Δ strains in more than one technical replicate (out of 6 and 4
respectively) per condition (see table 2.3). We attribute the rare growth at low galactose concen-
trations to emergence of suppressormutations. Therefore, we focus on comparing growth rates.
There is strong and positive evidence that the bem1Δbem3Δ grows faster than the bem1Δ in the
0.06,% 0.1% and 0.2% galactose concentration respectively (Bayes factors 7, 131 and 6, and using
interpretation qualifications from [42]). For WT cells with Cdc42 under the galactose promotor
we observe and reduced growth rate at 0.01% galactose concentration but growth is only fully
inhibited at 0% galactose concentration. All of the above experimental observations agree with
our specific theoretical predictions.

Furthermore, we examined the influence of Cdc42 protein copy number on cell morphology
(see fig. 2.3B) and viability. These experiments provide support for the conclusions from our
growth assays, namely that viability increases and size (as proxy of polarization time [3, 43])
decreases with increasing protein copy number.
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Figure 2.3. Experiments confirm theoretically predicted effect of Cdc42 protein copy number on the latentpolarity-mechanism. AGrowth rate of the differentmutants (relative to the growth rate ofWT cellswith Cdc42under its native promotor at that galactose concentration (red)) against the galactose concentration galactoseconcentration (proxy for Cdc42 protein copy number) show that higher expression of Cdc42 rescues bem1Δcells and to a lesser extent bem1Δ bem3Δ cells; the error bar indicates the 68% credible interval, seematerialsand methods). B Micrographs of all strains in 0.06% galactose, after 24 hours of incubation. WT yeast cellswith Cdc42 under the galactose and native promotor respectively are entering stationary phase and diluted1000x (top row). The bem1Δ and bem1Δ bem3Δ cells are in log phase and diluted 100x (bottom row)

Taken together, the experimental data confirm the theoretical prediction that the Bem1-
independent rescuemechanism is operational only below a threshold GAP/Cdc42-concentration
ratio. In addition, we find that the Bem1-dependent WT mechanism is surprisingly insensitive to
Cdc42 protein copy number, i.e., operates also at very low Cdc42 concentration. In the context
of our theory, this significant difference in Cdc42 protein copy number sensitivity is explained
by the qualitative difference of their principles of operation (see The Cdc42 interaction network
facilitates a latent polarization mechanism). The WT mechanism is based on recruitment of
the GEF Cdc24 to the polar zone, mediated by the scaffold protein Bem1. In contrast, the rescue
mechanism crucially involves enzyme saturation of Cdc42 hydrolysis due to high Cdc42 density in
the polar zone. This enzyme saturation requires a sufficiently large Cdc42 protein copy number
relative to the GAP protein copy number. In the section section 2.2.6 below, we will analyze the
mathematical model, and the qualitative and conceptual differences between these two mecha-
nisms in more detail.
2.2.5. The latent rescue mechanism explains and reconciles previous experimen-

tal findings
In previous experiments, several Bem1 mutants were studied that perturb Bem1’s ability to me-
diate co-localization of Cdc24 to Cdc42-GTP, the key feature that underlies operation of the WT
mechanism [24, 25, 32, 44–46]. The observations from these experiments have remained puz-
zling and apparently conflicting among one another as of yet. As we show in detail in the sec-
tion 2.5, the latent rescue mechanism predicted by our mathematical model explains and recon-
ciles all of these previous experimental findings. The key insight is that the latent rescue mech-
anism can be activated by a global increase of GEF activity (see dashed line in fig. 2.2B). Bem1
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mutants that lack the Cdc42-interaction domain but still bind to the GEF Cdc24 may provide
such a global increase of GEF activity and thus rescue polarization of bem1Δ cells. Moreover, in
accordancewith optogenetics experiments [45], ourmathematical model predicts that the latent
Bem1-independent mechanism can also be induced outside the regime of spontaneous polar-
ization by a sufficiently strong local perturbation of the membrane-bound GEF concentration.
2.2.6. Functional submodules of cell polarization
Cell polarization in budding yeast is a functional module based on a complex protein interaction
network with Cdc42 as the central polarity protein (fig. 2.1 B-D). As we discuss next, the full net-
work can be dissected into functional submodules. Here, the term functional submodule refers
to a part of the full interaction network with a well-defined function in one or more pattern-
forming mechanisms. Our theoretical analysis will reveal that an interplay of two (or more) func-
tional submodules each constitutes a fully functional cell polarization mechanism. Importantly,
the submodules emerge from the interplay of various players (components) in the biochemical
interaction network and the spatial transport of proteins (by diffusion and along actin cables).

As we argued in the Introduction, establishment and maintenance of cell polarity requires
that Cdc42-activity is localized to membrane regions with a high density of Cdc42. This can be
achieved in two different ways. First, by the recruitment of the scaffold protein Bem1 to Cdc42-
GTP, which in turn recruits the GEF (Cdc24) and thus localizes Cdc42 activation to the polar zone,
where Cdc42 density is high (fig. 2.4A, top left). We call this the polar activation submodule. Sec-
ond, GAP saturation in regions of high local Cdc42 densities can localize Cdc42 activity to the
polar zone (fig. 2.4A, top right), as described above in the subsection GAP saturation can localize
Cdc42 to the polar zone. The transient (partial) sequestration of GAPs in Cdc42-GAP complexes
is essential for this polar GAP saturation submodule. The third submodule (fig. 2.4A, bottom) that
we term Cdc42 transport, comprises various modes of Cdc42 transport towards the polar zone:
vesicle transport along polarized actin cables (fig. 2.1B) and effective (self-)recruitment of Cdc42
from the cytosol. Several experiments indicate that downstream effectors of active Cdc42, such
as Cla4, Gic1 and Gic2 may provide such effective recruitment in the absence of Bem1 [5, 35, 47].

These three functional submodules represent different mechanistic aspects of the Cdc42-
interaction network. Each submodule is operational only under specific constraints on the bio-
chemical properties and protein copy numbers of the involved proteins. In the following, we
exploit these constraints to study the roles of the submodules in the mathematical model by
disabling them one at a time. This allows us to tease apart the mechanisms that are operational
under the corresponding experimental conditions. The first submodule, polar activation, is dis-
abled by the knock-out of Bem1. The second submodule, polar GAP saturation, is suppressed
if the protein copy number of GAPs is too high. Alternatively, polar GAP saturation is rendered
non-operational if the dissociation rate of the GAP-Cdc42 complex is too fast, or if the free GAPs
diffuse very fast making additional free GAPs readily available in the polar zone. The third sub-
module, Cdc42 transport, can be switched off by immobilizing Cdc42, i.e., suppressing its spatial
redistribution. Experimentally, this has been achieved in fission yeast by fusing Cdc42 to a trans-
membrane protein that strongly binds to the membrane and is nearly immobile there [44].

It is worth noting that Bem1 is part of two functional submodules: Recruiting GEF to the
polar zone provides polar activation, recruiting Cdc42 contributes to Cdc42 transport. While polar
activation is entirely dependent on Bem1, there are several Bem1-independent modes of Cdc42
transport, including actin-based vesicle trafficking and other putative recruitment mechanisms
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Figure 2.4. Three functional submodules constitute three distinct mechanisms of Cdc42-GTP polarization. AThree functional submodules of the Cdc42 interaction network contribute to the formation andmaintenanceof a polar zone (region of high Cdc42-GTP concentration, highlighted in red): Transport of Cdc42 towards thepolar zone (purple circle). High Cdc42 activity can be maintained due to GAP saturation in the polar zone(teal square) and by transport of the GEF to the polar zone via the scaffold protein Bem1 (yellow triangle).
B Combinations of pairs of these functional submodules constitute mechanisms of self-organized patternformation. C–E These mechanisms are operational in different regimes of the total protein copy number ofCdc42 and GAPs. The WT mechanism (F) is largely insensitive to protein copy number variations (C) becauseit is based on mutual recruitment of Cdc42 and Bem1-GEF complexes, and does not depend on saturationof GAPs in the polar zone. In contrast, when the GEF is not transported to the polar zone (e.g. due to adeletion of Bem1), only GAP saturation in the polar zone maintains high Cdc42 activity there, while deactiva-tion dominates away from the polar zone. Therefore, the polarization mechanism (G) is sensitive to the GAPprotein copy number (D).H Remarkably, if transport of Cdc42 is suppressed, e.g. by strongly binding it to themembrane, a combination of Bem1-GEF complex recruitment and polar GAP saturation maintain a localizedhigh Cdc42 activity even though the total density of Cdc42 is homogenously distributed.
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(fig. 2.1D.). Thus, the Cdc42 transport submodule is still operational in bem1Δ cells.

We next performed linear stability analysis for the full mathematical model under each of
these perturbations disabling one of the submodules at a time (as described in detail in supple-
mentary section of [8]). In each case we found that the remaining two submodules operate in
concert to constitute a mechanism for spontaneous Cdc42 polarization, as illustrated in fig. 2.4B.
fig. 2.4C-E shows the regime of operation of the three different mechanisms as a function of
the total Cdc42 and GAP concentrations. fig. 2.4F-H illustrate the concerted interplay of directed
protein-transport and regulation of Cdc42 activity (activation/deactivation) that underlie Cdc42-
polarization in these three mechanisms.

Before we turn to the detailed descriptions of these mechanisms, we note that if two sub-
modules are disabled simultaneously, the remaining submodule alone cannot facilitate pattern
formation. In particular, and perhaps somewhat counterintuitively, self-recruitment of Cdc42
alone is not sufficient to drive spontaneous cell polarization [37, 48].
Wild-type mechanism: Cdc42 transport plus polar activation
The interplay of the Cdc42 transport submodule and the Cdc42-Bem1-Cdc24 recruitment sub-
module (polar activation), illustrated in fig. 2.4F, constitutes the WT mechanism that operates
via mutual recruitment of Cdc42 and Bem1 [13, 16, 17].Characteristic for this mechanism is the
co-localization of Cdc24 and Cdc42-GTP in the polar zone, as observed in previous experiments
[4, 45]. Other than the rescue mechanism, the mutual recruitment mechanism does not require
polar GAP saturation. Therefore, it is insensitive against high concentration of GAPs, i.e., it is
operational for much higher GAP/Cdc42-concentration ratios than the rescue mechanism. Fur-
thermore, it is robust against high diffusivity of free GAPs and high catalytic rates of the GAPs
(fast decay of GAP-Cdc42 complexes into free GAP and Cdc42-GDP). This implies that in math-
ematical models of the WT mechanism the GAPs can be accounted for implicitly by a constant
and homogeneous hydrolysis rate, as in previous models [4, 15, 17, 49]. Notably Bem1mediates
both polar activation and Cdc42 transport (via recruitment from the cytosol) in these models.
Rescue mechanism: Cdc42 transport plus polar GAP saturation
The latent, Bem1-independent rescuemechanism operates by the interplay of GAP saturation in
the polar zone (illustrated in fig. 2.4G) and Cdc42 transport (including effective self-recruitment
via actin and/or other downstream effectors like Cla4). Characteristic for this mechanism is that
it does not require co-localization of Cdc24 to Cdc42-GTP in the polar zone (see fig. 2.4G). In fu-
ture experiments, this lack (or dramatic reduction) of Cdc24 polarization could serve as a clear
indicator of the rescuemechanism. As explained above, the rescuemechanism relies on GAP sat-
uration in the polar zone tomaintain high Cdc42 activity there. When Cdc42 activity ismaintained
by lower GAP activity, we expect longer residence times of Cdc42 in the polar zone compared to
WT cells. This prediction could be tested in future experiments.

GAP saturation is suppressed by either high abundance, high catalytic activity, or fast trans-
port (by cytosolic diffusion or vesicle recycling) of the GAPs. The last constraint provides a plau-
sible explanation why it is specifically Bem3 that needs to be deleted to rescue bem1Δ cells. In
contrast to Rga1 and Rga2, Bem3 has been found to be highly mobile, probably because it cycles
through the cytosol [50]. GAP saturation, i.e. the depletion of free GAPs in the polar zone, en-
tails a gradient of the free GAP density towards the polar zone. A mobile GAP species like Bem3
will quickly diffuse along this gradient to replenish the free GAPs in the polar zone. This influx
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relieves the GAP saturation there and thus counteracts the activation of Cdc42 in the incipient po-
lar zone. Therefore, the loss of Bem3, rather than one of the other, less mobile GAPs, promotes
the formation of a stable polar zone.
Polarization with immobile Cdc42: Bem1-mediated recruitment plus polar GAP
saturation
The interplay of Cdc42-Bem1-Cdc24 recruitment (polar activation) and the polar GAP saturation,
illustrated in fig. 2.3H, facilitates polarization of Cdc42 activity without the spatial redistribution
Cdc42’s total density (blue line in fig. 2.3H, top). Instead, the proteins that are being redistributed
are Bem1 and GEF. The polar zone is characterized by a high concentration of membrane-bound
Bem1–GEF complexes which locally increase Cdc42 activity. Cdc42-GTP, in turn, recruits further
Bem1 and GEF molecules to the polar zone. Characteristic for this mechanism is that Cdc42-GTP
is polarized while the total Cdc42 density remains uniform on the membrane. Experimentally,
this has been observed in fission yeast using Cdc42 fused to a transmembrane domain (Cdc42-
psy1TM) that renders Cdc42 nearly immobile. The polarizationmachinery of fission yeast is closely
related to the one of budding yeast; it operates based on the samemutual recruitment pathway
with Scd1 and Scd2 taking the roles of Cdc24 and Bem1 [18]. In future experiments, it would be
interesting to test whether the Cdc42-psy1TM also facilitates polarization in budding yeast (po-
tentially in a strain with modified GAP or Cdc42 protein copy number as the regime of operation
might not coincide with the WT protein copy numbers).
2.3. Discussion
2.3.1. Mechanistic understanding of the cell polarizationmodule in budding yeast
We have discovered that multiple, redundant self-organization mechanisms coexist within the
protein network underlying cell polarization in budding yeast. This explains the remarkable re-
silience of this module: It remains operational under many experimental (genetic) perturbations
[4, 24, 25, 44, 45, 51]. While we find that the Cdc42-polarizationmachinery is robust againstmany
genetic perturbations, we have put particular focus on one of its key components, Bem1, since a
previous experiment has found quick and reproducible recovery from its deletion [3]. By dissect-
ing the full cellular polarization module into functional submodules, we have identified three dis-
tinct mechanisms of self-organized pattern formation. Besides the wild-type mechanism relying
on the colocalization of Cdc42with its GEF via Bem1, this includes a latent andBem1-independent
rescue mechanism and a mechanism that is independent of Cdc42 redistribution. Our theory,
which is compatible with published experiments, reveals that these mechanisms share many
components and interaction pathways of this network. This implies that the redundancy of cell
polarization is not at the level of individual components or interactions but arises on the level
of the emergent function itself. If one submodule is rendered non-functional, the combination
of the remaining submodules still constitutes an operational mechanism of cell polarization— if
parameters, in particular protein copy numbers, are tuned to a parameter regime where these
remaining submodules are operational. Redundancy hence provides adaptability— the ability to
maintain function despite (genetic) perturbations. Importantly, the submodules are emergent:
they involve the interplay of several network components, their biochemical interactions, and
their spatial transport.

Our analysis in terms of functional submodules provides a mechanistic understanding of the
polarization machinery where molecular details have been “coarse grained”. In the context of
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genotype–phenotype maps, this coarse-grained description could be integrated with into a cell
cycle model to address questions about epistasis [52], and eventually predict evolutionary tra-
jectories in a population dynamics model.

Interestingly, the formation ofMin-protein patterns in E. coli relies on the same type ofmecha-
nism as the rescue mechanism for Cdc42-polarization: self-recruitment of an ATPase (MinD) and
enzyme saturation of the AAP (MinE) that catalyzesMinD’s hydrolysis and subsequentmembrane
dissociation [53–55]. The transient MinDE complexes play the analogous role to the Cdc42-GAP
complexes here: In regions of highMinDdensity, MinE is sequestered inMinDE complexes, which
limits the rate of hydrolysis until the complexes dissociate or additional MinE comes in by diffu-
sion. Because MinE cycles through the cytosol, it rapidly diffuses into the polar zone where the
density of free MinE is low. This diffusive influx relieves the enzyme saturation in the polar zone
and eventually leads to a reversal of the MinD polarity direction. The repeated switching of MinD
polarity due to redistribution of MinE is what gives rise to the Min oscillations in E. coli. Recently
also stationary Min patterns have been observed in vitro [56]. Conversely, oscillatory Cdc42 dy-
namics are found in the fission yeast S. Pombe [35], and have also been indirectly observed in
budding yeast mutants [49, 57].
2.3.2. The physics of self-organization imposes constraints on evolution
The fundamental question of evolutionary cell biology is “How do cells work and how did they
come to be the way they are?” [58]. Our in-depth analysis of the yeast polarization machinery
gives an answer to the first half of this question for a specific biological system. It also allows us
to approach the second half and develop a concrete hypothesis how the Cdc42 cell-polarization
machinery of budding yeast might have evolved from a more rudimental ancestral form.

Our theoretical and experimental results highlight the importance of protein copy numbers
as control parameters that determine whether a mechanism of spontaneous cell polarization is
operational. Phrased from a genetic perspective, the genes that code for components of the cell
polarization machinery are dosage sensitive [59]. On the one hand, this entails that mutations of
cis-regulatory elements (like promoters and enhancers) [60] can tune the protein copy numbers
of proteins to the regime of operation of a specific cell-polarization mechanism and optimize
the function within that regime. On the other hand, protein copy number sensitivity constrains
evolution of the polarization-machinery’s components via duplication and sub-functionalization
[59, 61].

One of our key findings is that the constraints on a single particularmechanism can be circum-
vented by the coexistence of several redundant mechanisms of self-organization that operate
within the same protein-interaction network. The regimes of operation— and, hence the dosage
sensitivity of specific genes— can differ vastly between these distinctmechanisms. Therefore, re-
dundancy on the level of mechanisms allows themodule’s components to overcome constraints
like protein copy number sensitivity and thus promotes “evolvability” — the potential of compo-
nents to acquire new (sub-)functions while maintaining the module’s original function. Previous
work has shown how additional negative feedback loops can also increase the regime of opera-
tion of WT mechanism [21].

A particular example in budding yeast’s cell-polarization module where duplication and sub-
functionalization might have taken place is the diversification of the different GAPs of Cdc42 in
budding yeast. Bem3, Rga1, and Rga2 play individual roles in specific cellular functions, like the
pheromone response pathway [50, 62], axial budding [63], and the timing of polarization [64]; see
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Figure 2.5. Hypothetical evolution of Bem1. (Left) The Bem1-independent “rescue” mechanism based onGAP saturation and Cdc42 transport towards membrane bound Cdc42-GTP is operational only in a limitedrange of the GAP/Cdc42-concentration ratios (cf. Figure 4D). (Center) a Bem1 precursor (Bem1-fragment) thatbinds to Cdc24 and relieves its auto-inhibition increases the range of viable GAP/Cdc42-concentration ratiosand thus increases the robustness against protein copy number variations (fig. 2.2). It does, however, notchange the underlying mechanism qualitatively. (Right) Domain fusion of a Cdc42-GTP-binding domain withthe Cdc24-binding Bem1-precursor, leads to a new connection in the Cdc42-interaction network that leadsto recruitment of Cdc24 to the polar zone. On the level of submodules, this new connection constitutes anew functional submodule that we called “polar activation” (yellow triangle). In conjunction with transportof Cdc42 towards the polar zone, polar activation gives rise to the highly robust mutual-recruitment mecha-nism that is operational in WT yeast (regime of operation shaded in green in the (ND, NG)-parameter plane;fig. 2.4C). Note that the scale on the vertical axis is chosen larger to emphasize the significantly larger regimeof operation of the Bem1-mediated mechanism.

[65] for a visualization. At the origin of this diversity of GAPs is its promotion by cell-polarization
mechanisms that are insensitive to GAP protein copy number, such as the Bem1-mediated WT
mechanism. As we will argue below, this notion provides a concrete hypothesis about the role of
scaffold proteins, like Bem1, for the evolution of functionalmodules that operate by the interplay
of many interacting components.
2.3.3. How evolution might leverage scaffold proteins
In the context of cellular signaling processes it was suggested previously that evolution might
leverage scaffold proteins to evolve new functions for ancestral proteins by regulating selectivity
in pathways, shaping output behaviors and achieving new responses from preexisting signaling
components [61]. Our study of the Cdc42 polarizationmachinery gives a perspective on how scaf-
fold proteins may also play an important role in the evolution of intracellular self-organization.
The scaffold protein Bem1— by connecting Cdc42-GTP to Cdc42’s GEF — generates a functional
submodule that contributes to self-organized Cdc42 polarization. Based on this, we propose a
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hypothetical evolutionary history for Bem1, illustrated in fig. 2.5: The latent rescuemechanism is
generic and rudimentary and therefore might be an ancestral mechanism of Cdc42 polarization
in fungi. On this basis, Bem1 could then have evolved in a step-wise fashion: A hypothetical Bem1
precursor binding to Cdc24 but not to Cdc42-GTP might have facilitated a globally enhanced cat-
alytic activity of Cdc24 by relieving its auto-inhibition [26, 27]. Our theory shows that such an
increase of GEF activity enlarges the range of GAP/Cdc42-concentration ratios for which the la-
tent rescuemechanism is operational. This would have entailed an evolutionary advantage by in-
creasing the robustness of the (hypothetical) ancestral mechanism against protein copy number
variations. In a subsequent step the Bem1-precursor might then have gained the Cdc42-binding
domain (SH3 domain) by domain fusion [66], thus forming the full scaffold protein that connects
Cdc24 to Cdc42-GTP thatmediates theWT polarizationmechanism (mutual recruitment of Cdc24
and Cdc42). Along this hypothetical evolutionary trajectory, the constraints on the GAP/Cdc42
protein copy number ratio and the molecular properties of the GAPs (kinetic rates, membrane
affinities) would be relaxed, thereby allowing the duplication and sub-functionalization of the
GAPs [61]. Given that Bem1 is highly conserved in fungi [67], and that fission yeast polarization
is based on the same mutual recruitment mechanism [68, 69], this hypothetical evolutionary
pathway might lie far in the past.

There are several possible routes to test our hypotheses. One possibility is the construction
of phylogenetic trees for the different proteins (domains) that could inform on the order they ap-
peared during evolution of the polarity network [70]. Another possibility is to search for species
in the current tree of life which contain intermediate steps of the evolutionary trajectory. For
instance species with a more ancient version of Bem1 lacking the SH3 domain, and identify the
protein self-organization principles underlying polarization in these species. This is becoming
a more and more realistic option, given the very large (and still expanding) number of fungal
species that has been sequenced [67] and the growing interest of cell and molecular biologists
to work with non-model systems [71].

On a broader perspective, we have shown how understanding the mechanistic principles
underlying self-organization can provide insight into the evolution of cellular functions, a cen-
tral theme in evolutionary cell biology. Specifically, we have presented a concrete example that
shows how a self-organizing systemmight have evolve frommore a rudimentary, generic mech-
anism that is parameter sensitive, to a specific, robust and tightly controlled mechanism by only
incremental changes [72].
2.4. Materials and Methods
For the Model motivation and assumptions part of the Materials and Methods, please revise [8].
I leave in this thesis what concerns the experiments presented in Figure 3.
2.4.1. Experiments
Media. All used media has the same base with 0.69% w/v Yeast nitrogen base (Sigma) + 0.32%
Amino acid mix (4x CSM) (Formedium) + 2% Raffinose (Sigma). We used different galactose con-
centrations, denoted as x-Gal, where x denotes the w/v % galactose percentage in the media.
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Name Genotype Source
yLL3a MAT� can1-100, leu2-3, 112, his3-11,15,

ura3Δ, BUD4-S288C
Ref.3

yLL112 MATa/� CAN1/ can1::Pmfa-HIS3,
leu2-3,112/leu2-3, 112,
his3-11,15/his3-11,15, ura3Δ/ura3Δ,
BUD4-S288C/BUD4-S288C, BEM1/ bem1::
KanMX6, BEM3/ bem3::NATMX4

Ref.3

yWKD054b MATa/� CAN1/ can1::Pmfa-HIS3,
leu2-3,112/leu2-3, 112,
his3-11,15/his3-11,15, ura3Δ/ura3Δ,
BUD4-S288C/BUD4-S288C, BEM1/ bem1::
KanMX6, BEM3/ bem3::NATMX4, CDC42/
CDC42::URA3-Pgal-CDC42

This work

yWKD055c MATa/� CAN1/ can1::Pmfa-HIS3,
leu2-3,112/leu2-3, 112,
his3-11,15/his3-11,15, ura3Δ/ura3Δ,
BUD4-S288C/BUD4-S288C, BEM1/ bem1::
KanMX6, BEM3/ bem3::NATMX4, CDC42/
CDC42::URA3-Pgal- sfGFP-Cdc42SW

This work

yWKD065a MATa ,
CDC42::URA3-Pgal-sfGFP-Cdc42SW,
can1::Pmfa-HIS3, leu2-3, 112, his3-11,15,
ura3Δ, BUD4-S288C

This work

yWKD069a MATa, bem1:: KanMX6,
CDC42::URA3-Pgal-Cdc42-sfGFPSW,
can1::Pmfa-HIS3, leu2-3, 112, his3-11,15,
ura3Δ, BUD4-S288C

This work

yWKD070a MATa, bem1:: KanMX6, bem3::NATMX4,
CDC42::URA3- Pgal-Cdc42-sfGFPSW , can1::
Pmfa-HIS3, leu2-3, 112, his3-11,15, ura3Δ,
BUD4-S288C

This work

yWKD071a MATa, CDC42::URA3-Pgal-CDC42, can1::
Pmfa-HIS3, leu2-3, 112, his3-11,15, ura3Δ,
BUD4-S288C

This work

Table 2. Strains used in this work.
Haploid strains yWKD065, yWKD069, YWKD070, yWKD071 and yWKD073 all originated from

sporulation of diploids yWKD054 and YWKD055, using the lifted histidine auxotrophy for a-type
haploids. Diploids yWKD054 and yWKD055 were generated by integration of plasmids pWKD010
andpWKD011 into yLL112 [3] respectively. Plasmids pWKD010 andpWKD011 consist of a pRL368
backbone [73], with a URA3 selectable marker. After amplifying this backbone without GFP, ho-
mology regions upstream and downstream of endogenous CDC42 were added with Gibson as-
sembly, separated by an EcoRI cut site. After cutting these plasmids with EcoRI (New England
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Biolabs), the homology flanks ensured the genomic integration during transformation replacing
Cdc42 at its endogenous locus. Additionally, a superfolder GFP (sfGFP,[74], amino acid sequence
GenBank: QLY89013.1) was added in pWKD011 with Gibson assembly between positions L134
and R135 of CDC42. This is based on previous work in S. cerevisiae, where a mCherry was in-
tegrated within Cdc42 [4]. We eliminated the fitness effects from mcherry-Cdc42SW by using a
superfolder GFP protein, as suggested by work in S. pombe (Bendezú et al., 2015). Plasmids and
genomic integrations were verified by sequencing.

The assays presented in fig. 2.3 did not necessitate sfGFP, as planned localization experiments
using fluorescencemicroscopy suffered from incomplete sfGFP degradation as documented pre-
viously in literature [75]. We tested whether the results presented, such as the growth rate differ-
ences across galactose levels, are not an artefact of adding this fluorophore, or auxotrophy dif-
ferences across strains. We confirmed that the presence of the sfGFP insertion did not affect the
growth rate of cells with CDC42 under the Gal promoter significantly for various galactose condi-
tions (see Supplementary information). Moreover, medium was supplemented with four times
the normal amino acid concentrations to address differences in auxotrophies between yLL3a
and the other strains, and no difference was observed in maximum growth rates of YWKD065a
and yLL3a in fig. 2.3.

Growth rate assays. We used a plate reader (Infinite M-200 pro, Tecan) for growth rate as-
says, with 96 well plates from Thermo Scientific, Nunc edge 2 96F CL, Nontreated SI lid, CAT.NO.:
267427. Rows A and H and the columns 1 and 12 were not used for measurements. We in-
oculated a 96-well plate with 100 �l of medium and 5 �l of cells (from glycerol stocks) in each
well, and grew the cells in 96-well plate for 48 hours at 30 ◦C in a warm room. Afterwards the
cells were diluted 200x into a new 96 well plate, which were then placed in the plate reader and
the OD600 was measured for 48 hours using a combination of linear and orbital shaking at 36
◦C. We used a home-written data analysis program in Matlab [76] to determine the log-phase
doubling time for every well. The doubling time was approximated by fitting the slope of the
linear regime of the log plot of the raw data. We performed at least two different experiments
per condition, and per experiments we performed at least 4 technical replicates per strain/condi-
tion.The error in the growth rate plot is the 68% credible interval of the posterior distribution of
these rates. The posteriors of non-WT backgrounds followed from normalization to WT rates by
Monte Carlo simulations of the quotient of the original, non-normalized growth rate posteriors in
a genetic background and theWT posterior in thatmedium. The non-normalized posteriors were
calculated using the Metropolis-Hastings algorithm [77], from a rectangular prior and Student-t
likelihood functions of doubling time fit estimates of all replicates in that medium. The standard
errors of individual estimates come from the standard error of the slope parameter resulting
from weighted least squares (WLS) on a moving window per OD curve, using an instrument er-
ror proxy for the WLS weights. The standard errors of individual estimates are corrected for
overdispersion by the average modified Birge ratio [78] across media for WT.

Cell density visualization during growth rate assay. The microscopy images were taken
with a Nikon Eclipse Ti-E inverted microscope with an oil immersion 60x objective, and 1.40
of numerical aperture. The images were artificially 1.5x more magnified. We used a 96 black
multiwell plates compliant to the SBS (Society for Biomolecular Screening) standard-format with
cover glass bottomsmade from borosilicate glass.Cells were incubated using the first part of the
growth rate assay protocol (in the plate reader at 30◦C for 48h). Then, they were diluted 100X to a
new plate and incubate at 36◦C for 24 hours, before they reached complete saturation. The cells

41



2

2. Redundancy and the role of protein copy numbers in the cell polarization machinery ofbudding yeast
were diluted 1000x for the WT backgrounds for all galactose concentrations, and 100x for non-
WT backgrounds for galactose concentrations greater than 0.05%.Themedia used for incubating
and diluting the cells was 4xCSM+2% Raffinose with the respective galactose concentrations, for
each strain.

Cell size quantification. All microscopy images were taken with an Olympus IX81 inverted
microscope equipped with Andor revolution and Yokogawa CSU X1modules. We used a 100x oil
objective. The acquisition software installed is Andor iQ3. The CG imaging plates were from Zell-
Kontakt. They are black multiwell plates compliant to the SBS (Society for Biomolecular Screen-
ing) standard-format with cover glass bottoms made from borosilicate glass.Cells were grown
in an overnight culture in CSM +2% Raffinose +2% Galactose media, without reaching saturation.
On the next day, three washing steps with CSM+2% Raffinose were performed and subsequently
the cells were re-suspended in the desired media of 0%, 0.06% and 0.1% Galactose. To obtain
cell populations at all galactose concentrations, we first incubated all strains in 2% galactose
concentration, where Cdc42 is highly overexpressed, such that also bem1Δ cells are able to effi-
ciently polarize. After 15 hours of incubation in 2% galactose concentration, we exchanged the
medium to the desired galactose concentration. After 24 hours, we observed the cells with light
microscopy. After 24 hours leftover Cdc42 from the initial 2% galactose concentration incuba-
tion is (very low due to degradation and dilution (Cdc42 half-life is about 8 hours [79]) . From
these images, we determined the average cell radius of the cells in the population.Note that all
of them contain the same base media: CSM+2% Raffinose. Afterwards the cells were incubated
for 8 hours at 30◦, followed by an imaging session, and subsequently incubated for another 16
hours after which another imaging sessions was performed. We performed three independent
experiments for each galactose concentration.

Microscopy data analysis. We performed bright field microscopy assays to monitor the cell
size across different levels of Cdc42 in different genetic backgrounds. With ImageJ we manu-
ally determined the perimeter of the individual cells by fitting the live cells to a circle with the
Measure tool. We performed three independent experiments per condition and per strain. In
addition, we visually checked how many of the cells were alive and how many were dead based
on their morphology. We observe what is called accidental cell death [80] upon inducing a very
low Cdc42 protein copy number regulated by the Gal promoter. This type of cell deaths shows
very distinctive phenotype associated to necrosis, namely: disintegration of cell structure and
plasma membrane rupture. Once we observe this phenotype in our cells, we classify them as
dead.The error bar on the fraction of dead cells as well as of the average cell radius, is calculated
as the standard error over the total number of analyzed cells.
2.5. Appendix
2.5.1. Growth frequency assay (Fig. 3)
In the growth assay shown in Fig. 3 growth rates were determined for various genotypes/galac-
tose concentration combinations. However, not all combinations exhibit the same frequency
of growth. Table 2.2 shows how often growth occurred within the total number of replicates
performed.

Error bars in Fig. 3 show the 68% confidence interval for the mean. Large error bars result
from two effects: (i) For Gal1-sfGFP-Cdc42 BEM1 BEM3, they originate from the technical replicate
variation, i.e., noise across runs/wells. (ii) For the Δbem1 at low galactose concentrations, there
is very infrequent growth. For instance, at 0.03% there was growth only in one well. In this case,
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WT* GFP* M1* M2*

% Gal TG #R #E TG #R #E TG #R #E TG #R #E
0 10 10 4 0 4 2 0 6 2 0 4 2
0.01 10 10 4 4 4 2 0 6 2 0 4 2
0.015 10 10 4 4 4 2 0 6 2 0 4 2
0.02 10 10 4 4 4 2 0 6 2 0 4 2
0.03 10 10 4 4 4 2 1 6 2 0 4 2
0.04 10 10 4 4 4 2 0 6 2 0 4 2
0.05 10 10 4 4 4 2 0 6 2 0 4 2
0.06 10 10 4 4 4 2 1 6 2 1 4 2
0.08 10 10 4 4 4 2 0 6 2 1 4 2
0.10 10 10 4 4 4 2 4 6 2 1 4 2
0.20 9 10 4 4 4 2 6 6 2 4 4 2
2.00 8 8 3 2 2 1 6 6 2 2 2 1

Table 2.2. Number ofwells where growth is observed for various genotypes and conditions of the data under-lying Fig. 3. TG indicates the number of runs (#R) that grew across #E experiments.* Strain abbreviations: WT:
CDC42, GFP: pGAL1-CDC42-sfGFPSW, M1: bem1Δ pGAL1-CDC42-sfGFPSW, M2: bem1Δ bem3Δ pGAL1-CDC42-sfGFPSW.

the variance of only one Student t likelihood, which depends on the fitting error corrected for
overdispersion, is the main determinant for the width of the credible interval, so this makes this
interval a bit wide. However, the poor fitness of this backgroundwill likely still yield large credible
intervals even with a large number of replicates, as its low fitness also makes it vulnerable for
suppressor sweeps of the population. The stochasticity in growth at lowgalactose concentrations
for Δbem1 backgrounds is also seen in the other data points (see Table 2.3).
2.5.2. Determination of fitness effects of sfGFP-CDC42 sandwich fusion
Additional growth rate assays were performed to determine possible growth rate defects of
sfGFP tagging of Cdc42. These were taken in a Biotek EpochTM 2 Microstrain Spectrophotometer
strain reader, a different type compared to that of the assay of Fig. 3. All strain backgrounds con-
tained BEM1 and BEM3. This assay compares the relative performance of a pGAL1-Cdc42-sfGFPSWstrain compared to the pGAL1-CDC42 strain within this experiment. From Fig. 2.6, we can see that
growth with and without sfGFP occurs at similar rates. The growth rate deteriorates notably
when reducing induction for the strains with galactose-dependent Cdc42 production. However,
we also witnessed that when fitness is low, there is a realistic risk that late in the measurements
a relatively fast-growing population emerges in our wells. We suspect that mutants carrying a
suppressor, presumably concerning the galactose induction system, arise which sweep the pop-
ulation. Therefore, we apply a coarse filter in an at-tempt to remove these, at least partially. For
this purpose, we fit all optical density (OD) curves with a sigmoidal curve, which allows us to infer
to initial OD. As during incubation colonies are growing to saturation to an OD of around 1, we
expect an initial OD of about 0.01. Consequently, those wells that suggest an inferred OD at time
= 0 that is more than an order of magnitude lower (< 0.001), are discarded. We confirm that we
are not too relaxed with our threshold as on occasion a WT well is discarded which is unlikely
to have been swept by a mutant. Indeed, we see the galactose-dependent strains have higher
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Figure 2.6. Normalized fitness data for different CDC42 variants (indicated by colors) with suppressor fil-tering. All backgrounds are with BEM1 and BEM3. Markers indicate the mean of the posterior probabilitydistribution for the fitness and error bars mark the 95% credible interval. Pie chart marker shows how fre-quently growth occurs across replicates (filled circle corresponding to 100%). The number of experimentsper strain/condition pair is given in Supplementary Table 2.4.

rates of suspected suppressor growth (see Table 2.3) and we see the bulk of the suppressors are
detected when fitness is low (see also Fig. 2.6). It is important to note that while this particularly
cleans the growth rate data for low galactose concentrations, this filtering is usually inconsequen-
tial for the question whether sfGFP addition influences fitness (Table 2.3). Using as our metric
the Bayes factor (posterior odds ratio) that the strain which is observed to grow faster is actually
faster against the opposite statement, we require a value > 10 for strong evidence [81]. After
filtering, there is never strong evidence for significant growth rate difference between having
sfGFP or not.
2.5.3. Size and viability assays under variable expression of CDC42
To further substantiate that the differences in population growth rates are directly caused by the
ability of cells to polarize, rather than for example pleiotropic changes in another cell cycle phase,
we measured the cell radius using light microscopy (Fig. 2.8A). All microscopy was performed
with a Nikon Eclipse Ti-E inverted microscope with an oil immersion 60X objective with NA 1.40
and refractive index of 1.51. The software used for data collection was Nis-Elements Advanced
research version 4.51. Data collection of brightfield microscopy images were acquire over three
different galactose concentrations (0% , 0.06% and 0.1%) after 24h of incubation of the strains:
ywkd065, ywkd069, ywkd070 and yll3a.

It was previously shown that the cell radius correlates linearly with the time it takes for cells to
polarize [3, 43]: cells that take longer to polarize are on average larger than cells that polarize fast
because yeast cells continue to grow during polarity establishment, allowing us to use the cell
radius as a proxy for the polarization time. Additionally, we verified that, at low Cdc42 dosages,
cells cannot polarize at all and thus die. Consistent with the population growth data, we observed
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CDC42 pGAL1-CDC42 pGAL1-CDC42-sfGFPSW

% Gal #D TG #R #E #D TG #R #E #D TG #R #E
0 4 8 8 6 12 0 18 9 9 0 3 4
0.002 0 2 2 1 0 1 2 1 0 1 1 1
0.01 2 10 10 6 10 2 2 6 0 2 2 2
0.02 1 11 11 6 6 6 6 6 0 2 2 2
0.05 1 9 9 5 3 7 7 5 0 1 1 1
0.06 0 8 8 4 3 7 7 5 1 3 3 3
0.08 0 4 4 2 3 1 1 2 – – – –
0.10 2 10 10 6 3 19 19 9 0 8 8 4

Table 2.3. Number of wells where growth is observed for the CDC42 variants in the growth assay data withsuppressor filtering. All backgrounds are with BEM1 and BEM3. The column #D denotes howmany wells withgrowth have been marked as potentially from suppressors and are thus discarded from the analysis, theremainder of the growing wells are in the columns named times (TG) growth and runs (#R). #E denotes thenumber of experiments that comprise all runs (#R) including those discarded ones.

% Gal 0.002 0.01 0.02 0.05 0.06 0.1
Bayes factor without filtering 2 22 7 4 7 4
Bayes factor with filtering 2 2 7 5 3 5

Table 2.4. Posterior odds ratio (Bayes factor) per medium condition of the probability that the strain withobserved faster growth (between the pGAL1-CDC42 and pGAL1-CDC42-sfGFPSW strains) is actually faster, dividedby the probability that the opposite is true. We distinguish the caseswherewe aim to filter suppressor growthaway from our data sets and the case where we do not.
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Figure 2.7. Non-normalized growth rates of the different mutant strains against galactose concentration(relates to Fig. 3 in the main text). Markers show the mean of the posterior probability distribution for thefitness and the error bars indicate the 68% credible interval; see Methods section in the main text. Thenumber of experiments per strain/condition pair is given in Supplementary Table 2.3.
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Figure 2.8. Morphology and viability for WT and mutant strains with pGAL1-CDC42-sfGFPSW at various in-duction levels. AMicroscopy images show the morphology of dead and alive cells after 24 h at 0% galactoseconcentration, resulting in a Cdc42 dosage that approximates zero; scale bar indicates 10 µm. B Ratio ofdead cells of the relevant mutants over different galactose concentrations. The data contains informationfrom three independent experiments. C Cell radii of the relevant mutants over different galactose concentra-tions. Each point represents the arithmetic mean of the cell radii per technical replicate (every independentexperiment). Error bars represent the standard deviation of each dataset. D Ratio of multinucleated cellsof the relevant mutants over different galactose concentrations. The data contains information from oneexperiment per genotype.
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that after 24 hours at 0% galactose concentration, for every genetic background where Cdc42 is
under the galactose promotor, the vast majority of cells are not able to polarize or polarize very
slowly, because they are either dead (Fig. 2.8A–C) or very large (Fig. 2.8A, D). We also confirm that
the average cell radius (and thus the polarization time) and death rate of cells with Cdc42 under
its native promotor are not affected by the galactose concentration (Fig. 2.8C, D in red). At 0.06%
galactose concentration, Δbem1Δbem3 cells’ radii (and thus polarization times) are closer to WT
cell radii than those of Δbem1 cells. This agrees with the population growth data. And at 0.1%
galactose concentration, the average cell radius for live cells for all mutants were approximately
equal to the average WT cell radius (Fig. 2.8D). Interestingly, after 24 hours at 0% galactose con-
centration, WT cells with Cdc42 under the galactose promotor are still polarizing faster than the
Δbem1 and the Δbem1Δbem3 cells, as indicated by their smaller average cell radius (Fig. 2.8D).
This observation confirms our above observation that a very small number of Cdc42 molecules
is sufficient for WT cells to polarize and thus for the WT mechanism to be operational.

2.5.4. Multinucleated and dead cells
Cells that do not polarize are predicted to have nuclear divisions but no cellular division and
therefore, we hypothesize that cells with polarization defects are more likely to be multinucle-
ated.
Multinucleated cells.
We measured the percentage of multinucleated cells for the different genetic backgrounds and
galactose concentrations using DAPI staining. The DAPI staining protocol was taken from [82].
Two experiments failed due to two causes: too little staining for the amount of analysed cells and
DAPI stain saturation for taking a long time (> 30min) from the staining to themicroscope. In the
last situation most of the cells were stained and not only the nuclei. Samples were imaged in a
cover slip right after the DAPI staining. The emission wavelength was 450 nm and the excitation
wavelengthwas 395 nm. The exposure timewas 70ms and the laser powerwas 1%. Data analysis
was performed with the Cell Counter plugin from ImageJ (v1.53t). Each cell was labelled to count
the total number of cells in each frame. Further, each cell with two or more nuclei and the dead
cells were differently labelled. After DAPI staining we do not observe any cells at 0% galactose
concentration for the Δbem1 and Δbem1Δbem3 cells that were alive before staining (dead cells
are permeable and overstain for DAPI), and thus we also do not observe any multinucleated
cells. These results also suggest that we underestimate the number of dead cells when we use
bright field microscopy as in Fig. 2.8. The wild-type backgrounds with and without the galactose
promoter show a low percentage ofmultinucleated cells. As the galactose concentration goes up
the fraction of dead cells for the Δbem1 and Δbem1Δbem3mutants goes down. The number of
detected multinucleated cells remains low. We interpret that our results are consistent with the
hypothesis that multinucleated cells die more rapidly in stationary phase than single nucleated
cells and therefor are hard to detect in this assay.
Cell radii.
We used the “oval tool” to encircle every cell and measure its perimeter, using the “Analyse” →
“Measure” tool. From the perimeters p, the cell radii were computed using the formula r = p∕(2�).
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Dead cells.
To identify dead cells, we looked at the following morphological features [83]: cell shrinkage,
swelling of organelles, nuclear fragmentation and plasma membrane blebbing.
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3
An approach to extract genetic interactions

from saturated transposition analysis in
yeast.

People can only be free if they are truly educated

Jose Marti

Abstract
Genetic interactions serve to understand how genes influence biological processes and
phenotypes. Genetic interactions occur when the fitness effect of one gene mutation is
modified by the presence of mutations in other genes. The budding yeast, S. cerevisiae, is a key
model for studying genetic interactions due to its well-characterized genome. However,
systematic high-throughput techniques for computing genetic interactions in yeast are limited.
Saturated Transposition Analysis in Yeast (SATAY) offers a promising solution. While SATAY has
identified gene functions and essentiality changes, its potential for generating high-throughput
fitness landscapes to compute genetic interactions remains underutilized. In this study, we
introduce a fitness model transforming SATAY read-outs into relative fitness values, addressing
biases in relating SATAY read-outs with fitness. Genetic interactions are derived using a
multiplicative fitness model that accounts for fitness variances across replicates. The fitness
model and resulting genetic interactions provide a foundation for guiding further investigations
using low-throughput experiments.

Parts of this chapter have been published in Biorxiv [1].
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3. An approach to extract genetic interactions from saturated transposition analysis in yeast.
3.1. Introduction
In the post-genomic era, a crucial task is to attribute functions to genes and unravel the organiza-
tion of gene networks governing cellular processes. The budding yeast S. cerevisiae has stood as a
pivotal eukaryotic model in tackling this challenge. An invaluable asset in this endeavor has been
a compendium of strains wherein each yeast coding sequence is systematically deleted. This
compendium has enabled the evaluation of each gene’s impact on any measurable phenotype.
These genomic methodologies can be expanded to methodically quantify genetic interactions.

A genetic interaction between a pair of genes is observed when individual genetic mutations
combine, resulting in an unexpected phenotype distinct from the phenotypes caused by the
individual mutations [2]. Genetic interactions arise from the intricate and complex network of
interconnections between an organism’s genes. Understanding how genes interact provides in-
sights into their shared roles to fulfill a specific function. For instance, when a double knockout
of a gene pair leads to a non-viable phenotype, contrary to the viability of individual phenotypes,
it suggests that both genes function in redundant or compensatory pathways. Systematically
studying such genetic interactions, known as synthetic lethal interactions, can reveal potential
drug targets, particularly for tumor removal in cancer treatments[3, 4].

Specifically, in the case of pairwise genetic interactions, we identify that genes i and j interact
if the fitness of the double mutant differs from the multiplication of the single mutant fitnesses,
denoted as fij ≠ fifj . Here, fij represents the fitness of the doublemutant of genes i and j, while
fi and fj represent the fitness values of the respective single gene mutants. Expressing these
fitness values in normalized units is crucial to avoid unit mismatches after their multiplication.
To define the strength and type of the genetic interaction, we quantify �ij = fij − fifj .There are two major classes to classify digenic, that is, between a pair of genes, genetic in-
teractions: Positive and Negative interactions. One special case within the negative interaction
category is synthetic lethality. These classes follow from the value of �ij . Positive interaction
means that �ij > 0,Negative interaction refers to �ij < 0, and Synthetic lethality is when fij ∼ 0,or �ij ≈ −fifj .Various techniques, particularly high-throughput methods, have been developed to system-
atically study genetic interactions across different species. One prominent approach is Synthetic
Genetic Arrays (SGA) [5], which involves assessing the fitness (based on population colony size)
of a vast yeast deletion library comprising single, double, and, more recently, triple mutants[2].
Through quantifying the fitness effects of millions of yeast mutants and grouping genes with sim-
ilar interaction profiles, researchers have established what is known as the global yeast genetic
interaction network [6]. However, using this technique to investigate how genetic interactions
change with genetic backgrounds or under different experimental conditions is intractable be-
cause of the necessity of generating millions of yeast knockouts to explore the effects of nearly
all genes makes this approach extremely challenging to implement in standard wet labs.

Since the detection of the fitness of multiple mutants in different experimental and genetic
environments is central to determining genetic interactions, newer andmore flexible techniques
for high-throughput fitness measurements are emerging, which are based on the simultaneous
measurement of the contribution of large genetic variants to the fitness of cells or organisms .
This type of assay is called pooled fitness assays [7, 8]. This procedure is then followed by next-
generation sequencing to detect changes in mutant frequencies [7–9]. One example of these
techniques is Barcode sequencing (Bar-seq), where mutant genomes are tagged with a unique
nucleotide sequence that allows their identification after sequencing [10]. Although the pooled
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assay of Bar-seq greatly facilitates fitness assessment, it has the same issues as SGA regarding
the laborious steps required for mutant library construction [11]. In addition, the number of
mutants that can be assessed in a single Bar-seq experiment is relatively low (typically between
1,000-5,000) due to the limited availability of unique barcodes [11–13].

An alternative to Bar-seq for creating mutant libraries is transposon insertion sequencing
(TIS). TIS methods use transposons to randomly move within DNA molecules, creating a library
ofmutants by disrupting genes. Unlike Bar-seq, TIS doesn’t rely on having specific barcodes avail-
able for each mutant [14–16]. Typically, transposon mutagenesis is efficient enough to produce
libraries withmore than 100,000mutants, and a single library will often containmultiplemutants
carrying disruptions at different locations in the same gene [15, 17, 18]. As mutants are identi-
fied based on the transposon insertion site by sequencing the transposon-genome junction, the
genomic library preparation and bioinformatics analysis of TIS data are relatively complex.

Recently, a TIS method named SAturated Transposon Analysis in Yeast (SATAY) has been
developed for the yeast Saccharomyces cerevisiae. This procedure was implemented and opti-
mized by the Kornman Lab[17]. The detailed experimental protocol can be found in section 3.4.

Figure 3.1. Basis of SATAY. The transposon element (black rectangle) is induced to jump to random genomiclocations. If the transposon hits an open reading frame (ORF), it will cause the inability to translate a fullyfunctional protein. Once all cells from the population carry a transposon insertion, they will be grown forabout 90 hours to amplify their fitness differences. Next, the DNA is extracted from a part of the populationand sequenced.

The SATAY procedure first triggers the translocation of a transposon to a random genomic
location, see fig. 3.1. Suppose the transposon is inserted in an open reading frame (ORF), in that
case, it will hinder the correct translation of that coding sequence to a fully functional protein,
rendering amutation that is effectively a complete gene knockout. Although this is what is gener-
ally assumed, there are some cases in which the transposon insertion affects the translation of
one non-essential protein domain, rendering a functional truncated protein,[17, 19].In a popula-
tion of cells, every cell will have only one independent transposition event. The next part of the
procedure amplifies the differences in fitness effects eachmutation will confer to the population.
Themutations can be detrimental or essential, beneficial or neutral. The first onewill render very
few or no copies of this mutant in the population. The second will trigger an excess of this muta-
tion in the population, and the last one will be as the population average, see fig. 3.2C. This step
is called library expansion and lasts approximately 90 hours. It is effectively a competition assay
where all possible genetic mutations are mixed. Lastly, one part of the expanded population
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Figure 3.2. From transposon sequencing to genetic interaction landscapes.A) Following the sequencingphase, B) Transposonmapper is employed to align the sequencing data with the reference genome. Thisprocess involves mapping the genomic locations and quantifying the abundance of each transposon acrossthe genome. The outcome of this procedure facilitates C) the identification of transposon insertions, theirrespective sequencing reads over genomic regions, and subsequently, the derivation of an D) inferred distri-bution of fitness effects (fi). E) By repeating this process in different genetic backgrounds, we can establishgenetic interaction profiles. F) Visualization of these interactions is achieved through volcano plots, wherethe y-axis represents the significance value (e.g., p-value), and the x-axis denotes the genetic interactionscore, defined as fij − fifj . In these plots, negative and positive genetic interactions (GI) for a specific geneare represented by green and purple dots, respectively

is used for DNA extraction and further sequencing of the transposon junctions to the genome
fig. 3.2A.

The analysis of the sequencing data showswhere each transposon landed in the genome and
how many copies were found fig. 3.2B. The number of transposons linked to the exact location
is proportional to the number of cells carrying that specific mutation . This parameter is called
the reads of a particular transposon insertion, fig. 3.2C, which is vital to computing the fitness
value associated with that transposon. Furthermore, by analyzing the fitness effects of a specific
gene, fig. 3.2D, in different pertinent genetic backgrounds, fig. 3.2E, it is possible to compute the
genetic interactions at a genome-wide scale of the corresponding gene,fig. 3.2F. For instance,
to quantify the genetic interaction of geneX, we should generate SATAY libraries in wild-type (to
obtain the single gene knockout fitness) and fullΔgeneX(to get the double gene knockout fitness)
knockout backgrounds.

Traditionally, SATAY has been primarily used to identify essential(e.g., its gene knockout leads
to cell death) and toxic (e.g., its native expression is detrimental to the population growth rate)
genes by studying their impact on cell growth under specific environmental and genetic condi-
tions. The working principle of SATAY allows us to distinguish between essential and toxic genes
based on the effects of transposon insertions in coding sequences. If a transposon disrupts an
essential gene, then that gene will harbor few or no transposons. Conversely, if a transposon
disrupts a toxic gene, it leads to multiple copies of suck mutation and therefore abundant trans-
posons in that gene, see fig. 3.2C.
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In the original publication [17], SATAY was used to identify changes in the fitness contribution

of genes in different genetic and environmental contexts through a one-on-one comparison of
their transposon insertion density. While practical, this approach can only be used to identify
fitness changes of the same gene across datasets but not of different genes within the same
dataset. In addition, it neglects possible subtle differences reflected in the read count but not in
the insertion density.

Here, we describe an approach to generate quantitative fitness maps from read count data
obtained from a single SATAY dataset. We propose to incorporate the read counts associated
with each insertion as the proxy for the fitness value of that specific transposon insertion. We
follow an exponential model to estimate the fitness values during the growth of the mutant
library from the average read counts per gene from each library. Our definition of fitness relies
on a population growth model, equivalent to the growth rate of a specific mutant relative to
the wild type value. We also include extra factors influencing the complex relationship between
the read counts and fitness values. We show that contrary to the expectation, including domain
spatial information in the resultant fitness value per gene did not improve the predicting power
of using fitness values from SATAY to determine essential genes. However, this result could be
attributed to our limited database knowledge to identify the protein domains.

Furthermore, although our method demonstrates reasonable reproducibility across techni-
cal andbiological replicates, the fitness distribution it yields notably diverges from those obtained
using other techniques. Nevertheless, we argue that despite these differences, SATAY-derived fit-
ness values remain valuable for detecting genetic interactions. This is because SATAY captures a
broad range of fitness levels, unlike other methods that are primarily centered around wild-type
fitness levels.

3.2. Results
Fitness from the read counts
To determine the fitness effects genome-wide in a specific genetic background, we need to es-
timate the growth rate (�g) of each yeast mutant (g) based on the read counts (ri,g) that map to
the transposon insertion locations i of gene g.

We adopt a Malthusian model[20] to represent the fitness, as it assumes that the population
growth rate is proportional to the size of the population at any time. In our case, we neglect the
competitive aspect of the SATAY fitness assay due to the lack of information on the population at
different time points. Consequently, we assume that all mutants are in the exponential growth
phase, and we disregard any potential overcrowding effects or limited resources that could influ-
ence the population growth rate. Using this Malthusian model, we aim to estimate the growth
rate for each yeastmutant to further identify genetic interactions across the entire yeast genome
in the specific genetic background of interest.

It follows from the Malthusian model that the growth of the population of cells carrying a
mutation g, Pg , will behave as eq. (3.1).

dPg
dt

= �gPg , �g > 0 (3.1)
where �g is the growth rate at which the population carrying a mutation in gene g grows. After
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integrating both sides:

Pg = P0g2�g t,where P0g is the initial population carrying the mutation on gene g (3.2)

�g =
log2

Pg
P0g

t
(3.3)

The population of cells carrying a mutation in gene g is represented by the number of reads
per insertion along gene g. To estimate each mutant’s growth rate (�g), we consider the averagevalue of reads per insertion along the gene as its representative value.

At the start of the library expansion step, we assume that there is only one representative of
each mutant. In other words, we assume there is no cell division at the beginning of the library
expansion step, so the initial population size (P0g) equals 1. The growth rate values regarding theread counts per gene are expressed in eq. (3.4).

�g =
log2(

1
N

∑N
i=0 Rig)

t
(3.4)

Where Rig are the reads counts for the insertion location i in gene g, and N is the number of
insertions along same gene g. The primary underlying assumption is that most mutations confer
a neutral fitness effect to the organism[21, 22].

�ref =
log2(median(R⃗ig))

t
∀i, g (3.5)

We use the median instead of the mean since we seek to avoid the effects of the outliers in our
reference. Finally, the normalized growth rate for the population of cells carrying a mutation in
gene g looks like eq. (3.6).

�g =
log2((

1
N

∑N
i=0 Rig))

median(log2(R⃗ig))
(3.6)

By applying expression eq. (3.6) to all genes, wewill generate the distribution of fitness effects
of each gene inactivation for the studied particular genetic background.
Correcting biases for the fitness quantification
Correcting for insertions near the edges of the genes
Transposon sequencing studies often assume transposon insertions to result in complete loss of
gene function [15]. Under this assumption, read counts obtained from different insertion sites
within the same gene can be considered replicate measurements of the same gene deletion
mutant, and their averaging is justified. However, it has been found that insertions near the 5’
and 3’ end of a gene are less likely to result in a complete loss of gene function [23]. Similarly,
studies using SATAY have reported that genes considered to be essential can sometimes tolerate
insertions close to the gene endswhile central regions remain empty [17]. If this higher tolerance
to insertions near gene ends is a general phenomenon affecting all genes, averaging the read
counts of the entire coding region of a gene would create a bias in the fitness estimate.
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Figure 3.3. The average reads enrichment bias is illustrated at both the beginning and end of each gene.Genes are categorized into ten equal regions based on their length, as shown on the x-axis. The y-axisdepicts the mean reads for each segment across all genes. A) Represents all genes. B) Focuses specificallyon annotated essential genes.

Thus, we check if we could observe a general trend of transposon insertions located near the
gene edges at the genome-wide scale. To do so, we segmented the open reading frames of all
annotated genes in the genome into ten equally sized bins, such that each container amounts to
10% of the coding sequence. We then calculated the average number of reads per transposon
insertion mapped to the respective segment for each segment. For genes annotated as non-
essential, we observed that insertionswithin the first and last 10%of a gene tend to acquiremore
reads than insertions in the central 80% of the gene, although this effect is weak, see A) from
fig. 3.3. However, this non-uniformity wasmore pronounced for genes annotated as essential by
[24], see B) from fig. 3.3. This difference between essential and non-essential genes is expected,
as the fitness difference between a complete and partial knockout should typically be larger for
essential genes.

Interestingly, the read count profile of essential genes shows that the bias towards higher
read counts is stronger for insertions close to the stop codon. This likely reflects the mechanism
for gene inactivation of the MiniDS transposon, which is based on creating gene truncations
by introducing several early stop codons in the open reading frame [17]. Thus, insertions that
lead to truncations close to the C-terminal part of the protein will often still allow the protein to
(partially) retain its functionality.

Since insertions that do not lead to complete gene knockouts invalidate the averaging over
the read counts of different insertion sites, we decided to exclude all insertions that map within
the first or last 10% of a coding region for fitness calculations.
Correcting for the preferential insertion of MiniDS at pericentromeric sites
The proposed fitness model using the logarithm of the average of read counts over the central
80% of the gene length assumes that each read count retrieved by sequencing correlates truth-
fully with the growth rate of that specific mutant. However, we may neglect one crucial aspect
related to rare mutants with poor growth and high death rates. These mutants will likely be lost
during the sampling steps that lead up to sequencing. Hence, the insertion sites associated with
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these mutants remain undiscovered in the final SATAY dataset; see fig. 3.4A.

While the loss of rare transposon mutants forms the basis for identifying essential genes,
it can distort the relation between mutant fitness and the read counts per insertion site. In this
case, we assume that raremutants harbor insertion siteswith zero reads that cannot be detected
after sequencing. The non-inclusion of these sites will artificially overestimate the fitness values
of rare mutants because the average is taken over fewer insertions than over the total including
the undiscovered ones.

One approach to determine the number of insertion sites with zero reads for each gene is
to use the global insertion density to infer an expected insertion rate. To that end, we use the
known bias of MiniDs transposons to insert preferentially in regions close to its excision site.
According to the specific experimental design of SATAY, transposons are more likely to insert
in the pericentromeric areas rather than in more distal regions. To verify the existence of this
centromere bias in our insertion data, we plotted the cumulative insertion count as a function of
varying distances to the centromere, see fig. 3.4B. We observed an enrichment of transposons
in genomic regions closer to approximately 200 kb from a centromere. This effect did not result
from a lower density of essential genes in the pericentromeric areas. If left unaddressed, this
bias would lead to underestimating the expected insertion rate in pericentromeric regions and
overestimating the anticipated number of transposons in low-growth mutants in those regions.

We assessed a polynomial model to correct for the centromeric bias, fig. 3.4C. The same
method was followed to model the changes in the insertion rate up to distances 200 kb from the
centromere while assuming a constant insertion rate beyond 200 kb. This assumption is based
on the idea that the centromeric bias is a ‘memoryless’ feature such that the insertion rate no
longer depends on the distance to the centromere beyond a certain point.

By differentiating the polynomial fit concerning distance, we obtain a smoothed estimate
(trended) of the insertion rate changes that reflect its global characteristics but do not contain
the local fluctuations caused by the specific properties of the genes that reside there. Overall,
the insertion rate varied between approximately 0.07 bp−1 for regions close to the centromere
to 0.03 bp−1 for more distal areas. Because centromere bias should not play a significant role
for regions very far from the centromere, we artificially flattened the fitted curve by setting a
constant rate for positions located further than 200 kb away from the centromere. In summary,
we use the following equation to determine a bias-corrected insertion rate �:

�rc =

⎧

⎪

⎨

⎪

⎩

a0 + a1rc + a2r2c + a3r
3
c if rc < 2 ⋅ 105

�(rc = 2 ⋅ 105) if rc ≥ 2 ⋅ 105 (3.7)

rc is the distance from the centromere in basepair and a0−3 are the coefficients obtained from
least squares polynomial fit. Because we assume that the insertion rate remains approximately
constant throughout a gene’s coding sequence, the expected number of insertions for a gene g
is calculated by multiplying the insertion rate with gene size:

E(Xg) = �(rc−g)Lg (3.8)
With rc−g , the distance from gene g to the centromere measured from the gene’s center, and

Lg the length of the gene in base pairs. The number of zero read count sites is then estimated
to be equal to the difference between E(Xg) and the number of observed insertions O(Xg) when
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E(Xg) > O(Xg), see A) from fig. 3.4. When the number of observed insertions exceeds their ex-
pected value, we conclude that no unobserved insertion sites exist for that gene.

To determine whether our model of the expected insertion rate was effective at identifying
the larger fraction of undiscovered insertion sites in annotated essential genes, we plotted the
difference in the expected and observed insertion counts for all genes, see E) from fig. 3.4. Here,
we consider this difference to reflect the number of undiscovered transposon insertions after
sequencing. The plot showed that the expected number of insertions for nearly all essential
genes is higher than those found from the read data. For annotated non-essential genes, the
difference between expected and observed insertion counts follows a Gaussian-like distribution
around zero that partially overlaps with the distribution for essential genes.

Thus, including undiscovered insertion sites provides additional information on essentiality,
although insufficient to distinguish annotated essential from non-essential genes. However, our
results show that including these zero-read count sites to estimate fitness is crucial to resolving
differences in the fitness distribution’s lower end.

For the fitness calculation, it specifically means that we first compute the expected insertion
rate of every gene using eq. (3.7) depending on the distance of this gene to the centromere. Then,
we compare the expected insertion, from eq. (3.8), with the actual number of insertions in the
sequencing data. If the expected insertions are larger than the observed ones, we add zeros to
the insertion counts. Otherwise, we keep the actual sequencing data. Lastly, we apply eq. (3.6)
for the final fitness value of each gene [1].
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Figure 3.4. Correcting for centromere bias to determine genes’ expected transposon insertion rate. A) Thegoal of calculating the expected insertion rate is to estimate the number of insertion sites that produce noreads because themutants were lost during the population sampling due to low abundance. B) The empiricalinsertion rate depends on the distance of a gene to the centromere. To visualize this bias, we determined thenumber of transposons that mapped within a distance rc from the chromosome centromere for differentvalues of rc , as done previously by [17]. The plots of the cumulative insertions for the two halves of eachchromosome are shown as grey lines. The averaged curve is shown as a blue line. The non-zero intercept ofa linear fit of the portion of the average curve for distances rc < 400kb demonstrates the centromere bias inour dataset. C) The averaged cumulative plot for distances rc < 400kbwas fitted with an exponential function:
−1.5 ⋅ 10−19r4c + 2.7 ⋅ 10

−13r3c − 1.5 ⋅ 10
−7r2c + 7.8 ⋅ 10

−2rc − 124 and a 4th-order polynomial. D) The approximatedempirical insertion rate is fitted by a polynomial function:−6⋅10−19r3c+8⋅10−13r2c−3⋅107rc+0.07. After distancesof rc > 200kb, we consider the insertion rate a constant function. E) The difference between the expected(E(X)) and observed (O(X)) transposon insertions for essential and non-essential genes. While the averagedifference is close to zero for non-essential genes, it becomes positive for essential genes.
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3.2.1. Fitness refinement using spatial information
Averaging the reads along a gene neglects the positional effects of different transposon inser-
tions on fitness. This property leads to possible distortion of the fitness of essential genes or
genes that contain toxic domains for specific genetic and environmental conditions.

For instance, if a transposon hits a sequence that codes for an essential protein domain re-
sponsible for cell survival (e.g., transcription), the resulting truncated proteinmay strongly impact
the cell’s fitness. On the other hand, if transposon insertion occurs outside this essential domain,
the truncated proteinmay retain its essential function, leading to amilder fitness effect. When ex-
amining essential genes from [24], we observed regions void of transposons within these genes.
These genomic regions likely encode essential protein domains responsible for the critical func-
tion of the protein, as also observed y [17]. Similarly, areas that tolerate transposon insertions
would correspond to truncated versions of the essential protein that are dispensable for the cell’s
viability.

To address this issue, we consider individual transposon insertions and their specific locations
within the gene to include the contribution of their positional effects. This approach aims to
capture the fitness impact of individual domains within genes.

�∗g = max(|�g − �i|) ∀i (3.9)
We specifically utilized the annotated protein domains from the Pfam database [25], which

is part of the extensive resource Interpro [26]. Pfam comprises a comprehensive collection of
multiple sequence alignments and hidden Markov models encompassing numerous common
protein domains. One limitation of this approach is that we restrict our domain search to the
ones annotated in that database. Thus, we don’t account for the genes that do not have any do-
main annotated in Pfam. We primarily used this method to explore if considering the fitness of
the gene as the fitness of the domain with the most substantial effect (for those who have anno-
tated domains from Pfam) will benefit the classification of genes as essential (or genes required
for growth in our conditions).

To incorporate these protein domains into our analysis, we obtained all the relevant domains
from the Pfam database, see fig. 3.5A and transformed their protein coordinates into genomic
coordinates (disregarding genes with introns). We generated a vector of fitness values for each
gene, corresponding to the number of annotated domains, by employing the same procedure
described in eq. (3.6) and accounting for the insertional bias to pericentromeric regions for each
domain.

To ensure that fitness values come from sufficiently transposon-covered genes, we excluded
genes with poor transposon density without transposons localized at the annotated domains
on that gene. As a hard cut-off, we impose that genes that harbor less than five insertions are
discarded for the fitness computation if the transposons localized in their annotated domains
are less than two. Genes that have domains with a scarce number of transposons (less than two
insertions) are kept if the expected number of transposons over the gene is larger than five, see
these cases in fig. 3.5B.

We compute the fitness using eq. (3.6) for each domain within every gene. Then, we select
the fitness value from the domain with the strongest effect compared to the average fitness of
the entire gene, as described in eq. (3.9). For the gene products that contain a single domain, we
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Figure 3.5. Including positional effects of transposons by including protein domain information from Pfamdatabase. A)We use the Pfam domain library annotation to extract all domain coordinates from every geneproduct. B) Three cases of insertion profiles over domains are differentiated for fitness estimation. Domainswith more than two expected insertion (td > 2), receive a fitness score as the logarithm of the average readsover the domain. The domains that harbor less than two transposons have fitness zero, if only if the genein which the domain resides has more than five transposons (td < 2 and tg > 5). The domains with lessthan two transposons on genes with less than five insertions are discarded for further analysis(td < 2 and
tg < 5). C)DFE for the average fitness and the domain corrected fitness. In gray and red are the non-essentialand essential fitness distribution. The median of the essential DFE is shifted to smaller values when usingthe domain correction, while the median of non-essential remains almost unchanged compared to the aver-age method. D) Examples of essential genes that exhibit different properties and how the different fitnessmethods capture them.

take the smaller fitness value between the average of the whole gene and the fitness from the
single domain as the representative fitness of the gene knockout.

As expected, introducing spatial information on the fitness calculation will amplify the differ-
ences between genes since we no longer consider that all transposons over the gene will cause
the same effect. This is evidenced when comparing the distribution of fitness effects (DFE) with
and without the domain correction, that we appreciate a wider distribution for the fitness values
coming from the domain with the strongest effect (standard deviation � = 0.91 vs. � = 0.31). We
detect that the effect of disrupting domains can recover many genes whose knockout may have
a strong deleterious effect on the cell. Specifically, 582 genes with fitness below or equal to zero
from the domain correction versus 161 genes from the average fitness. Genes that show a fit-
ness value above the reference value of 1 are similarly retrieved by both methods (3181(domain
correction) vs. 3197(average)).
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To explore the differentiation of essential genes in the DFE, we examine their fitness values

(see fig. 3.5D). Interestingly, 303 essential genes display zero or negative fitness values, compared
to 104 when domain correction is not applied. Notably, essential genes exhibit higher fitness
values with domain correction, possibly due to transposon-enriched regions within them. For
instance, the gene PAN1 shows a fitness value of 1.5 with domain correction, compared to 0.9
when considering only the average. This gene containsmultiple annotated domains, including EH
(Eps15 homology) domains associated with endocytosis and vesicle transport, as well as several
domains of unknown function (DUFs) near its N-terminal [27].

There were 84 genes out of 1117 annotated essentials from [28] that did not have Pfam do-
main annotations. Those genes did not get the correction. Hence, their fitness values will be the
averaging over their reads, like the gene SEC9. Interestingly, this gene possesses a domain an-
notated from another database (Panther [29])in the C-terminal called SNARE ("SNAP REceptors"),
which is the domain that confers the primary function of this essential protein. The transposon
insertion profile of this gene has the region at the end of the gene void of transposons, which
directly leads to the essentiality of this domain, as also [17] revealed.

The case of the gene SEC8, with few insertions in the N-terminal but enough insertions else-
where in the gene, receives a negative fitness, and it lays at the negative extreme of the DFE
using the domain correction due to the addition of zero reads insertions alongside its domain
region. Thus, the average over the domain region is less than 1. Yet, if all the reads over the gene
are averaged, the normalized fitness increases to around 0.63, around the median value of all
essential genes using this method.

CDC24 is another example of an essential gene that tolerates insertions in dispensable re-
gions. Yet, it receives a zero fitness when applying the domain correction because its pleckstrin
homology domain is void of transposons. In contrast, if averaging all reads over the genome,
this gene knockout receives a considerably high fitness value of 0.56.

In conclusion, introducing spatial information on the fitness calculation seems to amplify the
fitness difference between annotated essential and non essential genes. For the case of essential
genes, this method allows to distinguish domains that may seem toxic in our conditions, thus
displaying a high fitness value compared to the average. Yet, it is not yet clear the mechanism
by which the MiniDs transposon insertions will lead to specific protein truncations, especially
for the transposons inserted in the 5’ of the gene, that lead to the production of the C-terminus
part of the protein like the case of the essential gene SEC9. This is surprising since several stop
codons in all frames of the transposon should interrupt translation and prevent the production
of the essential C-terminus. [17] also observed this phenomenon, and they speculate that the
production of the C-terminus is enabled by spurious transcription events.

However, it is still uncertain whether this approach can benefit the discernibility between
annotated essential and non-essential genes based on fitness values.
3.2.2. The domain corrected fitness does not improve the performance to predict

existing essential genes
To quantitatively classify the performance of each fitness method to predict existing essential
genes, we transformed the problem into a binary classification task to assess how the fitness
values obtained from the protein domain correction can be used to predict gene essentiality.
We categorized genes as essential or non-essential based on the median fitness values of each
DFE for essential genes. This resulted in fitness thresholds of 0.68 and 0.53 for the average and
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Figure 3.6. The fitness refinement based on protein domains does not improve essentiality prediction. A)Sketch exemplifying the meaning of the ROC curve. The x-axis is the false positive rate, and the y-axis repre-sents the true positive rate. The farthest from the diagonal line, in the y-axis direction, the better the classifier.
B) ROC curve for taking average fitness values as probabilities to classify a gene as essential. The area underthe curve (AUC) indicates how accurate this classifier is, and in this case, is 0.69, which means that for every100 genes analyzed, 69 are properly classified in either category. C) Same as B) but with the corrected fitnessvalues as a classifier. The area under the curve is 0.68. D) Sketch of the confusion matrix. This matrix is a2x2 matrix that represents the accuracy of specific properties to predict a variable with two cases: A or B.The diagonal represents the accuracy of predicting either A (True positive) or B (True negative). Off-diagonalpositions represent different misclassifications, corresponding to false positive or false negative ratios. E)Confusion matrix for the average fitness as a classifier. F) Same as E) but with the domain corrected fitnessas classifier.

domain-corrected fitness models, respectively.
We compared our predictions to the annotated essential genes from the [28] database. To

evaluate the accuracy of our predictions, we utilized Receiver Operating Characteristic (ROC)
curves, which are graphical plots used to visualize the diagnostic ability of binary classifiers. The
area under the ROC curve (AUC) measures the classifier’s performance, with a higher AUC indi-
cating better predictive power. The ROC curve for the average fitness model showed an AUC of
0.69, indicating a moderate accuracy in predicting gene essentiality. Likewise, the ROC curve for
the corrected fitness model showed an AUC of 0.68, which renders no change in the predicting
power of this method compared to the other.

To understand the specifics of our gene essentiality predictions, we analyzed the confusion
matrix shown in D) of fig. 3.6. When using the average fitness as a classifier of essentiality, 48%
of the actual essential genes, according to [24], were correctly identified. On the other hand,
non-essential genes were predicted with high accuracy, achieving a 90% correct classification.

When considering the corrected fitness as a classifier of essentiality, we retrieved 47% of the
referenced essential genes that were correctly identified as essential (according to [24]). We also
found that 12% of the non-essential genes were predicted as essential by the corrected fitness
model. These genes could potentially be essential genes specific to our experimental settings.
Lastly, 88% of the non-essential genes were classified correctly as non-essential.
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In summary, using the corrected fitness values did not improve the prediction of essential

genes compared to the average fitness. There are several reasons why the domains annotated
in Pfam for annotated essential genes may not be responsible for its essential function. Firstly,
essential genes may have other domains not annotated in Pfam, which play a more crucial role
in their essential function. Secondly, essential genes may also have domains that can become
toxic for the cell without another domain in the protein. In such cases, disrupting these domains
will benefit the population’s fitness. For instance, the DUF domain from PAN1 and the DH domain
from CDC24work together with the PH domain. The PH domain is invariably located immediately
C-terminal to the DH domain, and this invariant topography suggests a functional interdepen-
dence between these two structural modules[30]. Biochemical data have established the role of
the conserved DH domain in Rho GTPase interaction and activation and the role of the tandem
PH domain in intracellular targeting or regulation of DH domain function[30]. And thirdly, the
annotated essential genes database may be not the ground truth for our specific experimental
and genetic background conditions.

Despite the lack of benefit from applying the protein domain corrected fitness in predicting
gene essentiality, it is still an important tool to predict critical domains for function and, thus,
subtle fitness effects from protein truncations.
3.2.3. Thedomain correctedfitnessmoderately benefits the reproducibility among

experiments
One crucial aspect of the applicability of SATAY for global fitness maps of gene disruption mu-
tants is that the fitness estimates are reproducible between replicates of the same genetic back-
ground. To that end, we compared the fitness values between two technical replicates obtained
from the wild-type strain. These replicates were split after DNA extraction before proceeding
with the transposon junction PCR amplification step (as described in section 3.4). Thus, those
replicates are subjected to two-fold noise sources: the noise from the PCR amplification and the
one from the sequencing process, see A) from fig. 3.7. We assessed the degree of agreement be-
tween the independent measurements by plotting the fitness estimates of each gene disruption
using the average and the domain-corrected fitness models.

When examining the individual fitness per gene from both models, high variance is evident,
especially at low fitness values. From a biological perspective, we can interpret that mutants
with low read counts are likely sick mutants struggling to survive in the population. Conse-
quently, their fitness values highly depend on the specific micro-environment they experienced
during the experiment, particularly during the library expansion step. This dependence onmicro-
environmental conditions contributes to these mutants’ observed variance in fitness values.

Furthermore, another aspect that will also contribute to reduce the noise among replicates is
the selection of replicates after the PCR amplification and thus only affected by the sequencing
noise. Posterior studies, like [1], have used this type of replicates with a similar fitness approach
based on the average reads counts per insertion site from the 80% central part of the gene, and
their fitness reliability increases up to 97%.

Despite the mentioned noise sources, the domain-corrected fitness model shows more re-
producibility across technical and biological replicates, see C) and E) from fig. 3.7. Especially for
the case of the biological replicate, the increase is moderate, according to the person correla-
tion coefficient among the fitness values between the replicates, which goes from 0.76 to 0.83.
The fact that the domain corrected fitness takes an average over a smaller genomic region than
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the whole gene artificially reduces the noise over the reads related to the sequencing process.
Moreover, many regions of the gene are not considered in many cases because there are no
annotations in the Pfam database in those regions.

In summary, our analysis confirmed that considering the protein domain with the strongest
effect results in higher reproducibility, across experiments, of fitness values for each gene knock-
out compared to considering the average read counts over the entire gene. In the next section,
we describe how we use the generation of fitness effect of gene disruptions for all genes to com-
pute genetic interactions.
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Figure 3.7. The domain corrected fitness improves the reliability among technical and biological replicates.A)The technical replicates come from the same transformed yeast cell (WT1) with the plasmid carrying theMiniDs/Transposase and their subsequent mutant library. Before PCR, the extracted DNA was split into twobatches (WT1a and WTb), which we defined as the technical replicates. Biological replicates come from twotransformed yeast cells(M1 and M2) with the plasmid carrying the MiniDs/Transposase. B) The estimatedfitness effect of gene disruptions for all genes of technical replicate WT1b plotted against its estimated valuein technical replicate WT1a, using the average model. The identity line (diagonal dashed line) is a referencefor perfect correlation between the two replicates. The Pearson correlation coefficient is shown at the topleft of the graph.C) The estimated fitness effect of gene disruptions for all genes of technical replicate WT1aplotted against its estimated value in technical replicate WT1b, using the domain-corrected fitness model.The identity line (diagonal dashed line) is a reference for perfect correlation between the two replicates. ThePearson correlation coefficient is shown at the top left of the graph. D) Same as B) but for the biologicalreplicates M1 and M2. E) Same as C) but for the biological replicates M1 and M2.
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3.2.4. Identification of genetic interactions
Traditional methods that map genetic interaction among multiple genes of interest rely on con-
structing the relevant yeast mutants, which carries the limitations of possible secondary unde-
sirable mutations during construction. This work proposes to use SATAY, which generates yeast
mutants de novo identified by transposon sequencing, to map genetic interactions using the fit-
ness of gene knockouts from the read counts contained in sequencing data. One challenge with
this approach is the lack of a unique reference system for all the fitness estimates in each genetic
background. The fitness values are normalized within the same library but not across libraries;
thus, they can not be directly compared without making extra assumptions. One way to tackle
this limitation is by centering the DFE in a particular mutant background in the fitness value that
this specific mutant had in the wild-type library. This assumes that most gene knockouts in the
background mutant do not change its original fitness. A graphical explanation of this additional
normalization is shown in A) from fig. 3.8.

To obtain the genetic interaction scores from the relevant DFE, we follow the multiplicative
model, shown in eq. (3.10), which is graphically illustrated in B) from fig. 3.8.

�ij = fij − fifj (3.10)
One of the challenges with this approach is that the DFEs of the samemutant across different

experiments are subjected to variability that is unfeasible to control. The inherent noise sources
from the population sampling, PCR, the sequencing process, and the researcher’s experimental
practice reduce the robustness across the fitness estimates. To deal with this inherent noise in all
the samples, we compute a T-test over the DFEs in the mutant background against the product
of the individual gene knockouts in the wild-type background. This will lead to excluding genes
with such a high variability among replicates that their fitness values are unreliable in computing
their genetic interaction, see C) in fig. 3.8.

Lastly, we assemble our genetic interaction scores with their corresponding p-values into a
volcano plot ( D) fig. 3.8) highlighting the significant positive and negative genetic interactions of
each target gene.

For the computation of genetic interactions, we employ the fitness estimates from the av-
erage read count over the gene because despite its increased variability across experiments in
the same genetic background in contrast with the domain corrected fitness. This is due to the
systematic artificial exclusion of data points that the domain correction imposes on the fitness
estimate. Given that the Pfam database is limited and that we lack a proper data-driven method
to extract domains fromour datasets, we decided not to continuewith thismethod for the search
of genetic interactions. Next, we investigate how well the fitness estimates from SATAY of gene
knockouts align with data from other high-throughput experimental techniques that rely on the
Saccharomyces Genome Deletion Project[24, 28].
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Figure 3.8. Genetic interaction methodology using fitness from SATAY transposon sequencing data.A) Ad-ditional normalization to the DFE in a mutant background (Mi) to ensure that the relative fitness values arecentered around 1. Specifically, the median normalized DFE is multiplied by the gene knockout(K) fitness inthe wild-type (WT) background. B) The genetic interaction scores(�i) are obtained from amultiplicativemodel(fij−Kfj ). Wherefij is the fitness of gene j inMi background, and fj is the fitness of gene j inWT.C)We incor-porate the variability in variances of the DFEs across different replicates by computing a T-test that comparesthe DFEs from the wild-type background against the DFEs from themutant background. D) The identificationof a specific gene’s positive and negative genetic interactions is through representing the genetic interactionscores against their p-values.

3.2.5. Fitness estimates fromSATAY correlatepoorlywith reportedestimatesbased
on the Yeast Gene Deletion collection

We selected two high throughput techniques that rely on the Saccharomyces Genome Deletion
Project [24, 28] to provide fitness estimates of gene knockouts, namely Synthetic Genetic Arrays
(SGA) and competitive fitness measurements using Bar-seq Illumina sequencing [31].

These techniques are all high-throughput methods that allow for the rapid computation of
fitness values of a pre-made yeast knockout library. However, they differ in their approaches to
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computing the fitness of single gene deletions.

Figure 3.9. Poor positive correlation between fitness estimates from SATAY and SGA and Bar-seq fitnessestimates.A) SGA performs colony size measurements of yeast knockout libraries to determine the fitnessof single gene deletionmutants [32].B) A competition experiment that uses Bar-seq to determine the relativenumber of mutants with respect to a reference in different time points as a proxy for the fitness of singlegene deletion mutants. [31].C) Fitness estimates from the average model from SATAY correlate poorly withfitness estimates from SGA experiments.D) Fitness estimates from the average model from SATAY correlatepoorly with fitness estimates from the competition assay based on Bar-seq.
With SGA, the fitness is determinedbymeasuring the colony size of a yeastmutant population,

see A) from fig. 3.9. This technique is especially important since almost all genetic interaction
existing data is from this procedure, which we employ to compare the genetic interactions from
SATAY.

The case of Bar-seq experiments is particularly interesting as they used read counts from
sequencing of unique barcodes attached to every strain to determine the relative abundance of
the knockout with a wild-type strain as a proxy of their fitness. All the tested yeast knockouts are
grown together, and their relative abundance is measured in three time points, see B) fig. 3.9.
The measurements are taken up to generation 26, which may be sufficient time for sick mutants
to acquire beneficial mutations that artificially shift their fitness towards higher values.

The average fitness estimates from SATAY correlate poorly with SGA fitness estimates of sin-
gle gene deletions, C) fig. 3.9. Firstly, the SATAYDFE ranges overmore values than its counterpart.
Thus, many genes that are considered to have near-neutral effects once deleted using SGA will
be deleterious for the SATAY fitness estimates. And the contrary is also valid. Manymutants with
deleterious effects by SGA are classified as neutral for SATAY. We computed the Pearson correla-
tion coefficient, which quantified the correlation between two variables assuming a linear model
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[33], among the fitness values of the same gene. For the case of SGA and SATAY, the coefficient
is 0.35, which indicates a poor positive correlation, C)fig. 3.9.

In the case of Bar-seq experiments, the correlation is also poor among the two methods. As
expected, the Bar-seq DFE distribution is even narrower than for the case of SGA around neu-
tral fitness values, which can be explained by its dependency on the competition setup, where
small differences in growth are harder to assess. In contrast to SATAY, which also relies on a
competition assay, the barcode dependency limits the number of mutants the experiment can
hold.

Although the correlation values are below 0.5, they are positive, and it suggests that genes
with high/low fitness in one technique also tend to have higher/lower fitness values in SATAY.
This indicates a consistent trend in the fitness behavior of genes across different techniques,
even though the absolute fitness values do not match closely.

One resemblance between the SGAandBar-seq experiments is their low variance around a fit-
ness value of 1. This could be a result of the fact that in pre-constructed gene deletion collections,
mutants usually pass through several rounds of replication after their construction before they
are subjected to a fitness assay. This allows secondary mutations that can potentially mask the
defects caused by the primary gene deletion to set in the population. It has indeed been shown
that several mutants in the yeast gene collection harbor such compensatory mutations[34, 35].
Libraries created with SATAY are less likely to suffer from secondary mutations because the fit-
ness assay usually follows directly after library creation. As a consequence, fitness values based
onmeasurements of the yeast gene deletion collectionmay overestimate the number of neutral
genes compared to results obtainedwith SATAY, which is in agreement with our observation that
the DFE obtained by [32] and [31] is much narrower than ours.

The second reason for the disparity observed in the fitness values from SATAY compared to
[32] and [31] could be attributed to the genetic backgrounds of the yeast mutants used in each
experiment. Whereas we used W303, [32] and [31] used S288C.

Moreover, it is shown that SATAY has the ability to resolve smaller differences in growth be-
tween mutants compared to other methods. This capability to detect subtle fitness differences
can be particularly useful in identifying genetic interactions and uncovering the roles of specific
genes and protein domains in various cellular processes. However, the differences with the
mentioned techniques indicate that the fitness values obtained through the analysis of SATAY
datasets may be condition-specific and cannot be generalized without further considerations of
experimental design.

3.3. Discussion
In this chapter, we have shown a method to quantify the fitness of gene deletion mutants based
on data from the transposon mutagenesis screen SATAY. This method attempts to deal with the
non-trivial relation between read counts and fitness.

Transposon insertions near gene edges often yield higher read counts, affecting the observed
fitness of gene disruptions. To address this bias, we exclude insertions close to gene edges. How-
ever, transposon fitness effects also vary depending on the specific protein domain affected.
Grouping insertions by annotated Pfam domains helps capture these nuanced effects but may
overlook insertions outside annotated domains, reducing resolution. Interestingly, while the do-
main approach does not improve essential gene classification compared to average read counts,
it offers greater robustness across replicates, likely due to noise reduction from averaging over
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smaller regions. This may mitigate stochastic sequencing errors associated with longer coding
sequences.

Regarding the disparities in predicting essential genes, it is key to acknowledge that caution is
required when comparing the results of our study with the essential genes obtained by the [28]
study. Differences in growth environments and genetic strain backgrounds used in our study
and theirs may influence gene essentiality outcomes. Recent studies have highlighted that gene
essentiality, even within the same species, is not always conserved when altering the genetic
background and environment. There are two classes of essential genes identified: core essen-
tial genes that are universally required for viability and conditional essential genes that vary in
essentiality under different genetic and environmental conditions [36–38]. A comprehensive un-
derstanding of gene essentiality must consider these variations in different contexts.

In the study by [28], essential genes were determined by individual heterozygous gene dele-
tions followed by viability tests of haploid segregants. The results showed that approximately
18% of yeast genes are essential for viability under nutrient-rich media conditions using the lab-
oratory strain S288C. However, it was also found that among all known essential genes in S288C,
about 17% are dispensable essential genes [39], meaning that they can be bypassed by suppres-
sor mutations. These conditional essentials were enriched for genes with paralogs and genes
encoding membrane proteins while being depleted for genes encoding protein complexes. The
interactions among functionally related genes frequently drove bypass suppression interactions.

Additionally, [40] demonstrated the existence of conditional essentiality across two closely
related yeast strain backgrounds, Σ1278b and S288C, which differ in approximately 1% of their
genomes. In their study, they identified 75 proteins present in Σ1278b but not in S288C, and
about 1% of the genes in S288C were specific to this background. The observed conditional
essentiality was attributed to a complex set of background-specific modifiers that influence the
phenotype of mutations and contribute to differences in essentiality between individuals.

We utilized the strain backgroundW303 [41], which sharesmore than 85% of its genomewith
S288C but differs at over 8000 nucleotide positions, leading to changes in the sequences of 799
proteins [42], representing approximately 15% of the W303 genome. Considering the compar-
ison made with S288C and Σ1278b, we expect to have at least 15% of essential genes unique
to W303. Moreover, it is necessary to note that the growth context in the study [28] differed
from our experimental conditions. They relied on nutrient-rich media, while we used synthetic
media with adenine dropout to expand our library. As described in [43], environmental factors
can influence gene essentiality, and some essential genes may become dispensable under non-
standard growth conditions. [28] found that around 2% of genes can be specific to the external
environment.

Considering all these factors, it is reasonable to expect at least 30% differences in gene es-
sentiality due to our specific experimental procedure. Specifically, we found that 48% of our
predictions correctly match the standard dataset from [24], and 10% of the essential genes were
unique to our experimental procedure. These results highlight the significant effects of specific
genetic backgrounds and environmental contexts on gene essentiality.

Furthermore, we propose a method based on the fitness estimates from SATAY to compute
statistically significant genetic interactions. Despite, the given the variability in fitness values
among technical and biological replicates in our samples, we claim that by using this method,
we can explore a larger mutant space to find significant and novel genetic interactions among
specific genes of interest.
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One of the challenges in using SATAY is the lack of a real reference for the fitness values,

which can be especially problematic when studying different genetic backgrounds or environ-
mental conditions. The fitness values obtained from SATAY are based on the assumption that
most transposon insertions in the 80% central part of the gene have neutral effects on the cell.
While this assumption may hold for the wild-type genetic background, it may not be valid for
other genetic backgrounds or under different environmental conditions. To address this issue,
it is crucial to identify more suitable references that allow for proper fitness comparisons across
different conditions. This could involve using other experimental methods to measure gene fit-
ness in specific conditions and using these results as a reference to validate and calibrate the
SATAY fitness values. Combining SATAY with complementary assays and employing appropriate
references can enhance the accuracy and reliability of fitness assessments for gene disruptions
and essentiality in budding yeast under diverse genetic and environmental contexts.

In conclusion, applying SATAY on different genetic backgrounds in budding yeast can provide
insights into the fitness implications of disrupting various genes or detecting gene essentiality
for specific conditions. However, it is required to complement SATAY results with more specific
assays, such as microscopy or population growth studies of target mutant yeast strains, in the
same laboratory conditionswhere SATAYwas performed. These additional experiments will help
to carefully test and refine the fitness values given by SATAY.
3.3.1. Acknowledgements
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TAYmutant libraries from the ylic133 and ylic136 strains, aswell for their help on troubleshooting
our SATAY experiments through the SATAY online forum.

3.4. Materials and Methods
SATAY procedure
Plasmid transformation.The transposon system used is a modified non-autonomous Maize
transposon (MiniDs) which interrupts the ADE2 gene. A Galactose-induced hyperactive trans-
posase (Ac) mobilizes the transposon. ([44],[45]). Homology-directed repair of ADE2 then con-
fers adenine prototrophy to the transposed cells. A screen begins by transforming a plasmid
(pBK549) encoding the Galactose-induced transposase, the ADE2 gene interrupted by theMiniDs
transposon, and a URA3 selection marker into an ade2- ura3- strain [19]. The plasmid pBK548 is
a centromeric plasmid 1. See a map of it in fig. 3.10

We use plasmid pBK549 to transform our yeast cells deficient on ade2-and ura3-. Details of
this procedure can be found in section 3.4.
Sanity check.Once the cells have been transformed with the pBK549 plasmid, it is crucial to
test the ability of the cells to repair the ADE2 gene by spontaneous homologous recombination2.
Hence, the so-called sanity check consists of plating the same colony from a transformation plate
1These are considered low copy vectors and incorporate part of an ARS along with part of a centromere sequence (CEN).
These vectors replicate as though they are small independent chromosomes and are thus typically found as a single copy.2Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two
similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but
maybe also RNA in viruses).[46]
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Figure 3.10. Map of the plasmid (pBK549) to transform into yeast cells to perform a SATAY screen. Its mainfeatures are the active transposase in red with the upstream Galactose promoter. The ADE2 gene is in-terrupted by the MiniDS transposon and its repair fragment (dotted lines), the URA3 gene, and CEN/ARSelement.

in solid growth media lacking uracil and adenine. The goal is to select the colonies that show full
growth in uracil deficient media and few growths in adenine deficient media. See a graphical
representation of this in fig. 3.11, left panel.

It is also possible to have full growth in adenine deficient media. However, despite its clear
proof that the cells can spontaneously repair the ADE2 gene, during the SATAY screen, we would
have many cells producing adenine but not due to transposition but to homologous recombina-
tion, which will translate into a high background of false positives in our assay. Thus, we want
to discard also those clones that show this behavior. If, on the contrary, there is no growth in
adenine deficient media, it will imply that the repair mechanism does not work on those cells.
A reason for it could be that the initial population of cells that undergone the plasmid trans-
formation had a mutation in a different gene like ADE1 from the adenine biosynthesis pathway3
thereby hindering the production of the adenine aminoacid, even though the ADE2 gets repaired.
Another possibility is that they have already recombined out ADE2, so there will be no transpo-
sition. These cases are graphically shown in fig. 3.11, right panel. We continue with the clones
that show from 2 to 20 colonies in adenine deficient growth media.
Preculture.Once we have selected the clones that passed the sanity check, we are ready to start
the SATAY procedure. The first step in the screen is called preculture, where isogenic yeast cells
3https://www.phys.ksu.edu/gene/genefaq.html
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(a) A visual representation of the sanity checks steps be-
fore continuing to generate a SATAY library. It is based
on restreaking a transformed colony with the pBK549
plasmid on SC-URA solid media and SC-ADE solid me-
dia. It is expected to continue with this colony to show
full growth in SC-URA and few growths in SC-ADE.

(b) A visual representation of what not to expect from
the sanity check step before continuing to generate a
SATAY library. We discard clones that show this behav-
ior in SC-ADE, either full growth or no growth. If they are
used, we will end up either with a SATAY library with a
very high background of cells that repair the ADE2 gene
without transposition or cells that cannot transpose at
all.

Figure 3.11. What to expect and not expect from the sanity check step after plasmid transformation.

are grown in SD-URA+0.2% glucose +2% raffinose during 20 hours. This step will amplify the
cells with the plasmid without any transposase expression. The typical volume to use per clone
is from 20-30mL, and the incubation is at 30◦C.
Induction.This is the second step of the protocol and the most important one. In this step, the
cells from the preculture are diluted into SD-URA + 2% galactose. The galactose will trigger the
galactose promoter upstream of the transposase, thereby expressing it. Once this transposase
is active, it will excise the transposon in the plasmid. Subsequently, the transposon will jump into
the yeast genome and insert in a random location, with 60% of probability [19]. And since it is
a low copy plasmid, it will produce one transposon so that we won’t have the situation of more
than one transposon jumping into different places of the genome of one cell. The induction is
performed in 100-200mL per clone, and it takes approximately 50-52 hours. This step is where
we make sure the genome gets saturated with transposons, and it will set the resolution of our
assay, that is, the number of transposons per bp of the genome. Our type of transposon does not
have any target sequence of insertion. However, it tends to insert in intergenic regions outside
coding regions and insert in nearby excision sites locations. In our case, since it comes from
a centromeric plasmid, it will have higher chances to insert in pericentromeric4 regions of the
chromosome [48]. Notably, this step monitors the number of cells that become ADE+ during
this time. This is done by plating in three time points (0,24h,48h) 200ul of cells in SC-ADE + 2%
glucose, counting the number of cells visible in the plate and then extrapolating to 1mL. The
measurement at t=0h will give us the background that we start with for the induction; these are
cells that have already repaired the ADE2 gene without transposition. As a rule of thumb, we
should expect 200-400 ADE2+ cells per mL.
Reseed. After the transposition induction in a population of yeast cells, we end up with trans-
posons in hopefully all locations from the yeast genome reflected in the places it jumped to for
4pericentromeric (comparativemore pericentromeric, superlativemost pericentromeric) (genetics) Situated near, or on each
side of, the centromere of a chromosome [47]
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every cell in the population. Now, it is time for the reseed, which has two main functions: paus-
ing the jump of transposons to the genome by stopping the activation of the galactose promoter
and allowing the expansion of the population size and thereby the differences in fitness effects
of the different transposon insertions. From this step, we get after the sequencing the reads
per transposon insertion, which biologically means how many cells harbor that transposon at
that location. We assume that all the mutations start with one copy in the population for the
reseed. Hence all the growth should happen in this step. The volume per clone in this step is
3L of SD-ADE +2% galactose. The incubation is at 30◦C for about 80 hours. Details of the SA-
TAY procedure in yLIC133 and yLIC136 strains are reported in https://leilaicruz.github.io/
Experimental-journal-jupyterBOOK/journal/2020-08/2020-08-10-SATAY-bem2d-nrp1d-WT.html

DNA extraction. After the reseed, the harvest of the DNA from each clone follows. Importantly
in SATAY, we cant keep the mutants generated for every library. Instead, what is analyzed is
the DNA of the population by deep sequencing procedures where it is mapped the site of in-
sertion of every transposon in the genome. Therefore, we first need to obtain the DNA from
each library. For that, we follow the protocol [17]. An overview of all the steps towards sequenc-
ing is represented in fig. 3.12. The details of the DNA extraction for the yLIC133 and yLIC136
samples is described in https://leilaicruz.github.io/Experimental-journal-jupyterBOOK/
journal/2020-08/2020-08-18-DNA-Prep-SATAY.html

DNA sequencing. Sequencing involves the following steps5: Digestion of genomic DNA with
two four-cutter restriction enzymes, ligation by Ligase-mediated circularization of the DNA, PCR
of the transposon-genome junctions using outward-facing primers,Illumina-sequencing of the
combined PCR products.
Digestion. This step is performed with the restriction enzymes: DpnII and NlaIII. The goal is to
chop the DNA into pieces. These enzymes have cutting sites inside the MiniDs. Hence we will
create hybrid DNA fragments of genomic DNA with part of the transposon.
Ligation. In this step, the DNA with a transposon gets circularized by using a ligase enzyme.
PCR. A specific Polymerase Chain Reaction (PCR) protocol is performed on the ligated fragments
to amplify the library for sequencing. Per library, we do two PCR rounds on the DpnII digested-
circularized pool and in the NlaIII digested-circularized pool. We use barcodes, which are 8bp
DNA sequences, used to differentiate between DpnII and NlaIII pools after the sequencing. For
the DpnII pool we use primer 1_DpnII and primer 2_DpnII from table 3.3. For the NlaIII pool we
use primer 3_NlaIII and primer 4_NlaIII from table 3.3. To design the primers we added to the
primer 1_DpnII a random sequence upstream the 8bp barcode and theMiniDs binding sequence-
P1 frm [17]. We use identical barcodes for every generated library. Later in the sequencing
procedure, they are differentiated by the attachment of a different barcode after the adapters6
are ligated to the DNA fragments of the library.

A detailes description of the Digestion, Ligation and PCR for the yLIC133 and yLIC136 samples
is reported in https://leilaicruz.github.io/Experimental-journal-jupyterBOOK/journal/2020-08/
2020-08-24-Digestion-circularization-PCR.html

Sequencing.We specifically use Illumina sequencing[16, 49], which corresponds to the 2nd gen-
eration of next-generation sequencing technology. Oneof the advantages is that it is high through-
5From https://sites.google.com/site/satayusers/complete-protocol/dna-sequencing, used in [17]6The adapters contain the sequencing primer binding sites, the index sequences, and the sites that allow library fragments to attach
to the flow cell lawn. From https://support.illumina.com/bulletins/2016/04/adapter-trimming-why-are-adapter-sequences-
trimmed-from-only-the–ends-of-reads.html
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Figure 3.12. Steps towards DNA sequencing of a SATAY library. Inspired in protocol description fromhttps://sites.google.com/site/satayusers/complete-protocol/dna-sequencing. Created with BioRender.com

put and suitable for whole-genome sequencing, yet it could be costly7. For this type of sequenc-
ing, transposon sequencing, you can apply two methods, either single end sequencing or pair
end sequencing. The former involves sequencing the DNA from one end; it is the more straight-
forward form of Illumina sequencing, suitable for transposon sequencing as we are interested
in detecting the insertion site downstream of the sequencing primer. We sequence both ends
of a fragment and generate high-quality, alignable sequence data with the latter. Paired-end se-
quencing facilitates detection of genomic rearrangements and repetitive sequence elements, as
well as gene fusions and novel transcripts8. We have used both types of methods, to sequence
our generated libraries. The reasons are that the companies we chose did not give us an option
to choose between one method or the other.
List of strains, plasmids and primers

7From https://study.com/academy/answer/what-are-the-advantages-and-disadvantages-of-the-following-dna-sequencing-
method-illumina-sequencing.html8From https://emea.illumina.com/science/technology/next-generation-sequencing/plan-experiments/paired-end-vs-single-
read.html
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Figure 3.13. The insertion site is downstream of the sequencing primer. Hence the single end sequencingmethod in Illumina sequencing will be sufficient to get high-quality data.

Name Genotype Source

yll3a
MATx can1-100,leu2-3,112
,his3-11,15,
ura3Δ
BUD4-S288C

Laan lab

yLIC133a
MATx can1-100,leu2-3,112
,his3-11,15,
ura3Δ,ade2Δ
BUD4-S288C

This study

yLIC136a
MATx can1-100,leu2-3,112
,his3-11,15,
ura3Δ,ade2Δ
nrp1::HYGRO ,BUD4-S288C

This study

Table 3.1. List of strains used in this chapter
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Name Source Description
pBK549 [17] MiniDs Transposons and Gal1-Transposase
pLL112 Laan lab URA3 fragment

Table 3.2. List of plasmids used in this chapter.
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Knockout of URA3 and ADE2 in wild type. We kick out the ADE2 locus from the yLL3a strain
following a two step procedure. First, the URA3 genes was inserted in ADE2 locus and then it
was transformed by a empty sequence. The procedure consisted in making two DNA fragments
(OEP1 and OEP2) that were transformed sequentially in yLL3a, using the lithium acetate high ef-
ficiency yeast transformation protocol dx.doi.org/10.17504/protocols.io.gzrbx56. The DNA
fragments were produced by the method of overlap extension PCR, see dx.doi.org/10.17504/
protocols.io.psndnde for a whole description of this method . The OEP1 is the DNA fragment
used to insert the URA3 gene in the ADE2 locus, and the OEP2 is the DNA fragment used to kick
out the URA3 gene from this location. For the OEP1, we need to produce three DNA fragments
that are going to be glued together through PCR. The first DNA fragment corresponds to the up-
stream region of the ADE2 gene, that was amplified by PCR. Specifically, for this PCR reaction, the
templatewas genomic DNA from yLL3a and primers olic24/olic15 (I), the second to theURA3 gene
fragment amplified from the plasmid pLL112 with primers olic16 and olic17 (II). Lastly,the down-
stream region of ADE2 which we obtained by PCR with the yLL3a genomic DNA and olic18/olic26
primers (III). Then, all three DNA fragments (I+II+III) were taken as template for the overlap ex-
tension PCRmethod with primers olic24/olic26. The OEP2 fragment consisted in gluing two DNA
fragments with no homology to the URA gene. Firstly, the fragment from the yLL3a genomic
DNA and primers olic24/olic20 and secondly the fragment from the same template and primers
olic21/olic26. We checked the expected length of OEP1 and OEP2 by DNA electrophoresis and
sequence by Sanger sequencing with Macrogen. This method produces the strain yLIC133.

Further, transformation of yLIC133 with an amplified DNA fragment from the yLL137 strain
with primers oES83/oES84 yields the strain yLIC136.
Data analysis
The sequencing and data analysis of the wild type and nrp1 full knockout mutant strain was
performed by our collaborators and authors of the main publication on SATAY:Michel, A. H.,
Hatakeyama, R., Kimmig, P., Arter, M., Peter, M., Matos, J., ... and Kornmann, B. (2017). Functional
mapping of yeast genomes by saturated transposition. Elife, 6, e23570. The sequencing and analysis
of our strains was carried out in the facilities of Oxford University. The script for the analysis
is published as a Supplemental file of the publication [50]: Michel, A. H., Kornmann, B. (2022).
SAturated Transposon Transposons Analysis in Yeast Yeasts (SATAY) for Deep Functional Mapping of
Yeast Yeasts Genomes. In Yeast Functional Genomics: Methods and Protocols (pp. 349-379). New
York, NY: Springer US. In table 5.3 is shown the output of this analysis in terms of the number of
transposons ans reads annotated to the whole genome and to the coding sequences (CDS) of
the different technical replicates of the wild type and nrp1mutants.
Preprocessing bash script to extract forward reads. This script is published in the following
repository: https://github.com/SATAY-LL/comparative-analysis-among-strains/blob/main/publishing/
scripts/forward_reads_extraction-new.sh

Transposonmapper. This workflow is created for processing sequencing data for Saturated
Transposon Analysis in Yeast (SATAY) for Saccharomyces Cerevisiae. It is inspired by the Matlab
code developed by [17]. Transposonmapper [51] has been developed in Bash and Python. It
performs the steps from raw sequencing data until the transposon mapping that outputs files
containing all insertion sites combined with the number of reads. The workflow requires input
sequencing data in fastq format. It can perform the following tasks: sequence trimming, quality
checking raw and trimmed fastq files sequence alignment with the reference genome (S288C
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Strain # of transposons # of reads # of transposons in CDS # of reads in CDS
yLIC133_a 423524 23428274 194719 7246573
yLIC133_b 414347 24441674 189469 7577024
yLIC136_a 467104 28569602 287127 16494324
yLIC136_b 510327 25383712 301283 16057911

Table 3.4. Characteristics of the SATAY libraries of the wild type and nrp1 mutant yeast strains, after thetransposon sequencing data analysis. From left to right in the columns, the strain name, the number oftransposons mapped, the number of reads mapped, the number of transposons mapped to coding se-quences(CDS), and the number of reads mapped to CDS.

cerevisiae genome) quality checking bam files, indexing, and sorting transposon mapping. The
output files indicate the location of transposon insertions and the number of reads at those
locations. This is presented in both .bed and .wig format.

Transposonmapper is tailored to have a shareable package that other researchers can eas-
ily use and modify according to their needs. The package contains documentation for users
and developers, a modular PyPI package for the postprocessing analysis (https://pypi.org/
project/transposonmapper/). It has the option of installing the whole suite of Linux dependen-
cies software if you are a developer, a test framework to maintain main functionalities, a docker
container (https://hub.docker.com/repository/docker/leilaicruz/satay/general) to allow to
run the software independent of the operative system. We also made a documentation website
(https://satay-ll.github.io/Transposonmapper/Introduction.html) that describes all the fea-
tures of the pipeline and how to use it. What is novel about this package is the possibility of
accessing the code and customizing it to your needs due to its extensive documentation and test
framework.

Fitness scripts. Fitness scripts can be found at the github repository: https://github.com/
SATAY-LL/comparative-analysis-among-strains/blob/main/publishing/scripts/fitness_both_
methods.py All the necessary files are located in the same folder. The scripts for the fig. 3.4 are
also in the same script file.
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Figure 3.14. Flowchart of the main steps of the Transposonmapper pipeline.
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4
Using genetic interactions from saturated
transposition analysis to uncover NRP1’s

function in S.cerevisiae.

No great discovery was ever made without a bold guess.

Sir Isaac Newton

Abstract Cellular polarity stands as a fundamental process governing both cell division and
morphogenesis. The establishment of polarity marks the initiation of cell division. Despite
extensive studies dissecting the functionality of cellular polarity network components,
numerous proteins associated with polarity still harbor unknown functions. This chapter
explores the biological role of a polarity-associated protein in the yeast S. cerevisiae, named
Nrp1. While Nrp1 has been observed to restore polarity establishment in Δbem1mutants, the
precise biological mechanisms underpinning this recovery remain unclear. This study adopts a
two-fold approach to investigate the function of NRP1, which encompasses 1) quantifying
whether the RNA binding domain annotated to Nrp1 influences gene expression in different
mutants, and 2) identifying genome-wide genetic interaction partners through SATAY, aiming to
propose potential biological functions involving NRP1. We did not find a significant influence on
gene expression upon NRP1 full knockout from the wild-type and Δbem1 backgrounds. The
enrichment of predicted genetic interactors from SATAY suggests that NRP1 is linked in
processes related to prion formation, endocytosis, and cell cycle checkpoints. The same
analysis with annotated polarity genes hints that NRP1 deletion rescues bem1mutants by either
regulating the precise cell size at the START point of the cell cycle or enhancing the Cdc42
exchange from the membrane to the cytosol. Further, specific low-throughput experiments are
proposed to test the mechanistic hypotheses regarding the function of Nrp1 in yeast cells.

95



4
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4.1. Introduction
Cellular polarity is a fundamental process that governs cell division and morphogenesis, playing
a crucial role in the development of various organisms. It involves critical cellular processes such
as cell division, differentiation, migration, signaling, and fertilization.

The yeast species Saccharomyces cerevisiae serves as an exemplary model to explore the
molecularmechanisms underlying cell polarity. This organismdemonstrates prominent polariza-
tion in response to both intracellular and extracellular cues. Moreover, yeast cells share common
features with other organisms concerning cell polarity, including the regulation by intrinsic and
extrinsic cues, the presence of conserved key regulatory molecules like small GTPases, and the
occurrence of asymmetric growth of the cytoskeleton [1, 2].

In Saccharomyces cerevisiae, cell polarity is evident during vegetative growth through budding,
which is guided by landmark proteins as intrinsic cues. Additionally, cell polarity is observed
during mating between cells of opposite mating types and during filamentous growth induced
by nutrient deprivation, such as nitrogen limitation. However, our study focuses on the first type
of cell polarity, which involves the asexual reproduction of yeast cells through budding. We aim to
investigate the process of polarity establishment as the initial and critical step in this reproductive
process.

The polarity establishment system in budding yeast has been extensively studied, with abun-
dant literature available on the various proteins involved and their roles within the system [1–4].
Protein-protein interaction studies and genetic analyses have allowed the representation of the
system as a network, where proteins are nodes and their interactions are depicted as edges [5].

The establishment of cell polarity occurs at the end of the G1 phase of the cell cycle, panel
A) fig. 4.1, and it defines the beginning of the cell cycle. At this point, certain checkpoints related
mainly to nutrient availability and protein levels must be successfully cleared to progress in the
cell cycle. Subsequent phases such as S (Synthesis), G2 (Growth), and M (Mitosis) are primarily
responsible for DNA synthesis, proper DNA duplication, and chromosome segregation, respec-
tively, in the new daughter cell.

We conceptualize the polarity establishment function as an interconnectedmodule that inter-
acts with mainly five different pathways [5] that occur hierarchically in the cell. These pathways
are the mating, bud scar, reaction-diffusion, actin, and timing pathways, as depicted in fig. 4.1.
The timing pathway is mainly involved in the cell cycle cues that shape the temporal regulation
of all processes in the cell.

An evolutionary study [6] investigated the adaptation of the polarity establishment network
after removing the near essential scaffold protein Bem1. Cells lacking Bem1 experienced a con-
siderable fitness impairment, struggling to form buds and displaying an extremely low survival
rate. However, these cells restored their fitness levels through a 1000-generation evolutionary
serial dilution experiment.

Surprisingly, the evolved cells achieved polarization similar to the wild-type phenotype but
through a novel alternative mechanism that involved the absence of three additional proteins:
Bem3, Nrp1 (panel B,fig. 4.1), and Bem2. Bem3 and Bem2 are recognized Guanine Activating Pro-
teins (GAPs) for the GTPase Cdc42. They facilitate the hydrolysis of GTP (Guanosine triphosphate)
bound in its active state into GDP (Guanosine diphosphate), transitioning it to an inactive state.
The study by Brauns et al. [7] investigated the detailed mechanisms through which BEM3 func-
tions as a significant repressor in Δbem1mutants by significantly restoring the ability to polarize
of such mutants. NRP1 knockout in bem1bem3mutants was observed, in the same evolutionary
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Figure 4.1. Polarity establishment and Nrp1 state of the art. A) Polarity establishment in budding yeast cellsas part of the cell cycle and as the interplay of multiple pathways. The interdependence between the mating,the bud scar, the reaction-diffusion, the actin, and the timing pathways results in accumulating the GTPaseCdc42 bound to GTP molecules (i.e., active Cdc42) to one point on the plasma membrane, which can signaldownstream effectors to proceed the cell cycle, at the end of the G1 phase of the cell cycle. B) Growth raterecovery of Δbem1 gene knockout by BEM3 and NRP1 knockouts. C) Current knowledge on NRP1 sequenceindicates that the Nrp1 protein contains an RNA recognition motif and low complexity domains.

experiment, to increased their fitness, panel B fig. 4.1.
Notably, Nrp1 has not been previously associated with cell polarity in any other study. Hence,

the specific mechanisms through which the deletion of NRP1 rescues impaired Δbem1 mutants
remain unknown, making it an intriguing aspect that motivates further investigation of the func-
tion of Nrp1 in budding yeast.

Importantly, Nrp1 exhibits high conservation across the fungal kingdom, particularly within
the Ascomycota phylum [8]. This level of conservation is comparable to the prevalence of Bem1
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within the same phylum, suggesting that Nrp1 likely possesses a function of significant impor-
tance in yeast evolution. The conservation of Nrp1 across fungal species further emphasizes the
potential significance of studying its role and contribution to cellular processes in yeast.

The gene sequence of NRP1 [9, 10] consists of two distinct domains: an RNA recognition mo-
tif (RRM) and a low complexity domain containing repeated regions rich in asparagine residues
(panel C) fig. 4.1). The presence of the RRM suggests that Nrp1 has the potential to bind and reg-
ulate mRNAmolecules. However, the specific mRNA sequences that interact with Nrp1 have not
been identified yet [11]. Moreover, it has been suggested to be involved in ribosome biogenesis
[9, 12, 13].
4.2. Results
4.2.1. The RNA binding domain of NRP1 does not strongly regulate gene expres-

sion in wild-type and Δbem1mutants.
To investigate the potential influence of Nrp1 knockout on protein translation and gene expres-
sion through its RNA recognitionmotif, we conductedmass spectrometry analysis [14] on various
mutants of yeast cells.

Figure 4.2. Mild changes in gene expression upon Nrp1 deletion in different mutants. A). A typical workflowfor a shotgun mass spectrometry involves yeast cell lysis, protein extraction, and proteolytic digestion (a-c);proteins are enzymatically hydrolyzed into peptides and purified (d)followed by liquid chromatography (LC)coupled to a hybrid mass spectrometer capable of isolating intact ions, to measure their masses(e). Next,thousands of spectra are collected for qualitative analysis of peptides in a sample. The first data analysisstep identifies the peptides and proteins from the complex sample mixture (f). B). Volcano plots represent-ing differences in protein abundances across different mutants. (top) Δnrp1 vs wild type (down)pGal-bem1
Δnrp1 vs pGal-bem1. Genes to the left of the plot (logFC < 0) are genes that are upregulated in the mutantbackground relative to the wild type expression level. Likewise, genes with positive values of logFC corre-spond with genes downregulated in the mutant compared to the wild type. The top dashed arrow indicatesthe mean of the distribution of gene expression of all protein values, indicating a measure of which effect ismore predominant concerning the values of the gene expression fold change.

For this analysis, we employed a shotgun mass spectrometry approach, a commonly used
method for unbiased protein quantification in biological samples [15]. The detailed protocol

98



4

4.2. Results
followed for the experiment can be found in the Materials and Methods section, specifically in
section section 4.5.

To assess the impact of Nrp1 on gene expression through its RNA binding motif, we analyzed
the differences in protein abundances upon Nrp1 knockout in both thewild type background and
the Δbem1mutants. The data analysis was performed using the PEAKS software [16], which de-
tected 1277 proteins across all mutants, accounting for approximately 20% of the yeast genome
size. Among these proteins, only 147 showed significant changes in abundance across the mu-
tants, as determined by statistical analysis (p-values < 0.05) carried out with the software PEAKS.

In our investigation, we compared protein abundances across different genetic backgrounds
to gain insights into the role of Nrp1 in gene expression. We calculated the log fold change (logFC)
for each protein’s abundance between two backgrounds of interest. Panel B) of fig. 4.2 displays
the results in a volcano plot.

A notable observation is that the URA3 gene, which is constitutively expressed in the Δnrp1
strain, shows a higher abundance compared to the wild type strain, which has an ura3 auxotro-
phy. This finding highlights the significance of auxotrophic markers like URA3, which can exert
considerable effects on the cell under specific conditions, as observed in the Δnrp1mutants.

Additionally, we noticed that the genes RIB41 andURA1 are overregulated in thewild type back-
ground. This observation suggests the possibility that the expression ofURA3 actively inhibits the
expression of URA1. Ura1 and Ura3 enzymes are involved in the biosynthesis of pyrimidines in
the cell.

With the observation that Nrp1 knockouts do not lead to significant changes in gene expres-
sion in both wild type and bem1mutant backgrounds, we turn our focus to exploring the global
interaction network of Nrp1. For this purpose, we will employ Saturated Transposition Analysis
in Yeast (SATAY).
4.2.2. The fitness effects distribution in the Δnrp1 genetic background is skewed.
Disabling the NRP1 gene does not appear to have a significant effect on the fitness of wild-type
yeast cells, as observed throughmeasurements of growth rate andmorphology, in our lab. Thus,
studying its biological function from the changes it causes to phenotype inwild-type cells is unfea-
sible. Therefore, we aim to find which other mutations may perturb the phenotype (i.e., growth
rate values) of Δnrp1 yeast mutants, which will shed light on which molecular pathways or bio-
logical functions are influenced by the removal of NRP1.

To explore the changes to the fitness that multiple single gene knockouts can cause to Δnrp1
yeast mutants, we utilize the capabilities of SATAY to generate a genome-wide library of double
gene deletions (Δnrp1Δgenex) using transposons (panel A) fig. 4.3) that covers nearly all yeast
coding sequences. We use the method described in chapter 3 to generate relative fitness values.
Considering the scarce knowledge regarding Nrp1’s biophysical role, the distribution of fitness
effects of Δnrp1 yeast mutants is taken as a first step to investigate which biological pathways
are NRP1 related.

In this regard, we confirmed that the predicted fitness values obtained from SATAY give con-
sistent results compared to previous in-house measurements using population growth exper-
imental procedures, see fig. 4.11 in different yeast mutants.The distribution of fitness effects
(DFE) of gene knockouts in the Δnrp1 background, panel B) fig. 4.3, is normalized such as it is
centered on the relative fitness value of Δnrp1 mutants from the SATAY wild-type library. The
1Rib4 is an enzyme that is involved in riboflavin biosynthesis [17]
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Figure 4.3. The distribution of fitness effects on Δnrp1 yeast mutants from SATAY is left skewed.A) SATAYon Δnrp1 yeast mutant generates a multiple yeast double knockout library. B) Distribution fitness effectsof the generated double yeast knockout library, using SATAY. The dashed line represents the median of thedistribution, which is the relative fitness of Δnrp1mutants from the wild-type single knockout SATAY library.

predicted fitness, in terms of growth rate, from SATAY, is around the relative value of 1.2 com-
pared to the median value of the wild-type library. The DFE is left-skewed. Thus, there are more
fitness differences toward low fitness values.

We subsequently explore whether the genes that show a change of gene expression after
NRP1 knockout are correlated with their fitness values in the Δnrp1 background.
4.2.3. The fitness effects of gene knockouts are uncorrelated with the change of

gene expression of the same genes in Δnrp1mutants
The coupling between gene expression andfitness canprovide insights of gene expression changes
as an adaptive mechanism. We hypothesize that genes that are down-regulated in a specific
background are prone to be suppressors in that background, in contrast to genes that are up-
regulated, for which we predict its knockout could have detrimental effects.

We study this correlation with the changes on gene expression in Δnrp1mutants compared
to wild type, and their fitness values, inferred from SATAY, in the Δnrp1 genetic background. We
observed that the genes up and down-regulated in wild-type background by the NRP1 deletion
exhibit similar mean fitness values close to 1, which indicates that those genes show neutral
fitness effects in the wild-type background, fig. 4.4.

In summary, our analysis does not reveal clustering of down-regulated genes with high fit-
ness values, nor upregulated genes with low fitness values.One possibility is that the observed
changes in gene expression are not substantial enough to account for extreme alterations in
fitness associated with the knockout of those genes.

In the next section, we explore the main biological functions associated with NRP1, which are
derived from a functional enrichment of the predicted significant genetic interactors of NRP1
from the method shown in chapter 3 to derive genetic interactions from SATAY read-outs.
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Figure 4.4. No correlation between up and down-regulated genes with their knockout fitness in Δnrp1 back-ground. The y-axis represents the ratio of the relative protein abundances to the wild-type level, and thex-axis displays the predicted SATAY fitness of a mutant carrying a loss-of-function mutation in the protein ofinterest in the Δnrp1 background. The black dot on both sides of the plot symbolizes the mean of the fitnessfor up and down-regulated genes, and the error bars are the standard deviation.

4.2.4. Prion formation, endocytosis and cell cycle checkpoints related processes
stand up as the most enriched functions for SATAY predicted NRP1 genetic
interactors.

In this section, our main objective is to investigate the genetic interactors of Nrp1 at a genome-
wide scale to dig into the biological pathways associated with Nrp1. Wewill use the fitness values
from the SATAY libraries in both the wild type and nrp1 genetic backgrounds to compute the ge-
netic interactors. The process of calculating genetic interactions from fitness values is described
in section 3.2.4.

In short, to identify genetic interactions, we apply a multiplicative model to compare the dou-
ble knockout relative fitness values with the expected relative fitness values, assuming that the
fitness effects of single gene knockouts are independent and multiplicative. If the double knock-
out fitness is significantly higher than expected, it indicates a positive interaction, suggesting that
both genes may suppress or mask each other’s effects. Conversely, if the double knockout fit-
ness is significantly lower than expected, it indicates a negative interaction between the pair of
genes. The extreme case of a negative interaction is called synthetic lethality, where the double
knockout is lethal, but every single knockout is viable, see fig. 4.5A.

In particular, the genetic interaction scores are computed following eq. (4.1):

�i−nrp1 = fi|Δnrp1 − fi|W T × fnrp1|W T (4.1)
The fitness computation is performed using the procedure for the average fitness along each

gene, explained in chapter 3. In fig. 4.11, panel C), we perform a normalization of fi|Δnrp1 suchthat its median matches fnrp1|WT. This normalization assumes that the probability of interaction
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between a random gene i and our gene of interest, in this case, NRP1, is zero. Consequently, we
ensure that our genetic interaction score distribution for all genes is centered around zero.

Furthermore, we apply a T-test [18] for the means of two independent sample scores. This
test quantifies the difference between the arithmetic means of the two samples and provides
p-values that indicate the significance of the difference between the samples. A p-value > 0.5
suggests that the observed difference in fitness values is likely due to chance, and, therefore,
we discard those observations. The choice for significant p-values in these datasets was set at a
threshold below 0.1. Panel D of fig. 3.7 illustrates the variance in fitness values among biological
replicates of the strain carrying a knockout mutation in NRP1.

All computed genetic interaction scores for NRP1 are represented through a volcano plot
shown in fig. 4.5. The x-axis represents the interaction score, and the y-axis displays the statistical
significance of each interaction as −logp-value. The plot resembles the shape of a volcano, hence
its name. In this plot, we can observe extreme changes in both positive and negative interactors
that are statistically significant, as determined by their t-statistic and fold change values. Positive
values correspond to genes whose knockout suppresses the nrp1 phenotype, while negative
values represent genes whose removal exacerbates the nrp1 phenotype.

To ensure that the differences in fitness between the double mutant and the product of the
single mutants are significantly different, we applied a stringent cutoff to classify genetic interac-
tions, rather than simply considering genes with scores different from zero, as shown in eq. (4.1).
We employed a cutoff based on one standard deviation from the mean score value, shown in
eq. (4.2). This approach allows us to identify genetic interactions that are more likely to be bio-
logically meaningful and not just due to random variation.

�+ > �� + ��; �− < −�� − �� (4.2)
In the volcano plot of fig. 4.5, purple dots represent statistically significant positive genetic in-

teractions, while green dots represent statistically significant negative ones. Our analysis identi-
fied 47 genes that show significant positive interactionswithNRP1 and 44 other genes that exhibit
significant negative interactions with NRP1. These genetic interactors are likely to be functionally
linked to NRP1 and may play important roles in the biological pathways involving this gene.

To identify which biological pathways NRP1 may be related to, we conduct a functional en-
richment analysis of the genetic interactors of NRP1. Previous studies have suggested that sup-
pressing interactions may involve proteins that function in a linear pathway or are part of a non-
essential protein complex [20, 21]. On the other hand, negative genetic interactionsmay indicate
redundant roles, suggesting that the studied gene pair is involved in an essential cellular function
through complementary pathways.

The results of our analysis reveal that significant positive genetic interactions are enriched for
a wide variety of biological processes, namely: inositol phosphate-related metabolic processes,
cellular response to ethanol, mitotic spindle checkpoint, regulation of GTPase activity, and de-
phosphorylation, see panel C) fig. 4.5. Furthermore, the phenotypes related to the identified
positive interactions are related to the respiratory growth phase of the yeast population growth,
the exit from GO (stationary phase), spindle morphology, budding pattern, and RNA localization,
among others, see panel D) fig. 4.5.

On the other hand, significant negative interactors are enriched for biological processes such
as hydrogen peroxide and nucleotide sugar metabolic processes, spindle pole body duplication,
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Figure 4.5. Identification and functional enrichment analysis for the genetic interactors of NRP1.A)Geneticinteractors are defined as gene pairs whose combined perturbation gives rise to an unexpected phenotype.Suppose the fitness of the double knockout largely increases from the product of the single mutant fitness.In that case, it will indicate a positive interaction, while a noticeable reduction will hint at a negative interac-tion.B)Volcano plot of the genetic interactors for NRP1. The x-axis displays the interaction score computedby subtracting the product of the single knockout fitness from the double knockout fitness. This score isthe average among the two computed scores from each library from wild type and Δnrp1. Purple and greendots represent significant positive and negative genetic interactions, respectively. C) Functional enrichmentof significant positive genetic interactors for biological processes using the python package Gseapy [19]. D)Functional enrichment in phenotypes associated with knockout mutations of the significant positive interac-tors.E)-F) Same as C)-D) but on the significant negative genetic interactors.
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cellular response to nutrient levels, and peptidyl-methionine and serinemodifications, see panel
E) fig. 4.5. Moreover, significant negative interactors are also enriched for phenotypes related to
critical cell size at START in G1, endocytosis, oxidative and starvation stress resistance, prion
formation, nuclear fusion during mating, fermentation growth, and spore wall formation, panel
F) fig. 4.5.

Taken all together,NRP1 seems tobe linked in a complex interaction network involvingmetabolic
stress, and cell cycle checkpoints-related genes. Specifically, looking at the common enrichment
among both types of interactors, NRP1 seems to be involved in the regulation of the first part of
the cell cycle comprising the G0 and G1 phases and part of the G2 phase at regulating spindle
pole body duplication and morphology. Furthermore, this analysis renders NRP1 as a candidate
that regulates the fermentation and respiratory phases from the population yeast growthmodel
[22]. This is also backed up by the links from both types of interactors to processes related to the
cellular response to ethanol and nutrient levels. Remarkably, this has been previously observed
experimentally in mutants involving a double knockout mutation on the genes BEM3 and NRP1
by [23].

It is worth to mention that this study should be taken as the first step towards uncovering the
biochemical pathways that NRP1may be impinging on because we lack two additional important
measures: 1) correlation interaction profiles among the targeted genes to add information that
those genes (especially the positive interactors) are part of the samephysical complex or pathway
[24]. 2) Low throughput experimental checks on the predictions of this approach.

In the next section, we ask to what extent these results from SATAY cover the existing knowl-
edge about the genetic interactors of NRP1 from other high throughput assays.
4.2.5. Predicted significant genetic interactors donotmatchexistingNRP1 genetic

interactors
In addition to identify novel biophysical functions that NRP1 may be linked to, we would like to
study whether the predicted functions enclose or are a subset of known functional relationships
that involve NRP1. We compare our predicted significant interactors with existing genetic inter-
actors of NRP1 from the Saccharomyces Genome Database (SGD) [17]. Specifically, we look at
gene deletions that suppress or exacerbate the NRP1 gene deletion phenotype2.

We found 16 previously identified NRP1 genetic interactions from [26] study, 8 of them posi-
tive and the rest negative interactors. We did not find any match from the 91 significant genetic
interactors that we found using SATAY. However, for the eight existing positive interactors, we
recovered one of them with a moderate p-value of 0.21 and a genetic interaction score of 0.25.
The gene is SYF1, which its gene product is a mRNA-splicing protein that is part of the NineTeen
Complex (NTC) and U2-type catalytic spliceosome; localizes to both nucleus and cytosol[17]. SYF1
is currently annotated as an essential gene in wild type cells [27].

Out of the eight previously found negative interactors, we recovered two of them, with a
statistical significance of 0.15 and genetic interaction score of -0.36. Those genes are REE13 and
POP44.
2To do this, we impose a directional interaction, we considered the interactors classified as "Hit" in the database, where
the ’rescuer’ gene is annotated as the hit and the ’rescued gene’ as the bait [25]. Thus, we focused on genes reported as
rescuers of NRP1 phenotypes.3A protein whose biological role is unknown; localizes to the cytoplasm in a large-scale study [17]4Subunit of both RNase MRP and nuclear RNase P; RNase MRP cleaves pre-rRNA, while nuclear RNase P cleaves tRNA pre-
cursors to generate mature 5’ ends and facilitates turnover of nuclear RNAs; binds to the RPR1 RNA subunit in RNase P
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The discrepancies between the predicted genetic interactors from SATAY and the existing

ones are attributed to the differences in fitness approaches used in thesemethods, as illustrated
in chapter 3,fig. 3.9. On the other hand, the genetic backgrounds of the mutated yeast strains
and growth environments are distinct among these techniques. In addition, the noise sources
during the SATAY data production, regarding the PCR and sequencing steps, add a considerable
variation among the replicates of our experiment, which directly influences the statistical signifi-
cance of the genetic interaction score values.

Despite these effects, we will rely on the genetic interactors predicted with SATAY to uncover
relevant functions associated with NRP1 since we have confirmed the repression effect of delet-
ing NRP1 in bem1 mutants, panels B and D fig. 4.11, the neutrality of nrp1 phenotype, panels B
and F fig. 4.11 and the fitness defect in bem1 mutants through SATAY, panels C and D fig. 4.11.
However, it is essential to acknowledge that all the results obtained in this study are working
hypotheses that warrant further experimental validation and testing.
4.2.6. Eleven annotated essential genes may have lost their essentiality after a

NRP1 knockout.
Extreme genetic interaction cases tell us about the possible genetic rewiring or reorganization
when, in this case, NRP1 is removed from the network. For that, we look at the genes that pos-
sess the strongest interactions with NRP1 according to our experimental assay and data analysis
procedure. Specifically, we ask if there are cases of annotated essential genes that lost the es-
sentiality to become significant positive interactors of NRP1 and vice-versa genes that seem to
become essential or synthetic lethal in Δnrp1 genetic background.

We identified eleven annotated essential genes that seem to have lost their essential role
in nrp1 knockouts. All of these genes exhibit positive interaction scores above the threshold
(eq. (4.2)) and p-values below 0.1. To further validate whether these genes may indeed be es-
sential under our wild-type conditions, we assessed whether their fitness values fall below the
median fitness value of essential genes in the wild-type background (fig. 4.6A). This step ensures
that these genes become dispensable upon NRP1 knockout in our experimental conditions. We
applied the same fitness threshold for the mutant background, assuming that the likelihood of
annotated essential gene knockouts increasing or decreasing their fitness in the mutant back-
ground is equally probable.

Thus, we selected genes that not only exhibit significant positive interactions with NRP1 but
also have a fitness value greater than 0.56 in the mutant background and below this value in the
wild-type background. Only six genes out of the eleven met these criteria, although two were
on the threshold, which we consequently excluded (see upper left square in panel B of fig. 4.6).
These genes are: INO2,MEC1,TFB4 and ARB1.

INO2 is a transcription factor that activates the transcription of genes involved in phospholipid
metabolism in response to inositol depletion[28], and it is also involved in the diauxic shift[29].
Furthermore, it has been shown to affect nuclear segregation and bud pattern formation [30].
The insertion map of this gene in wild-type background shows accordingly a large region void
of transposons, mainly downstream the gene (panel C) fig. 4.6). In the mutant background, the
transposon insertions and read counts over the gene extend to a larger genomic area. This
may indicate that, from the functional viewpoint, the primary function of INO2 is being buffered
in Δnrp1 mutants, which could be due to: 1) The inositol synthesis in Δnrp1 mutants is never
[17]
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Figure 4.6. Predicted genes that lost and acquired an essential role in Δnrp1mutants.A) Fitness values in
Δnrp1 background against fitness values in wild type background. The median of the fitness values for an-notated essential genes in our wild-type background is 0.56. Red and gray dots indicate annotated essentialand all genes, respectively. We choose the same cut-off for the Δnrp1 background. We select genes whosefitness in Δnrp1 background is greater than 0.56 and below this value in the other background. In addition,we only select the genes that have a p-value<0.1 concerning their interaction score with NRP1. The upperleft square encloses the annotated essential genes that lost their essentiality, and the right bottom squareencloses the predicted new essential genes in themutant background. B) A zoom-in on the genes lying insidethe squares of the figure from panel A). The selected genes based on their fitness values and significancehave their name on the data point.C) Transposon insertionmaps of the predicted genes that have lost essen-tiality in Δnrp1 mutants in both genetic backgrounds. The height of the bar indicates the number of readsassociated with that insertion location.D) Transposon insertion maps of the predicted genes that acquire anessential role for Δnrp1 mutants in both genetic backgrounds. The height of the bar indicates the numberof reads associated with that insertion location.

depleted, 2) the phospholipid biosynthesis could be mainly regulated by a different gene, like
INO4[28]. Precisemechanisms bywhich this reorganization is regulated remain to be seen. MEC1
encodes an essential phosphoinositide (PI)-3-kinase-related protein kinase. This type of kinase
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phosphorylates phosphoinositides on the 3-hydroxyl group of the inositol ring that produces
secondary messengers in cell signaling [31]. It is a genome integrity checkpoint (specifically a mi-
tosis entry checkpoint) responsible for DNA replication, repair, and telomere maintenance[32–
35]. Furthermore, it regulates P-body formation under replication stress [36]. The transposon
insertionmap in the wild-type background shows twomain regions void of transposons (panel C)
fig. 4.6); themost downstream region colocalizes with the kinase domain of this protein, presum-
ably the domain that carries its essential function. Interestingly, for the Δnrp1 background, the
kinase domain is fully enriched by transposons. Thus, we envision that the kinase activity ofMec1
is bypassed in Δnrp1mutants, perhaps by buffering the signaling messengers that are products
of this type of kinase activity. TFB4 encodes a zinc ion binding protein involved in nucleotide
excision repair and contributes to RNA polymerase II general transcription initiation factor ac-
tivity [37, 38]. Analogously, Δnrp1 mutants show a moderate increase of transposons insertion
along the gene. Similar to the essential gene ARB1, which is an ATP-binding protein involved in
ribosome biogenesis. Especially, the transposon enrichment is more noticeable in the upstream
side of the gene.

In general terms, these results imply that NRP1 may regulate processes directly related to
the inositol biosynthesis pathways, which affects important processes like DNA repair and repli-
cation. In addition, it potentially more distantly regulates transcription initiation and ribosome
biogenesis, as previous studies related to NRP1 have shown [12, 39].

Alternatively, to identify genes that become indispensable upon NRP1 removal, we chose
genes exhibiting significant negative genetic interactions with NRP1, and whose fitness values
fall below the essential threshold for the mutant background but above the threshold for the
wild-type background. We harbor four main candidate genes that meet these criteria, see bot-
tom right square panel B fig. 4.6: RPS0B,YLR198C,YER133W and CBS2. The first one is a subunit of
the cytosolic small ribosomal subunit (40S) [40], and it is involved in rRNA processing and export
from the nucleus [41]. YLR198C is a dubious reading frame, which is unlikely to encode a func-
tional protein [17]. YER133W, also known as GLC7, is involved in nuclear protein phosphatase in-
volved in cell cycle regulation, DNA checkpoint signaling, and regulation of glycogen metabolism
[42, 43]; localizes to spindle pole body, nucleolus, kinetochore, cell division site, and bud neck
[44]. The last one, CBS2, is a mitochondrial translation regulator [45, 46].

Taken together, these results on the potential essential genes in Δnrp1 background suggest
that NRP1 is involved in the regulation of pathways that are complementary to some parts of the
cell cycle regulation, RNA processing, and mitochondrial translation. Next section will dive into
which submodules from the cell polarity function are more closely related to NRP1 through its
genetic genetic interactors.
4.2.7. Genes from the timing and the reaction-diffusion submodules of cell polar-

ity show significant genetic interactions with NRP1
Overall, we have dissected some of the general functions that NRP1may be related to according
to their predicted genetic interactors from transposon sequencing data. Now, we would like to
take the opposite approach: look at a specific functional module and investigate which signifi-
cant genetic interactors are assigned to it such that the possible linkage of NRP1 with the target
module is identified.

In this case, we select the cell polarity function, specifically the establishment of cell polarity
module, due to its importance for the evolutionary experiment carried out by [6]. To conduct this
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analysis, we carefully curated a subset of genes known to be part of the polarity establishment
module based on a comprehensive literature review presented in [5]. The authors of that study
dissected the polarity establishment module into five sub-modules: timing, mating, reaction-
diffusion, actin, and bud scar-related functions, which are depicted in fig. 4.1.

Figure 4.7. Polarity associated genes shows strong interactions with NRP1.A) Polarity establishment relatedgenes, in the x a-axis and their interaction score with NRP1 in the y-axis. Darker dots represent statisticallysignificant interactors. The arrows on top represent the genes with the lowest p-values. B) Pathways thatlead to polarity establishment from [5]. Selected genes from A) are shown in the submodule they belong to.Green and purple colors correspond to negative and positive predicted genetic interaction with NRP1.
We sorted all the 46 polarity-associated genes according to their interaction score with NRP1

and highlighted its significance through the color of the point, as panel A) from fig. 4.7 shows.
The polarity genes cover a range of interaction scores from -0.4 to 0.6, and five have a p-value
below 0.1. These genes are: RDI1,STE3,STE5,YDJ1 and CDC28.The first three exhibit a positive inter-
action score, and the last two are negative. These genes cover the sub-modules of the reaction-
diffusion(RDI1), the mating(STE3, STE5), and the timing(YDJ1,CDC28) pathways,panel B) fig. 4.7.

In summary, in this section, we adopt a different approach by focusing on the establishment
of cell polarity, a crucial module in yeast biology. This module comprises five sub-modules: tim-
ing, mating, reaction-diffusion, actin, and bud scar-related functions. Analyzing the interaction
scores between NRP1 and the 46 genes associated with cell polarity, we identified five genes
with significant scores: RDI1, STE3, STE5, YDJ1, and CDC28. These genes play roles in the reaction-
diffusion, mating, and timing pathways.

Next, we integrate these findings concerning the possible linkage of NRP1with the polarity es-
tablishmentmodule to elucidate suitablemechanisms for the recovery of polarity that is induced
by knocking out NRP1 in Δbem1mutants.
4.2.8. WhydoesNRP1deletion rescueΔbem1mutants?: Twoplausiblemechanisms
NRP1 deletion likely enhances the regulation of cell size at START in Δbem1mutants.
The Cdc42 cell-polarization machinery of budding yeast is a robust module that, following the
knockout of Bem1, a key player in the Cdc42-based polarity, cells regain their ability to polar-
ize and divide by loss of three different genes [6], one of them is NRP1. However, the precise
mechanisms of the polarity recovery remain unclear.

Based on the findings from the previous section about the strongest polarity interactors with
NRP1, we identified twomain submodules thatNRP1 deletionmay be enhancing to recover polar-
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ity inΔbem1mutants: 1) Timing and 2) Reaction-diffusion submodules. We reasonably discarded
the mating submodule to conceive the recovery mechanisms since this function does not play a
role for the particular experiment conducted in [6], given that the yeast population consisted of
haploid cells and, therefore, the chance to mate was excluded.

The first submodule to consider, the timing one, is represented by the strong novel negative
and statistically significant interaction scores of NRP1 with the genes CDC28 and YDJ1, see panel
A) from fig. 4.7. CDC28 is a critical protein kinase that controls the timing of mitotic commit-
ment, bud initiation, DNA replication, spindle formation, and chromosome separation[47]. YDJ1
is a chaperone that recognizes cytosolic misfolded proteins during heat shock[48], and, more
recently, it has been observed to play a critical role in determining cell size at START as a function
of growth rate [49].

Figure 4.8. NRP1 deletion may contribute to the recovery of polarity in Δbem1 mutants through the timingand the reaction diffusion pathways. A)From their predicted significant genetic interaction, we suggest thatCdc28,Ydj1 and Nrp1 may function together through complementary pathways in which that contribute tothe proper timing of the cells at the start of the cell cycle. B) Following their predicted significant positiveinteraction, Rdi1 and Nrp1 may function together in the reaction-diffusion pathway, specifically in the Cdc42exchange rate from the membrane to the cytosol.
On the other hand, negative interactors are genes whose native expression and, therefore,

function in the cell are required for Δnrp1 mutants. These gene pairs often involve parallel or
alternative pathways contributing to a crucial cellular function, panel A) fig. 4.8. They could also
belong to the same pathway but play critical roles. Additionally, these genes might be part of an
essential protein complex where deleting both proteins results in an impaired essential protein,
leading to cell fitness defects or cell death.

In this particular case, CDC28 and YDJ1 are known synthetic lethal[50], as well; thus, they both
play a role in complementary pathways that contribute to regulating the initiation of the cell
cycle.

Since YDJ1 is the most extreme negative polarity interaction for NRP1, we hypothesize that
NRP1 is involved in a parallel pathway that contributes to cell size regulation at START. This func-
tion is especially critical in Δbem1 mutants, where yeast cells cannot initiate the bud formation,
yet they undergo nuclear division without cellular division [51]. We predict that the polarity
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restoration in Δbem1Δnrp1 mutations occurs through an improvement in the regulation of the
cell size at the early stages of the cell cycle. Interestingly, CDC28 and YDJ1 are required genes
for cell viability of Δbem1 mutants. On the contrary, Nrp1 native expression is toxic for Δbem1
mutants. Thus, Nrp1 function could hamper the proper regulation of cell size to initiate bud for-
mation and progress in the cell cycle when polarity establishment can not rely on the function
of BEM1.

Precise molecular mechanisms and right experimental tests are required to test this hypoth-
esis. For example, firstly, we should test that in Δnrp1mutants, a knockout in YDJ1 and CDC28 is
harmful to the cells. Secondly, we can test how the dynamics of the different proteins during the
early stages of the cell cycle correlate in the presence and absence of BEM1.
NRP1 deletion possibly enhances the Cdc42 rate exchange from the membrane to the
cytosol in Δbem1mutants.
The strongly predicted novel positive interaction between RDI1 and NRP1 is particularly interest-
ing. Rdi1 is a Rho-GDP dissociation inhibitor that plays a crucial role in regulating the localization
of Cdc42, a key protein involved in polarity establishment [52]. In the polarity establishment
function, Rdi1 binds to membrane-bound Cdc42-GDP and transports it to the cytosol. Mutants
lacking Rdi1 exhibit a slower exchange of Cdc42 from themembrane to the cytosol thanwild-type
cells, but similar levels of Cdc42 are eventually reached in thesemutants [52]. In addition,Δbem1
mutants exhibit a reduced efficiency of Cdc42 condensation at one location in the plasma mem-
brane, leading to the loss of efficient polarization and the possibility of multiple budding sites
[7].

Interestingly, high-throughput studies [53] have shown that full knockoutmutants of bem1 re-
quire Rdi1 to proliferate, indicating a significant dependency on Rdi1 for cell survival and growth
in the absence of Bem1, suggesting a potential compensatorymechanism involving Rdi1 in bem1
mutants.

Based on these findings, we speculate that Nrp1 deletion in bem1mutants could enhance the
rate of Cdc42 exchange from the membrane to the cytosol through its positive interaction with
Rdi1. As a result, bem1nrp1mutants may exhibit better polarization because they can maintain
a highly dynamic flow of Cdc42 in and out of the membrane [52].

To investigate this effect further, follow-up experiments such as FRAP (Fluorescence recovery
after photobleaching) experiments on the formed buds ofΔbem1Δnrp1 andΔbem1mutants can
provide valuable insights into the dynamics of Cdc42 and its role in the enhanced polarization
observed in the double knockout mutants.

In conclusion, Nrp1 deletion may rescue Δbem1 mutants by enhancing the cell size regula-
tion before bud initiation and by increasing the dynamic flow of CDC42 out of the polarity spot,
facilitating the progress of further stages in the cell cycle. However, it is important to note that
the predicted interactions and proposed mechanisms are based on computational analysis and
literature-based predictions. Further experiments, such as growth rate analysis, time-lapse flu-
orescence microscopy, and FRAP, are required to precisely characterize these mechanisms and
validate the role of NRP1 deletion in rescuing bem1mutants.

4.3. Discussion
This chapter has developed a methodology to study an example of a weak-effect gene. Specifi-
cally, we focus on the gene NRP1, which is currently annotated as having an unknown function
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in budding yeast; however, it may play a crucial role in cell survival in cells harboring a complete
gene knockout in BEM1.

Our study aimed to elucidate the functional role of NRP1 using diverse experimental ap-
proaches. Initially, we investigated the potential impact of Nrp1’s RNA binding domain on gene
expression. However, our analysis revealed no significant alterations in the expression of approx-
imately 1200 proteins, suggesting that NRP1 does not serve as a regulator of gene expression.

Subsequently, we performed a comprehensive genome-wide analysis of NRP1 genetic inter-
actors to infer its function through interactions with other genes. The functional enrichment
analysis of negative genetic interactors identified via SATAY data indicated potential involvement
of NRP1 in processes related to determining critical cell size at the START point of the cell cycle,
endocytosis, prion formation, and fermentation growth (panel F, fig. 4.5). Additionally, enrich-
ment analysis of positive interactors provided insights into pathways potentially associated with
NRP1, including exit from G0 during the cell cycle, spindle morphology, and respiratory growth.

Remarkably, a recent study, [54], has shown the emerging role of RNA binding domain pro-
teins inmitotic spindle formation in eukaryotes. Treatmentwith transcription inhibitors or RNase
disrupts the mitotic spindle structure independent of active translation [55, 56], implying that
functional mRNAs or non-coding RNAs (ncRNAs) act as regulators or structural components of
the mitotic spindle, from [57]. In addition, the fission yeast ortholog of Nrp1, known as Dri1, has
been directly linked to the assembly of the mitotic spindle [57]. Studies on fission yeast have
shown that the absence of Dri1 results in a significant decrease in the amount of kinesin-14/Klp2
protein on the spindle, and this mechanism can rescue cut7 mutants. Dri1 in fission yeast also
contains an RNA binding domain involved in heterochromatin assembly.

To explore whether Nrp1 deletion could rescue Δkip1 or Δcin8 mutants, which are the or-
thologous genes to CUT7 in budding yeast, we look to whether those genes exhibit a significant
interaction with NRP1 from our dataset. However, we found no significant interaction for those
genes with NRP1, as their interaction score values were close to zero (0.02 for KIP1 and -0.09 for
CIN8). Additionally, we investigated whether Kar3, the orthologous protein to kinesin-14/Klp2 in
budding yeast, might genetically interact withNRP1. We observed amild, not significant5, positive
interaction between Kar3 and Nrp1 (interaction score �=0.14, p-value=0.3), suggesting a far func-
tional relationship between these proteins. Further studies are required to elucidate the specific
role of this interaction and its implications in spindle assembly and other cellular processes.

The other part of this study focuses on elucidating potential novel interaction partners with
the polarity establishment module to explain the polarity recovery in Δbem1Δnrp1mutants. We
quantified the predicted genetic interactions of NRP1 with all the genes assigned to this module
[5] and ranked thembased on their statistical significance. We identified that themost significant
connection ofNRP1with polarity establishment is through the timing and reaction-diffusion path-
ways, specifically via its significant genetic interactions with CDC28, YDJ1 and RDI1. We claim that
NRP1 deletion can enhance regulation of the critical cell size before bud formation and enhance
the dynamic flow of CDC42 from the membrane to the cytosol enabling the progress to further
cell cycle stages in Δbem1mutants.

On the same line, [5] proposes that the function of NRP1may be linked to the function of the
proteinWHI3, as they share a considerable sequence similarity. WHI3 is known to localize to stress
granules and indirectly regulate the G1/S phase transition via CLN3, modulating the stability and
translation efficiency of CLN3 [58]. Additionally,WHI3 has been identified as a genetic suppressor
5For this specific dataset

111



4

4. Using genetic interactions from saturated transposition analysis to uncover NRP1’s functionin S.cerevisiae.
for Δbem1 cells [53].

Fromour data analysis results, we find that neitherWHI3 nor CLN3 exhibit a significant genetic
interaction with NRP1. However, we identified genetic interaction partners of NRP1 related to
prion formation and cell cycle regulation at the G1 phase. In addition, we found that CDC28 is
a strong negative interactor of NRP1, which associates with CLN3 to setting the size threshold at
which cells pass through START (commitment to duplication and division) [59].

We lastly propose that the conservation of Nrp1 across the Ascomycota kingdom [8] could be
attributed to its potential involvement in the timing regulation throughout the first stages of the
cell cycle. This hypothesis can expand on the claims by [51] that proposes that distinct functional
mechanisms contribute to cell polarization in budding yeast under different regimes of protein
copy numbers. Thus, adding the cell size control at the early stages of the cell cycle could be
another functional mechanism that regulates CDC42 based cell polarization in budding yeast.

4.4. Outlook and future experiments
The proposed experimental checks are crucial for confirming or discarding the suggested hy-
potheses for the function of Nrp1. First, we must verify that predicted essential genes in Δnrp1
mutants lead to a severe fitness defect.

We propose the construction of Δnrp1Δrps0b and Δnrp1Δcbs2 strains: This involves creating
double knockout strains of NRP1 with the genes RPS0B and CBS2. If the resulting double knock-
out strains exhibit non-viability or severe fitness defects, it would confirm that these genes are
synthetic lethal, or aggravating interaction partners for NRP1. Viability can be assessed through
spot plating and growth rate population experiments.

Secondly, the evaluation of essential gene dispensability in nrp1mutants: This entails exam-
ining whether certain essential genes in wild type become dispensable in nrp1mutants. Double
knockout strains such as Δnrp1Δmec1 and Δnrp1Δino2 can be constructed. If these strains ex-
hibit an increase in growth rate or colony size compared to their wild type counterparts, it would
indicate that the essential genes have become dispensable in the presence of NRP1 deletion.
To ensure the specificity of the results, the essential gene should be removed in the Δnrp1 mu-
tant background to avoid suppressor mutations or aneuploidies caused by the lethality of those
genotypes in wild type strains.

After confirming our predictions from the SATAY data analysis, we plan to delve deeper into
dissecting the function of NRP1. This chapter proposes that NRP1 is involved in the polarity es-
tablishment function primarily by enhancing the regulation of cell size at START, by YDJ1 and the
CDC42 exchange rate from the membrane to the cytosol through its interaction with RDI1. To
test those suggested functions of NRP1 in Δbem1mutants, we recommend:

Polarization enhancement in bem1nrp1 versus bem1mutants: To precisely quantify the
dynamics of polarity establishment in bem1nrp1mutants compared to bem1mutants, we recom-
mend conducting fluorescence microscopy experiments focused on studying the Cdc42-based
polarity. This approach will provide valuable insights into the role of NRP1 deletion in enhancing
polarity and recovering Δbem1mutants’ fitness. By visualizing and analyzing the spatial and tem-
poral behavior of CDC42, we can better understand howNRP1influences the polarization process
during yeast cell budding.
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Timing pathway via YDJ1 and CDC28: We suggest to perform time-lapse fluorescence mi-

croscopy, tagging YDJ1,CDC28 and NRP1 with different fluorescent markers. In addition, tagging
WHI5 as a marker to indicate the START of the cell cycle [60] would be beneficial to have a ref-
erence on the cell cycle stage during the experiment. We propose to arrest all cells in G1 to
synchronize them in the same cell cycle point and measure their dynamic correlation, especially
after START until bud formation. This would be measured in mutants harboring BEM1 and NRP1
knockouts, having wild-type cells as control. Cell radius can be quantified in the different mu-
tants and correlated with their temporal dynamic throughout the different cell cycle stages.

Reaction diffusion pathway via Rdi1: Performing fluorescence recovery after photobleach-
ing (FRAP) experiments of Cdc42-mNeonGreen in both Δbem1 and Δbem1Δnrp1mutants will al-
low us to examine the exchange of Cdc42 from the plasma membrane to the cytosol. To ensure
synchronized cell cycles and photobleaching at the nascent cap, the mutants should be arrested
in the G1 phase. This analysis will provide information on the dynamics of Cdc42 and how Nrp1
deletion affects its exchange rate. Additionally, we recommend exploring whether NRP1 deletion
can rescue the fitness defects caused by RDI1 knockout inΔbem1mutants. This experiment aims
to assess whether the positive interaction between RDI1 and NRP1 persists after BEM1 deletion.
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4.5. Materials and Methods
Materials
List of strains, plasmids, and primers
# Name Genotype Source

1 yES1a,b
MATx can1-100,leu2-3,
112,his3-11,15,ura3Δ,
BUD4-S288C

Laan Lab collection

2 yES11a,b
MATx can1-100,leu2-3,
112,his3-11,15,nrp1::URA3,
BUD4-S288C

This study

3 yES32a,b
MATx can1-100,leu2-3,
112,his3-11,15,ura3Δ,
bem1::pGal-BEM1
BUD4-S288C

This study

4 yES39a,b
MATx can1-100,leu2-3,
112,his3-11,15,bem1::pGal-BEM1,
nrp1::URA3, BUD4-S288C

This study

5 yES40a,b
MATx can1-100,leu2-3,112,his3-11,15,
bem1::pGal-BEM1
BUD4-S288C

This study

6 yLIC133a
MATx can1-100,leu2-3,112
,his3-11,15,
ura3Δ,ade2Δ
BUD4-S288C

This study

7 yLIC136a
MATx can1-100,leu2-3,112
,his3-11,15,
ura3Δ,ade2Δ
nrp1::HYGRO ,BUD4-S288C

This study

8 yWT03
MATx can1-100leu2-3,112
,his3-11,15
ura3Δ,ade2Δ
ho::osTIR1-3xMyc-kanMX, bem1::mCherry-AID
,BUD4-S288C

This study

9 yLL137
MATx can1-100leu2-3,112
,his3-11,15
ura3Δ nrp1::HYGRO
BUD4-S288C

This study

Table 4.1. List of strains used in this chapter
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# Name Source Description
1 pES001 Laan Lab NRP1 flanking
2 pES012 This study Gal1p-BEM1
3 pES013 This study NRP1-URA3
4 pBK549 [61] MiniDs Transposons and Gal1-Transposase
5 pOsTIR1 w/o GFP Addgene catalog # 102833 OsTIR1 insertion
6 PG23A Addgene catalog # 102884 AID TAG
7 pLL112 Laan lab URA3 fragment

Table 4.2. List of plasmids used in this chapter.
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Yeast strains construction methods
nrp1 full knockout mutants. The URA3 gene was PCR amplified from the plasmid pES001 with
primers oES77 and oES82. The amplified DNA fragment was transformed in yES1 yeast cells
using the lithium acetate high-efficiency yeast transformation protocol dx.doi.org/10.17504/
protocols.io.gzrbx56, yielding the strain yES11. The inserted fragment was checked by Sanger
sequencing (Macrogen https://dna.macrogen.com/) of the PCR fragment from yES32 genomic
DNA and primers oES28/oES29. Strains were stored at -80◦C at 80% (w/v) glycerol.
Galactose inducibleBEM1 expression.The native BEM1 promoterwas replaced by the galactose
promoter by transforming the amplified DNA fragment from the plasmid pES012 with primers
oES49 and oES53, into the backbone of the strain yES01, giving rise to the strain yES32. The
inserted fragment was checked by Sanger sequencing (Macrogen https://dna.macrogen.com/)
of the PCR fragment from yES32 genomic DNA and primers oES58/oES60. Strains were stored at
-80◦C at 80% (w/v) glycerol.
Knockout of URA3 and ADE2 for SATAY. We kick out the ADE2 locus from the yLL3a strain
following a two step procedure. First, the URA3 genes were inserted in ADE2 locus and then
transformed by an empty sequence. The procedure consisted in making two DNA fragments
(OEP1 and OEP2) that were transformed sequentially in yLL3a, using the lithium acetate high-
efficiency yeast transformation protocol dx.doi.org/10.17504/protocols.io.gzrbx56. The DNA
fragments were produced by the method of overlap extension PCR; see dx.doi.org/10.17504/
protocols.io.psndnde for a whole description of this method. The OEP1 is the DNA fragment
used to insert the URA3 gene in the ADE2 locus, and the OEP2 is the DNA fragment used to kick
out the URA3 gene from this location. For the OEP1, we need to produce three DNA fragments
that will be glued together through PCR. The first DNA fragment corresponds to the upstream
region of the ADE2 gene amplified by PCR. Specifically, for this PCR reaction, the template was
genomic DNA from yLL3a and primers olic24/olic15 (I), the second to theURA3 gene fragment am-
plified from the plasmid pLL112with primers olic16 and olic17 (II). Lastly, the downstream region
of ADE2, which we obtained by PCR with the yLL3a genomic DNA and olic18/olic26 primers (III).
Then, all three DNA fragments (I+II+III) were taken as templates for the overlap extension PCR
methodwith primers olic24/olic26. The OEP2 fragment glued twoDNA fragments with no homol-
ogy to theURA gene. Firstly, the fragment from the yLL3a genomic DNA and primers olic24/olic20
and, secondly, the fragment from the same template and primers olic21/olic26. We checked the
expected length of OEP1 and OEP2 by DNA electrophoresis and sequenced by Sanger sequenc-
ing with Macrogen. This method produces the strain yLIC133. Further, the transformation of
yLIC133with an amplified DNA fragment from the yLL137 strain with primers oES83/oES84 yields
the strain yLIC136.
Auxin inducible degron system on BEM1.The SATAY library of the Δbem1 mutant was gener-
ated using an auxin inducible degron system [62]. This system will deplete Bem1 from the cell
upon the presence of auxin. Its application is to avoid as much as possible the presence of sup-
pressors that quickly sweep theΔbem1population toward higher fitness values. Thismethod can
conditionally induce the degradation of any protein by the proteasome upon the addition of the
auxin hormone, see PanelA) fromfig. 4.9. This system requires two components: the AID tag that
tags the protein of interest for degradation and OsTIR1, which is a requisite for ubiquitination of
the AID tag in the presence of auxin. The OsTIR1-3XMyc gene fragment was obtained from the
plasmid pOsTIR1 w/o GFP (Addgene catalog # 102883) through PCR amplification with primers
Seq4_Fwd and Seq4_Rev, shown in table 4.3. Next, the amplified DNA fragment was integrated

119

dx.doi.org/10.17504/protocols.io.gzrbx56
dx.doi.org/10.17504/protocols.io.gzrbx56
https://dna.macrogen.com/
https://dna.macrogen.com/
dx.doi.org/10.17504/protocols.io.gzrbx56
dx.doi.org/10.17504/protocols.io.psndnde
dx.doi.org/10.17504/protocols.io.psndnde


4

4. Using genetic interactions from saturated transposition analysis to uncover NRP1’s functionin S.cerevisiae.
into the HO locus of strain yWT01a (taken from a colony restreak of yLIC133a) via homologous
recombination, which resulted in strain yWT02a. For the construction of the gene fragment that
enables the conditional depletion of BEM1, the plasmid pG23A (Addgene catalog # 102884) was
modified using Gibson assembly to replace the sequences coding for the CDC14 N-terminus and
the downstream flanking site with those of BEM1. Further, the BEM1-mCherry-AID DNA fragment
was amplified by PCR with primers Bem1-mCherry-AID-FW and Bem1-mCherry-AID-RV and inte-
grated into strain yWT02a, yielding yWT03a. The transformed BEM1-mCherry-AID in yWT03a was
verified with Sanger sequencing (Macrogen), which revealed a single SNP (A to T conversion) at
position 1433 of the coding sequence of BEM1. This variant occurs naturally in the S288C ge-
nomic background of the S. cerevisiae was therefore assumed to have no detrimental effects on
the function of Bem1. Strains were stored at -80◦C at 40% (w/v) glycerol. Plasmids pOsTIR1 w/o
GFP Addgene catalog # 102883) and pG23A (Addgene catalog # 102884) were a gift fromMatthias
Heinemann https://www.rug.nl/staff/m.heinemann/cv. Sequencing of the bem1-aid gives rise
to the enrichment of transposon insertions and reads in the AID, which will result in the highly
beneficial effect of reconstituting Bem1 back in the cell, see panel B) from fig. 4.9. A considerable
number of transposons insertionsmap to genes like ADE2 or BEM1; thus, they were discarded for
the fitness analysis of this library since they are enriched is non-biological. Mutations in the AID
system will render a full copy of Bem1, which is highly beneficial in this population. Transposons
from the ADE2 gene will correspond to ADE2 gene fragment from the transformation plasmid.

Figure 4.9. Auxin inducible degron system

SATAY libraries.
Media
Standard yeast culturing. Standard culturing was performed in YPD (10g/L Yeast extract,20g/L
Peptone, 20g/L dextrose), SC (6.9 g/L Yeast nitrogen base, 0.75 g/L Complete supplement mix-
ture,20g/L dextrose). All liquid media were filtered and sterilized to prevent degradation of the
media components, especially amino acids.
Non-standard culturing media. For ade− strains, the growth media was supplemented with
22mg adenine per 400 mL batch of media during the SATAY procedure. For culturing the bem1-
aid strains, 0.1M stock solutions of indole-3-acetic acid (IAA) were prepared by dissolving 175mg
IAA in 2mL 0f 100% absolute ethanol. The final volume was adjusted to 10ml, adding extra
ethanol when necessary to prevent precipitation of IAA. The stock solution was filter sterilized
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Strain # of transposons # of reads # of transposons in CDS # of reads in CDS
yLIC133_a 423524 23428274 194719 7246573
yLIC133_b 414347 24441674 189469 7577024
yLIC136_a 467104 28569602 287127 16494324
yLIC136_b 510327 25383712 301283 16057911

Table 4.4. Characteristics of the SATAY libraries of the wild type and nrp1 mutant yeast strains, after thetransposon sequencing data analysis. From left to right in the columns, the strain name, the number oftransposons mapped, the number of reads mapped, the number of transposons mapped to coding se-quences(CDS), and the number of reads mapped to CDS.

using a 0.2 �m syringe filter, aliquoted, and stored at -20◦C.
Methods
Shot-gun mass spectrometry
The protocol employed for the shotgunmass spectrometry assay is the same as the one followed
by the publication [63]: den Ridder, Maxime, et al. "Proteome dynamics during the transition from
exponential to stationary phase under aerobic and anaerobic conditions in yeast." Molecular and
Cellular Proteomics 22.6 (2023).
Yeast cell lysis, protein extraction, and proteolytic digestion. Cell pellets were resuspended
in a 100 mM Triethylammonium bicarbonate (TEAB) lysis buffer containing 1% SDS and phos-
phatase/protease inhibitors. Yeast cells were lysed by glass beadmilling by 10 cycles of 1-minute
shaking alternated with 1 min rest on ice. Proteins were reduced by adding 5 mM DTT and
incubating for 1 hour at 37◦C. Subsequently, the proteins were alkylated for 60 min at room
temperature in the dark by adding 50 mM acrylamide. Protein precipitation was performed by
the addition of four volumes of ice-cold acetone (-20◦C), followed by 1 hour freezing at -20◦C.
The proteins were solubilized using 100 mM ammonium bicarbonate. Proteolytic digestion was
performed by Trypsin (Promega, Madison, WI), 1:100 enzyme to protein ratio, and incubated at
37◦C overnight. Solid phase extraction was performed with an Oasis HLB 96-well �Elution plate
(Waters, Milford,USA) to desalt the mixture. Eluates were dried using a SpeedVac vacuum con-
centrator at 50◦C and frozen at -80◦C.
Quantitative temporal proteome analysis. Desalted peptides were reconstituted in 100 mM
TEAB, and TMT10-plex reagents (Thermo) were added from stocks dissolved in 100% anhydrous
acetonitrile (ACN). Peptidesweremixedwith labels in a 1:8 ratio (12.5 �g to 100 �g) and incubated
for 1 hour at 25◦C and 400 rpm and the labeling reaction was stopped by the addition of 5%
hydroxylamine to a final concentration of 0.4%. Labeled peptides were then mixed in at approx-
imating equal quantities. Two bridging samples were included in each TMT10-plex experiment
to improve comparability between different experiments. The bridging sample was a mixture of
the three biological replicates of MG yeast under aerobic conditions in the mid-stationary phase.
Peptide solutions were diluted with water to obtain final acetonitrile (ACN) concentration lower
than 5%. Solid phase extraction was performed to desalt the final peptidemixture. Desalted pep-
tides were frozen at -80◦C for 1 hour and dried by vacuum centrifugation. Peptides were finally
resuspended in 3% ACN/0.01% TFA prior to MS analysis to give an approximate concentration of
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500 ng per �L.
Shotgun proteomic analysis. An aliquot corresponding to approximately 1 �g protein digest
was analysed using an one-dimensional shot-gun proteomics approach [64]. Briefly, the samples
were analyzed using a nano-liquid-chromatography system consisting of an EASY nano-LC 1200,
equipped with an Acclaim PepMap RSLC RP C18 separation column (50 �m x 150 mm, 2 �m, Cat.
No. 164568), and a QE plus Orbitrap mass spectrometer (Thermo Fisher Scientific, Germany).
The flow rate was maintained at 350 nL/min over a linear gradient from 5% to 25% solvent B
over 180 min, then from 25% to 55% over 60 min, followed by back equilibration to starting
conditions. Data were acquired from 5 to 240 min. Solvent A was H2O containing 0.1% formic
acid (FA), and solvent B consisted of 80% ACN in H2O and 0.1% FA. The Orbitrap was operated
in data-dependent acquisition (DDA) mode acquiring peptide signals from 385–1250 m/z at 70
K resolution in full MS mode with a maximum ion injection time (IT) of 75 ms and an automatic
gain control (AGC) target of 3E6. The top 10 precursors were selected for MS/MS analysis and
subjected to fragmentation using higher-energy collisional dissociation (HCD).MS/MS scanswere
acquired at 35 K resolution with an AGC target of 1E5 and IT of 100 ms, 1.2 m/z isolation width,
and normalized collision energy (NCE) of 32.
Mass spectrometry data analysis
Processingofmass spectrometric rawdata. Datawere analyzed against the proteomedatabase
from Saccharomyces cerevisiae (Uniprot, strain ATCC 204508 / S288C, Tax ID: 559292, July 2020)
using PEAKS Studio X (Bioinformatics Solutions Inc., Waterloo, Canada) [16], allowing for 20 ppm
parent ion and 0.02 m/z fragment ion mass error, 3 missed cleavages, acrylamide and TMT10
label as fixed and methionine oxidation and N/Q deamidation as variable modifications. Pep-
tide spectrum matches were filtered against 1% false discovery rates (FDR) and identifications
with ≥2 unique peptides. Changes in protein abundances between different time points using
the TMT quantification option provided by the PEAKSQ software tool (Bioinformatics Solutions
Inc., Canada). Auto normalization was used for the quantitative analysis of the proteins, in which
the global ratio was calculated from the total intensity of all labels in all quantifiable peptides.
Quantitative analysis was performed using protein identifications containing at least two unique
peptides, in which peptide identifications were filtered against 1% FDR. The significance method
for evaluating the observed abundance changes was set to ANOVA, and the significance score
was expressed as the -10xlog10(p), where p is the significance testing p-value. The p-value repre-
sents the likelihood that the observed change is caused by random chance. Results fromPEAKSQ
were exported to ‘proteins.csv’ containing the quantified proteins.
Data availability: Mass spectrometric raw data have been deposited in the 4TUResearchData
repository under the doi : https://doi.org/10.4121/7fcd8e37-d105-4a7a-a546-37d55b0a57dd.
v1

Population growth assays.
Cells were grown in 96 well plates (Thermo Fisher # 267427) until saturation for two days. The
plates were filled with 2mL sterile MiliQ in each edge moat, and the outer 36 wells with 100�l
media as control wells to prevent positional bias during measurement. In the remaining wells,
5�l of cells from glycerol stocks were inserted in 100�l of media. The plates were placed in a
shaker at a speed of 100rpm-150rpm in a 30◦C room. For growth experiments, we used a factor
of 200X of dilution for the saturated samples. Cells in the saturation plate will sediment. There-
fore, before pipetting up (with a multi-pipette), we suggest stirring gently and scratching on the
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bottom of the well plate or pipet up and down to resuspend them. In the plate reader (Biotek
Epoch 2), we began the measurement with 1000s of shaking ( amplitude 1 mm, linear) until the
temperature reached 30◦C. After the target temperature is met, each measurement cycle had
five steps: 90s linear shaking with 2 mm amplitude,90s orbital shaking with 1.5 mm amplitude,
90s linear shaking with 1 mm amplitude, 10s waiting, and Absorbance measurement at 600nm
every 7 minutes over 48 hours. Doubling times were extracted from the growth curves using an
in-house Matlab code.
Genetic interactions calculations
After computing the fitness for every gene deletion, we quantify genetic interactions. As well as
genes that are in poor transposon-enriched flanking regions. Digenic interactions are computed
using the function digenic_GI.py from https://github.com/SATAY-LL/comparative-analysis-among-strains/
blob/main/src/functions_interaction_computations.py.
Volcano plots
Volcano plots are computed using the function annotate_volcano.py from https://github.com/
SATAY-LL/comparative-analysis-among-strains/blob/main/src/annotate_volcano.py. Previous
to use this function the user must classify every genetic interaction in "pos" (for positive), "neg"
(for negative), and "none" (for no interaction). We use the function classify_GI from https://
github.com/SATAY-LL/comparative-analysis-among-strains/blob/main/src/functions_interaction_
computations.py to extract the positive and negative genetic interactors.
Enrichment analysis
Functional enrichment analysis with Gseapy. The enrichment analysis shown in panel C)-F)
fromfig. 4.5 andfig. 4.10weremadeusing the Python libraryGseapy https://gseapy.readthedocs.
io/en/latest/introduction.html. A regular code snippet using this library looks like this:
Listing 4.1. Gseapy example code snippet
import gseapy as gp
goi=genes_of_ interest
yeast = gp . get_l ibrary_name ( organism= ’ Yeast ’ )
sets =[ ’ GO_Biological_Process_AutoRIF ’ ,
’ GO_Cellular_Component_AutoRIF ’
, ’ GO_Molecular_Function_AutoRIF ’ ,
’ Pfam_Domains_2019 ’ , ’ Phenotype_AutoRIF ’ ,
’ WikiPathways_2018 ’ ]
# #%% enrichment

data = [ ]
for i in np . arange (0 , len ( sets ) ) :
enr=gp . enrichr ( gene_ l i s t =goi ,
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gene_sets=sets [ i ] ,
organism= ’ Yeast ’ ,
outdir= ’ path_to_output_dir ’ ,
cutof f =0.1 # p_value

)
data . append ( enr . res2d )
The data python array will contain in every dimension the enrichment according to the sets

provided. Further bar plots are generated with the barh python function from matplotlib library
of the sorted Adjusted P-value variable from any interesting dimension from data python array.
Appendix
Appendix: Enrichment analysis for the mass spectrometry proteins set

Figure 4.10. Enrichment analysis for significant proteins from shot-gun mass spectrometry technique.

SATAY readouts are validated with population growth rate measurements
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Figure 4.11. SATAY readouts are validated with population growth rate measurements. A) A simplifiedschematic of how the SATAY readouts relate to mutant abundance. We start with a specific monoclonalpopulation when inducing transposition. Each transposon will jump to a random location in the genome.Two cases can show up, whether or not the disrupted gene is required for growth. If it is, this populationwill eventually vanish, and if it is not, we expect a proliferation of cells carrying the same transposon in thepopulation. The transposon insertion and reads as the SATAY readouts indirectly correlate withmutant abun-dance. B) Insertion and read profiles of NRP1 and BEM1 in wild type and Δbem1mutants. Error bars indicatethe standard deviation of the insertion(read) profile across technical replicates (2).C) Genome wide normal-ized fitness distributions in bem1-aid and in wild type cells. In bem1-aid background, the fitness effects ofthe other genes are highly altered compared to the wild type. The distributions were normalized such thatthe distribution’s median corresponds to the knockout mutant’s growth rate. D) Δnrp1 knockout in Δbem1background is predicted to rescue Δbem1 phenotype by the increase in its fitness value. The nrp1 knockoutin wild type does not show a clear difference in its mean fitness value. Error bars represent the variance offitness values within the gene of interest. This variance is corrected by the number of insertions in that gene,considering them as different replicates with the same mutation. E) Population growth experimental setup.We put the different samples in a 96-well plate that goes into a plate reader to measure the optical density ofevery well at different time points for 24 hours. F) Exponential growth rates quantification from populationgrowth experiments. Consistently, deletion of nrp1 significantly rescues Δbem1 knockouts, increasing thefitness by approximately 5-fold. Likewise,nrp1mutants do not show a clear difference with wild type.
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Probing the genetic rewiring of a reproducible

evolutionary trajectory

Like stones rolling down hills, fair ideas reach their objectives despite all obstacles and
barriers. It may be possible to speed or hinder them, but impossible to stop them.

Jose Marti

Abstract The lack of appropriate experimental procedures in traditional wet labs to
investigate the genome-wide effects of gene deletions in specific genetic backgrounds has
challenged our understanding of how compensatory mechanisms work. In this study, we
utilized Saturated Transposition Analysis in Yeast (SATAY) to explore the fitness effects of
genome-wide mutations in the evolutionary trajectory of bem1mutant yeast cells, as previously
reported by [1]. Our methodology allowed us to reconstruct the fitness effects of different
mutations during the trajectory and examine changes in genetic interactions throughout the
first step of the evolutionary process. This provided insights into how suppression mutations
modify the global genetic interaction network compared to the initial deleterious mutation. Our
study yields four main findings: 1) genetic interactions are highly contingent on specific
experimental conditions, 2) despite experimental specificity, genetic interactors of BEM1, from
two disparate techniques exhibit significant functional overlap, 3) suppressor mutation arrival
predominantly induces sign epistasis changes in comparison to the defective mutant, and 4)
spatial organization of enriched biological functions in the global genetic interaction network
suggests that predicting fitness-enhancing mutations in low-fitness mutants is generally more
challenging than in high-fitness mutants. These insights contribute to a better understanding of
compensatory mechanisms and significantly impact personalized medicine.

131



5

5. Probing the genetic rewiring of a reproducible evolutionary trajectory

Figure 5.1. Evolutionary trajectory that recovers an impaired yeast mutant unable to establish polarizationthrough multiple gene knockouts.A) A simplified model for the yeast polarity establishment consists of ac-cumulating the complex Cdc42-Bem1-Cdc24 in one spot of the plasma membrane. This accumulation isdue to a positive feedback loop centered in this complex [5, 6], that enables the directional recruitment ofCdc42-GTP to the bud site leading to bud emergence and further cell division. When Bem1 is deleted, thepositive feedback loop is broken, and the capacity of the cells to polarize is highly hampered [1]. Yet, evolving
bem1 cells in rich media through a serial dilution procedure lead to the knockout of Bem3 and Nrp1 from thecell genotype. B) The phenotype at different steps of the evolutionary experiment, based on the populationgrowth rate, shows a recovery of the wild type phenotype in the evolved cells.

5.1. Introduction
Cells are intricate systems of interconnected proteins that enable specific cell types to survive
and function. These protein interactions have evolved to optimize the cell’s required functions
over millions of years. As a result, even within the same taxon, conserved functions like cell
polarization may exhibit differences in their protein components[2–4]. A remarkable feature of
all biological systems is their ability to adapt and reorganize their functional structure in response
to external changes, such as shifts in lifestyle, food availability, and climate. This adaptability
makes themevolvable systems. However, the precisemechanismsbywhich living systems adjust
their molecular structure to accommodate external changes remain a long-standing question in
biology. Understanding these mechanisms will provide insights into the flexibility and resilience
of living organisms, illuminating the mysteries of evolution and adaptation.

This chapter investigates how a severely sick yeast mutant can adapt its genome structure
to compensate for losing a near-essential gene. We explore how the impaired mutant evolves
toward a complete functional phenotype by analyzing gene interactions. The study delves into
the genetic interactions and cellular functions that characterize a crippled yeast mutant and how
that changes when a loss-of-function mutation that increases fitness arises in the population.

The recovery towards a healthy mutant by losing proteins starting from a near-essential
knockout gene occurred through an evolutionary trajectory, studied by [1]. The experiment in-
volved a population of budding yeast cells with a loss-of-function mutation in the Bem1 protein,
resulting in a severe fitness defect in the essential function of cell polarity . Panel A of fig. 5.1
presents a simplified depiction of the polarization network. Bem1 is a scaffold protein that initi-
ates a positive feedback loop to recruit the Cdc24-Cdc42-GTP complex to the emerging bud site
[5]. The removal of Bem1 disrupts this feedback loop, which we presume would lead to a signifi-
cant deficit of Cdc42-GTP molecules reaching the bud site within the required timeframe for the
cell cycle.

After 1000 generations, the population managed to recover the ability to perform cell polar-
ization, but with three fewer proteins (Bem1, Bem3, and Nrp1), as shown in Panel B of fig. 5.1.
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Interestingly, the cells regained the ability to polarize, but in a novel manner, achieved through
reduced components within the cell. Another protein did not take over the original function of
Bem1 in the cell [1]. Instead, there was a complete reorganization of the network. The temporal
order of the mutations observed in this trajectory was reproducible, suggesting the presence of
strong genetic interactions between the genes that were knocked out along the trajectory, which
we presume would favor this specific trajectory over others.

To understand how these evolutionary mutations influence other genes and the overall func-
tional reorganization in the cell, we conducted a genome-wide investigation of genetic interac-
tions during the first two steps of the evolutionary trajectory. We utilized Saturated Transposition
Analysis in Yeast (SATAY), as described in chapter 3 and chapter 4, to determine genetic interac-
tions after BEM1 and BEM1BEM3 complete gene knockouts. Specifically, we computed the digenic
interactions with BEM1 and BEM3, as well as trigenic interactions (refer to the combined effect of
three genes on a particular phenotype) with BEM1BEM3. We studied themain biological functions
that are linked to the genes whose knockouts lead to an increase and decrease of the fitness in
both genetic backgrounds. In addition, we question the SATAY analysis of genetic interactors to
investigate its capability to anticipate meaningful evolutionary outcomes.

Our study yields four main findings: 1) genetic interactions are highly contingent on specific
experimental conditions, 2) despite experimental specificity, genetic interactors from two dis-
parate techniques exhibit significant functional overlap, 3) suppressor mutation arrival predom-
inantly induces sign epistasis changes in comparison to the defective mutant, and 4) spatial or-
ganization of enriched biological functions in the global genetic interaction network (e.g. where
those functions lie in the mentioned network) suggests that predicting fitness-enhancing muta-
tions in low-fitness mutants is generally more challenging than in high-fitness mutants.

5.2. Results
5.2.1. Reconstitution of known Δbem1 suppressors using SATAY
Imperative to delineate genetic interactions for a specific species, in particular S. cerevisiae, is
studying the fitness contribution of genetic mutations. However, high throughput techniques
that enable the systematic computation of fitness effects overall coding sequences knockouts
from S.cerevisiae are scarce. Compared to others, one technical procedure that stands out be-
cause of its technical elegance is Saturated Transposition Analysis in Yeast (SATAY). Previously,
SATAY has been employed to identify novel gene functions and essentiality changes across ge-
netic and environmental conditions. We developed a method that allows the high throughput
transformation of read counts from transposon insertions along the genome to relative fitness
values.

To validate that the fitness-enhancing mutations of the evolutionary trajectory were also re-
flected in our SATAY analysis, we generated three different SATAY mutant libraries for strains
with the following mutations: bem1-aid, Δbem3, and Δbem1Δbem3. The construction of these
strains is explained in section 5.4.3. Each SATAY experiment included two technical replicates,
which had the same insertion profile but different read profiles due to being split before the PCR
amplification step of the DNA library, as described in section 3.4. By analyzing the fitness values
obtained from these libraries at each step of the evolutionary trajectory, we can verify the relia-
bility of the SATAY data concerning the capture of the increase of fitness upon BEM3 knockout in
Δbem1mutants and upon NRP1 removal in Δbem1Δbem3mutants.

133



5

5. Probing the genetic rewiring of a reproducible evolutionary trajectory

Figure 5.2. Retrieval of BEM3 and NRP1 as beneficial loss of function mutations of Δbem1mutants using SA-TAY.A) Box plot indicating the distributions of fitness values from SATAY experiments inwild type, Δbem1 and
Δbem1 Δbem3 genetic backgrounds. Every fitness distribution is normalized, such as its median correspond-ing to the fitness value of the mutants representing each background (which are symbolized with error bars).
B) Genetic interactors are gene pairs whose combined perturbation gives rise to an unexpected phenotype,given their single effect phenotype. If the fitness of the double knockout largely increases from the productof the single mutant fitnesses, then it will indicate a positive interaction, while a noticeable reduction will hintat a negative interaction. C) Volcano plot of the genetic interactors of BEM1 from SATAY experiments. In thex-axis is shown the interaction score as defined in panel A from fig. 4.5. The y-axis represents the statisticalsignificance of the interaction based on a T-test. Purple and green dots represent significant positive andnegative interactors, respectively. BEM3 and NRP1 are recovered as positive interactors for BEM1.

To reconstruct the evolutionary trajectory, we generated single, double, and triple mutant
collections from the wild type, Δbem1, Δbem3, and Δbem1Δbem3 genetic backgrounds. The sin-
gle mutant collection was obtained from the same wild type strain described in chapter 3 and
chapter 4. For the double mutant library from bem1 mutants, we used the AID tag system, as
described in chapter 4, to prevent the emergence of suppressors at early stages in the proto-
col. The working principle of this system is displayed in fig. 4.9. To generate the double mutant
collection from bem3 mutants, we performed a standard transformation protocol on the wild
type strain, replacing the BEM3 locus with the Nourseothricin antibiotic resistance cassette. The
strain construction procedure details can be found in section 5.4.3. The triple mutant library was
derived from the bem1bem3 strain. Here, BEM1 was replaced by the Geneticin (G418) antibiotic
resistance cassette in bem3::CLONAT mutants. This approach was chosen because the fitness
cost of removing BEM1 in bem3 mutants is not as high as in wild type cells. We can investigate
the genetic interactions and evaluate the evolutionary trajectory by constructing these mutant
collections.

We excluded the gene BEM1 from the specific bem1 double mutant collection during fitness
computation to ensure accurate analysis. BEM1 is a hotspot in this library because mutations in
the AID tag can inactivate it, providing a full copy of BEM1 to the population, significantly ben-
efiting its fitness. This effect of transposon and reads enrichment in BEM1 can be observed in
fig. 5.10.

To establish a consistent baseline for fitness comparisons, we force that the fitness distribu-
tion of every mutant has a median equal to the fitness of that mutant in the background we
compare it to, using a standardized procedure. Specifically, the fitness distribution of the bem1-
aid library is centered around the fitness of BEM1 from the wild-type library. This procedure is
applied to all other mutant collections as well. The result of this process for the average fitness
per gene per library is shown in Panel A) of fig. 5.2.
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During the evolutionary trajectory, including theΔbem1,Δbem1Δbem3, andΔbem1Δbem3Δnrp1

mutants, we observed a steady increase in fitness. Each box plot in Panel A) of fig. 5.2 represents
the distribution of fitness effects of a specific mutant collection, and the dots represent the indi-
vidual fitness of the targetedmutants along the trajectory. The reconstitution of the suppression
of BEM3 deletion in bem1mutants and the suppression of NRP1 deletion in bem1bem3mutants
is observed.

We employed SATAY to investigate how disrupting each gene affects the organism’s fitness,
particularly identifying genes that can either enhance or compromise the fitness of Δbem1 mu-
tants. Specifically, to uncover additional potential suppressors of BEM1 besides NRP1 and BEM3,
we computed the digenic genetic interactors of BEM1 and isolated the significant positive inter-
actors of BEM1. To achieve this, we utilized both the wild type and bem1-aid SATAY libraries and
implemented the method detailed in section 3.2.4.

For the bem1mutant library, we identified 5240 and 5207 suitable genes amenable to a fitness
value for both technical replicates. To focus on meaningful interactors, we established criteria
for selecting genes based on their interaction scores and associated p-values. Specifically, we
selected genes with an absolute interaction score exceeding the mean plus one standard devi-
ation of all interaction score values, coupled with a p-value less than 0.3. For the bem1 mutant
library, this criterion corresponded to an absolute interaction score threshold of 1.74. For the
statistical significance, we set the p-value significance threshold to 0.3 due to the following rea-
sons: 1) there is a high variability of the fitness values between the technical replicates of the
bem1-aid library, panel A fig. 5.9, 2) the read counts exhibit a considerable bias to the gene BEM1
as shown in fig. 5.10, 3) we lack prior information about genetic interactors of BEM1 using SATAY,
thus in this situation where little is known and the primary concern is not to miss any possible
effect, a higher p-value could be temporarily acceptable to cast a wider net for detecting any
effects, which would then need to be verified with more rigorous testing. It is important to no-
tice that significance threshold of 0.3 specifically means that we are accepting a 30% of risk to
have false positives in the output of this analysis, e.g. genetic interactors of BEM1. The subset
that meet these criteria comprised 70 positive and 51 negative interactors. Such result is repre-
sented in the shape of a volcano plot (Panel C fig. 5.2). Purple and green dots represent significant
positive and negative interactors based on their score value and p-value. Among the identified
positive significant interactors are BEM3 and NRP1, which where known supressors from [1]. The
identified interactors may shed light on potential genetic suppressors of BEM1 and contribute to
understanding its complex regulatory network.
5.2.2. Genetic interactions of BEM1 are dependent on the specific experimental

conditions
BEM1 is a gene that has been largely studied in high-throughput experiments like Synthetic Ge-
netic Arrays (SGA), where double mutants containing a bem1 knockout are compared to single
knockouts using the population colony size as a proxy for their fitness. This method aimed to
construct a global interaction network for budding yeast relying on automated yeast genetics.
It tested most of the 6000 genes in the yeast Saccharomyces cerevisiae for all possible pairwise
genetic interactions, identifying nearly 1 million interactions, including around 550,000 negative
and about 350,000 positive interactions, spanning 90% of all yeast genes [7–9]. For the case of
BEM1, this large-scale study harbors 176 and 66 significant (p-value < 0.05) negative and positive
interactors of BEM1.
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Despite the differences in technical procedures to identify genetic interactions, we explored

to what extent SATAY genetic interactions predictions match the current knowledge on BEM1
genetic interactors. This highlights how much genetic interactions are conserved or specific to
the experimental conditions of the technical procedure.

Panel A),fig. 5.3, shows the difference in fitness values generated from the SGA procedure of
3206 gene deletions in the wild-type and Δbem1 genetic backgrounds. As the dotted line indi-
cates, the normalized fitness of Δbem1 knockouts to the wild type fitness is 0.6. The significant
positive and negative interactors identified during this procedure are represented by the yellow
and blue dots, respectively. The immensemajority of dots are in the cloud that is around thewild-
type fitness (1) and the Δbem1 knockouts fitnesses, thus suggesting that genetic interactions are
usually rare, as [10] pointed out. Purple and green dots highlight the significant1 (p-value<0.3)
positive and negative genetic interactors predicted by SATAY. Most of the SATAY predicted inter-
actors fall where the neutral genes from the SGA assay are. Few negative interactors from SGA
are categorized as positive interactors by SATAY, yet none of the SGA positive interactors are
predicted as negative by SATAY.

Figure 5.3. Genetic interactors are dependent on the specific experimental procedure that identifies them.A)Double mutant fitness in the Δbem1 background against single mutant fitness in the wild type background.Each fitness value is from the SGA assay used to construct the global genetic interaction network from [7].Yellow and blue dots denote the significant positive and negative genetic interactors of BEM1 from this assay.In purple and green are highlighted the significant interactors retrieved fromSATAY.B)Doublemutant fitnessin theΔbem1background against singlemutant fitness in thewild type background. Each fitness value is fromthe SATAY assay. Purple and green dots denote the significant positive and negative genetic interactors of
BEM1 from this assay. In blue and yellow are highlighted the significant interactors retrieved from SGA. �Δbem1indicates the fitness of single Δbem1 knockouts.

Panel B),fig. 5.3, depicts the differences in the predicted fitness values, from the SATAY pro-
cedure, of 5692 gene knockouts in the wild type and Δbem1 genetic backgrounds. The highest
density of points is localized, as we reinforced with our normalization procedure fig. 3.8, around
the fitness values of the wild type and the Δbem1 knockout predicted fitnesses. In this plot, we
highlight the significant positive and negative interactors from SGA; most cluster in the neutral
region. In addition, we also observed a few mismatches of the type of genetic interactors from
1We chose a p-value < 0.3 for this specific analysis of genetic interactors of BEM1 from the SATAY readouts for the technical
replicates of the strains with the bem1-aid tag. We explain the choice of the specific p-value on p.135.
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one method versus the other.

The fact that we found that most significant interactors predicted by SGA do not make a con-
siderable impact onΔbem1 knockouts when using SATAY, and vice-versa, highlights how variable
and diverse living cells are when subjected to different genetic and environment conditions.

Moreover, from a functional viewpoint, it is still unclear, despite the presented discrepancies,
whether there is an overlap of the associated functions of the predicted interactors from both
techniques.
5.2.3. Glycosylation, cell wall, vesicle traffic , signalling and transcription related

modules are conserved functions of BEM1 interactors, from SGA and SATAY
procedures

The overlap between the genetic interactors from techniques like SGA and our predictions with
SATAYwas shown to be poor. We attributed this finding to the discrepancies between experimen-
tal conditions and yeast strain backgrounds. However, we are interested, as well, in whether the
functions of the genetic interactors from both techniques are also vastly different from the func-
tional viewpoint. If we found utterly different functional enrichment between both sets, then the
associated function of BEM1 in the network will be distinct depending on the technique used to
identify it indirectly.

To implement the functional enrichment in both sets of genetic interactors from SGA and
SATAY, we employed the same methodology followed by the SGA interactors displayed in the
CellMap project (https://thecellmap.org/) by [7, 8]. The CellMap project aims to construct
a functional wiring diagram for yeast cells based on a global genetic interaction similarity pro-
file. This also provides a resource for predicting gene and pathway function of uncharacterized
genes by guilt-by-association approaches. To construct the global network, they connect genes
with similar genetic interaction profiles (according to a Pearson correlation measure), such that
genes exhibiting more similar profiles are located closer to each other. In contrast, genes with
less similar profiles are positioned farther apart in the network. Spatial analysis of functional
enrichment was used to identify and color network regions enriched for similar Gene Ontology
bioprocess terms. The relative position between the clusters indicates the shared functionality
among the genes that compose them, see fig. 5.11; for example, DNA replication and repair(DRR)
andmitosis (M) are distinct but related to chromosome segregation. Hence, in this map, they are
near each other. The acronyms in the cluster names represent the following modules: S.S - MVB
sorting and RIM signaling, C - Cytokinesis, C.P - Cell Polarity, Px - Peroxisome, tRNA - tRNA wob-
ble modification, G.C - Glycosylation and cell wall, V.T - Vesicle Traffic, P.F - Protein Folding, R.B
- Ribosome Biogenesis, r/nc RNA - rRNA and ncRNA processing, mRNA - mRNA processing, Ch -
Chromatin, T - Transcription, N.T - Nuclear Transport, D.R.R - DNA Replication and Repair, M - Mi-
tosis, P.T - Protein Turnover, Mtb -Metabolism, Mtc -Mitochondria. We also name thementioned
terms as the functional modules of the cell.

In the Cellmap study [7], the researchers found that negative genetic interactions often con-
nect genes with shared functions, allowing for predictions using alternative functional data. Con-
versely, positive interactions, which are less functionally informative, may offer insights into
mechanisms of genetic suppression or resilience.

Figure 5.4, Panel A), presents an overlay of the functional enrichment of BEM1 positive in-
teractors identified through SGA and SATAY, depicted in yellow and magenta, respectively. SGA
positive interactors predominantly cluster around vesicle traffic and the interface between the
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Figure 5.4. Glycosylation, cell wall, vesicle traffic , signalling and transcription relatedmodules are conservedfunctions of BEM1 interactors, from SGA and SATAY procedures. A) Overlay of the enrichments of the pre-dicted significant positive genetic interactors from SGA (yellow) and SATAY (purple). B) Overlay of the enrich-ments of the predicted significant negative genetic interactors from SGA (blue) and SATAY (green). C) Tableshowing themeaning of each abbreviation used for the functional enrichment terms. D) Lighter colors meana higher number of genetic interactors with a similar interaction profile. Bold functions indicate that they arecommon across SGA and SATAY within the same interaction type of BEM1 interactors.

mitosis and DNA replication and repair modules, indicative of processes related to DNA segrega-
tion. Additionally, some interactors are enriched at the interface of transcription and chromatin-
relatedmodules. Surprisingly, SATAYpredicted significant positive interactors also cluster around
vesicle traffic and transcription-relatedprocesses. Additionally, there is a shared enrichmentwith
the SGA counterparts in the module of glycosylation and cell wall. However, for the case of SGA
interactors, they only reside in the interface with the vesicle traffic module. This observation
reinforces the potential linkage of BEM1 with vesicle traffic and transcription modules, possibly
through a compensatory mechanism involving the knockout of member proteins within these
functions.

In Figure 5.4, PanelB), we present the overlay of functional enrichment for BEM1 predicted sig-

138



5

5.2. Results
nificant negative interactors from both SGA and SATAY, depicted in blue and green respectively.
SGA negative interactors predominantly cluster in the signaling, glycosylation, cell polarity, tRNA,
and ribosome biogenesis modules. The SATAY-predicted negative interactors of BEM1 exhibit
an overlap with SGA negative interactors in the signaling and glycosylation and cell wall-related
modules. Additionally, the DNA replication and repair module shows significant enrichment, spe-
cific to SATAY. This suggests that mutations within the DNA replication and repair module may
notably decrease the fitness of Δbem1mutants, a phenomenon only discernible through SATAY
experiments. Further experimental investigations are warranted to test this hypothesis.

Despite major disparities in fitness values between positive and negative genetic interactors
identified through SGA and our method, resulting in variations in genetic interaction scores, our
observations have unveiled overlapping outcomes regarding the functional relationship of posi-
tive and negative genetic interactions with BEM1. This implies that the functional linkage of BEM1
with modules such as glycosylation, cell wall, signaling, vesicle traffic, and transcription remains
consistently preserved across different strain backgrounds and growth media conditions.

5.2.4. Sign epistasis dominates the genetic rewiring in Δbem1 mutants after a
BEM3 loss of function mutation

Epistasis refers to the conditional selective effect of amutation based on the genetic background
in which it appears. While epistasis is widely observed in nature, our understanding of its con-
sequences for evolution by natural selection remains incomplete[10]. The initial step involves
studying how the total set of interactors for a specific gene is contingent upon the absence of
other genetic loci. Gaining insights into how genetic interactors change in response to significant
mutations, such as evolutionarily relevant mutations, could provide valuable information for ex-
ploring suppression mechanisms at the genetic interaction level. Specifically, we aim to address
the impact of removing one of the well-studied suppressors of BEM1, such as BEM3 [1], at the ge-
netic interactors level. This aspect has not been studied in previous SGA studies involving trigenic
mutations [11]. This serves as the overarching motivation for this section, where we explore the
fitness and consequently, the genetic interaction changes at the genome-wide level of the dou-
ble mutant Δbem1Δbem3 in comparison to the single mutant Δbem1, utilizing the capabilities of
SATAY.

We followed the same strategy as [11], panel A) fig. 5.5 to compute the trigenic genetic in-
teractions of Δbem1Δbem3 double mutants since it involves three genes. In the cited study, the
authorsmeasured trigenic interactions using SGA. In this procedure, they conducted 422 trigenic
interaction screens, which generated around 460,000 yeast triplemutants for trigenic interaction
analysis. However, this dataset does not cover interactors of BEM1. For the case of BEM3, they
only performed the trigenic analysis on the double mutants Δbem3Δho and Δbem3Δhtd2 and
also did not fully explore all the genes for the third mutation. Hence, conducting a SATAY exper-
iment to probe the gene deletion effects on the mutants of interest greatly benefits the existing
data on digenic and trigenic interactions in budding yeast.

The mathematical expression for the trigenic interactions is shown in eq. (5.1). The trigenic
interaction score encodes the contributions from every digenic interaction between gene X and
each of the query genes (in our case: BEM1 and BEM3).

�ijk = fijk − fifjfk − �ijfk − �ikfj − �jkfi (5.1)
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Where fijk is the fitness of the tripledmutant, and fi is the fitness of the genei, in the wild typebackground. �ij is the interaction score of genei and genei.SATAY experiments have a particularity: themutants are generated de novo during the proce-

dure. Thereby, the fitness values of each of the members of the constructed library are relative
to the median value of the library fitness. This leads to considering the inherent nature of the
directionality of genetic interactions. Directionality means that the effect of deleting gene B in
gene Amutant, compared to the gene Amutant phenotype, may not be homologous to the oppo-
site case because the reference phenotype has changed. For example, for the case of BEM1 and
BEM3, the former is not a suppressor of the latter, thus the positive interaction between them
is only for bem1mutants, see fig. 5.14. For the mathematical expression of genetic interactions,
ideally, wemust compute the fitness of the double deleted as the average fitness among the two
possible combinations of double deleted mutants, namely geneAgeneB and geneBgeneA. Gener-
ally, we only have data for one combination of the double mutants; for instance, to compute the
fitness of bem1geneX, we would require SATAY data also in geneX background, which we typically
don’t have. The only case where this is fulfilled for our dataset is for computing the fitness of
bem1bem3 mutants. For simplicity, we will assume that fij = fji for the cases we don’t have
enough data. To compute the trigenic interactions to BEM1 and BEM3, we are limited to the con-
structed SATAY datasets in the backgrounds: WT,bem1-aid,Δbem3,Δbem1Δbem3. Thereby, we
can only base our calculation on the combinations: 1) i-> gene of interest , j->BEM1, k->BEM3, 2)
i-> gene of interest , j->BEM3, k->BEM1.

140



5

5.2. Results

Figure 5.5. Sign epistasis dominates the changes of interaction from Δbem1 to Δbem1Δbem3 backgrounds.
A)Trigenic genetic interactions are influenced by all the digenic interactions between their gene pairs. Thecomputation of the trigenic interactors in bem1bem3 cells requires the calculation of the digenic interactorswith bem1 and bem3. f refers to the fitness values of the population in different genetic backgrounds. �refers to the digenic genetic interaction score, namely, between two genes.� refers to the trigenic geneticinteraction score, namely, between three genes. B) Volcano plot of BEM1BEM3 predicted trigenic interactions,the x-axis displays the value of the score and the y-axis the −log(p-value). Green and purple dots show thepredicted negative and positive significant interactors.C) 2D Histogram of the genetic interaction scores ofthe predicted interactors of BEM1BEM3 (y-axis) against the predicted interactors of BEM1 (x-axis). Yellow andgray squares denote the area where sign epistasis occur or not, according the sign of the genetic interactionscores from each background. Significant interactors of BEM1 are highlighted in yellow and gray, for positiveand negative, respectively. Significant positive and negative trigenic interactors of BEM1BEM3 are depicted inmagenta and green respectively. D) The distribution of the product of digenic and trigenic interaction scoresfrom significant interactors (right) is significantly different (p-value=0.001) than the same distribution withall interactors (left).�ik refers to the digenic genetic interaction score with BEM1 and �ijk refers to the trigenicgenetic interaction score with BEM1BEM3.E) Pie plot that quantifies the changes of the significant geneticinteractors types from BEM1 to BEM1BEM3.

Those combinations lead to the computation of an average trigenic interaction score, eq. (5.2).

�ijk =
1
2
(�i10 + �i01) (5.2)
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�geneibem1bem3 = �i01 = fi01 − fif0f1 − �i0f1 − �i1f0 − �01fi (5.3)
�geneibem3bem1 = �i10 = fi10 − fif1f0 − �i1f0 − �i0f1 − �10fi (5.4)

Putting eq. (5.3) and eq. (5.4) in eq. (5.2), and assuming that fi01 = fi10 we get that :
�ijk = fi01 − fif0f1 − �i0fi − �i1f0 −

1
2
fi(�01 + �10) (5.5)

Computation of the digenic interaction scores between geneX and BEM1 or BEM3 involves
the computation of the fitness of geneX deletion in the bem1-aid and Δbem3 SATAY libraries. In
the fig. 5.12(from Appendix) is depicted a 2D histogram comparing the extracted fitness distri-
butions between the Δbem1 and the Δbem1Δbem3 genetic backgrounds. Dotted lines denote
the predicted fitness values of the corresponding mutants, namely, Δbem1 from the wild type
library and Δbem1Δbem3 from the Δbem1 library. The red color in the histogram shows the
denser region of dots, indicating the median normalization we performed on the fitness dataset
to ensure that most gene knockouts do not impact a certain phenotype and thereby reinforce
the notion that genetic interactions are rare. This is an assumption that we extend from the wild-
type background. However, in different genetic backgrounds, it is still unclear if this remains the
case.

To compute the trigenic genetic interaction score, we used the technical replicates of the
Δbem1Δbem3mutants to average over and calculate their statistical significance. Panel B),fig. 5.5,
shows the volcano plot representing the outcome of the genetic interaction calculation. We
obtained 3563 genes amenable to compute their trigenic interaction scores based on the in-
tersection of suitable genes for their fitness computation between the wild type, bem1-aid and
Δbem3 SATAY libraries. We defined significant genetic interactions as genes with an average
score greater/lower than the mean+ std∕− (mean+ std) of all scores distribution, and its p-value is
at most 0.3. This method renders 6 and 32 significant positive and negative genetic interactors
of BEM1BEM3 respectively. Intuitively, this can be explained by analyzing the shape of the fitness
distribution of mutants in the Δbem1Δbem3 background. The fitness distribution is left skewed
to fitness values below the computed fitness value of Δbem1Δbem3mutants, fig. 5.12, thus the
chances to find significant positive interactors, e.g. suppressors are remarkably low. The low
number of significant negative interactors is mainly attributed to the cumulative noise between
the technical replicate libraries of all genetic backgrounds implicated in this procedure.

Next, we explored how the genetic interactions in both genetic backgrounds were compared,
panel C) fig. 5.5. This 2D histogram consistently shows that most genetic interactions cluster
around zero in both backgrounds. However, many genes that appear as potential suppressors
for BEM1 have a negative interaction score when BEM3 is knocked out. The opposite also holds;
there is a considerable number of potential negative interactors of BEM1 that become positive
when BEM3 gets removed. This phenomenon is called sign epistasis. The significant genetic
interactors from both environments are highlighted in different colors, shown in the legend.

To assess the significance of the sign epistasis phenomenon on the significant genetic inter-
actors, we compare the distribution of the product of digenic and trigenic genetic interaction
scores for the significant interactors with the distribution for all interactors. The distribution for
all interactors is centered on zero (fig. 5.12D), with tails for positive and negative values. We con-
duct a T-test to determine if the distribution of significant interactors differs significantly from
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that of all interactors, which serves as the null hypothesis. Our analysis reveals a p-value of 0.001,
indicating a significant difference between the two distributions. Thus, we conclude that the sign
epistasis phenomenon is indeed significant for the set of genetic interactions under evaluation.

To visualize the quantification of the changes of gene interaction types from the Δbem1
background to the Δbem1Δbem3 background, see fig. 5.5 E). In the Δbem1Δbem3 genetic back-
ground, 39 significant genes alter their interaction score, constituting approximately 67% of the
total 58 significant genes.

We argue that this observation helps elucidate the significant phenotypic shift observed in
Δbem1Δbem3 mutants compared to Δbem1 mutants. However, it’s essential to acknowledge
the limited statistical power of these experiments.

However, what are the enriched functional modules of the significant genetic interactors for
BEM1BEM3? And how do the antagonistic and conserved genetic interactor types from BEM1 to
BEM1BEM3 translate to the functional modules from the global genetic interaction network? The
following section will address these questions.
5.2.5. Glycosylation, cell wall and transcription related functions are epistatic to

BEM3 in Δbem1mutants
It holds significant implications for gene therapywithin the realms of cancer research and person-
alizedmedicine to understand the impact of specificmutations on different genetic backgrounds
present in various tumors [12, 13]. This knowledge is crucial for identifying mutations that might
eliminate a particular tumor but, if the tumor harbors a different mutation, could promote its
proliferation. More importantly, comprehending not only the genes but also the biological func-
tions, where alterations affect tumor viability contingent on the specific genetic background, is
essential for designing more precise and targeted therapies for patients.

In the preceding section, we show that sign epistasis characterize the change of genetic inter-
actions from Δbem1 to Δbem1Δbem3 background. One example of such a gene is FLO11, whose
knockout in Δbem1mutants may lead to cell death whereas the same mutation, if BEM3 is addi-
tionally removed, might be beneficial for the cell’s fitness. FLO11 is involved in flocculation, cofloc-
culation, cell adhesion during biofilm formation, pseudohyphal growth, and invasive growth; it
localizes to the plasma membrane, the bud neck, and the extracellular region [14].This predicts
that the ability to perform flocculation and facilitate cell adhesion during biofilm formation may
be essential for Δbem1mutants, while it is not critical for Δbem1 Δbem3 double mutants.

To have a general overview of the enrichment differences in antagonistic genetic interaction
types, we used the same method as for fig. 5.4, which is taken from the Cellmap project [7]. Its
general principle is to cluster genes that have a similar genetic interaction profile. The relative
position between the functional clusters indicates the shared functionality among the genes that
compose them. fig. 5.6 shows the enrichment for all the possible combinations of genetic inter-
action types of BEM1 and BEM1BEM3.

In Panel A of fig. 5.6, we illustrate the functions enriched for predicted significant negative
BEM1 genetic interactions and their antagonistic interaction type for BEM1BEM3. A notable co-
enrichment is observed in glycosylation and cell wall-related processes. Alterations in these func-
tions may have both detrimental or beneficial effects depending on the presence or absence of
BEM3 in Δbem1mutants, suggesting functional epistasis in these genetic backgrounds. Interest-
ingly, FLO11 is a cell-surface glycoprotein, but its precise location remains uncertain due to its
limited genetic interaction similarity with other network proteins.
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Figure 5.6. Glycosylation, cell wall, vesicle traffic and transcription related functions are epistatic to BEM3 in
Δbem1mutants. Yellow and magenta dots symbolize functional enrichment of BEM1BEM3 and BEM1 interac-tors, respectively. The color bar indicates the number of interactors with similar genetic interaction profileswith our target genes, with lighter colors indicating a higher number. A) X-axis reflects the predicted signifi-cant BEM1 negative genetic interactors and y-axis shows the predicted significant BEM1BEM3 positive geneticinteractors . B) X-axis reflects the predicted significant BEM1 positive genetic interactors and y-axis showsthe predicted significant BEM1BEM3 positive genetic interactors .C) X-axis reflects the predicted significant
BEM1 negative genetic interactors and y-axis shows the predicted significant BEM1BEM3 negative genetic in-teractors . D) X-axis reflects the predicted significant BEM1 positive genetic interactors and y-axis shows thepredicted significant BEM1BEM3 negative genetic interactors.

Remarkably, the enrichment analysis for BEM1 positive interactors, as depicted in Panel D of
fig. 5.6, reveals the presence of the glycosylation and cell wall module. This finding is consistent
with the observation from SGA predicted positive BEM1 interactors shown in Panel A of fig. 5.4.
It underscores the dynamic nature of functional modules, which are not static regions with fixed
protein sets. Instead, proteins within a module can serve multiple shared functions through
their genetic or physical interactions with other cellular proteins. For instance, the glycosylation
and cell wall module involves a post-translational modification that plays various structural and
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functional roles in membrane and secreted proteins [15]. Additionally, it can influence the ther-
modynamic and kinetic stability of proteins [16].

Conversely, in our investigation of antagonistic interactions with BEM1BEM3 negative interac-
tions, we discovered that mutations affecting vesicle traffic and transcription-related functions
could confer benefits to Δbem1 mutants while simultaneously compromising fitness if BEM3 is
knocked out.

Regarding the functional modules that maintain their influence on the fitness of both Δbem1
and Δbem1Δbem3 double mutants, vesicle traffic, glycosylation, and cell wall-related processes
appear to be consistent targets of compensatory mutations in both scenarios. Notably, vesicle
trafficwasweakly enriched for negative BEM1BEM3 interactors as well. This observation is intrigu-
ing considering that vesicle traffic plays a crucial role in cell polarization, which is closely related
to these mutants. Polarized growth involves the transport, tethering, and fusion of secretory
vesicles with the plasma membrane at the bud site, facilitated by transport along actin cables
oriented toward the bud site [17]. Therefore, mutations enhancing this pathway may provide
an alternative mechanism for polarization when the reaction-diffusion pathway is compromised
due to the deletion of core proteins.

Additionally, mutations affecting the DNA replication and repair module exhibit deleterious
fitness effects in both genetic backgrounds, as shown in Panel C) fig. 5.6.

In summary, our findings indicate thatmutations impacting the glycosylation, cell wall, vesicle
traffic, and transcription functional modules demonstrate sensitivity to the presence or absence
of BEM3 in Δbem1mutants. Notably, alterations within various components of the glycosylation
and cell wall modules can either support the survival or lead to the demise of Δbem1 mutants,
regardless of whether BEM3 is present. Moreover, the transcription module emerges as a po-
tential rescuer of Δbem1 mutants, albeit at the potential cost of reduced fitness if BEM3 is also
absent.
5.2.6. The spatial distribution of the functional enrichment of genetic interactors

renders contrasting differences betweenΔbem1mutants andΔbem1Δbem3
mutants

Throughout this chapter, we have seen one example of how different functions are reshaped
based on the genetic makeup of the cell. It is fair to mention that the mutations we are con-
sidering are part of the same "module" that is the bud emergence module (BEM), however they
display very distinct interaction and phenotypic pattern in the yeast cell.

Biological processes are necessary interconnected tomaintain the optimal physiological state
of a cell, and these connections can be influenced by various factors like the environment and
genetic alterations. Often, in biological studies aimed at characterizing specific proteins using
different mutants [18], the broader impact of perturbing one element on the functions of others
is overlooked. This can lead to a misleading perception of orthogonality among proteins with
diverse roles in the cell, supporting the idea of a modular design for cellular functions[19].

In this modular paradigm, functions are considered as sets of interacting components that
operate independently of one another, each with its own dynamics. However, this paradigm
typically does not explicitly address how mutations in one set can alter the dynamics of other
sets.

Throughout this chapter, we’ve explored an example of how different functions can be re-
shaped based on the genetic composition of the cell. Based on our findings, we suggest an
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Figure 5.7. Spatially different functional enrichment of Δbem1(Left) and Δbem1Δbem3(Right) interactors.Functional enrichment of the positive and negative genetic interactions are encircled in magenta and greencolors, respectively.

alternative approach to observe the transition in functions following a nearly essential mutation
and subsequent compensatory mutation. This approach involves examining the overlap and
physical proximity on the yeast interaction map of the functionally enriched sets associated with
both types of genetic interactions. Our hypothesis posits that a larger degree of overlap and/or
proximity within the functions associated with both types of interactors suggests a fuzzy fitness
effect of altering those functions to the specific mutant. In such a network, the traditional notion
of modularity may not adequately explain how each function affects the overall fitness of the
cell.

In fig. 5.7, we present a visual illustration of this perspective, unfolding from the phenotype
to the functional enrichment of the predicted yeast genetic interaction networks. On the left, it
illustrates the scenario of the Δbem1 crippled phenotype. By employing SATAY (or SGA), we can
construct the genetic interaction network, categorizing positive and negative genetic interactors
of the gene knockout in question. Analyzing the overlap in the functional enrichment of these ge-
netic interactors from each category allows us to speculate on the challenge of predicting which
functional module to modify to enhance the fitness of the specific mutant.

We observed from the functional enrichment analysis of genetic interactors for BEM1 and
BEM1BEM3, that there is an overlap or close proximity between the functions associated with
negative and positive genetic interactors of BEM1. Specifically, we found that glycosylation, cell
wall, and vesicle traffic functions are shared between both types of interactions, see panel A
and B from fig. 5.6. Additionally, we observed positive interactors enriched in the transcription
module and negative ones in the DNA replication and repair module, which are closely located in
the map, suggesting a potential sharing of components or pathways between them. This result
emphasizes the intertwined nature of altering these functions concerning the cell’s fitness, for
this particular mutant. As a result, we suggest that predicting strong compensatory mutations
for these mutants from our study might be inherently challenging due to this intricate interplay.

In contrast, genetic interactors of BEM1BEM3 appear to be functionally isolated from one an-
other, with considerable physical separation on the map. As a result, mutations that would
enhance the fitness of the double mutant, harboring a compensatory mutation for BEM1, are
distinctly different from those that would impair its fitness. It’s worth noting that we assume
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the yeast genetic network of higher-order interactions follows a similar organizational pattern
as the digenic yeast interaction network. Thus, any enrichment resulting from computing sim-
ilar genetic profiles is solely due to digenic interactions. Considering this, we propose that the
fitness landscape may be significantly smoother and, therefore, more predictable than that of
the compromised mutant. Furthermore, we noted that the functional enrichment of the genetic
interaction network involving the gene BEM3 lacks a noticeable overlap across different types of
genetic interactions, as illustrated in fig. 5.13. Δbem3mutants display a phenotype similar to the
wild type one, see fig. 5.14 and Panel A and B from fig. 5.15.

In summary, our findings support the notion that the modular perspective of the cell is valu-
able for understanding its normal physiological state. However, when the cell encounters exter-
nal stress, whether genetic or environmental, the applicability of this framework may become
less evident. In the next section, we will explore the accuracy of predicting evolutionarily sig-
nificant mutations using our method of identifying significant genetic interactions from SATAY
data.
5.2.7. SATAYpredicted compensatorymutations in theΔbem1 genetic background

confirmed results from a studied evolutionary trajectory
Based on our previous sections, we propose that SATAY-derived predictions of genetic interac-
tions can identify genes and functions that may act as potential compensatory or lethal muta-
tions, thereby contributing to the pool of mutations upon which natural selection can act during
evolution. In the next section, we will explore a well-documented experimental evolutionary tra-
jectory involving Δbem1mutants, as detailed in [1], to assess the efficacy of SATAY in predicting
mutations along this trajectory.

The genetic makeup of an evolving population, representing a specific evolutionary outcome,
is influenced by various factors such as the dynamic environment (the evolving population can
also change the environment) and the fitness landscape, which is represented by the intricate
relationships between genotype-phenotype and phenotype-fitness maps [20–22]. The inherent
complexity of these properties in evolving populations renders the task of predicting long-term
evolution challenging and nearly unattainable [23].

Specially, we would like to refer to forward-looking evolutionary predictions at the genotypic
level. For example, predicting which genes will acquire new mutations or confer increased fit-
ness to a microbial population carrying a harmful mutation. In this scenario, environmental and
genetic factors will influence the predictability of evolutionary outcomes, namely, unpredictable
environmental changes, epistasis, and population size [23].

Despite the myriad factors influencing evolutionary processes, we aim to assess the predic-
tive capacity of genetic interactors identified by SATAY as potential mutational targets for a spe-
cific evolutionary trajectory. This prediction relies solely on the fitness advantages conferred
by knocking out certain genes in a yeast population. We will leverage the mutational trajectory
measured by [1], which involves the recovery of fitness in a yeast population with a full BEM1
knockout. During this trajectory, fifteen additional mutations, including BEM3, NRP1, and BEM2,
were detected at various time points but were not fixed in the population,panel A) fig. 5.8. One
hypothesis is that these mutations were not fixed because they did not provide a significant fit-
ness advantage to sweep through the population. Regarding the hypothetical order of non-fixed
mutations, one plausible scenario is that they occurred after the deletion of BEM3. This specula-
tion arises from the fact that the BEM3 stop codon mutation appeared early in the experiment,
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around 30 generations of yeast division cycles. Consequently, we anticipate observing a compen-
satory effect of these mutations in the bem1bem3mutant in our data. An essential assumption
in our analysis is the treatment of all mutation types as full knockout mutations, as we posit that
transposon insertions within a gene predominantly result in gene disruptions.

Upon examining the genetic interaction scores of genes harboring mutations along the evo-
lutionary trajectory, we identified 7 mutations out of the possible 122 that exhibit potential sup-
pression properties in theΔbem1 background,panel B) fig. 5.8. Five of the seven predicted SATAY
suppressors of BEM1 are statistically significant. Despite that the environmental conditions from
the evolution experiment and the SATAY procedure are substantially distinct, in terms of media
and incubation conditions, we obtained that more than half of the mutations along the trajec-
tory can also rescue Δbem1mutants. Interestingly, some of them show a stronger suppression
power than BEM3 deletion.

However, none of those mutations seems to increase the fitness of Δbem1Δbem3 mutants.
Most of the mutations show a deleterious effect in this background. We attributed this result to
the limitation of SATAY to recover small fitness increases of an already fitmutant likeΔbem1Δbem3.
Thus, we speculate that maybe the suppressive power of these mutants to Δbem1Δbem3 is not
sufficiently high to be captured by SATAY experiments. Wemay also think that most of thesemu-
tations arose after NRP1 deletion thus, they are epistatic to NRP1, which means being beneficial
when NRP1 is removed and the opposite otherwise. However, this is not applicable for the case
of the four genes GPR1,TCB1,IRA1 and GAL83 since on the lines they occurred, the NRP1mutation
was not present.

On the other hand, as shown in previous section, it is possible that specific genes do not
match our predictions due to environment and genetic differences between the experiments,
yet, the functional modules to which those genes belong may coincide, as shown for the BEM1
interactors from SGA and SATAY techniques. Thus, we explored whether the functional enrich-
ment of the mutations along the evolutionary trajectory aligns to the functional enrichment of
predicted positive interactors for BEM1 and BEM1BEM3.

The mutations identified along the evolutionary trajectory cluster in processes primarily re-
lated to ribosomal (r)RNA/non-coding (NC) RNA processing, transfer (t)RNA wobble modification
and to cell signaling and polarity, panel C fig. 5.8. There is a slight functional co-enrichment ob-
served with the significant positive interactors of BEM1, as identified in the SATAY analysis. This
co-enrichment is situated close to transfer (t)RNA wobble modification and polarity related func-
tions. Remarkably, these functions did not have an overlap with the functional enrichment of
negative genetic interactors of BEM1, shown in panels B and C of fig. 5.6. In addition, the func-
tional enrichment for positive interactors of BEM1BEM3 does not exhibit any co-localization with
the enrichment of mutations along the trajectory.

It is insightful that the primary functions behind the mutations that rescue Δbem1 mutants,
from the evolutionary trajectory, are related to the protein synthesis machinery at various lev-
els(ribosomal (r)RNA/non-coding (NC) RNA processing and transfer (t)RNA wobble modification
) rather than being directly localized to cell polarity, for example. This suggests that suppression
can act more globally, influencing all functions in the cell, rather than specifically targeting the
function to which BEM1 is assigned to.

To summarize, through the SATAY genetic interaction analysis of BEM1 and BEM1BEM3, we
2There were three genes: ERV29,SOl4,YKL091C that were not amenable for the SATAY fitness calculation, due to that their
transposon reads are less than five
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Figure 5.8. SATAY predictions based on genetic interactions only recover potential BEM1 suppressors.A)Mutations that show up along the evolutionary trajectory(E.T) from [1] and their type.B)Bar plot depicting inthe y-axis the genetic interaction score value and in the x-axis the recoveredmutations along the evolutionarytrajectory. The interaction scoreswithBEM1 are shown inmagenta andwithBEM1BEM3 in yellow. The asteriskon top of the column signifies that that specific genetic interaction value has a p-value below 0.3.C) Functionalenrichment over the global genetic interactionmap of BEM1,BEM1BEM3 predicted significant positive GeneticInteractors (GI) and mutations over the evolutionary trajectory.

could delineate the significant compensatory effect of the non-fixed mutations along the evo-
lutionary trajectory that recovers Δbem1 mutants from [1]. Despite the proposed higher pre-
dictability in the double mutants to identify compensatory mutations, shown in fig. 5.7, it is high-
lighted that our SATAY analysis was unable to accurately identify the compensatory effects of
these mutations in the Δbem1Δbem3 background. We attributed this result to the presumable
weak suppression effect of these mutations and the inability of our specific SATAY assays to dis-
tinguish those as significant interactors in the double mutant background.
5.3. Summary and discussion
Throughout this chapter, we studied the genetic rewiring that occurs in an evolutionary trajectory
that recovers a crippled yeast mutant by inactivating two extra genes in 1000 generations [1]. In
particular, the sick mutant is due to the knockout of the gene BEM1, and the evolved mutant
contains BEM3 and NRP1 inactivated by a stop codon mutations, respectively. We pursued to
study the genetic rewiring along the first step of this trajectory because it is when the population’s
major phenotype changes occur, see fig. 5.1.

Before the study of the genetic rewiring embodied in the major abrupt phenotypic change
along the trajectory, we shed light on the tight dependence of the genetic interactions with the
environment and genetic backgrounds. We illustrated that genetic interactions identified by a
different technique, SGA, are predominantly neutral genes, in a setup like SATAY. SGA and SATAY
high throughput techniques largely differ on their experimental procedure, concerning media
types, incubation times, and strain backgrounds. All these factors were also thought to greatly
impact the outcome of essential genes determination [24]. In our study, we confirm that genetic
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interactions are also subjected to these crucial properties. However, we exhibited that despite
the mentioned differences, both sets of positive and negative interactions manifest conserved
functional enrichment. We show that glycosylation, cell wall, vesicle traffic and transcription
related modules were common enrichments along the predicted positive interactors from both
techniques. Glycosylation, cell wall and signalling related modules were shared as well by the
predicted negative interactors from both techniques, panels B and C fig. 5.4. Remarkably, both
methods agreedon the simultaneous role of certain functions like glycosylation and vesicle traffic
on benefiting or harming the fitness of Δbem1mutants.

The enrichment analysis conducted in the global study of suppressors in yeast [24] revealed
that processes related to chromosome segregation, endocytosis, glycosylation, cell wall, protein
folding, and protein degradation are prominently involved in compensating for severe growth
defects associated with impairment of the polarity and morphogenesis module. This study ex-
tensively examined literature-curated suppression interactions, identifying approximately 6000
potential interactions from 1700 published papers sourced from the BioGRID’s “synthetic rescue”
dataset. Notably, our study also found associations with most of these functions among the sig-
nificant predicted positive interactors of BEM1 despite the variety of technical procedures used
to investigate genetic interactors from the different papers and mutations affecting the polarity
and morphogenesis module.

On the other hand, the comparison of functional enrichment in predicted genetic interactors
of BEM3 from both techniques does not reveal consistent characteristics as observed for BEM1,
as shown in fig. 5.13 in the Appendix. This discrepancy prompts inquiries into the relationship
between the fitness of a gene knockout and its predictive genetic interaction network. The find-
ings suggest that if a knockout mutation has a neutral or minimal detrimental effect on fitness,
its genetic interaction network may exhibit greater variability across experimental procedures.
Conversely, mutations significantly impairing cell fitness tend to have more robust and consis-
tent interactionswith their genetic partners. The relationship between fitness effects and genetic
interaction network variability remains intriguing and warrants further investigation through ad-
ditional experiments.

However, the identification of specific genetic interactors is strongly dependent on the cho-
sen p-value cutoff. We selected a moderate cutoff of 0.3 based on three primary considerations:
significant variability among technical replicates, the absence of prior information about SATAY-
predicted BEM1 and BEM1BEM3 genetic interactors, and a notable bias in read-counts towards
BEM1 in the bem1-aidmutant library, which resulted in many transposons across the genome re-
ceiving zero or few reads. In particular, adopting a smaller p-value cutoff, such as 0.1, would lead
to identifying only 20 genes for further analysis in the case of the bem1-aidmutant library, and no
genes for the double mutant library. Therefore, we needed to find an optimal balance between
the quantity and statistical quality of the predicted genetic interactors. For future experiments,
it is highly advisable to increase the number of replicates to reduce the impact of variability due
to random factors and outliers.

Furthermore, the knowledge of possible gene and functions that may compensate or aggra-
vate fitness contribute to the understanding of the genetic rewiring that occur during an evolu-
tionary trajectory. Our study reveals that most genes (approximately 80%) exhibit neutrality in
response to Bem1 and Bem3 inactivation within the genome. However, it’s important to note
that this result is subjected to limitations imposed by the statistical power of our SATAY datasets.
When examining the predicted genetic interactors in the Δbem1Δbem3 background, we observe
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that around 67% (39 out of 58 genes) of them change their interaction type when transitioning
from Δbem1 to Δbem1Δbem3 (sign epistasis), as shown in panel E of fig. 5.5. We attribute this
observation to the significant genetic rewiring that accompanies a drastic phenotypic change,
such as the one occurring when comparing Δbem1 to Δbem1Δbem3mutants. This insight repre-
sents a step forward in exploring the impact of suppressor mutations on the broader interaction
network concerning genes affected by the initial deleterious mutation. It raises the question of
whether the cell, in its efforts to recover from the initial harmful mutation, must reconfigure a
significant portion of its genetic interactions.

Furthermore, we demonstrated that glycosylation, cell wall, vesicle traffic, and transcription
represent epistatic functions for both the BEM1 and BEM3 genes. Notably, glycosylation and cell
wall-related functionsmay exhibit both beneficial and detrimental effects on the fitness ofΔbem1
mutants, regardless of the presence of BEM3, see fig. 5.6A-B. This suggests that proteins asso-
ciated with glycosylation and cell wall may engage in diverse physical and genetic interactions,
resulting in multifaceted effects for this particular genetic background.

In the case of the Δbem1Δbem3 background, we note that certain vesicle traffic-related gene
knockouts exhibit improvement in fitness (fig. 5.6B), while a subset of few genes from the same
module may detrimentally affect the fitness of such mutants (fig. 5.6C).

An intriguing finding from our study is the functional segregation among genetic interactors
of BEM1BEM3. Notably, the enrichment patterns of antagonistic interaction types are distinctly
separated on the map, as shown in the right map from fig. 5.7. This suggests that positive and
negative interactors may operate within separate pathways, with some overlap observed within
the vesicle trafficmodule. This stands in contrast to our observations regarding BEM1 interactors,
where we observed functional overlap between opposite interaction types. Even when there
was no direct overlap, as seen in the case of transcription for positive interactors, it was still in
proximity on the map to DNA replication and repair-related functions of negative interactions.

The divergence observed in the functional relationships of genetic interactors may provide
insights into the characteristics of the fitness landscape underlying these genetic backgrounds.
In cases where mutants carry a nearly essential mutation, predicting compensatory mutations
based on the landscape can be an extremely challenging task. Conversely, for recovered mu-
tants, the predictability of compensatory mutations could be considerably higher. This finding
suggests that it is easier to differentiate the effects ofmutations in the normal physiological state
of a yeast cell compared to a compromised state where a shift in functionalities across different
modules appears to be necessary for its survival. This highlights the complex interplay of genetic
interactions and functional modules in response to genetic perturbations, especially in scenarios
where cells are under stress due to genetic knockouts.

Conversely, our method showed higher accuracy in predicting evolutionary-relevant muta-
tions compensating for Δbem1mutants than for Δbem1Δbem3mutants, as previously identified
in [1], as depicted in Panel A of fig. 5.8. However, SATAY also predicted somemutations to have a
greater compensatory effect than BEM3 itself, possibly due to environmental variations across ex-
periments, as shown in Panel B of fig. 5.8. Notably, there was no overlap between the predicted
positive interactors of BEM1BEM3 and the functionally enrichedmutations from the trajectory, as
illustrated in Panel C of fig. 5.8. This outcome may be attributed to the specific limitations of our
SATAY assay in identifying significant positive interactions for an already relatively fit mutant.

Considering all the findings collectively, we propose that the genetic rewiring observed after
a compensatory mutation, which restores the fitness of a sick mutant, can be characterized by
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a transition towards a more ’modular’ scenario. In this state, individual functions have a distinct
and predictable impact on the cell’s fitness, resembling the behavior seen in the cell’s normal
physiological state when a specific function is altered. Essentially, the fitness landscape that
defines the condition of a sick mutant shifts from being non-deterministic and rugged to be-
coming more deterministic and smoother. One intriguing question that remains is whether all
compensatory mutations lead to the same effect in sick mutants, or if this observed pattern is
an exception rather than a rule.
5.4. Materials and Methods
5.4.1. Materials
List of strains
Name Genotype Source

yLIC133a
MATx can1-100,leu2-3,112 ,his3-11,15,
ura3Δ,ade2Δ
BUD4-S288C

This study

yLIC137a
MATx can1-100,leu2-3,112 ,his3-11,15,
ura3Δ,ade2Δ,
bem3::CLONAT ,BUD4-S288C

This study

yTW001
MATx can1-100,leu2-3,112 ,his3-11,15,
ura3Δ,ade2Δ
bem3::CLONAT ,bem1::KanMx,BUD4-S288C

Tomas Wisse
Master Thesis (our lab)

yWT003
MATx can1-100leu2-3,112 ,his3-11,15 ,
ura3Δ,ade2Δ ,
ho::osTIR1-3xMyc-kanMX, bem1::mCherry-AID,BUD4-S288C

Wessel Theunisse
Master Thesis (our lab)

yWT004
MATx can1-100leu2-3,112 ,his3-11,15 ,
ura3Δ,ade2Δ ,
ho::osTIR1-3xMyc-kanMX, bem1::mCherry-AID,
Δbem3::CLONAT,
BUD4-S288C

Wessel Theunisse
Master Thesis(our lab)

yLL117
MATx can1-100,leu2-3,112 ,his3-11,15,
ura3Δ,
bem3::CLONAT ,BUD4-S288C

Laan Lab
Table 5.1. List of strains used in this chapter.
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List of primers
Name Sequence
oLIC51 GCATATATAATGTTGTCTTGAACCCAC
oLIC52 GTCTGACTAGGTAAAGTACCAGATAAGAACCG
oLIC54 GAGAACGGCATCACATCTGGGG
oLIC55 GCGCCACAATGAAATCTACGCCAC
oLIC56 GCGGATAAGTCAAGCATCCATTG
oLIC57 GGGACTCACATCTATCTTGGGCC
oLL29 AAAAGGACAATTACAAACAGGAATCGA
oLL30 AATCACGAATGAATAACGGTTTGGT
oLL401 GACATATTTGTCGAGGGAGGTGAT
oLL402 CTATCGTCATAAGTTGGTGTATTTGCG

Table 5.2. List of primers used in this chapter.

5.4.2. SATAY libraries

Strain Nickname # of transposons # of reads # of transposons in CDS # of reads in CDS
yLIC137_a Δbem3 598686 54731167 333492 4040247
yLIC137_b Δbem3 645482 58018144 357018 6067071
yTW001_a Δbem1

Δbem3 496985 65988828 254192 2730809

yTW001_b Δbem1
Δbem3 471995 64317775 233686 2590647

yWT003_a bem1-aid 78731 14798259 48437 96192
yWT003_b bem1-aid 138538 15471164 82167 187579

Table 5.3. Characteristics of the SATAY libraries used in this chapter.

Media
Standard yeast culturing. Standard culturing was performed in YPD (10g/L Yeast extract,20g/L
Peptone, 20g/L dextrose), SC (6.9 g/L Yeast nitrogen base, 0.75 g/L Complete supplement mix-
ture,20g/L dextrose). All liquid media were filtered and sterilized to prevent degradation of the
media components, especially amino acids.
Non-standard culturing media. For ade− strains, the growth media was supplemented with
22mg adenine per 400 mL batch of media during the SATAY procedure. For culturing the bem1-
aid strains, 0.1M stock solutions of indole-3-acetic acid (IAA) were prepared by dissolving 175mg
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IAA in 2mL 0f 100% absolute ethanol. The final volume was adjusted to 10ml, adding extra
ethanol when necessary to prevent precipitation of IAA. The stock solution was filter sterilized
using a 0.2 �m syringe filter, aliquoted, and stored at -20◦C.
5.4.3. Methods
Strain construction.yLIC137 and yTW001 were constructed using the homologous recombina-
tion strategy. At first, yLIC133was transformed, using a high-efficiency protocol ([25]), with an am-
plified DNA fragment from a PCR with yWT004 gDNA and primers oLIC51 and oLIC52. Details of
the transformation canbe found in https://leilaicruz.github.io/Experimental-journal-jupyterBOOK/
journal/2020-11/2020-11-27-gDNA-extraction-and-PCR-with-ywt04a.html and https://leilaicruz.
github.io/Experimental-journal-jupyterBOOK/journal/2021-01/2021-01-25-Checking-dbem3-dbem3dnrp1-new-strains.
html. The resulting strain was yLIC137, whichwas check by sequencing using primers oLL401 and
oLL402.The same strategy was applied to construct yWT001. In this case, yLL117 gDNA was ex-
tracted, and the BEM1::KanMX cassette was amplified with the primers oLIC54 and oLIC55. The
resultant DNA was transformed, using the same procedure described in [25] into yLIC137 to
yield yTW001. Precise sequencing was performed to examine the absence of BEM1 and BEM3
loci using the primers oLIC56,oLIC57,oLL29, and oLL30.
Spatial enrichment analysis with the thecellmap.org. To reproduce panel A), B) from fig. 5.4,
andfig. 5.6, please download the list of genes in https://github.com/SATAY-LL/comparative-analysis-among-strains/
tree/main/publishing, and select the set of interactors you want to visualize. Then go to the
web application tool (thecellmap.org.) and press the button named "Overlay data" then go to
the "Upload a list of genes" and paste the list of genes there. Adjust the color in the lower bar at
the bottom left and click Submit.

5.5. Appendix
Appendix: Fitness datanoise between technical replicates of bem1-aid and
Δbem1Δbem3 libraries

Figure 5.9. Noise between the fitness of each gene from individual technical replicates. A) Average fitnessof the technical replicates from the bem1-aid strain. The R2 signifies the person correlation among the repli-cates. B) Average fitness of the technical replicates from the Δbem1Δbem3 strain. The R2 signifies the personcorrelation among the replicates.
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5.5. Appendix
Appendix: Overrepresentation of BEM1 in the SATAY data, using the AID-
tag system

Figure 5.10. Top 15 more enriched genes with transposon and reads from the strain containing the AID-tagsystem attached to BEM1.

Appendix: Cellmap enrichments

Figure 5.11. Functional clustering of budding yeast biological processes adapted from [8].

Fitnesss differences across BEM1 and BEM1BEM3 predicted SATAY genetic
interactors
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Figure 5.12. 2D Histogram of the fitness values in the Δbem1Δbem3 (y-axis) against the Δbem1 genetic back-grounds. �Δbem1 and �Δbem1Δbem3 are the SATAY predicted fitness values of those mutants.

BEM3 predicted fitness landscape based on SGA and SATAY
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5.5. Appendix

Figure 5.13. Predicted fitness landscapes of Δbem3 mutants. Functional enrichment of the positive andnegative genetic interactions are encircled in magenta and green colors, respectively. The "F" letters indi-cate the functions corresponding to each cluster. The 2D representation of the fitness landscape is shown,where the x-axis represents alterations of different functional modules, and the y-axis represents the fitnesscorresponding to such alterations.

Appendix: Directional nature of genetic interactions with SATAY

Figure 5.14. Directional character of genetic interactions with SATAY. Case of BEM1 and BEM3 interactions.The x-axis represents three different genetic backgrounds for SATAY libraries, and the y-axis is the normalizedfitness values per library regarding the median of the library and the fitness value of the target mutant. It isshown that BEM1 deletion is not a suppressor for bem3mutants, while the opposite holds.

Fitness landscapes andgenetic interactions changesofΔbem3mutants com-
pared to Δbem1Δbem3
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Figure 5.15. Consistency of fitness changes after BEM3 deletion in wild type from SATAY and SGA experi-ments, and genetic interaction changes after deleting BEM1 in BEM3mutants. A) 2D Histogram of the fitnessvalues in Δbem3 and wild type genetic backgrounds from SGAmeasurements. B) 2D Histogram of the fitnessvalues inΔbem3 and wild type genetic backgrounds from SATAY data.C) 2D Histogram of SATAY fitness valuesin Δbem3Δbem1 and Δbem3 genetic backgrounds.D) 2D Histogram of SATAY predicted genetic interactors for
BEM1BEM3 and BEM3.
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6
Conclusions

Biological systems exhibit complex and dynamic behavior. This complexity stems from the inter-
play of multiple levels of organization (gene, protein, functions, phenotype, population), making
it challenging to understand their functioning comprehensively. Moreover, their dynamic nature
is characterized by the continuous evolution and adaptation of internal components in response
to the ever-changing external environment.

Despite the intricate complexity inherent in living organisms and the apparent inability to pre-
dict evolutionary outcomes [1–3], certain experiments demonstrate the reproducibility of evolu-
tionary trajectories [4, 5]. These experiments emphasize the significance of epistatic interactions,
which can constrain various evolutionary pathways [6, 7]. Epistasis1 is recognized as a potent
concept with the potential to forecast evolutionary outcomes[8–10].

In this work, we study the implications of epistatic interactions on how biological functions
emerge from the collective interplay of numerous components. In particular, we focus on the
cell polarization machinery of Saccharomyces cerevisiae as a model system. In budding yeast,
this function has been shown to depict a rapid and reproducible recovery of polarization ability
following the knockout of a key component, Bem1. Through mathematical modeling and experi-
mental validation, we unveil latent mechanisms within the cell-polarization machinery that shed
light on the redundancy and adaptability of cellular polarization networks.

Moreover, we leverage the potential of a high-throughput methodology known as Saturated
Transposition Analysis in Yeast (SATAY) to investigate the impact of these epistatic interactions
on the genetic rewiring of the cell. This approach elucidates how a suppressor mutation impacts
the overall cellular machinery. We aim to decipher the underlying mechanisms governing com-
pensatory evolution by integrating diverse methodologies to probe the effects of suppressors at
both functional and genome-wide scales.
1Epistasis refers to a phenomenon in genetics where the effect of one gene (or genetic variant) is modified by the presence
or absence of alleles at another gene or genetic locus. In other words, it describes the interaction between different genes
that influence the expression of a particular trait. Epistasis can manifest in various ways, including masking the effects of
one gene by another, amplifying or diminishing the effects of a gene, or creating novel phenotypic outcomes that are not
predictable based on the individual effects of each gene. Understanding epistasis is crucial for unraveling the complexities
of genetic inheritance patterns and phenotypic diversity within populations.
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6. Conclusions
Redundant self-organization mechanisms coexist and are responsible for the resilience
and adaptability of the cell polarity machinery.

The adaptability of biological functions is exemplified in the Cdc42 cell-polarization machin-
ery of budding yeast, where cells swiftly regain their polarizing and dividing capabilities following
the loss of a crucial component. Despite this remarkable phenomenon, the mechanisms under-
pinning this recovery have remained enigmatic.

To tackle this challenge, we undertook a comprehensive approach integrating mathematical
modeling, experimental validations, and conceptual theory to delve into the intricacies of the
cell polarization module in budding yeast. Our investigation honed in on the Cdc42-polarization
system, unearthing three distinct self-organization patterns within the network. These patterns
transcend the conventional wild-type mechanism, which hinges on the co-localization of Cdc42
with its GEF via Bem1. Instead, we unveiled a latent rescuemechanism independent of Bem1 and
a mechanism operating autonomously of Cdc42 redistribution. Our theoretical framework, cor-
roborated with experimental data, reveals that thesemechanisms share numerous components
and interaction pathways within the network. This suggests that redundancy in cell polarization
does not merely reside at the level of individual components or interactions but rather emerges
at the functional process level. Even if one submodule fails, the collective action of the remaining
submodules is responsible for an operational mechanism for cell polarization. This resilience is
attained by meticulously fine-tuning parameters, particularly protein copy numbers, to a regime
where these remaining submodules can compensate.

From a genetic perspective, genes encoding components of the cell polarization machinery
exhibit dosage sensitivity [11]. Mutations affecting cis-regulatory elements, such as promoters
and enhancers, can precisely adjust protein copy numbers within a specific range crucial for the
functioning of a particular cell-polarization mechanism, thus optimizing its function. However,
this sensitivity to protein copy numbers also imposes constraints on the evolution of the polar-
ization machinery’s components through processes like duplication and sub-functionalization
[11, 12]. Such evolutionary mechanisms may be limited by the need to maintain the delicate
balance of protein dosage required for proper functioning of the cell polarization machinery.

Furthermore, our findings underscore the pivotal role of redundancy in augmenting the sys-
tem’s evolvability, facilitating the emergence of new functions while preserving the original ones.
Scaffold proteins, notably Bem1, play a pivotal role in this process, fostering the evolution of
functional modules. We posit an evolutionary trajectory for Bem1, suggesting its origins from
a more rudimentary ancestral mechanism that gradually acquired the capacity to mediate cur-
rent polarization mechanisms. This evolutionary path of Bem1 likely constitutes a fundamental
aspect of fungal evolution, evidenced by its conservation across fungi [13] and the similarity of
polarization mechanisms in related species [14, 15].

In general, our study has demonstrated how understanding the mechanistic principles un-
derlying self-organization can offer valuable insights into the evolution of cellular functions, a
fundamental aspect of evolutionary cell biology. Specifically, we have provided a concrete exam-
ple illustrating how a self-organizing system may have evolved from a rudimentary, parameter-
sensitive mechanism to a more specific, robust, and tightly controlled mechanism over time.
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Constructing genetic interactionsmaps basedon transposon-basedmutagenesis screens.
Fitness landscapes are fundamental to predictive models of adaptive evolution, providing

insights into the accessibility and likelihood of evolutionary trajectories [16–18]. Empirical fitness
landscapes, constructed by systematically assessing allele combinations, have been instrumental
in explaining observed evolutionary patterns. However, their application in predictive models is
complicated by their dynamic nature across environments and genetic backgrounds.

For instance, studies have shown that the structure of empirical fitness landscapes can vary
due to evolving cells’ effects on their environment [7], and the lethality of gene loss can differ
significantly between genetic backgrounds. This underscores the need for techniques that en-
able the construction of fitness maps in diverse environmental and genetic contexts, a feature
lacking in many existing methods [19–23].

Transposon insertion sequencing (TIS) methods offer a rapid means of constructing libraries
containing single gene deletion mutants within specific genetic backgrounds or environments.
Initially used to identify essential genes, TIS methods have evolved to construct genome-wide
fitnessmaps of gene disruptionmutants based onmutant abundance and observed read counts.

In our study, we describe a method to estimate the fitness of gene deletion mutants us-
ing data generated from a Saturated Transposition Analysis in Yeast (SATAY) screen for Saccha-
romyces cerevisiae. Our approach, based on average read count per transposon insertion site,
yields robust fitness estimates across replicate SATAY experiments(with the exception of special
libraries like the bem1-aid). However, despite this robustness, the distribution of fitness effects
(i.e. the relationship between amutant fitness and the reference fitness) differs significantly from
those generated by other studies, specifically from Synthetic Genetic Arrays (SGA) and barcode
sequencing fitness estimates. This highlights the inconsistencies between fitness distributions
generated with different high-throughput techniques. This phenomenon was already pointed
out by [24, 25], who demonstrated that the lethality of gene loss in S. cerevisiae can vary sub-
stantially between can vary across species, strains, and environments. The observed conditional
essentiality was attributed to a complex set of background-specific modifiers that influence the
phenotype of mutations and contribute to differences in essentiality between individuals. How-
ever, one consistent feature across various techniques is that most gene deletions have neutral
effects on the population [26].

In chapter 3, we propose a method utilizing fitness estimates from SATAY to compute statis-
tically significant genetic interactions. Despite the variability in fitness values among technical
and biological replicates in our samples, we argue that this method enables the exploration of
a broader mutant space, leading to the discovery of significant and novel genetic interactions
among specific genes of interest.

A challenge in using SATAY for determining fitness estimates of gene disruptions is the lack of
a genuine reference for fitness values, particularly when studying different genetic backgrounds
or environmental conditions. The fitness values derived from SATAY are based on the assump-
tion that most transposon insertions within the central 80% of the gene have neutral effects on
the cell. While this assumptionmay be valid for thewild-type genetic background, it may not hold
for other genetic backgrounds or diverse environmental conditions. Addressing this challenge
requires the identification of more suitable references that allow for proper fitness comparisons
across different conditions. This could involve using alternative experimental methods to mea-
sure gene fitness under specific conditions and using these results as a reference to validate and
calibrate the SATAY fitness values.
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6. Conclusions
In conclusion, leveraging SATAY across different genetic backgrounds in budding yeast offers

valuable insights into the fitness implications of disrupting various genes and detecting gene es-
sentiality under specific conditions. However, to ensure comprehensive and accurate results, it
is crucial to supplement SATAY findings with more targeted assays, such as microscopy or pop-
ulation growth studies of mutant yeast strains, performed under identical laboratory conditions
as SATAY. These additional experiments serve to validate and enhance the fitness values pro-
vided by SATAY consistently, thereby strengthening the overall reliability and applicability of the
obtained results.
Proteins with an RNA binding domain may suppress deleterious gene disruptions in cell
polarity.

Proteins containing RNA binding domains (RBDs) play vital roles in diverse cellular processes
by interacting with RNA molecules, influencing functions like RNA splicing, transport, stability,
and translation. Among these proteins, Nrp1 is known to harbor an RBD. Nrp1 has been as-
sociated with cellular polarization in Saccharomyces cerevisiae but without a specific biological
function. NRP1 has been shown to have epistatic interactions with BEM1, a key player for the cel-
lular polarization machinery of budding yeast. Cells harboring a knockout on BEM1 can quickly
recover after BEM3 and NRP1 gene deletions. This outcome is not expected from the individual
phenotype that Δnrp1mutants display.

Chapter 4 attempts to explore the possible NRP1 biological role in budding yeast by studying
the influence of NRP1 on gene expression and the overall genetic interactionmap. We presented
experimental evidence indicating that Nrp1’s RNA binding domain has minimal impact on gene
expression at the cellular level. Ourmass spectrometry analysis, covering around 1,200 proteins,
revealed no significant changes in expression levels, leading us to conclude that Nrp1 does not
directly regulate gene expression in budding yeast.

From SATAY experiments and the functional enrichment of the predicted genetic interaction
network of NRP1, we envision that NRP1 is involved in crucial cellular processes related to the
cellular divisionmachinery, such as determining cell size during the START phase of the cell cycle,
exit from the G0 phase and spindle morphology. Moreover, we also see that respiratory growth
is a function that NRP1may be involved, as observed by [27].

Recent research has underscored the involvement of RBD proteins in mitotic spindle forma-
tion across different eukaryotes. Studies suggest that disruptions to mitotic spindle structure
caused by transcription inhibitors or RNase occur independently of active translation. This im-
plies that functional mRNAs or non-coding RNAs (ncRNAs) might act as regulators or structural
components of the mitotic spindle. In fission yeast, the ortholog of NRP1, known as DRI1, has
been directly linked to mitotic spindle assembly. Notably, the absence of DRI1 results in reduced
kinesin-14/Klp2 protein levels on the spindle, suggesting a potential rescuemechanism forΔcut7
mutants. Furthermore, DRI1’s involvement in heterochromatin assembly via its RNA binding do-
main is noteworthy. Our analysis did not reveal significant genetic interactions between NRP1
and the CUT7 orthologs KIP1 or CIN8 in budding yeast. However, a minor, non-significant posi-
tive interaction with KAR3 (the budding yeast counterpart to kinesin-14/Klp2) hints at a potential
functional connection, warranting further exploration.

Moreover, our research identified new interaction partners of NRP1within the cell polarity es-
tablishmentmodule, indicating significant interactions with genes crucial for timing and reaction-
diffusion pathways. These interactions may shed light on the mechanisms underlying polarity
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recovery in Δbem1 mutants. We hypothesize that deleting NRP1 could regulate critical cell size
before bud formation, facilitating progression to subsequent cell cycle stages in Δbem1 mutants.
We envision that the mechanisms by which the RNA binding domain of Nrp1 can influence those
processes are nuclear transport or/and nuclear import and export. These are biological pro-
cesses that were also found to be related to NRP1 predicted positive genetic interactors.

Overall, our research showcases that sometimes suppressors can act in modules unrelated
to the initial disrupted module, exhibiting the complex interconnection nature of the genetic in-
teraction maps, and that conserved protein domains, like the RBD, could be accompanied by
functional conservation across related species.
Compensatory gene disruptions revert the fitness effects of multiple mutations restoring
wild type modularity

Mutations that suppress the effects of gene loss are frequently found in genes that are func-
tionally related to the disrupted gene [28, 29]. However, the highly interconnected nature of
genetic interaction maps implies that the consequences of compensatory mutations can have
effects that go beyond the initially perturbed module. Understanding these mechanisms is cru-
cial for unraveling the mysteries of evolution and adaptation.

Chapter 5 tackles this challenge by examining genome-wide gene interactions after the emer-
gence of a suppressormutation in an evolutionary trajectory. Specifically, we focus on the genetic
adaptations of a sick yeast mutant, initially triggered by the loss of a nearly essential gene, BEM1,
that subsequently progresses through an evolutionary trajectory marked by the sequential inac-
tivation of additional genes, namely BEM3 and NRP1. We particularly investigate the alterations
following the first adaptive gene deletion, BEM3, as this stage represents themost significant phe-
notypic changes during the evolutionary trajectory, particularly regarding the restored ability to
carry out successful polarization events.

Our genome-wide analysis of genetic interactions revealed, firstly, that genetic interactions
are highly contingent on specific experimental conditions yet exhibit significant functional over-
lap across different techniques. We compared the existing genetic interactors predicted from
Synthetic Genetic Arrays (SGA) of BEM1 with our predictions using SATAY. Most SATAY-predicted
genetic interactors were classified as neutral from SGA predictions and vice versa. This result
is notable because it suggests the existence of variable resolution in each of these techniques,
mainly due to two factors: i) the way that fitness is measured and ii) the experimental artifacts
of each technique, such as the likely acquisition of secondary mutations in the case of SGA (due
to the entire strain construction strategy [30]) that distort the true fitness effects of single and
double gene deletions. Concerning fitness measurement, an important difference is the exis-
tence of a tangible reference in the case of SGA compared to SATAY, which relies on the assump-
tion that most gene deletions are neutral to the population. This phenomenon has also been
noted for the identification of essential genes for survival in budding yeast, which greatly differs
across strain backgrounds and environments ([25, 31, 32]). However, none of these studies have
shown how different strategies to identify essential genes (meiotic segregants, CRISPR-Cas9 and
Transposon-based mutagenesis screens) differ between them.

Furthermore, our analysis shows that suppressor mutations predominantly induce sign epis-
tasis changes, indicating significant genetic rewiring accompanying phenotypic changes. Based
on this finding, we propose that while the suppressor mutation may be associated with the ini-
tial functional defect, the consequences of the suppressor mutation on the genetic interaction
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6. Conclusions
network are notable and widespread throughout the entire network. In addition, sign epistasis
in the context of evolutionary adaptation has been known to reduce the number of accessible
mutational trajectories under strong selection [16, 18] which is an insight that implies that strong
genetic constraint on the selective accessibility of trajectories to high fitness genotypes may ex-
ist and therefore evolution, in these cases, may be reproducible and even predictable[18]. This
reasoning may theoretically explain why a loss-of-function mutation on the gene NRP1 causes
the population to evolve to a higher fitness state in at least half of the evolutionary lines. We
confirm that compensatory evolution induces widespread rewiring and underscores the critical
role of the genetic background in understanding the functional organization of the cell. This un-
derstanding is crucial for designing cancer therapies for tumor removal that target specific genes
or functions to block tumor growth [33, 34].

Furthermore, our findings highlight that the effectiveness of loss-of-function mutations in
BEM3 to suppress the Δbem1 phenotype relies on genes unrelated to cell polarity, such as gly-
cosylation, cell wall, vesicle traffic, and chromosome segregation. This suggests that while the
suppressor mutation is associated with the same module as the initial functional defect, the
epistatic constraints imposed on the cell indicate that further compensatory stepsmay not neces-
sarily be linked to the impaired function. This observationmay elucidate why the loss-of-function
mutation in NRP1, a gene not assigned to the bud emergence module, represents a significant
compensatory step in this evolutionary trajectory [4].

On the other hand, our functional enrichment analysis revealed distinct patterns in the ge-
netic interactors of crippled versus recovered mutants, indicating a complex interplay of genetic
interactions and functional modules in response to perturbations. For instance, our results sug-
gest that in the genetic interaction network following the suppressormutation, there is a clear dis-
tinction between functions whose alteration may have a positive or negative effect on fitness, in
contrast to the genetic interaction network of the initial deleterious mutation. Based on this find-
ing, we propose that predicting compensatory mutations for crippled mutants, resulting from
the loss of a nearly essential gene, is more complex compared to already recovered mutants.
Using the metaphor of the fitness landscape (the relationship between genotypic space and fit-
ness), predicting the next step is comparatively "easier" when the fitness state is near a peak.
In such scenarios, there are fewer alternatives towards reaching a peak, making the trajectory
more predictable. However, when the fitness state is much further from a peak, numerous alter-
native paths towards optimization can emerge, complicating the prediction of the next step. Our
SATAY predictions of compensatory mutations are more accurate for the case of the deleterious
mutation. However, factors like strain background, media, and statistical significance can affect
the interpretation of this result.

Overall, we propose that the genetic rewiring observed in sick yeastmutants undergoing com-
pensatory evolution leads to a major reversion of the fitness effects of mutations, accompanied
by a transition towards a more modular scenario. In this state, it is theoretically "clearer" which
functions are beneficial or detrimental to the fitness of the population. Some functions would
have a distinct and predictable impact on the cell’s fitness, resembling behavior in normal physio-
logical conditions. However, the extent to which compensatory mutations lead to similar effects
remains an intriguing question for future research.
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