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De drukverdelingen aan de expansiekant van een supersone delta—vleugel, bepaald
met behulp van reeksoplossingen van de conische potentiaalvergelijking, blijken erg
gevoelig te zijn voor de positie van de ‘inboard shock’ (Vreenegoor & Bakker 1986).

Vreenegoor, A.J. N. & Bakker, P. G. 1986 Berekening drukverdelingen op
supersone delta—vleugels m.b.v. stuwpunts—oplossingen. Rapport LR—484,
TU Delft.

De bewering van Kapteijn (1989), dat Kok (1989) heeft aangetoond dat de theorie
van Geurst (1985) voor vloeistof/bellenmengsels geen bel—interactie bevat bij
marginale stabiliteit, is onjuist.

Kapteijn, C. 1989 Measurements on concentration waves in bubbly liquids. Ph.D.
Thesis, Twente University, Enschede, The Netherlands.

Kok, J. B. W. 1989 Dynamics of gas bubbles moving through liguid. Ph.D. Thesis,
Twente University, Enschede, The Netherlands.

Geurst, J. A. 1985 Virtual mass in two—phase bubbly flow. Physica 4 129,
233-261.

Om milieutechnische redenen dient men vervuilende continu—processen te
vervangen door beter te beheersen batch—processen.

Een schoon voorbeeld hiervan vormt de fabricage van opencellig schuimplastic,
waarbij het batch—proces de mogelijkheid biedt een groot gedeelte van het
schadelijke blaasmiddel Freon terug te winnen (Vreenegoor 1987).

Vreenegoor, N. C. 1988 Environmental considerations in the production of flexible
slabstock. Cellular Polymers 8, 16—32.
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Het pulseren van een enkele gasbel in een oneindige vloeistof, beschreven door de
Rayleigh—Plesset vergelijking, kan door middel van een variationele formulering op
systematische wijze opgenomen worden in een macroscopische theorie voor
vloeistof/bellenmengsels (Vreenegoor 1990).

Vreenegoor, A.J.N. 1990 Bubble pulsations in gas/liquid two—phase flow.
Technical Note, TU Delft.

‘Loss~of—coolant accidents’, die kunnen leiden tot de ‘melt down’ van een
kernreactor, worden gesimuleerd met behulp van bewegingsvergelijkingen, dic
zowel op fysische als op mathematische gronden verworpen zouden moeten worden.

Dat het trekken van conclusies uit meetresultaten zeer zorgvuldig dient te
geschieden bleek al in 1610 toen Galileo de ring van Saturnus interpreteerde als
twee manen en bleek in 1989 opnieuw bij de zogenaamde ontdekking van kernfusic
bij kamertemperatuur (Fleischmann & Pons en Jones et al. 1989).

Fleischmann, M. & Pons, S. 1989 Electrochemically induced nuclear fusion of
deuterium. J. Electroanal. Chem. 261, 301-308.

Jones, S. E. et al. 1989 Observation of cold nuclear fusion in condensed matter.
Nature 338, 737—740.

Door herhaaldelijk en nadrukkelijk de revolutie in Oost—Europa (1989) als
onomkeerbaar te kwalificeren, gaven een aantal vooraanstaande Westerse
regeringsleiders blijk van hun vrees dat deze revolutie alsnog tot stilstand gebracht
zou kunnen worden.
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Ten aanzien van de ontwikkeling van de Engelse economie had de Kanaaltunnel |

geen slechtere ligging kunnen hebben.

Vele golfverschijnselen kunnen een heilzame werking hebben op de mens. Gezien de
onbetrouwbare eigenschappen van het medium en de daaruit voortvloeiende
schadelijke bijverschijnselen moet het evenwel ten zeerste afgeraden worden zich
bloot te stellen aan een wave in een voetbalstadion.

De houding van de voetbalverslaggevers van Studio Sport werd duidelijk
gedemonstreerd door Evert ten Napel, die zich tijdens de wedstrijd
PSV — Steaua Boekarest (5 —1; 1-11-1989) verontschuldigde voor zijn
enthousiasme.

In sommige etappes verdienen de deelnemers aan de Ronde van Frankrijk het
predikaat tourist.
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CHAPTERI

INTRODUCTION

1.1 Two—phase flow

Two—phase flow is encountered in many different forms, including for instance the
entrainment of particles by a gas flow, fluidized beds, sedimentation, liquid—iquid flow and
gas—liquid flow. In this thesis only the last type of flow is considered.

On its turn, gas—liquid flow may exhibit a variety of different flow patterns. Figure 1.1.1
shows the fundamentally different types of gas—liquid two—phase flow which may occur in a
vertical pipe. In horizontal flow the same flow patterns may be encountered, supplemented

Bubble Slug or Churn Annular Wispy Annular
Flow Plug Flow Flow Flow Flow

Figure 1.1.1 Two—phase flow patterns in vertical gas—liquid flow.

by stratified flow in which the buoyancy force plays a dominant part. For many industrial
applications it is of crucial importance to know when and where a definite flow pattern may
be expected and to understand the mechanisms which control the transition of one type of
flow to the other. The results of experimental investigations of those transitions are usually
presented in the form of flow—pattern maps. See figure 1.1.2, where the type of flow is given
as a function of the momentum flux of the liquid (L) and the momentum flux of the gas (G).
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Figure 1.1.2 Flow—pattern map according to Hewitt & Roberts (1969)
for vertical two—phase upward flow

Due to the complex nature of the different flow patterns and of the transitions between them
a general theory of two—phase flow covering all states is still far from being realised. The
present state of the art is that each state (annular, plug, bubble, etc.) is modelled separately.
Many fundamental problems, however, remain in view of the fact that the major part of the
models depends heavily on correlations obtained from experiments. This thesis focuses on the
field of bubbly flow. It comprises the dynamics of small gas bubbles dispersed in a liquid.

Bubbly two—phase flows are encountered frequently in nature and in industry. Violent water
movements due to waves rolling over and breaking at the beach may cause air being trapped
in the water in the form of bubbles. Fast running mountain brooks may contain vapour
bubbles as a result of cavitation. The pulsations of these bubbles producing sound in the
audible range (approximately 1 kHz) provide an explanation for the appearance of so—called
"singing" brooks. Geysers contain bubbly mixtures due to boiling processes.




Bubbly flows may also occur in cooling systems of nuclear power stations during a loss of
coolant accident. A reliable simulation of such an accident is essential for the safe
construction of those power stations. Bubble column reactors are widely used in the process
industry and biotechnology due to their simplicity and the absence of moving parts. Among
others, they are used for the purpose of absorption and stripping and in waste—water
purification. We finally mention that cavitation around the propellers of ships produces large
amounts of bubbles which may radiate sound waves due to pulsations. This effect will make
the hull resonate, thus leading to unwanted vibrations and noises.

Many attempts have been made to describe bubbly flows mathematically, yet no generally
accepted model exists for this type of flow. Roughly spoken, bubbly two—phase flow may be
approached in two ways, viz., microscopically or macroscopically. In the microscopic
formulation the path of each bubble through the liquid is governed by an equation of motion,
which possibly takes into account the interactions with other bubbles. However, when one
considers a volume of one cubic meter filled for 10 percent with bubbles having a diameter of
1 mm, one needs to calculate the paths of approximately 2 x 108 bubbles. Clearly, that is not
a practical approach. Macroscopically the behaviour of the gas bubbles is modelled more
efficiently by introducing the gas fraction «. Several techniques may now be applied to
derive the equations of motion for groups of bubbles in a control volume (compare with the
kinetic gas theory). Although this may seem quite straightforward the complex nature of
bubbly two—phase flows has lead to the existence of many different models with a variety of
fundamental shortcomings. Supported by the review articles of Drew (1983) and van den
Akker (1986) we discuss in this chapter the basic techniques of modelling, various sets of
equations and some of the key difficulties. Pressure terms and interaction effects associated
with the virtual mass of the gas bubbles receive some special attention since they have
caused the severest problems. It is shown in section 1.6 how the application of variational
techniques by Geurst ((1985a)(1985b)(1986)) solved those problems. The variational
approach accordingly constitutes the basis of this thesis. For simplicity only
one—dimensional instationary flows are considered in the present chapter.



1.2 Basic model

The basic model contains some simplifying assumptions which also apply to the other models
discussed in this chapter. First, the liquid is assumed to be incompressible with a constant
mass density p I Secondly, the flow is assumed to proceed under isothermal flow conditions

with constant temperature T. The gas is considered to be perfect, with the gas pressure pg
determined by

RT
Py = > Pg » (1.2.1)
where p; is the mass density of the pure gas, R denotes the gas constant and M the
molecular weight of the gas. Viscous effects are neglected. When we introduce the relative
densities p; and p; of the liquid and the gas by means of

p1=py(l-a), (1.2.2)

p2=pga (1.2.3)

and denote the mass averaged velocities of the liquid and the gas by u; and u,, the equations
expressing the conservation of mass become

% + i (piny) = 0 (1.24)
and

92 4 9 (hu,) = 0. (1.2.5)

ot Ox

A subscript "1" refers to the liquid, a subscript "2" to the gas. The mass conservation
equations (1.2.4) and (1.2.5) are generally accepted and form no point of discussion, unless
boiling effects are taken into account. However, boiling effects are not considered in this
thesis. The gas fraction «, already mentioned in the previous section, describes the
percentage of gas present in a volume element. Quite often it is referred to as void fraction.

The basic model is based on the assumption that the Euler equations known from one—phase
fluid dynamics hold for the liquid as well as for the gas. The equations of motion for the




liquid and the gas are accordingly written

P ) 1 9y
9492y =-12 1.2.6
[61: lc?x] TP o (1.26)
P P 1 g
Y v =—= 2, 1.2.7
{at+u26x]u2 Pt o ( )

It is further assumed that there is a local balance between the liquid pressure p ¢ and the gas
pressure p, inside the control volume : p (= Pg Gravity and drag forces may be added to the

right hand sides of (1.2.6) and (1.2.7). Equations (1.2.4) to (1.2.7) constitute the basic
model, complemented by (1.2.1) and the equal pressure assumption. For practical
applications it is the most frequently used model (see Drew 1983) and is applied to the
complete variety of gas—liquid flows displayed in figure 1.1.1 despite the absence of terms
describing the actual structure of the flow. In the case of bubbly flows the flow structure is
sometimes accounted for by adding virtual-mass forces on the right hand sides of the
equations of motion (1.2.6) and (1.2.7). In general those interaction terms are incorporated
in an incorrect and ad hoc fashion. Some modifications of the basic model may be found in
the review article by Stewart & Wendroff (1984). For the purpose of comparison with other
models we also give the equations of motion in the form

2 (o) + L (o) =— (1 - 0) Bs, (128)
ot Ox Ox
() + % (o) = — a 2, (1.2.9)

where the mass conservation equations (1.2.4), (1.2.5) and the equal pressure assumption
have been used.

Obviously, a constant uniform flow is an exact solution of the basic model. A linear stability
analysis reveals, however, that this solution is linearly unstable. Since (1.2.4)—(1.2.7) form a
homogeneous set of partial differential equations the basic model possesses complex
characteristics as well and is ill—posed in the sense of Hadamard (see Stewart & Wendroff
1984). The fast modes corresponding to acoustic waves are characterised by real roots. The
slow modes, however, are associated with complex conjugate roots. The imaginary part
becomes zero when the gas bubbles travel with the liquid velocity (us = u,). For that reason



some scientists believe that the basic model only describes stratified flows, where a
Kelvin—Helmholz instability appears when us # u;. On the other hand, Ransom & Hicks
(1984) emphasize that hydrodynamical instabilities should evolve from models with real
characteristics. Therefore, they present a hyperbolic two—pressure model for stratified flows.
In the case of bubbly flows the majority of the scientists also believes that reliable
predictions should come from hyperbolic models. Moreover, in practice (slow) concentration
waves (see Chapter IIT), or void—fraction waves, are observed which necessarily have to be
connected to real roots of the dispersion equation {or characteristic polynomial). Therefore,
on mathematical as well as on physical grounds the basic model should be rejected as a
model for bubbly two—phase flow. That this has not been done appears from the fact that
popular computer codes like PHOENIX (—84) and TRAC still make use of the basic model
(see Assimacopoulos 1986 and Stewart & Wendroff 1984, respectively). Instabilities are
suppressed by initially taking us = u;, by adding large drag forces and by increasing the
numerical viscosity. Computations on the acoustic time scale may be performed without
severe problems since the complex roots are associated with the slowly propagating
concentration waves.

A different way of dealing with the complex characteristics is making them real by
modifying the pressure terms at the right hand side of (1.2.8) and (1.2.9). This may be
achieved by replacing those terms by —d/dx((1-a)pg) and —0/dx(apg), respectively.
Naturally, this is also an ad hoc solution of the problem since there are no physical grounds
for making that modification. In fact, it is generally accepted that the pressure terms related
to the gas pressure pg should appear in the form presented by equations (1.2.8) and (1.2.9)
(see van den Akker 1986). Nevertheless, quite recently a thesis has been written on the
numerical simulation of two—phase flows based on the above mentioned erroneous form of
the pressure terms (Ranaivoson 1988).

We may conclude that the basic model should not be used for the prediction of transient
bubbly two—phase flows in cases, where the difference velocity between the two phases does
not vanish. Interaction terms accounting for the virtual mass of the gas bubbles should be
included. However, those terms are too complicated for being postulated, as will appear in
the subsequent sections of this chapter. Therefore, a systematic approach is required to
overcome those difficulties and to avoid the appearance of complex characteristics. At the
same time it may be investigated in which way the pressure terms should be included in the
equations of motion.




1.3 Momentum balances

From one—phase fluid dynamics it is known that the Navier—Stokes equations for an
isothermal fluid may be derived by considering the momentum transport in a volume
element AxAyAz for a short period At and taking the limit Ax, Ay, Az, At - 0. The Euler
equations follow by neglecting the viscous terms. The same procedure is discussed by van
den Akker (1986) but now applied to each phase separately in a dispersed two—phase flow.
The .exchange of momentum between the bubbles and the liquid gives rise to an interaction
term which appears in the form of an integral over the surfaces of the bubbles. That term is
interpreted as an added—mass force. When Reynolds stress terms and shear stress terms are
neglected, the basic model is recovered with an extra term on the right hand side of
equations (1.2.8) and (1.2.9), viz., the added—mass force. The pressure terms follow in a
systematic way. The added—mass force should solve the occurrence of complex
characteristics but to achieve this it is necessary to express the surface integral in terms of
the flow variables py, ps, o and the difference velocity w = up — u;. This is an additional
exercise which has to be performed; the momentum balances do not yield such an expression.
Therefore, it still requires a lot of effort to complete the model resulting from momentum
balances. Assumptions have to be made concerning the form of the added—mass force and
since it appears to be a force of a complex nature errors easily slip in. Nevertheless, the
equations of motion now have a solid foundation. '

1.4 Averaging methods

Averaging methods start with assuming that the different phases may be described as a
continuum. Each phase satisfies an equation expressing the conservation of mass, viz.,

ot

and an equation expressing the conservation of linear momentum:

%/!tX+V-pvv=V-T+pf, (14.2)

where T is the stress tensor and f the body force density. Each phase has its own density p
and its own velocity field v. At the interface separating the two phases conservation of mass
and linear momentum appear in the form of jump conditions. In order to obtain equations of



motion that do not contain every detail of the flow averaging processes are applied. Several
averaging methods are available: time averages, space averages, weighted space averages,
combinations of averages and ensemble averages. A more or less complete account of the
literature concerning averaging methods is given by Drew (1983). Following Drew (1983), we
choose the weighted space average to elucidate some of the key aspects of averaging
methods.

A phase function Xy(x,t), (k = 1,2), is defined by

1 if x is in phase k at time t

Xk(x,t) = { (1.4.3)

0 otherwise.

We recall that a subscript "1" refers to the liquid, a subscript "2" to the gas. The equations
of motion (1.4.1) and (1.4.2) which hold for the liquid and the gas are now multiplied by
Xi(x,t) and Xa(x,t), respectively, and the result is averaged over a control volume. After
defining averaged variables, omitting the symbols denoting space averages and assuming a
one—dimensional flow, we arrive at the mass conservation equations (1.2.4) and (1.2.5)
supplemented by the equations of motion

() + (o) == (1) B2 4 i, (14.4)
ai (pou2) + 561 (pqud) = - a %xg + M§ . (1.4.5)
t

Shear stress has been neglected, the equal pressure assumption at the interface has been
made and it is assumed that there is no transfer of mass across the interface. M¢, (k=1,2),

denote the interfacial force densities. From the jump conditions it follows that

Md + M¢ = 0. (1.4.6)

Again we recognize the basic model and notice that the pressure terms appear in the same
form as they follow from momentum balances. An expression for M4 (or M$) is required to

complete the model.




The structure of the flow (bubble, slug, etc.) is not yet included in the model in an explicit
way. An expression for M‘} has to be assumed to describe the interaction between the liquid

and the gas phase. In the case of bubbly flow Drew (1983) postulates a certain expression for
M¢ which still contains a set of undetermined parameters. By demanding that the interfacial

force density should be objective, or material frame indifferent, a complete expression for M4

is obtained. For one—dimensional flow it is given by

Ml = % {Cum py @ (u—u)} + fx- {Cum py @ uo(n2 — wy)}. (1.4.7)

Drag forces are not taken into account. The constant Cyp i8 referred to as virtual—volume
density by Drew (1983). Here, we will call it the virtual-mass coefﬁcientJr). The
virtual-mass coefficient of a spherical bubble is equal to 1/2 and we may therefore take
Cynm = 1/2. The virtual-mass density of a dispersion of bubbles is expressed by Cym p g% 2

term which appears in expression (1.4.7) for M‘}. Clearly, bubble interactions are not taken

into account, since terms O(a?) are not present. A very essential aspect of expression (1.4.7)
is that virtual-mass effects do not only appear as a flux in the d/0x term but also take part
in the time derivative. This may be understood when one realizes that an accelerating bubble
induces an acceleration of some part of the liquid as well.

The influence of the interfacial force density M4 on the complex characteristics of the basic

model has been investigated by Lahey et al. (1980). For Cy, = 1/2 the characteristics are
still complex, unless somewhat non—physical assumptions are made. Nevertheless, virtual
mass has a stabilizing effect in the sense that the growth rate of the unstable modes
decreases. Drew (1983) concludes that virtual mass does not seem to be the total answer to
the ill—posed nature of the model. However, it must be realized that MY has been postulated

1) The virtual mass of a body consists of the sum of its actual mass and the added mass. The
added mass is associated with the kinetic energy of the liquid due to the relative motion of the
body. The definition of added mass is given by Milne—Thomson (1965, p. 247). Due to the
fact that the mass density of the gas is much smaller than the mass density of the liquid, the
term virtual mass is often used in the literature of bubbly two—phase flows while added mass 1s
understood.
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and that bubble interaction effects are not taken into account. In section 1.6 it is
demonstrated that those two aspects indeed play an important role.

Space averages, time averages and composite averages are discussed by Delhaye (1981) and
by Bouré & Delhaye (1982), among others. A complete account of those techniques lies
beyond the scope of the present work. We therefore focus on some of the important
consequences resulting from the ‘application of those methods. Averaging methods lead to
averages of products. To write the averaged equations in the form of a two—fluid model like
the basic model, averages of products have to be split in products of averages. When (-)
denotes an averaging operator it is assumed that ( fg) = (f)(g) holds. In doing so, one
possibly introduces a supplementary dependent variable and as a consequence the number of
variables and equations are not in balance. An extra equation is required to close the model :
a so—called closure law. The closure problem is discussed by Bouré (1987). A similar
difficulty is encountered in the theory of turbulence. A closure relation is not always needed,
as is demonstrated by Delhaye (1981) who simplifies the composite—averaged equations to
the basic model with on the right hand side of the equations of motion (1.2.8) and (1.2.9)
some additional interface integrals. At the interface constitutive laws are required which
describe the momentum transfer between the liquid and the gas. Ishii (1987) discusses the
interfacial transfer terms and emphasizes that they are among the most essential factors in
the modelling of two—phase flows. We conclude that the averaging methods discussed above
require questionable assumptions and still leave us with some complex difficulties.

Ensemble averages are applied by Biesheuvel & van Wijngaarden (1984). By assuming that
the bubbly mixture constitutes a statistically homogeneous medium the ensemble averages
become equivalent to volume averages. As a consequence the techniques developed in a
number of papers by Batchelor may be used (see Biesheuvel & van Wijngaarden 1984). The
ensemble—averaged stress tensor and the ensemble—averaged momentum—flux temsor are
defined for the mixture and are determined by assuming a potential flow around a test
bubble. The potential solution depends on the liquid velocity at infinity Uy, which is taken
equal to the total volume flux:

Uy = (1-a) u; + au., (1.4.8)

The equation of motion for the ensemble of the two phases follows by equating the rate of
change of momentum to the divergence of the stress tensor. The equation of motion for the
gas is derived by averaging the hydrodynamic force exerted on the bubbles by the
surrounding fluid and using the fact that the net force on the approximately massless
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bubbles must vanish. The form of the last equation presented by Biesheuvel & van
Wijngaarden (1984) is incorrect since it contains no spatial derivatives. As a result, the
equation of motion for the gas phase is not invariant with respect to a Galilean
transformation as pointed out by Geurst (1986). Later, Biesheuvel & van Wijngaarden
modified the equation by replacing the time derivatives by convective derivatives with
respect to the gas velocity. The modified equation may be inferred from Kok (1989,
relation (1.4)). The equation of motion for the mixture and the equation of motion for the
gas phase (after correction of a typing error) read

Q1 y oy, B0 1 Opg (1.4.9)
(91] ax P1 Bx

3 a] 1 ] 9

—+us— | {57 (u-U =T[—+11 —] Uy . 1.4.10)
[6t 2o ) L7 (ur ol o oxd " (

The equal pressure assumption has been made, drag and gravity are neglected and terms
related to pulsations of the bubbles are omitted. The inertia of the gas bubbles has been
neglected as well. The bubble volume 7 is related to the gas demsity p; by means of
pgT = constant, which expresses that only bubbles of equal mass are considered. The mass
conservation equations (1.2.4) and (1.2.5) complete the model, which only holds for dilute
dispersions of bubbles in liquid. The characteristics of the model are claimed to be real. Two
roots are associated with pressure waves and two roots, both equal to the gas velocity us, are
identified with a concentration wave. The presentation by Kok (1989) therefore suggests that
ensemble averaging might lead to a hyperbolic model.

1.5 Three—fluid models

Three—fluid models have been developed by Wallis (1978), by Cook & Harlow (1984) and by
Kowe et al. (1988). Wallis constructed a one—dimensional model while Cook & Harlow
(1984) derived in an equivalent way, but independently, the three—dimensional form. We
discuss the Cook—Harlow model as it is presented by Wallis (1987). For completeness we
mention that Wallis (1987) also makes a comparison with models developed by
Pauchon & Banerjee (1986), by Drew & Wood (1985), by Lhuillier (1985), by Nigmatulin
(1979) and by Geurst ((1985a)(1985b)(1986)).
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A unit cell is considered which contains liquid and gas. The cell is divided into three parts:
the fraction occupied by the gas (), the fraction of liquid entrained with the gas (1—-a—1/8)
and the unentrained fraction of the liquid (1/f). The unentrained liquid velocity uf is

related to the liquid velocity u; and the gas velocity u; by means of

ui=u—-Dw, (1.5.1)

where w is the difference velocity w = uz — u;. D denotes a quantity called the ezertia given
by

D=(l1-a)f-1. (1.5.2)

For a random suspension of spheres (1.5.2) reduces to D = (1/2)a. Note that the entrained
liquid travels with the velocity of the gas bubbles u,. That is the reason why only two
velocity fields are required to describe the flow. It is shown in a straightforward way that the
unentrained fluid satisfies an equation of motion of the form known from single phase flows:

alll all/
pl[—gtl+ull—ax_l]=_%’ (1.5.3)

where p denotes the hydrodynamic pressure. The equation of motion for the combined phases
is derived by making a momentum balance on the entire contents of a unit cell. The
construction of the momentum—flux tensor for the mixture requires quite some effort (see
Wallis 1987). We therefore simply give the equation of motion for the mixture as

p1[@+u1@+Z]+pz[@+uz@]=—-&£, (1.5.4)
A x & x ax
with
1 8
Z==={pDw2}. (1.5.5)
p1 Ox

The equations of motion for the liquid and the gas are obtained from (1.5.3) and (1.5.4) by
applying (1.5.1) and using the mass conservation equations (1.2.4), (1.2.5) and an additional
equation expressing the conservation of the entrained part of the liquid. They read,
respectively,
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@“—‘+u1?ﬂ+Z+D{%+u1%+Z—a—“l—uz@}=
ot Ox ot ax ot ox
=12 (1.5.6)
Pt ox

and

B3 4y, P02 _ Dg__{6u1+u6u1+z Ouy 2‘—%—2}:
dx P2 U g A o Ax

% (1.5.7)
g Ox

The appropriate choice for the hydrodynamic pressure seems to be the volumetric average
pressure

p=(1-0)p,+ ap,, (1.5.8)

with the hydrodynémic pressure jump between the liquid and the gas taken equal to

D
Py—Pg= 2p1w CHIE (1.5.9)

The term on the right hand side of (1.5.9) accounts for the Bernoullian effects which
contribute to the pressure p in the case of a non—vanishing difference velocity w.

The mutual nature of the added—mass force is clearly demonstrated by (1.5.6) and (1.5.7):
multiplying (1.5.6) by g, (1.5.7) by p; and adding the results cancels the terms multiplied
by the exertia D. In addition it is seen that the interaction terms contain convective
derivatives. By taking D = 0 the basic model is recovered. Whether the introduction of
added—mass terms suppresses the appearance of complex characteristics or not is not
discussed by Wallis (1987).

We conclude that three—fluid techniques form a systematic approach to the modelling of
two—phase flows. Added—mass forces are included containing time as well as space
derivatives and a hydrodynamic pressure is introduced which is not necessarily equal to the
gas pressure. However, the construction of the momentum—flux tensor for the mixture and
the definition of the hydrodynamic pressure still require some detailed considerations on the
microscopic level. Whether the set of equations of the Cook—Harlow model is hyperbolic or
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not has not yet been investigated, to our knowledge.

1.6 Variational methods

The previous sections demonstrate that several mathematical techniques and physical
models have been used for the derivation of macroscopic two—phase flow equations. As a
result of the complicated nature of that type of flow many models now exist which are
essentially different. The previous sections only present a limited selection. The present state
is that there is no agreement about the definition of the hydrodynamic pressure and the way
virtual-mass terms should be incorporated. Clearly, this situation leads to contradictory
conclusions: while Ramshaw & Trapp (1978) and Lahey et al. (1980) state that neglecting
virtual mass will lead to complex characteristics, Pauchon & Banerjee (1988) conclude that
neglecting their virtual-mass force tends to keep the characteristics real. In view of those
major discrepancies the modelling of bubbly two—phase flow requires a clear and systematic
approach. Variational methods fulfil those requirements, as is demonstrated in the present
section. A great advantage of the application of variational methods is that for an inviscid
description of bubbly flow it suffices to define the kinetic energy density and the free energy
density on the macroscopic level. Interaction effects may be included and will appear in a
consistent way in the equations of motion by performing the independent variations.
Subsequently, Noether’s first invariance theorem may be applied to derive the equations
expressing the conservation of linear momentum and the conservation of energy.

Bedford & Drumbheller (1978) choose for a Lagrangian setting and write Hamilton’s extended
variational principle as

S (6T —6U+ 6W)dt=0, (1.6.1)

where T and U are the kinetic and potential energies and W denotes the virtual work due to
the forces not represented by a potential. Their theory is kept quite general and applies for
mixtures of an arbitrary amount of constituents which remain physically separate. In the
case of bubbly liquid—gas mixtures they demonstrate how pulsations of the bubbles may be
included in a consistent way by means of the kinetic energy T. Interaction effects are
attributed to the virtual work éW, which should be associated with unrecoverable energy
(see Drew 1983). Virtual-mass effects are not incorporated in that way.
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It was first shown by Geurst ((1985a)(1985b)(1986)) that interaction effects associated with
the virtual mass of the gas bubbles could be accounted for in a systematic way by means of
the kinetic energy density of the mixture. That crucial step leads to a consistent theory, free
of any ad hoc assumptions, and to the solution of several of the existing problems. Since
Geurst’s approach forms the basis of the present thesis, it is treated here in more detail.

Geurst (1985a) starts from a generalised form of Hamilton’s variational principle in an
Eulerian setting by writing

t2 X2
f dt fdxL=0. (1.6.2)
t[ X1

During the variations the constraints expressing the conservation of mass of the two phases
given by (1.2.4) and (1.2.5) should remain fulfilled. The Lagrangian energy density L is
defined by

L=K-F, (1.6.3)

where K denotes the kinetic energy density and F the free energy density. The kinetic energy
density is taken equal to

1 1 1
K =5 pui+5pu] +5p,m(e) (uz—uy)?. (1.6.4)

It consists of three parts: the first two terms account for the kinetic energies of the liquid
and the gas, the last term includes the kinetic energy associated with the virtual mass of the
gas bubbles. For spherical bubbles at low void fraction a the virtual-mass coefficient m(a)
takes the form m(a)=(1/2)a+ O(a?). Under isothermal flow conditions the
thermodynamics, contained in F, is completely characterised by the relations

dF = pydpy + p2 dp2 (165)
and

dpy = %pf , (1.6.6)
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- dpg
dys Pg (1.6.7)

where p; and g9 denote the thermodynamic potentials.

Introducing Lagrange multipliers ¢; and ¢ to account for the constraints (1.2.4) and (1.2.5)
we arrive at the equivalent variational principle

to X9
§f dt [ dxL=o0, (1.6.8)
t1 X

with the modified Lagrangian density given by

I:=L+tp1[—aﬁl+g-(p1lh)]+(p2[—a‘&+i(p2u2)]. (1.6.9)
ot ox ot &
Partial integration of (1.6.8) yields

t2 X9
6f at [ dxL* =0, (1.6.10)
tl X1

*
where L™ reads

L*=L—p1[g‘ﬂ+u1‘—9ﬂ]—p2[§ﬂ+uggﬂ]. (1.6.11)
ot ox ot x

The Euler-Lagrange equations follow quite simply from (1.6.10) by performing the
independent variations of the four variables py, pa, u,, u2:

5p1:%u";—%m’(a)(ug—um—pl—@‘o—‘—ulQJ‘0—1=0 , (1.6.12)
ot ox
6[)22%11%—#2—2&—1122m=0, (1.6.13)
at ax

6\11: plul—plm(a)(ug—ul)—pl%;ﬂ= 0 N (1614)
X
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fug: puz + pym(a)(uz — 1) — p2 %ﬂ =0, (1.6.15)
X

where m’(a) denotes (d/da)m(a). The equations of motion are derived by eliminating the
Lagrange multipliers. The equation of motion for the liquid reads

[53;_}_“1%]{“1_/’! 1;1(10‘) (Uz—ul)}“pe I:(la) (112—111)%1;14'

kg (@uru)?} = 0. (1.6.16)

For the gas it is given by

[i+u2—£(—]{uz+p£ r:ia) (uz—ul)}+p£ I:ia) (uz—ul)%-i—

+Qafi—2= 0. (1.6.17)

The application of Noether’s first invariance theorem (see Geurst 1985a and Logan 1977)
yields the equation expressing the conservation of energy

9, 8Q_, (1.6.18)
ot Ox

and the equation expressing the conservation of linear momentum

o on_ . (1.6.19)

at  Ox
The energy density H and the energy flux Q are given by

H=K+F, (1.6.20)
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py m(a)
Q = piuy { %uf—l_\lx (ug—uy) + p + Ql-m'(a)(uz —uy)? } +
b1
p, m(a)
+ pouy { %ug + 4 us (ug —uy) + po } , (1.6.21)
P2

while the momentum density P and the momentum flux II are determined by
P = pju, + pouz, (1.6.22)

II= plu% + lelg + pl m(a)(ug — 111)2 +
+ Pg + %pl{ m(a) + (l—a) m’(a) } (u2 —U1)2 . (1623)

In a three—dimensional formulation the last two terms of the momentum flux II are
multiplied by the unit isotropic tensor. That suggests the introduction of the hydrodynamic
pressure p according to

1

p=pg+ 30, { m(e) + (1-a) m"(a) } (u—uy)2. (1.6.24)
At the same time it is shown that

L*=p. (1.6.25)
The variational principle (1.6.10) based on L* therefore constitutes a generalisation of
Bateman’s variational principle known from classical one—phase fluid dynamics (see
Bateman 1959, chapter II).
When the equations for the conservation of mass (1.2.4) and (1.2.5) and the equations of
motion (1.6.16) and (1.6.17) are subjected to a linear stability analysis, it follows that

marginal stability is obtained only when the virtual-mass coefficient m(a) satisfies two
differential equations:

14379 4 ome(a) + § (1-a) m*(a) = 0 (1.6.26)
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and

1--182 ) + —(—1 =0. (1.6.27)

a?(1—a)
Equations (1.6.26) and (1.6.27) possess the common solution

m(e) = 5 a (1 - a) (i - (0+2) o), (1.6.28)

which reduces to m(a) = (1/2) a + O(a?) for dilute dispersions of spherical gas bubbles
(m=1). The coinciding roots at marginal stability are equal to the gas velocity us and are
associated with concentration waves. The acoustic modes are real as well (see Geurst 1985a).
Since for a homogeneous set of equations the characteristic roots are equal to the roots of the
dispersion equation, the equations presented by Geurst (1985a) constitute a model with real
characteristics, provided m(a) is given by (1.6.28). At the critical void fraction
¢ = m/(m+2) the virtual-mass coefficient m(a) vanishes. Higher void fractions would yield
a negative contribution to the kinetic energy density K which on physical grounds can not be
accepted. It is therefore concluded that bubbly flow ceases to exist at the critical void
fraction and that a transition to a different flow pattern like slug flow must take place.
Recent measurements by Matuszkiewicz et al. (1987) report bubble-slug flow pattern
transitions at void fractions varying from .3 to .45.

We conclude that variational techniques as applied by Geurst ((1985a)(1985b)(1986))
include interaction effects and pressure terms in a systematic way. Free from any dubious
assumptions the theory allows a clear physical interpretation. A comparison with the other
methods is made in the following section, thus highlighting the advantages of the application
of variational principles.

1.7 Comparison of various models

A comparison of Geurst’s method and equations with the other methods and equations
reviewed in this chapter leads to some interesting conclusions.

The basic model (section 1.2) is recovered from Geurst’s equations of motion (1.6.16) and
(1.6.17) by taking m(a) = 0 and using relations (1.6.6) and (1.6.7) for the thermodynamic
potentials. After rewriting the equations the pressure terms appear as in (1.2.8) and (1.2.9).
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We may also conclude that neglecting the virtual mass of the gas bubbles leads to complex
characteristics.

Momentum balances (section 1.3) yield similar pressure terms related to pg but require a
postulated added—mass force. That important force does not have to be postulated when
variational techniques are used, which is a great advantage since the force is of a complicated
nature.

Averaging techniques (section 1.4) require a postulated virtual-mass force as well (Drew
1983, Delhaye 1981). Geurst (1986) rewrote the equations and derived a three—dimensional
form of the interaction force. In a one—dimensional theory it reduces to

Wi = 2 {pym(a) (wr =)} + L {pyml) ua (wz—u) }+
+ pym(a) (uz—ul)%. (1.7.1)

For small values of the void fraction a the first two terms of equation (1.7.1) become equal
to the interaction force MY (equation (1.4.7)) postulated by Drew (1983) (fh=1, Cyn=1/2).

A three—dimensional comparison demonstrates that Drew’s interaction force contains a term
which is not comprised by Geurst’s equations. Nevertheless, both forces appear to be
objective. Geurst’s version of (1.4.4) (see Geurst 1986, equation (5.7)) also shows that some
momentum fluxes associated with virtual-mass effects are missing in (1.4.4). Those
discrepancies eventually lead to the occurrence of complex characteristics in the model
treated by Drew. Pressure terms related to pg are included in a similar way. The
hydrodynamic pressure is not discussed by Drew. For further details we refer to the
comparison made by Geurst (1986).

In relation to the equations presented by Delhaye (1981) we mention that closure laws are
closely connected with averaging methods. They are not encountered when variational
techniques are used. Constitutive laws (Ishii 1987) are not required either.

The equations presented by Biesheuvel & van Wijngaarden (1984) (section 1.4) clearly have
some aspects in common with Geurst’s equations. When the equal pressure assumption is not
made, Biesheuvel & van Wijngaarden (1984) show that equation (1.4.9) is written
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_2_56:111 + i { puf + %pg a(uz—=Ug)?2+(p) } =0, (17.2)

where the bulk pressure (p) is given by
1
(p) =pg + 7y (u2—Ty)2. (1.7.3)

These results may be obtained from Geurst’s equations (1.6.19) and (1.6.22)—(1.6.24) by
neglecting ps, by considering small void fractions « and by replacing u; by Uy, which become
equal in the limit a- 0 according to (1.4.8). Geurst (1986) showed that for small void
fractions and spherical bubbles of a constant radius the equation of motion for the gas
(1.6.17) simplifies to

[——+uz—] uy = [—+u1-§x-] u, (1.7.4)

which expresses that the acceleration of the bubbles equals three times the acceleration of
the liquid: a result which was already known to hold for one spherical bubble. We may
therefore conclude that Geurst’s equations contain the microscopic behaviour of one bubble
in the correct way, despite the fact that the equations are derived from macroscopic
principles. Equation (1.4.10) of Biesheuvel & van Wijngaarden reduces to an equation which
is similar to (1.7.4) when small void fractions a are considered. In their case both convective
derivatives occur with respect to the gas velocity u,. This does not seem to be correct and
might be a result of the fact that the interaction of the bubbles with the surrounding liquid
is analysed in a frame of reference moving with the volume flux Uy, In the theory of
sedimentation it has become customary to work in such a frame, as is demonstrated by the
new theory for fluidized beds and sedimentation proposed by Batchelor (1988). Since the
work of Biesheuvel & van Wijngaarden is closely related to Batchelor’s work, they have
chosen for the same frame of reference. Virtual-mass effects form a problem for Batchelor
(1988) as well: in a somewhat loosely way a simple form for the mean fluid force on the
particles is proposed which is not complete.

Wallis (1987) compared the three—fluid model of Cook & Harlow (section 1.5) with Geurst’s
equations. For small void fractions the kinetic energy density K and the momentum flux for
the mixture I become equivalent. The hydrodynamic pressure (1.6.24) proposed by Geurst is
not compatible with the relations (1.5.8) and (1.5.9) given by Wallis. However, alternative
definitions given by Geurst (1986) lead to relations which are compatible with (1.5.8) and
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(1.5.9). The exertia D should be identified with m(a)/(1—a). The added—mass force follows
from (1.5.6) and (1.5.7). It is given by

m:plD{@Jrungz_Qu_;_u,Qu_l_z} (1.7.5)
a x o Bx |

and a comparison with Geurst’s (1.7.1) shows some major differences. Nevertheless, a
number of other similarities may be discovered, for which we refer to Wallis ((1987)(1988a)).
We further mention that Geurst (1988) transformed an extended version of his equations
(see Chapter II) into a three—fluid model and also made a comparison with the model of
Cook & Harlow (1984).

We conclude that the comparison made above decides in favour of variational methods.
Other techniques generally lead to complicated difficulties which are not encountered when
variational ~methods are applied, as has been demonstrated by Geurst
((1985a)(1985b)(1986)). Moreover, several recent two—fluid models have been subjected to
three test cases by Wallis (1988b) and only Geurst’s equations pass these tests. The calculus
of variations is therefore chosen as a sound basis for the present thesis. Several extensions of
Geurst’s equations are derived and used for a further investigation of bubbly two—phase
flows.

All previous models assume that the bubbles have a spherical shape. In reality, however, the
bubbles become oblate ellipsoids when they have a velocity relative to the liquid. In
Chapter II it is demonstrated how the variational principle (1.6.2) may be extended to
include that effect.

Many models presented in the literature suffer from complex characteristics, related to the
inadequate inclusion of concentration waves. That type of waves is treated in Chapter IIL. In
particular, nonlinear concentration waves are discussed which appear as nonlinear exact
solutions of Geurst’s equations and of the extended version presented in Chapter II. The
waves are found to be closely related to the virtual—mass coefficient.

Due to the occurrence of complex characteristics many models are not suitable for stable and
reliable numerical computations. The numerical investigation of the interaction of acoustic
waves and nonlinear concentration waves is used in Chapter IV as a test for the numerical
suitability of Geurst’s model and the extended model. At the same time the stability of
nonlinear concentration waves for acoustic disturbances is investigated. Linear theory is used
to verify the numerical results. A variational formulation of the linearised equations shows
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that the acoustics of a bubbly liquid/gas mixture may be considered as a generalisation of
the acoustics of one—component fluids.

In Chapter V stationary vertical pipe flow is considered. That type of flow has been studied
experimentally and has received quite some attention in the literature. The reason for this is
that the void—fraction profiles for upward flows show a distinct peak near the pipe wall, as
was already reported by Malnes in 1966 (see Serizawa et al. 1975). Since then, many
attempts have been made for a theoretical explanation of this interesting effect. However, an
explanation starting from a general model has not yet been given. In Chapter V dissipative
terms and corrections in the case of high gradients are systematically included in the
two—phase flow equations. That general theory is subsequently used in order to investigate
void—fraction and velocity profiles in stationary vertical two—phase flows. The governing
ordinary differential equations are solved numerically and by means of perturbation theory.
The results are compared with measurements.
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CHAPTERII

VARIATIONAL APPROACH TO BUBBLE DEFORMATION
IN TWO-PHASE FLOW 1)

2.1 Introduction

All models treated in the previous chapter have in common that they assume bubbles of a
constant shape. In general the bubbles are taken spherical, which is only exact in the case
where the difference velocity vanishes. As the relative velocity increases the bubbles deviate
from their spherical form to become oblate ellipsoids in a good approximation. In addition,
the presence of the bubbles is taken into account only by means of the void fraction.
However, a definite void fraction a may be realised by a small amount of large bubbles as
well as by a large amount of small bubbles. The models mentioned above do not distinguish
between those cases. They do not include the energy related to surface tension either.

Section 1.6 demonstrates the importance and advantages of variational methods.
Virtual-mass effects associated with the motion of the bubbles relative to the liquid may be
included systematically in that way. In the present chapter the variational principle of
Geurst (19853)1) will be extended by including the deformations of the bubbles induced by
their relative motion to the surrounding liquid. Since the deformations are related to the
surface energy of the bubbles, that energy has to be included. In addition a constraint
expressing the conservation of the number of bubbles is required.

Bubble deformation effects may be related to the value of the Weber number which
expresses the ratio of the pressure variation induced by the relative flow and the pressure
contribution due to surface tension. In fact the shape of the bubble is determined by the
mutual balance of those pressures. The Weber number is introduced in the Lagrangian
density as an additional quantity in order to model the flow induced bubble deformations. In
Geurst’s equations (see section 1.6) the fixed streamline contours of the gas bubbles

1) Parts of this chapter were communicated at ICIAM 87, June — July 1987, Paris, France
(see Geurst & Vreenegoor 1987).
1) Hereafter referred to as G (1985a).
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determine the constant value of m (see expression (1.6.28) for m(a)). In the present
formulation bubble deformation effects are taken into account by allowing the virtual-mass
coefficient to depend on the Weber number. As a consequence the critical value ac of the
void fraction at which the virtual-mass coefficient vanishes will also depend on the Weber
number. It is investigated how bubble deformations affect that critical value and how they
influence the phase velocities of the acoustic modes.

The flow equations are subjected to a linear stability analysis. Marginal stability is
investigated by analysing the common solution of two partial differential equations (compare
with the ordinary differential equations (1.6.26) and (1.6.27 ) for m(a)), which in addition
contain derivatives with respect to the Weber number. By considering the limit of
vanishingly small values of the void fraction « the solution is made compatible with the
results known to hold for a separate oblate ellipsoid. At the same time the solution allows
the inclusion of the surface tension energy in a simple way.

The analysis is confined to the one—dimensional non—dissipative behaviour of a bubbly

liquid/gas mixture. A three—dimensional formulation is presented in Chapter V, where also
dissipative effects are included.

2.2 Variational formulation and two—phase flow equations

The derivation of the two—phase flow equations including bubble deformation effects starts
from an extended form of Hamilton’s principle of least action. The derivation proceeds
parallel to Geurst’s approach which is treated in section 1.6. The liquid is considered to be
incompressible, the gas ideal and the flow is assumed to occur at isothermal conditions. The
coalescence and break—up of bubbles are not taken into account. The analysis is confined to
one—dimensional motion for the sake of convenience.

The variational principle reads

to X9
6f atf axi=o0, (2.2.1)
t1 Xy

where L = L(py, p2, 0, uy, uz). The number density of the gas bubbles n is included as an
additional variable. It is related to the void fraction « and the equivalent bubble radius a by
means of
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a=nr, (2.2.2)
where the local average 7 of the bubble volume is defined by

r=3Tas. (2.2.3)

The Lagrangian density L is given by

K = K(py, p2, n, uy, uz) denotes the kinetic energy density of the liquid/gas mixture and
F = F(py, p2) the free energy density. The thermodynamics of the bubbly mixture is
contained in F and is partially treated in section 1.6. An additional relation, convenient for
the present section, is written

o + pape = F + Pg - (2.2.5)

The kinetic energy density K is modified to include the effect of bubble deformation:

K = 5 pud + 5 pau + 5 o, m(c;We) (uz — u))2. (2:2.6)

The virtual-mass effects associated with the relative motion are now represented by the
coefficient m(a,We). That coefficient is allowed to depend not only on the void fraction a
but also on the Weber number We defined by

Py (uz — wy)?
(7/2a)

e (2.2.7)

in order to model the flow induced deformation of the bubbles in addition to their mutual
interaction. The bubble number density n enters the kinetic energy density K as a result of
the fact that the Weber number ‘depends on the equivalent bubble radius a. The surface
tension coefficient is denoted by 7. The Weber number is a ratio of two pressures, viz., the
hydrodynamic pressure variation induced by the relative flow and the pressure contribution
due to surface tension. When the bubbles travel with the liquid the hydrodynamic pressure
of the liquid on the bubbles is nearly constant and the bubbles are spherical with a Weber
number equal to zero. The possible form of the function m(a,We) is investigated in sections
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2.4 and 2.5. It appears that the energy associated with surface tension may be accounted for
by including terms in the mass—coefficient m(a,We) which are inversely proportional to the
Weber number. As a result, the coefficient m(a,We) should not be identified with the
virtual-mass coefficient m(a). In the present case the actual virtual-mass coefficient
m*(c, We) must be defined as (see expression (2.3.16) for the new kinetic energy density K*)

m*=m+ Wemy, , (2.2.8)

where my, . denotes (0/ OWe)m(a,We). As a result of expression (2.2.8) m*(a,We) does not

contain terms which are inversely proportional to the Weber number so that only pure
bubble deformation effects are included in the virtual-mass coefficient. Note that the free
energy density F does not contain any terms related to surface tension. The last term on the
right hand side of (2.2.6), however, may contain all surface tension effects.

The variations in (2.2.1) are restricted by the constraints (1.2.4) and (1.2.5), expressing the
conservation of mass for the liquid and the gas, and by
on

a

Equation (2.2.9) describes the conservation of the number of bubbles in the case where the
coalescence and fragmentation of bubbles are neglected. Equation (1.2.5) and (2.2.9) may be
combined to

3 [
—(pg ) +up—(pg7)=0, (2.2.10)
gt Tkt

where (2.2.2) and (1.2.3) have been used. It expresses that the mass pg7 inside a bubble
remains constant in a frame of reference moving with the bubble velocity us.

When the constraints (1.2.4), (1.2.5) and (2.2.9) are introduced in the variational principle
by means of Lagrange multipliers, the Lagrangian density L is modified into

R 2 .
L=L+_z¢i[£9£-l+-a-(piui)]+/\[@+i(nu2)]. (2.2.11)
=0 L g ax A ox
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Integrating by parts we obtain the equivalent Lagrangian density L* given by

2
L*=L—21pi[a—i+ui§] goi—n[-(—a-+ugi])\. (2.2.12)

The variation applies to the independent variables pi, pz, n, u;, us and the Lagrange
multipliers ¢;, ¢; and A. The variation of the independent variables yields the
Euler—Lagrange equations

1 a a
ﬁplzﬁ-uﬁ—p’:—[a+ulg] =0, (2.2.13)
1 0 i}
0p2 : uz—uz—[——+u2——] w2=0, (2.2.14)
2 o ox
1 We d 0 _
on .—Gpl—n'mwe(UQ—ul)z—[a‘F 112'&] /\—-0, (2215)
bu,: pruy— p, m* (ug —uy) ——pl%& =0, (2.2.16)
X

bug : poug + le* (112-—111) —92%30—2 —HQ= 0. (2.2.17)

X ox

The modified thermodynamic potential ;I'f is defined according to
W=ty (my + e my ) (w—ug?, (2.2.18)

where m  denotes (8/ da)m(a,We). When we compare equations (2.2.16) and (2.2.17) with

Geurst’s (1.6.14) and (1.6.15) it may already be anticipated that m*(a@,We) should be named
the virtual-mass coefficient and not m(a,We).

The total mass velocity u follows by adding (2.2.16) and (2.2.17) and is determined by

pu= 21 piuj=
1=1 i

n Moo
n Mes

p; 201 4 n OX (2.2.19)
0x ox

1
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The total mass density p reads

p=pi+ p2. (2.2.20)

Multiplying (2.2.16) by uy, (2.2.17) by u; and adding the results we obtain

2 2
u: dei o _ 2 . (e Y2
2, prui ox% +nu; ox El piuf + pym* (uz —uy)?. (2.2.21)

When equations (2.2.13)—(2.2.15) are respectively multiplied by p;, p2 and n and the
resulting equations are added, it is derived that

2 .

) pig‘ﬁ+n@+K+F+pg+
ot ot

+ 5o {m+ (1) m_+ (g5 +2) Wemy, } (1-u)?=0, (2.2.22)

where (2.2.21) and (2.2.5) have been used. Equation (2.2.22) constitutes a generalisation of
the Bernoullian theorem, known from the classical hydrodynamics of one—phase fluids.

The equations of motion for the liquid and the gas phase are obtained by eliminating the
Lagrange multipliers. Differentiating (2.2.13) and (2.2.14) with respect to x and using
(2.2.15)—(2.2.17) and the conservation equations (1.2.4), (1.2.5), (2.2.9) and (2.2.10), we
derive the equation of motion for the liquid phase as

P, m* py m*
[ﬁ+u1i]{ul— £ (112—111)}—- ¢ (uz—ul)@+
ot ox P P Ox
ot |
+21 - (2.2.23)
0x

and determine the equation of the gas phase to be
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p m* p m*
[i+u2i]{u2+ ¢ (112—111)}+ ¢ (112—111)@4'
ot Ox P2 P2 ox

*

0 e

1
+ -5 hy T Myye W‘“'”i 7 =0 (2.2:24)

2[5

The modified thermodynamic potential p§ is defined by

0=+ %pev%l—: myy, (12— up)?. (2.2.25)

Equations (2.2.23) and (2.2.24) may also be written

p, m*

p, m*
ﬁ{ul— l (112—111)}+ﬁ{%11%— 111(112—-111)+
ot P ox P1
+ 1 } =0 (2.2.26)
and
py m* p, m*
i{uri- ¢ (uz—ul)}+ﬁ{%u§+ ¢ 112(112—'111)+[1;}+
ot P ox P2
_1, We - 2.@[&]: 2
2. n My, (ug —uy) o P2 0. (2.2.27)

The non—dissipative two-—phase flow of deformable bubbles dispersed in a continuous liquid
is determined by equations (1.2.4), (1.2.5), (2.2.9), (2.2.23) and (2.2.24), which describe the
evolution in time of the independent variables p;, ps, n, u; and up For the sake of
convenience we refer to those equations as model 2. Geurst’s equations (1.2.4), (1.2.5),
(1.6.16) and (1.6.17) are referred to as model 1.

When we compare equations (2.2.23) and (2.2.24) with Geurst’s equations (1.6.16) and
(1.6.17), it becomes clear that m*(a,We) has replaced m(e) and should be identified as the
virtual-mass coefficient. From equation (2.2.26) it is concluded that the equation of motion
for the liquid may be written formally in conservation form. Equation (2.2.27) demonstrates,
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however, that the equation of motion for the gas can not be written in conservation form,
unlike Geurst’s equation (1.6.17). This has some consequences for the application of certain
numerical schemes, as is shown in Chapter IV.

The evolution in time of the difference velocity w = u; —u; is derived by substracting
(2.2.27) and (2.2.26). The result may be written as

2 [{[322 )+ [+ Jouw]

p m* p mt .
+i[{[%+ ¢ ]u1+[%+ ¢ ]uz}(uz—u1)+,u§—#’§]+
Ox P P2
_%Pgwngmwe (uZ—u1)2§ [;‘—2] =0. (2.2.28)

2.3 Conservation equations: the Clebsch—Bateman principle

The conservation equations for energy and linear momentum may be derived by means of
Noether’s first invariance theorem (see G 1985a and Logan 1977). It will be obvious that
those equations may also be obtained from the Euler—Lagrange equations (2.2.13)—(2.2.17)
though it takes a lot more effort this way. For completeness we give the main results of the
invariance theorem.

When a Lagrangian density L depends on the field quantities %, with the subscript o

belonging to a finite discrete set, the conservation of energy is expressed by

at  Ox

with the energy density H and the energy flux Q given by
oL Y,

H= — -L 2.3.2
(2,3(311)0/50 ot (232
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and

o B,

_2 N TRTS e (2.3.3)

The equation for the conservation of linear momentum is written

op + o _ 0, (2.3.4)

gt  ox

where the momentum density P and the momentum flux II are determined by

61/}6

- (2.3.5
z s X0Ys/0t) ox )

and
Mo L 2.3.6
T=-1 SonTom 5 %4,/ 6x) o (23

In our theory of bubbly two—phase flow {1} represents the set {p1, p2, n, uy, uz}. Noether’s

theorem is most readily applied to the Lagrangian density L* given by (2.2.12). The energy
density H follows as

2 .
H=-3 p 90 _n 00 _p*
=1t ot

=K+ F+ Py We Mye (ug —uy)? (2.3.7)

with the use of (2.2.16) and (2.2.17). The energy flux Q is determined by
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2 .
Q=-3 pu; %y, A

i=1 I o

p, m*

=plul{%u€— ul(ug—u1)+,uj}+

P

py m*
+P2u2{%u§+ ¢
P2

us (uz —uy) + 42 } , (2.3.8)

where now the Euler—Lagrange equations (2.2.13)—(2.2.17) have been used. The total
momentum density P follows from (2.3.5) as

P=

i

i Do
ot
>

- 2
pi Q‘&_‘_ N —— = E Pilli = p u ; (239)
1 8x ox !

while the momentum flux II reads

piuig‘ﬁi+an6_)‘+L*

0x Ox

=

".MM

i=1

2
=2 piui + pym* (uz—u;)2 +p. (2.3.10)

The hydrodynamic pressure p of the bubbly liquid/gas mixture is defined by
W
p=py+gpp{m+ (1ma) my+ Fomye ) (m2—w)?. (23.11)

Equations (2.3.7)—(2.3.11) are a generalisation of Geurst’s equations (1.6.20)—(1.6.24) (see
section 1.6). The form of the momentum flux IT again determines the pressure p. Rewriting
expression (2.2.12) for L* by means of the Euler—Lagrange equations yields

p=L" (2.3.12)

Similar to the results of section 1.6, the present variational principle also constitutes a
Clebsch—Bateman principle.




—35—

A somewhat unexpected difference with Geurst’s results is governed by equation (2.3.7) for
the total energy demsity H. Obviously, H does not equal the sum of the kinetic and free
energy densities K and F. That discrepancy may be solved, however, by introducing a new
kinetic energy density K* and a new free energy density F* according to

H=K"+F*", L=K"-F*. (2.3.13)
From (2.3.13), (2.3.7) and (2.2.4) it is derived that

K*=K+ %pz We myy (uz —uy)? (2.3.14)

and

F* = F + 5 p, Wemy,, (12— u)2. (2.3.15)

Combining (2.3.14) and (2.2.6) we have

K* — % Plu% + %pzug + %pf m* (112 — u1)2 . (2316)

Clearly, m*(a,We) should be identified as the virtual-mass coefficient. The redefinition of K
and F transports the energy associated with surface tension from the kinetic to the free
energy density. That energy may be included in m(a,We) by means of terms which are
inversely proportional to the Weber number (see section 2.5). As a result, the new kinetic
energy density K* is allowed to depend only on those surface tension effects which change
the kinetic energy due to the deformations of the bubbles. Note that the last term on the
right hand side of (2.3.7) is invariant with respect to a Galilean transformation and may be
attributed to the kinetic as well as the free energy density.

It follows from (2.3.11), (2.3.14) and (2.3.15) that the Bernoullian theorem (2.2.22) may be
written in the form

2 .
$ 092 0 K P pp=0. (2.3.17)
=Bt ot

i

Compared to (2.2.22), equation (2.3.17) may be recognised more easily as a generalisation of
the Bernoullian theorem valid for classical fluids.
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2.4 Linear stability analysis

In order to investigate the linear stability of the evolution equations (1.2.4), (1.2.5), (2.2.9),
(2.2.23) and (2.2.24) we write the field quantities py, ps, n, uy, ug in the form

u(x,t) = uo + 4 exp{i(wt—kx)} . (2.4.1)
The steady—state value u, is constant and 4 represents the amplitude of a small perturbation
of the steady state. Products of perturbations in the evolution equations are neglected. When
the velocity perturbations 1, and i, are eliminated by means of the mass balance equations
(1.2.4) and (1.2.5) we arrive at the following system of linearised equations:

anprt+app2=0,

aznp1+anp2=0, (2.4.2)

y p? -y n=0 3

where

— 1 5 2
a“_{1+1—_am+T—_awemWe+ﬁwe2mWeWe}y2+

2 2+16a
+2wo{1+—1_—am+ma+mWemWe+WemaWe+

1+5a 9
+ 3a{1-0a) We MyweWe ty+
2 3 —1+14a+50a? 1-a
+W°{1+mm+2ma+ 9ai(1-a) WemWe+Tmaa+
1+5a 1+10a+25a2
+ 3a We maWe + 18a2( 1-0) We? MyweWe 3+

-RIple, (2.4.3)
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_ 1 5 2
ap=—{ygm+ g Wemy, + 15 Welmy o }y2 +

1 2411la :
—wo{l_ m+m +3—(—maWem +WemaWe+

1+4a
+ 3a{1-q) We? My eWe }y+

2 1+1la 1 14+5a
+w°{T8_(T_)a We m e+6Wemawe+-I-8—(—1—)—a WeszeWe}+
RT
-Rrs, (2.4.4)
1-a
ag = Ba a2, (2.4.5)

a.22=ylc—v{ﬁa+m+5WemWe+2We2mWeWe}y2+

1 10 2
_ZJEW“{2m+TwemWe+§WeszeWe}y+

1 9,2 1 RT
+ ga Wo { gWemy, + g Welmy wo }—Jr (2.4.6)

and

=
1l

5= DL 5, = P2
P10’ P2= Da0) (2.47)

Zl=

The Doppler—shifted phase velocity y and the unperturbed difference velocity wg are given
by

y=F-Uno, (2.4.8)
Wo = Uz,0 — Up0 - (2.4.9)
The zero subscripts denoting the unperturbed steady—state values of @ and We have been
deleted in the expressions (2.4.3)—(2.4.6) for the sake of convenience. The quantity £ is

defined by

g =En0 (2.4.10)
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The velocity perturbations are determined by
U =(y+wo)p (2.4.11)

and

Uy =y p2. (2.4.12)

The system (2.4.2) of linear equations admits a non—trivial solution if and only if the
determinant of the coefficient matrix vanishes. That condition yields the dispersion equation,
which is written

y (amrag—apax)=0. (2.4.13)

Obviously, it is a fifth degree algebraic equation in y. It determines the phase velocities of
the linear modes. The uniform solution of the system of partial differential equations is
linearly unstable when the dispersion equation contains complex conjugate roots. We
therefore consider the discriminant Dy of the equation (2.4.13). It is shown in section 1.6
that when bubble deformation effects are not included D¢ vanishes for a specific form of the
virtual-mass coefficient m(a) (see expression (1.6.28)). When the virtual mass of the
bubbles is neglected, Dy becomes negative, the dispersion equation possesses complex roots
and the steady—state solution is unstable. We now investigate what form of m(a,We) might
correspond to marginal stability (Do = 0).

By substituting the coefficients asj, (i,j=1,2), into equation (2.4.13) the dispersion equation
takes the form

4
y L ckyk=0. (2.4.14)

The discriminant D of the fourth order equation which is multiplied by y in (2.4.14) is
determined by the coefficients cy, (k=1,...,4). We analyse the discriminant for small values
of wo by writing it as a power series expansion in the difference velocity. From the theory of
fourth degree algebraic equations (see e.g. Turnbull 1944) it follows that the leading term in
the expansion of the discriminant is determined by the coefficients ¢, and c,, which are given
by
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1= -2 BT PDV, wo + O(w))

and

co= — BT PDVo wi + O(wl) .

The partial differential equations PDV; and PDV read

_ da—1 1 To—1 1
PDV1—1+mm+ama+a = Wemwe+aWemWea+

2
+ a(1—-a) We? MywewWe

and

3

- 7 1-a
PDVy = 1+1—_—am+2ma+ﬁWemWe+Tmaa+2WemWea+

2 2
*1a We Mywewe .
The structure of the discriminant may be written

Do = g(a,We;f) { h(a,We;8) PDVy— (PDV,)2 } wi + O(w}) ,

(2.4.15)

(2.4.16)

(2.4.17)

(2.4.18)

(2.4.19)

where the functions g(-) and h(-) depend additionally on the parameter §. As a consequence,

the discriminant vanishes for small relative velocities wo independently of the value of g if

and only if the partial differential equations PDV, and PDV, for m(a,We) satisfy

PDV =0 and PDVy=0.

(2.4.20)

Note that m(a,We) does not depend on (. By introducing the function f(a,We) which is

related to m(a,We) according to

m(a,We) = a (1—a) f(,We) ,

(2.4.21)



— 40 —

(2.4.20) may be shown to be equivalent to the two partial differential equations
(1—a)We f o +2 Weldyy o + 5 Wely + (1-a)f +f+1=0, (2.4.22)
1
5 (1-a) {0t (20-1) We f p, — 2 We? fwewe — 3 Wefy, =0. (2.4.23)

A common solution of (2.4.22) and (2.4.23) would yield marginal stability for small relative
velocities wy,. We investigate the common solution by introducing the characteristic
coordinates (7,p) of equation (2.4.22) by means of

n= We (1—&)2 )
(2.4.24)
p=1-q.
The equations (2.4.22) and (2.4.23) are now transformed into

f f —qpf —f-1= 4.
en ntp+‘p<,0 nt, 1=0, (2.4.25)

Py - 1 -

f, —nf 2(l-p)f = 4.
nefp,—ni,+5¢(1-0)f,,=0, (2.4.26)

where f(n,tp) denotes the function f expressed in characteristic coordinates. The equation
(2.4.25) may be solved exactly according to

f(me) = ¢ C(n) + %D(so) -1, (2.4.27)

where C(7n) and D(¢) are unknown functions of the characteristic coordinates n and ¢.
Substitution of (2.4.27) in (2.4.26) yields an ordinary differential equation for D(¢), viz.,

d?’D dD 1
—— + =D =0. (2.4.28)
de? de¢ ¢

5 ¢ (1-9)

The general solution of (2.4.28) reads

D(¢) = Ay+ B, (2.4.29)
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where A and B are unknown constants. The common solution of the two partial differential
equations (2.4.25) and (2.4.26) is accordingly determined by

f(n,¢)=¢0(n)+%(A¢+BT§¢)-1. (2.4.30)

Combining (2.4.21), (2.4.24) and (2.4.30) we conclude that steady two—phase flow is
marginally stable for small relative velocities wy if and only if the function m(a, We) satisfies

m(a,We) = a(1-a){ (1-a) C(We(1-0)?) + yrari=gy (A + By-13. (2.4.31)

The virtual-mass coefficient m*(a,We) follows by means of (2.2.8) as

m*(a,We) = a (1-a) { (1-a) E(We(1-a)2) — 1}, (2.4.32)
where
E(n) = g5 (1C(n)) . (24.33)

By making the substitution

E(n) =1+ %ﬁl(n) (2.4.34)

we may write the virtual-mass coefficient as

m+(a,We) = 3 & (1-a) { i — (+2) a }, (2.4.35)

where 1 is a function of 7= We(l—a)2. When we compare the virtual-mass coefficient
m*(a,We) given by (2.4.35) with Geurst’s virtual-mass coefficient m(a) given by (1.6.28), it
becomes clear that the inclusion of bubble deformation effects replaced the constant m by a
function m(n) which depends on the Weber number through the quantity 7.

Substitution of expression (2.4.31) for m(a,We) in the coefficients ajj, (i,j=1,2), and writing
out the determinant given by (2.4.14) reveals that the higher order terms in wo which occur
in the coefficients c¢; and co vanish as well. We may therefore conclude that expression
(2.4.31) for m(a,We) implies marginal stability of uniform bubbly two—phase flow without
any further restrictions on the physical variables. The coinciding roots y = 0 correspond to
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wave velocities equal to the gas velocity u;. They may be partly associated with
concentration waves, or void—fraction waves. In practice concentration waves are observed to
travel with a velocity lying between the liquid and the gas velocity but with a distinct
preference for the gas velocity (see G 1985a and the references contained therein).
Void—fraction waves will be treated extensively in Chapter III.

It follows from the dispersion equation (2.4.14) that expression (2.4.31) for m(a,We) makes
the bubble velocity us a triple root. The additional third root already anticipated by
equation (2.2.10) may be defined as a bubble—size wave. That wave was first mentioned by
Geurst in a private communication to the author. It is also discussed by Chaabane (1989).
The quantities which vary in a bubble—size wave are the bubble radius a, or the bubble
volume 7, the number density n and the gas pressure pg. They vary in such a way that the
variation of the gas pressure pg equals the pressure jump 2+v/a due to surface tension. Since
the void fraction is kept constant, the wave may consist of transitions from a large
concentration of small bubbles with a relatively high gas pressure to a small concentration of
large bubbles with a relatively low gas pressure.

The unknown constants A and B and the unknown function C(-) which appear in expression
(2.4.31) for m(a,We) are determined in the following section by considering the limiting case
a - 0 (a separate deformable bubble). In section 2.6 formulas are presented which determine
the velocity of propagation of the acoustic modes including bubble deformation effects.

2.5 Adjustment of the flow equations to the dynamics of a separate deformable bubble

The evolution in time of the five quantities p;, p2, n, u; and u, described by model 2 still
depends on the form of the mass coefficients m(o,We) and m*(a,We) which are related by
means of (2.2.8). The requirement of marginal stability of model 2 determines m(a,We) and
m*(a,We) as functions of @ and We which still contain two unknown constants A and B and
an unknown function C(7), where n = We(1—a)2. It is shown in the present section that C(n)
may be determined by considering the limiting behaviour of the virtual-mass coefficient
m*(a,We) at small values of the void fraction a and using the results known to hold for a
separate deformable bubble. The constants A and B may be determined by including the
energy associated with surface tension.

First, however, the requirement of marginal stability needs some elucidation. It is still
unclear why model 1 (Geurst’s equations treated in section 1.6) and model 2 (present
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chapter) should be marginally stable. A physical interpretation must justify that choice. The
first physical support to the choice of marginal stability is given by the void—fraction waves.
As is already mentioned in the previous section those waves are observed to travel with a
velocity close to the velocity of the gas bubbles. Since only one type of concentration wave is
observed, the roots necessarily have to coincide which results in marginal stability. An
exception to that situation form the experiments by Bouré (1988) who reports at high void
fractions two types of concentration waves with distinct velocities of propagation. At low
void fractions one mode is absent. Those results, however, may still be very well in
accordance with our models since model 1 and model 2 do not include any dissipative
(viscosity) or dispersive (high gradients, bubble pulsations) effects. Obviously, the inclusion
of those effects present in most practical situations will make the coinciding roots split. The
influence of those effects on the coinciding root us still remains to be investigated.

A second physical support to the choice of marginal stability follows from a consideration of
the distribution of the bubbles. The distribution of the bubbles influences the bubble
interactions and therefore determines the coefficients of the higher order terms in « that
appear in the virtual-mass coefficient. A random distribution is unstable, as is mentioned in
section 1.7 and demonstrated by figure 4.3.2.1 (Chapter IV). A well-stirred bubbly mixture
will therefore leave that distribution and will strive for a stable situation. Coming from an
unstable region the first stable distribution the mixture encounters is the marginally stable
situation. As soon as the mixture finds itself in that situation there is no reason for further
changing the obtained equilibrium. Obviously, the fixed expression for the virtual-mass
coefficient (1.6.28) implies that the distribution of the bubbles adopts the state of
equilibrium instantaneously when the flow is subjected to some changes. In practice,
however, the distribution of the bubbles is a dynamically determined quantity whose state of
equilibrium will be disturbed by changes in the flow. In Chapter IV the coefficients of the
higher order terms in o are perturbed to investigate the influence of the form of m(a) close
to marginal stability on the roots of the dispersion equation. Geurst (1988) demonstrates
how the virtual-mass coefficient may be included as an independent variable in model 2.
That formulation may be used for a systematic inclusion of terms which account for
perturbations from the marginally stable state.

We now come to the full determination of the coefficients m(a,We) and m=*(a,We). For
small values of the void fraction expression (2.4.35) for the virtual-mass coefficient

m*(a,We) may be written as

m*(a,We) = 5 a m(We) + O(e?) . (2.5.1)
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The term (1/2)m(We) represents the virtual-mass coefficient taken per unit volume of gas
in a dilute dispersion of bubbles in liquid. Clearly, interaction effects are neglected. Some
information concerning the function m(We) might therefore be obtained by considering the
inertial properties of the separate gas bubbles moving through the liquid. When the bubbles
are spherical, for example, the Weber number is zero and m(0) must be equal to one.

We consider a separate deformable gas bubble moving through an infinite liquid with a
relative velocity U. Its Weber number We is defined according to

. p, U2
We = ¢ .
/2 a

(2.5.2)

Moore (1965) mentions that for a Weber number We = O(1) it is a fair approximation to
assume that the bubble is an oblate ellipsoid. The virtual-mass coefficient (1/2)h of an
oblate ellipsoid is given by (see Lamb 1945)

tan z — 2

1.
M= —sinz cos z°’ (2.5.3)

where z = cos~{(q/r) and q/r denotes the ratio of the length of the parallel axis to the length
of the cross—stream axis of the ellipsoid. Moore (1965) presents the following approximation
of the associated Weber number:

We=4§cos z (14 cos2z—2cosdz )i S;‘;nﬁ ;08 Z)e, (2.5.4)

With the use of the Computer—Algebra system Macsyma (1985) relations (2.5.3) and (2.5.4)
were combined to derive the first five terms of a Taylor series expansion of m around
We =0, i.e.,

4 . v
m=1+ k!_:lbk Wek + O(Wes) . (2.5.5)

The exact values of the coefficients by, (k=1,...,4), are given in the appendix. A numerical
approximation reads

b, = .17, by = .34 x 101,
(2.5.6)
by = .73 x 102, by = .16 x 102
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For completeness we mention that Benjamin (1987) gives an approximation of the Weber
number We which is slightly more accurate than (2.5.4), viz.,

' _ __dcosz (z -sinzcos z )2
We = 53 z(z (3 + tan? z) - 3 tan z ){6+4tan2z+

4 —cos? z 1 4 sin 2z
-—mz =)} (2.5.7)

A numerical comparison of (2.5.4) and (2.5.7) demonstrated only small differences. For
reasons of simplicity we used expression (2.5.4).

In a dilute dispersion of gas bubbles in liquid the kinetic energies associated with the motions
of the separate gas bubbles may be added, because interaction effects between the bubbles
are negligible. When it is assumed that the velocities of the gas bubbles relative to the liquid
are nearly equal, the virtual masses of the separate bubbles may be added also. We therefore
infer from (2.2.7), (2.5.2) and (2.5.5) that

4
i(We) = 1 + 3 bi Wek + O(Wes) . (2.5.8)

It has been assumed that the diameters of the gas bubbles are nearly equal. It follows from
(2.4.33), (2.4.34) and (2.5.8) that

Co

1 & b
C(n = 5t 5(3+ k§1 ﬂ“—l 7% ) + O(n%) , (2.5.9)

where Cy is an unknown constant. According to (2.4.30) the constant Co, may be taken equal
to zero without affecting the generality of the expression for f(n,9).

The terms in the expression (2.4.31) for m(a,We) that contain the constants A and B are
inversely proportional to the Weber number We. As a result, they contribute to the free
energy density F*, but not to the kinetic energy density K*. Those terms may be used to
take into account the surface tension energy F'y which was not included in the free energy

density F.

In the limit We - 0, the gas bubbles have a spherical shape. The surface tension energy F’Y is

accordingly given by
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Ey=n74m2=%?. (2.5.10)

According to (2.3.15), (2.4.31) and (2.5.9) (Co = 0) the difference of the free energy densities
F* and F is determined by

F*-F= %pZWe Myye (uz — uy)?
=deg A B kbi(1-a)t We2 + O(Wes) } . (2.5.11)
Taking the limit We - 0 and comparing with (2.5.10) we derive that
, B=0. (2.5.12)
The final expressions for m(o,We) and the virtual-mass coefficient m*(a,We) follow from
(2.4.31) and (2.4.35), where the function C(#) is given by (2.5.9) (Co = 0), the constants A

and B are given by (2.5.12) and the function f(#) is determined by (2.5.8). The expressions
read

4
m(a,We) = g a (1-a){ 1-3a + 3 Pk (1-a)1 Wek } +

— 1284 o(Wes) (2.5.13)

and
4
m+(a,We) = 5 a (1-a){ 1 - 3a + 2 bic (1—a)k*t Wek } + O(Wes) (2.5.14)

and account for the microscopic behaviour of deformable bubbles. When the Weber number
approaches the value three the rectilinear motion of deformed bubbles becomes unstable (see
van Bekkum 1985 and Benjamin 1987). As a result Moore’s (1965) approximation (2.5.4) is
no more valid there. The expressions (2.5.13) and (2.5.14) for m(a,We) and m*(a,We)
should therefore only be used for Weber numbers smaller than, approximately, three.

Substitution of (2.5.13) in expression (2.3.11) for the hydrodynamic pressure p shows that
the term —12a/We yields the well-known pressure difference —2+v/a associated with surface
tension.
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2.6 Acoustic modes and breakdown of bubbly flow

In section 2.4 it is mentioned that expression (2.4.31) for m(a,We) makes the coefficients ¢,
and co of the dispersion equation (2.4.14) vanish. In the case of marginal stability the
dispersion equation may therefore be written as

(ap+a;y+azy?)y?=0. (2.6.1)

In a first order approximation with respect to the Weber number the coefficients aj,
(i=0,1,2), are given by

1

ag=—=
0 a

{ 3w (= 11 + 5 (1) Wel? +

+ (B 8- 3 (1 + gy (1-0)* We?)w?] »

28+ 1+ B (1-0)2 We] } + O(We?) (2.6.2)
ai=28(3 + g5 (1-a)2 We ) (1-a) w + % (1-a)? We w +

+ O(We2) , (2.6.3)

a2=1—3a+T86%(1—a)3We+ﬂ(2+3a+1—86%a(1—a)2We)+

+ O(We?) . (2.6.4)

The exact value b; = 27/160 (see the appendix) has been used and for the sake of
convenience the subscript zero has been omitted. The acoustic phase velocities follow from
the solution of the quadratic equation which makes part of (2.6.1). The Doppler—shifted
phase velocity y is expressed by (2.4.8). When the terms depending on the Weber number
are omitted in (2.6.2)—(2.6.4), expression (6.16) derived by G (1985a, p. 253) is recovered.
Due to the fact that a;# 0 the acoustic phase velocities are not symmetrically centered
around the gas velocity u,, unless the difference velocity w vanishes. When bubble
deformations are not taken into account that effect is small since § = pg/peg 10-3. It will be

clear that the value of the void fraction for which a; becomes zero and the acoustic velocities
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become infinite increases as a result of the inclusion of bubble deformation effects. In
addition it may be inferred from the relations (2.6.1) to (2.6.4) that the acoustic waves
travel slower when the deformation of the bubbles is accounted for. The behaviour of
acoustic waves travelling through a mixture of deformable bubbles is further demonstrated
in the numerical experiments presented in Chapter IV.

In section 1.6 a breakdown of bubbly flow is associated with the vanishing of the
virtual-mass coefficient. Model 1 predicts such a breakdown to occur at a critical void
fraction ac = 1/3 in the case of spherical bubbles. We now investigate the influence of
bubble deformation on the critical void fraction by analysing for which values of a the
virtual-mass coefficient m*(a,We) vanishes.

Expression (2.5.14) for m*(a,We) relates the critical void fraction o, and the Weber number
by means of

4
1-3ac+ 3 by (l-ac)k+t Wek =0 (2.6.5)

For small Weber numbers it is deduced from (2.6.5) that

ac = 3+ g5 We + gooqp We? + O(We?) , (2.6.6)

where the exact values for b; and b, (see the appendix) are substituted. The breakdown of
bubbly flow is therefore shifted to larger values of the void fraction in cases where the gas
bubbles are deformed by the flow as a result of a finite value of the surface tension coefficient
4. A numerical treatment of expression (2.6.5) presents ac as a function of the Weber
number We in figure 2.6.1. The figure shows that breakdown may occur at void fractions
varying from 1/3 to .4, depending on the value of the Weber number. This result is
supported experimentally by Matuszkiewicz et al. (1987), who observe bubble—slug flow
pattern transitions at void fractions varying from .3 to .45.

In a first order approximation in the Weber number the coefficient a, (equation (2.6.4))
which occurs in the denominator of the acoustic phase velocities becomes equal to

a2= 75 We + (3 + g We ) + O(We?) (2.6.7)
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at the critical void fraction o given by (2.6.6). As a consequence the value of a, is small
when breakdown occurs and the acoustic velocities will be large. For Weber numbers of order
one it is seen, however, that bubble deformation effects become dominant in expression
(2.6.7) and tend to decrease the acoustic phase velocities in the region of breakdown.

.39 1

371

.35

.33 ; r We

Figure 2.6.1 The critical void—fraction a¢ as a function of the Weber number We.

2.7 Conclusions

The variational principle presented by G (1985a) (see section 1.6) is extended to include
bubble deformation effects and surface tension energy by introducing the Weber number as
an additional quantity. The inclusion of the equation which expresses the conservation of the
number of bubbles introduces a new type of wave, viz., a bubble—size wave. The equations of
motion are systematically derived from the extended variational principle. The expression
for the total energy density H obtained from Noether’s first invariance theorem suggests a
redefinition of the kinetic and free energy densities. As a result, the surface tension energy is
moved from the kinetic energy density to the free energy density. The variational principle
may be given the form of a Clebsch—Bateman principle.
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A linear stability analysis shows that marginal stability is achieved if and only if the mass
coefficient m(a,We) takes a specific form, which also determines the virtual-mass coefficient
m*(a,We). A few physical arguments are given motivating the requirement of marginal
stability. At marginal stability three roots of the characteristic (dispersion) equation become
equal to the velocity u, of the gas bubbles. One of these roots is related to a bubble—size
wave, the other two roots may be associated with a concentration wave. Expressions for the
acoustic phase velocities are presented which depend on the Weber number. All roots of the
characteristic equation are real.

The virtual—-mass coefficient m*(a,We) is adjusted to the dynamics of a separate deformable
bubble. The surface tension energy is included by means of the mass coefficient m(a,We).
The value of the void fraction at which breakdown occurs becomes dependent on the Weber
number. The transition from bubble to slug flow may now occur at void fractions varying
from 1/3 to .4, which is physically more acceptable than the fixed value for o in the case of
model 1. The values of a. are in agreement with experiments.

The flow equations presented in the present chapter include the microscopic properties of
bubbly two—phase flow with greater detail than the models treated in the introductory
chapter. Several physical effects are included which are not accounted for in the major part
of the models presented in the literature. The use of variational techniques enabled a reliable
and systematical refinement of Geurst’s model treated in section 1.6.
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Appendix

The exact values of the coefficients by, (k=1,...,4), which appear in expression (2.5.5) for m
read

o7 48519
b= 155 b2 = 1733500 °
(2.A.1)
ba = 6727941 ba = 59439630519
3 = 91750400 ° 4= 38171

The values follow from expressions (2.5.3) and (2.5.4) and are determined with the use of the
Computer—Algebra system Macsyma, (1985).
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CHAPTERIII

NONLINEAR VOID-FRACTION WAVES
IN BUBBLY TWO-PHASE FLOW 1)

3.1 Introduction

The stability of two—phase flow of bubbly liquid/gas mixtures constitutes a wellknown
theoretical problem (see the review article by Drew (1983)). Although the introduction of
virtual-mass terms may have some stabilising effect (see Lahey et al. (1980)), two—phase
flow computations are usually faced with unwanted instabilities. The occurrence of the
instabilities is associated with the fact that the equations possess two characteristics, that
are complex conjugate.

In a recent paper (Geurst (1985a)i)) the stability problem was reconsidered. It was shown
after an extensive and detailed analysis that marginal stability of two—phase bubbly flow can
be achieved by means of a proper choice of the virtual-mass coefficient m(a) as a function of
the void fraction a. At marginal stability the two complex conjugate roots become real. In
the case of spherical bubbles the functional dependence is given by

m(a) = 3 & (1— a) (1 -30). (3.1.1)

The unwanted instability concerns a linear mode which is allowed by the equations in
addition to the acoustic mode. When the additional mode is marginally stabilised by means
of (3.1.1), it contains a void—raction wave propagating with the drift velocity of the gas
bubbles. The gas density and the drift velocity of the gas bubbles are not perturbed by the
linear void—fraction wave. Since the bubble concentration varies while the bubble size
remains constant, void—fraction waves are sometimes called concentration waves.

1) Published in ZAMP (with the ezception of sections 3.5 and 3.6). See Geurst & Vreenegoor
(1988).
1) Hereafter referred to as G (1985a).
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The analysis in G (1985a) is confined to linear modes and linear stability. In the present
chapter non—linear void—fraction waves are introduced. They are characterised by the
property that the gas density and the drift velocity of the gas bubbles remain constant. It is
demonstrated that nonlinear void—fraction waves constitute exact solutions of the two—phase
flow equations, when the virtual-mass coefficient is given by (3.1.1). It is shown at the same
time that the validity of (3.1.1) is not only a sufficient but also a necessary condition for the
possibility of nonlinear void—fraction waves. A remarkable and non—trivial result is that the
greater part of the physical quantities associated with a nonlinear void—fraction wave is a
linear function of the void fraction. The analysis suggests a particular form of Hamilton’s
variational principle.

Dissipative effects are not considered in the present chapter. They may be introduced in a
systematic way according to the thermodynamics of irreversible processes (see the appendix
of G (1985a) and Chapter V).

Void—{raction waves are observed experimentally. Some recent experimental results are
reported in Matuszkiewicz et al. (1987).

3.2 Inviscid two—phase bubbly flow

The equations governing the two—phase flow of a bubbly liquid/gas mixture were derived in
G (1985a) by using variational methods. Starting point of the derivations was an extended
form of Hamilton’s variational principle of least action. The two—phase flow equations are
presented here briefly (see also Geurst (1986)1) and section 1.6 of Chapter I).

The bubbly liquid/gas mixture is composed of a continuous phase, the liquid phase with
constant density Py s and a discrete phase, the gas phase (density pg » pressure pg) which

obeys the ideal gas law. The void fraction or volume density of the gas phase is denoted by
a. The flow is assumed to proceed isothermally. That assumption is usually made in cases,
where mass exchange between the two phase may be neglected (see e.g. Drew (1983)). For
the sake of convenience the analysis is restricted to one—dimensional flow. The effects of
~gravity and viscosity are disregarded. When the reduced densities p; and p; are introduced
according to

1) Hereafter referred to as G (1986).
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pL=1py 1-a), py=pg @, (3.2.1)

the conservation of mass for the liquid and the gas are expressed by

%% + fx- (prug) =0 (32.2)
and

9p2 4 9 (puy)=0. (3.2.3)

o Ox

Here, u; and u; denote the mass averaged velocities of, respectively, the liquid and the gas
phase.

The Euler—Lagrange equations obtained by means of the variational approach are given by
the two Bernoulli equations

[i+u1i] <p1+,u1+%m’(a)(u2—u1)2—%u'f:0 (3.2.4)
ot Ox
and
[_8_+112_a.] ¢2+u2—%u§=0, (325)
at ox

and the two equations expressing the velocities u; and us in terms of the potentials ¢, and

P2, ViZ.,
py m(a)
I (13— uy) = 921 (3.2.6)
p1 Ox
and
py m(a)
wp+ L (uy—uy) = Y2 (3.2.7)
P2 0x

Note that m’(a) denotes (d/da)m(a).



The thermodynamic potentials , and u, are defined by

dF = p;dpy + pe2dp2, (3.2.8)

where F denotes the free energy density. The virtual-mass coefficient m(a) is introduced by
means of the expression for the total kinetic energy K, viz.,

K = % pu? + %pzug + %pl m(a) (ug —uy)?. (3.2.9)

The first two terms at the right—hand side of (3.2.9) represent the kinetic energy densities
connected with the motion of the local centres of mass of the liquid and the gas. The last
term, which contains the virtual-mass coefficient, takes account of the kinetic energy
associated with the local backflow around the gas bubbles in the case, where the drift
velocity of the bubbles relative to the liquid does not vanish. Some useful thermodynamic
relations are

d}.l«l = gEg : d,u.z = QEE (3.2.10)
Py Pg
and
Py + papa = F + Pg - (3.2.11)

The surface energy of the gas bubbles may be added to the free energy density F.

Eliminating the potentials ¢; and ¢, in the equations (3.2.4) to (3.2.7) we obtain the
following equations of motion for the liquid and the gas phase:

[—@-'Ful%]{ux—f%(la)(ﬂz—ul)}—%}la)(uz—m)%*‘

+ L (g (@uruyy = -5 B (3212)

and
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=—1%¢g, (3.2.13)

The generalised momenta per unit mass 7, and 7, are given by (see G (1986))

p, m(a)
1 =u;— i—-—— (l.l2 b 111) (3214)
P1
and
p, m(a)
o= g 4+ L (ur—uy) . (3.2.15)
P2

The mass—conservation equations (3.2.2) and (3.2.3) and the equations of motion (3.2.12)
and (3.2.13) constitute a complete set of four evolution equations for the determination of p;,
pa, Uy and u» as functions of position and time.

The equation for the conservation of momentum is given by

o o_ g (3.2.16)

Jt  0x
where the momentum density P and the momentum flux II are determined, respectively, by

P = pu; + pous (8.2.17)
and

II = puui + p2u} + p, m(a)(uz —u)2+p. (3.2.18)
The pressure p is given by

p=pg+5py{m(e) + (1-0) m'(a) } (wa—u)2. (32.19)
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The equation expressing the conservation of energy reads

9,0 _o, (3.2.20)
ot Ox

where the energy density H and the energy flux Q are determined, respectively, by

H=K+F (3.2.21)
and
py m(a)
Q = pu,y { %uf—z—-"ul (w2 — i) + p + %n“'(&)(uz—ul)2 } +
Pt
py m(a)
+ paug { %ug + —Z——— U2 (u2 - 111) + w2 } . (3.2.22)
P2

The following relations may be helpful for deriving (3.2.16) and (3.2.20) from (3.2.2), (3.2.3),
(3.2.12) and (3.2.13):

dP = mydps + m2dp2 + p1 dmy + pa dme (3.2.23)

and
dH = { u; w,—%u% + py+ %m’(a)(ug—ul)2 }dpr +

+ {112 7(2—%11§+/1,2}d,02+p1111 dmy + pous d7y . (3.2.24)




3.3 Nonlinear void—fraction waves

A nonlinear void—fraction wave propagating in an otherwise undisturbed two—phase medium
may be characterised by the following two properties:

(1) the gas density pg is constant;
(i1)  the drift velocity us of the gas bubbles is constant.

The analysis in G (1985a) shows that linear void—fraction waves satisfy those requirements.
The definition of a non—linear concentration wave according to (i) and (ii) seems therefore
justified. Since the flow is assumed to proceed isothermally, the gas pressure is constant.

The following remark may illustrate the concept of a void—fraction wave. When a bubbly
liquid\gas mixture is at rest and the volumes of the bubbles are constant, the liquid and the
gas bubbles may be rearranged in an arbitrary way without changing the value of the free
energy of the bubbly liquid\gas mixture. The rearrangement of the bubbles accordingly does
not induce any dynamical effect. When considered macroscopically an inhomogeneous
arrangement of bubbles constitutes a void—fraction wave. The void—raction wave in this
case does not propagate, since the medium is at rest.

It follows from (3.2.3) that for a nonlinear void—fraction wave in general
a=1f(x—-uzt). (3.3.1)
The functional dependence (3.3.1) expresses that the void—fraction wave propagates with the

gas velocity u,. It is derived from the mass—conservation equation (3.2.2) for the liquid phase
that

U, =u,— . , (3.3.2)
- a

where c is a constant velocity. It is immediately inferred from the Euler—Lagrange equations
(3.2.4) to (3.2.7) that the potentials ;, (i = 1, 2), should take the form

Y= ,Bit —vx+ [pi(x — U2 t) ’ (1 =1, 2)} (333)

where f; and v; represent unknown constants.
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By using (3.3.2), (3.3.3) and the equations (3.2.6) and (3.2.7), the Bernoulli equations (3.2.4)

and (3.2.5) may be reduced to
1

m(a) c? 1

p,1+-[1+2 +m'(a)]—-—u§+c1=0 (3.3.4)
2 1 -« (1 -a? 2
and
1 5 _
pa—zu;+c2=0, (3.3.5)
where
¢i=fi-uwvi, (i=1,2). (3.3.6)

Note that according to (3.2.10) the thermodynamic potentials y; and u; depend only on Pg-
The equation (3.3.5) determines the value of c;. The equation (3.3.4) can be satisfied if and
only if the second term at the left—hand side takes a constant value, i.e.,

1
~[1+2
2

1 1
m’ ———=-(m + 2 3.3.7
(o) | o= @), (33.)

m(a)

1 - «a

where m is a constant. The expression for the constant at the right—hand side of (3.3.7) has
been chosen in such a way that the final result (3.3.11) conforms to the notation in
G (1985a). When (3.3.7) is satisfied, equation (3.3.4) simplifies to

p,l—.21_u§+%(ﬁ1+2)c2+c1=0. (3.3.8)

Equation (3.3.8) determines the value of c;. Note that the quantity ¢ is a parameter
characterising a nonlinear void—fraction wave according to (3.3.2).

Equation (3.3.7) constitutes a differential equation for the virtual-mass coefficient m(ca). It
may be written in the form

d
—{(1-)?m(e) } + (1-a)2 =5 (i +2). (3.3.9)
da
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The virtual-mass coefficient should fulfil the requirement
m(0) =0. (3.3.10)
The solution of (3.3.9) satisfying the condition (3.3.10) reads

m(e) = 5 a (1 - a) (@ - (@+2) o) . (3.3.11)

A similar expression for the virtual-mass coefficient was obtained in G (1985a) after an
elaborate stability analysis of a uniform two—phase flow. In the case of spherical gas bubbles
(m = 1) the expression (3.3.11) reduces to (3.1.1). The derivation shows that nonlinear
void—fraction waves are possible in a two—phase bubbly medium if and only if the
virtual-mass coefficient satisfies (3.3.11).

It will be clear from (3.3.2) that the liquid velocity u; of a nonlinear void—fraction wave is in
general a nonlinear function of the void—fraction. The greater part of the kinematic and
dynamic quantities, however, is a linear function of a. The mass fluxes, e.g., are given by

plulzpe(uz—c)—apluz (3.3.12)
and

p2 Uz = apg Uz, (3.3.13)
while the generalised momenta per unit mass are expressed by

T=up—c—ag(h+2)c (3.3.14)
and

p p
ma= g+ Lmc—a-t(m+2)ec. (3.3.15)

2pg 2pg
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Furthermore

uy T + %m’(a) (u2—u1)2—%u"; =

and

The momentum density and flux are determined according to
P=p,(uz—c) + a(pg—py) w2

and
I =p£(u2—c)2+pg+;1£ﬁ1p£c’+ a(pg—py) uj.

In a similar way the kinetic energy density is given by

K =50, (u2=0)" + a{5(pg—py) w3+ (i +2) p,c’},

while the free energy density may be expressed as a linear function of a by means of

F=pyu—pg+alpgum—pyn).
The pressure is determined according to

p=pg+i—ﬁlp£cz—a%(rh+2)pecz.

(3.3.16)

(3.3.17)

(3.3.18)

(3.3.19)

(3.3.20)

(3.3.21)

(3.3.22)
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The energy density and flux are finally given by
H=1p,(u—c)?+ —p, +
=g hp\2 Pyt~ Pg
1 1,4
+a{5(pg—py)ui+7(m+2)p,c®+ pgpy—pyu} (3.3.23)
and
- 1 2,12 o
Q—pe(uz—C){u1+§(u2—c) +gme }+
1 1,.
+auz{g(pg—p(z)u§+z(m+2)pecz+pgu2—p£u1}. (3.3.24)

The results (3.3.12) to (3.3.24) are obtained in a non—trivial way by using (3.3.2) and
(3.3.11). It follows from (3.3.20) and (3.3.21) that the Lagrangian density L=K —F is a
linear function of @ Using the Bernoulli equations (3.3.4) and (3.3.5) and the equation
(3.3.7) we obtain

1
L=gpy(uz—c)?—pyp +pg+ alpgc,—ppcy) - (3.3.25)

It is immediately inferred from (3.3.25) that
9
E—{L—clpz(l—a)—%pga}zo. (3.3.26)
a

The result (3.3.26) suggests a particular form of Hamilton’s principle of least action. It is
discussed in the next section.
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3.4 Variational principle

In the case of a void—fraction wave Hamilton’s principle of least action takes the form
tz X9
6 dt [ dxL(e) =0, (3.4.1)
t 1 X1

where
_1 21 2
L(a) =5 p,(u2—¢) 5Py = Pyhyt Pyt

+ {5 (pg—py) s+ ppy— Py iy } +
3 g =4y ¢ g

1, m(a) 1
+3p,C [ + ] . (3.4.2)
1 -a? 1-a
The Lagrangian density L{a) is obtained from the expression (3.2.9) and (3.2.11) for the
kinetic and free energy densities by expressing u; in terms of a according to (3.3.2). The
behaviour of the void fraction as a function of position and time is given by (3.3.1). All the
other quantities in (3.4.2) are constant. The form of the virtual-mass coefficient m(a) as a
function of & is unknown. The variation of « is subject to two constraints. They require that
the total masses of the liquid and the gas are constant. The constraints may be put in the

following form:

to X9
(ta—t) My— [ dt [ dx p)(1—0a)=0 (3.4.3)
tl X1
and
to X9
(ta—t) M= [ dt [ dx pga=0. (3.4.4)
t1 x4

Here M, and M, represent the total masses of the liquid and the gas.
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Changing to new coordinates (¢,0) according to

E=x—ust, ()=t+ui2 (3.4.5)

and introducing Lagrange multipliers to take account of the constraints we obtain the
following variational principle for @ as a function of &:

§2 02(8)
6 fde [ do i(e)=0, (3.4.6)
£ 01(¢)
where
L(a) =L(a)—)\1pe(1—a)—/\2 Pg O (3.4.7)
and
§1=x1— Uz ty, §2=xX2—uzt;. (3.4.8)

For the sake of convenience it is assumed that u; > 0. Note that (3.4.6) may be reduced to

§2
6 f Ua)g&)de=0, (3.4.9)
£

where g(¢) = 05(¢) — 01(¢).
The Euler—Lagrange equation associated with (3.4.9) is given by

oL ( )
Il 3.4.10
da

Using (3.4.2) and (3.4.7) we derive from (3.4.10) that
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d
—{(1-0)2m(e) } + (1- )2 =
da

1 11
=-[7pgcz] [§(pg—pg)u§+
0y (14 0 =g (g + 2) | (3.4.11)

The right—hand side of (3.4.11) represents an arbitrary constant. By taking that constant
equal to (1/2)(m + 2) the equation (3.4.11) passes into (3.3.9). The differential equation
(3.3.9) is solved by (8.3.11). The expression (3.3.11) for the virtual-mass coefficient is
thereby derived directly from Hamilton’s variational principle. The analysis shows again that
void—fraction waves are dynamically allowed in a two—phase bubbly medium if and only if
the virtual-mass coefficient satisfies (3.3.11).

3.5 Nonlinear void—fraction waves and bubble deformation

In Chapter II the equations of G (1985a) were extended to include the effect of bubble
deformation and the energy associated with the surface tension of the gas bubbles. A linear
stability analysis demonstrated that at marginal stability the virtual-mass coefficient
m*(a,We) and the mass coefficient m(a,We) take specific forms as functions of the void
fraction and the Weber number (see expressions (2.4.31) and (2.4.32)). At marginal stability
the drift velocity u, of the gas bubbles becomes a triple root of the characteristic equation
(dispersion equation). That root represents a linear bubble size wave (one root) and a linear
void—fraction wave (two roots). We now wish to investigate whether the equations of motion
presented in Chapter II allow nonlinear void—fraction waves as exact solutions and how
bubble deformation and surface tension affect the relations given in sections 3.3 and 3.4. It is
further analysed how the possible existence of nonlinear concentration waves is related to the
functional form of the coefficient m(a,We).

A nonlinear void—fraction wave may be characterised by the properties (i) and (ii) given in
section 3.3. Since the gas density is constant the gas pressure pg can not vary and therefore
the equivalent bubble volume 7 and the equivalent bubble radius a are constant as well. The
mass conservation equations lead to (3.3.1) and (3.3.2) while equation (2.2.9), expressing the
conservation of the number of bubbles, is satisfied when
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n=_f(x—ut), (3.5.1)

which follows from «=n7 . Equation (2.2.9) and equation (3.2.3), expressing the
conservation of mass for the gas phase, become dependent when p, and 7 are constant. It
follows from (3.3.2) and (2.2.7) that in the case of a nonlinear void—fraction wave the Weber
number is given by

Mo

where the constant 7, is equal to

2a Py c?
M= —"—"""-. (3.5.3)
7

In a similar way as in section 3.3 the Euler—Lagrange equations (2.2.13) to (2.2.17) are
obviously satisfied, when

Y = 'Bit —vx+ @i(x —uz t) ) (i:1)2)7 (354)

and

A=fgt—vx+ Ax—uyt). (3.5.5)

The constants §; and v; , (i=1,2,3), are unknown. By introducing (3.5.4) into the Bernoulli
equation (2.2.13) and using (2.2.16) it follows that

m#* We ( ,
+m_ +—m ] uz—uy)? +
1 —a @ 3a We

u1+%[1+2
1 2 -
—guz+ci=0. (3.5.6)

By substituting (3.5.4) and (3.5.5), the Euler—Lagrange equations (2.2.14) and (2.2.15)
reduce to, respectively,

pa — % ult+cy=0 (3.5.7)
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and

Py
o We myy, (uz—u)? +¢3=0. (3.5.8)

The constants c; satisfy ci = f; —uz v5 , (i=1,2,3). Equations (3.5.6) and (3.5.7) should be
compared with, respectively, (3.3.4) and (3.3.5).

We further analyse equation (3.5.6). When the Weber number satisfies (3.5.2) the mass
coefficient m(a,We) becomes a function of a only, which we write as

m(a) = m(a,m0/(1~a)?) . (3.5.9)
Since the derivative of that function obeys

dm 210 oW ' (3.5.10)
—=m_+ My, ———=m_+ em , 5.
da 41 We(l_a)s o Wel_a

equation (3.5.6) may take the form

1
[Lx+—|:1+2
2

+__ __.___ug+(';1:0’ (3511)

m dm] c2 cg 1
1l —a da'(1-0a)p p,7 2

where (2.2.8) and (3.5.8) have been used. By introducing g according to

1 1. “
u1—§u§+1(m0+2)c2+c1—m=0, (3512)
relation (3.5.11) changes into
1 m(a) dm(a) 1 1
m[1+2 + ] = — (g + 2) (3.5.13)
2 1 - a de 1 (1 —a)? 4

a result similar to equation (3.3.7) for m(a). The solution of (3.5.13) satisfying m(0) = 0 is
obviously given by
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m(a) = 3 a (1 - a) (1o — (thet+2) o) . (3.5.14)

It follows from (3.5.9) that fay may still be an arbitrary function of 7, = We (1—a)? . By

taking
ny + 2
C(We(l-a)?) = —2 (3.5.15)
it is seen that
m(a,We) = a (1 — a) { (1-e) C(We(1l-a)?) -1} . (3.5.16)

Expression (3.5.16) is obtained from relation (2.4.31) for m(a,We) by taking B = 0 (since
m(0,We) = 0 must hold) and by including the term containing the constant A in the
function C(-). We therefore conclude that the requirement of marginal stability and the
existence of nonlinear void—fraction waves yield equivalent expressions for the mass
coefficient m(a,We).

The same kinematic and dynamic quantities that were mentioned in section 3.3 become a
linear function of the void fraction o when the relations for a nonlinear void—fraction wave
are used. The mass fluxes are not affected by the inclusion of bubble deformation effects and
are given by (3.3.12) and (3.3.13). The generalised momenta 7, and 7, satisfy

T = up— ¢ — ag (7o) +2) ¢ (3.5.17)
and
p p
72 = Uz + —& f(n0) ¢ — a~L (@(ne) + 2) ¢ . (3.5.18)
2pg 2pg

When bubble deformation effects are accounted for the generalised momenta are defined by
(3.2.14) and (3.2.15), where m(a) must be replaced by the virtual-mass coefficient
m*(e,We) (see the Euler—Lagrange equations (2.2.16) and (2.2.17)). As a result, (3.5.17) and
(3.5.18) follow from (3.3.14) and (3.3.15) by substituting (o) = M(7,) + 1, My(m,) for m.

The function m(7n) occurs in expression (2.4.35) for m*(a,We). The momentum density P is
given by (3.3.18) and the momentum flux II, defined by (2.3.10), is determined according to
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1, . 1 -
I = py (u2 ~c¢)® + pg + 7 { My(m) + 5 7o T5(me) } pyc® +
+ a(pg—ry) u?, (3.5.19)

which generalises (3.3.19). The kinetic energy density K* follows from (3.3.20) by replacing
m by (7o) while the free energy density F* is written as a linear function of & by means of

1 .
F* = pypy— g + @ (pg Hy — Py iy + 7 7o (1) py?) - (3.5.20)

K* and F* are defined by (2.3.14) and (2.3.15) (see Chapter II). The pressure p (defined by
(2.3.11)) satisfies

1 - 1 . :
D = pg + 7 { my(m) + 3 m p(m) } pyc? +

(8a(mo) +2) pyc? (3.5.21)

QR
o =

It finally follows from (2.3.7) and (2.3.8) that the energy density and flux are given by
H = %Pg(ui’_c)z + Pyt — Py +
+ a{g(og—py) u + 1 (iy(nmg) + 2 my (o) +2) py? + gty — Py iy }
(3.5.22)
and
Q= py (2 —¢) { g+ 5 (w2 —)? + § (Mho(m) + 3 7 05(my) ) € } +
+ auz{%(pg—pe) uj + i(ﬁlo("o) + 2 ny my(mp) + 2) PZCQ + /’g/‘z_Pgl’q} .
(3.5.23)

It follows from (3.5.22) and (3.5.23) that equation (3.2.20), expressing the conservation of
energy, reduces to
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a4 y, 92y, (3.5.24)

at 0x

which is satisfied when a = f(x —ust). As a result of (3.3.18) and (3.5.19) the equation for
the conservation of momentum (3.2.16) reduces to (3.5.24) as well.

The Hamilton principle for a nonlinear concentration wave was treated in section 3.4. It will
be clear that the extended variational principle, including bubble deformation effects as well
as surface—tension energy, leads to expression (3.5.14) for m(a) in a similar way as
expression (3.3.11) for m(a) was derived in section 3.4.

3.6 Nonlinear void—fraction waves and gas motion inside bubbles

The two—phase flow equations developed by G (1985a) and the extended version presented in
Chapter II account for the additional kinetic energy of the liquid phase resulting from a
relative motion between the two phases. The additional kinetic energy of the gas, associated
with the circulating motion of the gas inside the bubbles, has been neglected in both models.
In the case of bubbly air/water mixtures the motion of the gas inside the bubbles does not
make a substantial contribution to the total kinetic energy density due to the large difference
between the values of the mass densities of both phases; it may therefore be omitted.
However, when a bubbly mixture consisting of a heavy gas and a light liquid (compared to
air and water) is considered it could become essential to include that effect. In the limit,
where both phases have the same mass density, for example, Hill’s spherical vortex may
represent one of the possible flow structures inside the bubbles (see Batchelor 1967, p. 526,
and Lamb 1945, p. 245). In the present section the macroscopic inclusion of the above
mentioned effect is analysed. In addition, it is investigated how the flow induced motion of
the gas inside the bubbles affects the equations of motion and the possible existence of
nonlinear void—fraction waves.

The Lagrangian energy density L is defined by
L=K-F, (3.6.1)
where the kinetic energy density K takes the form

K =L pul+ L paud+ 1 { oym(a) + pgk(a) } (w—u)?. (36.2)
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The mass coefficient k() accounts for the motion of the gas inside the bubbles, in cases
where the difference velocity does not vanish. The free energy density F satisfies the
relations presented in section 3.2. The constraints (3.2.2) and (3.2.3), expressing the
conservation of mass for the liquid and the gas phase, are included by means of the Lagrange
multipliers ¢, and s, and after partial integration the variational principle is transformed
into

to X3
6f dt [ dxL* =0, (3.6.3)
where
L*=L- [Q—E—+u —‘L]—-pg[g‘&-l-lhé(&'] (3.6.4)
at Jx o ox

(see section 1.6, Chapter I). The Euler—Lagrange equations following from (3.6.1) to (3.6.4)
are written

doi =g {m (@) + 65 (kr(@) ~XGH) } (u w2 +

=001y, 001 (3.6.5)
0t 0x
6p2:%u2 li—)- uz—u12—u2—g“o— Q“D——O (3.6.6)
ot ox

bup ppuy —{ Py m(a) + py k(a) } (n2—ui) —p %‘ﬂ =0, (3.6.7)
X

buz: pauz + { pym(a) + py k(a) } (v —wi) — p2 %“0—2 =0. (3.6.8)
X

The equations of motion for the liquid and the gas phase are obtained by eliminating the
potentials ¢; and ¢, from the Euler—Lagrange equations (3.6.5) to {3.6.8). They are written,
respectively,
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py m(a) + pg k(a)
[—Q-+111i]{111— ¢ 5 112—111)}+
ot g1
py m(a) + pg k()
- ¢ 8 112—111)@—14'
P

and

02 2T

uz—u +
ot ox P2 (2 l)}

o Kk
+pl (@) + 7 (a)(uz—ul)%—i[%k%l)(uz_ul)z]:

P2

The generalised momenta per unit mass 7, and 72 are given by

Py m(a) + 5 k(o)

Ty = Uy (112—111)

P1

and

p; m(a) + pg k(a)
o = Uz + 4 g (112—111).
P2

(3.6.9)

(3.6.10)

(3.6.11)

(3.6.12)

Noether’s theorem (see section 2.3, Chapter II) yields expression (3.2.17) for the momentum

density P and

1= pud + paud + { pym(e) + g K(0) } (uz—up)? +p

(3.6.13)
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for the momentum flux I1. The hydrodynamic pressure p is written
1
P=pg+5{plm(a+(l-a)m'(a) ] +
+ g [ (1=0) k(@) =% k() ] } (uz —u))2. (3.6.14)

The energy density H satisfies (3.2.21), K is determined by (3.6.2), while the energy flux Q is
now given according to

py m(a) + p, k(a)

1
Q=p1u1{§u"1’— ug (up—uy) + g +

P1
g {m(@) + 8 (e (@)~ Y (m-u)e f +
k
+pzu2{%“§+p£ (@) * £ Ho) uz (uz —uy) + p2 +

P2

—%Mag)-(uz—u,)?}. (3.6.15)

The equations (3.2.16) and (3.2.20), expressing the conservation of linear momentum and the
conservation of energy, obviously remain valid for the present case.

The properties (i) and (ii) which were first mentioned in section 3.3 and characterise a
nonlinear void—fraction wave again lead to expression (3.3.3) for the potentials ¢; and g,.
With the use of that relation the Bernoulli equation (3.6.5) may be written

1 m(a)
/l-1+—[1+2
2 1

- a+ m’(a)] (uz—uy)? +

Pg

|: 3 — 1
2pl

TR k(a) + k’(a)] (uz—ul)2—%u§ +¢,=0, (3.6.16)

while the Euler—Lagrange equation (3.6.6) for the gas phase reduces to

uz—%l—(-(gl(uz—ux)2—%ug+ ca=0. (3.6.17)
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By substituting (3.3.2) into (3.6.17) it follows that the mass coefficient k(a) must take the
form

k(a) =k a (1 - a)? (3.6.18)

to allow a nonlinear concentration wave as an exact solution of the equations of motion. In
that case, the constant ¢ follows from

;L2—lf<c2—lu2+cQ=O. 3.6.19)
2 2 "2

The kinetic energy of the gas inside the bubbles as a result of the relative motion between
the phases should determine the value of the constant k (compare with m which occurs in
expression (3.3.11) for m(a)). Since (3.6.18) constitutes the general solution of the
differential equation

3a — 1
——k(a) + k' () =0, (3.6.20)
a (1 - a

relation (3.6.16) changes into (3.3.4), which determines the virtual-mass coefficient m(a) by
means of (3.3.11). It may therefore be concluded that the additional inclusion of the kinetic
energy associated with the gas circulating inside the bubbles as a result of the relative
motion between the phases still allows the existence of nonlinear concentration waves. That
conclusion also applies to the situation where the value of the mass density of the fluid
contained by the bubbles is comparable to the value of the mass density of the surrounding
fluid. In the limit that the mass densities are equal, the value of k may be determined by
assuming the occurrence of Hill’s spherical vortex inside each bubble (droplet). The vortex
energy (10/7) ma3pU? (see Lamb 1945, p. 246) yields the value k = 15/7; p denotes the mass
density and U the velocity of the bubble relative to the surrounding fluid. Chaabane (1989)
found the same expressions for m(a) and k(a) by means of an extensive and elaborate linear
stability analysis of a solution of the equations of motion representing uniform two—phase
flow.

Finally, we restrict ourselves to mentioning that the expressions for m(a) and k() ma.y also
be derived from Hamilton’s principle for a nonlinear void—fraction wave (see section 3.4) and
conclude the present section by briefly listing the linear behaviour in « of several physical
quantities. In the case of a nonlinear concentration wave the generalised momenta per unit
mass 7 and 7, defined by (3.6.11) and (3.6.12), behave as
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= 1 e i
7r1—u2—c—a{2-(m+2)+§ik}c (3.6.21)
and
p . p 3
7r2=u2+{—Zrh+k}c—a{—£(rh+2)+k}c. (3.6.22)
2pg 2pg

The constant k does not enter the momentum density and flux P and II, which remain to be
given by (3.3.18) and (3.3.19). The kinetic energy density K reads

1
K=g5p,(u2—¢)"+ a[%(pg—pg) uj +
+{%(ﬁ1+2)+%%§fc}plc2], (3.6.23)
while the free energy density F is still given by (3.3.21). The pressure p takes the form
p=pg+iﬁ1p£c2—a{%(ﬁl+2)+§iﬁ}p£c2. (3.6.24)
The energy density and flux H and Q are written
H=1 (up—c)? + -p, +
1 2 1, 1 pg k 2
+ a[g(pg—pg)u2+{z;(m+2)+gpl }ogct+
+ pg g = Py iy ] (3.6.25)

and
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Q=pe(u2—-c){u1+%(u2—c)2+;1£rhc2}+

+ auz[%(pg—pl)u§+{zlf(rh+2)+%—§il}}pec2+

T Dg by — Py 1y ] (3.6.26)

3.7 Conclusions

Nonlinear void—fraction waves were characterised by properties (i) and (ii) in section 3.3.
They require that the gas density pg and the gas velocity u, are constant. The other physical
quantities, viz., the void fraction a, the liquid velocity u; and the bubble number density n,
are determined as functions of position and time by the kinematic equations expressing the
conservation of mass and the conservation of the number of bubbles. Void—fraction waves
therefore constitute kinematic waves. The concept of a kinematic wave was introduced by
Lighthill & Whitham (1955). Kinematic waves are also discussed in Whitham (1974). Since
the physical variable z = (p;, p2, 1, uy, 112)T may be written as a function of o only, according
to the properties (i) and (ii) mentioned above and the relations (3.3.1), (3.3.2) and (3.5.1),
void—fraction waves belong to the class of generalised simple waves in the sense of Jeffrey
(1976). By giving f(-) in (3.3.1) and (3.5.1) the form of a step function, it is seen that
concentration waves may also occur as contact discontinuities.

We have shown that a two—phase bubbly medium does not admit void—fraction waves under
all circumstances. In fact, kinematic void—fraction waves are dynamically possible if and only
if the local distribution of the gas bubbles satisfies a certain condition. That condition is
expressed by the particular form (3.3.11) of the virtual-mass coefficient m(a) as a function
of the volume density a of the gas bubbles. The ‘microscopic’ distribution of gas bubbles
that underlies the expression (3.3.11) for the ‘macroscopic’ quantity m(a) is not known. It
may be asserted, however, that the distribution is not random (see G (1985a)). In the case
that bubble deformation effects and surface tension are included the above mentioned
condition yields expression (2.4.31) for the coefficient m(a,We) (with B = 0) as a function of
o and the Weber number We. In the case that the flow induced motion of the gas inside the
bubbles is accounted for the condition leads to the functional relation (3.6.18) for the
coefficient k().
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The expression (3.3.11) for the virtual-mass coefficient changes sign at a = a, where
m/(m+2). In the case of spherical bubbles (fh = 1) the critical value ac is given by
1/3. The change of sign of m( ) may be related to the breakdown of bubbly flow, which
is observed at values of the void—fraction near 0.3 (see e.g. Matuszkiewicz et al. 1987).

Il

Qc

ac

The analysis shows that nonlinear void—fraction waves are not affected by a change of sign of
m(a). The acoustic waves, however, are influenced strongly. According to G (1985a) the
phase velocity of the acoustic linear mode becomes infinitely large near a@ = ac. It should be
observed that acoustic waves, no less than void—fraction waves, give rise to perturbations of
the void fraction o.

The stability of nonlinear void—{raction waves is investigated numerically in Chapter IV
according to some well-defined initial-value problem: the interaction with an acoustic
disturbance. Computations with high Courant numbers are performed to investigate the
behaviour of the disturbed void—fraction wave on a large time scale.




—79 —

CHAPTER IV

NUMERICAL AND ANALYTICAL INVESTIGATION OF
WAVES AND WAVE-INTERACTIONS
IN BUBBLY TWO-PHASE FLOW 1)

4.1 Introduction

A mathematical description of the dynamical behaviour of bubbly liquid/gas mixtures is
indispensable for the correct understanding of a variety of industrial processes. Several
mathematical techniques and physical models have been used for the derivation of
macroscopic two—phase flow equations. As a result of the complicated nature of that type of
flow many models now exist which are essentially different (see, for example, the models
treated in Chapter I).

Several bubbly flow models suffer from complex characteristics. They accordingly lead to
ill-posed initial-value problems and give rise to numerical instabilities. In Geurst (1985a)¢)
it is shown that the appropriate inclusion of virtual-mass terms is sufficient in order to
arrive at two—phase flow equations having real characteristics. The corresponding set of
equations (called model 1) and an extended version (called model 2) which is treated in
Chapter II, including flow induced bubble deformation, are studied in the present chapter.
Our purpose here is to investigate whether the two models are suitable for producing stable
and reliable numerical results. The models allow fast acoustic waves and slow void—fraction
waves. A code has to be developed which can efficiently cope with steady and unsteady
situations at the same time. The numerical method should therefore be implicit and time
accurate. Possible steady states are then obtained by time iteration at high Courant
numbers. In addition the two models turn out to be hyperbolic in a very specific sense. This
fact has important consequences for the selection of the appropriate method. A method that
has proved to be both robust and promising in gas dynamic computations is the one based on

1) Parts of this chapter were presented at the XVII™ International Congress of Theoretical
and Applied Mechanics, August 1988, Grenoble, France. See Vreenegoor & Geurst (1988) and
Vreenegoor, Wilders & Geurst (1988).
1) Hereafter referred to as G (1985a).
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a scheme proposed by Lerat (1985). That scheme is applied for the numerical integration of
the two—phase flow equations of model 1 and model 2.

In addition, we want to investigate whether the phenomena observed in the numerical
computations are supported by linear theory. Agreement may contribute to the reliability of
the numerical method. The equations of model 1 are linearised and the right eigenvectors are
determined so that linear initial-value problems may be solved. The derivation of the
eigenvectors and the general solution of the linearised equations bring about some typical
aspects of model 1, which may be investigated numerically as well.

In Chapter III it was shown that both models possess a class of non—linear exact solutions.
The solutions were analysed in some detail and interpreted as nonlinear void—fraction waves.
The investigation of nonlinear void—fraction waves is continued here numerically.

In section 4.2 a brief account is given of the dimensionless equations governing bubbly
two—phase flow. The equations presented in G (1985a) and in Chapter II are not ready for
numerical computations. It is possible, however, to formulate equivalent sets of equations,
which have the desired properties. The eigenvalues and right eigenvectors are presented in
section 4.3. Section 4.4 deals with Lerat’s scheme and the results of several numerical
experiments. The performance of the scheme is tested, the interaction of acoustic waves and
nonlinear concentration waves is computed and the stability of the void—fraction waves is
investigated by performing computations with high Courant numbers. Section 4.5 contains
the results which follow from linear theory. A comparison is made with the numerical
results. The acoustics of a bubbly liquid/gas medium is derived from a variational principle.

The reader is warned that all formulas in the present chapter are expressed in dimensionless
physical variables to avoid an additional notation and to facilitate the comparison with the
numerical computations.




—81—

4.2 Flow equations

When the equations derived in G (1985a) (see also section 1.6 of Chapter I) are made
dimensionless (model 1), they are given by

% + i (piu) =0, (4.2.1)
9024 0 (pug) =0, (4.2.2)
ot Ox

[ %uf —-Lnl—?l(ug—ul)ul + pg + %—m’(a)(ug—‘ul)2 ] =0, (4.2.3)

_+_
¥ |
[ )

u? + ﬂp%l(uz,—ul)u2 + 1n(pg) ] —0. (4.2.4)

The mass densities are made dimensionless by means of the constant mass density 7 of the

liquid, the velocities by means of the isothermal acoustic velocity U, of the gas, which is
determined by Uy = (RT/M)%. Note that R is the gas constant, while M denotes the
molecular mass of the gas. The pipe length L; is used to non—dimensionalise the space
variable x. The time variable is accordingly made dimensionless by means of Lo/U,y. The
reduced mass density of the liquid phase is denoted by p; = 1—a, the reduced mass density of
the gas by ps = apg, where o represents the void fraction and pg is the dimensionless mass
density of the pure gas. A uniform two—phase flow is, according to G (1985a), marginally
stable if and only if the virtual—mass coefficient m(a) takes the form

m(a) = 3 @ o (1-a) (1—@_;][;1 a) . (4.2.5)

The derivative (d/da)m(a) is denoted by m‘(a). Note that m = 1, when the bubbles have a
spherical shape. Expression (4.2.5) for the virtual-mass coefficient allows the existence of
nonlinear void—fraction waves (see Chapter III). Model 1 is evidently characterised by the
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two mass—conservation equations (4.2.1) and (4.2.2) and the two equations of motion (4.2.3)
and (4.2.4). :

The system of equations (4.2.1) to (4.2.4) has the general conservation form

dq , 9g(a) _ ¢ (4.2.6)
o ox

where g € R® , g:R™ - R™ and m=4. The conserved variable q and its corresponding flux g
are given as vector functions of the physical variable z¢ R™ where z = (pl,pg,ul,ug)T. If
| dq/ dz| # 0, the physical variable clearly satisfies the system of equations

N (4.2.7)

ox ox

where A = ( 0q/0z ) dg/0q )(dq/dz). The conservation form (4.2.6) of the equations
should be preferred, however, since it facilitates the formulation of conservative numerical
schemes. It will be clear that a transformation from z to q is needed in that case. Details on
the transformation may be found in subsection 4.4.1.

The variational analysis presented in G (1985a) is extended in Chapter II by including
surface tension and flow induced bubble deformation. The corresponding equations constitute
model 2. They contain as additional variables the equivalent bubble radius a and the bubble
number density n = a/7, where 7 represents the local average of the bubble volume 47ma3/3.
When all physical quantities are made dimensionless in a similar way as for model 1, the five
equations of model 2 are given by the two mass—conservation equations (4.2.1), (4.2.2), the
equation for the conservation of bubble number density

on

+ 9 (nug) =0 (4.2.8)
ot ox

and the two equations of motion

d * df1 *
o [ul —I:;—i(uz—ul)] + P [7 u? - I:;—l(uz—ul)m + pg +

+5(my+ W mo Y(urup)? ] =0, (4.2.9)
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a—i[mul+ﬂ2uz]+§[ﬂ1u%+pzu§+pg+

+ %( 2m* + m + (1-&)m , + —V% Mo )(uz—ul)2] =0. (4.2.10)

In dimensionless variables the Weber number We is defined by
We = fa (uz—uy)?, (4.2.11)

where f=2p ‘ U? Lo/, while v denotes the surface tension coefficient. Note that m and
My, Tepresent the partial derivatives (8/ 8a)m(a,We) and (9/0We)m(a,We). At marginal

stability the virtual-mass coefficient m* = m*(a,We) and the mass coefficient m = m(a,We)
are determined by (2.5.13) and (2.5.14), where the coefficients by, (k=1,...,4), are given by
(2.5.6).

Equation (4.2.8) which expresses the conservation of the number of bubbles implies that the
coalescence and fragmentation of bubbles are neglected. Equation (4.2.9) represents the
equation of motion for the liquid. In order to put the set of equations of model 2 in
conservation form the equation of motion for the gas phase is replaced by equation (4.2.10),
which expresses the conservation of total linear momentum. The use of the equation for the
conservation of energy should be avoided, since it may lead to singularities in the
transformation from the conserved variable q to the physical variable z (see subsection
4.4.1).

4.3 Some remarks on stability

4.3.1 Eigenvalues and eigenvectors

The virtual-mass coefficient should take a non—negative value. A negative value would yield
a negative additional contribution to the kinetic energy density which can not be allowed. It
follows from (4.2.5) and (2.5.14) that the virtual-mass coefficient becomes negative when «a
surpasses a critical value ac. In the case of model 1 that value is given by ac = 1/3 (spherical
bubbles) and in the case of model 2 it is determined by ac = 1/3 + (1/60)We + O(We?) (see
(2.6.6)). It is therefore concluded that bubbly flow is not possible at void fractions & > ac.
At a= o, a transition to a different type of two—phase flow may be expected. As a
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consequence, both models should only be applied to bubbly flows for which the void fraction
is smaller than the critical void fraction.

It turns out that the matrix A in (4.2.7) is well defined for a < a since the Jacobian
determinants | dq/ 92| for model 1 and model 2 , given, respectively, by

|0q/8a| =1+ ( o= + ~) m(a) (4.3.1.1)
and

| 9a/ 92| = pz{ L (4 ) (me + 2We meyy ) } , (4.3.1.2)

are positive for positive values of the virtual-mass coefficients m(a) and m*(q,We). The
eigenvalues of A are real. They read

Ai=uz+ ag,
A2 =uy+ ag, (4.3.1.3)
A3=dg=As=13.
The acoustic modes are represented by A; and A,. The eigenvalue equal to the gas velocity u,
is a multiple one, two—fold for model 1 and three—fold for model 2. In a first order of

approximation with respect to the Weber number the dimensionless acoustic velocities a,
and a, follow from (2.6.1) to (2.6.4). They are determined by the quadratic equation

c2af +cra, +co=0, (k=1,2), (4.3.1.4)
where
c2=1—3a+ 3by p? We + pg (2 + 3a + 3b; a p? We) + O(We?), (4.3.1.5)

ci={20g (3+3bipiWe) + b, 2 We} pyw + O(We?) (4.3.1.6)
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1,1 4 1 4
Co=—a{§/’%w2[1+gb1pfwe]2+[Pg—(Tgbm‘}WG*‘gWé)Wz]"
x[1+ 205+ 3b;p2 We ]} + O(We?)  (43.1.7)

and the constant b; takes the value 27/160 (see (2.A.1)). We recall that w denotes the
steady—state value of the relative velocity u,—u,. The dimensionless acoustic phase velocities
of model 1 are obtained from (4.3.1.4) to (4.3.1.7) by deleting the terms, which depend on
the Weber number We.

Model 1 will be analysed here in more detail by deriving the right eigenvectors and
constructing the general solution of the linearised equations of model 1. The acoustic right

eigenvectors, corresponding to the eigenvalues Ax = u; + ak, (k=1,2), are given by

o= (~[gow—(5(1-3e) + pg) axl p1, 5o 2% + 3ax ) gz,
—[gow —(3(1-30) + p a ] (w + an), 5o ELY +3ar) an ),

(k=1,2) . (4.3.1.8)

Only one independent eigenvector r3 corresponds to the two—fold eigenvalue A3 = Ay= ua. It
is represented by

r3=(1 ,—pg,;"—l, 0)t. (4.3.1.9)

The generalised eigenvector r4, which satisfies

Arg= X414+ 13, (4.3.1.10)
is given by
_ 1 1 1,\T
r4—(0,?—p1w,ﬂ,——&) . (43111)

Note that the eigenvalues and corresponding eigenvectors are presented in dimensionless
form. The matrix A is obviously defect. Model 1 is not hyperbolic since there is no complete
set of eigenvectors. As a consequence, model 1 can not be written in characteristic form. We
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also remark that the characteristic field related to A3 and A4 is linearly degenerate in the
sense of Lax (1973), which allows contact discontinuities to occur as solutions. In the
previous chapter it was already mentioned that concentration waves may appear in the form
of contact discontinuities.

When we substitute z = zg + z into (4.2.1) to (4.2.4), the linearised equations of model 1
are written

P14 0 i+ up=0, (4.3.1.12)
X

2y 0 fh iyt uspa} =0, (4.3.1.13)

a o ox

0 m, -~ m . my’ =
at{(1+-ﬁ'1—)lh pIU2+(pl)wp1}+

L (058w oG Tt e = Jhwl o ¢

+ [(pﬁ)'w w-sm'wl pi} =0, (4.3.1.14)
: 1
0 m - m mw. mWw.:
—{~= i+ (1t i - P1 pa2} +
ot P Py p 02
il m A m mw, ~ m'w -
—{=—uyuy + [(I+=—)uz + —| w2 — u
6x{ oy U2t (5 + =7R] i = =7 T us o+
W h+ L pgd =0 (4.3.1.15)
o Pg

The subscripts zero indicating steady—state values have been omitted while a prime denotes
differentiation with respect to the void fraction a. In short form those equations may be
written as
9%, A% _ . (4.3.1.16)
ot ox
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which is the linearised version of equation (4.2.7). Ao = A(zo) has the eigenvalues
Axo = k(%) and the eigenvectors Ixo = 1i(Z0o), (k=1,...,4). The general solution of system
(4.3.1.16) is constructed by combining the eigenvectors and eigenvalues to form the
superposition of four independent solutions. It is determined by

4
z(x,t) =k§=)1[ fi(x — Akt) e ] — t £5(x — Agt) 13, (4.3.1.17)

where fy(-), (k=1,...,4), are arbitrary functions and f;(£) denotes (d/d¢)fs(¢). In (4.3.1.17)

the subscripts zero have been omitted as well. In the case of a strictly hyperbolic set of
equations the general solution would obviously be given by just the first part of the
right—hand side of (4.3.1.17), containing the summation. The second part, growing linearly
in time along a A = u, characteristic, exists as a result of the deficiency of the matrix A,.

The linear growth property requires some comment. It may be clarified by considering the

wave equation

@it — €2 Pxx = 0 (4.3.1.18)
for ¢ = (x,t). The general solution of (4.3.1.18) is given by

o(x,t) = hy(x—et) + ho(x+et) , (4.3.1.19)

where hy(-) and hy(-) are arbitrary functions. However, when the characteristic roots
Ay,2 = + € coincide (e = 0), the wave equation degenerates to

Py =0 (4.3.1.20)
with the general solution

o(x,t) = hy(x) + t hao(x) , (4.3.1.21)
demonstrating the linear behaviour in t along the multiple A = 0 characteristic. When
dissipative effects are introduced in the model described by (4.3.1.20), they may be expected
to appear as higher order spatial derivatives, thereby allowing solutions which decay

exponentially in time. We therefore see that the occurrence of solutions growing linearly in
time in an inviscid theory for bubbly two—phase flow does not present a fundamental
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difficulty. It may be removed by means of the inclusion of dissipative terms. In addition, the
linear growth in time is only present in the marginally stable case, obtained by choosing the
virtual-mass coefficient m(a) of the form given by (4.3.2.1) (see the next subsection) with
Pi1 = pz = 0. When the marginally stable equilibrium is disturbed by giving p; and p, values
which slightly differ from zero, the coinciding roots may split into two distinct real roots,
thus yielding a strictly hyperbolic system of equations with a complete set of eigenvectors.
Finally dispersive terms like the one considered in Chapter V, may provide for strictly stable
behaviour. It is therefore concluded that in practice there may be various effects which
suppress the linear growth property.

4.3.2 Effect of the functional form of m(«a) on the eigenvalues of model 1
By writing the virtual-mass coefficient m(«) in the form

m(a) = 5 a + (p1—2) a2 + (ps + 3/2) 3 (4.3.2.1)

and assuming that p; and p, are small, we investigate now the behaviour of the eigenvalues,
or characteristic roots, of model 1 close to marginal stability. Note that the linear stability of
a uniform flow and the property of real characteristics are equivalent for model 1 : the
dispersion equation is obtained by substituting A = w/k and A = A, in the characteristic
polynomial |A — M| = 0. This may be seen by making the substitution z =%; exp{i(wt—kx)}
in (4.3.1.16), which yields |kAg — wI| = 0 as a condition for the existence of constant vectors

Zy.

We recall that the relative velocity w has been made dimensionless by means of the
isothermal acoustic velocity of the gas and the mass density pg of the gas by means of the
constant mass density Py of the liquid. By making the reasonable assumption that those

quantities are small, it may be shown with the use of the results presented in G (1985a) that
the discriminant D of the characteristic polynomial is approximately given by
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D:—16[1+ m(a) )]3[_1_m(a)]-5{[1+_(_)_ma ]x

o?(1-a Pg @ a?(1-a)
. [ 14300 4 ome(a) + S(1-a)m*(a) ] +

- [ 1-—3%  m(a) + 9_((121 } ’ } w2+ O(w4) + O(p}) - (4.3.2.2)

By substituting (4.3.2.1) into (4.3.2.2) it is derived that, for small w and pg, D > 0 in the
region S, of the (py,p2)—plane, determined by

3(1—a)? 8
S(xz{(pl)pZ)l P2SP1+—(j:)—[1—J g(ﬁ)_pl + 1] A

Apz>—1p - (=el(1-30) 1‘3‘1 }. (4.3.2.3)

2a

The first inequality in (4.3.2.3) ensures that the characteristic roots associated with
concentration waves are real, the second inequality follows from m(a) > 0 and ensures that
the acoustic eigenvalues are real. Close to the origin of the (p;,p2)—plane, which represents
marginal stability, S, may be approximated by S given by

142
Se=1{(pup2) | P2¢— ;aaP1+O(P%) A

A pn—}—xpl—ﬁl‘—“;%:?’—“l }. (4.3.2.4)
[0

For several void fractions a the regions S are illustrated in figure 4.3.2.1. The arrows A —

denote the crossing of a line into a region where the acoustic roots are real, while the arrows
C — point in a similar way into a region where the roots associated with concentration
waves are real. For a = .3 it is seen that the lines D = 0 have a point of intersection. That
point is shifted to the origin for & = 1/3. For all void fractions exhibited values for p; and p2
are available which will lead to linear stability of model 1. However, when we are bound to
use the virtual-mass coefficient as a completely determined function of a and demand the
linear stability of model 1 for a maximal range of void fractions, then figure 4.3.2.1 shows
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Figure 4.8.2.1. Regions of real characteristic roots in the neighbourhood of marginal stability,
depending on the wvoid fraction o and the coefficients py and pa which determine the
virtual—mass coefficient according to ({.8.2.1); A — : acoustic roots become real; C — :
roots assoctated with concentration waves become real.

that model 1 can only be (marginally) stable for o varying from zero to 1/3. This is a
consequence of the fact that

1/3

N S, =(0,0). (4.3.2.5)
a=0

For higher void fractions the intersection is empty. In addition it can be concluded that
hydrodynamical bubble interaction effects, represented by the higher order terms in « in the
virtual-mass coefficient, have to be included since p;=2 and p,=-3/2 will lead to
unstable behaviour of model 1 for small void fractions o
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In the literature many forms of the virtual-mass coefficient may be found, often given
different names, like added—mass coefficient or mass coefficient of the kinetic energy density
due to relative motion (some coefficients are treated by Kok (1988)). Oshima (1979), for
example, finds a virtual—mass coefficient equal to »

m () =5 a(l-a)+ 0(ed), (4.3.2.6)

while Kok (1988) determines it to be

m,(a) =5 a (1 - 676 a) + O(e3) . (4.3.2.7)

In Kok (1988) it is asserted that the added—mass coefficient of the bubbly mixture and the
coefficient of the kinetic energy density due to relative motion become different quantities
when bubble interaction effects are taken into account. The latter coefficient is identified
with our virtual-mass coefficient. When we write expressions (4.3.2.6) and (4.3.2.7) in the
form of (4.3.2.1), it is clear that p, must be chosen equal to, respectively, p; = 3/2 and
p: = 1.662 (p» can not be determined). Figure 4.3.2.1 shows that both values of p; lead to
waves with a complex velocity of propagation when O(a?) terms are neglected by taking
pz = 0. In subsection 4.4.5 expression (4.3.2.7) is substituted into model 1 to demonstrate
numerically the appearance of a rapidly growing void fraction. Subsequently, p; and p; are
chosen equal to p; = ps = —1/4 t0 show the occurrence of two distinct and stable waves.

4.4 Numerical method and results

4.4.1 Numerical method

In view of the appearance of complex characteristics in the analysis of many two—phase flow
models, robust numerical methods are strongly needed. We refer to Stewart & Wendroff
(1984) for a review. The major part of the methods which have been developed makes use of
an explicit or semi—implicit scheme. Since in that case the time step is restricted, steady or
quasi—steady computations become time consuming. That is the reason, why Sha (1986)
stresses the need for implicit numerical procedures.

Since the models 1 and 2 possess only real characteristics (see subsection 4.3.1), we are in a
different situation. In fact it is one of our aims to investigate whether known and established
schemes for hyperbolic conservation laws may be applied to the equations treated in the
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present chapter. The conservation form ensures conservation on the difference level and
enables a good resolution for shock waves. Familiar and robust schemes are upwind
differencing schemes (see Harten et al. 1983) and TVD schemes (Chakravarthy & Osher
1985). Both types of schemes, however, have only been developed for hyperbolic systems
with a complete set of eigenvectors. It is not clear whether a generalisation of such schemes
is possible to the case of the equations considered here. A commonly used alternative is the
application of space—centered schemes. We have chosen for the method of Lerat (1985),
which is known from numerical gas dynamics.

Lerat’s scheme is linearly implicit and second order accurate. For equation (4.2.6) the
scheme reads in delta form

Aq+ 3B o2 8 A%G) §Aa) ) + 5 7 ¥(Aq) =
= —0 Bg(a) + 5 0*  A(@) d(a) ] , (44.1.1)

where the spatial and temporal difference operators are given, respectively, by

(6a)f =at.p s —aiiy,

1
(49} =35(q}.—df), (4.4.1.2)
Ag=gqi-qt.

1 1

Furthermore = ( q!+ q},,)/2, while A denotes the Jacobian matrix dg/dq and
o = At/Ax is the ratio of the time step At and the space increment Ax. Note that g7 is the

approximate solution at x =i Ax, (i=0,...,I), and t = n At, (n=0,...,N). The values of the
two parameters 4 and ¥ may be chosen in an appropriate way. It has been proved that for a
linear hyperbolic system the scheme (4.4.1.1) is linearly solvable and unconditionally stable
for A< —1/2 and % < 1/2 (see Lerat 1985). A third parameter @ which appears in Lerat’s
scheme has been taken equal to the commonly used value zero. The dispersive and
dissipative properties of the scheme can be studied on the corresponding fourth order system,
also known as the modified equation. For a second—order accurate scheme that system can
be written as
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94, K9_ Ao P9, Aps O, (4.4.1.3)
at x ox3 x4

The first term on the right—hand side of (4.4.1.3) constitutes the dispersive error, the second
term represents the dissipative error. In the case of Lerat’s scheme the matrices B and C
which appear in those error terms are determined by, respectively,

B=—gA[(1-3%) I (1+3p) (¢ A)?] (4.4.1.4)
and

C=—5oA2[(1-29) I (14+28) (c A)?]. (4.4.1.5)

0| =

Expression (4.4.1.4) shows that for a linearly solvable and unconditionally stable scheme the
numerical dispersion is minimized by choosing

B=-1/2, ¥=1/3. (4.4.1.6)

That value for J also makes the second term in C vanish, as may be seen from (4.4.1.5), and
partially reduces the numerical dissipation as well. We remark that, to our knowledge,
Lerat’s scheme has never been applied to hyperbolic systems with an incomplete set of
eigenvectors. A theory is not available for that special case. Numerical experiments,
however, indicate that the scheme works well. Some of those experiments are discussed in
the remaining subsections of the present section.

The system (4.2.6) consists of complicated equations. The analytical determination of the
Jacobian matrix A therefore requires a considerable amount of calculations, which makes the
code expensive. A novel and efficient feature in our code is the numerical determination of A
according to

gi(q;+da) — gi(qy)

Ay , (ij=1,.,m), (4.4.1.7)
dq

where dq is taken equal to |q;j| x 10-5. For model 1 the Jacobian was determined analytically
as well as numerically. A comparison of the corresponding numerical values showed an
agreement of the first five digits for the physical variable z.
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New values q*! become available after each time step. From these values the new values of
1

the physical variable have to be determined by means of a transformation. In the case of
model 1 the transformation can be performed analytically. In the case of model 2 the
transformation reduces to a linear and a non-linear equation for u; and us. Those equations
were solved numerically by using the CO5PBF NAG-routine. Relations (4.3.1.1) and
(4.3.1.2) guarantee that the Jacobian of the transformation does not vanish. It should be
emphasised that this is due to a careful selection of the equations that make part of model 1
and of model 2. We remark that the equation for the conservation of energy was not included
in explicit form in any of the two models. The reason for this procedure is that when the
equation for the conservation of energy is combined, respectively, with the equation for the
conservation of total linear momentum, the equation of motion for the liquid, or the
equation of motion for the gas phase in addition to the two equations for the conservation of
mass, the Jacobian |dq/dz|, in the case of model 1, is given, respectively, by
(uz—us){pip2+(prtp2)m(a)}, (uz/pi){pwp2+(pr+p2a)m(a)} , or (ui/p2){pi2+(p1+p2)m(a)}. In
each case the Jacobian therefore vanishes for certain values of the flow velocities u; and u; so
that the numerical transformation breaks down. We finally mention that the CPU time
required for the numerical experiments with model 2 could be reduced by a factor three when
the corresponding results of model 1 were used as starting values for the numerical
transformation.

4.4.2 Testing the method

The numerical experiments presented in this subsection will serve as test cases for the
numerical method. The experiments have the form of initial—value problems. They concern
nonlinear void—fraction waves and acoustic waves. Void—fraction waves are used for
comparing an exact solution with its numerical representation, while acoustic waves are used
for a demonstration of the effect of the values of § and % on the numerical dispersion. The
initial values are determined by giving the physical variable z as a vector function of x at
t=0. Concentration waves are included by using the properties (i) and (ii) and the relations
(3.3.1), (3.3.2) and (3.5.1)(see sections 3.3 and 3.5 in Chapter III), where f(x) is the initial
value of a. Acoustic waves are generated by perturbing the value of pg at t=0. Note that pg
is equal to the dimensionless gas pressure. The values of z at the boundaries x=0 and x=1
are determined through overspecification and are kept equal to their initial values. Since one
of our aims is to investigate waves and wave interactions at a certain distance from the
boundaries of the region 0<x<1 , that overspecification is not a severe restriction.
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As a first test of Lerat’s scheme we compute a propagating nonlinear concentration wave in
the case of model 1. The space increment and the time step are given, respectively, by
Ax = .005 and At = .04 so that I = 200 and the Courant number is close to one (for a void
fraction a = .1 (see below) the maximal eigenvalue is approximately equal to .12). The
number of time steps is determined by N = 200. The initial value of « is given by (3.3.1),
where

f(x) = fo + £, & S0(xx0)? (4.4.2.1)

with fo = .1, f; = .025, £, = 200 and x, = .4. The other quantities occurring in the relations
describing a concentration wave are determined by u; = .025, p = 103 and pyw = —9x10-4.
The initial values of the physical variable z = (p,,pQ,ul,uz)T are thereby completely fixed.
They represent at t=0 a nonlinear void—fraction wave centered around x=.4 and propagating
with a velocity us = .025. Note that the difference velocity w # 0. Figure 4.4.2.1 shows the
values of & at t=0, t=4 (hundred time steps) and t=8 (two hundred time steps). The shape

f= 04 8
125 -

0 2 &4 6 8 1

Figure 4.4.2.1. Propagating nonlinear concentration wave.
Void fraction a at t=0, t=4 and t=8 (model 1).
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of the curve representing the void fraction « as a function of position is perfectly conserved
in the course of time. At t=8 the maximum value of « has travelled from x=.4 to x=.6 and
is equal to amax = .-12500. The numerical results are in excellent agreement with the exact
solution.

Next we investigate the influence of § and % on the numerical dispersion associated with
scheme (4.4.1.1). A modified initial-value problem is solved for two different sets of values
for # and # by using model 1. The initial values given above are left unchanged, with the
exception of the values of us and f,. By taking them equal to u; = 0 and f; = 0, the gas phase
is initially at rest and uniformly distributed. The uniform value of pg is slightly disturbed at
t = 0 by letting the dimensionless gas pressure take the form

Pg = Pgo + Pgi e Six)? , (4.42.2)

where pgo = 1073, pg; = 1074, £&; = 250 and x; = .5. Acoustic waves will originate from the
disturbance centered around x = .5. The initial-value problem is solved with Ax = .02 and
At = .16. The Courant number is therefore approximately one. Fifty time steps are taken
(I =50, N = 50). First, we take § and % equal to the commonly used values f = —1 and
¥ = 0. In figure 4.4.2.2 the result is presented in the form of a (x,t)—plot of the drift velocity
u; of the gas bubbles. The damped oscillations at the rear of the acoustic waves are a result
of the numerical dispersion of the scheme (see the previous subsection). Subsequently, we
take B and 7 equal to the optimal values §=—1/2 and % = 1/3, and solve the same
initial—value problem. The results are plotted in figure 4.4.2.3. They clearly demonstrate the
importance of a correct tuning of the parameters which occur in the numerical scheme. The
numerical dispersion is greatly reduced by choosing the optimal values of 4 and 7. However,
a small oscillation at the rear of the wave is still visible. In the next subsection it may be
seen (figure 4.4.3.1) that a refining of the grid (I = 200) is sufficient to make that small
oscillation disappear as well. We finally remark that only the gas velocity is plotted because
it turned out to be the variable that is most sensitive to numerical errors.
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Figure 4.4.2.2. Numerical dispersion in acoustic waves for B=-1and?%=0.
Gas velocity u» plotted as a function of T and t (model 1).
U,
-
il iieee

Figure 4.4.2.3. Numerical dispersion in acoustic waves for g=-1 /2and % =1/3.
Gas velocity up plotted as a function of T and t (model 1).
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4.4.3 Numerical investigation of wave—interaction

The numerical initial—value problems treated in this subsection concern the interaction of
acoustic waves with nonlinear concentration waves. At the same time we further investigate
the feasibility of Lerat’s method. Next to model 1, model 2 is used to investigate the effect of
bubble deformation. The experiments are performed with a space increment Ax = .005,
giving I = 200. The time step is determined by At = .04, so that the computations of the
present subsection will be performed with a Courant number that is approximately equal to
one. The number of time steps is taken equal to N = 200. As a consequence the numerical
experiments cover a period of 8 dimensionless units. For a pipe of one meter length filled
with a bubbly mixture at room temperature, that period would correspond to approximately
.03 seconds. The computations are therefore performed on a small time scale, characterised
by the time of propagation of the fast acoustic waves. The possibly unstable behaviour of
acoustically disturbed concentration waves may not appear on that time scale. In the next
subsection they are investigated on a large time scale by numerically integrating at a high
Courant number.

We investigate the stability of a nonlinear void—{raction wave of the form (4.4.2.1) by letting
it interact with an acoustic wave originating from a disturbance of the form (4.4.2.2). The
parameters take the values fo = .1, f; = .025, £, =200 , xq = .7 and x; = .3. The values of
the remaining constants are left unchanged. They may be found in the previous subsection.
In view of the relations describing a nonlinear concentration wave (see sections 3.3 and 3.5,
Chapter III), the gas velocity is taken equal to uz =0 and the liquid velocity u; is
determined by taking pyw = —9x10-4. Figure 4.4.3.1 presents the interaction in the form of
(x,t)—plots of the void fraction o and the bubble velocity us. That presentation is sufficient
for a qualitative discussion of the results. Three waves originate from the disturbance of the
gas pressure at x=.3, viz., two fast acoustic waves, both having a minimum in o, and one
slow wave, having a maximum in o. The acoustic wave propagating to the right interacts
with the nonlinear concentration wave at x=.7. On the small time scale the void—fraction
wave reassumes its initial shape after interaction.

In order to investigate the influence of bubble deformations a similar initial—value problem is
computed using model 2. The initial value of the bubble number density n follows from
(3.5.1), where the constant value of the average bubble volume 7 is determined by choosing a
constant equivalent bubble radius ap;. The initial-value problem was solved for
ag = .216x10-3, associated with a Weber number of the undisturbed flow Weg % .5, and for
ao = 1.08x10-3, corresponding to Weg = 2.5. The results are presented in figure 4.4.3.2 and
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Figure 4.4.8.1. Interaction of an acoustic wave and o nonlinear concentration wave.
Void fraction a and gas velocity us plotted as functions of z and t (model 1).
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Figure 4.4.3.2. Bubble deformation effects in the interaction of an acoustic wave and a

nonlinear concentration wave, Wey s . 5.
Void fraction o and gas velocity u, plotted as functions of ¢ and t (model 2).
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Figure 4.4.83.8. Bubble deformation effects in the interaction of an acoustic wave and a
nonlinear concentration wave, Weg = 2.5.
Void fraction a and gas velocity us plotted as functions of ¢ and t (model 2).

figure 4.4.3.3, respectively. The small Weber number Weq = .5 ensures that the bubbles have
a nearly spherical shape. Indeed we see from figures 4.4.3.1 and 4.4.3.2 that, for small Weber
numbers, model 2 yields nearly the same results as model 1, where the bubbles are assumed
to be spherical. In the case where Weg » 2.5, the bubbles take the approximate form of
oblate ellipsoids. Figure 4.4.3.3 clearly demonstrates the effect of bubble deformations. The
amplitude of u, decreases, while the velocity of propagation of the acoustic disturbance
diminishes (the wave in figure 4.4.3.2 arrives at the boundary x=1 at an earlier time than
the wave in figure 4.4.3.3). The void—fraction wave reassumes its original shape on the small
time scale considered.

The plot of u; in figure 4.4.3.1 displays a weak reflection. To investigate whether the
reflection may become more pronounced, a void—fraction wave having a much higher
gradient in the bubble concentration is introduced around x=.7 by means of

f(x) = 1o + 1, 1+tanh{§o(x_x0)} , (4.4.3.1)

where fy = .1, f; = .075, £y = 100 and xo = .7; in the limit £, - o the function f(-) takes the
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Figure 4.4.3.4. Reflection and transmission of an acoustic wave as a result of its interaction
with a nonlinear concentration wave.
Void fraction a and gas velocity up plotted as functions of z and t (model 1).

form of a step function. The pressure disturbance is increased by taking pg; = 1.75x10-4,
Other constants are left unchanged. Figure 4.4.3.4 shows the results obtained with model 1.
The acoustic wave is partially reflected and partially transmitted. A close look at the plot of
uy shows that the acoustic disturbance travels slower with a larger amplitude in the region of
high void fraction after transmission. A decrease of a is observed at x=.7 after interaction. It
suggests that the pressure wave has pushed the concentration wave to the right. After
interaction the void—fraction wave reassumes its initial shape, again on the small time scale
considered. In the next section the initial-value problem discussed here is approximately
solved by replacing (4.4.3.1) by a step function and using the linearised equations of model 1.
An extensive comparison of the numerical results with the results following from linear
theory is also presented there.
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We finally point out two more aspects. First, it should be noted that the dispersive errors,
still visible in figure 4.4.2.3, have disappeared completely as a result of the optimal values of
B and % in combination with the refined grid. Secondly, it should be observed that none of
the results presented here demonstrate the linear growth property which is discussed in
subsection 4.3.1. This may be understood by realising that the linear growth in time is
carried by a slow wave and will therefore only manifest itself clearly on a large time scale. In
the following subsection that effect is investigated by performing computations with a high
Courant number.

4.4.4 Stability of nonlinear concentration waves and linear stability of model 1

The stability of the acoustically disturbed nonlinear concentration wave presented in figure
4.4.3.1 is investigated here on a large time scale by continuing the numerical integration of
the solution at t = 8 with a high Courant number. The time step is fixed to At = .4 and two
hundred time steps are taken (N =200). The corresponding Courant number is
approximately equal to ten. In figure 4.4.4.1 the void fraction a is plotted at t = 8, 48, 88.
The nonlinear void—fraction wave centered around x = .7 preserves its initial shape on the
large time scale comsidered and proves to be stable for an acoustic disturbance. A
considerable change of the solution is observed around x = .3, where the acoustic waves were
generated by means of a pulse in the gas pressure. At t = 88 we may recognise the derivative
of the initial value of the pressure pg, given by (4.4.2.2). Note that the general solution
(4.3.1.17) of the linearised equations contains a derivative which is multiplied by the time t.
We therefore expect to find a similar behaviour in the numerical solution around x = .3.
That the linear growth is indeed present is shown in figure 4.4.4.2, where the maximum void
fraction around x = .3, denoted as amax, is plotted as a function of time. An almost linear
behaviour in time of the void fraction may be observed. We recall that this is a result of the
fact that model 1 does not have a complete set of eigenvectors. In subsection 4.5.1 it is
demonstrated that linear theory predicts the effects observed in the neighbourhood of the
centre of a disturbance in the gas pressure. The linearly growing solutions are qualified in
subsection 4.3.1 as an artefact of the model. They will disappear, when dissipative effects or
higher order derivatives are taken into account.
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Figure 4.4.4.1. The void fraction « at t = 8, 48, 88 after the interaction of

an acoustic wave and a nonlinear concentration wave(model 1).

A

a’ max

1 T
8 88

Figure 4.4.4.2. The mazimum void fraction amax as a function of time in the
neighbourhood of the origin of a disturbance in the gas pressure (model 1).
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It is analysed in subsection 4.3.2 in what way the form of the virtual-mass coefficient m(a)
may influence the linear stability of model 1 and, consequently, the behaviour of
void—fraction waves. Here, the results of subsection 4.3.2 are illustrated numerically. First,
we substitute the virtual-mass coefficient mK(a), given by (4.3.2.7) and presented by Kok

(1988), into model 1. It is shown in subsection 4.3.2 that for this case model 1 possesses two
complex characteristics. The initial values are taken as in the first experiment of subsection
4.4.2 (a propagating nonlinear concentration wave), except for the values of the gas velocity
and xo, which are determined by u; = 0 and xq = .5. At t = 0 the void fraction has the shape
of a Gaussian curve, the gas phase is at rest and the liquid has a positive velocity. The space
increment and the time step are fixed to Ax = .02 (I = 50) and At = .6. Subsequently, two
hundred time steps are taken (N = 200) with a Courant number of approximately four.
Figure 4.4.4.3 gives the maximum void fraction omax as a function of time. A rapid, more or
less exponential growth of the void fraction is displayed in figure 4.4.4.3 , which is a result of
the complex characteristics of model 1. Model 1 is linearly unstable when the virtual—mass
coefficient mK(a) is substituted and does not allow stable numerical computations.

Secondly, we take a virtual-mass coefficient of the form (4.3.2.1), where p; and p, are taken
equal to p; = ps = —1/4. Figure 4.3.2.1 shows that for void fractions of about .1 model 1 is
linearly stable and possesses two concentration waves with real and distinct velocities of
propagation. The initial-value problem described above is solved numerically by making use
of the modified virtual-mass coefficient. The space increment as well as the amount of time
steps are left unchanged. Since p; = p, = —1/4, model 1 is close to marginal stability. As a
result the two velocities of propagation of the concentration waves do not differ much from
uz = 0 and the two waves split very slowly. To make both waves clearly visible the time step
is therefore increased to the value of At = 4. As a consequence, the computations are
performed with a high Courant number of approximately twentyfour. The void fraction « is
plotted as a function of x and t in figure 4.4.4.4. It is seen that two stable void—fraction
waves originate from the Gaussian curve at t = 0. Figure 4.4.4.4 demonstrates that two
stable and distinct concentration waves may exist when expression (4.2.5) for the
virtual-mass coefficient, corresponding to marginal stability, is slightly disturbed. In
addition it is shown that the linear growth in time vanishes.
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Figure 4.4.4.3. The mazimum void fraction anax in a concentration wave as a function of
time; mK( a), given by (4.8.2.7), substituted into model 1.
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Figure 4.4.4.4. The void fraction a plotted as a function of z and t; virtual—mass coefficient
m(a) determined by (4.8.2.1) (py = p2 = —1/4) and substituted into model 1.
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4.5 Linear theory and acoustics

The effects which may be observed in the numerical results of the previous section require
some analytical support. It is the aim of the present section to derive such a support from
the analytical solution of the linearised equations of model 1. It will contribute to the
reliability of the numerical calculations and will give more insight in the behaviour of waves
and wave—interactions in bubbly two—phase flow. It constitutes a generalisation of the
acoustics of one—phase fluids. The acoustic properties of a bubbly liquid/gas mixture are
presented in dimensionless form to serve the readability of the present chapter.

4.5.1 Waves originating from a disturbance in the gas pressure (linear theory)

The initial-value problem characterised by a disturbance in the gas pressure, which was
formulated in subsections 4.4.2 and 4.4.3, is solved here by means of linear theory. In concise
form the linearised equations of model 1 are given by (4.3.1.16) which has the general
solution (4.3.1.17). Note that z is equal to z = (i)l,i)g,ﬁ,,ﬁg)T. The disturbance in the
dimensionless gas pressure pg is given by (4.4.2.2), so that the initial value of 2 at t = 0 is
determined by

#(x,0) = (0,5 e S X)? o )T (4.5.1.1)

where & = ag pg;. It follows from (4.3.1.17) that the general solution at t = 0 is written
A 4
z(x,0) = k)_ll fi(x) i . (4.5.1.2)

The functions fx(-), (k = 1,...,4), are unknown and have to be determined. When we write
them as

f(x) = a6 x> g (k=1,.4) , (4.5.1.3)

the coefficients di, (k = 1,...,4), are obtained by solving
: T
Z dem=(0,1,0,0). (4.5.1.4)

The eigenvectors i, (k=1,...,4), are given by (4.3.1.8), (4.3.1.9) and (4.3.1.11). When they
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are substituted the solution of (4.5.1.4) reads

2 ’ ds 2

5/’131(1—:—;) 5/’1&2(1—%21

d,
(4.5.1.5)

1 ajta W
d3=—z(1—3a+2pg—_a:];—a_:plw): d4=%7)

where ¢ = (14+2pg)pg + (1/2)p3w2. By substituting (4.5.1.5) into (4.5.1.3) the solution of the

present initial—value problem is determined by (4.3.1.17).

For a qualitative understanding of the solution we make some simplifying assumptions. In
most practical situations pg << 1 and |w| << 1. When in addition the void fraction is not
close to 1/3 the acoustic velocities a; and a; may be approximated by a; ¥ 4 and a, ¥ -,
where

5= [JT%&)]W (4.5.1.6)

and & = pg+ (1/2)p3w?. The coefficients dy, (k = 1,...,4), then satisfy

, dpy—— b dye-182 g wliW (4.5.1.7)

"8 %4
©

an
e
=]

o
7ass

and the acoustic eigenvectors become approximately

02 (3 (1-30) pid, 5 s, 3 (1-30) 82, 5 pia2 )' (4.5.1.8)
and

r2% (— 5 (1-30) pi , — 5 pwsd , 5 (1-30) &2, 2 par). (4.5.1.9)
Since d; and the first element of r, are positive, according to (4.5.1.6), (4.5.1.7) and (4.5.1.8),
it is clear that the acoustic wave travelling to the right shows a maximum in p, and therefore

a minimum in the void fraction (p; = — &). A similar result holds for the wave travelling to
the left. When p;w has a negative value, both coefficients ds and d4 are negative. The first

ILETr al
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element of r3 is equal to one (see (4.3.1.9)) so that the void—fraction wave originating from
the pressure disturbance has a maximum in @. Due to (4.5.1.3) all modes take the form of a
Gaussian curve. Considering expression (4.3.1.17) for the general solution, we see that the
linear growth in time of the void fraction is multiplied by minus the derivative of a Gaussian
curve. All effects mentioned above may be found in the numerical results of the previous
section; see, for example, figure 4.4.3.4 and figure 4.4.4.1.

The initial-value problem displayed in figure 4.4.3.4 (reflection and transmission) and
formulated in subsection 4.4.3, is used in the present subsection for a quantitative
comparison between the numerical solution and the solution following from linear theory. In
this subsection we focus on the region around the origin of the pressure disturbance. A
comparison of the amplitudes is given in table 4.5.1.1. Taking into account that the

AMPL. LEFT AC. WAVE SLOW WAVE RIGHT AC. WAVE
LIN. NUM. LIN. NUM. LIN. NUM.
o —6.1x10-3 -5.6x10-3 1.2x102 1.2x10-2 —6.2x10-3 —5.7x10-3
P2 2.7x10-6 2.6x10-6 1.2x10-5 1.2x10-5 2.6x10-6 2.5x10-6
Uy —8.1x10+4 —7.8x104 —3.8x10-6 —3.4x1076 8.2x10-¢ 7.8x10-4
(i) —3.2x10-3 —3.1x10-3 1.6x104 1.3x104 3.1x10-3 3.0x10-3

Table 4.5.1.1. Amplitudes of waves originating from a disturbance in the gas pressure.
A comparison of numerical computations and linear analysis (model 1).

disturbance in the gas pressure is 17.5 % (pgo = 103, pg; = 1.75x10-4), we may conclude that
linear theory supports the numerical results quite well. Furthermore, it is seen that the
linear analysis gives a systematical overestimation of the numerical data. In the next
subsection the reflected and transmitted waves are determined by means of the linearised
equations in order to complete the comparison with the numerical calculations.
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4.5.2 Interaction of an acoustic wave and a discontinuous concentration wave
(linear theory)

The interaction of an acoustic wave and a discontinuous void—fraction wave is analysed here
according to linear theory. The concentration wave is characterised by means of some
continuity relations across the interface which are derived from model 1. By linearising those
relations the reflection and transmission of the acoustic disturbance may be determined. In
this way, linear theory is used to analyse the phenomena which are present in figure 4.4.3.4
around x = .7. The corresponding initial-value problem is formulated in subsection 4.4.3.
Mathematically spoken, a discontinuous concentration wave constitutes a contact
discontinuity.

Model 1 is written in the conservation form (4.2.6). The corresponding continuity relations
are given by

[&(z)] —s [a(z)] =0, (45.2.1)

where [q(z)] = q(z*) — q(z), z* being the state in front of the interface, z- the state at the
back, and g(z) = g(q(z)) The velocity s of the interface is positive when the interface travels
in the direction of the z* region. With a view to linearisation we write

=125+ 7,
z* = z{ + z*, (4.5.2.2)
S =585+ 8§

It is assumed that the undisturbed flow, characterised by z; and z§, contains a discontinuous

concentration wave. The relations for a nonlinear void—fraction wave, given in section (3.3)
(see Chapter III), may be used to show that in that case

- — L J—
Uy = Uyp = U20,

Pgo = Pgo = Pgo >
(4.5.2.3)
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(P10Wo)* = (p1oWo)~ = p1oWo ,
S0 = Uz
must hold. As a consequence, the undisturbed flow satisfies

[&(z0)] — uz0 [q(z0)] = O . (4.5.2.4)

By substituting (4.5.2.2) into the continuity relations (4.5.2.1) and making use of (4.5.2.3)
and (4.5.2.4), it is shown that the linearised continuity relations may be written as

Co# — Cy 3 — (@) = 0, (4.5.2.5)

where the 4x4 matrix Cuz is given by Cu2= 08/ 0z — u, 0q/ 0z. For convenience, the

subscripts zero have been omitted.

The incident and the reflected acoustic waves make part of z- while z* should only contain
the transmitted acoustic wave since the initial conditions and the conditions at +«o do not
allow a wave travelling to the left in that region. The amplitudes of the incident wave are
known. They are determined by d;4 r; , where the coefficient dj is given in (4.5.1.5),

a = ap pg and the eigenvector r; is determined by (4.3.1.8). When we assume, in an obvious
way, that the amplitudes of the reflected wave are of the form e; 4 r; and write the
amplitudes of the transmitted wave as e} 4 r{ , with unknown coefficients e; and e!, z* and

z- are determined by

N>
+
1l
]
[N
o
-
-

(4.5.2.6)
z-=djar;+e;ar;.

Note that the modes associated with the eigenvectors r3 and r4 are not included in z* and z-.
The reason for this is that those modes travel with the velocity of a concentration wave and
therefore run parallel to the discontinuity in the (x,t)—plane. As a consequence, their
coefficients have to be taken equal to zero since they would otherwise disturb the initial
values. In addition, the ry mode would vanish in the linearised continuity relations (4.5.2.5)
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since C112 r3 = 0. When (4.5.2.6) is substituted into (4.5.2.5), the continuity relations become

+ -OC- r- a Z)l _ 4-C- -
ef Cy, i — e;Cy, 13 ~ 8 la(=)] _ di Gy, 1i- (4.5.2.7)

We remark that expression (4.5.2.7) constitutes four equations for the three unknowns ef, e;

and §. By making use of (4.5.2.3) it is shown that

[d@]=—(1w—%,%mw,%%})T[M. (4.5.2.8)

When the eigenvectors are substituted into (4.5.2.7) and use is made of (4.5.2.8), it is
derived that (4.5.2.7) is equivalent to

Be=c, (4.5.2.9)
where
(pia’)* — (p1a)- 0
(% (piw + 3 ay) pray)* - (% (p1w + 30 a3) prag)” -1
B = :
o) o
a a

(p2d)* ~(psa3)" 0

(4.5.2.10)

e=(et,e;,[o] §/4 ) (4.5.2.11)

and

c=( ()", (3(ow + 3aay) piar)

(piai/a)- , (pad)" ). (4.5.2.12)
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We see that the four equations (4.5.2.9) are dependent and reduce to three independent
equations with three unknowns. The solution is given by

3y
(p1a2)- [ 1 - —]
aj
el = d;, (4.5.2.13)
\ a-a;
(plal)+ [ 1 - N +]
a*al
) a*al
(af)" [ 1 - ]
aaj
e;=— dj, (4.5.2.14)
a*al
(ad) [ 1 - ]
aa;
.1 a; — 3, .
S$=35 (pw + 3o a)* ——— (piar)"a dj. (4.5.2.15)

ot - -
a*al — aa;

Relation (4.5.2.13) determines the transmission, (4.5.2.14) the reflection and (4.5.2.15)
expresses the motion of the discontinuous void—fraction wave as a result of the incidence of
the acoustic wave. When the limit z* — z-is taken it is inferred from (4.5.2.13) to (4.5.2.15)
that e} - d;, e;— 0 and § — 2= (1/2) p(p1w/a + 3a;)a; d; 4. As a consequence, the

acoustic wave is completely transmitted and not reflected. The reflection and transmission
coefficients for the four components of the incident wave may now be defined, respectively,
as

Ik €3
Cp p = , (k=1,.,4) , (4.5.2.16)
O r dj
and
Iy €f
Cpp = ——o, (k=1,.4) , (4.5.2.17)
PE g dj

where 1k denotes the kth element of the ith eigenvector, (i = 1,2), (k = 1,...,4).
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In practice, when pg and |w| are small, the reflection and transmission coefficient of the void
fraction @ may be approximated by

C. w— o' — a (4.5.2.18)
LET  (Ja(l8a") + va(ia) )
and
1-3a* [ [ a-(1-3a") 12 47t
Cral? +2] . (4.5.2.19)
’ 1-3a- | | a*(1-3a*) at

Relations (4.5.2.18) and (4.5.2.19) demonstrate that for a* > @~ a minimum in the void
fraction is reflected as a maximum and transmitted as a minimum. Since the reflection
coefficient of the gas velocity C, u, Y be approximated by the right hand side of (4.5.2.18)

multiplied by minus one, a maximum in the gas velocity is reflected as a maximum. Those
effects are also present in figure 4.4.3.4. A quantitative comparison of the numerically
computed amplitudes and the amplitudes following from the linear analysis is made in
table 4.5.2.1. The comparison concerns the initial-value problem which is displayed in
figure 4.4.3.4 and formulated in subsection 4.4.3. The numerical integration is also performed
for a void—fraction wave with a higher gradient by taking £, = 150. In that way the

AMPL. REFLECTED ACOUSTIC WAVE TRANSMITTED ACOUSTIC WAVE
LINEAR NUMERICAL LINEAR NUMERICAL

£4=100 £4=150 £0=100 £o=150

& 1.4x10-3 1.3x10-3 1.3x103 | —5.7x103 | —5.5x10-3 | —5.5x10-3

b2 —-6.2x10°7 | —5.5x107 | —5.8x107 6.1x10-6 6.1x1076 6.1x10-6

iy 1.9x10-4 1.6x10-4 1.8x10-4 7.5x10-4 7.4x10-4 7.4x10-4

iy 7.4x104 6.6x10-4 6.9x10-4 3.8x10-2 3.8x10-2 3.8x10-3

Table 4.5.2.1. Amplitudes of a reflected and transmitted acoustic wave.
A comparison of numerical computations and linear analysis (model 1).
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concentration wave shows a closer resemblance with a step function, or discontinuity, and it
may be investigated whether the comparison improves or not. The comparison is focused on
the amplitudes of the reflected and transmitted acoustic waves. Again the linear results
prove to support the numerical computations very well. As in the previous subsection, linear
theory systematically overestimates the numerical data. In addition it is seen that the
comparison improves when we consider a concentration wave with a higher gradient
(§o = 150).

We finally want to investigate the displacement of the concentration wave due to the
incident acoustic wave. It is easily seen from expression (4.5.2.15) that linear theory predicts
that the void—fraction wave moves to the right when (p;w + 3 a;)* > 0 and a dj > 0. Since

both inequalities hold in the corresponding numerical experiment, the decrease of the void
fraction at x = .7 in figure 4.4.3.4 must indeed be interpreted as a translation to the right of
the concentration wave as a result of the collision with a pressure disturbance. When we
assume that the concentration wave, centered around x = x; at t = 0, preserves its shape
and the void fraction at x = x, is known as a function of time, the displacement x(t) of the
void—fraction wave may be derived from (4.4.3.1) and is given by

[0“ - AXo,t ] . (4.5.2.20)

Expression (4.5.2.20) may be used to determine the displacement from the numerical data.
In order to derive the displacement of the interface from linear theory we assume that a
pressure pulse of the shape i ¢Silxxat)? o travelling from x = x; to the right, where at
t = 0 the discontinuous void—fraction wave is located at x = xo. From (4.5.2.15) it is
inferred that the pulse induced interface velocity §(t) at the position of the interface xiny(t)

is given by

5(t) = § ¢ &1 (Xime(t) —xr—ait)? (4.5.2.21)

where xint(0) = xo. When we write the position of the interface as xini(t) = Xo + Xini(t), the
displacement Xini(t) of the interface is obtained by integrating (4.5.2.21) with respect to
time. It satisfies

t
fane(t) = § [ &6 (Ko Xut Xinl0) —2:6)7 4 (4.5.2.22)
0
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For the same initial—value problem as is mentioned above the displacement of the
concentration wave according to (4.5.2.20) and according to (4.5.2.22) are compared in
table 4.5.2.2. For completeness the reflection coefficients, defined by (4.5.2.16), are also
included. Both the displacement and the reflection coefficients compare quite well. Again,
the agreement improves when a void—fraction wave with a higher gradient (£, = 150) is used
in the numerical computations. Considering the comparisons in this subsection and in the
previous one, we may conclude that the major part of the phenomena observed in the
numerical experiments is supported by linear theory.

LINEAR NUMERICAL
£, =100 &0 =150
}A(int (hn)
3.64x10-3 3.87x10-3 3.79x10-3
X¢ (num.)
CR,a —.23 —.22 -.23
CR,pz ~.24 —-.22 —-.23
CR,u1 .23 22 .22
CR’u2 .24 .22 .23

Table 4.5.2.2. A comparison of the displacement of the concentration wave Tiny, Ic and the
reflection coefficients as a result of the interaction of an acoustic wave and a concentration
wave; numerical results versus linear theory (model 1).
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4.5.3 Acoustics of bubbly two—phase flow

In this subsection relevant acoustic quantities are derived from the linearised equations of
model 1. The acoustic energy and the acoustic intensity, for one—phase fluids given in
Lighthill (1978), are here generalised for application to a bubbly liquid/gas mixture. We
emphasize again that the expressions are given in dimensionless form. Note that bubble
pulsation effects are not taken into account in model 1. Therefore, the linearised equations of
model 1 only describe the behaviour of sound waves of frequencies which are smaller than the
isothermal resonance frequency of the individual bubbles w, = {3pm/(pf ag)]% (see

van Wijngaarden 1972), where a, denotes the bubble radius and P, the undisturbed pressure.

For acoustic shock waves or, in general, waves of a high frequency the Rayleigh—Plesset
equation should be included, as is done by Noordzij & van Wijngaarden (1974), for example.

In Lighthill (1978) the acoustic energy and intensity for a one—component fluid are derived
by means of a physical argument. Bubbly two—phase flow is too complicated for such an
approach. As a result, the linearised equations of motion have to be used to derive the
equation describing the conservation of acoustic energy. The linearised equations of model 1
are given by (4.3.1.12) to (4.3.1.15) and may be applied to derive expressions for the acoustic
energy W and the acoustic intensity I in their dimensionless form. They should be quadratic
in the disturbances p;, ps, 1y, 02 and must satisfy

at  Ox

A way to obtain equation (4.5.3.1) is to multiply (4.3.1.14) by pyi; + usp;, multiply
(4.3.1.15) by psiig + usps, add the obtained equations and make use of (4.3.1.12) and
(4.3.1.13) to bring the result into conservation form. This procedure, however, requires a lot
of tedious calculations and gives little insight. An alternative and more systematic approach
is to formulate a variational principle which generates (4.3.1.12) to (4.3.1.15) and derive the
conservation of acoustic energy (4.5.3.1) from Noether’s invariance theorem.

Consider the case that the nonlinear equations of motion for a variable u(x,t) are derived
from a Lagrangian energy density L(u). By writing u = ug + @ , i being a relatively small
disturbance of a solution uy, it is shown in a straightforward way that the corresponding
linearised equations of motion may be obtained by means of an associated Lagrangian L(i)
which follows from L by expanding L(ug + 1) in powers of i and retaining only the terms
that are quadratic in the disturbance. In the present case of bubbly two—phase flow, that
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procedure is most readily applied to the dimensionless form of the Lagrangian L* defined by

(1.6.11) (see section 1.6, Chapter I). It reduces to a quadratic expression in the disturbances

p1, P2, Uy, Ug, {1 and o which is given by
L* _1 02 + 2 ~ 1 ~0 - -
=P Ui+ AU Ut 5P Uy + Py Uy Uy F

+imt w2 plom w by () + 5 m ()2 - b

— P [i+u1i] @1__/‘,1131299.1_/)1{112‘&4.
ot ox Ox 0x

— P2 [ﬁ_}_Mﬁ.] ¢2—ﬁ2ﬁ2§(‘0—2—P2ﬁ22ﬂ-
ot ox ox Ox

Since it follows from the Euler—Lagrange equations (1.6.14) and (1.6.15) that

. s a0 s s
ﬂlux%ﬂl""quz—é‘@=p1u1u1+p2u2u2+
X X

polly Pyl
+mw(£f—)2—2—%),

equation (4.5.3.2) may be written in the form

L*=L- [b1-6—+(p1ﬁ1+111/31)£] o1+
ot ox

- [/A’zi‘i‘ (p2liz + uap2) —6—] 2,
ot Ox

where

=
Il
B —
=Y
=>
o
+
D —
)
L
=
L -3
+
—

[

m (Gp-i)? - m* w py (Go-ly) + 7 m* w2 pl +

_ paiy _pyiyy 1 a oy
mw(p2 Pl) 2 g P

(4.5.3.2)

(4.5.3.3)

(4.5.3.4)

(4.5.3.5)
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Partial integration shows that the last two terms on the right—hand side of (4.5.3.4) yield
the linearised mass conservation equations (4.3.1.12) and (4.3.1.13), multiplied, respectively,
by ¢; and ;. Performing the independent variations of the four quantities p;, g2, 1i; and i,
we derive the following Euler—Lagrange equations from (4.5.3.4):

6oy L, 201y, 001 _ ¢, (4.5.3.6)
Pr - oy ox

§pg L. — 902y, 002 _ ¢ (4.5.3.7)
Pz ot dx

- 901 _

buy: Lfll Pt P 0, (4.5.3.8)

Sy L. —p 220, (4.5.3.9)
Uz 0x

where L; denotes 0L/t 1t is easily inferred from (4.5.3.6) to (4.5.3.9) that the Lagrange

multipliers satisfy

Qa% = % Lg, (4.5.3.10)
Qaiuz LZJF%LﬁN (4.5.3.11)
9%, _ Ly, (4.5.3.12)
ox P2 2

09y _ 1, _Way (4.5.3.13)

ot P2 P2 l‘i2 )

Combining relations (4.5.3.10) and (4.5.3.11) it is seen that

91 Sy 3=
ot {pl Lﬁl} + ox { P1 Lu, Lpl } =0. (45314)
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In the same way relations (4.5.3.12) and (4.5.3.13) give

91 O quayp _ -
at{p2Lﬁ2}4-ax{p2Lﬁ2 L;,}=0. (4.5.3.15)
When (4.5.3.5) is substituted for L, relations (4.5.3.14) and (4.5.3.15) take the form of,
respectively, (4.3.1.14) and (4.3.1.15), which constitute the linearised equations of motion for
the liquid and the gas. Since the Lagrangian density L is quadratic in the disturbances, it is

true that
1 LZ)1+ P2 Lﬁ2+u1 Lﬁ1+ U2 Lﬁ2: 2L. (45316)

Multiplying the Euler—Lagrange equations (4.5.3.6) to (4.5.3.9) by, respectively, pi, p2, U
and {5, and adding the results, we derive with the use of (4.5.3.16) that

2L—[ﬁ1i+(ﬂlﬁ1+u1ﬁl)—a'] o1+
at Ox

- [ 2+ (p2li2 + up2) i] P2=0. (4.5.3.17)
at 0x

By substituting expression (4.5.3.4) for L* it is seen that L and L* are simply related by
means of

L*=-L. (4.5.3.18)

We now return to equation (4.5.3.1), which expresses the conservation of acoustic energy. In
the case of a bubbly liquid/gas medium it may be derived in dimensionless form by applying
Noether’s first invariance theorem to L*, given by (4.5.3.4). We recall that the invariance
theorem was treated in section 2.3, Chapter II. The acoustic energy and intensity are shown
to satisfy, respectively,

We=owp 01_p,00 1 (4.5.3.19)
at ot

and
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I =-— (plﬁl + ulﬁl) %% - (p2ﬁ2 + llzﬁz) —362;-2- . (4.5.3.20)

By substituting (4.5.3.4), (4.5.3.5) and (4.5.3.10) to (4.5.3.13) it follows that

o o WoPs U Pprs - 112153 111»5%
+u1p1u1+u2p2u2+m(-—ﬂ-————£—p1)(uz—ul)—mw[ ]-}-

Pz p; A
—m w jy (U282 Baby —tmw2p?, (4.5.3.21)

I =(py+ uypy){uy 0y _p%ul (ag—4) _;n_l w P+ (p%) w Uy Py +

+m w (o) + pg—pm’ W2 pi} +

A~ m’'w

N u . m A oA m N
+ (p2u2 + uzpy){us iz + Xy us (lo—y) + e w iy — ) uz p; +
m w - 1 .
5 Uz P2 + ;J'g‘ pg} - (45322)

Py

Clearly, these expressions are too complicated to construct them by means of a physical
argument, like Lighthill (1978) does for an ordinary fluid. The corresponding dimensional
relations for W and I are obtained by multiplying (4.5.3.21) and (4.5.3.22) by, respectively,
Py U? and Py U3 , where U2 = RT/M, and rewriting the right—hand sides in dimensional

variables.

The conservation of acoustic momentum is also derived from Noether’s theorem. It is written

kL aM_q (4.5.3.23)
ot 0x

where the acoustic momentum density P is given by
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p=;,1%+;,22¢_2

ox 0x
PYIIY)
IR o a Do Dinse Py Py
=P+ palg+m (B2 -BY(iipi)—mw | ——— | +
P2 Pi pg p%
e ow py (P2 B
m’ wpy (p2 pl) (4.5.3.24)

and the acoustic momentum flux IT by

T = (pris + u1p1) %1 4 (p2iz2 + u2p2) %3 4 ¥

Ox Ox

h %2
[+ ~T%]
+

(4.5.3.25)

<=

~2 -9
A A ~ ~ U2A2 111"1 ~ -~ u2p2 ulpl
*l'111!’1\11‘i'112/72112+III(—&'O2 ——&pl Y1) —mw [—2——2] +

Py P

’ p u p ) 1 G -
R TAC BT TNE P

The corresponding dimensional relations for P and II are obtained by multiplying (4.5.3.24)
and (4.5.3.25) by, respectively, p, U, and p, U? and rewriting the right—hand sides in

dimensional variables. Since L = —L* according to (4.5.3.18), it follows from the second line
of (4.5.3.25) that in the one—dimensional case IT = W (see expression (4.5.3.19) for W). Note
that in general II is a tensor and W a scalar. When we apply a Galilean transformation
uj — uj + v, (I = 1,2), it may be shown with the use of (4.5.3.24) that the acoustic energy is
transformed according to

W-oW+vP. (4.5.3.26)

Transformation (4.5.3.26) demonstrates the Galilean character of the acoustic energy.
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Relation (4.5.3.22) for the acoustic intensity I is used in the following subsection to
investigate whether the reflected and transmitted acoustic waves analysed in the previous
subsection satisfy the conservation of acoustic energy.

4.5.4 Comparison with ordinary acoustics

In this subsection we compare the acoustics of a bubbly liquid/gas mixture with the
acoustics of an ordinary fluid, as it is described by Lighthill (1978) (see also Whitham 1974).
Since Lighthill assumes the fluid to be at rest, we take the unperturbed velocities of the
liquid phase and the gas phase equal to zero, i.e. u; = up = 0. In that case it is derived from
relations (4.3.1.4) to (4.3.1.7) that the acoustic velocities a; and a; satisfy a, = —a; = &,
where 3 = (—co/cl)%. When we define the "excess pressure" pg as pg = pg and substitute
u; = up = 0 into (4.5.3.21) and (4.5.3.22), the dimensionless acoustic energy and intensity
reduce to

1 - A A oa
W=§p1uf+%—p2u§+%m(ur—ul)2+

B =

& 52 4.5.4.1
7 D2 ( )
and

I=((1-a) iy + aiy) pg - (4.5.4.2)

The corresponding relations for an ordinary fluid (see Lighthill 1978) are given by

~

W=gpiz+ %p—lzz B2 (4.5.4.3)
and

i=ap. (4.5.4.4)
To enable a convenient comparison the undisturbed mass density p of the fluid has been
made dimensionless by means of p ¢ » the disturbance i in the velocity and the speed of sound

¢ by means of Ug and the excess pressure p by means of 1y U2 When the bubbly medium is

assumed to consist of gas only (a=1), it is seen from (4.5.4.2) and (4.5.4.4) that the
acoustic intensities become identical. Since p;=0 for a=1, m(1) =0 and c=1 for an
isothermal fluid, the acoustic energies (4.5.4.1) and (4.5.4.3) become identical as well.
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By assuming the excess pressure of the form pg = f(x— a t), the equations of motion for the
liquid and the gas, given by (4.3.1.14) and (4.3.1.15), yield

iy =Y Pg (4.5.4.5)
and

U2 =Y Ppg, (4.5.4.6)
where the dimensionless acoustic admittance of the liquid Y, is determined by

1 1
pg+(ﬂ+a )m

1= T 1 ~ (4.5.4.7)
(1 +(E+ ﬁ) m) pg a
and the dimensionless acoustic admittance of the gas Y3 by
1+ (—1 + % ) m
Y, = 2 - (4.5.4.8)
1+ (H +57) m) pga
When the total acoustic admittance Y is defined as
Y=(l-a)Yi+ a¥Y,, (4.5.4.9)

it is shown with the use of (4.5.4.4), (4.5.4.5) and (4.5.4.6) that the acoustic intensity
satisfies

I=Yp2. (4.5.4.10)

Substitution of (4.5.4.7) and (4.5.4.8) into (4.5.4.9) demonstrates that the total
dimensionless admittance is equal to

y=442, (4.5.4.11)
Pg

The associated dimensional relations for Yy, Y, and Y are obtained by multiplying (4.5.4.7),
(4.5.4.8) and (4.5.4.11) by 1/(p, U2) and rewrite the right—hand sides in dimensional
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variables. In the case of an ordinary fluid the velocity i and the excess pressure p are related
by

i=Yp, (4.5.4.12)
where the admittance Y is given by
v=_L (4.5.4.13)
pe 5.4.

Since @ = 1 when the liquid is absent and ¢ =1 for an isothermal fluid, it follows from
(4.5.4.11) and (4.5.4.13) that the admittances Y and Y become identical. Note that Y5, given
by (4.5.4.8), and Y also become identical when virtual-mass effects are neglected.

It is shown by Lighthill (1978) that the reflection and transmission of a pressure wave
propagating through a medium containing a discontinuity, is completely determined by the
ratio fi = Y*/Y- of the admittances of the fluid in front and at the back of the discontinuity.
Clearly, the quantity i satisfies

fi = % . (4.5.4.14)

When the incident pressure wave has an amplitude A, the amplitudes of the reflected and
transmitted wave are respectively given by (see Lighthill 1978, p. 105)

n—1
RA = - A (4.5.4.15)
i+1
and
2
TA = A (4.5.4.16)
a4+ 1

In optics (see Born & Wolf 1959, p. 40) the relations (4.5.4.15) and (4.5.4.16) constitute the
so—called Fresnel formulas. The quantity fi is there identified as the refractive index
fi=v-/vt, where v- and v* denote the velocities of electromagnetic waves. We now
demonstrate that the interaction of an acoustic wave and a discontinuous concentration
wave, analysed in subsection 4.5.2, may also be written in terms of the reflection and
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transmission relations (4.5.4.15) and (4.5.4.16). Following the notation of subsection 4.3.1,
we write the acoustic wave travelling to the right as z = f;(x—at) ry , where r, is given by
(4.3.1.8). The excess pressure therefore follows as

f’g = ‘(%g p1+ %2’2 = pg (% + Pg) %a fy(x—at), (4‘5‘4'17)

which determines the amplitude of the incident pressure wave. The reflection and
transmission of an acoustic wave are determined by relations (4.5.2.13) and (4.5.2.14). When
those relations are used in combination with (4.5.4.17), it is seen that the reflection and
transmission of a pressure wave propagating through a stationary bubbly liquid/gas mixture
containing a discontinuous concentration wave is described by

[— %ﬁ ] 2
R, = - aas A (4.5.4.18)
A = - atat
1 ] 1+ —
[ @ ata-
and
138 1Y o
[22] (a2
T, = A. (4.5.4.19)
= - aa-
(&3] Gan 1+ —
a*at

Note that the concentration wave implies that p; = p; . Similar as in Lighthill (1978) we

define the "refractive index" ny for a bubbly liquid/gas mixture as the ratio of the acoustic

admittances:
Y%
np = —. (4.5.4.20)
Y_
By substituting (4.5.4.11) it becomes equal to
a*a*t
np = (4.5.4.21)

a"a”
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With the use of (4.5.4.21) the reflection and transmission relations (4.5.4.18) and (4.5.4.19)
may be written in the form

n, — 1
RA =———A (4.5.4.22)
n, + 1
and
2
TA =———A, (4.5.4.23)
n, + 1

- which agree completely with the reflection and transmission relations as they appear in
optics and in ordinary acoustics.

Finally, we verify the conservation of acoustic energy by checking whether the acoustic
intensity of the incident wave is equal to the sum of the acoustic intensities of the reflected
wave and the transmitted one. By means of (4.5.4.10) this is formulated as

Y-A’=Y-R}+Y'T]. (4.5.4.24)

Multiplying equation (4.5.4.24) by 1/(Y- A?) and substituting (4.5.4.20), (4.5.4.22) and
(4.5.4.23) we arrive at

npb — 1,2 4ny,
1= ] + : (4.5.4.25)
np + 1 (np + 1)

which is obviously valid. The acoustic energy is therefore conserved. The motion of the
concentration wave due to the incident acoustic wave does not have to be accounted for since
it has a higher order effect on the acoustic intensity.
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4.6 Conclusions

We have shown that model 1 and model 2 give rise to stable and reliable numerical results.
The fact that both models do not have a complete set of eigenvectors does not introduce
unexpected numerical errors. Lerat’s method works well and proves to be a feasible method
for the numerical computation of transient inviscid bubbly two—phase flows. Although there
is a large spreading in the order of magnitude of the dimensionless physical variables
(p1=0(1), p2=0(10-4), n=0(1013)), the computations proceed without any problems, also at
high Courant numbers.

Numerical experiments have demonstrated that acoustic waves may be reflected by
nonlinear void—fraction waves exhibiting a high gradient in the gas fraction. Linear theory
fully supports the observed phenomena. Even for a considerable disturbance in the gas
pressure a good agreement between the numerical data and the results following from a
linear analysis is obtained. The linear growth in time, predicted by the linear theory is
shown to be present in the numerical computations as well. The experiments making use of
model 2 illustrate that bubble deformation reduces the amplitudes and the velocity of
propagation of acoustic waves.

The stability of nonlinear concentration waves for an acoustic disturbance has been
investigated numerically on a large time scale by performing computations with high
Courant numbers. Nonlinear void—fraction waves reassume their initial shape after
interaction and prove to be stable. Numerical experiments as well as linear theory show that
a concentration wave may be set into motion by an acoustic wave. Furthermore, it is
demonstrated that the expression for the virtual-mass coefficient m(a) has great influence
on the linear stability of model 1 and, consequently, on the behaviour of concentration

waves.

The linearised equations of model 1 have been used to formulate the acoustics of a bubbly
liquid/gas mixture in the form of a variational principle. Conservation laws are derived from
Noether’s invariance theorem and a comparison is made with the acoustics of an ordinary
fluid. The expressions for the acoustic energy and the acoustic intensity of waves propagating
through a bubbly liquid/gas mixture may be interpreted as a generalisation of the
corresponding quantities for a single—phase fluid. The interaction of an acoustic wave and a
discontinuous concentration wave may be formulated in terms of reflection and transmission

relations like in ordinary acoustics.
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CHAPTER V

TWO-PHASE BUBBLY FLOW THROUGH VERTICAL TUBE:
VOID-FRACTION DISTRIBUTION
AND VELOCITY PROFILES

5.1 Introduction

It is already known for a long time that the bubbles in the vertical upward flow of a bubbly
liquid/gas mixture tend to concentrate near the wall of the tube (see Kobayashi, lida &
Kanegae 1970, Serizawa, Kataoka & Michiyoshi 1975, Beyerlein, Cossmann & Richter 1985,
Wang, Lee, Jones & Lahey 1987 and references contained in these papers; similar phenomena
were observed in a system of converging and diverging tube sections by de Jong, 1987).
Several attempts have been made to explain the observed void—fraction distribution by
means of lateral forces acting on the bubbles. Some examples of those forces are the shear
qift’ force considered by Zun, Richter & Wallis (1975), the turbulent pressure in the liquid
taken into account by Drew & Lahey (1982) and the non—dissipative ‘lift’ force used recently
by Wang et al. (1987) in addition to the Reynolds stress. Up till now, however, despite
repeated attempts no satisfactory prediction of the distribution of the bubbles over a
cross—section of the tube could be given by starting from first hydrodynamic principles (see
the short review of bubbly flow in Batchelor 1989). It is one of the purposes of this chapter
to present such a derivation of the void—fraction distribution by using a properly extended
form of the general theory for two—phase bubbly flow developed by Geurst (1985a)' /.

In Geurst (1986)” the two—phase flow equations derived in G (1985a) are examined in more
detail. It is shown there, by going to the limit of vanishingly small values of the void
fraction, that the theory implies the following equation for the non—dissipative motion of a
single gas bubble through liquid:

m, 32— (1 4 m)) [i‘* “Pv] up—my (up—uy) x (V> uy). (5.1.1)

dt ot

1) Hereafter referred to as G (1985a).
1) Hereafter referred to as G (1986).
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In this equation u, represents the velocity of the liquid in the absence of the bubble, u.
equals the velocity of the bubble when moving through the liquid and m; denotes the
virtual-mass coefficient of the bubble (m; = 1/2 for a sphere). The volume of the bubble is
taken constant and the mass density of the gas is disregarded compared to the mass density
of the liquid. External forces like the buoyancy force have been omitied. The last term at the
right—hand side of (5.1.1) shows that a non—dissipative ‘lift’ force is obviously contained in
the theory of G (1985a). That may be understood in the following way. According to the
analysis in G (1986) the virtual-mass terms appearing in (5.1.1) should have an objective,
i.e., material frame indifferent character. The ‘lift’ force apparently equals the Coriolis force
experienced by a bubble when its motion is considered with respect to a frame attached to
the locally rotating liquid. The “lift’ force therefore contributes to making the acceleration of
the bubbles in (5.1.1) material frame indifferent (Drew & Lahey 1987). The equation of
motion (5.1.1) may accordingly be written in the form

M are} = [i + ul-V] uy, (5.1.2)
at

where are) represents the acceleration of the bubble relative to the rotating liquid. See
section 5.2, where the theory of G (1985a) is reviewed in a form suitable for the purposes of
this paper. The ‘lift’ force is discussed extensively in recent papers by Auton (1987), Drew &
Lahey (1987) and Auton, Hunt & Prud’homme (1988).

In addition to the non—dissipative ‘lift’ force and well known forces like the viscous stress of
the bubbly liquid/gas mixture, the buoyancy force, the Levich—Moore drag force and the
dissipative Faxén force (see section 5.4), some other force appears to be required in order to
explain the fact that the maximum of the void—fraction profile in cocurrent upward flow
occurs at a certain distance from the wall of the tube. At the location of a solid boundary the
probability to encounter a gas bubble vanishes. The void fraction accordingly assumes a
zero—value at a solid wall. It is known from experiments that very large gradients of the void
fraction occur in the immediate vicinity of the wall. The corresponding characteristic lengths
appear to be of the order of magnitude of the diameter of the bubbles. The condition
required for the application of a macroscopic theory, viz. local equilibrium of the distribution
of the gas bubbles in a volume element, seems therefore violated in a relatively thin layer
adjacent to the wall. It is possible to cope with that situation by admitting additional terms
in the energy denmsity of the two—phase mixture that depend on the gradient of the void
fraction. We accordingly extend the theory developed in G (1985a) by introducing the
following additional contributions AF and AK to, respectively, the free energy densxty F and
the kinetic energy density K:
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1
AF = 5 gupj (V)2 (5.1.3)
AK=%p}[(m“—ml)ww+mlw21]:VaVa. (5.1.4)

Here o denotes the fraction of the volume occupied by the bubbles (void fraction),
w = uz — uy represents the drift velocity of the bubbles with respect to the liquid, while
g1 0y , pym, and pjmy are relatively small material coefficients which characterise the

bubbly mixture and which are roughly proportional to the square of a bubble radius. The
material coefficients may depend weakly on the local value of the void fraction.

Since the expressions for AF and AK model in a macroscopic way deviations of the
distribution of the gas bubbles from local equilibrium, the right—hand side of (5.1.3 ) may be
attributed partly to the entropy portion —TS of the free energy density F. A distribution of
the bubbles, which deviates appreciably from equilibrium as a result of a large gradient of
the void fraction, has a relatively small probability, in particular at large values of the void
fraction due to the excluded volume effect. The corresponding contribution to the entropy
density is therefore negative. The major part of AF, however, comprising the energy
associated with the small irregular motions executed by the bubbles during steady flow, has
to be attributed to the internal energy portion U of the free energy density. The small
random motions, which come into prominence in the neighbourhood of the wall because of
the locally modified bubble distribution, may have a dispersive effect on the macroscopic
distribution of the bubbles (see section 5.5). It will be plausible from the preceding remarks
that gy 2 0.

As a result of the large gradient of the bubble concentration in the vicinity of a solid
boundary the local bubble distribution is no more symmetric with respect to an imaginary
plane that is locally parallel to the wall. A bubble in the neighbourhood of the wall is
consequently subject to a net non—vanishing Bernoulli force which acts in a direction away
from the boundary. In a similar way the atoms and molecules at a free surface of a liquid or
a solid body experience a net non—vanishing van der Waals force directed towards the
interior of the body. It will be clear that the net Bernoulli force should follow from an
additional contribution to that part of the kinetic energy density of a bubble dispersion that
is associated with the local ‘backflow’ of the liquid around the bubbles. When terms at most
quadratic in the gradient of the void fraction are taken into account, that additional
contribution is represented by the right—hand side of (5.1.4). The expression for AK implies
that the virtual-mass coefficient of a bubble dispersion depends on the gradient of the
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volume density of the bubbles. In view of (5.1.4) it takes the form of an anisotropic tensor
given by

[m(a) + pjmy (Va)?] I + pj (my — my ) VaVa. (5.1.5)

The virtual-mass coefficient for uniform two—phase flow has been denoted by m().

Experiments indicate that the dispersive action of the small irregular motions of the bubbles
in the neighbourhood of the wall is probably the most prominent effect in the vertical
two—phase flow of a bubbly liquid/gas mixture (see e.g. Wang et al. 1987). It will therefore
be sufficient for the purposes of this chapter to consider only the modifications brought
about in the two-phase flow equations by the addition of expression (5.1.3) to the free
energy density (see section 5.3).

The possible importance of an expression like (5.1.3) for describing the macroscopic
behaviour of a two—fluid system in the immediate vicinity of a solid boundary was
recognised more than three decades ago by Ginzburg & Pitaevskii (1958) in the case of
superfluid 4He (He II). In He II the superfluid mass density, which vanishes at a solid
boundary, attains its bulk value within a few atomic distances from the wall. This so called
‘healing’ effect was also studied by Hills & Roberts (1977) and Geurst (1980). Expression
(5.1.3) may play a role in smoothing out the sharp transition in a discontinuous
void—fraction wave (concentration wave) (Wallis, private communication, 1986). The effect
of dispersive forces on the propagation of void—fraction waves is now under investigation. It
is important to realise that already at the turn of the century Korteweg (1901) introduced
terms including gradients of the mass density in the expression of the pressure tensor in
order to arrive at a general theory of capillarity in which the changes of the mass density
proceed continuously (Truesdell & Noll 1965, p. 514). Similar terms appear in the expression
of the pressure tensor derived in section 5.3.

Reynolds stresses will not be considered in this chapter. The tendency of bubbles to
concentrate near the boundary in upward cocurrent flow has been observed under laminar as
well as turbulent conditions as mentioned by Beyerlein et al. (1985). Even in the case where
gas bubbles are allowed to rise in a stagnant liquid, a maximum of the void fraction is found
close to the wall of the tube (Zun 1980 and Kapteyn, private communication, 1989). It will
be shown, however, in sections 5.5 and 5.6 that although Reynolds stresses are not taken into
account, velocity profiles for the liquid phase are obtained which look very similar to the
velocity profiles known from one—phase turbulent flow.
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5.2 Equations governing non—dissipative bubbly flow

The non—dissipative equations of motion for a bubbly liquid/gas mixture were derived in
G (1985a) from a generalised form of Hamilton’s principle of least action (see Chapter I,
section 1.6). Special attention was given to the virtual mass of a bubble dispersion.
Hamilton’s principle was formulated in terms of Euler coordinates. A similar variational
principle formulated in terms of Lagrange coordinates was discussed in G (1986). Surface
tension was not considered in these two papers. It was later taken into account by Geurst &
Vreenegoor (1987) in their analysis of flow induced bubble deformation (see Chapter II for a
more complete account). We review in this section the macroscopic theory just mentioned in
a form suitable for the purposes of this chapter.

The reduced densities p; and p; of the liquid and the gas phase of a bubbly liquid/gas
mixture are defined by

p=p,(1-a), p2=pga. (5.2.1)

It is assumed that the liquid is incompressible (constant mass density pl) and the gas

satisfies the ideal gas law (pg = (RT/M)pg). The volume density of the bubbles (void
fraction) is denoted by « in accordance with the notation in section 5.1. The conservation of
mass for the two phases and the conservation of the number of bubbles (bubble number
density n) are expressed, respectively, by

9ps +V-(pius) =0 (i=1,2), (5.2.2)
ot
oo +V(nuy) =0. (5.2.3)
Ot

It is usual to assume that the flow proceeds isothermally.
The free energy density F*(p;,n) of the bubbly liquid/gas mixture may be decomposed into
the sum F(p;) of the free energy densities of the two phases and the interfacial energy density

of the bubbles in the following way :

F*(p;,n) = F(p;) + n y4ra?. (5.2.4)
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The surface tension coefficient is denoted by +, while the equivalent bubble radius a is
determined by

. (5.2.5)

Ble

3
a,=(1—1r

It is shown in G (1985a) that the free energy demsity F(pi) and the thermodynamic
potentials y; (i=1,2) satisfy

2
dF = 'El i dpi , (5.2.6)
i=
-1 _1
dﬂ’l = !72 dpg s d/l,2 = ;)‘g dpg s (527)
2
E pipi=F+p,. (5.2.8)
i=1

It follows from (5.2.4) that

dF* = u¥ dp; + p2 dp2 + pn dn . (5.2.9)
where

p,’: = —])%15 , fn = g—ﬁ . (5.2.10)
Furthermore

pLit + pa s+ 0 = FF 4 p* (5.2.11)
with

p*=p,— 2. (5.2.12)

The kinetic energy density K(p;,u;) of the two—phase mixture is composed of the kinetic
energy densities of the separate phases and the kinetic energy density associated with the
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local backflow of the liquid around the bubbles in the case of relative flow. We accordingly
have

21 1
K(ps,ui) = L an uf + 5 p,m(a) w2, (5.2.13)
where w = ua — u; denotes the relative velocity. The virtual-mass coefficient is represented
by m(a). The validity of expression (5.2.13), in particular the additivity of the contributions
at the right—hand side, is discussed at some length in G (1986). In Geurst & Vreenegoor

(1987) the virtual—mass coefficient is allowed to be a function of the Weber number defined
by

Py wi

We .
7/2a

(5.2.14)

We assume here that We << 1, so that in a first order of approximation the virtual-mass
coefficient depends only on the volume density of the bubbles.

The dynamic equations governing the non—dissipative flow of a bubbly liquid/gas mixture
are obtained from Hamilton’s principle of least action in the form

t1
6 J dt J dV L(pi,n,ui) =0, (5.2.15)
to €

where the Lagrangian density L(pi,n,u;) is given by
L(p;,n,u;) = K(p3,us) — F¥(ps,n) . (5.2.16)

The variations in (5.2.15) are subject to the side conditions (5.2.2), (5.2.3) and the two Lin
constraints expressed by (see Geurst 1988)

% + V- (Tiu3) =0 (i=1,2). (5.2.17)
t

Introducing the quantities 1; (i=1,2) according to ¥; = p;9; we obtain from (5.2.17)
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(£+ui-V )%i=0 (i=1,2) .
at

(5.2.18)

Variational principle (5.2.15) yields the following equations of motion for the liquid and the

gas:
%tﬂ+V[ul-n+ W+ ime(a) wa-luz]

—ux(Vxm) =0,

n

i} 1
—;9—:3+V[ug-1rz+u2—§u§]+p—2\7un

~uzx (Vxag) =0.

The generalised momenta 73 (i=1,2) taken per unit mass are given by

Py m(a)
= ug— w,
[
Py m(a)
Ty = U + w .
P2

We remark that

1 *

dps + 2 dun = —dp* .

o + P2 Un P p

The variational procedure yields the following Clebsch representations:

=Yoo+ ¥ Vxy,

n2= Vo + ’¢2VX2+%V(Pn-

(5.2.19)

(5.2.20)

(5.2.21)

(5.2.22)

(5.2.23)
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The quantities @; (i=1,2), yn and x;i (i=1,2) represent Lagrange multipliers associated ,
respectively, with the constraints (5.2.2), (5.2.3) and (5.2.17) (see Geurst 1988). The Clebsch
representations are valid locally (Salmon 1988).

The equations expressing the conservation of total momentum and energy read, respectively,

opP

+V-1I=0, (5.2.24)
at
M, y.q=0, (5.2.25)
at
where

2 2
P=23%pimi= 2% piui, (5.2.26)

i=1 i=1

2
0= if_ll pinimi+plI, (5.2.27)
H=K+F*, (5.2.28)

Q=piuy(ugrm+ pt+%m’(a) wz—%—u"{)
t o (W m+ - =g 3) - (5.2.29)

The average pressure p of the two—phase mixture is given by

p=p*+ap,(1-api(mal)y (5.2.30)

Expression (5.2.30) evidently includes the Bernoulli effects that are associated with the local
backflow of the liquid around the bubbles in the case of a relative motion of the two phases.

A detailed stability analysis of the system of two—phase flow equations determined by
(5.2.2), (5.2.3), (5.2.19) and (5.2.20) shows that a uniform two—phase bubbly flow is
marginally stable if and only if the virtual-mass coefficient satisfies
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m(a) = 3 a (1 —a) (1 -3a). (5.2.31)

For details see G (1985a) and Geurst & Vreenegoor (1987). Expression (5.2.31) is valid when
We <<1 (see Chapter II, expression (2.5.14)). The virtual-mass coefficient may be
regarded as an order parameter that represents the local microscopic distribution of the gas
bubbles on a macroscopic level. The bubble distribution underlying (5.2.31) is apparently
anisotropic (G (1985a)).

When the mass ratio ,og/,ol3 is disregarded and the bubble radius a is taken constant

(ping—pong ball approximation) we obtain!) from (5.2.2), (5.2.3), (5.2.19) and (5.2.20) in
the limit of vanishingly small values of the void fraction equation (5.1.1) for the motion of a
single gas bubble in liquid. Indeed, in the limit of an infinitely dilute dispersion of bubbles
the expression (8/8t + uz-V) uz may be identified with the acceleration dus/dt of a single
bubble. Equation (5.1.1) may be put in the form (5.1.2), where the left—hand side represents
m; times the relative acceleration of a bubble with respect to a frame that is rigidly attached
to the locally rotating liquid. The left—hand side is accordingly objective (G (1986) and Drew
and Lahey 1987).

5.3 Additional terms required near solid boundary
It was discussed at some length in the introductory section of this chapter that the free
energy density F*(pi,n) of a two—phase bubbly mixture has to be extended to the free energy

density F(pi,n,Vp;) determined by (see (5.1.3))

F(p3,0,%01) = F*(p1,0) + 3 gu1 (Vp))? (5.3.1)

in order to take into account the small irregular motions of the bubbles observed in
two—phase bubbly flow near a solid boundary. If g, is constant, it follows from (5.3.1) that

dF = jiy dpy + p2 dpa + pn dn + V-(gy; Vpy dpy) (5.3.2)

1) We take the opportunity to make the following correction in ezpression (6.3) of G (1986):
the factor preceding V-wa should read m(a)/a—m’(a). The correction does not have
consequences for the subsequent results of the paper.
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where
. §F _ o«
= _67)_1 =My — V'(g“ Vp1) . (5.3.3)

When expression (5.3.1) is used in the Lagrangian density (5.2.16), it is recognised by
comparing (5.2.9) and (5.3.2) that the equations of motion resulting from Hamilton’s
principle of least action (5.2.15) may be obtained from (5.2.19) and (5.2.20) by substituting
the thermodynamic potential ji; for ;i';. In that case the pressure p* appearing in (5.2.30) has

to be replaced by p determined by (cf. (5.2.11))

P=pii1+prp2+npn—F. (5.3.4)
By virtue of (5.2.11), (5.3.1), (5.3.3) and (5.3.4) we have

B =" —gulpi Ao+ 5 (Vo)?], (5.3.5)
where A denotes the Laplacian operator. It is derived in a straightforward way that the

momentum flux IT (see (5.2.27)), the energy density H (see (5.2.28)) and the energy flux Q
(see (5.2.29)) are extended, respectively, to

[Tl ¥

II =

1

lpi wuim+pI+gn Vo Vo, (536)
H=K+F, (5.3.7)
— Y 1 ’ 2 1 2
Q=piu(urm+jn+zm(a) wi—zui)
+ prug (ug T2+ g+ — —1u2)
p2uz (U~ A2+ fiz + o fin — 5 Uy

— 811 Vp1 % . (5.38)

In view of expression (5.2.30) and the remark preceding (5.3.4) the pressure p of the bubbly
liquid/gas mixture is given by

P=f>+%pl(1—a)2£—x(91-(_%)-)w2. . (53.9)
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The two terms that appear at the right—hand side of (5.3.6) and (5.3.8) with the coefficient
g1 originate from the divergence term in (5.3.2). Similar expressions have been derived in
the macroscopic analysis of ‘healing’ phenomena in He II near a solid boundary (see e.g.
Geurst 1980).

5.4 Dissipative effects and external forces

The terms which represent dissipative effects have to be introduced in the equations of
motion in such a way that the conservation of mass and the conservation of total linear
momentum are not violated. In spite of these restrictions, however, there may be some
arbitrariness in the selection of the dissipative forces. That is the reason, why the
presentation in this section looks somewhat different from the discussion given in the
appendix of G (1985a). The different approaches, however, prove to be equivalent.

The two—phase flow equations for the liquid and the gas are extended, respectively, to

%+V[u1-n+ ﬁ1+%m’(a) wz—%uf]—ul" (Vxm) =

=1 lygo-ly,4+1
—plF+pra pV T+p1F1 (5.4.1)
and
-aﬂ+V[u-7r+ w2+ Ry —ugx (Ve M) =
2T T f2— 5 Uy 2 fn 2 2) =
= lp_ lyg, Lty 4L
= ng p2Va pV T+p2F2. (5.4.2)

The external force densities are represented by F; and Fa. The viscous stress tensor of the
bubbly liquid/gas mixture is denoted by 7, while F and V.o are the densities of mutual
friction forces which act on the two phases during relative flow. It is easily recognised that
the balance of total momentum corresponding to (5.4.1) and (5.4.2) is expressed by

QI:.,_ V-II = F, + Fa, (5.4.3)

ot

where the momentum density P is given by (5.2.26) and the momentum flux II is determined
by
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OI= 3% pijuimi+guVet Vo1 +pl+ 7. (5.4.4)

1

n.Mn
-

When dissipative effects are taken into account the energy conservation equation (5.2.25) has
to be generalised to an equation expressing a balance of energy of the following form:

at

where Rq4 denotes the rate of dissipation. The energy density H is given according to (5.3.7)
by

2
H= .Elépiu§+ %pgm(a) w2

1=

+ F(ps) + 3 g a+ %gu (Vor)? . (5.4.6)

It is easily verified that the energy flux Q and the rate of dissipation Rq should take the
form

Q=p1u1(u1-1rl+/11+%-m'(a) w2—%uf)

1
+pzu2(u2'12+u2+%unf§u§)

- g1 vPl Qﬂ +o0ow+ T10 (547)
ot
and
Ri=F-w—o0:Vw—7:Vu. . (5.4.8)

The average mass velocity of the two—phase mixture is denoted by u, i.e.,

n M

pu=

(P, (5.4.9)
where p = p; + pa. Note that the fragmentation and coalescence of bubbles, which may be
treated as an independent dissipative process, have been disregarded. A similar remark
applies to the diffusive flux of the bubbles with respect to the average mass velocity ua.
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A second order tensor like 7 can be decomposed in the following way:

T=dev T+ %—tr('r) I+ %('r— 'rT) , (5.4.10)

where the deviatoric part is given by

dev 7 = % (r+ 1) —%tr(r) I. (5.4.11)

We apply the decomposition (5.4.10) to the second—order tensors that appear in the bilinear
form (5.4.8) for the rate of dissipation Rq and use the thermodynamics of irreversible
processes (see de Groot & Mazur 1962). On account of Curie’s theorem for an isotropic
medium (note that the anisotropy associated with the direction of Vp, is disregarded as in the
case of the virtual-mass coefficient) we introduce the following constitutive relations:

—devr) _[A A dev Vu
[—dev ‘7] - [A;i A;;] [dev Vw] ’ (5.4.12)
~5(o=d") = AL[Vw—(W)T], (5.4.13)
F=Bw, (5.4.14)
1
~x tr(7) Cy C V-u
B e
— g tr(0) Ca Co2) (VoW

The material coefficients, which are allowed to depend on p; and p,, should satisfy the
Onsager relations

Ap=An, Ci2=Cy. (5.4.16)

According to the second law of thermodynamics the matrices Aj; and Cj; (i,j=1,2) are
positive semi—definite, while the material coefficients A and B can take only non—negative
values. Since the constitutive relations have to fulfil the requirement of objectivity (material
frame indifference; see e.g. Truesdell & Noll 1965) the viscous stress tensor 7 is symmetric.
The equation that expresses the vanishing of the antisymmetric part of 7 has been deleted
from the constitutive relations (5.4.12) to (5.4.15).
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With a view to the analysis of the vertical flow of a bubbly liquid/gas mixture to be given in
the next section and in order to indicate clearly the physical meaning of the various material
coefficients we introduce the following notations and simplifications:

An=2n, Ap=Au=0, Ap=27, (5.4.17)
A=27, (5.4.18)
B=1, a7 | (5.4.19)
Ciu=(s, Cn=Cn=0, Cun=(w. (5.4.20)

The constitutive relations (5.4.12) to (5.4.15) now take the form

—r=m[Vu+ ()" ]+ (Gu—gm) Vul, (5.4.21)

— o= [V + (W) ]+ (Co— 5 ) Vow I

+n [Vw—(Ww)' ], (5.4.22)
1
F=n 37W. (5.4.23)

Note that the cross—effects determined by the (small) off—diagonal elements of the matrices
Aij and Cjj (i,j=1,2) have been disregarded. It will be clear from (5.4.21) that 7, and ¢y
represent, respectively, the dynamic and second viscosity of the bubbly mixture. The last
term at the right—hand side of (5.4.22) determines a couple of the Faxén type. When the
interactions of the bubbles are neglected we may write

e =Te O, (5.4.24)

where 7e denotes an effective viscosity of the bubble dispersion. In a local Stokes flow, where
a no—slip boundary condition prevails at the surface of the bubbles, it is true that

=31, (5.4.25)
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where 7 represents the viscosity of the liquid (see e.g. Happel & Brenner 1973). Expression
(5.4.23) for F corresponds to the Levich—Moore mutual friction force. In the case where the
interactions of the bubbles are disregarded, we have (Levich 1962)

Ty=9na. (5.4.26)

In view of the simplifications which have been introduced it will be clear that the viscosity
coefficients in the constitutive relations (5.4.21) to (5.4.23) are not completely independent
of the physical conditions under which the two—phase flow of a bubbly liquid/gas mixture
proceeds. Their values may in fact be adjusted somewhat in order to meet the requirements
of a particular type of flow. A mild form of that procedure is adopted in section 5.6, where
the theoretical results of section 5.5 concerning vertical two—phase flow are compared with
some known experimental data. Matching of the theoretical and experimental results proves
to be successful in producing reasonable values for the material coefficients.

5.5 Bubbly flow through vertical tube : asymptotic solution

We consider a two—phase bubbly flow through a vertical cylindrical tube of circular
cross—section (radius Ro). It is assumed that the flow is steady, vertically uniform and
rotationally symmetric (no swirl). A system of cylindrical coordinates (r,f,z) is used with
symmetry axis along the centre line of the tube. The external forces experienced by the
liquid and the gas of the bubbly mixture result from gravity, i.e.,

Fi=—pigiz (i=1,2) . (5.5.1)

It will be assumed in the analysis of this section that the masses of the gas bubbles are
approximately equal. In addition, the mass density pg of the gas is taken constant. The
spherical bubbles are accordingly characterised by a constant radius a (ping—pong ball
approximation). That approximation seems to be justified locally, when the Mach number
itself and the Mach number divided by the local Froude number are small, i.e.,

R RT RT
w/[%][n-]<<1 and gh/[%i][m—] << 1, (5.2.2)

where h denotes the height of the tube section. The ping—pong ball approximation is




— 145 —

evidently not valid globally because the bubble radius will vary (weakly) with vertical
position. Since we are only interested in local properties of vertical two—phase flow, that
variation is disregarded here. It is also in accordance with the assumption of uniformity of
the flow in vertical direction.

In view of the assumptions of steadiness, vertical uniformity and rotational symmetry of the
flow all quantities with the exception of the pressure depend only on the radial coordinate r.
In the case of axial flow the pressure p* should in addition be a function of the coordinate z.
The mass conservation equations (5.2.2) and equation (5.2.3) expressing the conservation of
bubble number are satisfied when u;= (0,0, ui)T, where u; = uj(r). Accordingly
= (0,0, 7ri)T with 73 = 7i(r). The equations of motion (5.4.1) and (5.4.2) now take the
following form in cylindrical coordinates:

dr (mm—gul+ gm (o) we oyt g (ur §2)]

_ d7l'1 _ 1 *
UIHI_— = —ﬁz : (553)

1 %* 1 1 1
u —

a%(uﬂrz—%ug)—ugar—:—@ , (5.5.5)

1 6p" 1 11d dw
—p—%—mﬂmwm—ﬁaﬂ("wﬂp)faﬂ

1 1d du _

In deriving these equations the constitutive relations (5.4.21) to (5.4.23) have been used.
It follows from (5.5.3) to (5.5.6) that

*=—Cz+h(), (5.5.7)
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where C is a constant. By combining (5.5.4), (5.5.6) and (5.5.7) we obtain the equations
1d d
C+rgr(mrgr)—(ortr)g=0 (5.5.8)
and

1
—(1—%)C+(1+%Tg-a)[wnww

118 () ) =0, (55.9)

Equation (5.5.8) expresses the balance of total linear momentum in the axial direction.
Elimination of the pressure gradient between (5.5.3) and (5.5.5) yields

‘(_(_)_)amlfa w%‘ﬂ+ [m’(a)———leaa ]W%%+%m'(a) w2(al%
+o i (gurd)y=o0. (5.5.10)

Since pg/pe is very small, equations (5.5.8) and (5.5.9) may be reduced to

1d d
CHrgrmrg u‘) pp(1—a)g=0 (5.5.11)
and
1 11d d
~CHamyV—grar ((w+m)rgr)=0. (5.5.12)

Equations (5.5.10), (5.5.11) and (5.5.12) constitute a seventh order system of ordinary
differential equations for the determination of e, u; and w as a function of r. Note the role of
the axial pressure gradient C as one of the external parameters characterising the physical
conditions of the flow. In view of axial symmetry the solutions have to fulfil at the tube axis
the requirements

(o) o= (%)= (&), (5.5.13)
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Furthermore
(u1)—g = (u1)o, (5.5.14)

where (u,), is the given value of the liquid velocity at the tube axis. It seems natural to

impose at the wall of the tube the boundary conditions

(a )r=R0 =0 (excluded volume),
(uy )I=Ro =0 (no slip) , (5.5.15)
( )r <R, = =0 (vanishing Faxén couple) .

When the viscosity coefficient My 18 expressed according to (5.4.26), we derive from (5.5.12)

on account of the boundary conditions (5.5.13) and (5.5.15)
W =wp, (5.5.16)

where w, denotes the value of the relative velocity at the tube axis. Equation (5.5.12)
accordingly reduces to

C = %;zWO ‘ (5.5.17)

It will be assumed that the value of the dynamic viscosity 7, of the bubbly mixture is
constant and that the virtual-mass coefficient m(a) is determined by its expression (5.2.31)
corresponding to marginal stability of a uniform two—phase flow. When the velocities and
the radial coordinate are made dimensionless by means of, respectively, the constant relative
velocity wo and the tube radius Ro, equations (5.5.10) and (5.5.11) take the form

a—ae+fl%ad?( dux)_o (5.5.18)
(1-30) 3+ (4-00) 39—, 114 (14910, (5.5.19)
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where
97 wy azFr
Ge=1-—, Go=——,
Py 8 a2 R Re
Py a Wo - wa
Re = , Fr=—, (5.5.20)
Th : g a
a? gu py
Mm=2—
R} wi a?

Equation (5.5.18) expresses the balance of forces acting on the bubbly mixture in vertical
direction. The term ae appearing in (5.5.18) clearly vanishes when the bubbles of a dilute
dispersion attain their terminal velocity, while the last term takes account of the viscous
shear force. The three terms in (5.5.19) represent, respectively, the lift force experienced by
bubbles in a shear flow, the gradient of the Bernoulli pressure associated with the local
backflow of the liquid around a bubble (see the third term in the expression between square
brackets appearing in (5.4.1)) and the dispersive force resulting from the small irregular
motions of the bubbles. By eliminating u, between (5.5.18) and (5.5.19) we finally obtain

1d ;4 9a_da
"""e"‘*?a?[rr-afaf]
1

%ad{ 13 fadr[?adr(fad?)]} 0, (5.5.21)

where €2 = Y11 €1-

When ¢ is small, the equations may be linearised in order to arrive at an approximate
solution. The linearised versions of (5.5.19) and (5.5.21) read

%\h+4§(—1 ’Yué‘;[%‘ad—( a‘q)]=01 (5.5.22)
a—ae—4el%a(—1f(rg—g—‘)

targirgli& (13 =0. (5.5.23)
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The boundary conditions to be associated with these equations should follow from (5.5.13),
(5.5.14) and (5.5.15). We first infer from (5.5.22) that
d (1d d

By integrating (5.5.23) and (5.5.22) we then obtain

T

fla—ardr=derde - L 14 da)) (5.5.25)
0
m=-dat { I - &L ), (5.5.26)

+(711—16fl)fg%'i"lfzrad?[%ad?(r%%)]. (5.5.27)

The average {u;) of the liquid velocity is accordingly given by

1

(u1)—2fu1rdr=—-4 ae+(711—3261—8€2)( )r 1
0

( ’)’11—8 €2 ) ( a—-g- )I 1 + 8 62( )I‘—l , (5528)

while the void fraction averaged over a cross—section of the tube is determined by

1

<a>=2f ardr=ae+2(4fl+f2)(g%)r=1
0

—2e[(S) _ + (£ 1. (5.5.29)

It will be clear that the solutions of the fourth order linear differential equation (5.5.23) have
to satisfy the boundary conditions (5.5.24) and (5.5.28). Note that expression (5.5.28) may
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be used as an alternative for boundary condition (5.5.14). In view of (5.5.13) and (5.5.15) the
set of boundary conditions is completed by requiring that

($9) ;= (a)_; = 0. (5.5.30)

The quantity oe and the average (u;) of the liquid velocity play the role of external physical
parameters.

Equation (5.5.23) is not readily solved in closed form. We therefore attempt an asymptotic
analysis. Experimental results (see e.g. Wang et al. 1987) indicate that a reasonable value for
711 i given by

i 1072 . (5.5.31)

The following orders of magnitude are commonly encountered in vertical bubbly flow (see
the next section):

a Re
— 1072, —=~10. (5.5.32)
Ro Fr

It follows from (5.5.20) and (5.5.32) that
€% 1075, (5.5.33)

In view of (5.5.31) and (5.5.33) the outer solution satisfying (5.5.22) and (5.5.23) is, in a first
order of approximation, given by

o= Q, u; = (111)0 . (5534)

We now apply the coordinate transformation

y=-Inr. (5.5.35)
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Equation (5.5.23) takes in that case the form

2y d?2 , 2yd2a 2y d2a o
€9 € a;;g(e m)—‘lfle a?f'f‘a ae—O, (5536)

while equation (5.5.22) is transformed into

2
%%,i+4g-$—7ua%(e2ygﬁ)=0- (5.5.37)

By introducing the strained coordinate § by means of
i
Yy=6°F (5.5.38)

we derive from (5.5.36) and (5.5.37) that the inner solution is, in a first order of
approximation, determined by

dta

—tasa=0, (5.5.39)
Y

du, die

— - —=0, (5.5.40)
dy dy

where u; = (fm/el)% i; . According to (5.5.31) and (5.5.33) we have (el/'y“)’% % 3x10-2. The
boundary conditions to be associated with equation (5.5.39) are expressed by (see (5.5.28))

(a) T ()
Q)-_n = 0, [——-—] = - 1_11 ,
=0 dy? Jy=0
and (5.5.41)
da
a—ae-0, — 20, when ¥ - o .
dy

The conditions at infinity provide for the matching of the inner and outer solutions. Note
that the average (i) of the strained liquid velocity has been introduced according to
{u) = (114/ el))‘ (1@,) . The solution of (5.5.40) requires the additional boundary condition

(Ti)y_ = 0 - (35.42)
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The inner solution determined by the differential equations (5.5.39), (5.5.40) with the
boundary conditions (5.5.41), (5.5.42) is now given by

a — Qe (1_1 1) _ *
=—[cosy*— 0siny*]ey ,
Ge Qe ‘
(5.5.43)
U - (34)o Qe ¥
_____.—.—[cosy*+ siny*]ey,
(@) o (T1)o
where y* = 27% j=—21 e;* Inr . It is easily verified by means of (5.5.41) and (5.5.43)
that
(Gy) = (1), - (5.5.44)

The equality expressed by (5.5.44) is valid in a first order of approximation. It results from
the fact that in that order of approximation the velocity profile of the liquid may be
considered as flat (turbulent-like profile; see the next section). In the same order of
approximation we have according to (5.5.29)

(a) = e . (5.5.45)

It is easily verified by means of (5.5.28), (5.5.29) and (5.5.44) that in a first order of
approximation

(ﬁl)o =- [_

(5.5.46)

Equation (5.5.46) implies that for upward (downward) flow of the liquid the void—fraction
profile at the wall of the tube is concave (convex) when considered as a function of y = —In r.
That property of vertical two—phase flow is also found experimentally. We refer the reader
for more details to the next section, where the solutions of equations (5.5.18) and (5.5.19)
satisfying some appropriate dimensionless forms of the boundary conditions (5.5.13), (5.5.14)
and (5.5.15) are studied numerically together with their linear and asymptotic
approximations. The numerical results are matched there with some known experimental
data.
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5.6 Numerical results

In section 5.5 equations (5.5.18) and (5.5.19) were linearised and solved by deriving the first
order asymptotic approximation (5.5.43). We now wish to deal with the solutions of (5.5.18)
and (5.5.19) in more detail. After integrating the equations numerically we are able to
compare the asymptotic solution, the numerical solution of the linearised equations and the
numerical solution of the nonlinear equations. The correlation of theoretical and
experimental results is analysed next. In order to substantiate the theory a rather complete
picture of vertical two—phase flow is given by making a comparison with experiments on
upward flow (Serizawa et al. 1975 and Wang et al. 1987), downward flow (Wang et al. 1987)
and the collective rise of bubbles in a stagnant liquid (Kapteyn, private communication,
1989).

The numerical integration of (5.5.18) and (5.5.19) is not straightforward due to the singular
behaviour at r=0. In addition, the conditions (5.5.13), (5.5.14) and (5.5.15) constitute a
boundary—value problem which requires an iterative numerical procedure. The first difficulty
may be removed by means of the transformation y* = 974 y=- 94 e;% Int , which was

also used in section 5.5. As a consequence, the wall of the tube is positioned at y* = 0 and
the axis of the tube at y* = o . Since the case y* = o can not be treated numerically, some
boundary values have to be given at a finite value yo of y*. The flat behaviour of the
asymptotic solution suggests to take

(a )y*zyt = o (1+6), (uy )y*=yz = (u1), ’
(5.6.1)
du,
[_—*} *_ * 0,
dy” 'y =yo
where § is a small parameter. At the wall of the tube we require that
(a )y*=0 = (u )y*=0 =0, (5.6.2)

in accordance with (5.5.15). The transformed equations (5.5.18) and (5.5.19) are
subsequently written as a set of five first—order differential equations.

Robust methods, based on shooting techniques, may be applied to obtain numerical solutions
of the set of equations that satisfy the boundary conditions (5.6.1) and (5.6.2). We have
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chosen for the DO2HBF routine from the NAG library, which is described in detail by
Gladwell (1979). The routine requires, at each of the two boundaries, initial estimates of the
quantities that are left unspecified there. In the case of the transformed version of the
equations (5.5.18) and (5.5.19) the initial estimates at y* = y’ follow from the outer solution
given by (5.5.34). They read

da d’a ,
[E;]y*=y=3 = { ]y*_ * 0. (5-6-3)

At the wall of the tube y* = 0 the asymptotic solution (5.5.43) is used to obtain the
estimates

da _
[_*]* =0‘e(1+(—)—u1°),
dy* Jy*= Qe

[dd:*a; ]y*=o = —2(@) | (5.6.4)
du, Qe
[ﬁ]y*=0 = (s [1_(1“11)0]

A numerical exploration showed that it is favourable to impose the boundary conditions
(5.6.1) at y* =y = 12 with § = 103, It also demonstrated that the direction of integration
(shooting direction) should be taken from y*=y} to the wall of the tube at y*=o0.

The physical parameters which may take various values are given by €; and v,;, defined in
(5.5.20). It follows from (5.5.20) that ¢, is determined by

T
€ =

wo & 1.25x10-4 Wo , (565)
Py & R}

when the value of the tube radius reported by Serizawa et al. (1975) (2R, = 57.15 mm) is
substituted and 7, is taken, in a preliminary way, equal to the dynamic viscosity 7 of water
at 20°C (= 10-3 kg/ms). A moderate value (in m/s) for the difference velocity corresponds
to the estimate (5.5.33) for ¢,. That value also applies to the experiments by Wang et al.
(1987), since their tube diameter is equal to 60 mm. The equivalent spherical diameters 2a
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reported by Serizawa et al. (1975) vary from 3.5 mm to 4 mm. They lead to the estimates
given by (5.5.32). Wang et al. (1987) do not discuss the bubble size.

In view of the preceding analysis we take ae = .05, (u1)o =5, € = 4x10-5 and 713 = 102,
which represent typical values that may be encountered in practice for the case of upflow. It
follows from (5.6.5) that a reasonable value of the difference velocity wo, viz. .3 m/s, is
associated with the value of ¢;. Since the liquid velocity is made dimensionless by means of
wo, (u;)o = 5 implies that the liquid flows with a velocity of approximately 1.5 m/s at the
centre of the tube. That is certainly an acceptable value. Figure 5.6.1 gives the void—fraction
distribution a and the velocity profile u, for three different cases: (1) the numerical solution
of (5.5.18) and (5.5.19), (2) the numerical solution of the equations (5.5.18) and (5.5.19)
when linearised and (3) the asymptotic solution (5.5.43). The numerical solutions are
obtained by means of the transformed equations with the boundary conditions (5.6.1) and
(5.6.2) as discussed before. Clearly a distinct maximum in the void fraction occurs near the
tube wall. The value of the maximum may exceed twice the value of the void fraction at the
centre of the tube. The velocity profiles are flat and look similar to turbulent profiles,
although turbulence has not been taken into account. The asymptotic solution and the

2 10
U,

-

-
O
-

-
o

Figure 5.6.1 Void fraction « and dimensionless liquid velocity v, as functions of r in vertical
upward flow for ae = .05, (u1)o =5, €1 = 4x105, vy =102 ; (1) : numerical solution of
(5.5.18) and (5.5.19), (2) : numerical solution of the equations (5.5.18) and (5.5.19) when
linearised, (8) : asymptotic solution (5.5.48). '
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numerical solution of the linearised equations overestimate the behaviour of the numerical
solution of the nonlinear equations. That effect increases with increasing ae. Use of the
linearised instead of the original non-linear equations leads to a maximum in a slightly
closer to the wall. Varying 7, and ¢; shows that these parameters have a distinct effect on
the value and the position of the maximum in the gas fraction « : increasing 7;; decreases
the maximum and moves it away from the wall of the tube, increasing ¢; increases the
maximum and also moves it away from the wall. Both effects will be used to obtain
agreement with experiments reported in the literature. Note that in the present theory the
void fraction can not exceed 1/3, since at that value the virtual-mass coefficient m(a) given
by (5.2.31) changes sign. All theoretical curves to be presented below are obtained by
numerically integrating the transformed version of the nonlinear equations (5.5.18) and
(5.5.19) subject to the modified boundary conditions (5.6.1) and (5.6.2).

Serizawa et al. (1975) report on an experimental investigation of vertical upward flow. They
measured the bubble velocity in addition to the liquid velocity. In the case of low void
fractions their measurements indicate that a constant difference velocity wo is a good
approximation. From their figure 14(A) we obtain a; = .035, wo = .14 m/s and u; = .94 m/s
at the axis of the tube, which yields (u,)o » 7. We now vary ¢, and 7y, in such a way that the
position and magnitude of the maximum of a are close to their measured values. That is
achieved by taking €; = 6.7x10-5 and 7,; = 2x10-2. Figure 5.6.2 shows that for those values of
the physical parameters the theoretical and experimental curves for the void fraction nearly
coincide. The calculated velocity profile for the liquid, however, is flatter than the measured
one. The matching is clearly not as good as in the case of the void fraction. The value of the
dynamic viscosity 7, of the bubbly mixture that corresponds to the value of ¢, is given by
u = 3.8x10-3 kg/ms. Obviously, the presence of the bubbles increases the viscosity
(n=103kg/ms for pure water at 20°C). This may be expected since the small irregular
motions of the bubbles result in an additional contribution to the dynamic viscosity
comparable with the eddy viscosity known from the theory of turbulence.

Wang et al. (1987) investigated both upflow and downflow. They report on measurements of
the void fraction, the liquid velocity and turbulent fluctuations in the liquid. The gas
velocity, however, is not measured. It is therefore not possible to obtain an estimate of the
difference velocity wo directly from their figures. They do present, howéver, the values of the
superficial liquid velocity j; and the superficial gas velocity j, which are determined by

ii=((1-a)u), je=(auy), (5.6.6)
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'Fz'gu're 5.6.2 Void fraction a and dimensionless liquid velocity uy as functions of r in vertical
upward flow for ag = .085, (u)o =7, € = 6. 7105, 13 = 2x1072 ; —— : numerical solution
of (5.5.18) and (5.5.19), e : experiments (Serizawa et al. 1975, figure 14(A)).

where
1
(y=2f-rdr. (5.6.7)
0

Adding j; and j; and assuming a constant difference velocity we derive
j1+j2=<111)+W0<a>. (5.6.8)
Relation (5.6.8) is used to obtain an approximate value for the difference velocity w.

We selected figures 6 (void fraction) and 11 (liquid velocity) from Wang et al. (1987) for a
comparison with our theoretical results on upward flow. Wang et al. (1987) report
ji= .71 m/s and j; = .10 m/s. By integrating the measured values for o and u; we estimated
the difference velocity by means of (5.6.8) to be approximately given by wo = .10 m/s. We
also determined j; from the measured values and arrived at j; = .72 m/s, in accordance with
the reported value. Figure 6 (Wang et al. 1987) shows that ae = .1 while the value .84 m/s
of the liquid velocity u; at the tube axis, which is inferred from figure 11 (Wang et al. 1987),
yields (uj)o = 8.4 by using the estimated value of the difference velocity. Figure 5.6.3
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9.8

Figure 5.6.8 Void fraction a and dimensionless liquid velocity v, as functions of r in vertical
upward flow for ae = .1, (ur)o = 8.4, €1 = 1.2x104, vy, = 1.6x102 ; —— : numerical solution
of (5.5.18) and (5.5.19), » : experiments (Wang et al. 1987, figures 6 and 11).

displays the good agreement that is obtained with regard to the void fraction and the liquid
velocity when ¢; = 1.2x10~¢ and 1y, = 1.6x10-2. By choosing a slightly different value for the
difference velocity according to wo = .102 m/s but keeping (u)o = 8.4 the computed values
of the liquid velocity are increased only slightly, while the superficial velocities take the
values j; = .683 m/s and j, = .104 m/s. These values deviate not more than four percent
from the values reported by Wang et al. (1987). The dynamic viscosity 7y of the bubbly
mixture that corresponds to the value of ¢, is equal to 10-2 kg/ms. The value of 7, therefore
increases as a result of the presence of the bubbles (see the remarks made above).

A comparison of figures 5.6.2 and 5.6.3 shows that the velocity profile measured by Wang et
al. (1987) is much flatter than the profile obtained by Serizawa et al. (1975). 1t is therefore
not surprising that Wang et al. (1987) observe turbulent fluctuations in the liquid. The
magnitude of the fluctuations does not exceed 10 percent of the value of the liquid velocity
at the tube axis. Since the fluctuations measured by Wang et al. (1987) increase with the
value of the void fraction, they may be related to the presence of the bubbles. The
fluctuations are also larger near the wall of the tube. Wang et al. (1987) therefore conclude
that the turbulence level in the liquid consists of wall induced and bubble induced
turbulence. It would be interesting to know more about the origin of the turbulent
fluctuations. As long as a detailed knowledge is lacking it seems natural to assume that the
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irregular motions of the gas bubbles which are particularly prominent in the neighbourhood
of the wall, make a substantial contribution to the turbulent fluctuations of the liquid
velocity. We recall that the energy associated with the irregular bubble motions is
incorporated in the present theory by means of an additional term in the free energy density
that is given by (5.1.3). Apparently, turbulence does not necessarily have to be included in
order to arrive at the trends which are observed in the experiments.

The void—fraction profiles presented in figures 5.6.1, 5.6.2 and 5.6.3 satisfy in the
neighbourhood of the wall the inequality Aa < 0 , where A denotes the Laplacian operator.
The profiles when considered as a function of y = —In r are therefore concave near the wall in
the case of upflow. That behaviour was already concluded from the asymptotic analysis in
section 5.5 (see expression (5.5.46)). Since as a consequence Ap; > 0 in the vicinity of the
boundary it follows from expression (5.3.5) for p that wall effects decrease the pressure p
determined by (5.3.9).

Wang et al. (1987) also investigated downflow. Their figures 9 (void fraction) and 13 (liquid
velocity) were selected for a comparison with the present theory. We discuss the case where
the superficial velocities have both a negative sign and are given by j; =—71 m/s and
j2=—10 m/s. Wang et al. (1987) use positive values for j; and j; in view of the fact that
their test section was turned upside down to measure downflow. By wusing their
measurements and expression (5.6.8) in the way like was done earlier in the case of upflow,
the difference velocity wy is estimated to be .38 m/s, a somewhat large value to our opinion.
In addition, it follows from the integration of the measured values that j; = —64 m/s, a
value which deviates considerably from the value reported by Wang et al. (1987). We do not
have an explanation for this discrepancy. We will assume here that j; has the value which
follows from the measured gas—fraction distribution and velocity profile, i.e., j; = —.64 m/s.
From the graphs in Wang et al. (1987) it is inferred that ae = .17 and u; = —78 m/s at the
tube axis. By varying €; and 7 and performing computations with several difference
velocities we arrived at a satisfactory agreement with the experimental results when
(u)o=-3, € =1.25x10* and 7, =1.9x10"2, as demonstrated in figure 5.6.4. The
corresponding difference velocity and dynamic viscosity are given by wo= .26 m/s and
N = 4.2x10-3 kg/ms. The superficial velocities computed from the numerical results are
given by j; = —65 m/s and j, = —.08 m/s, which again demonstrates that j; can not be equal
to the reported value of —71 m/s. The measured void—fraction distribution shows a weakly
oscillating behaviour before going to zero at the wall. The computed distribution behaves
similarly although it is hardly visible in the plot of figure 5.6.4. The computed and the
measured velocity profile both display a minimum near the tube wall. The fact that the
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Figure 5.6.4 Void fraction a and dimensionless liquid velocity u, as functions of r in vertical
downward flow for ae = .17, (u)o =—8, €, = 1.25x10°4, 4, = 1.9x1072 ; —— : numerical
solution of (5.5.18) and (5.5.19), o : experiments (Wang et al. 1987, figures 9 and 13).

minimum of the computed curve is lower explains why the calculated value j; = —65 m/s is
somewhat smaller than the value j; = —64 m/s determined from the measurements.

Vertical two—phase flow in a stagnant liquid was investigated by C. Kapteyn (Twente
University, Enschede, The Netherlands). That type of flow is characterised by j; = 0 m/s
and forms the transition between upflow and downflow. Kapteyn (private communication,
1989) measured a void—fraction distribution for a superficial gas velocity j» = .015 m/s. The
pipe radius R was equal to 40 mm. From his measurements we obtained a, = .067. Starting
with (uy)o=.5 we varied €¢; and < until a satisfactory agreement was achieved.
Subsequently we lowered (u;)o to the value .225 which hardly affected the void—fraction
distribution but made the dimensionless quantity j;/w, approximately equal to zero
(0(10-4)). The corresponding values of ¢; and 7, are given by € = 2.5x10- and
Y11 = 7x10-2. Figure 5.6.5 shows the void—fraction distribution and the velocity profile for
those values. The dimensionless superficial gas velocity computed from the numerical results
is given by jo/wo = 6.6x10-2. Taking into account that j, = .015 m/s we therefore arrive at a
difference velocity wo = .23 m/s, which is an acceptable value. The dynamic viscosity of the
bubbly mixture is determined by 7, = 1.7x10-3 kg/ms. From figure 5.6.5 we see that the
liquid velocity shows an interesting behaviour. At the tube axis the velocity is positive but
near the wall there is a local backflow where u; becomes negative. There is even a region
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Figure 5.6.5 Void fraction a and dimensionless liquid velocity u, as functions of r in a
stagnant liquid for ae = .067, (u1)y = .225, € = 2.5x1075, v = <102 ; — : numerical
solution of (5.5.18) and (5.5.19), | : ezperiments (Kapteyn, private communication, 1989).

near the wall where u; < —1, which means that the bubbles attain a negative velocity in this
region and move downwards. Kapteyn (private communication, 1989) has observed that
effect experimentally for average gas fractions («) varying from .2 to .3. Thanks are due to
him for the kind permission to use some of his experimental results before publication (these
results may now be found in Kapteyn 1989).

5.7 Higher order asymptotic solution

The asymptotic analysis in section 5.5 was kept as simple as possible. Only the first term of
the asymptotic expansion for the inner solution was determined. In the present section we
consider the asymptotic analysis in more detail and derive a higher order asymptotic solution
of the equations (5.5.36) and (5.5.37).

The small parameters ¢; and 7, are assumed to satisfy ¢; << 7, , which is a reasonable
assumption under normal experimental conditions (see section 5.5). When the coordinate
transformation y = —In r is applied and the strained coordinate ¥ is introduced by means of
(5.5.38), the equations (5.5.36) and (5.5.37) are respectively written
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- -d2a € -d?a
02€3Y [e263y __] EURRLIPCL: ) S ae=0, (5.7.1)
dy? dy? 11 dy?
di; d a7 d2a €2 da
- _ [e 3Y_]+4__=0, (5.7.2)
dy dy dy? Y11 d¥

1
where u; = ('yu/el)% i, and €3 = 62% = (711€1)*. Equations (5.7.1) and (5.7.2) govern the
inner solution, which is written as an asymptotic expansion of the form

a=a+ pes, ) ol + ...,
(5.7.3)

=

1= 1_12 + /L1(€3,’)'11) l_li + ...,

where p(€3,711) is a small parameter depending on €3 and 7. Substitution of (5.7.3) into
(5.7.1) and (5.7.2) demonstrates that the first order terms in the asymptotic expansion
(5.7.3) satisfy

d4af
+a—a =0,
dy+4
(5.7.4)
di¢ dsa0
—_— =0.
dy dy?

These equations coincide with (5.5.39) and (5.5.40). The solution of (5.7.4) satisfying the
boundary conditions (5.5.41) and (5.5.42) and matching the outer solution (5.5.34) was
obtained in section 5.5 in the form (5.5.43).

The next order case is more complicated, It follows from (5.7.1) that a convenient choice for
pa(€3,711) is given by

pi(€s, ) = 2 €3 (5.7.5)

In that case the differential equations for o! and @} contain terms of the order of

es/ 711 = (e1/7,3)! . Three cases may be distinguished: 1) ¢, = O(73) , 2) ex1<< 7,2 and
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3) 73 << €1 << 711 . In the analysis of case 1 A is introduced according to

€3 = A Y1 - (5.7.6)

Case 2 may be obtained from case 1 by letting A - 0 . In the third case €3/~ takes a large
value and (5.7.5) is no more a suitable choice for 4,. The differential equations for a! and u!

show that it should be replaced by
2

€3
ples,r) =4 —. (5.7.7)
Y11

We now analyse the three cases in more detail.
Casell i 61=O(’)‘1?), /l,1=2 63=2(’)’1161)%.

Substitution of (5.7.3) into (5.7.1) and (5.7.2) with y, given by (5.7.5) yields the differential
equations

d4at d2ab d2 dzaf d¢af
+al=2) ——[- ] _3 (5.7.8)
dy* dy? dy?t dy? dy*
and
di} da® d d2a® d2a!
—=—2A—+—[y + ], (5.7.9)
dy dy dy ' dy?  dy?

where a9 is a known function given by (5.5.43). The boundary conditions and the conditions
which provide for the matching with the outer solution are given by

(al))_’=0 = 07

(5.7.10)
da!
al-0, —=0, when y - o
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and

(5.7.11)
i}-0, whenyj-o.

Note that it follows from (5.5.36) and (5.5.37) that the higher order terms of the outer
solution are equal to zero as a result of the fact that the first order approximations for o and
ii; are constant (see (5.5.34)). The outer solution is therefore completely given by (5.5.34).
As a consequence, the asymptotic expansion for the inner solution is uniformly valid as well.
The solution of (5.7.8) and (5.7.9) satisfying the boundary conditions (5.7.10) and (5.7.11)
reads

al
—={2/\siny*+
Qe

—i'y*[[2%—2)\[1—(1_“)0]]COSy*—[2%(ul)o—2)\[1+(ﬁ1)0]]Siny*] N

Qe Qe Qe

A ([ 2 et [ )

Qe Qe

(5.7.12)
(l_:)i ={—)\Siny +
0
—iy*[[zé_g,\[u ﬁieo]]cosy“’[z%(ﬁl o+2k[1_(ﬁa1e)o]]Si“Y*] +
_%ﬁy*?[[l_ _ae ]cosy*+[1+ h ]Siny*]}e_y*,

(5.7.13)
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where y* = 974 y= 974 et In1 . It will be clear that the higher order contribution to the
liquid velocity @} is obtained in a straightforward way by integrating (5.7.9).

Case2): € <<7,3, pr=2e=2 ('yuel)} .

When ¢, << '71:1 , A = €3/ has a small value. The solution for case 2 is therefore obtained

from case 1 by letting A - 0 in (5.7.12) and (5.7.13).

2
63 €1 -}
Case 3) : 713{<< € << M1, u1=4-—=4[—] .
Y11 Y11

By assuming an expansion according to (5.7.3), the differential equations for a! and i} now
take the form

d4al d2a®
dy+¢ dy?
and
dii} dat d3at
_— . (5.7.15)
dy dy dy 3

The solutions of (5.7.14) and (5.7.15), satisfying the boundary conditions (5.7.10) and
(5.7.11), are given by

al (Wq) (i) ¥
_={siny*+21[y*[[1— 0]cosy*—[1+ o]siny*]}ey ,
Qe Qe Qe

(5.7.16)
and

al a Qe *
( ;={—%—siny*+%y*[[1+( e)]cosy*—[l— ]siny*]}e—y .
1), )

(W),

(5.7.17)
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A numerical calculation shows that when the second order approximations (5.7.16) and
(5.7.17) are included, the asymptotic solution in figure 5.6.1 can hardly be distinguished
from the numerical solution of equations (5.5.18) and (5.5.19) when linearised.

By comparing (5.7.16) and (5.7.17) with (5.7.12) and (5.7.13) we conclude that the relative
order of magnitude of e; with respect to 7 in the case where €; << 7;; has a distinct
influence on the form of the higher order terms in the asymptotic expansions for a and u; for
instance, terms quadratic in y* which are encountered in (5.7.12) and (5.7.13) are absent in
(5.7.16) and (5.7.17). The numerical effect of increasing and decreasing the values of ¢; and
711 was already discussed in section 5.6.

5.8 Conclusions

The macroscopic theory of two—phase bubbly flow developed in G (1985a) was extended with
a dispersive force according to (5.1.3). That term models the energy of the small irregular
motions of the bubbles which, in the case of vertical two—phase flow, come into prominence
in the neighbourhood of a solid boundary. It was demonstrated by means of analytical and
numerical calculations that the dispersive force and the ‘lift’ force already contained in the
original theory (see (5.1.1)) combine to produce void—fraction distributions and velocity
profiles for vertical flow in a cylindrical tube which are in good agreement with experimental
results obtained by various investigators. In particular the ‘turbulent’ character of the
velocity profile for the liquid phase is reflected by the computations. The calculated
void—fraction distributions display, in conformity with the experiments, a distinct maximum
in the vicinity of the tube wall both for the cocurrent upward flow of a bubbly liquid/gas
mixture and the collective rise of bubbles in a stagnant liquid.
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SUMMARY

In this thesis the dynamics of bubbly liquid/gas mixtures is studied. The basis is formed by
an article of Geurst (1985), who demonstrated that bubbly two—phase flow may be described
in a systematic way by making use of variational techniques. In the present work that theory
is extended in various ways and it is used to analyse and clarify some not yet completely
understood phenomena which are encountered in the two—phase flow of bubbly mixtures.

Chapter I summarizes some of the mathematical models which may be found in the
literature, all claiming to be applicable to bubbly liquid/gas flow yet all being fundamentally
different. It gives an overview of the present state of the art in the field of bubbly flow. The
main difficulty that is encountered concerns the virtual-mass effects associated with the
local backflow around the gas bubbles, which is present when the gas has a motion relative
to the liquid. It is discussed how Geurst (1985) included those effects by means of a
variational formulation. It is also indicated how that approach leads to a consistent
modelling of the dynamics of bubbly two—phase flow.

In Chapter II the Hamilton principle of Geurst is extended to include the effect of flow
induced bubble deformation. The energy associated with the surface tension of the gas
bubbles is also taken into account. The equivalent bubble radius and the bubble number
density appear as additional variables. The equations of motion are subjected to a linear
stability analysis which proves the possible existence of so—called void—fraction waves
travelling with the velocity of the gas bubbles in the case of marginal stability. The
virtual-mass coefficient of the bubble dispersion takes in that case a special form. It is made
compatible with the virtual-mass coefficient of a separate gas bubble by analysing the limit
of small void fractions.

In Chapter III it is shown that Geurst’s equations and the equations presented in Chapter II
allow a certain class of exact solutions. The solutions are interpreted as nonlinear
void—fraction waves and appear to be related to the specific form of the virtual-mass
coefficient which follows from the linear stability analysis. Some properties of the waves are
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discussed. A variational formulation demonstrates that the additional inclusion of the
motion of the gas inside the gas bubbles does not affect the characteristic properties of a
nonlinear void—fraction wave.

Chapter IV presents a numerical and analytical investigation of the interaction of acoustic
waves and void—fraction waves. Nonlinear void—fraction waves appear to be stable for an
acoustic disturbance. The numerical results show that an acoustic wave may be reflected by
a void—fraction wave characterised by a high gradient in the bubble concentration. The
linearised equations of motion are used to derive reflection and transmission coefficients
which give an analytical support for the numerical results. The acoustics of a bubbly
liquid/gas medium is derived from a variational principle. It constitutes a generalisation of
the acoustics of single—phase fluids.

In Chapter V the inviscid theory for two—phase bubbly flow is made of practical use by
including dissipative terms and terms accounting for high gradients in the void fraction,
which may be present near a solid boundary. Subsequently it is investigated whether the
theory might be successful in predicting the characteristic void—fraction distributions and
velocity profiles which are observed in the vertical pipe flow of a bubbly liquid/gas mixture.
The results are compared with measurements. A good agreement is obtained for the three
cases of upflow, downflow and the collective rise of gas bubbles in a stagnant liquid.
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SAMENVATTING

In dit proefschrift wordt het dynamisch gedrag van vloeistof/bellenmengsels bestudeerd. De
basis wordt gevormd door een artikel van Geurst (1985), die aantoont dat de
tweefasenstroming van een vloeistof/bellenmengsel op een systematische wijze beschreven
kan worden door gebruik te maken van variationele technieken. Deze theorie wordt hier op
verschillende manieren uitgebreid en gebruikt ter analyse en verduidelijking van sommige
nog niet volledig begrepen verschijnselen die optreden in de tweefasenstroming van een
bellenmengsel.

Hoofdstuk I geeft een opsomming van een aantal wiskundige modellen die in de literatuur te
vinden zijn. Alle modellen beweren van toepassing te zijn op de tweefasenstroming van een
vloeistof/bellenmengsel ondanks het feit dat zij op fundamentele wijze van elkaar verschillen.
Het geeft een overzicht van de huidige stand van zaken op het gebied van belstromingen. De
grootste moeilijkheid geven de virtuele-massa effecten, gerelateerd aan de lokale
terugstroming rond de gasbellen welke optreedt wanneer het gas een relatieve snelheid heeft
ten opzichte van de vloeistof. Besproken wordt hoe deze effecten door Geurst (1985) zijn
opgenomen via een variationele formulering. Bovendien wordt aangetoond dat deze
benaderingswijze leidt tot een consistente modellering van de dynamica van
vloeistof/bellenmengsels.

Het Hamiltonprincipe van Geurst wordt in Hoofdstuk II uitgebreid door het effect van
stromings—geinduceerde belvervormingen op te nemen. Tevens wordt de energie ten gevolge
van de oppervlaktespanning van de gasbellen in rekening gebracht. De equivalente belstraal
en het aantal bellen per volume—eenheid verschijnen als additionele variabelen. De
bewegingsvergelijkingen worden onderworpen aan een lineaire stabiliteitsanalyse welke het
mogelijk optreden van zogenaamde gasfractiegolven aantoont, die zich voortplanten met de
snelheid van de gasbellen in het geval van marginale stabiliteit. De virtuele—massa
coéfficiént van een bellendispersie heeft in dat geval een speciale vorm. Deze wordt in
overeenstemming gebracht met de virtuele-massa coéfficiént van een afzonderlijke gasbel
door de limiet van kleine gasfracties te analyseren.
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In Hoofdstuk III wordt aangetoond dat de vergelijkingen van Geurst en de vergelijkingen
gepresenteerd in Hoofdstuk II een bepaalde klasse van exaktie oplossingen toelaten. De
oplossingen worden geinterpreteerd als niet—lineaire gasfractiegolven en blijken gerelateerd te
zijn aan de specifieke vorm van de virtuele—massa coéfficiént, die volgt uit de lineaire
stabiliteitsanalyse. Enkele eigenschappen van de golven worden besproken. Een variationele
formulering toont aan dat het additioneel opnemen van de beweging van het gas binnen de
bellen de karakteristieke eigenschappen van een niet—lineaire gasfractiegolf niet verandert.

In Hoofdstuk IV wordt numeriek en analytisch de interactie tussen akoestische golven en
gasfractiegolven onderzocht. Niet—lineaire gasfractiegolven blijken stabiel te zijn voor een
akoestische verstoring. De numerieke resultaten geven aan dat een akoestische golf
gereflecteerd kan worden door een gasfractiegolf, gekarakteriseerd door een hoge gradiént in
de bellenconcentratie. De gelineariseerde bewegingsvergelijkingen worden aangewend om
reflectie— en transmissiecoéfficiénten af te leiden, welke de numerieke resultaten van een
analytische  ondersteuning voorzien. De akoestische eigenschappen van een
vloeistof/bellenmedium worden afgeleid uit een variatieprincipe. Zij vormen een generalisatie
van de akoestische eigenschappen van fluida, die uit één component bestaan.

In Hoofdstuk V wordt de niet—viskeuze theorie voor de tweefasenstroming van een
vloeistof/bellenmengsel bruikbaar gemaakt voor praktische toepassingen door dissipatieve
termen op te nemen en termen die hoge gradiénten in de gasfractie in rekening brengen. Deze
laatste kunnen optreden in de buurt van een vaste wand. Vervolgens wordt onderzocht of de
theorie op succesvolle wijze de karakteristieke gasfractieverdelingen en snelheidsprofielen kan
voorspellen, die worden waargenomen in de vertikale pijpstroming van een
water/bellenmengsel. De resultaten worden vergeleken met metingen. Een goede
overeenstemming wordt bereikt voor de drie gevallen van opwaartse stroming, neerwaartse
stroming en het gezamelijk opstijgen van gasbellen in een stilstaande vloeistof.
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