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Abstract 
To calculate the flexural-shear resistance of prestressed concrete members without shear 
reinforcement, a method based on Critical Shear Crack Theory (CSCT) has been presented for 
the new Eurocode (prEN1992). Two alternatives provided in draft 7/2020 (prEN1, prEN2) are the 
starting point given, and two other alternatives are proposed for analysis by this thesis (prEN3, 
prEN4). These alternatives and other design codes were evaluated based on the concepts 
involved, assumptions made, and the results obtained compared with experimental results. 
 
The research started by compiling basic concepts handled by empirical (ACI318-19 or EC2), 
MCFT-based (AASHTO-LRFD), and CSCT-based (prEN1992) approaches for the calculation of 
the flexural-shear resistance of members without shear reinforcement. Experimental results of 
slender prestressed concrete beams without shear reinforcement were collected from the ACI-
DAfStb-PC/2015 database, and these tests were classified into subsets according to the relevant 
criteria used in the different design codes such as type of shear failure or cross-section shape. 
Subset 1 groups rectangular and I/T shaped beams with flexural-shear failure. Subset 2 retains 
the rectangular beams from subset 1, and subset 3 filters the tests from subset 2, applying 
conditions checking for anchorage or flexural failures. In addition, different critical locations were 
assumed, some according to design code suggestions (𝑥𝑟 = 𝑑 𝑜𝑟 𝑥𝑟 = 𝑎 − 𝑑) , and others 

according to an assumption based on test results (𝑥𝑟 = 0.65𝑎). 
 
The comparative evaluation results of the flexural-shear strength estimated by the different 
design codes with the experimental results were made for the 3 subsets and 3 critical locations 
defined. From this data set, the critical location 𝑥𝑟 = 𝑎 − 𝑑 was chosen as the appropriate based 
on a general evaluation of the precision acquired by the approaches and the higher flexural 
stresses present. Then the data for the 3 subsets at this location are captured and presented in 
a range from lowest to highest from here on. 
 
Based on the results, it was concluded that AASHTO-LRFD and prEN1 are the most precise 
approaches with COV less than 0.25. However, AASHTO-LRFD tends to obtain very 
conservative results. ACI318-19M has the worst performance in terms of precision with COV in 
the range of 0.29 to 0.45, its approximate method tends to get results below the desired level of 
safety, and its detailed method tends to be more conservative. EC2 achieves a regular precision 
with COV between 0.28 and 0.31, the linearized alternative for the new Eurocode (prEN2) obtains 
similar COV values ending up with a regular precision as well, and both approaches have a good 
level of safety. 
 
To improve prEN2, new alternatives (prEN3 and prEN4) were derived based on the linearization 

of the main failure criterion of the CSCT. Of the alternatives, prEN4 was the most precise 

(COV=0.25-0.26) with a good level of safety, recognizing that this alternative correctly applies 

the concept of prestressing as preload and incorporates the effect of the normal loads on the 

shear strength with a direct relationship dependent on the ratio 𝑑/𝑎𝑐𝑠, where 𝑎𝑐𝑠 = |𝑀𝐸𝑑/𝑉𝐸𝑑|. 

Finally, all approaches were tested in terms of usability in design cases for simply supported and 

continuous slab decks, concluding that prEN4 has a significant advantage in usability since it is 

an expression similar to the one used in the current EC2, and also obtains results that are on the 

safe side compared with a more precise approach like prEN1. 

Alternative 4 (prEN4) is an approach with good accuracy and safety level, and can incorporate 

the effect of prestress on shear resistance straightforwardly and consistently, complying with the 

main assumptions of the CSCT and the assumption of prestressing as a preload indicated for 

the Eurocodes, thus incorporating only the influence of normal loads applied to the neutral axis 

to contribute to the shear resistance. prEN4 is also an approach that has been shown to capture 

the influence of all parameters considered to obtain a reliable estimation of the flexural-shear 

resistance; therefore, it is recommended to consider it as a potential alternative for a handy and 

reliable calculation of the flexural-shear resistance of beams without shear reinforcement. 
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1  INTRODUCTION 
Research of the failure of prestressed concrete beams without shear reinforcement has given rise 

to a wide variety of proposals that are the subject of ongoing debate since, for the time being, 

there is no universally accepted method to compute the shear strength/capacity of reinforced and 

prestressed concrete members without shear reinforcement. The difficulty of this problem is 

immersed in the heterogeneous structure of concrete, a multiphase granular material formed by 

irregularly shaped aggregate particles of various sizes, embedded in hardened cement paste. 

This heterogeneous structure causes the concrete to deform non-linear and time-dependently 

under sustained loading [1]. 

Over time, shear resistance of concrete was estimated employing semi-empirical expressions that 

today may not be well adapted to commonly used structural configurations. Most of the design 

codes used have calibrated their analytical models from a database of mainly simply supported 

beam tests with point loads, which may not represent the structural configurations commonly used 

today. Furthermore, incorporating the effect of prestressed forces in the proposed expressions is 

sought in a theoretically justified manner. 

In recent years, by implementing modern measurement techniques in experiments, e.g., the digital 

image correlation (DIC) technique, it has been possible to advance in the study of the topic and 

investigate the process of failure and phenomena. Several mechanical models proposed and 

successfully applied lead code provisions, although there is still no agreement on the phenomena 

and parameters governing the shear capacity, in part due to different interpretations. 

The influence of prestressing, and other parameters such as beam height, aggregate size, 

longitudinal reinforcement ratio, and other parameters are being investigated to determine their 

role and contribution to shear strength [2]. For this purpose, efforts are being made to increment 

the available experimental tests on prestressed beams with different setups. 

At the moment, there are different theories such as the Critical Shear Crack Theory (CSCT) and 

Modified Compression Field Theory (MCFT) that are currently being used in design codes to 

calculate with a physical-based background the shear strength of members without shear 

reinforcement. For the proposal for the new Eurocode, CSCT based approaches are being 

generated to improve the current empirical method used. Nevertheless, it is necessary to have 

simple formulations uniform for prestressed and non-prestressed concrete members, then the 

straightforward inclusion of prestressed effect on shear resistance calculation will be investigated 

in the present document.  

1.1 BACKGROUND 
Design evaluation of shear resistance depends on the application or non-application of shear 

reinforcement in prestressed concrete elements. There are theories based on equilibrium like 

strut-and-tie models and stress fields applied when shear reinforcement is present. Conversely, 

shear resistance for a prestressed concrete element without shear reinforcement provided in 

shear design codes has been empirically derived or validated, differing from each other depending 

on the parameters considered. 

The current Eurocode (EN1992-1-1:2004) design procedure is based on expressions derived 

empirically from tests (simply supported beams under point loads typically), which makes it unsafe 

when it is applied outside the ranges for which the parameters were calibrated. The current 

approach does not take into account the influence of aggregate interlock, the effect of shear span-
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to-effective depth ratio, underestimates the influence of the size effect, and considers linearly 

(addition of 𝑘1𝜎𝑐𝑝) the effect of prestressing over the shear resistance of concrete. 

In recent decades, theories such as the critical shear crack theory (CSCT) or the modified 

compressive field theory (MCFT) have emerged, which have benefited the upgrading of design 

codes from empirical models to approaches based on physical models that logically represent the 

mechanics of failure. However, there is currently no generally accepted theory or physical model 

that explains the response of elements without shear reinforcement. 

The critical shear crack theory estimates the crack width as a function of the longitudinal strain of 

reinforcement in the shear critical region, which provides the basis for evaluating the shear 

resistance of members without shear reinforcement. Recent research demonstrates the potential 

applicability of this theory in the design equations for standards applied to the design of concrete 

structures. For this reason, this theory is the proposed basis to be used for the second generation 

of the Eurocode. Current Swiss code SIA 262 is based on the CSCT failure criterion and other 

standards like AASHTO LRFD and CSA based their formulation on a general theory as the 

modified compression field theory (MCFT) with good results in its implementation to practical 

cases. 

With the trend in the scientific community exposed, the applicability of the approaches based on 

the CSCT will be evaluated, and the influence of normal forces or its effect on some important 

parameters like the longitudinal reinforcement strain will be assessed. The presence of 

prestressing force in beams is common, and the effect of design codes modification on current 

structures has to be evaluated in the same way once there is a clear picture of the practical 

formulation that can be applied as a standard. The results of different proposals to consider the 

influence of prestressed forces will be assessed, comparing them with experimental results from 

the “Deutscher Ausschuß für Stahlbeton (DAfStb H.617): ACI-DAfStb Shear databases 2015” [3]. 

It should be noted in the same way that these types of changes in the current regulations could 

leave some structures marked as unsafe. Therefore, the impact on the security of the new 

proposals must be evaluated to take preventive measures or warn on time about risky situations. 

Last but not least, the usability of the proposed design method should be rated according to its 

simplicity, range of application, necessary parameters, and versatility. 

1.2 AIM OF THE STUDY 
Research question and scope 

- Research question 

How can prestressing force influence be taken into account to estimate the flexural-

shear resistance of members without shear reinforcement straightforwardly, with an 

approach based on Critical Shear Crack Theory (CSCT)? 

According to the issues mentioned before and the research question presented, the following 

objectives should be accomplished: 

● Develop the theory related to the mechanical model for shear transfer in flexural-cracked 

prestressed concrete members and review the application of the Critical Shear Crack 

Theory (CSCT) and Modified Compression Field Theory (MCFT) for this problem. 

● Remark the primary assumptions made within the CSCT to analyze the influence of normal 

forces in the scope of the CSCT. 

● Evaluation and development of the shear design of members without shear reinforcement 

subjected to prestressing loads according to current standards such as ACI, AASHTO-

LRFD, and Eurocode. 
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● Evaluate the provided design procedure proposed for the 2nd generation of Eurocode in 

terms of usability, and explore improvements based on a coherent assumptions and 

simplifications based on theory and experimental results. 

● Assess the design method proposed in typical case studies and estimate possible 

consequences of the proposal on current structures.  

1.3 OUTLINE OF THE STUDY 
The methodology to be pursued starts with the literature review of two theories that will underpin 

this study and are comparable, the CSCT and MCFT theories. At the level of design models, the 

most commonly used design codes such as ACI, AASHTO, and Eurocodes will be compared with 

the experimental database from ACI-DAfStb for prestressed beams without shear reinforcement 

with a focus on the results obtained for the proposal made for the new Eurocode. 

It is necessary to classify and present some information related to the experimental database; 

then, one chapter will be dedicated to this purpose. 

The comparison results will show specific indicators regarding the performance of the new 

Eurocode proposal concerning the experimental results and the other design codes. The aim is 

to identify the best performances for the case of prestressed beams without shear reinforcement 

and point out the points where improvements can be made in the new proposal for the Eurocode 

in terms of usability, precision, accuracy and consistent derivation based on theory. Usability will 

be evaluated by applying the different design codes in practical cases. 

ACI 318-19

EN 1992-1-1

prEN 1992-1-1

AASHTO LRFD

Analytical background

Assessment VRd with 
Prestressed force

Design method 
approach prEN1992

Safety of all design 
codes

MCFT

CSCT

Improvement of the model 
in terms of safety

Improvement of usability

Shear resistance of prestressed 
members without shear reinf.

Empirical

 

Figure 1-1 Structure of the methodology 
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2  LITERATURE REVIEW 

2.1 SHEAR FAILURE OF PRESTRESSED CONCRETE MEMBERS WITHOUT SHEAR 

REINFORCEMENT 
Although there is no consistent definition of shear capacity in prestressed and reinforced concrete 

beams without shear reinforcement, despite the initiatives carried out the last years, its 

phenomenological definition is accepted as a brittle failure with diagonal cracks developing in the 

span. 

Shear cracks are generated depending on the magnitude of the principal tensile stresses within 

the beam cross-section. These principal stresses depend on the applied external forces and the 

prestress force applied in the case of prestressed beams. In case of straight tendons, the influence 

of the compressive force (𝑁)  introduced by prestress reduces the tensile flexural stresses 

(𝑓𝑥 = 𝑓𝑖 −𝑁), and in case of curved tendons the vertical shear caused by external loads is reduced 

if the vertical component of prestressing force acts in the opposite direction. 

The orientation of the principal stresses and their magnitude along the beam height changes as 

a function of the resulting shear and flexural stresses acting on the beam after prestressing 

(scheme of analysis in Figure 2-1). The different configurations that can occur due to cross-section 

shape, prestressing force magnitude, web width, etc. lead to different types of cracks and failure 

modes that will be detailed in the following sections. 

N N

fx=fmax - N

 

Figure 2-1 Principal stresses, and resulting shear and flexural stresses acting on beam after prestressing [4] 

It is worth mentioning that most beams contain stirrups, but not in all cases these stirrups are 

considered effective shear reinforcement. This "nonconforming shear reinforcement" is 

considered as such because it does not meet the various design requirements and its contribution 

to the shear resistance is neglected. Therefore the beam is considered without stirrups for analysis 

[5], hence the non-shear-reinforcement case is important for assessment. 

2.1.1 Types of cracks for beams without shear reinforcement 

For beams without shear reinforcement three types of cracks are defined as follow and are shown 

in Figure 2-2 [4].  
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• Flexural cracks, which develop almost perpendicular to the longitudinal axis of the beam. 

These appear in regions with small shear stresses and dominant flexural stresses which 

are almost equal to a horizontal principal stress. The initial cracks widen and extend 

deeper toward the neutral axis and beyond with the increment in deflection of the beam. 

 

• Flexural-shear cracks start as fine vertical flexural cracks on the tensioned fibers of the 

cross-section in regions with high flexural and shear stresses. These cracks rotate their 

inclination as they approach the centroidal axis of the beam where the highest shear 

stresses occur. This is caused by the rotation of the direction of the principal stresses 

influenced by the increasing shear stresses near the centroidal axis (Figure 2-1). 

In literature one can find different denominations of a flexural-shear crack like critical 

inclined crack, inclined flexural crack or critical shear crack, but all of them are pointing to 

the same thing. Also different authors have varied definitions for this type of cracks, like 

e.g. definition given by [6], a flexural crack with two secondary branches, one approaching 

the support at the level of the reinforcement in tension and the other approaching the point 

of maximum rotation in the compression zone. 

• Web-shear (shear-tension) cracks are assumed to occur in regions not cracked by 

flexural stresses (without flexural cracks). These cracks initiate in the web when the 

principal tensile stress is equal to the maximum tensile strength of the concrete. This type 

of crack does not depend on the formation of flexural cracks in the tensioned fibers and 

the related type of failure is the most brittle one. These cracks usually appear in regions 

subjected to high shear and low bending, like e.g. in continuous prestressed concrete 

beams near points of contraflexure [7]. 

 

Figure 2-2 Types of cracks [4]. 

2.1.2 Shear failure modes in prestressed concrete members without shear reinforcement 

Flexure-shear failure, shear-compression failure and shear-tension failure are considered the 

main shear failure modes for members considered without shear reinforcement, and these are 

going to guide the classification of the experimental database from ACI-DAfStb [3] afterwards. 

Flexural-shear failure is related to the type of crack called equal; the dominant load transfer 

mechanism consists of variable internal forces acting over a constant lever arm. This failure mode 

is dominant in beams with large spans and the maximum shear forces related to its load transfer 

mechanism are usually lower than those found with the other load transfer mechanisms. 

Shear-compression failure is the most violent and erratic mode of failure with several failure 

mechanisms, one can observe crushing of the concrete before failure. It occurs when the beam 

fails by crushing of the concrete at or near the top of the flexural-shear crack, a zone with high 

concentrated compression stresses. A characteristic of a shear-compression failure is that the 

load is carried mainly by direct compression struts, a common case when the flexural-shear 

crack arises close to the support when point loads are located close to supports. Within the load 

transfer mechanism formed in this case, the shear transfer action of the aggregate interlocking 
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has a minor contribution and this allow the load being transmitted by direct compression struts 

(more information about shear-transfer actions in section 2.2) 

Last two failure modes are dependent on the development of the flexural-shear crack, and it is 

not always possible to predict whether the failure mode may be flexural-shear or shear-

compression, the difference between these two failure modes is usually substantial [6]. 

To distinguish in some way members subjected to shear-compression failures from those more 

susceptible to flexural-shear failure the ratio between the shear span-to-effective depth ratio a/d 

and the shear slenderness M/Vd can be used [6], with the help of the "Kani's valley" explained in 

section 2.2.5. 

Shear-tension failure is related with the called “diagonal tension cracks” that are known in this 

document as shear-tension cracks. Already mentioned the origin of this failure mode in the 

definition of the related type of crack, it can be added that the anchorage and bond conditions that 

usually occur in the region close to the support for prestressed concrete beams increase the 

likelihood of this type of failure. Beams with I or T cross-section are more susceptible than 

rectangular beams when they have thin webs that concentrate shear stresses in the web. Three 

types of failure initiated by a shear-tension crack can be distinguished (i) failure due to a single 

crack that tends to develop from the support to the point of loading (ii) failure due to the formation 

of multiple shear-tension cracks (web distortion) and (iii) failure due to the formation of multiple 

shear-tension cracks (web distortion) followed by crushing of the compression flange below the 

point of loading [5]. 

Other classifications can be found in literature, according to [8] shear failures can be subdivided 

in two categories, failure by shear-compression and failure by distress in the web. Distinguished 

according to whether or not the specimen loses its bearing capacity when the critical inclined 

crack occurs.  

In case of members with shear reinforcement, another important shear failure occurs when the 

compressive strut fails in compression, failure identified as diagonal compression shear failure 

due to high compressive forces concentrated in thin webs mainly. 

With the theory developed up to this point, as a summary, the different failure modes for 

prestressed concrete members without shear reinforcement can be grouped according to the type 

of crack and moment-shear ratio related, as is shown in the following Figure 2-1. 

Table 2-1 Failure mode of members without shear reinforcement, related with type of cracks and moment-shear ratio 

Failure mode Type of crack Moment-shear ratio 

Shear-tension failure 
Diagonal tension crack 
(shear-tension crack) 

Low moment / High shear 

Flexural-shear failure 
Flexural-shear crack High moment / High shear 

Shear-compression failure 

 

It may also be desirable to detail other observations that better report the damage suffered by the 

beam until failure during the experiments, to consider other factors in the beam failure mechanism. 

For example, if the beam shows signs of horizontal shear damage, such as sliding shear failure 

at the interface between the web and flange in tension. Or, damage in the anchorage zone, 

representing damage in the prestress transfer lengths, such as strand slip or failure of the bond 

between the concrete and the strands. These observations are important for I-beams especially, 

where according to the aforementioned, certain group of tests can be selected to analyze 

particular types of failures. 
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2.2 SHEAR-TRANSFER ACTIONS FOR FLEXURAL SHEAR 
Analysis of reinforced concrete beams without shear reinforcement can be done with the theory 

of elasticity prior to crack development. But for after cracking case it is more complicated, some 

approaches estimate the shear strength on the basis of the concrete tensile strength, others on 

the basis of fracture mechanics concepts, a number based on the upper-bound theorem of limit 

analysis with some modifications to account for the presence of concrete cracking, and some 

approaches account for various potential shear-transfer actions like the Critical Shear Crack 

Theory [9]. Although the shear-transfer actions, strain and size effects are taken into account in 

different manners within the different models the design expressions consider similar parameters 

with equal influences at the end [10]. 

The shear-transfer actions will be studied in detail one by one in subsections of section 2.2, and 

can be seen in their relative position within a reinforced concrete beam with bottom longitudinal 

reinforcement in the free body diagrams of Figure 2-3 and Figure 2-4. Depending on the location, 

shape and kinematics of the critical shear crack leading to failure the contribution of the different 

shear-transfer actions may vary. Once flexural cracks propagate from the tensioned fibers toward 

the centroidal axis some shear-transfer actions can develop [11], [9]. These shear-transfer actions 

are commonly classified into beam shear-transfer actions and arching action, being shear 

resistance in most of the cases the combination of these two mechanisms. Beam shear-transfer 

actions as compression zone capacity (cantilever action), aggregate interlock, dowel action and 

residual tensile strength of concrete, allow varying the force in the flexural reinforcement and 

carrying shear keeping constant the lever arm between the tension and compression chord. 

Conversely, arching action (section 2.2.5) allows carrying shear keeping constant the force in the 

flexural reinforcement [12]. 

It is observed, and explained later in section 2.2.5, that arching action is the dominant shear-

transfer action for one-way slabs or beams with limited shear span-to-effective depth ratio 

(a/d<2.5), members with unbonded longitudinal reinforcement, and prestressed members having 

large compressive normal forces. On the other hand, beam shear-transfer actions are known to 

predominate in the case of slender members without shear reinforcement, although the scientific 

community disagrees on the predominant shear-transfer action and the phenomena governing 

the shear capacity [9]. 

To prove the last statement, Taylor was one of the first to calculate the contribution of each of the 

shear-transfer actions to the shear capacity of a slender cracked concrete member without shear 

reinforcement. He concluded in this study that the contribution of the aggregate interlock is 

predominant carrying 35% to 50% of the total shear force applied in the section, the contribution 

of the dowel action varies between 15% to 25% and the compression zone carries between 20 to 

40% of the total shear force. The only detail that was not considered in Taylor’s study was the 

residual tensile strength of concrete contribution [12]. 

 

Figure 2-3 Potential shear-transfer actions for reinf. concrete elements without shear reinforcement: Aggregate interlock (Va), residual tensile 
strength (Vt), contribution of inclination of compression chord (Vc), and dowel action of longitudinal reinf. (Vd) [13] 
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Figure 2-4 Strut and tie models (tensile force – solid lines, compressive force – dashed lines) for shear-transfer actions: (a) compression zone 
capacity; (b) aggregate interlock; (c) dowel action; (d) residual tensile strength of concrete; (e-f) arching action [10]. 

The work developed by Taylor applies to reinforced concrete beams and is helpful to have an 

initial look, but for the case study of this document, it is necessary to analyze the shear behavior 

of post-tensioned concrete beams. Understanding the work done by P. Huber ([14], [15]) can give 

some guidelines of what happens. First, the prestressing results in the addition of the vertical 

component of the prestressing force (𝑉𝑝), and the vertical component of the additional tensile 

force (Δ𝑉𝑝) in inclined tendons due to applied loads. The value of Δ𝑉𝑝 depends on the crack width, 

and the total contribution of the vertical component of the prestressing force depends on the 

tendon's angle of inclination.  

According to the test results on post-tensioned beams without shear reinforcement, shear-transfer 

actions like of aggregate interlock (𝑉𝑎) and residual tensile strength (𝑉𝑡) are negligible because 

the critical shear crack is quite wide, and minimal crack sliding occurs. The prestressing force in 

the principal stress directions causes the crack angle to be reduced, thus reducing the influence 

of 𝑉𝑎  from 35% to 50% for reinforced concrete members to practically zero for prestressed 

concrete members. The residual tensile strength (𝑉𝑡) contribution is not relevant because it was 

observed that the length over which residual tensile stresses are transmitted is too short. The 

dowel action’s contribution (𝑉𝑑) depends on the effective width between the individual longitudinal 

bars, and its contribution varies between 5% to 20%, being too small in regions near end supports. 

The contribution of the compressive zone (𝑉𝑐𝑐) is important for post-tensioned beams due to the 

relevance of the arching action. The contribution of 𝑉𝑐𝑐 of the total shear capacity is between 25% 

and 60%, with high contribution for regions near intermediate supports for continuous beams. 

Finally, the contribution of the vertical components of the prestressing force (𝑉𝑝 + Δ𝑉𝑝), depends 

on the effective prestress force applied and the inclination of the harped tendons, noting a 

collaboration in a range between 3-16% of the total shear force. 

Tendon
Vp0+ΔVp

 

Figure 2-5 a) Free-body diagram of the possible shear-transfer actions acting in a post-tensioned beam b) Breakdown or detail of the vertical 
component of prestressing force [14] 

a) b) c) d) 

f) e) 

a) b) 
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2.2.1 Compression zone capacity (Cantilever action) 

The first observation was made by Kani [16], noting that the formation of flexural cracks 

transformed the reinforced concrete beam into a comb-like structure (Figure 2-6). The area in 

compression related to the comb backbone, and the area in tension treated as the “concrete 

teeth”, each tooth separated from each other by the flexural cracks. With this analogy, the stresses 

in the compressive zone increase rapidly during the bending process due to the decrease of its 

area as a result of cracking. With cracks, the shear stress is supported by the inclined compression 

chord, and its strength is limited by the development of the vertical flexural crack into a quasi-

horizontal crack, which disables the tension tie of the tooth [10]. 

T=ƩΔT
 

Figure 2-6 Comb-like structure defined by Kani [12] 

The contribution of the compression zone to the shear resistance depends on the depth of the 

uncracked concrete (𝑐), the most important parameter in this case. The evaluation of the depth 

of the compression zone can be done by using sectional analysis considering force equilibrium 

and strain compatibility conditions of the cross-section (Figure 2-7). 

 

Figure 2-7 Strain and stress distribution of a prestressed concrete beam [17] 

Because the depth of the compression zone is small for slender members without axial 

compression, most codes neglect its effect on shear capacity. For slender prestressed beams, 

the capacity of the compression zone mostly depends on its depth and the capacity of the concrete 

in compression. This is because the prestressing force reduces the inclination of the cracks, 

increases the depth of the compression zone, and generates a higher compressive force that 

must be transmitted [18]. 

2.2.2 Aggregate interlock 

Aggregate interlock refers to the ability to transfer shear force between the two faces of concrete 

separated by a crack through contact between the aggregates and the opposite face. Its 

mechanism is related to the way cracks form in concrete, since the strength of the hardened 

cement paste is lower than that of the aggregate particles in most cases, the cracks intersect the 

cement paste but border the edges of the aggregate particles. The mechanism is then formed by 

the aggregate particles extending from one side of the crack, "interlocking" with the opposite side 

to resist shear displacement.  
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Experiments conducted in the past have shown that the shear forces across cracks induce normal 

and tangential displacements that generate normal and shear stresses between the crack faces. 

Based on these observations, Walraven [19] concluded the existence of an interrelation between 

crack width, crack slip, normal and shear stresses. It was also highlighted and clearly 

demonstrated the relevance of aggregate interlocking to the shear resistance of a cracked beam. 

Experiments reported by Walraven [19] demonstrate the plastic behavior in general of the 

aggregate interlocking due to the plastic behavior of the cement paste in compression and friction. 

Furthermore, failure of the aggregate interlock cannot produce the sudden opening of an inclined 

crack from an existing flexural crack. This can be only possible when lateral confinement on the 

crack is released (dowel action) to cause a sudden loss of aggregate interlock [6]. 

The strength of this shear-transfer action depends on the crack opening (w) and the relative slip 

of the crack (δ) as shown in Figure 2-8, with contact stresses developed in normal and tangential 

direction as shown in Figure 2-4-b. The crack opening, the roughness of the contact surface 

(influenced by the aggregate size and shape of the crack) and the degree of slip (δ) between the 

lips of the crack are the factors that limit the strength of the aggregate interlocking [10].  

 

Figure 2-8 Aggregate interlock: (a) kinematics of a shear crack with relative components of opening (w) and slip (δ); and (b) contact stresses 
[12]          

2.2.3 Dowel action 

It is the ability of the longitudinal bars to transfer forces perpendicular to their axis. Longitudinal 

bars can act as dowels between the lips of a crack to transfer shear forces, an action that is 

efficient where spalling cracks cannot develop in concrete (short-span beams where critical shear 

crack develops near bearing plate or when it develops through the compression reinforcement). 

In case spalling cracks can develop parallel to the longitudinal reinforcement (Figure 2-4-c) as in 

case of slender beams without shear reinforcement, the dowel action decreases and it is even 

negligible. Therefore, it can be concluded, for members without shear reinforcement, that the 

dowel capacity decreases as the strain in the longitudinal reinforcement increases [10]. 

Available experimental investigations identified that the bar diameter, the tensile strength of 

concrete, the concrete cover, the net width and the strains in the longitudinal reinforcement bars 

are the main parameters governing the dowel action. Nevertheless, there is no consensus on the 

relative importance or influence of each parameter on the dowel capacity, in this way, there are 

several proposed models that consider different parameters in a particular way [12]. 

2.2.4 Residual tensile strength of concrete 

Once the concrete cracks, it allows a certain amount of tensile stresses to be transferred across 

the cracks, and tension ties develop through them. The residual tensile stresses at the crack tip 

of the critical shear crack transfer the shear forces, this crack tip is located in the so-called fracture 

process zone (FPZ) in which a crack can transfer stresses until it reaches a certain maximum 

width [10] (< 0.1 mm. [20]).  

The softening behavior that the concrete exhibits once it cracks was firstly measured by Evans 

and Marathe [21], who highlighted the importance of understanding the stress-strain curves for 

concrete elements subject to tension loads to obtain more information about the mode of failure 

of concrete and the phenomenon of redistribution of stresses in certain regions. 



P a g e  | 11 

 

The Fictitious Crack Model developed by Hillerborg [22] to study the behaviour of concrete in 

tension is used commonly in fracture mechanics. It assumed that at certain peak load within a 

narrow zone of micro-cracks the strains start to localize (process zone, point 1, Figure 2-9). Once 

micro-cracks grow, a crack develops but stress transfer is still possible through the crack (points 

2-3, Figure 2-9). Concrete has no capacity to transfer stresses once crack opening is larger than 

the limit width (point 3, Figure 2-9). 

 

Figure 2-9 (a) Tensile load-deformation response of a concrete specimen; (b) illustration of the fracture process zone around the tip of the 
crack: micro-cracks (1-2), micro-cracks merge into a macrocrack in the softening region after the tensile peak [12] 

2.2.5 Arching action 

Arching action refers to the compressive force that is transmitted directly from the point of 

application of the external force to the support. In contrast to the last 4 beam shear-transfer actions 

that allow variation in the force for the tension reinforcement according to the bending moment, in 

this case it is assumed a constant force in the flexural reinforcement and shear is carried by an 

inclined compression strut as shown in Figure 2-4-e [12]. 

The plasticity-based arching action was found in agreement with observed test results for short-

span members. In case of slender beams without shear reinforcement, flexural cracks potentially 

develop across the theoretical compressive strut limiting its strength, resulting in a plastic solution 

that overestimates the actual strength. This influence of the slenderness on the governing shear-

transfer actions can be presented with the “Kani’s valley” shown in Figure 2-10. Arching action 

governs for deep beam and the shear carried is equal to the plastic strength. For slenderness 

between (𝛾1 < 𝛾 < 𝛾2)  cracks penetrate within the strut reducing its capacity. For larger 

slenderness (𝛾 > 𝛾2) the arching action develops in combination with the other shear-transfer 

actions, the members fail again in bending now that beam shear-transfer actions offer enough 

shear strength. 

 

Figure 2-10 Kani's valley: governing shear transfer actions as function of shear span-to-effective depth ratio [23] 

The analog truss that models the concrete behavior will be influenced by introducing a 

compressive strut from the prestressing force applied on the lateral face of the beam, close to the 

𝑀𝑢
𝑀𝑓𝑙𝑒𝑥

=
𝑀𝑠ℎ𝑒𝑎𝑟−𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝑀𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙−𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
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support. For straight tendons, the truss develops from the point of application of the point load to 

the intersection point between the vertical and horizontal guidelines formed by the reaction force 

of the support and the applied prestressing force (Figure 2-11-right). In the case of curved 

tendons, the inclination of the strut will be less (Figure 2-11-left), and the vertical component of 

the prestressing force can reduce the acting shear force if it acts in the opposite direction of the 

applied external load [24]. 

 

Figure 2-11 Influence of prestress force on analogous truss [24] 

The ties formed near support and prestressing introduction points suggest the formation of cracks 

in this region. Furthermore, the introduction of compressive stresses influences the mechanism 

of flexural-shear failure reducing the width of the flexural cracks and increasing the compression 

zone height. Consequently, the compressive struts carry high compressive forces, and the arching 

action tends to dominate for higher ranges of shear slenderness. 

2.2.6 Parameters influencing shear resistance of prestressed concrete 

Certain parameters have been identified as having a significant influence on the contributions of 

the shear resistance mechanisms. The one with more influence are going to be treated in detail 

below. 

1. Concrete strength 

The governing parameter for most design codes is the tensile strength of the concrete, 

which governs the crack width and the ability to transfer shear forces. In design codes is 

common to relate the concrete tensile strength with concrete compressive strength (𝑓𝑐) 

which is the main information about concrete obtained in common practice. Some codes 

as Eurocode correlates the tensile strength of concrete with 𝑓𝑐
1/3

, whereas ACI318-19 

adopt relations with 𝑓𝑐
1/2

, the differences seem to be negligible although has been 

demonstrated that 𝑓𝑐
1/2

 is the most appropriate [11]. 

The shear strength of members without shear reinforcement is strongly dependent on this 

parameter, on the critical shear crack width and on shear crack plane roughness as 

reflected in CSCT described in section 2.3.1. [18].  

The strength of concrete is directly related with the height of the compression zone and 

the shear-transfer mechanism described in section 2.2.1 (Compression zone capacity). 

The higher the compressive strength of the concrete, the lower the necessary height of 

the compression zone required to reach equilibrium.  

In case of high strength concrete, as the cement paste matrix becomes stronger than 

aggregates the crack results in a straight crack through the aggregates instead of a rough 

crack along the surface of the aggregates, thus for this reason the aggregate interlocking 

capacity could decrease. 

2. Longitudinal reinforcement ratio 

In this case the Kani’s shear failure valley will be mentioned again, referring to the “valley 

of diagonal failure” diagram shown in Figure 2-12 where it is plotted for different 

longitudinal reinforcement ratios (𝜌𝑙 = 𝐴𝑠/𝐴𝑐). As it can be seen, the valley decreases with 

lower percentages of reinforcement and practically disappears with percentages lower 
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than 0.6% in case of steel with 𝑓𝑦 = 400 𝑀𝑃𝑎 . This indicates that as the longitudinal 

reinforcement decreases so does the dowel action, because the strains increase in the 

longitudinal reinforcement bars, reconfirming again what was said at the end of section 

2.2.3. 

 

Figure 2-12 Kani’s shear failure valley, shear strength as function of a/d and 𝜌𝑙 (reinforcement ratio) 

3. Shear span-to-effective depth ratio 

It is the moment-shear-ratio in relation to the depth of the beam (𝑀 𝑉𝑑⁄ ) that can be 

expressed for different load cases as follow 

o For simple supported members under concentrated loads 

a F

d

aF

 

𝜆 =
𝑀

𝑉 ∙ 𝑑
=
𝑉 ∙ 𝑎

𝑉 ∙ 𝑑
=
𝑎

𝑑
 

o For simple supported members under distributed loads 

d

L

q

 

𝜆 =
𝑀

𝑉 ∙ 𝑑
=
𝑞 ∙
𝑙2

8

𝑞 ∙
𝑙
2 ∙ 𝑑

=
𝑙

4𝑑
=
𝑎𝑒𝑞

𝑑
;𝑤𝑖𝑡ℎ 𝑎𝑒𝑞 =

𝑙

4
 

This parameter is important for shear strength of slabs or rectangular beams. For members 

subject to a concentrated load with 𝑎 𝑑⁄  between 2 and 5, the bending moment is usually 

the lowest with a relative high shear force. In case of shear span-to-effective depth ratio 

below 2.5, part of the shear force can be transferred to the support by direct compressive 

struts (arching action). This may give a parameter to distinguish the failure modes 

mentioned in section 2.1.2. 
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In the case of prestressing beams, the compressive forces introduced to the beam favor 

the arching action's influence and increase the flexural failure capacity of the beam. Then 

some researchers suggest modifying the range of shear slenderness (𝑎/𝑑) as a function 

of the prestressing force, incrementing the values stated for reinforced concrete beams 

due to the influence of the prestressing force into the failure mechanism [25].  

4. Size effect 

Again Kani, with his work “How safe are our large reinforced concrete beams?” [26], was 

the first to address this concern and concluded that for reinforced concrete beams without 

shear reinforcement, the shear resistance decreases with increasing size of the member. 

Nowadays codes such as ACI318-19 and Eurocode are aware of this into their models. 

The ACI318-19 code considering its effect for now only for axially stressed beams and not 

for prestressed beams. 

 

5. Normal/prestress force 

In case of prestress force, the effect is positive for the shear capacity because it is going 

to reduce the width of the shear cracks and increase the height of the uncracked 

compressive zone. But it is necessary to limit the prestressing forces added because at 

some point the member can behave in a brittle way. The opposite happens if there are 

normal forces in tension as it increases the crack width and reduces the shear capacity of 

the beam. 

To analyze these facts in detail, a simple example might help to illustrate this point.  

Concrete is analyzed before it cracks linearly and elastically, and the beam shear strength 

depends on the combination of concrete and steel reinforcement for shear integrity, which 

indicates that concrete must crack to engage the reinforcement. In the same way as non-

prestressed concrete beams, prestressed concrete beams rely upon forming a plastic 

truss when the cracks transfer shear stresses through a series of strut and ties. 

Let’s assume a case of a simply supported beam with a concentrated load at midspan and 

a prestress force at the centroid as shown in Figure 2-13 below. 

 

Figure 2-13 Shear and moment diagram for example, with stresses calculated at cross-section analyzed 

Assuming the cross-section to analyze in between one support and the point load, and assuming 

that the concrete remains linear elastic, then the stresses can be calculated as follow: 

 The flexural stress is equal to 

𝑓𝑏 =
𝑀 ⋅ 𝑐

𝐼𝑔
 [𝑀𝑃𝑎] [Eq.  2-1] 
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Where 𝑀 is the bending moment, 𝑐 is the distance of the cross-section analyzed, and 𝐼 is 

the second moment of inertia of the cross-section. 

The shear stress is equal to 

𝜏 =
𝑉 ⋅ 𝑄

𝐼𝑔 ⋅ 𝑡
 [𝑀𝑃𝑎] [Eq.  2-2] 

Where 𝑉 is the shear force, 𝑄 is the first moment of inertia of the section above the point 

of interest, and 𝑡 is the thickness of the section at the location analyzed. 

The prestress is equal to 

𝑓𝑝𝑐 =
𝑃𝑒
𝐴𝑐

 [Eq.  2-3] 

Where 𝑃𝑒 is the effective prestress force applied, and 𝐴𝑐 is the area of the cross-section. 

Then, the stresses acting at the section's neutral axis can be analyzed using Mohr's circle. If the 

stresses are computed at their principal orientation, for non-prestressed beams, one finds that the 

main orientation is at 45 degrees from the beam axis, which matches the crack that would form in 

the web under this stress state. And if one applies a force in compression the main orientation 

and crack angle consequently will be reduced as shown in the following Figure 2-14 and as is 

going to be explained analytically in the next paragraphs. 

 

Figure 2-14 Principal stresses at neutral axis for a beam with (A) a prestress force equal zero (B) prestressing 

Analyzing the shear stress as a function of the prestress force with the equation stated below and 

assuming the principal tensile stress equal to the tensile strength of concrete, a plot illustrating 

the effect of prestress in the cracking formation at the web of the beam can be generated and is 

shown in Figure 2-15. Based on this graph, when the prestress force is zero, the principal tensile 

stress equals the applied shear stress. However, the shear required to reach the principal tensile 

stress increases in the same proportion when prestress force is applied. Consequently, prestress 

has a positive effect preventing the crack formation increasing their strength. 

𝜏

𝑓1
= √1 + 𝑓𝑝𝑐/𝑓1 →

𝑉𝑐𝑟
𝑓𝑡
= √1 + 𝑓𝑝𝑐/𝑓𝑡 [Eq.  2-4] 

A B 
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Figure 2-15 Shear stress required for cracking as function of the prestress force applied 

Now, to extend the analysis to the effect of prestress on the principal angle and estimate the effect 

that prestressing might have on the shear crack angle, the equation of the principal angle as 

function of the prestress and principal tensile strength can be derived as follow. 

𝜏2 = (
𝑓𝑝𝑐

2
+ 𝑓1)

2

− (
𝑓𝑝𝑐

2
)

2

𝑤𝑖𝑡ℎ 𝜏 = (
𝑓𝑝𝑐

2
+ 𝑓1) ⋅ sin(2Θ) 

𝐸𝑥𝑝𝑎𝑛𝑑𝑖𝑛𝑔: (
𝑓𝑝𝑐

2
+ 𝑓1)

2

− (
𝑓𝑝𝑐

2
)

2

= (
𝑓𝑝𝑐

2
+ 𝑓1)

2

⋅ sin2(2Θ) 

 

𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦𝑖𝑛𝑔: 1 −
(
𝑓𝑝𝑐
2
)
2

(
𝑓𝑝𝑐
2 + 𝑓1)

2 = sin
2(2Θ) → cos2(2Θ) = [

𝑓𝑝𝑐
2

𝑓𝑝𝑐
2
+ 𝑓1

]

2

 

𝐹𝑖𝑛𝑎𝑙𝑙𝑦: Θcr =
1

2
cos−1 [

𝑓𝑝𝑐
𝑓1

𝑓𝑝𝑐
𝑓1
+ 2

]  [Eq.  2-5] 

 

The plot of this expression in Figure 2-16, assuming the principal tensile stress equal to the 

concrete tensile strength, illustrates the effect of prestressing on principal angle. When the 

prestressing is zero the crack angle theoretically forms at 45 degrees. Then the prestressing is 

applied this angle is reduced, for example when the prestressing added is twice the tensile 

strength of concrete the crack angle is theoretically at 30 degrees from the longitudinal beam axis. 

 

Figure 2-16 Variation of the principal angle as function of the applied prestressing 
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2.3 SHEAR STRENGTH MODELS 
As an introduction, a classification of the different models used to determine the shear strength 

can be mentioned. Starting with the empirical models, derived from regression analysis of test 

data, without putting too much emphasis on the mechanics of the problem. Next, tooth or comb 

models can be mentioned with the model by Kani [16] leading them with his comprehensive 

mechanical model explaining the flexural-shear failure. Other proposed models are based on the 

capacity of the compression zone, based on fracture mechanics, based on plasticity theory and 

based on longitudinal strains [27]. 

Models based on longitudinal strains are of particular interest to discuss in detail, they relate the 

shear capacity directly to the longitudinal reinforcement strain. Shear models that lead design 

codes today are based on the Modified Compression Field Theory [28] and the Critical Shear 

Crack Theory [9]. Both address the shear-transfer mechanisms as function of the longitudinal 

strain, a unique parameter, and consider both the high influence of the aggregate size and 

concrete compressive strength in the roughness of the critical crack, hence, in the aggregate 

interlock of the section subjected to shear [11]. 

2.3.1 Critical Shear Crack Theory (CSCT) 

The CSCT provides a rational basis for evaluating the shear and punching strength of elements 

without shear reinforcement, based on the estimation of crack width in the critical shear region. 

This theory is strongly dependent on the critical shear crack width and on its roughness, this 

dependency is expressed by [Eq.  2-6], where 𝑓𝑐 is the concrete compressive strength, 𝑤 the 

critical shear crack width, and 𝑑𝑔 is the maximum aggregate size [9]. 

𝑉𝑅
𝑏𝑑
= √𝑓𝑐  𝑓(𝑤, 𝑑𝑔) [Eq.  2-6] 

For this theory the following hypotheses are accepted [9]: 

• Depending on the load configuration the shear strength is verified in a section where the 

width of the critical shear crack can be represented by the resultant strain at a depth 0.6d 

from the compression face (Figure 2-17) 

 

Figure 2-17 Critical Shear Crack Theory (CSCT) assumptions: control section and reference fibre for strain [9]. 

• The product of the longitudinal strain in the control depth 𝜀 times the effective depth of the 

element d is proportional to the critical crack width (𝑤 ∝ 𝜀𝑑), although, this is only valid for 

rectangular cross-section without skin reinforcement in the side faces.  

The longitudinal strain is evaluated assuming a linear elastic behavior in compression for 

concrete (neglecting its tensile strength, Figure 2-17-b) and assuming that plane sections 

remain plane too. If no axial force is applied, like prestress force, the strain can be derived 
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based on the bending moment M in the critical section at the level of the control depth 

defined as follows. 

𝜀 =
𝑀

𝑏𝑑𝜌𝐸𝑠 (𝑑 −
𝑐
3
)
∙
0.6𝑑 − 𝑐

𝑑 − 𝑐
  

Width: 𝑐 = 𝑑𝜌
𝐸𝑠

𝐸𝑐
(√1 +

2𝐸𝑐

𝜌𝐸𝑠
− 1) 

Modulus of elasticity of concrete: 𝐸𝑐 ≈ 10,000 𝑓𝑐
1/3
 [𝑀𝑃𝑎]  

Longitudinal reinforcement ratio: 𝜌 = 𝐴𝑠/𝐴𝑐 

 

[Eq.  2-7] 

Considering the influence of the critical crack with, the aggregate size and the concrete 

compressive strength an analytical expression was proposed as follow to evaluate the shear 

strength. 

𝑉𝑅

𝑏𝑑√𝑓𝑐
=

1

3 ∙ (1 + 120
𝜀𝑑

16 + 𝑑𝑔
)
  [𝑀𝑃𝑎,𝑚𝑚] [Eq.  2-8] 

Based on the above, the main assumption of the CSCT theory states that the shear strength 

depends on the member geometry (width b times effective depth d), the square root of the 

compressive strength of concrete 𝑓𝑐, the critical shear crack opening 𝑤 and its roughness (𝑑𝑔 +

16 𝑚𝑚). Other assumptions can be consulted in detail in [10], [29], and the summary of the most 

important ones is as follows [13] 

1. Development of the critical shear crack (shape, location, and kinematics) governs the 

shear strength. 

2. The center of rotation used to describe the relative displacement of the bodies separated 

by the critical shear crack is assumed to be located at the crack tip. The crack opening 

and sliding profile is variable along the crack height and it is governed by the crack 

kinematics. 

3. Shear forces can potentially be carried by various shear-transfer actions like aggregate 

interlock due to crack sliding, dowel action of the longitudinal reinforcement crossing the 

crack, residual tensile strength of cracked concrete and the inclined compression chord. 

4. On the basis of equilibrium, kinematics and fundamental constitutive laws of materials, the 

amount of shear transferred by each potential shear transfer action can be calculated. 

5. When the sum of all potential shear-transfer actions (see Figure 2-3) equals the shear 

demand, failure occurs. The capacity of the free-body defined by the critical shear crack 

to transfer shear forces can be defined as: 𝑉𝑅 = 𝑉𝑎𝑔𝑔 + 𝑉𝑅𝑒𝑠 + 𝑉𝐷𝑜𝑤𝑒𝑙 + 𝑉𝐶𝑜𝑚𝑝𝑟 (Refer to 

Figure 2-18) 

The critical shear crack can be assumed to be characterized by a bilinear shape (Figure 2-18) 

and to develop at the location of minimum strength. An iterative calculation of the strength is 

necessary to determine the location of the critical shear crack 𝑥𝐴, and there are three potential 

positions initially ( 𝑥𝐴 = 𝑑, 𝑥𝐴 = 0.5𝑎, 𝑥𝐴 = 𝑎 − 𝑑)  for reinforced concrete members [30]. The 

location of the critical crack in the case of prestressed beams is expected to be influenced by the 

stress incorporated in the cross-section, decreasing the crack angle and bringing it closer to the 

points of static or geometric discontinuity. 
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Figure 2-18 Rigid body equilibrium and internal forces [12] 

2.3.2 Modified Compression Field Theory (MCFT) 

Developed by Vecchio and Collins [28], this mechanical model of MCFT is based on the 

assumption that aggregate interlock is the main shear-transfer action. It considers cracked 

concrete as a unique orthotropic material and gives it its own constitutive relationship. In addition 

to taking into account local stress conditions at the crack surface, stresses and strains are treated 

as average values based on a rotating smeared crack model. This allows the crack direction to 

be reoriented according to the response of the material and the loading condition. 

An important assumption in the MCFT is that the directions of the principal stress and principal 

strain in the concrete remain coincident. The MCFT is formulated using three sets of equations: 

equilibrium (global-average stresses and local-stresses at cracks), compatibility (deformation of 

concrete and reinforcement assumed identical, or perfect bond assumed), and constitutive 

relationships (stress-strain relationships for concrete and reinforcement) [31]. 

The MCFT considers the stresses transmitted across the critical crack, and the ability of the crack 

to transmit shear stresses is assumed to be dependent of the crack width 𝑤, the maximum 

aggregate size 𝑑𝑔 and the concrete strength 𝑓𝑐. This shear transferred through the crack is limited 

by the following expression based on the aggregate interlock experiments performed by Walraven 

[19]. 

𝑉𝑐
𝑏𝑑
≤

0.18√𝑓𝑐

0.31 +
24𝑤
𝑑𝑔 + 16

 [𝑀𝑃𝑎,𝑚𝑚] [Eq.  2-9] 

Where 𝑑𝑔 is the maximum aggregate size in millimeters, w the crack width in millimeters and the 

concrete compressive stress 𝑓𝑐 in MPa. The crack width should be the average over the crack 

surface, it can be estimated by the product of the principal tensile strain and the crack spacing 

(𝑤 = 𝜀1 ∙ 𝑠𝜃) 

For the development of this theory the initial problem to be solved was the determination of how 

the three in-plane stresses (𝑓𝑥 , 𝑓𝑦, 𝑣𝑥𝑦) are related to the three in-plane strains (𝜖𝑥 , 𝜖𝑦, 𝛾𝑥𝑦). For the 

elaboration of the solution the following additional assumptions were applied [31]. 

• The influence of loading history is not considered. Stress and strain considered in terms 

of average values over areas/distances large enough to include several cracks.  

• Longitudinal and transverse reinforcing assumed to be uniformly distributed. 

• Tensile stresses/strains will be treated as positive quantities and compressive 

stresses/strains as negative quantities. 

• Deformed element edges remain straight and parallel. 
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Perhaps one of the advantages of the MCFT is that it was easier to interpret the results obtained 

to support the model, because it was developed by testing reinforced concrete elements in pure 

shear using a membrane element test instead of the traditional shear test where a simply 

supported beam is subjected to one or two point loads. 

Comparing the principal stress in the concrete, 𝑓2, with its corresponding strain, 𝜀2, was inferred 

that diagonally cracked concrete was weaker and softer than the same concrete in a standard 

cylinder test. This difference found depends on the magnitude of the coexisting principal tensile 

strain, 𝜀1, as it increases the difference in responses increase too. Furthermore, it was found that 

even after extensive cracking of the element, Mohr's circle for average stresses could predictably 

and consistently show the principal tensile stresses in the concrete, 𝑓1. Taking into account these 

tensile stresses in cracked concrete modified the previous compression field theory and allowed 

the MCFT to predict the behavior of elements with and without shear reinforcement [32]. 

A summary of the equilibrium equations, geometric conditions and stress-strain relationships used 

in the MCFT is presented in the following Table 2-2. 

Table 2-2 Modified Compression Field Theory equilibrium equations, geometric conditions and stress-strain relationships [32] 

 

  

Equilibrium: 

Average stresses 

1. 𝑓𝑥 = 𝜌𝑥𝑓𝑠𝑥 + 𝑓1 − 𝑣 cot (𝜃)  

2. 𝑓𝑧 = 𝜌𝑧𝑓𝑠𝑧 + 𝑓1 − 𝑣 tan (𝜃)  

3. 𝑣 =
𝑓1+𝑓2

tan(𝜃)+cot(𝜃)
 

 

Stresses at cracks 
 

4. 𝑓𝑠.𝑥𝑐𝑟 =
𝑓𝑥++𝑣 cot(𝜃)+𝑣𝑐𝑖 cot(𝜃)

𝜌𝑥
 

5. 𝑓𝑠.𝑧𝑐𝑟 =
𝑓𝑧++𝑣 tan(𝜃)+𝑣𝑐𝑖 tan(𝜃)

𝜌𝑧
 

 

Geometric conditions: 

Average Strains 

6. tan2(𝜃) =
𝜀𝑥+𝜀2

𝜀𝑧+𝜀2
  

7. 𝜀1 = 𝜀𝑥 + 𝜀𝑧 + 𝜀2  

8. 𝛾𝑥𝑧 = 2(𝜀𝑥 + 𝜀2) cot(𝜃) 

 

Crack widths 
 

9. 𝑤 = 𝑠𝜃𝜀1  

10. 𝑠𝜃 =
1

sin(𝜃)

𝑠𝑥
+
cos(𝜃)

𝑠𝑧

 

 

Stress-strain relationships: 

Reinforcement 

11. 𝑓𝑠𝑥 = 𝐸𝑠𝜀𝑥 ≤ 𝑓𝑦𝑥  

12. 𝑓𝑠𝑧 = 𝐸𝑠𝜀𝑧 ≤ 𝑓𝑦𝑧 

Concrete 

13. 𝑓2 =
𝑓𝑐
′

0.8+170𝜀1
∙ [2 ∙

𝜀2

𝜀𝑐
′ − (

𝜀2

𝜀𝑐
′)
2
]  

14. 𝑓1 =
0.33√𝑓𝑐

′

1+√500𝜀1
  𝑀𝑃𝑎 

Shear stress on crack 

15. 𝑣𝑐𝑖 ≤
0.18√𝑓𝑐

′

0.31+
24𝑤

𝑎𝑔+16

  𝑀𝑃𝑎,𝑚𝑚 

 

2.4 CODE PROVISIONS FOR SHEAR RESISTANCE OF PRESTRESSED MEMBERS 
Design code models are a simplified version of the scientific or mechanical models, e.g. for 

estimation of the shear strength of concrete the Swiss Code SIA 262:2013 [33] uses a simplified 

version of the CSCT and the CSA A23.3:04 [34] of the MCFT. Then design code models can be 

said that are the representation of the current knowledge, proposing expressions that attempt to 

balance factors such as accuracy, precision, ease of use, and safety. Conversely, purely 
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mechanical models focus on the accuracy and precision of their predictions based on scientific 

explanations [11]. 

Design codes used usually have different approaches in the calculation of the shear resistance of 

prestressed members without shear reinforcement due to different assumptions made or failure 

mechanisms considered. Four relevant design codes will be evaluated for this document, 

Eurocode 2 [35], American Concrete Institute [36], American Association of State Highway and 

Transportation Officials AASHO-LRFD [37] and Eurocode 2 draft 2020-11 [38]. 

The ACI, AASHTO LRFD, Eurocode 2 and the new Eurocode 2 draft take into account the three 

types of failure mentioned in section 2.1.2 [18] and these are summarized in the following Table 

2-3.  

Table 2-3 Failure modes in the different design codes 

Code Flexural-shear failure Shear-tension 

failure 

Shear behaviour in 

discontinuity regions 

(shear compression) 

Eurocode 2 Regions cracked in 

bending 

Regions uncracked in 

bending 
Strut-and-tie model 

ACI Flexure-shear strength 

𝑉𝑐𝑖 

Web-shear strength 

𝑉𝑐𝑤 
Strut-and-tie model 

AASHTO 

LRFD 
General approach Strut-and-tie model 

Proposal 

Eurocode 2 General approach 

Design with strut-and-

tie models and stress 

fields 

 

Most models describe flexural-shear failures, then accuracy of models for members subjected to 

shear-compression failures is unknown. When the flexural-shear crack arises close to the support, 

e.g., when concentrated loads are placed at a distance less than 2.5 ∙ 𝑑, the aggregate interlock 

has a minor contribution [18]. 

It should be noted that some approaches refer to the characteristic concrete compressive strength 

𝑓𝑐𝑘 (Eurocodes) and others to the specified compressive strength of concrete 𝑓𝑐
′ (ACI318-19 and 

AASHTO-LRFD). The conversion relationship between 𝑓𝑐𝑘 and 𝑓𝑐
′ is specified in section 4.1.2 to 

get comparable values between design codes applied in Europe and America. It is also worth 

mentioning that for the comparison of the different approaches with the experimental results, it is 

necessary to use the mean compressive strength of concrete 𝑓𝑐𝑚.𝑐𝑦𝑙 instead of the design value 

usually specified in the design codes. 

2.4.1 Eurocode 2: Design of concrete structures (EN 1992-1-1) 

This design code distinguishes beams that do or do not require shear reinforcement. In case of 

members without shear reinforcement there are two regions distinguished for their analysis, each 

with its ow approach, the region cracked in bending and the region uncracked in bending. In case 

of discontinuity regions (near concentrated loads or geometric discontinuities) Eurocode 2 takes 

into the account the variable conditions with certain factor detailed next. 

2.4.1.1 Concrete resistance in regions cracked in bending 

These regions are dependent on the development of flexural cracks and their capacity to grow 

into flexural-shear cracks. Prestress force reduces the tensile stresses in the outer fibers, allowing 
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the beam to develop flexural cracks when it’s subjected to higher external loads. EC2 calculation 

of the flexural-shear capacity of a prestressed beam without shear reinforcement is based the 

empirically derived expression [Eq.  2-10] that considers the prestress force as an axial 

compressive force that increases the shear capacity of the element as the crack width is reduced 

and the angle of inclination of the cracks is reduced [39]. The empirical factor 𝐶𝑅𝑑,𝑐  used for 

characteristic shear strength calculation was calibrated through reliability analysis on 176 beam 

tests [40]. 

𝑉𝑅𝑑.𝑐 = (𝐶𝑅𝑑.𝑐𝑘(100𝜌𝑙 ∙ 𝑓𝑐𝑘)
1
3 + 𝑘1𝜎𝑐𝑝)𝑏𝑤𝑑 [𝑀𝑃𝑎,𝑚𝑚] 

With: Recommended values: 𝐶𝑅𝑑.𝑐 =
0.18

𝛾𝑐
;  𝑘1 = 0.15; 

Partial factor for concrete: 𝛾𝑐 = 1.5 but for comparison between codes equal to 1 

Size effect factor: 𝑘 = 1 + √
200

𝑑 [𝑚𝑚]
≤ 2; 

Reinforcement ratio for longitudinal reinforcement: 𝜌𝑙 =
𝐴𝑠𝑙

𝑏𝑤𝑑
≤ 0.02; 

Axial stress: 𝜎𝑐𝑝 =
𝑁𝐸𝑑

𝐴𝑐
[𝑀𝑃𝑎] < 0.2𝑓𝑐𝑑; 𝑤𝑖𝑡ℎ 𝑁𝐸𝑑 > 0 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 

Characteristic compressive cylinder strength of concrete at 28 days: 𝑓𝑐𝑘 [MPa] 

Area of concrete: 𝐴𝑐  [𝑚𝑚
2]  

Cross-sectional area of longitudinal reinforcement: 𝐴𝑠𝑙[𝑚𝑚
2] 

Cross-sectional area of concrete: 𝐴𝑐[𝑚𝑚
2] 

Axial force: 𝑁𝐸𝑑  [𝑁] 
Design value of concrete compressive strength: 𝑓𝑐𝑑 = 𝛼𝑐𝑐𝑓𝑐𝑘/𝛾𝑐[𝑀𝑃𝑎]  with 

recommended 𝛼𝑐𝑐 = 1 
Web width: 𝑏𝑤 [mm] 

Effective depth of cross-section: 𝑑 =
𝑑𝑠
2𝐴𝑠+𝑑𝑝

2𝐴𝑝

𝑑𝑠𝐴𝑠+𝑑𝑝𝐴𝑝
 [mm] 

 

[Eq.  2-10] 

As the only conditional, the minimum value for the concrete shear resistance is stated in [Eq.  

2-11] 

𝑉𝑅𝑑.𝑐 ≥ (𝑣𝑚𝑖𝑛 + 𝑘1𝜎𝑐𝑝)𝑏𝑤𝑑 = (0.035𝑘
3
2𝑓𝑐𝑘

1
2 + 𝑘1𝜎𝑐𝑝)𝑏𝑤𝑑 [𝑀𝑃𝑎,𝑚𝑚] [Eq.  2-11] 

To calculate the mean shear strength of concrete in regions cracked in bending (𝑉𝑅𝑚) according 

to EC2 applying [Eq.  2-10], it is required to use the mean compressive strength of concrete 𝑓𝑐𝑚 

instead of the characteristic compressive strength of concrete 𝑓𝑐𝑘 , and the following 

recommended values 𝐶𝑅𝑚,𝑐 = 0.15 and 𝑘1 = 0.225 as recommended by [41]. 

2.4.1.2 Concrete resistance in regions uncracked in bending 

This region doesn’t have flexural cracks in the ultimate limit state, the crack formation takes place 

within the web directly, where the principal tensile stresses exceed the concrete tensile strength. 

The principal tensile stresses caused by prestress (prestress is preload), and external loads will 

determine the shear capacity of the beam in case of shear-tension failure. Then using Mohr’s 

circle (Figure 2-19) the principal tensile strength in the web is calculated as shown in [Eq.  

2-12][18]. 
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Figure 2-19 Mohr's circle for the calculation of the shear tension capacity 

𝜎𝐼 = −
𝜎𝑁

2
+√

𝜎𝑁
2

4
+ 𝜏2 = 𝑓𝑐𝑡𝑑 [𝑀𝑃𝑎]  

 

[Eq.  2-12] 

For constant cross-section over the length of the beam it is common to have the maximum 

principal stresses at the same height, but in case of variable cross-section the minimum value of 

shear resistance should be calculated at various axes in the cross-section. 

From last equation, the shear stress will be 𝜏 = √𝜎𝐼
2 + 𝜎𝐼𝜎𝑁 , and to consider the variation in 

prestress force within transfer length the factor 𝛼𝑙 is added to multiply the prestress force applied.  

In order to have a simplified version directly applicable to beams with rectangular cross-section, 

which are the most commonly used, the following expression [Eq.  2-13] is given 

: 

𝑉𝑅𝑑.𝑐 =
𝐼 ∙ 𝑏𝑤
𝑆

√(𝑓𝑐𝑡𝑑)
2 + 𝛼𝑙𝜎𝑐𝑝𝑓𝑐𝑡𝑑 

Having assumed:  𝜏 =
𝑉𝑅𝑑,𝑐∙𝑆

𝑏𝑤∙𝐼𝑐
[𝑀𝑃𝑎] ; 𝜎𝑁 = 𝛼𝑙 ∙ 𝜎𝑐𝑝 [𝑀𝑃𝑎]   

With:  
Moment of inertia: 𝐼 [𝑚𝑚4] 
First moment of area above and about the centroidal axis: 𝑆 [𝑚𝑚3] 
Design tensile strength of concrete: 𝑓𝑐𝑡𝑑 = 𝛼𝑐𝑡𝑓𝑐𝑡𝑘,0,05/𝛾𝑐 [𝑀𝑃𝑎] 

Coefficient taking into account long term effects on the tensile strength (3.1.6(2)): 𝛼𝑐𝑡 = 1 

Axial stress: 𝜎𝑐𝑝 =
𝑁𝐸𝑑

𝐴𝑐
[𝑀𝑃𝑎] < 0.2𝑓𝑐𝑑  

Factor 𝛼𝑙 =
𝑙𝑥

𝑙𝑝𝑡2
≤ 1.0 for pretensioned tendons,1 for other types of prestressing 

Distance of section considered from the starting point of the transmission length: 𝑙𝑥 
Upper bound value of the transmission length of the prestressing element: 𝑙𝑝𝑡2 = 1.2 𝑙𝑝𝑡 →

 𝐸𝐶2 (8.18) 

[Eq.  2-13] 

It is also noted that the regions uncracked in bending have a flexural tensile stress conditioned by  

𝜎𝑡 <
𝑓𝑐𝑡𝑘,0.05

𝛾𝑐
=
0.7𝑓𝑐𝑡𝑚

𝛾𝑐
. 

2.4.2 Eurocode 2 proposal (draft 2020-11) 

For this thesis the following draft version will be used: “Updated Draft by SC2/WG1/CDG 

prEN1992-D7 Working File (Rev. 7) 2020-11-16 after SC2 for CEN-enquiry” [38]. In its section 8.2 

in this case, the general verification procedures for shear capacity are specified, where the 

particular case of members not requiring design shear reinforcement specified in section 8.2.2 is 

of interest for this document. 

The base of the proposal is the Critical Shear Crack Theory explained before in section 2.3.1. The 

derivation of closed-form equation proposed for detailed verifications and the complete 

mechanical model will be explained in chapter 4. To then, the procedure will be exposed starting 

with the general verification from section 8.2.1 of the proposed design code. There, the first 

conditional is going to determine if a detailed verification is needed, and will be the case if the 
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shear stress derived from applied loads [Eq.  2-14] is less than the minimum shear stress 

resistance [Eq.  2-15] in the critical cross section (𝜏𝐸𝑑 ≤ 𝜏𝑅𝑑𝑐,𝑚𝑖𝑛) . The second condition 

determines whether the member requires shear reinforcement design, in case the shear stress 

resistance (𝜏𝑅𝑑,𝑐) of a member without shear reinforcement is not sufficient (𝜏𝐸𝑑 ≤ 𝜏𝑅𝑑,𝑐). And 

finally, if shear reinforcement has been designed, it is verified if the total shear stress resistance 

(𝜏𝑅𝑑) is enough to resist the applied loads (𝜏𝐸𝑑 ≤ 𝜏𝑅𝑑).  

𝜏𝐸𝑑 =
𝑉𝐸𝑑
𝑏𝑤 ∙ 𝑧

; 𝑤𝑖𝑡ℎ 𝑧 = 0.9𝑑 [Eq.  2-14] 

𝜏𝑅𝑑𝑐,𝑚𝑖𝑛 =
11

𝛾𝑣
∙ √
𝑓𝑐𝑘
𝑓𝑦𝑑

∙
𝑑𝑑𝑔

𝑑
 [Eq.  2-15] 

Where 𝑓𝑦𝑑 is the design yield strength of non-prestressed steel reinforcement, but in case this is 

not used, the difference of the design and effective prestress is considered (𝑓𝑝𝑑 − 𝜎𝑝.∞). 

For the case study, the first two conditions are useful and the procedure for the detailed verification 

of the shear resistance of a member without shear reinforcement (𝜏𝑅𝑑,𝑐) will be explained below.  

As a last remark, before starting with the detailed verification, the code indicates that it can be 

omitted for cross-sections that are at a distance less than d from the face of a support or from a 

significant concentrated load as shown in Figure 2-20. In case concentrated loads are applied 

closer that a distance 2d from the face of a support, the cross section located at a distance d from 

the face of the support should be verified in detail. 

 

Figure 2-20 Regions where detailed shear strength verification may be omitted (left) predominant distributed load (right) predominant 
concentrated loads 

The procedure of major interest in this document is presented in Figure 2-22, a flowchart with the 

steps to be followed to determine the shear strength of concrete and verify it. From it can be seen 

that the initial data required are the concrete characteristic compressive strength (𝑓𝑐𝑘), yield 

strength of reinforcement (𝑓𝑦), shear partial factor (𝛾𝑉) and others parameters specified in Table 

2-4 

For the calculation of shear stress resistance there are two proposed procedures presented in 

equations [Eq.  2-16] and [Eq.  2-17]. Both differ in the way they take into account the influence of 

axial forces, the first through the term 𝑑𝑛𝑜𝑚 that divides the parameter of aggregate size, and the 

second similarly to current Eurocode 2, by subtracting the product of a factor 𝑘1 by the axial stress 

in the cross-section 𝜎𝑐𝑝.  

Something important to mention is that the procedure proposed only applies to slabs or beams 

with rectangular cross-sections in which there are predominant flexural-shear cracks. For the 

verification of prestressed beams of different shapes, there is another specific section where the 

calculation of shear stresses along the cross-section and at different critical locations is detailed. 
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𝜏𝑅𝑑,𝑐 =
0.66

𝛾𝑉
∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙

𝑑𝑑𝑔

(𝑑𝑛𝑜𝑚)
)

1
3

 
[Eq.  2-16] 

For the last equation ([Eq.  2-16]) the value of 𝑑𝑛𝑜𝑚 can vary according to the conditions shown 

in Figure 2-22. If the calculated value of 𝑎𝑐𝑠 is less than 4𝑑 then the value of 𝑑𝑛𝑜𝑚 is equal to 𝑎𝑣, 

else the value of 𝑑𝑛𝑜𝑚is preserved equal to 𝑑. And in case of axial loads, the factor 𝑘𝑣𝑝 multiplies 

the obtained value of 𝑎𝑣, considering values of 𝑘𝑣𝑝 ≥ 0.1. 

𝜏𝑅𝑑,𝑐 =
0.66

𝛾𝑉
∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙

𝑑𝑑𝑔

𝑑𝑛𝑜𝑚
)

1
3

− 𝑘1 ∙ 𝜎𝑐𝑝 
[Eq.  2-17] 

In case of the alternative procedure proposed in [Eq.  2-17] the axial load is considered multiplied 

by a factor 𝑘1 , this procedure seems easier to follow, since there are much less factors to 

calculate. 

Once the resistance has been obtained by either of the two methods, the following condition must 

be verified. 

𝜏𝑅𝑑,𝑐 ≥ 𝜏𝑅𝑑𝑐,𝑚𝑖𝑛 

• With: 

𝜏𝑅𝑑𝑐,𝑚𝑖𝑛 =
11

𝛾𝑉
⋅ √

𝑓𝑐𝑘

𝑓𝑦
⋅
𝑑𝑑𝑔

𝑑
 ; in case of prestressed without ordinary steel reinforcement 

𝑓𝑦𝑑 = 𝑓𝑝𝑑 − 𝜎𝑝 

Design tensile strength of prestress: 𝑓𝑝𝑑 

Effective prestress (after losses): 𝜎𝑝 

 
 

[Eq.  2-18] 

Table 2-4 Parameter for detailed verification of shear resistance of members without shear reinforcement according to prEN1992 [38] 

Parameters required  Clause 

(Section) 

• Size parameter describing the failure zone roughness 

𝑑𝑑𝑔 = 16 𝑚𝑚 + 𝐷𝑙𝑜𝑤𝑒𝑟 ≤ 40 𝑚𝑚; 𝑖𝑓 𝑓𝑐𝑘 ≤ 60 𝑀𝑃𝑎 

𝑑𝑑𝑔 = 16 𝑚𝑚 + 𝐷𝑙𝑜𝑤𝑒𝑟 (
60

𝑓𝑐𝑘
)
4

≤ 40 𝑚𝑚; 𝑖𝑓 𝑓𝑐𝑘 > 60 𝑀𝑃𝑎 

Where 𝐷𝑙𝑜𝑤𝑒𝑟 is the smallest value of the upper sieve size D in an 

aggregate for the coarsest fraction of aggregates allowed by 

specification of concrete [EN206]  

8.2.1 (4) 

• Reinforcement ratio for bonded longitudinal reinforcement in the 

tensile zone due to bending referred to the nominal concrete 

area 

𝜌𝑙 =
𝐴𝑠𝑙
𝑏𝑤𝑑

 

8.2.2 (2) 

Eq. (8.17) 

• Effective shear span with respect to the control section 

𝑎𝑐𝑠 = |
𝑀𝐸𝑑
𝑉𝐸𝑑

| ≥ 𝑑 

• Mechanical shear span 

𝑎𝑣 = √
𝑎𝑐𝑠
4
∙ 𝑑 

8.2.2 (3) 

Eq. (8.19) 

 

Eq. (8.18) 
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Alternative 1 from [Eq.  2-16]: 

𝜏𝑅𝑑,𝑐 =
0.66

𝛾𝑉
∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙

𝑑𝑑𝑔

𝑘𝑣𝑝 ⋅ 𝑑𝑛𝑜𝑚
)

1
3

 

 

• Modification factor in case of axial forces 𝑁𝐸𝑑 ≠ 0 

𝑘𝑣𝑝 = 1 +
𝑁𝐸𝑑
|𝑉𝐸𝑑|

𝑑

3𝑎𝑐𝑠
≥ 0.1 

8.2.2 (4) 

Eq. (8.20) 

Alternative 2 from [Eq.  2-17]: 

𝜏𝑅𝑑,𝑐 =
0.66

𝛾𝑉
∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙

𝑑𝑑𝑔

𝑑𝑛𝑜𝑚
)

1
3

− 𝑘1 ∙ 𝜎𝑐𝑝 

 

• Axial stress in cross section 

𝜎𝑐𝑝 =
𝑁𝐸𝑑
𝐴𝑐

< 0.2𝑓𝑐𝑑 

• Factor  

𝑘1 =
1.4

𝛾𝑉
∙ (0.07 +

𝑒𝑝
4𝑑
) ≤ 0.15 ∙

1.4

𝛾𝑉
 

8.2.2 (5) 

Eq. (8.21) 

 

Eq. (8.22) 

 

2.4.2.1 Location of control sections 

For consistency with the CSCT principles, the control section for checking the shear strength of 

one-way members is located at a distance 𝑑 from a static discontinuity (intermediate support, end 

support, point of contraflexure or concentrated load) or a geometric discontinuity (change of cross-

section geometry or reinforcement) as shown in Figure 2-21. In case of point loads applied at a 

distance less than 2𝑑 from the face of the support, the control section is located at a distance 𝑑 

from the face of the support. 

 

Figure 2-21 Locations for control sections according prEN1992 
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Shear Capacity (prEN 1992-1-1,
Section 8.2)

τEd<=τRdc,min

fck, fyd, ddg, d, 
ϒv

Shear stresses

General verification

Yes

τEd<=τRd,c

No.
Detailed verification

τEd (Eq. 10)
τRdc,min (Eq. 11)

Detailed verification 
omitted

Shear reinforcement shall be 
designed (8.2.3)

No shear 
reinforcement 

required (8.2.2)
Yes

No

τRd,c (ϒv, ρl, fck, ddg, dnom) 
(Eq. 12)

Acc. Method 1

ρl(Asl, bw, d) 

(8.17)

τRd,c >= τRdc,min

Eq. 14

MEd, VEd

acs >= d (8.19)

av (8.18)

NEd  

av = kvp   av (8.20)
With kvp >= 0.1

acs < 4d

dnom = av

dnom = dNo

Yes

Yes

No

NEd

τRd,c (ϒv, ρl, fck, ddg, d, k1, 
σcp ) (Eq. 13)

ep, NEd, Ac

σcp (8.21)

fcd

5.1.6 (1)
k1(ϒv, ep, d)

(8.22)

Acc. Method 2

Verify 

OR τRd,c

τRd,c

τRd,c

dnom

 

Figure 2-22 Flowchart for the calculation of the shear strength of a member without shear reinforcement 

2.4.2.2 Case of prestressed beam without shear reinforcement 

To better illustrate the application of the proposed procedure, the formulas already presented 

above will be elaborated expanding the conditionals and the expressions given, like the 

mechanical shear span to consider (𝑎𝑣) according to the effective shear span considered (𝑎𝑐𝑠). 

In case of the application of alternative 1, from [Eq.  2-16], the final expression results as follow: 

𝜏𝑅𝑑,𝑐 =

{
 
 
 

 
 
 
0.66

𝛾𝑉
∙

(

 100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙
𝑑𝑑𝑔

√|
𝑀𝐸𝑑
𝑉𝐸𝑑

| ⋅
𝑑
4
∙ 𝑘𝑣𝑝)

 

1
3

 𝑤ℎ𝑒𝑛 |
𝑀𝐸𝑑
𝑉𝐸𝑑

| ≤ 4𝑑

0.66

𝛾𝑉
∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙

𝑑𝑑𝑔

𝑑 ∙ 𝑘𝑣𝑝
)

1
3

 𝑤ℎ𝑒𝑛 |
𝑀𝐸𝑑
𝑉𝐸𝑑

| > 4𝑑

;𝑤𝑖𝑡ℎ 𝑘𝑣𝑝 = 1 +
𝑁𝐸𝑑
|𝑀𝐸𝑑|

𝑑

3
≥ 0.1 
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In case of alternative 2 from [Eq.  2-17] the expression to apply is: 

𝜏𝑅𝑑,𝑐 =

{
 
 
 

 
 
 

𝜏𝑅𝑑,𝑐 =
0.66

𝛾𝑉
∙

(

 100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙
𝑑𝑑𝑔

√|
𝑀𝐸𝑑
𝑉𝐸𝑑

| ⋅
𝑑
4)

 

1
3

− 𝑘1 ∙ 𝜎𝑐𝑝 𝑤ℎ𝑒𝑛 |
𝑀𝐸𝑑

𝑉𝐸𝑑
| ≤ 4𝑑

𝜏𝑅𝑑,𝑐 =
0.66

𝛾𝑉
∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙

𝑑𝑑𝑔

𝑑
)

1
3

− 𝑘1 ∙ 𝜎𝑐𝑝 𝑤ℎ𝑒𝑛 |
𝑀𝐸𝑑

𝑉𝐸𝑑
| > 4𝑑

 

Where 𝑘1 =
1.4

𝛾𝑉
∙ (0.07 +

𝑒𝑝

4𝑑
) ≤ 0.15 ∙

1.4

𝛾𝑉
 is the factor that relates the amount of shear resistance 

added by prestress 𝜎𝑐𝑝 =
𝑁𝐸𝑑

𝐴𝑐
. 

To obtain the design shear strength [Eq.  2-14] is applied, resulting 𝑉𝑅𝑑 = 𝜏𝑅𝑑,𝑐 ⋅ 𝑏 ⋅ 0.9 ⋅ 𝑑. To 

calculate the mean shear strength (𝑉𝑅𝑚) the mean compressive strength of concrete 𝑓𝑐𝑚  is used 

instead of the characteristic compressive strength of concrete 𝑓𝑐𝑘 and the partial factors used are 

equal to 1 (𝛾𝑉 = 1). 

2.4.3 American Concrete Institute (ACI318-19m) 

Provisions for shear resistance of prestressed concrete members remain the same for the last 

versions of this standard code. In this latest version released in 2019, modifications were 

introduced to the expressions for non-prestressed beams with normal forces based on the joint 

work done by ACI-ASCE Committee 445, Shear and Torsion, and the German Committee for 

Structural Concrete (DAbStb). The proposal to update the expressions for prestressed beams is 

still under development for publication in future versions [42].  

The approach to determine the shear resistance provided by the concrete, 𝑽𝒄, is based on the 

work proposed by MacGregor and Hanson [43]. It is worth mentioning that the ACI318-19 code 

distinguishes axial forces from prestressing forces for analysis in two separate groups, and that 

the group considered in this document is the one composed of prestressed beams. The ACI318-

19M defines a minimum area of stirrups to proceed to analyze a beam as a beam with or without 

shear reinforcement in case of non-prestressed beams, for prestressed beams there is no such 

distinction. 

One of the main assumptions to consider that is detailed in [43], and remarked within the ACI318-

19 code, is that the ultimate shear capacity of a beam without shear reinforcement can be taken 

equal to the shear that causes inclined cracking. When 𝑉𝑢 is assumed to be equal to 𝑉𝑐 , the failure 

of the beams is sudden when inclined cracking develops. After cracking, 𝑉𝑐 is assumed to be equal 

to the sum of the shear-transfer actions like aggregate interlock, dowel action and the shear 

transmitted across the concrete compression zone. In case of a prestressed beam, the influence 

of the effective prestress is taken into account within the formulations too.  

In addition, it is established that for prestressed members the distance from the extreme 

compression fiber to the centroid of prestressed and longitudinal reinforcement, d, may vary along 

the span, but this value should not be less than 0.8h [43].  

2.4.3.1 Shear resistance provided by concrete (𝑽𝒄) for prestressed members according to 

ACI318-19M 

Based on the work done by MacGregor [43] inclined cracking in reinforced or prestressed concrete 

beams is classified as either web-shear or flexural-shear cracking, of which the one with the lower 

strength value is the one that will govern the design. 
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The expressions provided apply to members having prestressed reinforcement only or a 

combination of prestressed and nonprestressed reinforcement, in regions where the effective 

prestress force is fully transferred to the concrete. The last condition is reflected in the following 

conditional [Eq.  2-19], and in case it is not fulfilled, the reduced effective prestress force shall be 

used for the detailed verification of web-shear and flexure-shear resistance. 

𝐴𝑝𝑠𝑓𝑠𝑒 [𝑁] ≥ 0.4(𝐴𝑝𝑠𝑓𝑝𝑢 + 𝐴𝑠𝑓𝑦)[𝑁] 

With 
Area of prestressed longitudinal tension reinforcement: 𝐴𝑝𝑠 [𝑚𝑚

2] 

Area of non-prestressed longitudinal tension reinf.: 𝐴𝑠[𝑚𝑚
2] 

Specified tensile strength of prestressing reinf.: 𝑓𝑝𝑢[𝑀𝑃𝑎] 

Effective stress in prestressed reinf. after prestress losses: 𝑓𝑠𝑒[𝑀𝑃𝑎] 
 

[Eq.  2-19] 

The design code ACI318-19M defines two approaches for the verification of the concrete shear 

resistance, one simplified or approximate method and another detailed based in the calculation of 

the flexure-shear and web-shear strength. The following is a brief description of the procedure 

and the variables necessary for the calculation with both methods, for further information on the 

development of the design criteria used, reference is made to chapter 5 of [44]. 

• Approximate method 

This method is favorable for its application to uniformly loaded members. The final value is the 

minimum value obtained from the following three equations, 𝑉𝑐 = min(𝑉𝑐.𝑎 , 𝑉𝑐.𝑏 , 𝑉𝑐.𝑐).  

𝑉𝑐.𝑎
𝑏𝑤𝑑

= (0.05𝜆√𝑓𝑐
′ + 4.8

𝑉𝑢𝑑𝑝

𝑀𝑢
) [𝑀𝑃𝑎] [Eq.  2-20] 

𝑉𝑐.𝑏
𝑏𝑤𝑑

= (0.05𝜆√𝑓𝑐
′ + 4.8) [𝑀𝑃𝑎] [Eq.  2-21] 

𝑉𝑐.𝑐
𝑏𝑤𝑑

= (0.42𝜆√𝑓𝑐
′) [𝑀𝑃𝑎] [Eq.  2-22] 

With the condition that the final value needs to be greater than the lower limit defined 

below, and one must recognize that [Eq.  2-22] is the upper limit stated by ACI318-19 

code.  

𝑉𝑐.𝑚𝑖𝑛 = 0.17𝜆√𝑓𝑐
′𝑏𝑤𝑑 [𝑁] [Eq.  2-23] 

Where 𝑑𝑝 > 0.8ℎ is the distance from the extreme compression fiber to the centroid of 

prestressed reinforcement, 𝑉𝑢and 𝑀𝑢 the simultaneous factored shear and moment due to 

the total factored loads at the section considered. 𝑓𝑐
′ is the specified compressive strength 

of concrete. 

The design of prestressed beams without shear reinforcement with concrete compressive 

strength greater than 70 MPa. is not considered due to the lack of test data and practical 

experience. The modification factor accounting for the reduced mechanical properties of 

lightweight concrete relative to normalweight concrete of the same compressive strength 

is 𝜆, as this document does not deal with lightweight concretes, this modification factor is 

always considered equal to 1. 

The derivation of the above expressions is detailed in appendix A. 

 

• Detailed method  

These shear design provisions were proposed by Macgregor [43], discussing additions 

and changes for the 1970 ACI Building code. A new design procedure for prestressed 

concrete beams lead to the following calculations. 
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The final concrete shear capacity will be the minimum between the flexural-shear and web-

shear strength estimated. 

 

𝑉𝑐 = min(𝑉𝑐𝑖, 𝑉𝑐𝑤) [Eq.  2-24] 

o Flexure-shear strength, 𝑽𝒄𝒊 

Assumed as the sum of the shear required to generate a flexural crack at the 

analyzed section [Eq.  2-25] plus the amount of shear required to change a flexural 

crack into a flexure-shear crack resulting in [Eq.  2-26]. Then, it is important to 

remark that the ACI318-19 code allows flexural-shear cracks only with the 

presence of flexural cracks. These flexural cracks are assumed to be caused by 

the cracking moment (𝑀𝑐𝑟𝑒) induced by an external load. 

𝑉 =
𝑉𝑖𝑀𝑐𝑟𝑒
𝑀𝑚𝑎𝑥 

 

With:  
Factored shear force at section due to external loads occurring 
simultaneously with 𝑀𝑚𝑎𝑥: 𝑉𝑖 
Maximum factored moment at section due to external loads: 𝑀𝑚𝑎𝑥 
Moment causing flexural cracking at section due to external loads: 

𝑀𝑐𝑟𝑒 = (
𝐼

𝑦𝑡
) (0.5𝜆√𝑓𝑐

′ + 𝑓𝑝𝑒 − 𝑓𝑑) 

Moment of inertia: 𝐼 
Distance form centroidal axis of gross section to tension face: 𝑦𝑡 
Compressive stress in concrete due to only prestress forces, after 

all prestress losses: 𝑓𝑝𝑒 

Stress due to unfactored dead load: 𝑓𝑑 
 

[Eq.  2-25] 

𝑉𝑐𝑖 =

{
 

 0.05𝜆√𝑓𝑐
′𝑏𝑤𝑑𝑝 + 𝑉𝑑 +

𝑉𝑖𝑀𝑐𝑟𝑒
𝑀𝑚𝑎𝑥

 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠

0.05𝜆√𝑓𝑐
′𝑏𝑤𝑑𝑝 +

𝑉𝑢𝑀𝑐𝑡
𝑀𝑢

 𝑓𝑜𝑟 𝑛𝑜𝑛𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑚𝑒𝑚𝑏𝑒𝑟𝑠

 

With: 
Distance from extreme compression fiber to centroid of prestressed 
reinforcement: 𝑑𝑝[𝑚𝑚] 

Web width: 𝑏𝑤 
Moment causing flexural cracking at section due to total load: 

𝑀𝑐𝑡 = (
𝐼

𝑦𝑡
) (0.5𝜆√𝑓𝑐

′ + 𝑓𝑝𝑒) 

[Eq.  2-26] 

The value obtained in [Eq.  2-26] need not be taken less than [Eq.  2-27] 

𝑉𝑐𝑖 ≥ {
0.17𝜆√𝑓𝑐

′𝑏𝑤𝑑  𝑖𝑓 𝐴𝑝𝑠𝑓𝑠𝑒 < 0.4(𝐴𝑝𝑠𝑓𝑝𝑢+𝐴𝑠𝑓𝑦)

0.14𝜆√𝑓𝑐
′𝑏𝑤𝑑  𝑖𝑓 𝐴𝑝𝑠𝑓𝑠𝑒 ≥ 0.4(𝐴𝑝𝑠𝑓𝑝𝑢+𝐴𝑠𝑓𝑦)

 
[Eq.  2-27] 

 

o Web-shear strength, 𝑽𝒄𝒘 

Is based on the assumption that web-shear cracking takes place at a shear level 

causing a principal tensile stress of approximately 0.33𝜆√𝑓𝑐
′ at the centroidal axis 

of the cross-section. The vertical component of the effective prestress, 𝑉𝑝, is taken 

into account and is calculated from the effective prestress force without load 

factors. 
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𝑉𝑐𝑤 = (0.29𝜆√𝑓𝑐
′ + 0.3𝑓𝑝𝑐)𝑏𝑤𝑑𝑝 + 𝑉𝑝 

With 
Compressive stress in concrete, after all prestress losses, at 
centroid of cross section resisting external loads.: 𝑓𝑝𝑐 

Vertical component of effective prestress force: 𝑉𝑝 = 𝐴𝑝𝑓𝑠𝑒𝑠𝑖𝑛 (𝜃𝑝) 

Angle on inclination prestressed tendon: 𝜃 
 

[Eq.  2-28] 

Also web-shear strength can be calculated as the resultant shear force, from dead 

load plus live load, required to have a principal tensile stress of 0.33𝜆√𝑓𝑐
′ at the 

centroidal axis of the prestressed cross-section when it is within the web or at the 

flange-web intersection when the centroidal axis is in the flange [36]. 

2.4.4 American Association of State Highway and Transportation Officials (AASHTO) 

As this code is based in the Simplified Modified Compression Field Theory (SMCFT) [45], in 

general terms, it looks at how strain in the beam is affected by flexure and shear stresses. The 

difference with respect to the ACI318-19 code is the truss analogy, with ACI318-19 the angle of 

inclination of the diagonal compressive stresses (𝜃) is assumed to be fixed at 45 degrees, while 

in AASHTO LRFD the angle 𝜃 is calculated based on the strain state in the member (affected by 

the “compression field”).  

The called “Sectional Design Model” specified in Article 5.7.3 is used for shear design, calculating 

the nominal shear resistance as detailed in [Eq.  2-29]. In case of a prestressed concrete beam 

without shear reinforcement, the term for shear contribution of shear reinforcement (𝑉𝑠) can be 

neglected. In the first expression of [Eq.  2-29] the shear resistance is the sum of the shear 

strength of concrete (𝑉𝑐), dependent on the concrete tensile stresses, and the vertical component 

of the prestressing force (𝑉𝑝). The second formula prevents crushing of the concrete web, avoiding 

the crush of the concrete compressive struts before yielding. 

𝑉𝑛 = min{
𝑉𝑐 + 𝑉𝑝

0.25𝑓𝑐
′𝑏𝑣𝑑𝑣 + 𝑉𝑝

[𝑁] 

With, Design compressive stress of concrete: 𝑓𝑐
′ 

Effective web width (the minimum within the depth dv): 𝑏𝑣 
Effective shear depth: 𝑑𝑣  

[Eq.  2-29] 

2.4.4.1 Shear stress on concrete 

The effective shear depth and effective web width calculation are specified in article 5.7.2.8 

according to the illustration shown in Figure 2-23.  

 

Figure 2-23 Illustration of parameters for shear stress according AASHTO LRFD 

The effective web width 𝑏𝑣  is measured parallel to the neutral axis, between tensile and 

compressive forces resultants due to flexure. For circular sections is equal to the diameter 

discounting the area taken up by the post-tensioning ducts. In Figure 2-23 the post-tensioning 

duct is in a position that doesn’t affect the region where the width of the section is minimum, but 

in case the location of the tendon is raised such is located withing the narrow portion of the web, 

the value of 𝑏𝑣 would be reduced. 
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For the effective shear depth value, the value is calculated according to  [Eq.  2-30]. In addition, 

in the case of continuous elements, both the upper and lower reinforcement may be evaluated. 

𝑑𝑣 =
𝑀𝑛

𝐴𝑠𝑓𝑦 + 𝐴𝑝𝑠𝑓𝑝𝑠
[𝑚𝑚] 𝑏𝑢𝑡 𝑑𝑣 > max(0.9𝑑𝑒 , 0.72ℎ) 

Where:  
fps = effective stress in strands 

Effective depth between compressive face and tensile resultant: 𝑑𝑒 =
𝐴𝑝𝑠𝑓𝑝𝑠𝑑𝑝+𝐴𝑠𝑓𝑦𝑑𝑠

𝐴𝑝𝑠𝑓𝑝𝑠+𝐴𝑠𝑓𝑦
 

Nominal flexural resistance:  

𝑀𝑛 = 𝐴𝑝𝑠𝑓𝑝𝑠 (𝑑𝑝 −
𝑎

2
) + 𝐴𝑠𝑓𝑠 (𝑑𝑠 −

𝑎

2
) − 𝐴𝑠

′𝑓𝑠
′ (𝑑𝑠

′ −
𝑎

2
) + 𝛼𝑙𝑓𝑐

′(𝑏 − 𝑏𝑤)ℎ𝑓 (
𝑎

2
−
ℎ𝑓

2
) 

Design compressive strength of concrete: 𝑓𝑐
′ 

Width of the compression face of the member: b 
Web width of diameter of circular section: bw 

Compression flange depth of an I or T member: hf 
Depth of equivalent stress block: 𝑎 = 𝑐 ∙ 𝛽𝑙 
Distance from extreme compression fiber to centroid of prestressing tendons: dp 
Distance for extreme compression fiber to centroid of tensile reinf.: ds 

Distance for extreme compression fiber to centroid of compression reinf.: d’s 

Stress in prestressing steel at nominal flexural resistance: 𝑓𝑝𝑠 = 𝑓𝑝𝑢 (1 −

𝑘
𝑐

𝑑𝑝
)(Bonded tendons. In case of unbounded tendons review Article 5.6.3.1.2) 

Factor: 𝑘 = 2 (1.04 −
𝑓𝑝𝑦

𝑓𝑝𝑢
) 

Distance from extreme compression fiber to neutral axis (with bonded tendons),  

    rectangular section: 𝑐 =
𝐴𝑝𝑠𝑓𝑝𝑢+𝐴𝑠𝑓𝑠−𝐴𝑠

′𝑓𝑠
′

𝛼𝑙𝑓𝑐
′𝛽𝑙𝑏+

𝑘𝐴𝑝𝑠𝑓𝑝𝑢

𝑑𝑝

 ;   

T-section: 𝑐 =
𝐴𝑝𝑠𝑓𝑝𝑢+𝐴𝑠𝑓𝑠−𝐴𝑠

′𝑓𝑠
′−𝛼𝑙𝑓𝑐

′(𝑏−𝑏𝑤)ℎ𝑓

𝛼𝑙𝑓𝑐
′𝛽𝑙𝑏𝑤+

𝑘𝐴𝑝𝑠𝑓𝑝𝑢

𝑑𝑝

 

Stress block factors: 𝛼𝑙 = 𝑖𝑓 (𝑓𝑐
′ < 69 𝑀𝑃𝑎, 0.85, 0.85 − 0.02 ∙

𝑓𝑐
′−69

7
) 

                                𝛽𝑙 = 𝑖𝑓 (𝑓𝑐
′ < 28 𝑀𝑃𝑎, 0.85, 0.85 − 0.02 ∙

𝑓𝑐
′−28

7
)  

Area of compression reinf.: 𝐴𝑠
′  

Area of nonprestressed tension reinf.: 𝐴𝑠 
Area of prestressing steel on flexural tension side: 𝐴𝑝𝑠 

Stress in nonprestressed tension reinf.: 𝑓𝑠 
Stress in nonprestressed compression reinf.: 𝑓𝑠

′ 

Yield strength of prestressing steel: 𝑓𝑝𝑦 

Specified tensile strength of prestressing steel: 𝑓𝑝𝑢 

 

[Eq.  2-30] 

Now proceeds the calculation of the concrete shear resistance (𝑉𝐶), for which there are two 

procedures that can be used. The first is only applicable to non-prestressed beam, then is not 

useful for the case study of interest. The second method called “General procedure” (Article 

5.7.3.4.2) is applicable for all cases, then will be useful for the case of prestressed beams without 

shear reinforcement that will be analyzed in this document. 

For the “General procedure” there are two different approaches to determine the main parameters 

which are, the factor 𝛽 and the angle for the compression chord 𝜃. The first approach follows an 

analytical procedure considering the strain at the tension reinforcement (𝜀𝑠) (Figure 2-24 - left), 

and the second approach uses tables provided in Appendix B5 of the design code but considering 

the longitudinal strain at mid depth of the girder (𝜀𝑥) (Figure 2-24 - right). In any case, the same 

result should be obtained by using any approach. 
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Figure 2-24 Illustration longitudinal strains. 𝜀𝑠(left) 𝜀𝑥(right), for sections containing less than the minimum amount of shear reinforcement  

• Method 1, Algebraic procedure 

For members without the minimum amount of shear reinforcement stated in this design 

code the following expressions apply. Starting with the factor that is going to indicate the 

ability of the diagonally cracked concrete to transmit tension and shear 𝛽. 

𝛽 =
4.8

1 + 750𝜀𝑠

1300

1000 + 𝑠𝑥𝑒
 

With: 
Crack spacing parameter (influenced by aggregate size): 

                                   𝑠𝑥𝑒 = 300 ≤ 𝑠𝑥
35

𝑎𝑔+16 𝑚𝑚
≤ 2000 

Maximum aggregate size: 𝑎𝑔 [mm] 

Crack spacing parameter: 𝑠𝑥 = 𝑑𝑣 for members without shear reinf.  

 

[Eq.  2-31] 

The net longitudinal strain in the section at the centroidal axis of the reinforcement in 

tension is calculated with [Eq.  2-32](a) initially, but in case the value obtained is negative 

[Eq.  2-32](b) should be used. 

𝜀𝑠 =
(
|𝑀𝑢|
𝑑𝑣

+ 0.5𝑁𝑢 + |𝑉𝑢 − 𝑉𝑝| − 𝐴𝑝𝑠𝑓𝑝𝑜)

𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠
< 6.0 ∙ 10−3 

𝜀𝑠 =
(
|𝑀𝑢|
𝑑𝑣

+ 0.5𝑁𝑢 + |𝑉𝑢 − 𝑉𝑝| − 𝐴𝑝𝑠𝑓𝑝𝑜)

𝐸𝑐𝐴𝑐𝑡 + 𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠
> −0.40 ∙ 10−3 

 
With parameters: 
Modulus of elasticity of prestressing steel multiplied by the locked-in difference in 
strain between the prestressing steel and the surrounding concrete: 𝑓𝑝𝑜 = 0.7𝑓𝑝𝑢 

Factored moment at the section:  |𝑀𝑢| 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 |𝑉𝑢 − 𝑉𝑝|𝑑𝑣 

Factored axial force: 𝑁𝑢; 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 
Factored shear force: 𝑉𝑢 

Area of concrete on flexural tension side: 𝐴𝑐𝑡  𝑓𝑜𝑟 0.5ℎ (Figure 2-24) 
 

[Eq.  2-32] 

(a) 

 

(b) 

The diagonal compressive stresses that creates a longitudinal compressive force in the 

web of (𝑉𝑢 − 𝑉𝑝) cot(𝜃) need to be balanced by tensile forces in the upper and lower part 

of the beam 0.5 ∙ (𝑉𝑢 − 𝑉𝑝) cot(𝜃)  each. For simplicity in the expression, 0.5 ∙ cot(𝜃) is 

taken equal to 1, and the longitudinal demand due to shear in the longitudinal tension 

reinforcement is just 𝑉𝑢 − 𝑉𝑝 for this reason, without considerable loss of accuracy. 
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• Method 2, procedure with tables 

This method may be easier in a manual calculation, since longitudinal strain values can 

be obtained from the 𝑠𝑥𝑒 calculated before. Or one can calculate the ratio between shear 

stress in the concrete (𝑣𝑢 = (𝑉𝑢 −𝜙𝑉𝑝) (𝑑𝑣  𝑏𝑣)⁄ ) and the concrete compressive strength 

(𝑓𝑐
′) to obtain the same values of longitudinal strain. Linear interpolation between rows and 

columns of the table is allowed, and for detailed information refer to [37] Appendix B5. 

Now, with the necessary parameters obtained (𝛽, 𝑓𝑐
′, 𝑑𝑣 , 𝑏𝑤) the shear resistance of concrete is 

calculated with the following expression: 

𝑉𝑐 = 0.083𝛽√𝑓𝑐
′ ∙ 𝑏𝑤𝑑𝑣; [𝑀𝑃𝑎,𝑚𝑚] [Eq.  2-33] 

The vertical component of prestressing force is also required, this is calculated as follow: 

𝑉𝑝 = 𝐴𝑝𝑓𝑝𝑠sin (𝜃𝑝) [Eq.  2-34] 

2.5 BACKGROUND OF THE RESEARCH 
- Adding prestressing increments the required shear force to cause cracking due to the 

compression stresses introduced, then it provides an overall marginal improvement in 

shear strength. Prestressing generally reduces the angle of the flexural-shear cracks 

influencing the orientation of the principal stresses and reducing the actual collaboration 

of shear-transfer actions like aggregate interlock or dowel action. 

 

- Design codes derived from physical-based models have greater clarity regarding the 

influence of the different parameters on the estimated shear resistance. This is not the 

case for empirical models, where there is some uncertainty regarding how to consider 

particular situations that are not consistent with the experiments with which the approach 

was calibrated. 

 

- Also, note the similarity between the MCFT and the CSCT estimation of the shear stress 

on shear crack, [Eq.  2-9] and [Eq.  2-8] respectively. Shear stress on crack according both 

theories depends on the crack-width, aggregates size and concrete strength. Both theories 

have a strong influence from Kani [16] and the estimation of the influence of the aggregate 

size in shear resistance is based in his work. Both estimate the crack width taken the 

longitudinal strain as the main parameter, estimated at different heights of the cross-

section depending the assumptions made for the approach. 

 

- The prestressing force is considered as preload for Eurocodes and as a capacity for codes 

like ACI318-19 and AASHTO-LRFD. Thus, the prestressing force effect is considered as 

an external load acting on the member for the Eurocodes. While in the case of ACI318-19 

and AASHTO-LRFD codes, the effect of the prestressing force is considered through the 

contribution of the vertical resultant of the prestressing force acting on the beam or like in 

AASHTO-LRFD through its effect on the nominal flexural moment and longitudinal strain. 

 

- ACI318-19M detailed method assumes the concrete contribution to shear capacity Vc is 

directly related to the shear required to cause diagonal cracking though a semi-empirical 

approach. The EC2 doesn’t consider the contribution of concrete in the stage of cracked 

concrete, and the effect of prestressing is incorporated with a linear empirical relation. 
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3  EXPERIMENTAL DATABASE 

CHARACTERISTICS 
This chapter will present the shear test database for prestressed beams without shear 

reinforcement. This database was published as the “2015 ACI-DAfStb database of shear tests on 

slender prestressed concrete beams without stirrups” [3]. An overview of the available data will 

be presented, and the distribution of the most important parameters will be analyzed. 

Then the parameters that have the most significant influence on shear strength (𝑎/𝑑, 𝑓𝑐𝑚, 𝜌𝑙 , 𝜎𝑐𝑝) 

will be analyzed in detail. Finally, the database will be divided into subsets based on different 

criteria established to reduce the bias of comparing test results with the estimations made by the 

chosen design codes reported in the next chapter. 

3.1 GENERAL CHARACTERISTICS 
To elaborate the shear database for the “American Concrete Institute - Deutscher Ausschuss für 

Stahlbeton (ACI-DAfStb) group”, information has been extracted from test reports or papers 

published in leading journals. One of the most significant contributors of the shear database for 

prestressed concrete members is the thesis published by Nakamura [46]. A total of 1696 tests 

published between 1954 and 2010 were collected. These tests were carried out in North America, 

Japan, and Europe to evaluate the local shear design provisions. 

The 1,696 tests were reduced as different filters were applied to preserve tests with consistent 

information for analysis only. First, the relevant information was checked for each test, such as 

concrete compressive strength, prestressing steel yield strength, prestressing force in tendons, 

location of point loads, and shear failure force. Then, tests with shear slenderness values less 

than 2.4 (𝑎/𝑑 < 2.4) were eliminated as these are related with the analysis of deep beams. 

Finally, to generate the final control database, 18 individual control criteria (called “koni”) were 

defined to evaluate different parameters such as web width, beam height, inner lever arms, failure 

type described, longitudinal reinforcement characteristics and other conditionals described in 

detail in [47] and [2]. Most of the filters applied are mechanically justified like the minimum values 

for parameters like 𝑎/𝑑 > 2.4 , 𝑏𝑤 >= 50 𝑚𝑚 , 12 𝑀𝑃𝑎 < 𝑓𝑐𝑚 < 100 𝑀𝑃𝑎 . Then come the so-

called auxiliary filters, for the classification of the tests according to the use of shear or longitudinal 

reinforcement, method of prestressing used, and the control of anchorage or flexural failures (for 

detailed information about the control criteria applied, refer to Appendix B). 

The final evaluation database obtained for prestressed concrete members without shear 

reinforcement generated combines data from prestressed and post-tensioned beams with and 

without non-prestressed longitudinal steel reinforcement. This database was stored in an excel 

file for manipulation and its name following the notation described in [47] is "vuct-PC-

A2a+A3a_2015-05-19". Dr. Yuguang provided the information compiled in a excel file used for 

the development of this thesis. From now on, the abbreviation “ACI-DAfStb-PC” in this document 

refers to this database. 

Starting to describe some of the features of the database used, Figure 3-1 below shows that prior 

to 1970, there were significant data collection campaigns for post-tensioned beams. The articles 

collected dated after 1970 focus mainly on prestressed beams, and the final amount obtained for 

both types of prestressing methods is even, with 114 post-tensioned and 100 prestressed beams. 
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Figure 3-1 Number of tests for ACI-DAfStb-PC database 

The information collected had to provide the minimum data to evaluate the shear capacity of the 

different beams. It is necessary to have at least the cross-section dimensions, the experimental 

setup, a description of the shear failure, and the material properties of concrete, non-prestressed 

and prestressed steel longitudinal reinforcement. The following is a brief description of the 

different parts of the data collected in the database used. 

1. General information  

Capturing the label given by the author and the units used on the test paper (SI units or 

imperial units). Then, the beam is assigned with an internal number. 

2. Section properties,  

Recording relevant beam dimensions, gross area, and location of the center of gravity. 

3. Load position and geometry  

There are two significant variables. The effective span and the distance of the loading 

point from the support. 

4. Longitudinal reinforcement 

a. In tension  

It is registered the longitudinal reinforcement area, longitudinal reinforcement ratio, 

type of anchorage, yield strength, and tensile strength. In cases where there are 

different diameters and yield strengths, the values used are equal to the calculated 

mean values.  

b. In compression  

The same information as 4a. 

5. Prestressing  

a. Prestressing steel 

The file contains information about the types of strands or tendons and their 

dimensions. In addition, the database also includes the calculated center of gravity 

of the tendons, the effective depth, yield stress, and tensile strength. 

b. Prestress 

There is a summary of the prestressing force and the concrete stress at the 

centroid due to prestress 

c. Axial force 

In this case of analysis, for all beams, the axial force is equal to zero. 

6. Shear reinforcement 

For beams without shear reinforcement, this part is not considered. 

7. Concrete 

a. Compressive strength 

Depending on the dimensions of the test specimen, via conversion factors, the 

uniaxial concrete compressive strength (𝑓1𝑐)  is derived. From the uniaxial 
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compressive strength of concrete, the mean cylinder strength (𝑓𝑐𝑚,𝑐𝑦𝑙) and the 

specified compressive strength (𝑓𝑐
′) are calculated, based on relations explained 

in detail in section 3.2.1 

b. Tensile strength 

The database reports that it uses the computed uniaxial tensile strength (𝑓1𝑐𝑡,𝑡𝑒𝑠𝑡) 

as explained in [47]. However, considering that there are different design codes in 

this study case, the tensile strength is calculated as stated for each design code. 

Section 4.1.3  explains this case in detail.   

8. Mechanical ratios of longitudinal reinforcement 

The database provides helpful calculated relations for the analysis of the data captured in 

a later stage. 

9. Test 

The file presents at this part a summary of all the test results parameters like inner lever 

arm, flexural capacity, ultimate moment, and variables like the shear force acting 

considering the external point load and the self-weight of the beam. 

10. Control 

For the control and evaluation of the calculated results, all the beams pass through filters 

to check the integrity of the essential data and check different functional parameters to 

evaluate the possible factors influencing the failure of the beam (Flexural failure or 

Anchorage failure parameters detailed in section 3.5). 

The following variables described in Table 3-1, captured from the nearly 100 variables, were used 

for the analysis of the different design codes proposed for this study. 

Table 3-1 Notation used by ACI-DAfStb-PC database 

Beam/flange width 𝒃 mm  

Web width 𝑏𝑤 mm Equal to beam width in case of 
rectangular beams 

Total beam height ℎ mm  

Height of flange in compression ℎ𝑓 mm  

Height of flange in tension ℎ𝑓𝑡 mm  

Gross area of concrete section 𝐴𝑐  mm²  

Distance from centroidal axis of gross section, neglecting 
reinforcement, to tension face 

𝑦𝑡  mm ACI-DAfStb-PC database uses 𝑧𝑐2 
related to the compression face 
then, 𝑦𝑡 = ℎ − 𝑧𝑐2 

Moment of inertia 𝐼𝑐𝑠  mm4  

Area of concrete on the flexural tension side of the member 𝐴𝑐𝑡 mm2 Area below neutral axis (in 
tension) used for AASHTO-LRFD 
procedure 

Effective span 𝐿 mm  

Distance from extreme compression fiber to centroid of 
nonprestressed longitudinal reinforcement in tension 

𝑑𝑠 mm  

Area of nonprestressed longitudinal tension reinforcement 𝐴𝑠 mm²  

Yield strength for nonprestressed reinforcement. 𝑓𝑠𝑦 MPa Detailed in section 3.2.2 

Modulus of elasticity of steel reinforcement 𝐸𝑠 MPa Equal to 200 [GPa] always 

Distance from extreme compression fiber to centroid of 
nonprestressed longitudinal reinforcement in compression 

𝑑𝑠2 mm  

Area of nonprestressed longitudinal compression 
reinforcement 

𝐴𝑠2 mm²  

Distance from extreme compression fiber to centroid of 
prestressed reinforcement located at the bottom of the 

beam 

𝑑𝑝𝑏𝑜𝑡 mm  
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Distance from extreme compression fiber to centroid of 
prestressed reinforcement located at the web of the beam 

𝑑𝑝𝑤𝑒𝑏  mm  

Distance from extreme compression fiber to centroid of 
prestressed reinforcement located at the top of the beam 

𝑑𝑝𝑡𝑜𝑝 mm  

Bond type 𝑏𝑡𝑦𝑝𝑒 - 1 = strand 
0 = wire 

Nominal diameter of prestressed rebar 𝜙𝑝𝑠 mm From just 1 tendon 

Area of prestressed reinforcement located at the bottom of 
the beam 

𝐴𝑝𝑏𝑜𝑡 mm²  

Area of prestressed reinforcement located at the web of the 
beam 

𝐴𝑝𝑤𝑒𝑏  mm²  

Area of prestressed reinforcement located at the top of the 
beam 

𝐴𝑝𝑡𝑜𝑝 mm²  

Modulus of elasticity of prestressing reinforcement 𝐸𝑝 MPa If not specified, it is assumed that 
𝐸𝑝 = 200 [𝐺𝑃𝑎] 

Specified yield strength of prestressing reinforcement 𝑓𝑝𝑦 MPa  

Specified tensile strength of prestressing reinforcement 𝑓𝑝𝑢 MPa  

Prestressing tendon angle 𝜃𝑝 rad Equal to zero in all cases since 
straight tendons were used 

Effective prestress after all losses 𝜎𝑝𝑝 MPa Estimated at the location of the 
critical shear crack 𝑥𝑟  

Maximum aggregate size 𝑎𝑔 mm  

Smallest value of the upper sieve size D in an aggregate for 
the coarsest fraction of aggregates (EN 206) 

𝐷𝑙𝑜𝑤𝑒𝑟  mm It is assumed equal to Æa /2 

Modulus of elasticity of concrete 𝐸𝑐  MPa Calculated according to the 
design code specification as 
function of 𝑓𝑐𝑚 (for ACI318) 

Reported shear force at failure considering external point 
load and self-weight 

𝑉𝑢.𝑅𝑒𝑝 kN  

Estimated distance of failure crack from support axis 𝑥𝑟  mm Assumed equal to 0.65 ⋅ 𝑎 (refer 
to section 3.4) 

Mean cylinder strength of concrete 𝑓𝑐𝑚.𝑐𝑦𝑙  MPa Refer to section 3.2.1 

Characteristic cylinder strength 𝑓𝑐𝑘  MPa Refer to section 4.1.2 

Specified compressive strength of concrete 𝑓𝑐
′ MPa Refer to section 4.1.2 

Total shear load by external load and self-weight at critical 
location 

𝑉𝑢(𝑥𝑟 , 𝐹) kN Refer to section 4.1.1 

Total bending moment by external load and self-weight at 
critical location 

𝑀𝑢(𝑥𝑟 , 𝐹) kNm Refer to section 4.1.1 

 

Now, it is helpful to visualize the variables presented in the following illustrations. Of the 

parameters presented, the following Figure 3-2 illustrates the variables related to cross-section 

dimensions and the main variables related to prestressed and non-prestressed longitudinal steel 

reinforcement. 

In addition, the following Figure 3-3 shows the experimental setup of all the tests recorded in the 

ACI-DAfStb-PC database. Two symmetric point loads applied on a simply supported beam. The 

effective span is considered to be the distance between central axes of the supporting plates. In 

cases where there is only one point load applied in the middle of the span, in order to maintain a 

uniform structural configuration, the load is divided into two point loads separated by a distance 

equal to half the length of the load plate 𝑐 = 2𝑎𝐹. The point load is divided in two equal loads 

separated by the calculated distance 𝑐 as can be seen in Figure 3-4. 
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Figure 3-2 Notations used for cross-section dimensions and longitudinal reinforcement parameters 

F

d

F

V=F

c

xr L

βr

 

Figure 3-3 Notation used for load and beam  

 

Figure 3-4 Definition in case of a single point load [47] 

Different characteristics can be analyzed to continue describing the ACI-DAfStb-PC database and 

better understand the data used. Figure 3-5 (A) shows that almost half of the tests (48%) are 

rectangular beams, a small part (8%) are T-shape beams and the rest (44%) are I-shape beams. 

This is important because it should be noted that composite cross-sections can have a higher 

performance because they have a higher moment of inertia than rectangular beams, but at the 

cost of weaknesses in the webs, where shear-tension failure mode has to be verified checking 

the principal stresses along the height of the beam. This creates a break between rectangular and 

I/T-shape beams because the latter group requires the verification of one type of shear failure 

more than the rectangular beams. 

Similarly, it is possible to argue about the influence of the non-prestressed longitudinal 

reinforcement on the shear capacity of prestressed beams. Figure 3-5 (B) indicates that most of 

the tests (68%) do not contain non-prestressed longitudinal steel reinforcement, which should be 

considered in the discussion of results. Since, as mentioned in the literature review, the 

longitudinal reinforcement is one of the main parameters for a shear-transfer action like the dowel 

action. 

Prestressed 

tendon 
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Finally, on can question the influence of the prestressing method used, where according to Figure 

3-5 (C), one can see that the database has an even distribution. The main differences between 

both methods could be the differences considering prestressing losses and how the prestress 

force is transferred to the concrete. 

 

Figure 3-5 Main characteristic of the ACI-DAfStb-PC database. 

Figure 3-6 shows that most of the beams have a height of less than 300 millimeters, although 

some experiments are in the range between 500 and 1100 millimeters in height. The largest group 

comprises beams between 200 and 300 millimeters high. It is not easy to perform many full-scale 

tests on tall beams, so it is understandable to see the trend favorable for small beams. This 

tendency does not seem to disturb the intended results in evaluating the effect of prestressing 

force, but the effect of beam size is currently being studied and considered in some design codes. 

Figure 3-7 shows a feature that has been defined at the time of filtering the tests for ACI-DAfStb-

PC database. The slenderness 𝑎/𝑑 > 2.4, in order to have a consistent database to evaluate, 

where beam shear-transfer actions mainly govern. It should be remembered that in the case of 

deep beams, the arching action governs, and the shear carried is equal to the plastic strength 

calculated [16], a case study that is different from the one intended. 

 
Figure 3-6 Effective depth distribution in ACI-DAfStb-PC database 

A B C 
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Figure 3-7 Slenderness distribuion in ACI-DAfStb-PC database 

3.2 MATERIAL PROPERTIES 
The materials and their properties are the most relevant factors influencing the results to be 

obtained; therefore, it is necessary to look at the database's characteristics for the concrete, steel, 

and prestressed steel used. 

3.2.1 Concrete compressive strength 

Of the data collected, this is perhaps the most influential one in which the standardization of 

methodologies applied to the different control specimens of varying dimensions needs a thorough 

evaluation. The conversion factors between the different dimensions of the specimens are listed 

in the reference document [47], where the author obtains the cylinder strength of the control 

specimens and realizes control of the conversions factors used, proposing a bi-linear approach 

for normal-strength concrete and high-strength concrete. From the database file, the required 

value is the average cylinder strength (𝑓𝑐𝑚,𝑐𝑦𝑙) obtained from the reported specimens. In the 

cases where the cube resistance was reported instead, the mean cube strength is transformed 

into mean cylinder strength using the bi-linear approach proposed in the last reference. 

Now, looking at the database, can be seen that the compressive strength of the concrete tends to 

be less than 50 MPa. The mode is in the range of 30 to 40 MPa. which is a typical concrete 

strength used in practical cases.  

 
Figure 3-8 Mean cylinder compressive strength distribution in ACI-DAfStb-PC database 
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3.2.2 Longitudinal non-prestressed steel reinforcement 

It is a parameter that influences the formation of flexural cracks in particularly, so it is necessary 

to visualize its relevance on the database under study. From the previous information, it is known 

that only 33% of the experiments contain longitudinal non-prestressed steel reinforcement. Of that 

percentage, 23% contain longitudinal reinforcement in compression as well. 

Analyzing the characteristics of this group of experiments, Figure 3-9 shows that the most 

commonly observed values for yield strength are in the range of 400 to 450 MPa. Pointing to the 

commonly used steel rebar of 420 MPa, almost always used in everyday practice. Furthermore, 

there is a relevant group with high yield strength in the range greater than 550 MPa. 

Similarly, the ratio of steel to gross area can also be analyzed by the called longitudinal 

reinforcement ratio of non-prestressed steel which is equal to: 

𝜌𝑠 =
𝐴𝑠
𝑏 ⋅ 𝑑

 [Eq.  3-1] 

The histogram for this ratio in Figure 3-10, subdivided into class intervals of Δ𝜌𝑙 = 0.10 %, shows 

that most tests have a small ratio, less than 0.5%. However, there is a considerable number of 

tests in the range of 1.5% to 2%, which is the upper limit for high reinforcement ratios according 

to some design codes. These high reinforcement ratios correspond to reinforcement with yield 

strength in a range between 350 and 500 MPa. as Figure 3-11 shows. 

 
Figure 3-9 Yield strength distribution in ACI-DAfStb-PC database 

 
Figure 3-10 Non-prestressed longitudinal reinforcement steel ratio distribution in ACI-DAfStb-PC database 
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Figure 3-11 Scatterplot for non-prestressed longitudinal reinforcement steel ratio vs yield strength in ACI-DAfStb-PC database 

3.2.3 Prestressing steel 

This is the parameter to be studied in order to investigate its influence on flexural-shear failures. 

Therefore, the relevance of this parameter calls for an in-depth analysis of its characteristics within 

the database. It is known that out of the 214 experiments, 100 beams are pre-tensioned and 114 

are post-tensioned, and analyzing these groups as a whole gives the following histograms. 

Figure 3-12 shows that most of the tests are in the range of 1400 < 𝑓𝑝𝑦 < 1800 𝑀𝑝𝑎, with the peak 

at the range of yield strength between 1400 and 1500 MPa. A small group is in the range of low 

yield strengths, less than 1000 MPa. 

As this tensioned steel is added as longitudinal reinforcement, the longitudinal reinforcement steel 

ratio will also be modified. So, the total longitudinal reinforcement ratio is equal to: 

𝜌𝑙 = 𝜌𝑠 + 𝜌𝑝 =
𝐴𝑠
𝑏𝑤 ⋅ 𝑑

+
𝐴𝑝
𝑏𝑤 ⋅ 𝑑

 [Eq.  3-2] 

Where 𝐴𝑝 is the total area of longitudinal prestressed steel reinforcement, the histogram of this 

variable in Figure 3-13 indicates that most tests are configured for a small range of reinforcement 

ratios. The main group is in the range (0% < 𝜌𝑙 < 1.25%), which at first impression seems to 

indicate that the beams contain regular amounts of longitudinal reinforcement. However, this 

criterion can be refined with the called mechanical reinforcement ratio (𝜔𝑙) that is defined as 

follow. 

𝜔𝑙 = 𝜔𝑠 +𝜔𝑝 =
𝐴𝑠 ⋅ 𝑓𝑠𝑦

𝑏𝑤 ⋅ 𝑑 ⋅ 𝑓𝑐𝑚
+
(𝐴𝑝𝑏𝑜𝑡 + 𝐴𝑝.𝑤𝑒𝑏) ⋅ 𝑓𝑝𝑦

𝑏𝑤 ⋅ 𝑑 ⋅ 𝑓𝑐𝑚
 [Eq.  3-3] 

Where (𝐴𝑝𝑏𝑜𝑡 + 𝐴𝑝.𝑤𝑒𝑏) is the area of longitudinal prestressed reinforcement in tension, as the 

database classifies the location of tendons. This parameter relates the ratio of the yield strength 

of steel and the mean compressive strength with the gross area. Figure 3-14 shows the histogram 

related, and the distribution indicates a peak at ratios of 0.1 < 𝜔𝑙 < 0.2, decreasing up to 𝜔𝑙 = 0.7 

approximately. Considering that 𝜔𝑙 > 0.20 indicates highly reinforced beams as stated in [47], 

more than half of the tests are carried out for highly reinforced beams. 
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Figure 3-12 Prestressing steel yield strength for ACI-DAfStb-PC database 

 
Figure 3-13 Total longitudinal reinforcement ratio for ACI-DAfStb-PC database 

 
Figure 3-14 Mechanical reinforcement ratio for ACI-DAfStb-PC database 
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The magnitude of the prestressing force in the tests can be analyzed next. Figure 3-15 presents 

the histogram for the magnitude of the stress generated at the gross area due to the prestress 

force applied. 

𝜎𝑐𝑝 = 𝑃/𝐴𝑐  [Eq.  3-4] 

Where 𝑃 is the total effective prestress force applied, and it is equal to the effective prestress 

(𝜎𝑝𝑝) times the total area of prestressing steel (𝐴𝑝). The gross area 𝐴𝑐 is calculated easily for 

rectangular beams as 𝐴𝑐 = 𝑏 ⋅ ℎ, and for I/T shape beams the gross area is calculated according 

the given dimensions of the web and flanges. The magnitude of the prestress is distributed mainly 

in the range between 2 and 6 MPa. according to the histogram below. 

 
 

Figure 3-15 Axial concrete stress at center of gravity for ACI-DAfStb-PC database 

The above figure may give more information if the prestress applied is related to the compressive 

strength of concrete. For this purpose, the factor called dimension-free axial force is defined as 

follow. 

𝜈𝑃 = 𝜎𝑐𝑝/𝑓𝑐𝑚 [Eq.  3-5] 

Figure 3-16 presents the distribution of the dimension-free axial force. It can be interpreted as the 

percentage of prestressing applied in relation to the concrete strength. It is noted that this 

percentage is commonly in the range up to 15%.  

The normal force applied is equal to the effective prestressed force, as all tendons are straight. 

To visualize the magnitude of this parameter, the scatterplot presented in Figure 3-17 relates it 

with the dimension-free axial force analyzed before. One group of experiments follows an almost 

linear trend between the two parameters shown in the scatterplot. An analysis of this group shows 

a ratio of equal to 1/850 = 𝑃/𝜈𝑝. The remaining 13% of the tests tend to have a much higher 

prestressing force applied for certain dimension-free axial force value. This denotes higher cross-

sections or higher mean compressive strength of concrete for this group. 
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Figure 3-16 Dimension-free axial force for ACI-DAfStb-PC database. Considering prestress with negative sign. 

 
Figure 3-17 Scatterplot for dimension-free axial force vs prestressed force applied for ACI-DAfStb-PC 

Another characteristic of the database seen in the Figure 3-18 is that the rectangular beams are 

mostly post-tensioned and less than 500 mm high and the prestressed rectangular beams are the 

tallest. The I-shape beams are also mostly less than 500 mm in height, and the T-shape beams, 

as most of the experiments, have a heigh of around 300 mm. Slenderness ratio values are also 

well distributed in the case of post-tensioned or pre-tensioned beams. 

 

Figure 3-18 Distribution of Post- or Pre- tensioned beams according to the height or slenderness 
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3.3 SHEAR FAILURE MODES DESCRIBED 
For the different tests collected from papers for the database some describe the shear failure 

modes according to the definitions given in Section 2.1.2 as follow. 

• ST: Shear-tension failure observed. 

• SC: Shear-compression failure observed. 

• FS: Flexural-shear failure observed. 

Some of them follow the classification stated by [8], then some beam's shear failure mode was 

denoted as web crushing failure (W-C), defined as the result of the loss of shear flow between 

flanges in tension and compression due to crack formation that transformed the beam into a tied 

arch. For I-beams, the thrust developed in the tied arch causes high compressive stresses in the 

web, causing a sudden and destructive failure. 

• W-C: Web crushing failure observed. 

Other papers report tests with mixed failure modes because they suspect a flexural failure before 

a shear failure, and in some cases, it was challenging to determine when a flexural-shear failure 

occurred instead of a shear-compression failure based only on observations. 

• SC-F: Shear-compression and flexural failure observed. 

• FS-SC: Flexural-shear or shear-compression failure (not distinguished). 

• FS-F: Flexural-shear and flexural failure observed. 

The last group of tests doesn’t have a shear failure mode described by the author and were 

denoted as follow. 

• n: Not described in paper/document. 

Another helpful information given in the database is the description of the critical crack that led to 

the shear failure, according to the definitions provided in section 2.1.1. If the crack is not described, 

the test is marked as "without description" (n). Then the groups formed are as follow. 

• DC: Flexural-shear crack. 

• WC: Shear-tension crack. 

• n: no specification given. 

Figure 3-19 (A) below shows the percentages corresponding to each type of crack stated, and 

this is the starting point for selecting the tests related to flexural-shear failures, closely related to 

flexural-shear cracks. For Figure 3-19 (B), the failure modes derived from the flexural-shear crack 

(DC) are reported, where the flexural-shear failure is the most common case with 52% of the 

cases, followed by the shear-compression failure with 45%, the rest is for some individual cases 

for combined or not very clear failure modes. Finally, Figure 3-19 (C) shows that for the case of 

shear-tension cracks, the failure mode is not denoted always as shear-tension, some cases (36%) 

are described as Web-Crushing failure [8], without the presence of flexural cracks. 

The classification proposed according to the type of shear crack and the shear failure mode is 

showed in Figure 3-19, using all the tests form ACI-DAfStb-PC database. 

From the information given by Figure 3-19, it should be noted that the case of interest for the later 

results correspond to the group that develops the Flexural-Shear cracks, which is 52% of the 

reported experiments. From the group “n,” there is no description, but it is possible to select from 

this group the rectangular beams, which will necessarily develop a flexural-shear failure. 
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Figure 3-19 Description of the ACI-DAfStb-PC database according to the shear failure crack and shear failure mode. 

3.4 LOCATION OF THE FAILURE CRACK 𝒙𝒓 
To estimate the failure crack location (Critical Shear Crack (CSC) location), the background 

documents of ACI-DAfStb-PC database indicates that the location is equal to: 

𝑥𝑟 = 0.65 ⋅ 𝑎 [Eq.  3-6] 

Where 𝑎 is the distance of point load 𝐹𝑒𝑥𝑡 form support axis.  

This relationship was determined based on an analysis of experiments that reported the location 

of the CSC in prestressed beams. The evaluation consisted of the results of 15 beams and the 

distance of the crack 𝑥𝑟 was determined in accordance with [47] which is briefly explained below. 

Determination of location of the failure crack for reinforced concrete members without 

shear reinforcement 

The distance 𝑥𝑟 is the distance of the CSC from the support axis. It is determined as the average 

of the distances 𝑥𝑟,𝑜 and 𝑥𝑟,𝑢 that are measures on the upper and lower surface of the beam as 

the following Figure 3-20 shows. 

 

Figure 3-20 Measures for the location of the Critical Shear Crack (𝑥𝑟) [47] 

Most reports do not provide crack patterns and these were excluded from this calculation. The 

crack patterns provided for beams with a slenderness (𝑎/𝑑 > 2.4) were examined plotting a 

scatterplot with dimension-free values for the axis, 𝑥𝑟/𝑑 versus 𝑎/𝑑 (Figure 3-21). Where 𝑥𝑟 is 

equal to: 

𝑥𝑟 = 0.5 ⋅ (𝑥𝑟,𝑜 + 𝑥𝑟,𝑢) [Eq.  3-7] 

A B C 
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The region to look for the CSC is (𝑑 < 𝑥𝑟 < 𝑎 − 𝑑), since the flexural-shear crack can only occur 

in this region as was reviewed in section 2.3.1. Beams exceeding the upper boundary are 

considered to perform a flexural failure since the failure cracks are close to midspan. 

It is expected for prestressed members comparing with reinforced concrete members, that the 

location of the CSC is nearer the point load applied due to the influence of stresses in compression 

in the tensioned side of the beam. Analyzing the 13 tests that reported the location of the CSC, 

the lower boundary identified is 𝑥𝑟,𝑚𝑖𝑛 = 0.25 ⋅ 𝑎 and the upper boundary reaches up to 𝑥𝑟,𝑚𝑎𝑥 =

𝑎 − 𝑑/2. Between these two boundaries an intermediate relation that corresponds to the trend of 

the data (𝑥𝑟 = 0.65 ⋅ 𝑎) is the proposed relationship for beams without data of the location of the 

failure crack. 

 

Figure 3-21 Proposed relationship for location of the CSC for prestressed concrete beams without shear reinforcement [47] 

3.5 CONTROL CRITERIA FOR FLEXURAL AND ANCHORAGE FAILURE 
These control criteria (called kon8 for assessing calculated flexural failures and kon11 for 

assessing anchorage failure) are developed based on the judgment of the database authors, as 

detailed in the following sections for each one. The result of these control criteria is specified in 

the database file, unlike the other control criteria used, because these are analytical results based 

on certain assumptions that can be very conservative, as in the case of anchorage failure control. 

The usefulness of these control criteria is left to the user's discretion and the results obtained in 

the analysis, but in principle, they did not condition the elimination of tests to keep a large number 

of them. As it is detailed in Table 3-2, these control criteria mark a total of 101 tests from the ACI-

DAfStb-PC database, that has 214 tests, of which 44 correspond to the flexural failure assessment 

and 57 to the anchorage failure assessment. 

3.5.1 Assessment of calculated flexural failures 

It is necessary to have a parameter that indicates analytically whether a flexural failure occurred 

prior to a shear failure. Then, the relationship between the ultimate bending moment reached and 

the calculated value is functional and is defined as follows. 

𝛽𝑓𝑙𝑒𝑥 =
𝜇𝑢
𝜇𝑓𝑙𝑒𝑥

 [– ] 

Where: 

Non-dimensional moment at flexural failure: 𝜇𝑢 =
𝑀𝑢

𝑏⋅𝑑2⋅𝑓𝑐𝑚
 [−] 

Ultimate flexural moment: 𝑀𝑢 [𝑁 ⋅ 𝑚𝑚] 

Compression zone width: 𝑏 [𝑚𝑚] 

 
[Eq.  3-8] 
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Effective depth: 𝑑 [𝑚𝑚] 

Mean concrete compressive strength: 𝑓𝑐𝑚 [𝑀𝑃𝑎] 

If the magnitude of this coefficient is greater than one (𝛽𝑓𝑙𝑒𝑥 > 1) means that the failure calculated 

was due to flexure. For a detailed explanation of this procedure refer to Appendix B. 

3.5.2 Anchorage failure 

The purpose of this conditional is to verify the anchorage capacity at the end support according 

to the criteria explained in detail in Appendix B. The provided anchorage length 𝑙𝑏,𝑝𝑟𝑜𝑣  is 

compared with the required anchorage length (𝑙𝑏,𝑟𝑒𝑞) through the relation: 

𝛽𝑙𝑏 =
𝑙𝑏,𝑟𝑒𝑞

𝑙𝑏,𝑝𝑟𝑜𝑣
 [−] [Eq.  3-9] 

If 𝛽𝑙𝑏 > 1, the intended anchorage length is not sufficient, an anchorage failure has likely occurred. 

3.6 DEFINITION OF SUBSETS FOR ANALYSIS 
It is crucial to have a database correctly correlated with the type of failure under study. In this 

case, the flexural-shear failure is the case of study, and the tests must be related. 

The complete ACI-DAfStb-PC database contains 214 experiments, and not all of them failed due 

to the development of a flexural-shear crack, and different cross-section shapes were used. Then 

it is necessary to have different subsets to avoid biases in the results. 

The first task to form the first subset was the exclusion of experiments that have not failed due 

to the development of a flexural-shear crack, the called “Critical Shear Crack” for some authors 

[9]. In this way, to form the first subset the following tests that meet any of the following conditions 

were excluded.  

• Shear-Tension (ST) failure mode reported. (23 experiments) 

o Elzanaty 1985, CW: 1, 2, 3, 5, 6, 7, 8 and 9. 

o Funakoshi 1984: Specimen 3. 

o Mikata 2001: 014_T-0-20, 015_T-0-40, 017_HT-0-20 and 018_HT-0-40. 

o Funakoshi 1981: 006_10, 008_14 and 009_19. 

o Funakoshi 1982: 006_38, 007_39 and 008_40. 

o Choulli 2007: S1E, S1W, S2E and S2W. 

• Web-Crushing (W-C) failure mode reported. (13 experiments) 

o Arthur 1965: 035_B9. 

o Evans 1963: 019_S19, 025_S25 and 027_S27. 

o Kar 1968: 021_I-15, 024_I-19, 025_I-20, 026_I-21, 029_D3, 030_D4, 031_D5, 034_D8 

and 035_D9. 

• Unknown failure mode (n) and composite shape of cross-section (I or T shape). (35 

experiments) 

o Regan 1971, P: 10, 11, 12, 15, 16, 47 and 48. 

o Olesen 1967: B1434 and B1441. 

o Sozen 1959, B: 1120, 1129, 1140, 1210, 1226, 1229, 1234, 1235, 1250, 1261, 1316, 

1326, 1341, 2126, 2209, 2223, 2230, 2241 and 2268. 

o Sato 1987: 001_3-4 and 004_3-7. 

o Takagi 2000: 001_IN-1 and 002_IN-2. 

o Ito 1997: 001_M-B 100. 

o Durrani 1987: 1. 

This last group of beams was separated in a conservative manner since there is no certainty in 

the failure mode of an I/T beam without at least a report of the crack development and 
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observations made during the experiment. To verify some tests classification, other publications 

were useful, such as [5] and [12]. At the end, 71 tests were excluded from the original ACI-DAfStb-

PC database to form subset 1. 

To form the second subset, tests of beams with a I/T cross-section shape (41 tests) were 

excluded from subset 1. As intended for the new Eurocode (prEN1992) proposal, only rectangular 

beams remain, where the procedures outlined apply only for beams with flexural-shear cracks. 

For the third subset, the verifications presented in Section 3.5 are considered, excluding 

experiments from subset 2 where the condition for flexural failure assessment or anchorage failure 

is not reached (36 tests). It is expected to increase the accuracy of the approaches, reducing 

possible biases related to anchor failures especially, although this verification is somewhat 

conservative, its usefulness will be evaluated assessing the shear design provisions in the next 

chapter 4. 

Based on the above, the three subsets have different characteristics, of which the main ones are 

summarized in Table 3-2. 

Table 3-2 Main characteristics of the subsets stated 

Subsets for 

comparison 

Cross-section shape Total 

number of 

experiments 

Verifications not fulfilled in: 

Rectangular I-

shape 

T-

shape 

Flexural 

Failure  

Anchorage Failure  

ACI-

DAfStb-PC 

102 94 18 214 44 57 

Subset 1 102 41 0 143 31 39 

Subset 2 102 0 0 102 20 16 

Subset 3 66 0 0 66 0 0 

Due to the selection of data to form the different subsets, slight changes in the distribution of 
certain variables are expected. In the case of the variables 𝑎/𝑑, 𝑓𝑐𝑚,𝑐𝑦𝑙 and 𝑓𝑝𝑦, the mode 

remains in the same range for the histograms of all the subsets as Figure 3-22 -B, C, D show. 
In other cases, the histograms present changes between subsets. The variable 𝑑 is one case, 
where for subset 3, the mode decreases to the range of 100 to 200 mm, as Figure 3-22-A 
shows. In the case of longitudinal reinforcement ratio (Figure 3-22-E), the mode in the range of 
0.25 to 0.5, for ACI-DAfStb-PC and subset 1, increases to the range of 0.75 to 1 for subsets 2 
and 3. This change the mechanical reinforcement ratio in the same way, which increased the 
mode range for subsets 2 and 3 as seen in Figure 3-22-F. 
Certain variations exist between subsets for the histograms for prestressing stress at the 
concrete face. ACI-DAfStb-PC mode is located between 3 to 4 MPa, but for subsets 1 to 3 range 
from 1 to 2 MPa, as Figure 3-22-G shows. Almost the same behavior for the distribution of the 
dimension-free axial force histograms (Figure 3-22-H), where the peak is shifted to lower values, 
the peak or mode located in range -0.15 to -0.15 MPa. for ACI-DAfStb-PC is gradually 
decreasing to the range of -0.05 to 0 MPa. for subsets 2 and 3, denoting again the reduction of 
tests with high prestressing forces applied. The variation of prestressing losses between subsets 
is 5% to 10%. Subset 1 has an average of 64.7%, subset 2 68.9% and subset 3 73%. This 
amount of losses is unusual in today's common practice. 
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Figure 3-22 Histograms of the ACI-DAfStb-PC database for the different subsets for the variables: (A) effective height (B) shear span-to-

effective depth ratio (C) mean compressive strength of concrete (D) Yield strength of prestressed steel (E) longitudinal reinforcement ratio (F) 
mechanical reinforcement ratio (G) axial concrete stress (H) dimension-free axial force 

E F 

G H 

A B 

C D 
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Finally, it is essential to see the information provided in Table 3-3. How the proportion between 

beams with longitudinal reinforcement and without varies between subsets +/- 7%, and the 

proportion between post-tensioned and pre-tensioned beams varies +/- 24% in favor of post-

tensioned beam tests.  

But the most relevant information can be said to be that concerning the variation in the 

classification of the failure modes and types of crack observed. Based on this classification, a 

criterion of the validity of the results obtained will be given.  

Firstly, the ACI-DAfStb-PC or initial set of tests will not be included in the evaluation of shear 

design provisions as the study case is closely related to the flexural-shear failures. Then is 

convenient to exclude the selected experiments detailed before that represents 17% of the total 

214 tests given at the beginning. For subset 1, 52% of tests were identified with a flexural-shear 

failure, 45% with a shear-compression failure and 3% other type of failure. Subset 1 compared to 

the other subsets, is the only one that includes tests with I-shape beams. 

For subset 2, as mentioned before, only tests with beams with rectangular cross-section are 

included, modifying the proportions to 30% of beams reported with flexural-shear failure, 68% with 

shear-compression failure and 2% for other type. This subset of tests can be said that are the 

most related with the case study chosen, because I-shape beams require verification of web-

shear (shear-tension) failure mode in addition to the failure modes related with the development 

of the critical shear crack, as is going to be shown later in the evaluation of the shear design 

provisions. Then this subset will be the most important to discuss the results and analyze the 

different approaches proposed later. 

Subset 3 excludes the tests that don’t comply with the control criteria stated within ACI-DAfStb 

document (Section 3.5) to assess flexural and anchorage failures. It seems that this subset ends 

up not being very useful, since a large number of tests are discarded because the anchorage 

control criteria stated ends up being very conservative as anticipated. Only 66 out of 102 potential 

tests end up being considered in this subset as shown in Table 3-3. 

Table 3-3 Summary of relevant variations between subsets 

  
  

Numbe
r of 

tests 

non-prestressed 
longitudinal 

reinforcement 
Prestressing 

method Shear crack 

Failure modes for 
flexural-shear cracks 

(DC) 

With Without Post Pre DC n WC FS SC 
Othe

r 

ACI-
DAfStb
-PC 

214 

33% 67% 53% 47% 
40
% 

43
% 

17
% 52% 45% 3% 

Subset 
1 

143 
27% 73% 55% 45% 

59
% 

41
% 0% 52% 45% 3% 

Subset 
2 

102 
31% 69% 70% 30% 

43
% 

57
% 0% 30% 68% 2% 

Subset 
3 

66 
24% 76% 79% 21% 

33
% 

66
% 0% 0% 

100
% 0% 

• DC: Flexural-shear crack 

• n: Not described in paper/document. 

• WC: Shear-tension crack. 

• FS: Flexural-shear failure observed. 

• SC: Shear-compression failure observed. 

• Other: FS-SC: Flexural-shear or shear-compression failure (not distinguished). FS-F: Flexural-shear and 
flexural failure observed. 
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3.7 COMMENTS AND DISCUSSION 
- In the different experiments that have been carried out over time, it is difficult to correctly 

identify the type of shear failure without the proper measuring instruments. Different 

estimations were made based on the shape of the cracks and their development 

throughout the experiment, but it was not possible to recognize the failure in several cases. 

As shear failure has brittle behavior, it is necessary to observe extremely short periods, 

which is now possible by employing modern measurement techniques such as DIC. 

 

- The case study chosen of flexural-shear failure, must be represented in the experiments 

to avoid biased results. For this reason, different published works were used in which the 

different types of failure were recognized to corroborate the data handled and expand the 

information regarding the ACI-DAfSt-PC database. This is very important to have a correct 

correlation between the assumed failure mechanism and the one presented in the 

experiments. 

 

- The document that explains most of the data collection process is [47], and the main 

assumption that affect the results obtained is the assumption regarding the location of the 

critical crack (or critical shear crack called according CSCT). The assumed location of 𝑥𝑟 =

0.65𝑎 for the experiments that did not have this information (more than 92%) is the only 

way to assume an intermediate value logically and not discard a considerable number of 

experiments for analysis. One of the extreme values (𝑑 𝑜𝑟 𝑎 − 𝑑)  could have been 

assumed as well, so an intermediate study was made in the next section for the evaluation 

of shear design provisions. 

 

- From the different subsets defined, subset 3 is the one that could group the most 

conservative filters, considering that the method used to determine the anchorage capacity 

assumes some values that are on the safe side. Subset 2 is the one that most closely 

matches the assumptions made for the new Eurocode proposal alternatives, and subset 

1 would fit well with the AASHTO-LRFD code, mainly because its detailed method 

considers the shape of the cross-section to determine the nominal flexural moment. 
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4  EVALUATION OF SHEAR DESIGN 

PROVISIONS 
This chapter aims to obtain the mean shear capacity estimated by each proposed code (ACI318-

19M, AASHTO-LRFD, EC2, and prEN1992), and with the obtained results compare codes in 

terms of accuracy or precision, and evaluate their reliability for the shear evaluation of prestressed 

beams without shear reinforcement. 

The variables presented in Table 3-1 are used at least in one of the codes studied, but within each 

one, they may have a different notation or be agglutinated in another variable. Then the procedure 

to calculate the mean shear capacity and correlation of variables given in the database with the 

variables used within each design code will be explained in section 4.2 for ACI318-19M, section 

4.3 for AASHTO-LRFD, section 4.4 for EC2, and section 4.5 for the EC2 proposal. 

It is necessary to define some terms so that they can be used to calculate the mean shear capacity 

(𝑉𝑐𝑚). That means that the approaches given by the design codes are going to be changed to 

have at the end values that can be compared with experimental results. Some of these terms are 

explained in section 4.1 below. 

4.1 APPLICABLE GENERAL CRITERIA 

4.1.1 Forces acting on the critical section 

The shear force reported in the ACI-DAfStb-PC database, considering the self-weight (𝑉𝑢,𝑅𝑒𝑝), is 

the experimental result that will be compared with the shear capacity obtained by the design 

codes. This shear force is the one obtained at the location of the critical shear crack (CSC) which 

is equal to 𝑥𝑟 = 0.65 ⋅ 𝑎 (refer to section 3.4). 

Then, it is necessary to calculate the cross-sectional forces at 𝑥𝑟 by applying an external load or 

prestress force and by consideration of self-weight. This can be done as follow considering that 

in all cases the structural configuration is a simple supported beam with to point loads located 

each at a distance 𝑎 from the support axis (Figure 3-3).  

It is convenient to capture the cross-sectional forces as function of the distance from the support 

axis in order to verify at different critical location if it’s necessary for further analysis later. 

• Cross-sectional forces due to external load 

Shear:  

𝑉𝑒𝑥𝑡(𝑥, 𝐹) = 𝐹 − 𝐹 ⋅ (𝒙 ≥ 𝒂) − 𝐹 ⋅ (𝒙 ≥ 𝑳 − 𝒂) + 𝐹 ⋅ (𝒙 = 𝑳) [𝑁]  [Eq.  4-1] 

Moment:  

𝑀𝑒𝑥𝑡(𝑥, 𝐹) = 𝐹 ⋅ 𝑥 − 𝐹 ⋅ (𝑥 − 𝑎) ⋅ (𝒙 ≥ 𝒂) − 𝐹 ⋅ (𝑥 − 𝐿 + 𝑎) ⋅ (𝒙 ≥ 𝑳 − 𝒂) [𝑁 ⋅ 𝑚𝑚] [Eq.  4-2] 

Where, the external point load applied is 𝐹 [𝑁], its distance from support axis is 𝑎 [𝑚𝑚], 

the distance of cross-section analyzed from support axis is 𝑥 [𝑚𝑚], and the effective span 

is 𝐿 [𝑚𝑚]. 
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• Cross-sectional forces due to self-weight 

Shear:  

𝑉𝑠𝑤(𝑥) = 𝑞 ⋅
𝐿

2
− 𝑞 ⋅ 𝑥 [𝑁] [Eq.  4-3] 

Moment:  

𝑀𝑠𝑤(𝑥) = 𝑞 ⋅
𝑥2

2
 [𝑁 ⋅ 𝑚𝑚] [Eq.  4-4] 

Considering concrete density 𝑞 = 24 [𝑘𝑁/𝑚3]  = 24 ⋅ 10−6 [𝑁/𝑚𝑚3]. 

• Cross-sectional forces due to prestress 

As the database used distinguish three groups for the location of the prestressed tendons 

(top, web, bottom), this consideration is taken into account for the calculations too. The 

effective prestress force (𝜎𝑝𝑝) applied to the different tendons area (𝐴𝑝(𝑡𝑜𝑝,𝑤𝑒𝑏,𝑏𝑜𝑡)) exerts 

a bending moment dependent of the eccentricity of the tendons as follow. 

Shear:  

𝑉𝑝 = 0 [𝑘𝑁] [Eq.  4-5] 

Since the angle of inclination of the tendons is 0 degrees (𝜃 = 0°), there is no 

vertical force due to the prestressing force. 

Moment:  

𝑀𝑝 = 𝜎𝑝𝑝 ⋅ 𝐴𝑝𝑏𝑜𝑡 ⋅ 𝑒𝑝𝑏𝑜𝑡 + 𝜎𝑝𝑝 ⋅ 𝐴𝑝𝑤𝑒𝑏 ⋅ 𝑒𝑝𝑤𝑒𝑏 + 𝜎𝑝𝑝 ⋅ 𝐴𝑝𝑡𝑜𝑝 ⋅ 𝑒𝑝𝑡𝑜𝑝 [𝑁 ⋅ 𝑚𝑚] [Eq.  4-6] 

Considering the eccentricity for the different locations of the tendons:  

𝑒𝑝𝑏𝑜𝑡 = 𝑦𝑡 − (ℎ − 𝑑𝑝𝑏𝑜𝑡) [𝑚𝑚] 

𝑒𝑝𝑤𝑒𝑏 = 𝑦𝑡 − (ℎ − 𝑑𝑝𝑤𝑒𝑏) [𝑚𝑚] 

𝑒𝑝𝑡𝑜𝑝 = 𝑦𝑡 − (ℎ − 𝑑𝑝𝑡𝑜𝑝) [𝑚𝑚] 

Where, 𝑑𝑝(𝑡𝑜𝑝,𝑤𝑒𝑏,𝑏𝑜𝑡) is the effective depth for the tendon locations considered. 

An important fact to note is that the effective prestress given in the database is assumed 

constant over the entire beam length, which is unrealistic because prestress losses are 

not constant along the span of the beam. However, it is practical as it avoids incorporating 

more factors that may bias the results related to shear capacity, as each design code has 

its approach to deal with prestress losses. 

 

• Ultimate cross-sectional forces acting: 

Considering external load and self-weight.  

Shear: 

𝑉𝑢(𝐹) = 𝑉𝑒𝑥𝑡(𝑥𝑟, 𝐹) + 𝑉𝑠𝑤(𝑥𝑟) [𝑁] [Eq.  4-7] 

Moment: 

𝑀𝑢(𝐹) = 𝑀𝑒𝑥𝑡(𝑥𝑟, 𝐹) + 𝑀𝑠𝑤(𝑥𝑟) [𝑁 ⋅ 𝑚𝑚] [Eq.  4-8] 

• Mean cross-sectional forces acting: 

Considering external load, self-weight and prestress.  

Shear: 

𝑉𝐸𝑚(𝐹) = 𝑉𝑒𝑥𝑡(𝑥𝑟 , 𝐹) + 𝑉𝑠𝑤(𝑥𝑟) + 𝑉𝑝 [𝑁] [Eq.  4-9] 

Moment: 

𝑀𝐸𝑚(𝐹) = 𝑀𝑒𝑥𝑡(𝑥𝑟, 𝐹) + 𝑀𝑠𝑤(𝑥𝑟) + 𝑀𝑝[𝑁 ⋅ 𝑚𝑚] [Eq.  4-10] 
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4.1.2 Concrete compressive strength 

In the case of standards like ACI318-19M and AASHTO-LRFD, the specified compressive 

strength of concrete (𝑓𝑐
′) is the necessary value for calculating the design shear resistance. The 

difference with the characteristic cylinder strength (𝑓𝑐𝑘), used in European standards, is that 𝑓𝑐
′ 

only represents a 9%- fractile, whereas 𝑓𝑐𝑘 represents a 5%- fractile value. So, in case one wants 

to generate comparable design shear resistance values, the relationship between 𝑓𝑐
′ and 𝑓𝑐𝑘 

given by [48] and detailed in the relations below can be applied. 

𝑓𝑐𝑘 = 𝑓𝑐𝑚 − 8 [𝑀𝑃𝑎] 

𝑓𝑐
′ = 𝑓𝑐𝑘 + 1.60 [𝑀𝑃𝑎] 

[Eq.  4-11] 

To generate the intended mean shear resistance predicted by each design code to compare 

them with the shear resistance reported in experiments, it is necessary to use the mean concrete 

strength rather than the design value. Then, for the approaches according to Eurocode 2 or the 

new Eurocode proposal (prEN1992 draft 7), the value of the characteristic cylinder strength (𝑓𝑐𝑘) 

required in both codes will equal the reported mean compressive strength of concrete (𝑓𝑐𝑘 = 𝑓𝑐𝑚). 

For the approaches according to ACI318-19M and AASHTO-LRFD the specified compressive 

strength of concrete will be replaced too by the reported mean compressive strength of concrete 

(𝑓𝑐
′ = 𝑓𝑐𝑚). 

4.1.3 Concrete tensile strength 

It is reported that in many cases, no control specimens were cast to determine the concrete tensile 

strength. Then, for the database, the tensile strength of concrete was determined by empirical 

relationships using the compressive strength of concrete. Different equations are discussed in the 

background document [47], but for low strength concrete up to 𝑓𝑐𝑘 = 50 𝑀𝑃𝑎  the average 

concrete tensile strength is calculated following the CEB-FIP MC 90 proposal, and for high-

strength concrete 𝑓𝑐𝑘 > 50 𝑀𝑃𝑎, the German standard DIN 1045-1 (2201) approach was used. 

𝑓𝑐𝑡𝑚 = {

0.302 ⋅ 𝑓𝑐𝑚
2/3
 [𝑀𝑃𝑎]  𝑓𝑜𝑟 𝑓𝑐𝑚 ≤ 50𝑀𝑃𝑎

2.12 ⋅ ln (1 + (
𝑓𝑐𝑚
10
)) [𝑀𝑃𝑎]   𝑓𝑜𝑟 𝑓𝑐𝑚 > 50𝑀𝑃𝑎

 [Eq.  4-12] 

Where: 
Mean compressive strength of concrete is: 𝑓𝑐𝑚  

 

The mean tensile strength of concrete will be useful for the calculation of the transmission length 

(𝑙𝑡𝑟) according to the approaches stated for the Eurocode in section 4.1.5. This term will have no 

relevance in the calculation of the shear capacity in case the minimum transfer length is met. 

4.1.4 Yield strength of non-prestressed steel 

It is assumed that the yield strength reported for the group of experiments containing longitudinal 

steel reinforcement is the value that corresponds to the mean yield strength (𝑓𝑦𝑚). Details about 

this parameter is provided in section 3.2.2. 

4.1.5 Transfer of Prestress 

The transfer of the effective prestressing stress from the tendon to the concrete varies according 

to the prestressing method employed. For pre-tensioned members, the force is transmitted 

through the bond; then, it requires a certain length to transmit the entire prestressing force from 

tendons. For post-tensioned beams, the tendons are connected to a steel anchorage embedded 

in the concrete, tendons are stressed against the concrete member itself, and the force is 

transferred directly between the prestressing strands and anchor [49]. 
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Post-tensioning anchorage  

The configuration of the anchorages that directly transmit the prestressing force causes a stress 

concentration in the anchorage zone; this causes transverse splitting stresses as the concentrated 

force gradually spreads in the structure. It is required a called disturbance length of de St.-Venant 

to have a uniform load distribution over the cross-section. The disturbance length is independent 

of the force magnitude and only depends on the member's geometry and the position of the 

prestressing anchors. According to de St.-Venant, the disturbance length is equal to the largest 

dimension of the cross-section, most of the cases the height of the beam [49]. Usually, the 

disturbance length should be treated in detail in case of analyzing the area near the supports in 

deep beams specially, but for the present case study that has slender beams, this case will not 

be a problem. 

Introducing prestressing by bonding  

To introduce the total effective prestressing force by bond it is required a transmission length (𝑙𝑝𝑡), 

and this is the case of pre-tensioned prestressing steel. The stress distribution is affected by the 

transfer of the prestress by bond along the transmission length, as mentioned before. Then, 

depending on the distance of the considered cross-section from the starting point of the 

transmission length, the effective prestress transmitted varies linearly from zero to its full value. 

Consideration for calculation of shear strength according different design codes 

It is necessary to verify the different cases that are treated in the database. At the same time, the 

different design codes have their approach to calculate the transmission length. Then, considering 

that the critical section location assumed equals 𝑥𝑟 = 0.65 ⋅ 𝑎 [𝑚𝑚] , it will be verified if this 

distance is less than the required transmission length (𝑙𝑝𝑡) according to the different codes. In 

case (𝑥𝑟 < 𝑙𝑝𝑡), the effective prestressing force applied (𝜎𝑝𝑝) will be reduced according to each 

design code procedure, which in most cases is a linear relationship of distances. 

To verify if it is necessary to consider a reduction of the effective prestressing force acting at the 

critical location in the procedures, the required transmission length is calculated according to each 

design code, then the calculated values are compared with the critical location 𝑥𝑟. 

It is necessary to know the bond type to assume the factor related to the type of tendon that 

appears in the codes. This variable is given in the ACI-DAfStb-PC database with the notation 

𝑏𝑡𝑦𝑝𝑒 that is equal to 1 to consider strands and equal to 0 to consider wires in the procedure. 

• Eurocode 2 (EN1992-1-1:2004) 

Section 8.10.2.2 from [35] details the procedure to estimate the transfer length, where 

different factors are assumed as follow: 

o Typo of tendon factor: 𝜂𝑝1 = 2.7 (𝑤𝑖𝑟𝑒𝑠) 𝑜𝑟 3.2 (𝑠𝑡𝑟𝑎𝑛𝑑𝑠) 

o Bond conditions factor: Assumed for good conditions.  𝜂1 = 1. 

o Assumed gradual release: 𝛼1 = 1.0 

o For mostly used 3 and 7-wire strands: 𝛼2 = 0.19 

o Tendon stress just after release: 𝜎𝑝𝑚0 = 0.85 ⋅ 𝑓𝑝𝑢 [𝑀𝑃𝑎], assumed. 

The transmission length considering a verification for ultimate limit states is equal to: 

𝑙𝑝𝑡2 = 1.2 ⋅ 𝛼1 ⋅ 𝛼2 ⋅
𝜎𝑝𝑚0

𝜂𝑝1 ⋅ 𝜂1 ⋅ 𝑓𝑐𝑡𝑚
⋅ 𝜙𝑝 [𝑚𝑚] [Eq.  4-13] 

Where the mean tensile strength of concrete (𝑓𝑐𝑡𝑚 [𝑀𝑃𝑎])  calculated according to 

EN1992-1-1 [35], and the diameter of the prestressing steel is (𝜙𝑝 [𝑚𝑚]).  
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• prEN1992, draft 7 

Section 13.5.3 of this document [38] details the procedure. The assumed factors to 

estimate the transfer length are as follow: 

o Assuming gradual release: 𝛼1 = 1.0 

o Typo of tendon factor: 𝛼2 = 0.4 (𝑤𝑖𝑟𝑒𝑠) 𝑜𝑟 0.26 (𝑠𝑡𝑟𝑎𝑛𝑑𝑠) 

o Bond conditions factor: Assumed for good conditions.  𝜂1 = 1. 

o Tendon stress just after release: 𝜎𝑝𝑚0 = 0.85 ⋅ 𝑓𝑝𝑢 [𝑀𝑃𝑎], assumed. 

o Design factor for concrete: 𝛾𝑐 = 1 

The transmission length considering a verification for ultimate limit state is equal to: 

𝑙𝑝𝑡2 = 1.2 ⋅
𝛾𝑐
1.5
⋅
𝛼1 ⋅ 𝛼2 ⋅ 𝜎𝑝𝑚0

𝜂1 ⋅ √𝑓𝑐𝑘
⋅ 𝜙𝑝 [𝑚𝑚] [Eq.  4-14] 

Where the mean compressive strength was used instead of the characteristic value, and 

the diameter of the prestressing steel is considered in millimeters.  

• ACI318-19M 

The transmission length only depends on the diameter of the prestressing steel (𝜙𝑝) and 

the type of tendon used according to: 

𝑙𝑡𝑟 = {
50 ⋅ 𝜙𝑝 [𝑚𝑚]  𝑓𝑜𝑟 𝑠𝑡𝑟𝑎𝑛𝑑

100 ⋅ 𝜙𝑝 [𝑚𝑚]    𝑓𝑜𝑟 𝑤𝑖𝑟𝑒
 [Eq.  4-15] 

• AASHTO-LRFD 

The procedure in this case study is much simpler and only requires part of the procedure, 

as there are only straight tendons in the database the vertical component of prestress (𝑉𝑝) 

is equal to zero. Then, it’s only necessary to work with the factor 𝑓𝑝𝑜 that is defined as the 

modulus of elasticity of prestressing tendons multiplied by the locked-in difference in strain 

between the prestressing tendons and surrounding concrete. 

This factor 𝑓𝑝𝑜 is stated that should increase linearly within the transfer length from zero at 

the location where bond starts to its full value at the end of the transfer length (𝑙𝑡) defined 

as follow: 

𝑙𝑡𝑟 = 60 ⋅ 𝜙𝑝 [𝑚𝑚] [Eq.  4-16] 

With the diameter of the prestressing steel (𝜙𝑝) in millimeters. 

The procedures for each code were applied with all the tests in the ACI-DAfStb-PC database. 

With the transmission lengths calculated, the relation with the critical location is calculated as 

𝑙𝑡𝑟/𝑥𝑟. If this relation results greater than 1 means that the transmission length is greater than the 

critical location, then the effective prestressing force needs to be reduced.  

Figure 4-1 shows the case of Eurocodes, where the percentage of tests with 𝑥𝑟 < 𝑙𝑡𝑟 is 13% for 

prEN1992 and 1% for the current Eurocode. Figure 4-2 shows that for ACI318 and AASHTO-

LRFD codes, 27% and 15% respectively, of tests have the critical location within the transmission 

length. This makes it necessary to consider within the calculation procedures the transmission 

length for the calculation of the shear resistance, having as input data the effective prestressing 

stress as a function of the condition of the transmission length as stated below. 

𝜎𝑝𝑝 = 𝜎𝑝𝑝 ⋅
𝑥𝑟
𝑙𝑡𝑟
 [𝑀𝑃𝑎] [Eq.  4-17] 
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Figure 4-1 Histogram for transmission length in relation to critical location. For prEN1992 and EN1992-1-1 

 
Figure 4-2 Histogram for transmission length in relation to critical location. For ACI318-19M and AASTHO-LRFD 

The estimated values for the minimum transmission length are known to be conservative for any 

of the approaches studied. The results obtained in Figure 4-1 and Figure 4-2 indicated low 

percentages of tests with shorter transmission lengths than the required transmission length. To 

avoid further bias of the results due to different assumptions on the transmission length and to 

preserve a significant number of valid tests, it will be assumed that the required transmission 

length is met in all cases. This ends up ruling out the usefulness of subset 3 for comparative 

conclusions between approaches and makes subset 2 the most relevant for the conclusions. 

4.1.6 Condition for Iterative process to calculate shear capacity 

The iterative process for the calculation of the shear capacity in different design codes is 

necessary due to the dependence of certain factors (detailed in the last part of this section) on the 

applied external force 𝐹𝑒𝑥𝑡. Keeping in mind that the overall ability of a structural member to 

withstand an imposed demand is called capacity, the external load related with the shear strength 

calculated (𝐹𝑐𝑎𝑙) must be equal to the external load assumed (𝐹𝑒𝑥𝑡). Considering the uniform 

structural configuration for all tests (simple supported beams with equidistant point loads), one 

can state the following equality:  
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𝐹𝑐𝑎𝑙 = 𝐹𝑒𝑥𝑡  [𝑁] [Eq.  4-18] 

Considering that the equivalent external load at a critical location 𝑥𝑟 < 𝑎 can be calculated after 

the estimation of the shear strength of concrete as follow: 

𝐹𝑐𝑎𝑙 = 𝑉𝑐 − 𝑉𝑠𝑤(𝑥𝑟) [𝑁] [Eq.  4-19] 

The mentioned iterative procedure is applied for the following design codes due to: 

• ACI318-19M, approximate method.  

Because one of the terms (𝑉𝑢/𝑀𝑢), the ultimate shear force divide by the ultimate bending 

moment, depends on the applied external force applied (refer [Eq.  2-20], [Eq.  4-7] and 

[Eq.  4-8]). 

• ACI318-19M, detailed method. 

The calculation of flexure-shear strength is dependent on the external load applied, the 

last term ((𝑉𝑖 ⋅ 𝑀𝑐𝑟𝑒)/𝑀𝑚𝑎𝑥) includes the shear (𝑉𝑖) and bending moment (𝑀𝑚𝑎𝑥) due to 

external loads (refer [Eq.  2-26], [Eq.  4-22], and [Eq.  4-23]). 

• AASHTO-LRFD  

The net longitudinal tensile strain (𝜀𝑠) depends on the factored shear and bending moment 

(𝑀𝑢, 𝑉𝑢) at the section being analyzed (refer [Eq.  2-32], [Eq.  4-7], and [Eq.  4-8]). 

• prEN1992 

The effective shear span 𝑎𝑐𝑠 with respect to the control section depends on the relation 

(𝑀𝐸𝑚/𝑉𝐸𝑚), that varies according the external load applied. This factor is taken into 

account in the main formulation through the term 𝑑𝑛𝑜𝑚 (refer [Eq.  2-16], [Eq.  4-9]and [Eq.  

4-10]). 

The only case that doesn’t requires an iterative procedure is the procedure stated for the current 

Eurocode (EN1992-1-1:2004). The iterative procedure explained to calculate the shear capacity 

can be summarized as shown in Figure 4-3 too. 

Assumed Fext

A

SHEAR RESISTANCE

Vcm mean shear capacity 
according ACI318-19M

Vcm calculated

Fcalc=Fext

Vu = Fext + Vd

Mu = Fext   x + Md

VEd = Fext + Vd – Vp

MEd = Fext   x + Md - Mp

EC2
approach

prEN1992
approach

ACI318-19M
approach

Assumed Fext

Vcm calculated

Fcalc = Vcm - Vd

Vcm calculated

Fcalc = Vcm – Vd + Vp

Fcalc=Fext

Vcm mean shear capacity 
according prEN1992 

alternatives

Vcm mean 
shear capacity 
according EC2

Yes

Assume
other

Fext

Assume 
other 

Fext

Yes

AASHTO-LRFD 
approach

Assumed Fext

A

Vcm mean shear capacity 
according AASHTO-LRFD

Vcm calculated

Vu = Fext + Vd

Mu = Fext   x + Md

Fcalc = Vcm - Vd

Fcalc=Fext

Yes

Assume
other

Fext

A

SHEAR RESISTANCE SHEAR RESISTANCE SHEAR RESISTANCE

 

Figure 4-3 Iterative procedure for the calculation of the shear capacity according to the design codes studied. 
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4.2 SHEAR CAPACITY ACCORDING ACI318-19M 
Unlike the Eurocode, the ACI318-19 code considers the prestressing force as a capacity and not 

as a preload. Thus, this design code distinguishes the prestressing force from the external axial 

forces (𝑁𝑢), each case has its own procedure.  

Considering the uniform test set-up detailed in the last chapter, no axial loads applied, and straight 

tendons, the acting forces at the critical cross-section will be defined as follows.  

The shear and bending moment due to the unfactored dead load are going to be equal to: 

Shear: 

𝑉𝑑 = 𝑉𝑠𝑤(𝑥𝑟) = 𝑞𝑠𝑤 ⋅ (
𝐿

2
− 𝑥𝑟) [𝑁] [Eq.  4-20] 

Moment: 

𝑀𝑑 = 𝑀𝑠𝑤(𝑥𝑟) = 𝑞𝑠𝑤 ⋅
𝐿

2
𝑥𝑟 − 𝑞𝑠𝑤 ⋅

𝑥𝑟
2

2
 [𝑁 ⋅ 𝑚𝑚] [Eq.  4-21] 

And the cross-sectional forces acting due to externally applied factored loads are equal to: 

Shear: 

𝑉𝑖 = 𝑉𝑒𝑥𝑡(𝑥𝑟, 𝐹) = 𝐹𝑒𝑥𝑡  [𝑁];  𝑤ℎ𝑖𝑙𝑒 𝑥𝑟 < 𝑎 [Eq.  4-22] 

Moment: 

𝑀𝑚𝑎𝑥 = 𝑀𝑒𝑥𝑡(𝑥𝑟, 𝐹) = 𝐹𝑒𝑥𝑡 ⋅ 𝑥𝑟 [𝑁 ⋅ 𝑚𝑚];  𝑤ℎ𝑖𝑙𝑒 𝑥𝑟 < 𝑎 [Eq.  4-23] 

It is necessary to correlate the information provided in the database with the required variables in 

this code. Some variables will be used with same notation as Table 3-1, like 

ℎ, ℎ𝑓 , ℎ𝑓𝑡 , 𝐴𝑐 , 𝑦𝑡 , 𝐼𝑐𝑠, 𝐿, 𝑥𝑟 and others are going to be combined or redefined. This last group will be 

detailed below. 

The effective depth of the prestressed tendons needs to be defined into a unique value, so it is 

necessary to calculate this value considering the tendons that are tensioned, resulting in the 

following expression:  

𝑑𝑝 =
𝑑𝑝𝑏𝑜𝑡
2 ⋅ 𝐴𝑝𝑏𝑜𝑡 + 𝑑𝑝𝑤𝑒𝑏

2 ⋅ 𝐴𝑝𝑤𝑒𝑏

𝑑𝑝𝑏𝑜𝑡 ⋅ 𝐴𝑝𝑏𝑜𝑡 + 𝑑𝑝𝑤𝑒𝑏 ⋅ 𝐴𝑝𝑤𝑒𝑏
 [𝑚𝑚] 

[Eq.  4-24] 

And the area of prestressing steel is considered as: 

𝐴𝑝𝑠 = 𝐴𝑝𝑏𝑜𝑡 + 𝐴𝑝𝑤𝑒𝑏 + 𝐴𝑝𝑡𝑜𝑝 [𝑚𝑚
2] [Eq.  4-25] 

The aggregate factor is equal to one (𝜆 = 1) as all the experiments use normal aggregates, and 

the specified concrete strength (𝑓𝑐
′) is replaced by the mean compressive strength of concrete 

(𝑓𝑐𝑚), following the explanation given in section 4.1.2 to obtain mean values comparable between 

design codes.  

With this information it is possible to start with the calculation detailed below for the approximate 

and detailed method stated by ACI318-19M.  

The procedure of design starts with the conditional that states that this method is valid if the 

effective prestressing force is greater than the lower bound, as stated below in [Eq.  2-19] 

(𝐴𝑝𝑠𝑓𝑠𝑒 [𝑁] ≥ 0.4(𝐴𝑝𝑠𝑓𝑝𝑢 + 𝐴𝑠𝑓𝑦) [𝑁]). 

Where 𝑓𝑠𝑒 is the effective stress in prestressed strand after all losses, defined in ACI-DAfStb-PC 

database as 𝜎𝑝𝑝 . The specified tensile strength of prestressing steel 𝑓𝑝𝑢  is provided in the 

database as 𝑓𝑝, and as all the cases are beams without shear reinforcement the second term is 



P a g e  | 63 

 

going to be equal to zero (𝐴𝑠𝑓𝑦 = 0 [𝑘𝑁]). Complying with this conditional the following simplified 

and detailed procedures are applicable. 

4.2.1 ACI318-19M, Approximate method to estimate the shear capacity of concrete 

Is one of the most straightforward methods where it is only necessary to calculate 4 values. The 

minimum concrete shear resistance (𝑉𝑐.𝑚𝑖𝑛)  defined in [Eq.  2-23], and the concrete shear 

resistance (𝑉𝑐) according to the three approaches defined in ([Eq.  2-20], [Eq.  2-21], and [Eq.  

2-22]), where only the minimum value is captured. Then, the maximum value between 𝑉𝑐.𝑚𝑖𝑛 and 

𝑉𝑐 will be considered the calculated shear strength of concrete. 

In case the effective prestressing force results less than the lower bound ([Eq.  2-19]) the 

calculated shear strength by the approximate method is limited by the web-shear strength 𝑉𝑐𝑤 

([Eq.  2-28]) calculated using the reduced effective prestress force. 

As the mean compressive strength of concrete is being used, the final calculated strength is a 

mean value denoted as 𝑉𝑐,𝑚. 

4.2.2 ACI318-19M, Detailed method to estimate the shear capacity of concrete   

In this case the shear strength is equal to the minimum value of the flexural-shear strength (𝑉𝑐𝑖) 

and the web-shear strength (𝑉𝑐𝑤) calculated.  

• Flexural-shear strength (𝑽𝒄𝒊) 

It is calculated according to [Eq.  2-27], considering the following equalities for the use of 

the data from ACI-DAfStb-PC. 

The stress at the tensioned extreme fiber is calculated considering the three groups of 

prestress tendons that the ACI-DAfStb-PC defines (top, web, bottom) as follow. 

𝑓𝑝𝑒 =
𝐴𝑝𝑠 ⋅ 𝑓𝑠𝑒

𝐴𝑐
+
𝜎𝑝,(𝑖) ⋅ 𝑒𝑝.(𝑖) ⋅ 𝑦𝑡

𝐼𝑐𝑠
 [𝑀𝑃𝑎] [Eq.  4-26] 

Where 𝐴𝑐 is equal to the gross area of the cross-section, 𝐼𝑐𝑠 the moment of inertia, 𝑦𝑡 the 

distance of centroidal axis from bottom fiber, 𝑒𝑝,(𝑖) the eccentricity of tendons, and 𝜎𝑝,(𝑖) =

𝑓𝑠𝑒(𝐴𝑝,(𝑖)/𝐴𝑝𝑠) the effective stress at tendon for locations 𝑖 = 𝑡𝑜𝑝,𝑤𝑒𝑏 𝑜𝑟 𝑏𝑜𝑡𝑡𝑜𝑚. 

Then, the mean cracking moment due to external loads can be calculated as stated below  

𝑀𝑐𝑟𝑒.𝑚 =
𝐼𝑐𝑠
𝑦𝑡
⋅ (0.5𝜆 ⋅ √𝑓𝑐𝑚 + 𝑓𝑝𝑒 −

𝑀𝑑 ⋅ 𝑦𝑡
𝐼𝑐𝑠

) [𝑁 ⋅ 𝑚𝑚]  [Eq.  4-27] 

Obtained all the required values to calculate the flexural-shear strength, one has to 

compare the calculated 𝑉𝑐𝑖 with the lower bound stated in [Eq.  2-27]. 

• Web-shear strength (𝑽𝒄𝒘) 

It is necessary to calculate the compressive stress in the concrete after all prestress 

losses, at the centroid of cross-section resisting externally applied loads ([Eq.  4-28]). In 

case the centroidal axis is located within one of the flanges (𝑦𝑡 < ℎ𝑓𝑡  𝑜𝑟 𝑦𝑡 > ℎ − ℎ𝑓) it is 

necessary to calculate the compressive stress at the junction of the web and flange. 

𝑓𝑝𝑐 =
𝐴𝑝𝑠 ⋅ 𝑓𝑠𝑒
𝐴𝑐

 [𝑀𝑃𝑎] [Eq.  4-28] 

All the experiments, in this database are straight, then the angle of inclination of the 

tendons is always zero (𝜃𝑝 = 0 [𝑑𝑒𝑔]), then the vertical component of effective prestress 

force (𝑉𝑝) will be zero too. 

With this information, [Eq.  2-28] can be applied to calculate 𝑉𝑐𝑤.  
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Same as the approximate method, as the mean compressive strength of concrete is being used 

in the procedure, the calculated values represent the mean flexural-shear strength  𝑉𝑐𝑖,𝑚 and the 

mean web-shear strength 𝑉𝑐𝑤,𝑚. Both mean values are compared, keeping the lowest as the mean 

concrete shear strength 𝑉𝑐,𝑚 calculated by the detailed method from ACI318-19M. 

4.3 SHEAR CAPACITY ACCORDING AASHTO-LRFD  
In this case, the procedure to follow is one of the most laborious and time-consuming since it also 

requires the most variables. Like ACI318, prestressing is considered a capacity, so the ultimate 

cross-sectional forces acting on the beam (𝑉𝑢,𝑀𝑢) are considered for the calculations. 

The first step of this procedure is the calculation of the nominal flexural resistance (𝑀𝑛). The main 

value required for this is the stress in prestressing steel at nominal flexural resistance. In order to 

refine the results, the stress in the prestressing steel is computed by a detailed analysis using the 

strain compatibility approach, where the following values where used. 

• Concrete ultimate strain: 𝜀𝑐𝑢 = 3/1000 [−] 

• Ultimate strain of prestressing steel: 𝜀𝑝𝑢 = 35/1000 [−] 

• Yield strain of prestressing steel: 𝜀𝑝𝑦 = 𝑓𝑝𝑦/𝐸𝑝 [−] 

• Ultimate strain of non-prestressed steel reinforcement: 𝜀𝑠𝑢 = 45/1000 [−] 

• Yield strain of non-prestressed steel reinforcement: 𝜀𝑠𝑦 = 𝑓𝑦𝑚/𝐸𝑠 [−] 

To start the calculation procedure is possible to begin dividing in a useful way the strain in the 

prestressing steel (𝜀𝑝𝑠) into three separate states. The first is the effective strain in the tendon 

after losses (𝜀𝑝𝑒), the second is the necessary strain to decompress the section to a condition of 

zero strain (𝜀𝑑), and lastly the strain resulted from strain compatibility, the strain due to nominal 

flexural strength (Δ𝜀). These can be calculated with the following relations. 

𝜀𝑑 =
𝑃𝑒

𝐴𝑐 ⋅ 𝐸𝑐
+
𝑀𝑝 ⋅ 𝑒𝑝

𝐼𝑐𝑠 ⋅ 𝐸𝑐
 [– ] [Eq.  4-29] 

Considering the total effective prestress load equal to: 𝑃𝑒 = 𝑓𝑝𝑒 ⋅ 𝐴𝑝𝑠 [𝑁] , where the 

effective stress after all losses is 𝑓𝑝𝑒 = 𝜎𝑝𝑝 [𝑀𝑃𝑎]. 

𝜀𝑝𝑒 = 𝑓𝑝𝑒/𝐸𝑝 [−] [Eq.  4-30] 

Δ𝜀 =
𝑑𝑝 − 𝑐

𝑐
⋅ 𝜀𝑐𝑢[−] [Eq.  4-31] 

Where 𝑐 [𝑚𝑚] is the height of the compression zone, as can be seen in Figure 4-4 along 

with the illustration of all other variables of interest. 

εps = εd + εpe + Δ𝜀 [−] [Eq.  4-32] 

The total stain in prestressing steel can be estimated with approximate methods given in 

the same design code, but care must be taken to verify the prestressing stresses acting, 

since certain limits are given to the applicability of these simplified methods. 
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Figure 4-4 Strain and equivalent stress as section is loaded to nominal strength 

With what has been established so far, it is possible to calculate the nominal flexural strength. 

Guided with the last Figure 4-4 to visualize a general case from the database, it is required to find 

the equilibrium on the cross-section looking for the equality between tensile and compressive 

forces. To achieve this the following condition must be met. 

𝐹𝑐 + 𝐹𝐴𝑠2 + 𝐹𝑝.𝑡𝑜𝑝 = 𝐹𝑝.𝑤𝑒𝑏 + 𝐹𝑝.𝑏𝑜𝑡 + 𝐹𝐴𝑠 [𝑁] [Eq.  4-33] 

This is a general case, so in some tests, some terms may be excluded from the last 

equation, which can be started to be unpacked as follows. 

The concrete compressive force resultant (𝐹𝑐) is the first term. As show in Figure 4-4 an equivalent 

rectangular stress block is used by AASTHO-LRFD for the concrete compression stress-strain 

behavior to make it easier to calculate the nominal moment. This rectangular stress block is 

altered by the factors 𝛼1 and 𝛽1 to provide the same total compression force and force centroid 

as the integration of the nonlinear stress-strain curve over the same area [49]. In the case of 

rectangular beams or if the compressive zone is located within the flange in compression, the 

compression force by concrete is equal to: 

𝐹𝑐 = 𝛼1 ⋅ 𝑓𝑐𝑚 ⋅ 𝛽1 ⋅ 𝑐 ⋅ 𝑏 [𝑁] [Eq.  4-34] 

In case the compressive zone cannot be assumed rectangular and instead is considered as a T-

shape the following relation applies. 

𝐹𝑐 = 𝛼1 ⋅ 𝑓𝑐𝑚 ⋅ (𝑏𝑤 ⋅ 𝛽1 ⋅ 𝑐 + (𝑏 ⋅ ℎ𝑓 − 𝑏𝑤 ⋅ ℎ𝑓)) [𝑁] [Eq.  4-35] 

The defined stress block factors (𝛼1 [−], 𝛽1 [−])  detailed in [Eq.  2-30], depend on the magnitude 

of the compressive strength of concrete (𝑓𝑐𝑚). 

Now, it is necessary to calculate the resultant forces by the non-prestressed longitudinal steel 

reinforcement with the following relations. 

𝐹𝑠 = 𝐴𝑠 ⋅ 𝑓𝑠𝑦 [𝑁] [Eq.  4-36] 

Where 𝐴𝑠 is the area of non-prestressed steel and 𝑓𝑠𝑦 is the effective stress acting in the steel 

rebar, which depends on the calculated longitudinal strain obtained with the following relation. 
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𝜀𝑠 =
𝑑𝑠 − 𝑐

𝑐
⋅ 𝜀𝑐𝑢 [−] [Eq.  4-37] 

Where 𝑑𝑠 is the effective depth of the non-prestressing longitudinal steel reinforcement. 

Assuming the stress-strain relationship showed in Figure 4-5-A, then the stress at the steel rebar 

can be calculated with the conditional set below. 

𝑖𝑓(𝜀𝑠 < 𝜀𝑠𝑦) 𝑡ℎ𝑒𝑛 ∶ 𝑓𝑠𝑦 = 𝐸𝑠 ⋅ 𝜀𝑠 [𝑀𝑃𝑎] 

              𝑒𝑙𝑠𝑒: 𝑓𝑠𝑦 = 𝑓𝑦𝑚 [𝑀𝑃𝑎] 
[Eq.  4-38] 

For the non-prestressed rebars, there are two possible locations, the tension side or the 

compression side. For both, the same procedure applies to calculate the resultant force. The only 

thing that changes is the variables corresponding to the reinforcement in tension (𝐴𝑠, 𝑑𝑠) for those 

corresponding to the reinforcement in compression (𝐴𝑠2, 𝑑𝑠2). 

The resultant forces by prestressed steel are obtained with [Eq.  4-39] detailed below, where 𝐴𝑝 

refers to the prestressed steel area of the region analyzed (top, web, bottom). The effective stress 

𝑓𝑝𝑠 in this case depends on the total strain in the prestressing steel (𝜀𝑝𝑠) calculated with [Eq.  

4-29], [Eq.  4-30], [Eq.  4-31], and [Eq.  4-32]. According to the obtained value for the total strain 

the effective stress is calculated following the stress-strain relationship showed in Figure 4-5-B, 

that derives in the conditional given in [Eq.  4-40]. 

𝐹𝑝 = 𝐴𝑝 ⋅ 𝑓𝑝𝑠 [𝑁] [Eq.  4-39] 

𝑖𝑓(𝜀𝑝𝑠 < 𝜀𝑝𝑦) 𝑡ℎ𝑒𝑛: 𝑓𝑝𝑠 = 𝐸𝑝 ⋅ 𝜀𝑝𝑠 [𝑀𝑃𝑎];  

𝑒𝑙𝑠𝑒: 𝑓𝑝𝑠 =
𝑓𝑝𝑢 − 𝑓𝑝𝑦

𝜀𝑝𝑢 − 𝜀𝑝𝑦
⋅ (𝜀𝑝𝑠 − 𝜀𝑝𝑦) + 𝑓𝑝𝑦 [𝑀𝑃𝑎]  

[Eq.  4-40] 
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Figure 4-5 Stress-strain diagram for (A) non-prestressed and (B) prestressed longitudinal steel reinforcement 

The calculated resultant forces in all cases are dependent on the assumed concrete compressive 

height (𝑐). By means of the assumed compressive zone height, the iterative process will be 

carried out until the tensile forces are equal to the compression forces. This iterative process can 

then be summarized in the following general steps. 

o Assume a value 𝑐. 

o Calculate the resultant forces (𝐹𝑐 , 𝐹𝑠, 𝐹𝑝) 

o Verify condition of equilibrium of forces within the cross-section [Eq.  4-33], 

otherwise, start again assuming another value for 𝑐. 

A B 
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Then, with the average prestress in prestressed tendons 𝑓𝑝𝑠  obtained one can proceed to 

calculate the mean nominal flexural resistance (𝑀𝑛,𝑚) detailed in [Eq.  2-30], using the mean 

compressive strength of concrete in the calculation. 

After that the procedure detailed in section 2.4.4 can be followed considering the area of 

prestressed tendons 𝐴𝑝𝑠 equal to the sum of the tendons located at the web or bottom part of the 

beams. Same case for the average stress in prestressed tendons (𝑓𝑝𝑠) only considers the tendons 

acting in tension. To calculate the distance from extreme compression fiber to the centroid of 

prestressing reinforcement (𝑑𝑝), [Eq.  4-24] applies, considering the variety of cases within the 

database. 

This design code considers the axial force (𝑁𝑢) in its procedure, which is zero in all cases, and 

so is the vertical prestressing force since in all cases the tendons are straight as it is well known. 

At a certain point to calculate the crack spacing parameter (𝑠𝑥𝑒), the value of maximum aggregate 

size is required, and this data is contained in the ACI-DAfStb-PC database with the notation Æa 

[mm]. 

One thing that shout be detailed is about 𝑓𝑝𝑜 that can be interpreted as the effective prestress, the 

stress of decompression at the level of the prestressing steel [Eq.  4-41], or the prestress just 

before transfer (0.7𝑓𝑝𝑢 𝑡𝑜 0.75𝑓𝑝𝑢). AASTHO-LRFD indicates that for “usual” levels of prestressing 

a value of 0.7𝑓𝑝𝑢 is appropriate for both pretensioned and post-tensioned members. Likewise, it 

is stated that 𝑓𝑝𝑜for pretensioned members can be taken as the jacking stress, and for post-

tensioned members 𝑓𝑝𝑜 can be the average stress in tendons [50].  

It can be understood that taking the effective stress is somewhat conservative, since it leads to 

an increase of the longitudinal strain, thus a decrease in 𝛽 that reduces the final value of the 

concrete shear resistance 𝑉𝑐. Wishing to comply with the criterion stablished by AASTHO, it was 

deemed convenient to assume this parameter according to [Eq.  4-41] reported by Dolan [49]. 

𝑓𝑝𝑜 = 𝑓𝑝𝑒 + 𝑓𝑝𝑐 ⋅
𝐸𝑝
𝐸𝑐
=
𝑃𝑝.𝑖𝑛𝑓

𝐴𝑝
+
𝑃𝑝.𝑖𝑛𝑓

𝐴𝑐
⋅
𝐸𝑝
𝐸𝑐
 [𝑀𝑃𝑎] [Eq.  4-41] 

As in the previous design code, having used mean values for concrete compressive strength and 

yield strength of steel reinforcement, one obtains as final result the mean shear strength according 

to [Eq.  2-29]. Since the database contains only beams with straight tendons, the vertical 

component of the prestressing force equals 0, and the final expression will be as follows. 

𝑉𝑛,𝑚 = 𝑚𝑖𝑛 {
𝑉𝑐,𝑚

0.25(𝑓𝑐𝑚 + 1.6)𝑏𝑣𝑑𝑣,𝑚
 [𝑁] [Eq.  4-42] 

4.4 SHEAR CAPACITY ACCORDING EUROCODE 2 (EN1992-1-1:2004) 
It is the most straightforward procedure among all, and it requires a small number of parameters. 

As mentioned before, it does not require an iterative procedure to calculate the shear capacity 

since this approach does not depend on the applied external force. This model does not 

distinguish between axial forces and prestressing forces. In the European codes, prestressing will 

always be considered as preload, then the mean cross-sectional forces are used in the 

calculations (𝑉𝐸𝑚,𝑀𝐸𝑚).  

So, again, to correlate the database with the parameters required for this design code, the 

following relations were used. To quantify the reinforcement ratio of longitudinal reinforcement 

with the information available in the database, considering the generic case and only the 

reinforcement in tension, the ratio is given by: 
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𝜌𝑙 =
𝐴𝑝𝑏𝑜𝑡 + 𝐴𝑝𝑤𝑒𝑏 + 𝐴𝑠

𝑏𝑤 ⋅ 𝑑
 [−] [Eq.  4-43] 

Also, this code requires the distance between the compression face and the tensile resultant of 

the prestressed and non-prestressed longitudinal reinforcement. For this purpose, the following 

equation is used considering a generic case. 

𝑑 =
𝑑𝑠
2 ⋅ 𝐴𝑠 + 𝑑𝑝𝑏𝑜𝑡

2 ⋅ 𝐴𝑝𝑏𝑜𝑡 + 𝑑𝑝𝑤𝑒𝑏
2 ⋅ 𝐴𝑝𝑤𝑒𝑏

𝑑𝑠 ⋅ 𝐴𝑠 + 𝑑𝑝𝑏𝑜𝑡 ⋅ 𝐴𝑝𝑏𝑜𝑡 + 𝑑𝑝𝑤𝑒𝑏 ⋅ 𝐴𝑝𝑤𝑒𝑏
 [𝑚𝑚] [Eq.  4-44] 

In order to obtain comparable values, i.e., to calculate the mean shear strength (𝑉𝑅𝑚), some 

factors differ from their value stated in the standard. 𝐶𝑅𝑑,𝑐 and 𝑘1 values stated (Section 2.4.1.1) 

include some resistance factors that correspond for the design of new structures. For the 

assessment and comparison of mean values these factors are taken as 𝐶𝑅𝑚,𝑐 = 0.15 and 𝑘1 =

0.225 according to [41].The characteristic concrete compressive strength as stated in section 

4.1.2 is replaced by the mean compressive strength (𝑓𝑐𝑘 = 𝑓𝑐𝑚) too.  

The last necessary value to obtain is the compressive stress in concrete from prestressing (𝜎𝑐𝑝 =

𝑃𝑝.∞ 𝐴𝑐⁄ ). Where the effective prestress load 𝑃𝑝.∞ is calculated multiplying the effective stress on 

tendons 𝜎𝑝𝑝 with the total area of prestress tendons 𝐴𝑝𝑠, both values given in the database. Then 

all parameter required to calculate the mean shear capacity are given ([Eq.  2-10]). 

4.5 SHEAR CAPACITY ACCORDING PREN1992, DRAFT 7  
As in EC2, the mean cross-sectional forces (𝑉𝐸𝑚,𝑀𝐸𝑚) will be used for the calculations in this 

design code. Also, to calculate mean shear strength values (𝑉𝐸𝑚) , the partial factors are 

considered equal to 1 (𝛾𝑉 = 1) , and the mean values of compressive strength of concrete 

(𝑓𝑐𝑘 = 𝑓𝑐𝑚) and yield strength of steel reinforcement (𝑓𝑦 = 𝑓𝑦𝑚) are used. 

The aggregate size parameter required for this procedure is the smallest value of the upper sieve 

size for the coarsest fraction of aggregates. As it is not given in the used database, this parameter 

is assumed equal to half the maximum aggregate size that is reported in the database 

(𝐷𝑙𝑜𝑤𝑒𝑟 = 𝑎𝑔/2). 

The prEN1992 draft 7 code indicates two formulations to estimate the shear strength of 

prestressed member without shear reinforcement that are going to be distinguished for the whole 

document as follow. 

• prEN1: The main formulation is given by [Eq.  2-16] that considers the prestressing effect 

by means of the 𝑘𝑣𝑝  factor. The resultant equation to evaluate the shear resistance 

applying all the conditions stated in section 2.4.2 and assuming that 𝑘𝑣𝑝 > 0.1 is as follow. 

𝜏𝑅𝑚,𝑐 = 0.66 ∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑚 ∙
𝑑𝑑𝑔

𝑎𝑣 ⋅ (1 +
𝑁𝐸𝑚
|𝑉𝐸𝑚|

⋅
𝑑
3)
)

1
3

[𝑀𝑃𝑎] 
[Eq.  4-45] 

Where the conditional for the effective shear span can be expressed as:  

𝑎𝑣 = {

𝑑    𝑖𝑓 𝑎𝑐𝑠 ≥ 4 ⋅ 𝑑

√𝑎𝑐𝑠 ⋅
𝑑

4
   𝑖𝑓 𝑎𝑐𝑠 < 4 ⋅ 𝑑

[𝑚𝑚],𝑤𝑖𝑡ℎ 𝑎𝑐𝑠 = |
𝑀𝐸𝑚
𝑉𝐸𝑚

| [𝑚𝑚] [Eq.  4-46] 
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Recognizing that the role of the 𝑘𝑣𝑝 factor was to modify the longitudinal strain term ending 

with an additional second term that is function of the normal load applied 𝑁𝐸𝑚 which is 

equal to the effective prestress force applied (𝑃𝑝,∞ = 𝜎𝑐𝑝 ⋅ 𝐴𝑐).  

• prEN2: The main equation [Eq.  2-17] considers the prestressing effect by adding a 

second factor (𝑘1𝜎𝑐𝑝) where 𝑘1 has an upper limit of (0.15 ⋅ 1.4/𝛾𝑉), and 𝜎𝑐𝑝 has an upper 

limit of 0.2 ⋅ 𝑓𝑐𝑑 being 𝑓𝑐𝑑 the design concrete compressive strength according 5.1.6-1 from 

the draft document [38]. However, the latter limit is not considered to calculate the mean 

shear strength that will be compared with experiments. 

The resulting expression considering the additional factors results as follow explicitly. 

𝜏𝑅𝑚,𝑐 = 0.66 ∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑚 ∙
𝑑𝑑𝑔

𝑎𝑣
)

1
3

− 1.4 ∙ (0.07 +
𝑒𝑝
4𝑑
) ∙
𝑁𝐸𝑚
𝐴𝑐
 [𝑀𝑃𝑎] 

[Eq.  4-47] 

Where the same conditional [Eq.  4-46] applies for the effective shear span, and 𝑁𝐸𝑚 is 

equal to the effective prestress force too. The tendons eccentricity in the critical cross-

section being analyzed is calculated according the effective depth of the prestressed steel 

in tension as follow. 

𝑒𝑝 =
𝑒𝑝.𝑏𝑜𝑡 ⋅ 𝐴𝑝.𝑏𝑜𝑡 + 𝑒𝑝.𝑤𝑒𝑏 ⋅ 𝐴𝑝.𝑤𝑒𝑏

𝐴𝑝.𝑏𝑜𝑡 + 𝐴𝑝.𝑤𝑒𝑏
 [𝑚𝑚] [Eq.  4-48] 

The final value obtained by each approach is compared at the end with the lower bound indicated 

in [Eq.  2-15]. For more details about both approaches refer to section 5.2.1, in this part of the 

document it is only intended to apply the codes and highlight where prestressing forces are 

included 

Unlike the current EC2, in this case an iterative process is required for both formulas as stipulated 

in section 4.1.6, because the effective shear span (𝑎𝑐𝑠) depends on the applied external 𝐹𝑒𝑥𝑡. 

4.6 COMPARISON WITH EXPERIMENTAL RESULTS FROM ACI-DAFSTB-PC 

DATABASE 
The following two sub-sections will present the results of two critical filters applied to form the 

subset 1 and 2 of tests. First, the selection of the experiments according to the type of failure 

reported in the database. Then, the influence of the cross-section shape will be analyzed to 

quantify variations in results according to different assumptions made for the evaluation of the 

shear capacity according to prEN1992 approaches particularly. These two sections will give a 

criterion to evaluate the final results obtained with the subsets established. 

4.6.1 Shear failure mode influence 

This will be evaluated by comparing the original database (ACI-DAfStb-PC) with the subset 1. As 

detailed in section 3.6, the subset 1 tries to work with rectangular and I/T shape beams that 

develop a flexural-shear failure only, excluding the identified experiments with another type of 

failure reported. 

Table 4-1 shows the differences in the statistical indicators between the original database and the 

first subset, just to have an overview of the consequences of this selection process. It is essential 

to note that this process was initiated to correctly correlate the type of shear failure analyzed by 

the studied approaches with the observed shear failure types. This relationship must occur since 

the shear failure mechanism would not be the same as the one assumed by some approaches. 

It can be observed in Table 4-1 that the selection of the experimental results related to the type of 

shear failure being analyzed affects EC2 and ACI318-19M approximate method considerably, 
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both empirical methods but EC2 distinguish zones cracked in bending, being exclusively related 

with flexural-shear failure strength calculation. The accuracy is improved for both approaches and 

the precision experiences a small favorable change. 

ACI318-19M detailed method considers the verification of shear-tension and flexural-shear 

failures; AASHTO-LRFD is a generic approach covering various types of shear failures, both 

approaches do not suffer relevant changes in terms of precision. In terms of accuracy, AASHTO-

LRFD tends to improve with a mean value closer to 1, but the opposite occurs with ACI318-19M 

detailed method, suggesting that the web-shear evaluation is accurate and favors the evaluation 

of groups of tests not classified by the type of shear failure. 

prEN-1 does not suffer major changes and prEN-2 improves its accuracy reducing its mean value 

from 1.54 to 1.45. Both methods by the assumptions that underlie them are related to flexural-

shear failures. 

Table 4-1 Statistical characteristics of ACI-DAfStb-PC database and subset 1. Assumed 𝑥𝑟 = 0.65𝑎 

  

Mean of 𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 
Standard Deviation of 

𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 
Coefficient of variation 

of 𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 
 

ACI-
DAfStb-PC 

Subset 1 
ACI-

DAfStb-PC 
Subset 1 

ACI-
DAfStb-PC 

Subset 1  

ACI-s 1.37 1.20 0.63 0.54 0.46 0.45  

ACI-d 1.41 1.44 0.55 0.58 0.39 0.40  

AASHTO 1.73 1.68 0.42 0.41 0.24 0.24  

EC2 1.62 1.51 0.49 0.44 0.30 0.29  

prEN-1 1.38 1.37 0.34 0.35 0.25 0.25  

prEN-2 1.56 1.47 0.45 0.43 0.29 0.30  

4.6.2 Cross-section shape influence 

For this evaluation, the differences between the subset 1 and subset 2 shown in Table 4-2 are 

helpful. Nevertheless, to visualize the effect of the cross-section shape better, the histograms in 

Figure 4-6 have been generated, where the experiments grouped at subset 1 are separated into 

two groups, rectangular beams, and T- or I- shape beams. The histograms were generated for 

both groups to visualize that in approaches assuming a rectangular cross-section, the mean 

resistance of the I or T beams tends to be higher than the mean resistance of rectangular beams. 

It is visually observed that the crest of the histogram for I or T beams tends to higher ranges than 

the histogram for rectangular beams for design codes like EC2 or prEN1992. 

With the results presented, it can be said that subset 2 is suitable for comparing results of code 

designs that consider the type of failure and the type of cross-section being used (Flexural-shear 

failure in rectangular beams – proposal for new Eurocode). 

Figure 4-6 shows that the empirical methods (ACI318-19 approximate method and EC2) do not 

obtain precise results for rectangular beams group (COV values of 0.34 and 0.31 respectively), 

which is improved for the I/T beams group with COV=0.31 for ACI318-19 approx. method and 

COV=0.22 for EC2. It has to be remarked that both methods obtain higher mean values for I/T 

beams, case of ACI318-19 approx. method with a mean value of 0.96 for rectangular beams and 

1.75 for I/T beams, EC2 does not have such a difference between the two groups with a mean 

value for rectangular beams of 1.44 and 1.69 for I/T beams. 
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*ci/N: refers to the number of tests within the bin (ci) over the total number of elements (N) 
Figure 4-6 Histograms comparing results obtained using subset 1 and xr=0.65a, for beams with rectangular cross-section and beams with I- or 

T-shape cross-section. (A) ACI318-19M approximate approach (B) ACI318-19M detailed approach (C) AASHTO-LRFD (D) Eurocode 2 (E) 
prEN1 (F) prEN2 

Case of ACI318-19 detailed method, tends to obtain higher accuracy and precision for the analysis 

of I/T beams flexural-shear failure. The mean value equal to 1.16 for the I/T beam group is much 

better than the 1.55 obtained for the rectangular beam group, and the latter group has a COV=0.41 

which is much higher than the COV=0.21 obtained for the I/T beams group. This approach is 

based on estimating the critical crack formation, so it can be assumed that the estimated empirical 

value of (0.05𝜆√𝑓𝑐
′) required to transform a flexural crack into a flexural-shear crack is better 

calibrated for I/T beams in terms of accuracy and precision. 

AASHTO-LRFD has similar accuracy for both groups of beams (rectangular: mean=1.69, I/T 

shape:  mean=1.67), with a tendency of more precise results for I/T beams (COV=0.20) compared 

C D 

E F 

A B 
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with rectangular beams (COV=0.26). These results were expected since the detailed approach 

used to calculate the shear capacity applies the strain compatibility method to calculate the 

nominal flexural strength of the beam considering the shape of the cross-section in the procedure. 

The approaches proposed for the new Eurocode (prEN1 and prEN2) are based on the assumption 

that the cross-section is rectangular to assume a constant location of the resultant compressive 

force on the cross-section. This resulted in a higher mean value for the I/T beams group (prEN1 

mean=1.74; prEN2 mean=1.69) than for the rectangular beams group (prEN1 mean=1.56; prEN2 

mean=1.35).  

One has to consider the dependency of the accuracy and precision of the approaches on the 

critical location (𝑥𝑟) assumed to analyze the flexural-shear strength. As long as this assumption 

is mainly related to those established by the approach, more objective and valid comparisons will 

be obtained. Chapter 5 will inquire into the analysis of the new proposals for prEN1992, and 

assuming 𝑥𝑟 = (𝑎 − 𝑑) as suggested in these proposals, the influence of the cross-section shape 

will be analyzed again as is of interest for these approaches. 

4.6.3 Accuracy, precision and conservativeness of shear design procedures proposed 

by design codes 

Subset 3 excludes tests that do not comply with the verifications given in section 3.5. It is useful 

to evaluate the performance of the tests when trying to filter out tests possibly disturbed by 

anchorage failures or the flexural capacity of the beam. As shown in Table 4-2, the coefficient of 

variation is reduced/maintained for all design codes comparing only tests from subset 3, and the 

mean values are shifted to the left, closer to 1, for all design codes except for ACI318-19. Subset 

3 can generate different results if one takes a different approach for the verifications stated in 

section 3.5. So as the ideal group of tests without any biases due to the inclusion of evaluation 

factors that may vary, subset 2 can be said to be the most useful. 

Table 4-2 Statistical information from comparing the design codes results with tests for the defined subsets when critical location is xr = 0.65a 

  

Mean of 𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 [-] 
Coefficient of variation of 
𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 [-] 

5th Percentile lower bound 
of 𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 [-] 

Subset 
1 

Subset 
2 

Subset 
3 

Subset 
1 

Subset 
2 

Subset 
3 

Subset 
1 

Subset 
2 

Subset 
3 

ACI-s 1.20 0.98 0.93 0.45 0.34 0.32 0.48 0.47 0.45 

ACI-d 1.44 1.55 1.58 0.40 0.41 0.35 0.90 1.03 1.03 

AASHTO 1.68 1.69 1.67 0.24 0.26 0.25 1.12 1.11 1.12 

EC2 1.51 1.44 1.41 0.29 0.31 0.28 0.89 0.82 0.78 

prEN1 1.37 1.36 1.36 0.25 0.26 0.26 0.93 1.00 0.97 

prEN2 1.47 1.37 1.36 0.30 0.31 0.29 0.92 0.84 0.79 

 

Based on the information presented in Table 4-2, the mean value, coefficient of variation, and 5th 

percentile lower bound of the different design codes have been evaluated, and it can be seen that 

ACI318-19 approximate method is the one that obtains mean values closer to 1, although, for last 

two subsets, these values are not higher than one. AASHTO-LRFD has the mean value furthest 

from unity with values between 1.67 and 1.69, and the other design codes have mean values in 

the range between 1.36 and 1.58, being prEN1 the one with values closer to 1. In other words, in 

terms of accuracy one has to highlight ACI318-19 approximate method and prEN1 approach. 

Coefficients of variation for subset 1 are even for AASHTO-LRFD, EC2, prEN1, and prEN2, 

varying from 0.24 to 0.31. For ACI318-19, the highest values appear for subset 1, with 0.45 for 

the approximate method and for the detailed method the worst COV=0.41 is for subset 2. 

AASHTO-LRFD always has the lowest coefficients of variation for all subsets, although prEN1 for 
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subset 2 has the lowest value (COV=0.26), as well. ACI318-19 is the opposite, with the highest 

coefficients of variation (between 0.32-0.45) for all subsets. The ACI318-19 detailed method is 

the worst performing in terms of precision for subsets 2 and 3. 

The 5th percentile value helps evaluate the approaches in terms of safety, with values between 

0.8 and 1 indicating good levels of safety. EC2, prEN1, and prEN2 obtain values that indicate 

good safety levels, AASHTO, and the detailed method ACI318-19 also obtain values that indicate 

good safety levels but tend to be conservative since values higher than values 1 are observed. 

ACI318-19 obtains undesirable safety levels according to this analysis with values lower than 0.5. 

An interesting thing to note is the change in the histograms generated for the different subsets to 

visualize the statistical indicators presented before. Figure 4-7 shows, for all the design codes 

studied, the evolution of the histogram from subset 1 to subset 3. What can be observed is the 

variation of the mode (the range containing the highest number of results) and the evolution of the 

distribution of the comparative results considering the different group of tests (subsets) defined. 

 

 

 
*ci/N: refers to the number of tests within the bin (ci) over the total number of elements (N) 

Figure 4-7 Histograms from comparison of design codes with experimental data for all the defined subsets. (A) ACI318-19M approximate 
approach (B) ACI318-19M detailed approach (C) AASHTO-LRFD (D) Eurocode 2 (E) prEN1 (F) prEN2 

A B 

C D 

E F 
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At this point, it is convenient to analyze a fundamental assumption made at the beginning, the 

critical location where the estimated shear resistance is analyzed with the different design codes 

(section 3.4). Recapitulating the initial hypothesis about the critical location based on experimental 

observations, equal to 𝑥𝑟 = 0.65𝑎 , it is questionable when comparing certain design code 

approaches with tests, since some of them suggest the critical location at a distance 𝑥𝑟 =

𝑑 𝑜𝑟 𝑥𝑟 = (𝑎 − 𝑑). This leads us to compare at least the subset 2 of tests results with the mean 

shear capacity estimated by different design codes at different suggested critical locations.  

For this purpose, the statistical information from comparing the design codes results with tests for 

the defined subsets was generated (Table 4-3 and  

Table 4-4) assuming the critical locations as proposed before at a distance 𝑑 from the support or 

point load. 

Table 4-3 Statistical information from comparing the design codes results with tests for the defined subsets when critical location is xr = a-d 

  

Mean of 𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 [-] 
Coefficient of variation of 
𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 [-] 

5th Percentile lower bound 
of 𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 [-] 

Subset 
1 

Subset 
2 

Subset 
3 

Subset 
1 

Subset 
2 

Subset 
3 

Subset 
1 

Subset 
2 

Subset 
3 

ACI-s 1.28 1.04 1.00 0.45 0.32 0.29 0.52 0.50 0.49 

ACI-d 1.51 1.62 1.66 0.38 0.39 0.33 0.98 1.02 1.10 

AASHTO 1.76 1.78 1.76 0.22 0.23 0.23 1.26 1.30 1.23 

EC2 1.51 1.44 1.41 0.29 0.31 0.28 0.89 0.82 0.78 

prEN1 1.44 1.41 1.42 0.23 0.24 0.24 1.05 1.04 1.03 

prEN2 1.49 1.39 1.38 0.29 0.30 0.29 0.95 0.86 0.81 

 

Table 4-4 Statistical information from comparing the design codes results with tests for the defined subsets when critical location is xr = d 

  

Mean of 𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 [-] 
Coefficient of variation of 
𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 [-] 

5th Percentile lower bound 
of 𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 [-] 

Subset 
1 

Subset 
2 

Subset 
3 

Subset 
1 

Subset 
2 

Subset 
3 

Subset 
1 

Subset 
2 

Subset 
3 

ACI-s 1.09 0.93 0.87 0.39 0.36 0.35 0.48 0.46 0.45 

ACI-d * 0.95 0.90 0.88 0.39 0.45 0.41 0.44 0.41 0.40 

AASHTO 1.57 1.50 1.48 0.34 0.34 0.33 0.82 0.69 0.68 

EC2 Critical location within region uncracked in bending, then used approach doesn’t apply 

prEN1 1.14 1.11 1.09 0.28 0.30 0.29 0.69 0.64 0.59 

prEN2 1.41 1.29 1.27 0.31 0.32 0.31 0.83 0.74 0.70 

*Web-shear failure resistance as final result for some test (Web-shear resistance dominant case/ # tests = 

subset 1: 103/143, subset 2: 64/102, subset 3: 37/66) 

To visualize the changes in the generated values presented in Table 4-2, Table 4-3 and  

Table 4-4, the following Figure 4-8, Figure 4-9 and Figure 4-10 plot the mean values, coefficients 

of variation (COV) and the 5th percentile lower bound values for the different assumed critical 

locations using the results obtained for subset 2 as this is the most representative for flexural-

shear failure of rectangular beams. 
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Figure 4-8 Subset 2 mean values for comparison of Vtest/Vcalc as function of the critical location for different design codes. 

 

Figure 4-9 Subset 2 coefficients of variation for comparison of Vtest/Vcalc as function of the critical location for different design codes. 

 

Figure 4-10 Subset 2, 5th percentile lower bound of Vtest/Vcalc as function of the critical location for different design codes. 

Let us start talking about the mechanics of the problem to try to explain the variation of the results 

with the different approaches at different critical locations assumed.  

First, analyzing the problem as uncracked concrete, the different critical locations have different 

flexural and shear stresses, depending on the magnitude of the shear forces and bending 

moments, important for the analysis of first stage in the typical reaction of slender members 

without shear reinforcement to shear.  
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In this first stage, the formation of flexural cracks is decisive for the development of the critical 

shear crack in a later stage. The region most likely to generate a flexural crack is the one with the 

highest tensile stresses exceeding the tensile strength of concrete. In this case of analysis with 

equidistant point loads and assuming constant normal stress from prestressing, it can be seen 

from Figure 4-11 that the region closer to the point load develops higher tensile stresses due to 

the higher bending moment. The shear stress magnitude, assumed parabolically distributed in 

cross-section, is considered constant until the point load since the analysis is on rectangular 

beams only. At this stage, the shear-transfer actions of aggregate interlock, residual tensile stress, 

or dowel action are not present. The prestressing influences the longitudinal stresses collaborating 

in reducing flexural stresses in tension. In the same way, the vertical component of the 

prestressing force already acts for harped tendons, reducing the acting shear force. In ACI-

DAfStb-PC database there are only straight tendons, then this last vertical component is 

neglected. 
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Figure 4-11 Flexural and shear stresses along the beam length for typical structural configuration of tests from ACI-DAfStb database used. 

In the second stage, already with cracked concrete but with cracks not yet crossing the neutral 

axis, the shear stress is distributed parabolically in the uncracked concrete with the maximum 

value at the neutral axis. At the crack, the shear stresses decrease as the crack width increases. 

Residual tensile stresses, aggregate interlock, and dowel action already act at this stage. The 

vertical component of the additional tensile force in inclined tendons due to applied loads that 

depend on the crack width emerges too. 

By the third stage, the critical shear crack develops deep in the compression zone, and probably 

the shear stress is parabolically distributed in the uncracked concrete. By this stage, all shear-

transfer actions are activated. 
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To illustrate the 3 stages described before, the following Figure 4-12 generated by [51] is useful 

although the case was for reinforced concrete member without shear reinforcement. Including 

prestressing the required force for the same displacement increases, and point B and C tends to 

be closer and often overlap due to the higher compressive stresses acting on cross-section.  

 

Figure 4-12 Typical load-deformation curve of a beam with shear failure [51] 

Collapse tends to occur at point B, and the shear capacity, defined as the shear force 

corresponding to the formation of the critical shear crack (point B, end of stage 2), is considered 

the shear strength of concrete (𝑉𝑐), and its estimation is given by empirical (ACI318-19M, EC2), 

MCFT-based (AASHTO-LRFD), and CSCT-based (prEN1992) models. The latter two assuming 

the dependence of the concrete shear strength on the crack width and its roughness with very 

similar proposed equations ([Eq.  2-6] and [Eq.  2-9]). 

Based on the aforementioned, it can be expected that the different models tend to estimate the 

flexural-shear capacity with higher precision at the critical location assumed closer to the point 

load, something that can be seen in Figure 4-9 where the coefficients of variation are the lowest 

for 𝑥𝑟 = 𝑎 − 𝑑. 

Now, having demonstrated the most suitable critical location to evaluate the results obtained 

(𝑥𝑟 = (𝑎 − 𝑑)) , the following considerations detailed in Table 4-5 are used for the relative 

assessment of the design codes, to have a uniform criteria. 

Table 4-5 Relative assessment for statistical indicators (captured from [52]) 

COV   

< 0.15 Excellent 
0.15 – 0.20  Very good 
0.20 – 0.25 Good 
0.25 – 0.30 Reasonable 
0.30 – 0.35 Poor 
> 0.35 Bad 

 

So, for evaluating the flexural-shear strength of prestressed concrete members without shear 

reinforcement, the following observations can be made from examining the data in Table 4-3. 

• The COV obtained for the ACI318-19M approximate method usually denotes a poor 

precision of the results, with a less than desirable level of safety. 

5TH PERCENTILE LOWER BOUND  

> 1 Conservative 
0.8 – 1 Good levels of safety 

0.7 – 0.8 Moderate levels of safety 
< 0.7 Less than desirable level of safety 
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• Case of the ACI318-19M detailed method, a good level of safety and poor precision is 

obtained for beams with various cross-section shapes and a conservative level of safety 

with poor precision for rectangular beams. 

• AASHTO-LRFD has good precision to evaluate beams with different cross-sections 

shapes, but it has the most conservative levels of safety. 

• EC2 has reasonable precision and a good level of safety for beams with different cross-

section shapes and poor precision with good or moderate levels of safety for rectangular 

beams. 

• prEN1 for the analysis of beams with different cross-section shapes has good precision 

and a conservative level of safety. Rectangular beams only have reasonable precision and 

a conservative level of safety. 

• prEN2 in all cases, has a reasonable precision and a good level of safety. 

4.6.4 Assessment of design codes considering the main parameters involved 

In this subsection, the results obtained and the differences between the various approaches in 

the shear strength estimation will be evaluated in detail. Subset 1 of the ACI-DAfStb-PC database 

containing 143 tests strictly related to a flexural-shear failure of beams with rectangular, I-shape, 

or T-shape cross-section will be used.  

It is interesting to look at one of the most used parameters to start this analysis. Figure 4-13 shows 

the shear strength ratio (𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐) versus mean concrete compressive strength (𝑓𝑐𝑚) . The 

influence of the compressive strength of concrete is included in all the approaches presented. For 

ACI318-19M and AASHTO-LRFD, the shear strength is proportional to √𝑓𝑐
′ , and for EC2 or 

prEN1992, it is proportional to (𝑓𝑐𝑘)
1/3. For all approaches it can be seen in the scatterplots that 

there is a tendency for the shear strength to increase as the compressive strength of the concrete 

increases. 

 

 
Figure 4-13 Shear strength ratio (𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐) versus mean concrete compressive strength (𝑓𝑐𝑚) for subset 1 from ACI-DAfStb-PC database 

Figure 4-14 shows the shear strength ratio (𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐)  versus the effective depth (𝑑) . The 

influence of the size effect has been recognized as a relevant parameter for shear behavior, and 

it is taken into account in EC2, prEN1992, and AASHTO-LRFD approaches. However, ACI318-

19M does not consider the size effect in the approach applied for prestressed members. EC2 

considers a size effect factor 𝑘 = 1 + √200/𝑑 ≤ 2 in its main equation. AASHTO-LRFD approach 

considers the member depth indirectly through a crack spacing parameter that affects the crack 

width, thus the estimated shear strength. prEN1992 maintains in its approach the effective depth 
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parameter in the main equation, and one has to recognize that according to the background of 

the CSCT, this parameter directly affects the longitudinal strain and consequently the crack width. 

According to the scatterplots presented in Figure 4-14, there is not a descending or ascending 

trend with member depth for all approaches. 

 

 

 
Figure 4-14 Shear strength ratio (𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐) versus effective depth (𝑑) for subset 1 from ACI-DAfStb-PC database 

Figure 4-15 shows the shear strength ratio (𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐) versus the longitudinal reinforcement ratio 

(𝜌𝑙). This parameter is important for the amount of longitudinal strain that directly affects the crack 

width, aggregate interlock, dowel action, and finally the shear strength. ACI318-19 doesn’t take 

into account the influence of longitudinal reinforcement, although for prestressed concrete 

members the prestressing steel ratio is directly related to the axial stress level, then ACI318-19M 

detailed method approach may capture part of the influence of the longitudinal reinforcement ratio. 

AASHTO-LRFD seems to include the effect of longitudinal reinforcement ratio as it is reflected in 

the longitudinal strain, thus it affects the crack width and shear strength too. prEN1992 and EC2 

take into account the longitudinal reinforcement ratio into the main equation, EC2 included it since 

it was known the influence of this parameter on the shear strength of concrete, this formula is 

empirical but for prEN1992 the effect of longitudinal reinforcement ratio is included in a logical 

way based on the CSCT, deriving this factor from the longitudinal strain, so it is implicitly related 

to this and to the crack width consequently. 

Figure 4-16 shows the shear strength ratio (𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐) versus the shear span-to-effective depth 

ratio (𝑎/𝑑). This parameter is a relative value of the shear and bending moment applied (𝑀/𝑉𝑑). 

ACI318-19 approximate method considers it into its approach by using 𝑀/𝑉𝑑 ratio, and ACI318-

19 detailed method also uses the same ratio to calculate the shear force required to generate a 

flexural crack (𝑉𝑖𝑀𝑐𝑟𝑒/𝑀𝑚𝑎𝑥). For AASHTO-LRFD this sectional forces are considered directly on 

the longitudinal strain calculation. EC2 considers the shear capacity independent of 𝑎/𝑑, but 

prEN1992 recognized its strong influence and included it although this now makes it necessary to 

employ an iterative process for the calculation of the shear capacity. For prEN1992 the sectional 

forces considered, that derive into the shear span-to-effective depth ratio, were derived from the 

approximation of the longitudinal strain and are therefore implicitly related to it. The scatterplots 

in Figure 4-16 clearly shows that there is no defined trend for ACI318-19, and for the others there 

is a tendency to decrease the shear strength for high ratios, since in slender beams cracking is 

more prominent and the stiffness of the beam is reduced. 
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Figure 4-15 Shear strength ratio (𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐) versus longitudinal reinforcement ratio (𝜌𝑙) for subset 1 from ACI-DAfStb-PC database 

 

 
Figure 4-16 Shear strength ratio (𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐) versus shear span-to-effective depth ratio (𝑎/𝑑) for subset 1 from ACI-DAfStb-PC database 

Figure 4-17 shows the shear strength ratio (𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐) versus the dimension-free axial force 

(𝜎𝑐𝑝/𝑓𝑐𝑚). ACI318-19 approximate method doesn’t consider the collaboration of the prestressing 

force into the concrete resistance, what the respective scatterplot reflects is the influence of the 

mean compressive strength of concrete. ACI318-19 detailed method takes into account the 

prestressing influence into the flexural crack formation in the calculation of the cracking moment, 

then the vertical component for harped tendons is also included. AASHTO-LRFD takes into 

account the effect of the vertical component of prestressing force and considers it in the 

calculation of the nominal flexural moment that is used for the calculation of the longitudinal strain, 

influencing the crack width and shear strength. EC2 with its empirical formulation includes the 

axial stress on cross-section multiplied by an empirical factor 𝑘1 = 0.15. The new Eurocode 

proposals include the effect of prestressing by two different ways, prEN1 including the effect of 

normal load into the longitudinal strain modifying the effective shear span (𝑎𝑣) multiplying it with 

a factor (𝑘𝑣𝑝 = 1 +𝑁𝐸𝑑𝑑/𝑉𝐸𝑑3𝑎𝑐𝑠). prEN2 uses a linearized approach similar to EC2, adding the 

effect of normal stresses multiplying it by a factor 𝑘1 = 1.4/𝛾𝑣(0.07 + 𝑒𝑝/4𝑑) that assumed a fixed 

𝑎/𝑑 = 4 and takes into account the eccentricity of the tendon. The major differences between the 
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two methods are the last two assumptions mentioned for prEN2. prEN1 instead does not assume 

a fixed 𝑎/𝑑 and the axial stresses are assumed to be applied on the neutral axis. 

 

 
Figure 4-17 Shear strength ratio (𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐) versus dimension free axial force (𝜎𝑐𝑝/𝑓𝑐𝑚) for subset 1 from ACI-DAfStb-PC database 

4.7 DISCUSSION AND CONCLUSIONS 

4.7.1 Discussion about design codes 

- Of all the parameters studied, the one that clearly influences the shear strength estimation 

is the shear span-to-effective depth ratio. Since the location of the critical crack is highly 

dependent on this parameter and provides an idea of the type of failure to be analyzed in 

different ranges of values, as recalled in the Kani's Valley concept for example. There is a 

correlation between 𝑎/𝑑 and the estimated shear strength for all the approaches studied 

except EC2, which maintains a constant value for the span length no matter the changes 

on the relation 𝑎/𝑑. EC2 formulation is the only one studied in this document that doesn’t 

required an iterative procedure to calculate the shear capacity as this approach doesn’t 

depend on the external load applied too. 

 

For the ACI318-19 and AASHTO-LRFD design codes, the nominal shear strength (𝑉𝑛) is 

the result of the sum of the contribution of the concrete shear resistance (𝑉𝑐) and the 

vertical component of the prestressing force (𝑉𝑝), while for the Eurocodes, the design 

shear force (𝑉𝐸𝑑) considers the influence of prestressing force as prestress is preload for 

design codes applied in Europe. This last notion must be maintained for any alternative 

for the new Eurocode, and only alternative 1 (prEN1) complies to this concept up to this 

point due to the following observations. 

 

o prEN1 assumes prestressing effect included through the effective shear span 

(𝑎𝑐𝑠), which considers the ratio between the acting bending moment and acting 

shear force (|𝑀𝐸𝑑/𝑉𝐸𝑑|). The 𝑘𝑣𝑝  factor, used by this alternative to include the 

effect of normal load on the longitudinal strain, alters 𝑎𝑐𝑠  such that it is also a 

function of a normal load (𝑁𝐸𝑑) applied at the neutral axis. 

 

o The second term (𝑘1𝜎𝑐𝑝) used by prEN2 to add the effect of axial stresses on 

shear resistance, questionably considers the eccentricity of the tendons despite 

the fact that, in the first term of the equation , the effective shear span (𝑎𝑐𝑠) already 
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considers eccentric axial loads effect to calculate the mean shear stress (𝜏0). This 

leads to consider that this alternative is considering double the effect of eccentric 

axial loads. 

 

- ACI318-19M detailed method defines the shear resistance as the minimum between the 

web-shear and flexural-shear strength calculated, this last one due to its dependence on 

the shear required to form a flexural crack (𝑉𝑖𝑀𝑐𝑟𝑒/𝑀𝑚𝑎𝑥) in regions with low bending 

moments and high shear forces tends to infinite. The current Eurocode (EC2) defines 

regions cracked and uncracked in bending for the verification of flexural-shear resistance 

in cracked regions. The new proposal for the Eurocode (prEN1992), only considers the 

case of flexural-shear failures in its approach (except for prefabricated elements) due to 

the limitation of its application for rectangular beams or one-way slabs. AASHTO-LRFD 

doesn’t distinguish any region, the approach applies for cracked and uncracked regions in 

bending, the estimated shear strength is very dependent on the longitudinal strain. These 

differences in the consideration of the type of failure and its location can be reflected in 

the varied results obtained when analyzing the shear strength at different critical locations 

(Figure 4-8, Figure 4-9 and Figure 4-10). To correctly estimate the shear strength, one 

should be aware of the recommended critical locations and the assumptions made to 

distinguish the type of failure related with the problem and the design code used.   

 

- AASHTO-LRFD and prEN1992, derived from similar theories (MCFT and CSCT, 

respectively), consider the aggregate size to calculate the shear resistance directly 

influencing the final calculated value. Roughness between faces of the critical shear crack 

collaborates to the shear resistance through aggregate interlock shear-transfer action, 

although it depends on the shear crack angle, which is reduced by the prestress load 

applied, decreasing its relevance to the minimum. 

 

- According to the results obtained, prEN1 has a smaller COV than prEN2 and is more 

precise. However, its usability should be enhanced because determining shear capacity 

for design optimization requires an iterative procedure. Since the process is 

computationally expensive because it is a nonlinear equation, a properly linearized 

expression would be desirable to increase its usability. 

4.7.2 Discussion on comparison results 

- From the statistical results presented in Table 4-2, Table 4-3, and  

- Table 4-4 it is proven that the critical location is important to evaluate the precision and 

accuracy of the presented approaches. Because the flexural-shear failure mode is 

dependent of the formation of the flexural cracks that may vary according to the distribution 

of the principal stresses along the beam’s length and cross-section height. Then, most 

design codes consider the most probable location of the critical shear crack near 

geometrical discontinuities, contraflexure points, point loads and supports or the location 

with the highest bending moment and shear force. According that, for the case study of 

this document the appropriate critical location is 𝑥𝑟 = (𝑎 − 𝑑) , something that is also 

demonstrated by the evolution of the coefficient of variation values for the different design 

codes shown in Figure 4-9, where it is observed that the values reach their best 

performance in terms of precision at the critical point closer to the point load. 

 

- Taking into account the explanation in the preceding paragraph, one can conclude that 

AASHTO-LRFD is the most precise approach with COV=0.22 for rectangular and I/T 

shape beams with flexural-shear failure and COV=0.23 for rectangular beams only. 

Although the obtained 5th percentile lower bound values (1.23 to 1.30) indicate 

conservative estimation of shear strength. On the other hand, ACI318-19M is the less 
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precise to evaluate flexural-shear cracks obtaining COV=0.29-0.45 for the approximate 

method and COV=0.33-0.39 for the detailed method assuming a critical location 𝑥𝑟 =
(𝑎 − 𝑑). ACI318-19 approximate method obtains results with a safety level less than 

desirable but the detailed method is the opposite with conservative level of safety 

according to the 5th percentile lower bound values obtained (0.49-0.52 for approximate 

method and 0.98-1.02 for detailed method). 

 

- One can observe the great change that occurs in the mean values obtained for the ACI318-

19 detailed method in the critical location assumed 𝑥𝑟 = 𝑑, where there is a radical change 

in the trend and one of the best performances in terms of accuracy is obtained (mean 

values= 0.88-0.95). This is since this method in its procedure also verifies the web-shear 

strength (𝑉𝑐𝑤), so it can be said that the estimation of this type of failure is more accurate 

although it maintains the same level of precision considered low (COV= 0.39-0.41) 

because it still considers almost half of the tests with flexural-shear failure. It must also be 

recognized that EC2 recognizes this critical location 𝑥𝑟 = 𝑑 as a location without flexural 

cracks. However, EC2 does not compare flexural-shear and web-shear strength values as 

the ACI318-19 detailed method does, then this location does not obtain any result as the 

focus is on flexural-shear strength. 

 

- Table 4-2, Table 4-3, and  

- Table 4-4 show that for the estimated shear resistance for the different subsets 

established, the alternative prEN1 maintains estimations with  good level of precision 

(COV from 0.23 to 0.29) for different critical locations assumed. This indicates a consistent 

analysis of the problem through this approach, although the assumptions are not related 

with I/T shape beams included within subset 1.  

 

- For all critical locations, and for all design codes except AASHTO-LRFD and ACI318-19 

detailed method, there is an improvement in the accuracy of the results obtained with 

subset 1 using subset 2. That may be related with the inclusion of other failure modes 

within subset 1, there is greater certainty of flexural-shear failure when dealing with 

rectangular beams only, since they do not suffer a web-shear (shear-tension) failure. 

AASHTO-LRFD doesn’t distinguish failure modes in its procedure, as it is dependent on 

the longitudinal strain, which is dependent on the external loads acting on the beam. 

AASHTO-LRFD recognized the influence of the cross-section shape too, as the detailed 

method (strain compatibility) has been applied to calculate the nominal flexural moment. 

prEN1 and prEN2 assume in their theoretical derivation a rectangular cross-section, then 

as expected, the accuracy improved for subset 2 for both approaches. ACI318-19 detailed 

method as stated in the previous paragraph improves its accuracy evaluating beams that 

fail by web-shear failure, hence it obtains a better mean value for subset 1. 

 

- Subset 2 is the most useful group of experiments to compare the estimated flexural-shear 

strength by the design codes used with test results. Then, subset 2 statistical results 

demonstrate that AASHTO-LRFD and prEN1 have the best COV values for different 

critical locations assumed comparing the shear strength reported with the estimated shear 

strength by the design code. prEN1 and ACI318-19 approximate method obtain the best 

mean values in the range of 0.93 to 1.28 for ACI318-19, and 1.09 to 1.44 for prEN1, then 

in terms of accuracy they have the best performance. AASHTO-LRFD on the other hand 

obtains the highest mean values in the different subsets and critical locations, with mean 

values between 1.48 and 1.78, being the less accurate method, something that is also 

observed with the value obtained for the 5th percentile lower bound value that varies 

between 1.23 and 1.30 for the critical location 𝑥𝑟 = 𝑎 − 𝑑.  
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- ACI318-19M does not consider a size factor but the necessity to include it has been 

identified to reduce the shear strength as the effective depth increases, the influence of 

the longitudinal reinforcement ratio is not included too, then the approaches are too 

dependent on the concrete compressive strength (section 4.6.4). The collaboration of 

prestressing into the shear resistance is not considered in the approximate method giving 

unsafe estimations according to the 5th percentile lower bound values (Table 4-3). The 

detailed method for flexural-shear strength introduces the effect of prestressing in the 

cracking moment (𝑀𝑐𝑟𝑒) and adds the collaboration of the resultant vertical component 

(𝑉𝑝) . Both include the shear span-to-effective depth ratio trough the relation 𝑀/𝑉𝑑 , 

although according to the parameter analysis unintentionally for the approximate method. 

 

- AASHTO-LRFD is the result of the SMCFT that simplifies the relation for 𝛽 that takes into 

account the influence of all actions on a section, including prestressing, axial loads, and 

flexure. The size effect of the relationship for members without shear reinforcement is 

based on the crack spacing parameter (𝑠𝑥𝑒), which depends on the effective shear depth 

(𝑑𝑣) with the lower and upper boundary of 300 and 2000 millimeters, respectively. From 

the design codes studied this approach in one that considers all the identified main 

parameters that influence the shear strength of concrete. 

 

- EC2 is an approach that according to the parameter analysis considers almost all the 

parameters except the shear span-to-effective depth ratio into its empirical formulation, 

this is corrected with the alternatives for the new Eurocode proposal (prEN1992), 

improving the accuracy, precision and safety of the flexural-shear strength estimation. The 

empirical formulation of EC2 is replaced by approaches based on a physical model like 

the CSCT. 
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5  IMPROVEMENTS TO PREN1992 

DRAFT 7 
The proposals to estimate the shear strength of prestressed concrete members without shear 

reinforcement are based in the initial formulation for prEN1992 for reinforced concrete members 

without normal loads, i.e. the approach presented in section 2.4.2 without considering the 𝑘𝑣𝑝 

factor for the first approach (prEN1-[Eq.  2-16]) or without the addition of 𝑘1𝜎𝑐𝑝 for the second 

approach (prEN2-[Eq.  2-17]). In order to have a terminology that can be applied to a physical 

model, in this section the prestressed load will be referred to as normal load. 

It’s necessary to initiate the discussion with detailed observations on the procedure proposed for 

reinforced concrete members without shear reinforcement and without normal loads. Then the 

different proposals to include the effect of normal loads into the current procedure will be analyzed. 

5.1 DERIVATION OF THE ENGINEERING MODEL PROPOSED FOR PREN1992 DRAFT 

7 
The failure criterion given by the analytical formulation in [Eq.  2-8] which is brought up again after 

this paragraph, correlates the product of the longitudinal strain (𝜀) and effective depth of the 

member (𝑑) with the width of the critical shear crack (CSC), to follow the principles of the CSCT 

mentioned in section 2.3.1.  

𝑉𝑐

𝑏𝑑√𝑓𝑐
=

1

3 ∙ (1 + 120
𝜀𝑑

16 + 𝑑𝑔
)
  [𝑀𝑃𝑎,𝑚𝑚] 

It should be noted that 𝜀 refers to the longitudinal strain at a distance 0.6𝑑 from the compression 

face, obtained adopting a linear-elastic behavior of the materials and assuming no contribution of 

the concrete in tension. 

As the CSCT considers that failure occurs when the shear force acting on the beam is equal to 

the capacity to transfer shear forces across the CSC, then the intersection of the load-deformation 

relationship and the failure criterion is the shear strength as shown in the following Figure 5-1. 

 

Figure 5-1 Design applying CSCT failure criterion and load-deformation relationship [12] 

In order to simplify the procedure described to estimate the shear strength, the equation for failure 

criterion (hyperbolic curve) will be combined with the load-crack opening relationship. 
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Nevertheless, before combining both expressions, the longitudinal strain is defined in a smarter 

way. 

• Assuming the depth of the compression zone c equal to 0.35d, the strain can be estimated 

as function of the strain at the longitudinal reinforcement with the following expression. To 

visualize this step refer to Figure 5-2. 

𝜀 = 𝜀𝑣 ∙
0.6𝑑 − 𝑐

𝑑 − 𝑐
≅ 0.4𝜀𝑣  [−] [Eq.  5-1] 

 

Figure 5-2 Reference fibre assumed for CSCT [12] 

• Then, the initial failure criterion can be modified to be function of the longitudinal 

reinforcement strain as shown in the following expression 

𝑉𝑐

𝑏𝑑√𝑓𝑐
=

0.3

1 + 48
𝜀𝑣𝑑
𝑑𝑑𝑔

  [𝑀𝑃𝑎,𝑚𝑚] [Eq.  5-2] 

• One should note that, for simple supported beams with point loads, the longitudinal strain 

can be defined as function of the shear span (𝑎𝑐𝑠 = |𝑀𝐸/𝑉𝐸|), to consider the effect of the 

structural configuration of the member on the proposed formulation. 

𝜀𝑣 =
𝜎𝑠
𝐸𝑠
=

𝑀𝐸
𝐴𝑠 ∙ 𝐸𝑠 ∙ 𝑧

=
𝑉𝐸 ∙ 𝑎𝑐𝑠
𝐴𝑠 ∙ 𝐸𝑠 ∙ 𝑧

 [−] 

Where the stress at the longitudinal reinforcement 𝜎𝑠 =
𝑀𝐸

𝐴𝑠∙𝑧
, taking 𝑀𝐸 as the bending 

moment at the control section which is equal to shear load times the shear span 
(𝑉𝐸 ∙ 𝑎𝑐𝑠). 𝐴𝑠: Area of longitudinal reinforcement 

𝑧: Inner lever arms 

𝐸𝑠: Young Modulus of steel reinforcement. 

[Eq.  5-3] 

The shear span 𝑎𝑐𝑠 later will be the main parameter to include the effect of normal loads into the 

longitudinal strain, something that will be explained in detail in the later section 5.2 

5.1.1 Closed-form design equation 

To further improve ease of use, the later expression derived [Eq.  5-2] will be approximated by a 

power-law expression [Eq.  5-4] proposed by [53]. The procedure to derive this expression is 

explained in detail in [12] and [54], where the researchers demonstrate that by means of 

parametric analysis, shear failures occur in a narrow band, as can be seen in (Figure 5-3). The 

value of 𝑘   is set as constant and equal to 0.021, a parameter that depends on the main 

mechanical and geometrical parameters (slenderness ratio 𝑎/𝑑 , compressive strength 𝑓𝑐 , 

reinforcement ratio 𝜌, effective depth 𝑑 and shear slenderness ratio 𝜆 = 𝑀 𝑉 ∙ 𝑑⁄ ). 

𝑉𝑐

𝑏𝑑√𝑓𝑐
= 𝑘 ∙ (

𝑑𝑑𝑔

𝜀𝑣𝑑
)

1
2

≤ 𝑉𝑐,0 [𝑁]; 𝑤𝑖𝑡ℎ 𝑘 = 0.021 

The maximum shear strength (𝑉𝑅𝑐,0 [𝑁]) correspond to the shear strength for zero 

strain according to [Eq.  5-2], which is equal to 1/3 as [Eq.  2-8] marks. 
 

 
[Eq.  5-4] 
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To stablish parameter “k”, according to the literature review, was set for a critical shear 

crack located at mid-span (𝑥𝑟 = 0.5𝑎 [𝑚𝑚]) and consequently the tip of the CSC will be 

located at 𝑥𝐹 = 0.5𝑎 + 0.5𝑑. It is also reported that the values of concrete compressive 

strength vary between 20-100 MPa, longitudinal reinforcement ratios range between 0.5% 

and 3%, maximum aggregate size range from 8 to 32 millimeters, effective depth ranges 

from 200 to 2000 millimeters and slenderness ratio ranges from 2.5 to 8 [12]. 

Closed-form design equation

xr = 0.5a

 

Figure 5-3 Failure envelopes for simple supported beam with point loads  [12] 

Now, combining the called power-law failure criterion with the load-deformation relationship, an 

expression for a direct calculation of the shear strength can be derived assuming that the acting 

shear force is equal to the shear capacity when failure takes place (𝑉𝐸 = 𝑉𝑐).  

𝑉𝑐

𝑏𝑑√𝑓𝑐
= 𝑘 ∙ (

𝑑𝑑𝑔

𝑑
∙
𝑑 ∙ 𝑏 ∙ 𝜌 ∙ 𝐸𝑠 ∙ 𝑧

𝑉𝑐 ∙ 𝑎𝑐𝑠
)

1
2

 [−] [Eq.  5-5] 

Then, the expression for the shear strength of concrete results: 

𝑉𝑐 = 𝑘
2/3 ∙ 𝑏 ∙ 𝑑 ∙ (

𝑑𝑑𝑔 ∙ 𝑓𝑐

𝑑
∙
𝜌 ∙ 𝐸𝑠 ∙ 𝑧

𝑎𝑐𝑠
)

1
3

[𝑁] [Eq.  5-6] 

From that point some terms are grouped as shown below in a term that is called 𝜅. 

𝑉𝑐 = 𝜅 ∙ 𝑏 ∙ 𝑑 ∙ (100𝜌 ∙ 𝑓𝑐 ∙
𝑑𝑑𝑔

𝑎𝑐𝑠
)

1 3⁄

[𝑁];       𝑤𝑖𝑡ℎ 𝜅 = (
𝐸𝑠
100

∙ 𝑧)

1
3
∙ 𝑘2/3 [Eq.  5-7] 

Assuming 𝑧 = 0.9𝑑 [𝑚𝑚] and 𝐸𝑠 = 200000 [𝑀𝑃𝑎] the term 𝜅 = (0.9 ∙ 2000)1/3 ∙ 0.0212/3 ≈ 1. 

But it must be remembered that the assumed value of 𝑘 depends on the assumed critical crack 

location (𝑥𝑟 = 0.5𝑎), and that this value also depends on the values of 𝑓𝑐 , 𝑑𝑑𝑔, 𝜌, 𝑑, 𝑎/𝑑. This is 

tested for the final equation to be defined, then different load cases are analyzed, concluding that 

the critical location needs to be defined at a distance 𝑑 from geometric discontinuities, point loads, 

and supports. Therefore, as the critical location doesn’t coincide with the assumed initially, a 

reliability analysis was made as summarized below to define an equation accordingly. 

[Eq.  5-7] shows the dependence of the shear strength on the shear span (𝑎𝑐𝑠), aggregate size 

(𝑑𝑑𝑔), concrete strength (𝑓𝑐), flexural reinforcement ratio (𝜌) and the coefficient 𝜅 . This last 

coefficient can be directly obtained from the mechanical model of the critical shear crack, 
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calculating the contribution of the various shear transfer actions, integrating the stresses thought 

the crack surface and in the compression zone (details related to the constitutive laws adopted 

for the shear transfer actions and the assumed shape and kinematics can be found in [12]). 

Evaluating the obtained values for the coefficient 𝜅 comparing with experimental results, has been 

stated a constant value of 𝜅 = 0.66 for the final expression stated for the new Eurocode proposal, 

which is similar to the current Eurocode (EN1992-1-1:2004) expression that takes into account 

the influence of 𝜌𝑙 and 𝑓𝑐𝑘, but the proposed model based on CSCT describes the influence of 

size, slenderness and aggregate type in a consistent manner. 

𝑉𝑐 = 0.66 ∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙
𝑑𝑑𝑔

𝑎𝑐𝑠
)

1 3⁄

𝑏 ⋅ 𝑑 [𝑁] [Eq.  5-8] 

Different limits have been added to this formula, starting with the shear span 𝑎𝑐𝑠, which will be 

replaced by the effective shear span 𝑎𝑣, governed by the condition shown in [Eq.  5-9].  

𝑎𝑣 = {

𝑑      [𝑚𝑚]      𝑤ℎ𝑒𝑛 𝑎𝑐𝑠 ≥ 4 ⋅ 𝑑 [𝑚𝑚]

√𝑎𝑐𝑠 ⋅
𝑑

4
[𝑚𝑚]     𝑤ℎ𝑒𝑛 𝑎𝑐𝑠 < 4 ⋅ 𝑑 [𝑚𝑚]

 [Eq.  5-9] 

It can be noticed that the last expression reduces the distance that represents the critical location 
practically in case the shear span-to-effective depth ratio is not greater than 4. The following 
Figure 5-4 illustrates this last statement. 

 
Figure 5-4 Evolution of the effective shear span in relation to the shear span-to-effective depth ratio 

For the design shear resistance was included the partial factor for shear and punching resistance 

without shear reinforcement stated in prEN1992 as 𝛾𝑉 = 1.4, obtaining the following expression: 

𝜏𝑅𝑑,𝑐 =
𝑉𝑅𝑑,𝑐
𝑏 ∙ 𝑑

=
0.66

𝛾𝑉
∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙

𝑑𝑑𝑔

𝑎𝑣
)

1 3⁄

[𝑀𝑃𝑎] [Eq.  5-10] 

This last expression has been analyzed in several publications and validated for use in reinforced 

concrete members without axial/prestress forces. Now, to include the effects of normal loads, the 

purpose of this document, several proposals will be analyzed and evaluated in terms of accuracy, 

precision, ease of use, and consistent derivation based on theory and assumptions made. 

5.2 PROPOSALS FOR MEMBERS WITHOUT SHEAR REINFORCEMENT INCLUDING THE 

EFFECT OF NORMAL LOADS 
For the sake of simplicity, the derivation of all the alternatives will have as start point [Eq.  5-8], 

the expression obtained before applying the reliability analysis and incorporate the limit of the 
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effective shear span 𝑎𝑣. Once the final expressions are obtained the limit and safety factors can 

be applied again to obtain the design equation as in [Eq.  5-10]. 

5.2.1 Alternative 1 (prEN1), presented in prEN1992 draft 7 document 

In this case the original formulation  [Eq.  5-8] wants to be applied to members with normal 

loads adding a coefficient (𝑘𝑣𝑝) to consider normal load influence into longitudinal strain. 

This coefficient is defined as follow 

𝑘𝑣𝑝 = 1 +
𝑁𝐸
|𝑉𝐸|

∙
𝑑

3 ∙ 𝑎𝑐𝑠
 [−] [Eq.  5-11] 

An to explain it, it is necessary to stablish some assumptions like: 

o The location of the resultant compression force within the cross-section is assumed 

to be located at a distance equal to 𝑑/6 from the compression face (Figure 5-5). 

o Prestress is preload, then the eccentricity of the tendons is taken into account into 

the calculation of the resultant moment. Then, for the moment equilibrium of a 

cross-section it is necessary to include only the axial force applied at the centroid. 

N.A.

Fc

Ft

Nc

d
/3

d
/6

dNc

ME

z

 

Figure 5-5 Moment of equilibrium of a cross-section under normal force. 

By equilibrium of the cross-section forces, and applying the same assumptions mentioned 

before, the strain at the longitudinal reinforcement is equal to: 

𝜀𝑣 ≅
𝑀𝐸 +𝑁𝐸 ∙ 𝑑/3

𝑧 ∙ 𝐴𝑙 ∙ 𝐸𝑠
 [−]  [Eq.  5-12] 

Then, the shear span can be defined as: 

𝑎𝑐𝑠,𝑁 = |
𝑀𝐸
𝑉𝐸
| +

𝑁𝐸
|𝑉𝐸|

∙
𝑑

3
 [𝑚𝑚] [Eq.  5-13] 

Where can be observed, it coincides with the factorized term 𝑘𝑣𝑝, remembering that the 

shear span is defined initially as 𝑎𝑐𝑠 = |𝑀𝐸 𝑉𝐸⁄ |. Then the shear span including normal 

loads is expressed as: 

𝑎𝑐𝑠,𝑁 = 𝑎𝑐𝑠 ∙ (1 +
𝑁𝐸
|𝑉𝐸|

∙
𝑑

3 ∙ 𝑎𝑐𝑠
) = 𝑎𝑐𝑠 ∙ 𝑘𝑣𝑝 [𝑚𝑚] [Eq.  5-14] 

Obtaining as final expression the base equation ([Eq.  5-8]), with a modified shear span 

𝑎𝑐𝑠,𝑁 

𝑉𝑐 = 0.66 ∙ (100𝜌 ∙ 𝑓𝑐𝑘 ∙
𝑑𝑑𝑔

𝑎𝑐𝑠,𝑁
)

1 3⁄

⋅ 𝑏 ∙ 𝑑 = 0.66 ∙ (100𝜌 ∙ 𝑓𝑐𝑘 ∙
𝑑𝑑𝑔

𝑎𝑐𝑠 ∙ 𝑘𝑣𝑝
)

1 3⁄

⋅ 𝑏 ∙ 𝑑 [𝑁]; 

 

For this alternative 𝑘𝑣𝑝  depends on the design shear force from the explicit term 𝑉𝐸 

included in the calculation of the shear span 𝑎𝑐𝑠. This makes this procedure useful for 
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verifications, but it is necessary to perform an iterative process to calculate the shear 

capacity as stated in section 4.1.6.  

5.2.2 Alternative 2 (prEN2), presented in prEN1992 draft 7 document 

This alternative adds shear resistance with a separated term that represents the shear 

resistance added due to normal loads applied at the centroid of the cross-section, [Eq.  

2-17] mentioned before is applied and shown again below to go through the derivation 

process of this alternative. 

𝜏𝑐 = 0.66 ⋅ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙
𝑑𝑑𝑔

𝑑𝑛𝑜𝑚
)

1
3

− 𝑘1 ∙ 𝜎𝑐𝑝  [𝑀𝑃𝑎];   

𝑤𝑖𝑡ℎ  𝑘1 =
1.4

𝛾𝑉
∙ (0.07 +

𝑒𝑝

4 ∙ 𝑑
) ≤ 0.15 ∙

1.4

𝛾𝑉
 

𝜎𝑐𝑝 =
𝑁𝐸
𝐴𝑐
 [𝑀𝑃𝑎] < 0.2𝑓𝑐𝑑 

The derivation of this expression is based on the approximation of the moment acting on 

the cross section due to prestress as: 

𝑀𝑝 =
𝑁𝑝 ∙ 𝐼𝑦

𝐴𝑐 ∙ ℎ/2
+ 𝑁𝑝 ∙ 𝑒𝑝 [𝑁 ⋅ 𝑚𝑚] [Eq.  5-15] 

Assuming the approximation of the bending moment by 𝑀𝑝 = 𝑉𝑝 ∙ 𝑎, and considering only 

rectangular cross-sections into the analysis, the shear strength added by the normal load 

is equal to: 

𝑉𝑝 =
𝑁𝑝 ∙ 𝐼𝑦

𝐴𝑐 ∙ ℎ/2 ∙ 𝑎
+ 𝑁𝑝 ∙

𝑒𝑝
𝑎

𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑐−𝑠
→            𝑁𝑝 ∙ (

ℎ

6 ∙ 𝑑
+
𝑒𝑝
𝑑
) ∙
𝑑

𝑎
 [𝑁] [Eq.  5-16] 

Assuming the relation 𝑑 = 0.85ℎ and with a fixed 𝑎/𝑑 = 4, the contribution of the normal 

load is equal to: 

𝑉𝑝 = 𝑁𝑝 ∙ (0.2 +
𝑒𝑝

𝑑
) ∙
1

4
= 𝑁𝑝 ∙ (0.05 +

𝑒𝑝

4𝑑
) [𝑁] [Eq.  5-17] 

But the first term considers the normal load applied at the centroid, and to consider it 

correctly, it has to be applied at the decompression point, when prestressed moment is 

equal to the acting bending load. Taking this point at a distance (𝑎 − 𝑑) from the point 

load, the first value within the parenthesis has to be multiplied by 
𝑑

𝑎−𝑑
/
𝑑

𝑎
=
4

3
 . And finally, 

dividing by the concrete area to convert it to shear stress, the following expression is 

obtained. 

𝜏𝑝 =
𝑉𝑝
𝐴𝑐
=
𝑁𝑝
𝐴𝑐
∙ (0.07 +

𝑒𝑝
4𝑑
) = 𝜎𝑐𝑝 ∙ 𝑘1 [𝑀𝑃𝑎] [Eq.  5-18] 

5.2.3 Alternative 3 (prEN3) 

Approach based on a linearization of the failure criterion stated with the closed-form design 

equation [Eq.  5-4]. For this alternative the design value of shear stress resistance in 

presence of normal loads (compression or tension) may be calculated as follows: 

𝜏𝑅𝑐 = 𝜏0 − 𝑘1 ∙ 𝜎𝑑 ≤ 0.33
√𝑓𝑐𝑘
𝛾𝑉

 [𝑀𝑃𝑎] [Eq.  5-19] 
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𝑘1 = 0.67 ∙
𝑒𝑝 +

𝑑
3

𝑎𝑐𝑠
≤ 0.15 

[Eq.  5-20] 

Where: 
𝜏0: shear stress resistance according [Eq.  5-8] without considering axial forces. 

 𝜏0 = 0.66 ⋅ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙
𝑑𝑑𝑔

𝑎𝑐𝑠
)

1

3
 

𝜎𝑑: average normal stresses 

𝑒𝑝: eccentricity of the prestressing force, positive towards the tensile side 

𝑎𝑐𝑠: effective shear span (𝑀𝐸 𝑉𝐸⁄ ) without considering axial forces 

 Considering the same lower bound as stated for the last two alternatives by [Eq.  2-15] 

• Theoretical derivation 

The linear approximation of the failure criterion is defined by three points represented in 

Figure 5-6: 

- Point A: the shear stress resistance without axial force (𝜏0) according [Eq.  5-4]. 

- Point B: maximum shear stress resistance (𝜏𝑚𝑎𝑥) , that correspond to a 

longitudinal reinforcement strain equal to zero (𝜀𝑣 = 0), stated equal to 1/3. 

- Point C: minimum shear resistance (𝜏𝑚𝑖𝑛) , that correspond to the yielding 

longitudinal reinforcement strain (𝜀𝑣 = 𝜀𝑦𝑑), calculated again according [Eq.  5-4]. 

 

Figure 5-6 Linear approximation of the failure criterion for Alternative 3 

Taking point “A” as the reference and considering that one can have either compressive 

or tensile stresses, the stress-strain relationship can also be extended to the left or right 

of the reference. Then in the presence of normal forces in compression, the failure criterion 

is as follow: 

𝜏𝑅𝑐 = 𝜏0 +
𝜏𝑚𝑎𝑥 − 𝜏0
𝜀𝑣0

∙ (𝜀𝑣0 − 𝜀𝑣) ≤ 𝜏𝑚𝑎𝑥 [Eq.  5-21] 

And in case of normal forces acting in tension 

𝜏𝑅𝑐 = 𝜏0 +
𝜏𝑚𝑎𝑥 − 𝜏0
𝜀𝑦𝑑 − 𝜀𝑣0

∙ (𝜀𝑣 − 𝜀𝑣0) ≥ 𝜏𝑚𝑖𝑛 [Eq.  5-22] 

However, it is not convenient to start the derivation of a simplified approach with two 

expressions, then to simplify the procedure, the expression derived for compressive forces 

is extended for the range of tensile forces. 

Now, it is necessary to define the strain of the longitudinal reinforcement (𝜀𝑣) as a function 

of the shear stress value (𝜏𝐸). Similar to [Eq.  5-12] above, an expression grouping the 

following parameters is proposed. 
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𝜀𝑣 =
𝑉𝐸 ∙ 𝑎𝑐𝑠 − 𝑃𝑑 ∙ (𝑒𝑝 +

𝑑
3
)

𝑧 ∙ 𝜌𝑙 ∙ 𝐸𝑠 ∙ 𝑏𝑤 ∙ 𝑑
=
𝜏𝐸 ∙ 𝑎𝑐𝑠 + 1.25 ∙ 𝜎𝑑 ∙ (𝑒𝑝 +

𝑑
3
)

𝜌𝑙 ∙ 𝐸𝑠 ∙ 𝑑
 

[Eq.  5-23] 

Where the compressive stress in the concrete due to the normal loads (𝑃𝑑) is equal to: 

𝜎𝑑 = −
𝑃𝑑
𝑏𝑤 ∙ ℎ

 (< 0 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) [Eq.  5-24] 

And the eccentricity is considered positive towards the tensile side. 

With this definition of strain used before, one has that for point A (𝜎𝑑 = 0) the strain is 

equal to:  

𝜀𝑣0 =
𝜏0 ∙ 𝑎𝑐𝑠
𝜌𝑙 ∙ 𝐸𝑠 ∙ 𝑑

 [Eq.  5-25] 

Thus, with the current definitions stated, an expression can be obtained by substituting 

[Eq.  5-25] and [Eq.  5-23] in [Eq.  5-21]. Assuming that the shear stress resistance is equal 

to the design shear stress (𝜏𝑅𝑑,𝑐 = 𝜏𝐸𝑑) at the intersection point the following relation is 

obtained. 

𝜏𝑅𝑐 = 𝜏0 − 1.25 ∙ (1 −
𝜏0
𝜏𝑚𝑎𝑥

) ∙
𝑒𝑝 +

𝑑
3

𝑎𝑐𝑠
∙ 𝜎𝑑 

[Eq.  5-26] 

Expression that can be simplified grouping some terms as below. 

𝜏𝑅𝑐 = 𝜏0 − 𝑘1𝜎𝑑 ≤ 𝜏𝑚𝑎𝑥 [Eq.  5-27] 

With: 

𝑘1 = 1.25 ∙ (1 −
𝜏0
𝜏𝑚𝑎𝑥

) ∙
𝑒𝑝 +

𝑑
3

𝑎𝑐𝑠
 

[Eq.  5-28] 

The term within the parenthesis in [Eq.  5-28] can be simplified for ease of use. It is known 

that both terms are equal to the following expressions 

𝐹𝑜𝑟 𝜎𝑑 = 0 → 𝜏0 = 0.66 ⋅ (100 ∙ 𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙
𝑑𝑑𝑔

𝑎𝑐𝑠
)

1
3

 
[Eq.  5-29] 

𝐹𝑜𝑟 𝜀𝑣 = 0 → 𝜏𝑚𝑎𝑥 = 0.66 ⋅ (100 ∙ 𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙
𝑑𝑑𝑔

𝑘𝑣𝑝,𝑚𝑖𝑛 ∙ 𝑎𝑐𝑠
)

1
3

; 

 

[Eq.  5-30] 

Therefore, the relation between both terms results in the expression below. 

𝜏0
𝜏𝑚𝑎𝑥

= 𝑘𝑣𝑝,min
1/3

 [Eq.  5-31] 

The expression stated in [Eq.  5-20] is obtained below substituting [Eq.  5-31] into [Eq.  

5-28] considering 𝑘𝑣𝑝,𝑚𝑖𝑛 = 0.1, as follow. 

𝑘1 = 1.25 ∙ (1 − 0.1
1
3) ∙

𝑒𝑝 +
𝑑
3

𝑎𝑐𝑠
= 0.67 ∙

𝑒𝑝 +
𝑑
3

𝑎𝑐𝑠
 [−] [Eq.  5-32] 
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Finally substituting the last result ([Eq.  5-32]) into [Eq.  5-27] one obtains the initial 

equation mentioned ([Eq.  5-19]). Including the partial factor for shear design into the 

expression the design shear strength is obtained with the following equation:  

𝜏𝑅𝑑,𝑐 =
0.66

𝛾𝑉
∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙

𝑑𝑑𝑔

𝑎𝑣
)

1
3

− 0.67 ∙
𝑒𝑝 +

𝑑
3

𝑎𝑣
 ∙ 𝜎𝑐𝑝 [𝑀𝑃𝑎] 

[Eq.  5-33] 

This alternative will be added to the comparison with experimental test results, then to 

obtain comparable mean values, as stated in last chapter, the average compressive 

strength of the concrete was used instead of the characteristic compressive strength of 

the concrete (𝑓𝑐𝑘 = 𝑓𝑐𝑚), and a partial shear factor equal to one (𝛾𝑉 = 1) was stated. 

𝜏𝑅𝑚,𝑐 = 0.66 ∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑚 ∙
𝑑𝑑𝑔

𝑎𝑣
)

1
3

− 0.67 ∙
𝑒𝑝 +

𝑑
3

𝑎𝑣
 ∙ 𝜎𝑐𝑝 [𝑀𝑃𝑎] 

𝑤𝑖𝑡ℎ: 𝑎𝑣 = {

𝑑    𝑖𝑓 𝑎𝑐𝑠 ≥ 4 ⋅ 𝑑

√𝑎𝑐𝑠 ⋅
𝑑

4
   𝑖𝑓 𝑎𝑐𝑠 < 4 ⋅ 𝑑

,𝑤𝑖𝑡ℎ 𝑎𝑐𝑠 = |
𝑀𝐸𝑚
𝑉𝐸𝑚

| [𝑚𝑚] 

 

[Eq.  5-34] 

5.2.4 Alternative 4 (prEN4) 

This alternative applies the same principles stated for prEN1992. The proposal is based 

on the linearization of the failure criterion stated initially (hyperbolic curve - [Eq.  5-4]). In 

this proposal, the effect of normal loads is decoupled. This allows a more straightforward 

estimation of the shear strength of concrete in the first instance. Later, adding the effect of 

normal loads, it is possible to affect the initial shear strength with the applied normal load. 

The way normal loads are considered is almost the same as the current EC2, although in 

this case, the factor 𝑘1 is replaced by another factor that depends on the relation 𝑑/𝑎𝑐𝑠 as 

stated below. 

𝜏𝑅𝑐 = 𝜏0 − 0.17 ∙
𝑑

𝑎𝑐𝑠
𝜎𝑐𝑝 [𝑀𝑃𝑎] [Eq.  5-35] 

Where, as was stablished before, the shear capacity of concrete without normal 

load 𝜏0 is: 

𝜏0 = 0.66 ⋅ (100𝜌𝑙𝑓𝑐𝑘
𝑑𝑑𝑔

𝑎𝑐𝑠
)

1/3

[𝑀𝑃𝑎] 

And the normal stress in concrete is calculated as follows, considering negative 

values for the normal loads applied in compression and positive values when they 

are applied in tension. 

𝜎𝑐𝑝 =
𝑁𝐸𝑚
𝐴𝑐
 [𝑀𝑃𝑎] [Eq.  5-36] 

• Theoretical derivation 

To explain its derivation, it is necessary to have a look at the derivation of the longitudinal 

strain again. Figure 5-5 will be helpful to visualize the problem. Then by equilibrium, the 

tension force can be derived, resulting in the expression below. 

𝐹𝑡 =
𝑀𝐸𝑚
𝑧
+
𝑁𝐸𝑚
𝑧
⋅
𝑑

3
=
𝑀𝐸𝑚
𝑧
⋅ (1 +

𝑁𝐸𝑚
𝑀𝐸𝑚

⋅
𝑑

3
) = 𝑘𝑣𝑝 ⋅

𝑀𝐸𝑚
𝑧
 [𝑁] [Eq.  5-37] 
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And now the last defined term used to calculate the longitudinal strain results in 

𝜀𝑣 =
𝜎𝑡
𝐸𝑠
=

𝐹𝑡
𝐴𝑠𝐸𝑠

= 𝑘𝑣𝑝 ⋅
𝑀𝐸𝑚
𝐴𝑠𝐸𝑠𝑧

= 𝑘𝑣𝑝 ⋅ 𝜀𝑣0 [−] [Eq.  5-38] 

 Where 𝜀𝑣0 is the longitudinal strain for a case without normal loads or 𝑘𝑣𝑝 = 1. 

What has been defined above will now be useful to define the end points to apply the 

linearization. It is necessary to define the upper and lower bound of the formulation as can 

be seen in Figure 5-7. 

The upper bound corresponds to the case of shear resistance when 𝑘𝑣𝑝 has its maximum 

value, which is 0.1 as stated before. This will result in the following relation: 

𝜏𝑚𝑎𝑥 = 0.66 ⋅ (100𝜌𝑙𝑓𝑐𝑘
𝑑𝑑𝑔

𝟎. 𝟏 ⋅ 𝑎𝑐𝑠
)

1/3

[𝑀𝑃𝑎] [Eq.  5-39] 

And the lower bound corresponds to a case of shear resistance without normal load, that 

it is already known as 𝜏0. 

 

Figure 5-7 Linear approximation of the failure criterion for Alternative 4 

Having both extremes located, the corresponding shear strength (𝜏𝑐) according to the 

calculated strain (𝜀𝑣) can be calculated using the linear relationship between extremes 

values. 

𝜏𝑐 − 𝜏0
𝜀𝑣0 − 𝜀𝑣

=
𝜏𝑚𝑎𝑥 − 𝜏0
𝜀𝑣0

 [Eq.  5-40] 

Including the expression found in [Eq.  5-38] into the last expression the equation below is 

results.  

𝜏𝑐 = 𝜏0 −
𝑁𝐸
𝑀𝐸
∙
𝑑

3
∙ (𝜏𝑚𝑎𝑥 − 𝜏0) [𝑀𝑃𝑎] [Eq.  5-41] 

Which is the desired condition, but one would like to simplify it even more by looking at the 

relationship between the extremes 𝜏𝑚𝑎𝑥 = 10
1/3𝜏0. Then substituting into last equation, 

the result is: 

𝜏𝑐 = 𝜏0 −
𝑁𝐸
𝑀𝐸
∙
𝑑

3
∙ (10

1
3 − 1) 𝜏0 = 𝜏0 ∙ (1 −

𝑁𝐸 ∙ 𝑑

𝑀𝐸
∙
1.15

3
)

= 𝜏0 ∙ (1 − 0.38 ∙
𝑁𝐸 ∙ 𝑑

𝑀𝐸
) [𝑀𝑃𝑎] 

[Eq.  5-42] 
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Again, one can reformulate the last expression considering the definition of axial stress 

𝜎𝑐𝑝 = 𝑁𝐸/𝐴𝑐, a term used in the current Eurocode   

𝜏𝑐 = 𝜏0 ∙ (1 − 0.38 ∙
𝐴𝑐 ∙ 𝑑

𝑀𝐸
𝜎𝑐𝑝) [𝑀𝑃𝑎] [Eq.  5-43] 

Into the last expression, it should be noted that according to the definition of average shear 

stress in Eurocode 𝑉0 = 𝜏0 ⋅ 𝑏𝑤 ⋅ 𝑧 = 𝜏0 ⋅ 𝑏𝑤 ⋅ 0.9𝑑, then last expression can be stated as: 

𝜏𝑐 = 𝜏0 − 0.38 ∙
𝜏0 ⋅ 𝐴𝑐 ∙ 𝑑

𝑀𝐸
𝜎𝑐𝑝 = 𝜏0 − 0.38 ∙

𝑉0
𝑀𝐸

𝐴𝑐 ∙ 𝑑

𝑏𝑤 ⋅ 0.9𝑑
 𝜎𝑐𝑝 [𝑀𝑃𝑎] [Eq.  5-44] 

At this point one should stop to analyze what 𝜏0 involves. Knowing that the formulation 

includes the effect of prestressing in the acting bending moment and shear force (𝑀𝐸 , 𝑉𝐸), 

the obtained value is the shear resistance of the member without the effect of axial forces. 

Then, to accurately calculate the value of 𝑉0 one should remove the effect of the normal 

force.  

In order not to worsen the ease of use of this approach, it can be considered the use of 

the maximum value for shear resistance in the second term, being on the safe side. Then, 

applying again the known relationship between 𝜏0 and 𝜏𝑚𝑎𝑥, the following relation results. 

𝜏𝑐 = 𝜏0 − 0.38 ∙
𝜏0 ∙ 𝐴𝑐 ∙ 𝑑

𝑀𝐸
𝜎𝑐𝑝 = 𝜏0 − 0.38 ∙

10−
1
3 ∙ 𝜏𝑚𝑎𝑥 ∙ 𝐴𝑐 ∙ 𝑑

𝑀𝐸
𝜎𝑐𝑝

= 𝜏0 − 0.2 ∙
𝑉𝑚𝑎𝑥
𝑀𝐸

𝐴𝑐
𝑏𝑤
𝜎𝑐𝑝 [𝑀𝑃𝑎] 

[Eq.  5-45] 

Finally, knowing that the actual shear force (𝑉𝐸 = 𝑉𝑐) will be equal or lower than 𝑉𝑚𝑎𝑥 in all 

cases, and that the main application of this approach is concrete solid slabs or rectangular 

beams, one ca simplify further the expression as one knows that 𝐴𝑐 = 𝑏𝑤 ⋅ ℎ and assuming 

𝑑 = 0.85 ⋅ ℎ, then the formula results in: 

𝜏𝑐 = 𝜏0 − 0.2 ∙
𝑉𝐸
𝑀𝐸

𝐴𝑐
𝑏𝑤
𝜎𝑐𝑝 = 𝜏0 − 0.17 ∙

𝑉𝐸 ⋅ 𝑑

𝑀𝐸
𝜎𝑐𝑝 = 𝜏0 − 0.17 ∙

𝑑

𝑎𝑐𝑠
𝜎𝑐𝑝 [𝑀𝑃𝑎] [Eq.  5-46] 

Further improvements can be proposed to the last expression, but the analysis will end at 

this point. This expression after the inclusion of the partial factor for shear design ends up 

being equal to: 

𝜏𝑅𝑑,𝑐 =
0.66

𝛾𝑉
∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙

𝑑𝑑𝑔

𝑎𝑣
)

1
3

− 0.17 ∙
𝑑

𝑎𝑐𝑠
𝜎𝑐𝑝 [𝑀𝑃𝑎] 

[Eq.  5-47] 

The upper limit stablished for the proposed expression is equal to: 

𝜏𝑚𝑎𝑥 = (
1

0.1
)
1/3

𝜏0 = 2.15𝜏0 
[Eq.  5-48] 

Also due to the dependence of the calculated shear resistance on the applied external 

force for 𝑎𝑐𝑠 > 4𝑑 an iterative process must be performed in case the capacity is required. 

And in case the mean shear capacity is required the mean compressive strength of 

concrete is used instead of the characteristic strength of concrete and the partial shear 

factor is equal to 1. 
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𝜏𝑅𝑑,𝑐 = 0.66 ∙ (100𝜌𝑙 ∙ 𝑓𝑐𝑚 ∙
𝑑𝑑𝑔

𝑎𝑣
)

1
3

− 0.17 ∙
𝑑

𝑎𝑐𝑠
𝜎𝑐𝑝 [𝑀𝑃𝑎] 

𝑤𝑖𝑡ℎ: 𝑎𝑣 = {

𝑑    𝑖𝑓 𝑎𝑐𝑠 ≥ 4 ⋅ 𝑑

√𝑎𝑐𝑠 ⋅
𝑑

4
   𝑖𝑓 𝑎𝑐𝑠 < 4 ⋅ 𝑑

,𝑤𝑖𝑡ℎ 𝑎𝑐𝑠 = |
𝑀𝐸𝑚
𝑉𝐸𝑚

| [𝑚𝑚] 

[Eq.  5-49] 

5.2.5 Discussion on the difference between the proposed simplifications 

Evaluating the proposal for the new Eurocode, alternatives prEN1 to prEN4 can be divided into 

three groups. Alternative prEN1 in the first group, its derivation is closely related to the original 

approach derived from the CSCT. Later the second group with Alternative prEN4 that linearizes 

the original failure criterion and ends with a consistent formula that deviates slightly from the 

original approach when assuming (𝑉0 = 𝑉𝑚𝑎𝑥) for simplicity in one of the intermediate steps of its 

derivation (section 5.2.4). The last group of alternatives prEN2 and prEN3 with similar equations, 

but the problem is that the derivation of their factors that consider the prestressing effect contain 

some debatable assumptions. e.g., alternative prEN2 assumed a fixed a/d=4, and both consider 

the eccentricity in the factor that multiplies the axial stress on concrete. Then let’s discuss the last 

two alternatives (Alternative prEN3 and prEN4) presented below in a simplified manner, 

considering 𝜏0 as the shear resistance without normal loads. 

𝜏3 = 𝜏0 − (0.22
d

acs
+ 0.67

𝑒𝑝
𝑎𝑐𝑠
) 𝜎𝑐𝑝 

𝜏4 = 𝜏0 − 0.17
d

acs
 𝜎𝑐𝑝 

If we remember that 𝜏0 already considers the prestressing effect through the effective shear span 

that is calculated with the acting bending moment and acting shear force (𝑎𝑐𝑠 = |𝑀𝐸/𝑉𝐸|), it is 

questionable the use of the eccentricity (𝑒𝑝) that comes to incorporate the prestressing effect 

again when it only remains to add the axial strains caused by the prestressing applied on the 

centroidal axis. Also, if the last term that considers the eccentricity in alternative prEN3 is 

excluded, an expression very similar to alternative prEN4 appears. 

5.3 EVALUATION OF THE ALTERNATIVE APPROACHES (PREN3 AND PREN4)  
Considering that the assumed critical location is 𝑥𝑟 = 𝑎 − 𝑑 as suggested in the proposal for the 

new Eurocode, the performance of the proposed models is evaluated and compared according to 

the results presented in Table 5-1. 

Looking at the COV and mean values of the shear strength ratio (𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐), prEN4 is more 

precise and accurate than prEN3, because prEN4 has mean values in the range 1.30-1.39 and 

prEN3 in the range 1.50-1.64, and prEN4 has COV=0.25-0.26 and prEN3 has COV=0.29-0.30. 

prEN4 is a good alternative but does not surpass the accuracy of the prEN1 approach which has 

COV=0.23-0.24, the lowest values among the alternatives proposed for the new Eurocode, and 

the second approach after AASHTO-LRFD which has COV=0.23-0.24. 
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Table 5-1 Statistical information from comparing the design codes results with tests for the defined subsets when critical location is xr = a-d 
including new proposals (prEN3 and prEN4) 

  

Mean of 𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 [-] 
Coefficient of variation of 

𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 [-] 
5th Percentile lower bound 

of 𝜶 = 𝑽𝒕𝒆𝒔𝒕/𝑽𝒄𝒂𝒍 [-] 

Subset 
1 

Subset 
2 

Subset 
3 

Subset 
1 

Subset 
2 

Subset 
3 

Subset 
1 

Subset 
2 

Subset 
3 

ACI-s 1.28 1.04 1.00 0.45 0.32 0.29 0.52 0.50 0.49 

ACI-d 1.51 1.62 1.66 0.38 0.39 0.33 0.98 1.02 1.10 

AASHTO 1.76 1.78 1.76 0.22 0.23 0.23 1.26 1.30 1.23 

EC2 1.51 1.44 1.41 0.29 0.31 0.28 0.89 0.82 0.78 

prEN1 1.44 1.41 1.42 0.23 0.24 0.24 1.05 1.04 1.03 

prEN2 1.49 1.39 1.38 0.29 0.30 0.29 0.95 0.86 0.81 

prEN3 1.64 1.50 1.50 0.29 0.30 0.29 1.06 1.03 0.98 

prEN4 1.39 1.30 1.30 0.26 0.26 0.25 0.96 0.90 0.85 

 

 

 
*𝑐𝑖/𝑁: refers to the number of tests within the bin (𝑐𝑖) over the total number of elements (𝑁) 

Figure 5-8 Histograms comparing results obtained using subset 1 and xr=a-d, for beams with rectangular cross-section and beams with I- or T-
shape cross-section. (A) prEN1 (B) prEN2. (C) prEN3 and (D) prEN4 

As in the previous chapter, one can compare the shear strength estimated within subset 1 for 

rectangular beams and I/T shape beams. One expectation is that the rectangular beams group 

obtains better accuracy than I/T beams group. Also, may be expected the underestimation of the 

shear strength of I/T beams group due to the assumed constant inner lever arm equal to 𝑧 = 0.9𝑑. 

This can be validated with the histograms presented in Figure 5-8, comparing the mean values of 

the shear strength ratios (𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐) of the different alternatives are shown. 

A B 

C D 
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It can be seen that the accuracy is improved for all alternatives for the rectangular beam groups 

(prEN1: 1.44 to 1.41, prEN2: 1.49 to 1.39, prEN3: 1.64 to 1.50, prEN4: 1. 39 to 1.30) and for I/T 

beam groups, the accuracy is decreased with much higher mean values (prEN1: 1.44 to 1.65, 

prEN2: 1.49 to 1.74, prEN3: 1.74 to 1.74, prEN4: 1.39 to 1.62). 

What is being learned at this point is that if one wants to consider different cross-section shapes 

into the different alternatives for the new Eurocode, one should include the influence of the actual 

gross cross-section area at least in the inner lever arm estimation to do not obtain such 

conservative results. Figure 5-5 shows the assumed rectangular cross-section for the calculation 

of the moment of equilibrium of a cross-section for prEN1992 approaches, from that point is where 

other assumptions should be given to have a formula that fits the different cross-section shapes. 

It could be keeping the inner lever arm term 𝑧 without any assumptions until the end and trying to 

simplify it in the final expression, it is a work that can be done in another research. 

Something interesting that can also be seen with the histograms shown in Figure 5-9 is the 

evolution of the performance of the alternatives within the different defined subsets. One can see 

that the mode tends to accentuate around 1 progressively from histogram for subset 1 to 

histogram for subset 3.  

 

 
*ci/N: refers to the number of tests within the bin (ci) over the total number of elements (N) 

Figure 5-9 Histograms for comparison levels of design codes with experimental data at xr=a-d. (A) prEN1 and (B) prEN2, (C) prEN3 and (D) 
prEN4 

As was done in chapter 4, the performance of the different alternatives for the new Eurocode 

proposal can be evaluated in terms of precision, safety and accuracy assuming different critical 

locations. Figure 5-10, Figure 5-11 and Figure 5-12 show the evolution of the mean value the 

COV and the 5th percentile lower bound of the shear strength ratio 𝛼 = 𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐 for the different 

critical locations assumed. 

A B 

C D 
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The new proposals that are added have varying accuracy and precision depending on the critical 

location assumed. Making a general evaluation at the most representative critical location 𝑥𝑟 =

𝑎 − 𝑑, and taking the criteria established in Table 4-5 for the relative assessment of the statistical 

indicators obtained, it can be said that: 

• prEN1 for all the defined subsets obtains a COV in the range 0.23-0.24, which indicates a 

good precision of the results obtained. This is the best performance in terms of precision 

between the 4 alternatives proposed for the new Eurocode. The 5th percentile lower bound 

value indicates conservative results with values between 1.03 to 1.05. 

• prEN2 obtains COV in the range 0.29-0.30 indicating that the results have reasonable 

precision, and the 5th percentile lower bound values in the range 0.81—0.95 indicate good 

levels of safety. 

• prEN3 similar to prEN2 obtains COV in the range 0.29-0.30 indicating reasonable 

precision for the results, but the 5th percentile lower bound values are between 0.98-1.06 

denoting more conservative results than prEN2. 

• prEN4 is the best linearized proposal that obtains COV in the range 0.25-0.26 indicating 

results with reasonable precision, and the 5th percentile lower bound values are in the 

range 0.85-0.96 indicating good levels of safety. 

In terms of accuracy comparing with test results, the alternative prEN4 has the best results 

(mean= 1.30-1.39) followed by prEN1 (mean= 1.41-1.44) and prEN2 (mean= 1.38-1.49). prEN3 

is the less accurate approach from the alternatives for the prEN1992 with mean values in the 

range 1.50 to 1.64.  

Comparing the proposal for the new Eurocode with the current EC2, it can be seen in Figure 5-10, 

Figure 5-11 and Figure 5-12, that there is an improvement in terms of accuracy with prEN1, prEN2 

and prEN4. In terms of precision all the alternatives improve the precision obtained with EC2 and 

in terms of safety prEN4 and prEN2 improve safety as necessary, but prEN1 and prEN3 become 

somewhat conservative. 

 

Figure 5-10 Subset 2, mean values for comparison of Vtest/Vcalc as function of the critical location for EC2 and prEN1992 proposals. 
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Figure 5-11 Subset 2, coefficients of variation for comparison of Vtest/Vcalc as function of the critical location for EC2 and prEN1992 proposals. 

 

Figure 5-12 Subset 2, 5th percentile lower bound of Vtest/Vcalc as function of the critical location for EC2 and prEN1992 proposals 

5.3.1 Assessment of the alternatives proposed for the new Eurocode  

The 4 alternatives presented in this chapter for the estimation of the shear strength of prestressed 

concrete members without shear reinforcement will be examined comparing results and 

assumptions between them. 

The main discussion is around the results obtained by adding prestressing within a model 

dependent on the estimated longitudinal strain of the longitudinal reinforcement that affects the 

crack width of the critical shear crack and consequently the estimated shear strength of concrete.  

The initial approach prEN1, has been extensively tested for reinforced concrete beams, so it is 

expected to work for prestressed concrete beams if the correct terms are modified to consider the 

total effect of the normal loads applied on the beam. The concepts handled by prEN1 and prEN4 

are very similar, and both consider that the effect of the prestressing force, which by definition is 

preload, is already considered in the effective shear span term (𝑎𝑣), which considers the ratio 

between the acting bending moment (𝑀𝐸𝑑) and acting shear force (𝑉𝐸𝑑). So, both assume that it 

remains to consider the axial/normal loads applied in the neutral axis of the cross-section resulting 

from prestressing. This can be shown by the moment of equilibrium of a cross-section assumed 

to derive the prEN1 approach shown in Figure 5-5. prEN1 modified the derivation of its approach 

from there to include the effect of normal loads through the 𝑘𝑣𝑝 factor that modifies the effective 

shear span 𝑎𝑣. prEN4 simplifies the original approach through a linearization that ends up adding 

to the mean shear stress (𝜏0) (which considers 𝑀𝐸𝑑 and 𝑉𝐸𝑑) a term that includes the effect of the 
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axial stresses generated as a function of the ratio 𝑑/𝑎𝑣. The expressions of prEN1 and prEN4 are 

shown below again. 

𝜏1 = 0.66 ∙ (100𝜌 ∙ 𝑓𝑐𝑘 ∙
𝑑𝑑𝑔

𝑎𝑣 ∙ (1 +
𝑁𝐸
|𝑀𝐸|

∙
𝑑
3
)
)

1 3⁄

[𝑀𝑃𝑎] 

𝜏4 = 0.66 ∙ (100𝜌 ∙ 𝑓𝑐𝑘 ∙
𝑑𝑑𝑔

𝑎𝑣
)

1 3⁄

− 0.17
d

acs
⋅
NE
𝐴𝑐
= 𝜏0 − 0.17

𝑑

𝑎𝑐𝑠
σcp [𝑀𝑃𝑎] 

One notices that the final expression for prEN4 ends up being very similar to the current 

expression for EC2, only that instead of the empirical factor 𝑘1 = 0.15 there is one dependent on 

the ratio 𝑑/𝑎𝑣. This makes it much easier to make it accepted in terms of usability, since the effect 

of the normal loads on the shear strength can also be appreciated. 

prEN2 and prEN3 are a linearization of the original approach as prEN4, but they include the 

eccentricity of tendons (𝑒𝑝) in the factor that affects the influence of normal stresses on the shear 

resistance. This is questionable since it would be doubly considering the effect of the eccentricity 

of the tendons in the approach since this eccentricity is implicitly immersed in the acting bending 

moment and acting shear force. The expressions of prEN2 and prEN3 are shown below too. 

𝜏2 = 0.66 ⋅ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙
𝑑𝑑𝑔

𝑑𝑛𝑜𝑚
)

1
3

− 𝑘1 ∙ 𝜎𝑐𝑝  = 𝜏0 −
1.4

𝛾𝑉
∙ (0.07 +

𝑒𝑝
4 ∙ 𝑑

) 𝜎𝑐𝑝 

𝜏3 = 0.66 ⋅ (100𝜌𝑙 ∙ 𝑓𝑐𝑘 ∙
𝑑𝑑𝑔

𝑑𝑛𝑜𝑚
)

1
3

− 𝑘1 ∙ 𝜎𝑑 = 𝜏0 − 0.67 ∙
𝑒𝑝 +

𝑑
3

𝑎𝑐𝑠
𝜎𝑐𝑝 = 𝜏0 − (0.22

d

acs
+ 0.67

𝑒𝑝
𝑎𝑐𝑠
)𝜎𝑐𝑝 

The main difference between prEN2 and prEN3 is the fixed 𝑎/𝑑 = 4 assumed for prEN2, and both 

approaches assume the influence of the eccentricity of the resultant axial prestress force into the 

moment of equilibrium of the cross-section. This last assumption could only be successful in the 

case of separating the effect of the prestressing force on the ultimate load, which extends the 

procedure much further and is detrimental to ease of use, and therefore initially, it is not 

considered. 

Based on the alternatives proposed, a comparison was made based on the consideration of axial 

stress in the shear resistance. The linearized alternatives prEN2, prEN3 and prEN4 were 

compared with the alternative prEN1 and the following scatterplots were obtained as shown in 

Figure 5-13, Figure 5-14 and Figure 5-15. 

 
Figure 5-13 Shear strength ratio (𝑉𝑝𝑟𝐸𝑁−1/𝑉𝑐𝑎𝑙𝑐) versus longitudinal reinforcement ratio (𝜌𝑙) for subset 1 from ACI-DAfStb-PC database 
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Figure 5-14 Shear strength ratio (𝑉𝑝𝑟𝐸𝑁−1/𝑉𝑐𝑎𝑙𝑐) versus dimension-free axial force (𝜎𝑐𝑝/𝑓𝑐𝑚) for subset 1 from ACI-DAfStb-PC database 

 
Figure 5-15 Shear strength ratio (𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐) versus shear span-to-effective depth ratio (𝑎/𝑑) for subset 1 from ACI-DAfStb-PC database 

The mean value of the shear strength ratio for the different alternatives compared to prEN1 shows 
that prEN4 is the most similar to prEN1 in terms of accuracy and precision, noting that the mean 
value of 1.04 for 𝑉𝑝𝑟𝐸𝑁1/𝑉𝑝𝑟𝐸𝑁4 denotes that the results for prEN4 are on the safe side. The 

precision is also the best of all with COV=0.15 which is considered a very good value. 
The other alternatives obtain mean values of the shear strength ratio equal to 1.14 for prEN2 and 
1.26 for prEN3, and the precision is not as good as prEN4, with COV=0.17 for prEN2 and 
COV=0.20 for prEN3. 
 
The scatterplots shown in  Figure 5-14 can initially show us the comparative results in terms of 
the considered axial stress, where one ends up including extra shear strength with alternatives 
prEN2 and prEN3 specially to members with high dimension-free axial force values. This is 
reflected in the evaluation of the other scatterplot shown in Figure 5-13, and Figure 5-15 where 
for all the ranges of 𝑎/𝑑 and 𝜌𝑙 one can appreciate certain overestimation of the shear strength 
by prEN2 and prEN3 comparing with the results presented by prEN1. 
 
The solution to correct these overestimated values for prEN2 and prEN3 could be the 
consideration by separate terms of the ultimate bending moment (𝑀𝑢), ultimate shear force (𝑉𝑢), 

prestress bending moment (𝑀𝑝), and prestress shear force (𝑉𝑝), excluding from the effective 

shear span (𝑎𝑣)  the incidence of prestressing, thus from the mean shear stress (𝜏0) . This 
complicates the procedure by lengthening it and questions the concept of prestressing as preload, 
so it is convenient to keep the concept established for prestressing and carry out a derivation as 
it is done with the alternatives prEN1 and prEN4. 
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5.4 DISCUSSION AND CONCLUSIONS 
- If discussing the need for more alternatives over the two already existing alternatives in 

the draft document for the new Eurocode, one should point out that both alternatives result 

in a significant change compared to the current Eurocode. Several parameters and 

conditionals are added, and this initially creates displeasure. Therefore, it is suggested 

that this procedure be user-friendly to be quickly adopted in everyday practice. For this 

purpose, other procedures that try to avoid the calculation of more parameters or provide 

a straightforward interpretation of the effect of the prestressing forces on the shear 

strength of the member are proposed. 

 

- The assumptions and simplifications made for the alternatives also were evaluated on how 

they incorporate the effect of normal forces on the longitudinal strain calculation. 

Considering that prestress is preload, one cannot consider eccentric forces since one 

would be doubly considering the effect of the prestressing force. In this case, the normal 

load, resultant from the prestressed forces applied at the centroid, will be the remaining 

external load to be considered in the calculations of the equivalent longitudinal strain. 

 

- The procedures derived for all alternatives are based on the assumption of a rectangular 

cross-section to estimate the location of the compression resultant with respect to the 

neutral axis. If the shear strength estimation for I or T section beams needs to be improved, 

the contribution of the remaining part of the beam flanges to the concrete compression 

resultant should be included by another factor affecting the location of the concrete 

compression resultant. 

 

- Considering that the suggested critical locations are at a distance 𝑑 from the support of 

point load, results obtained comparing the shear strength ratio 𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐 show that from 

the linearized alternatives prEN4 is the best if accuracy and precision are evaluated, 

followed by alternative prEN and prEN3 respectively. Furthermore, it must be said that the 

derivation of the final equation for prEN4 is more transparent and more concise, which 

makes it much easier to be used and interpreted in practice. Besides, following the logic 

mentioned earlier on considering normal forces, it is the alternative that best follows this 

concept. 

 

- Alternatives prEN2, prEN3 and prEN4, which are based on the linearization of the failure 

criterion, take into account a second term that adds the effect of the prestressing force 

multiplying the axial concrete stress with a factor derived through a simplification 

procedure and assumptions mentioned in the document. It has been found that this factor 

is the one that can most influence the precision and accuracy that the alternative will 

acquire. Therefore, the procedure involved in its derivation is transcendental to try to 

improve the estimated shear strength for each alternative. 

o Based on the above, it has been found that alternative prEN4 could consider part 

of the cross-section influence into the shear strength by maintaining the gross 

cross-section area term from [Eq.  5-45], obtaining the following expression: 

 

𝜏4 = 𝜏0 − 0.2 ⋅
𝑉𝐸
𝑀𝐸

𝐴𝑐
𝑏𝑤
𝜎𝑐𝑝 = 𝜏0 − 0.2 ⋅

𝐴𝑐
𝑎𝑐𝑠 ⋅ 𝑏𝑤

𝜎𝑐𝑝 

  

It should be noted that in case any of the alternatives obtains a value of 𝑎𝑐𝑠 > 4, the shear 

capacity would be obtained directly without the need of an iterative process, since 𝑎𝑐𝑠 

would be equal to 𝑑. 
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- In deriving an approach based on CSCT, the estimated longitudinal strain should be 

considered the most relevant factor since it rules over the estimated crack width and shear 

strength. Flexural-shear capacity depends on the contribution of the shear-transfer 

actions, which are affected by the applied prestressing as mentioned in section 2.2 due to 

the decrease of the crack width and crack angle. According to the Eurocode definition, 

prestressing is considered preload, so it affects the acting bending moment and acting 

shear force, which causes the decrease of the principal stresses acting on the longitudinal 

axis of the beam. Following this definition, the moment of equilibrium of the cross-section 

should simply include the resultant normal load applied on the neutral axis. Not following 

this definition creates problems in the effective shear span given since it relates the acting 

bending moment to the acting shear force. This is the problem faced by the alternatives 

prEN2 and prEN3 to calculate the total prestressing contribution to the shear strength, it 

is not possible without separating the acting forces of prestressing in another effective 

shear span. This creates more extensive terms to calculate and is detrimental to the ease 

of use. prEN1 and prEN4 following the initially stated concepts are similar approaches with 

the difference that prEN4 is more conservative than prEN1 because prEN4 is a 

linearization of the failure criterion. 
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6  DESIGN EXAMPLES FOR SHEAR 

STRENGTH  
In this section all design procedures will be applied for typical design cases, the shear strength 

will be verified in critical locations and the differences in the easy-of-use will be highlighted. Design 

codes require efficient procedures, since engineering professionals have time as their most 

valuable resource.  

The cases to be evaluated will be 2, the first one for the design of a new structure, a deck slab of 

a cut-and-cover tunnel and the second the assessment of an existing structure, in this case a 

bridge slab that is going to be evaluated under the condition of simple supported and continuous 

bridge deck. 

The procedure to follow is well know at this point, referencing section 2.4, and considering for the 

design codes applied in Europe the partial safety factor for shear 𝛾𝑉 = 1.4, for concrete 𝛾𝑐 = 1.5, 

and for steel 𝛾𝑠 = 1.15. The failure criterion compares the design value of the applied shear force 

with the calculated shear resistance, requiring the condition (𝑉𝐸𝑑 ≤ 𝑉𝑅𝑑.𝑐) to be met to satisfy the 

demand. 

In case of the codes typically applied in America, the shear strength calculated has to be multiplied 

with a shear strength reduction factor, then this value can be compared with the ultimate shear 

force. In case of ACI318-19M the shear strength reduction factor value is  Φ = 0.75 . The 

conditional stated below, must be met to satisfy the demand. 

Vu < ΦVc = 0.75 ⋅ Vc [Eq.  6-1] 

For AASHTO-LRFD the resistance factor for shear is Φ𝑉 = 0.9 for members with bonded strands. 

This factor is multiplied with the resultant of the factored shear strength of the concrete plus the 

component of prestressing force in the direction of the shear force. The result then is compared 

with the ultimate shear to verify the conditional stated below. 

𝑉𝑢 < Φ𝑉 ⋅ Vn = Φ𝑉 ⋅ (𝑉𝑐 + 𝑉𝑝) [Eq.  6-2] 

Another essential consideration is calculating the demand according to the different design codes. 

The safety is ensured not only by strength reduction factors; load factors are used to increase the 

amount of applied load on a structure to account for possible load increments during the 

structure's life span.  

The design codes address different safety, reliability, and operational level criteria according to 

the parameters established for each region where the design codes are applied. A comparison 

between Eurocodes and AASHTO-LRFD for shear evaluation of slab bridges is shown in 

reference [55], and it was found that AASHTO-LRFD can generate shear stresses similar to 

Eurocodes at the support at different safety levels. However, the underlying safety requirements, 

indicated by the demanded reliability index, are considerably different. So, to briefly summarize, 

it should be noted that the safety requirements underlying the design code procedures are 

different. 

The examples presented in the following sections related to highway structures assume that 

AASHTO-LRFD predominates over ACI318-19, which prevails for buildings. The factored load 

combinations for the Eurocodes and the one corresponding to AASHTO-LRFD are shown in Table 

6-1. 
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Table 6-1 Common factored load combinations for the studied design codes 

Common Factored Load Combination  

EN1990 (6.10b), Consequence class 
3 (CC3). Also, for prEN1992. 

𝜉𝛾𝐺𝐺 + 𝛾𝑄𝑄 + 𝛾𝑝𝑃 = 1.25𝐺 + 1.5𝑄 + 1.0𝑃 

G: Dead load, Q: Live load, P: Prestress load 

AASHTO-LRFD – Strength I 1.25𝑤𝐷𝐿 + 1.75𝑤𝐿𝐿 
DL: Dead load, LL: Live load 

 

The deck slab of a cut-and-cover tunnel will assume a uniform design load for all the design codes. 

This will allow us to see what happens in case the same design load is assumed, keeping in mind 

that there are significant variations in the safety requirements of each code. 

Finally, for the analysis of bridge deck slabs, there are different traffic loads for the Eurocodes and 

for AASHTO-LRFD as detailed in section 6.2. 

6.1 DESIGN OF DECK SLAB OF A CUT-AND-COVER TUNNEL 
Figure 6-1 presents the section of the tunnel, where the frame structure has two spans of 10.55 

meters between axes, and there is a deck that is part of it that forms the roof of the tunnel. The 

thickness of the slab is 700 mm, the concrete used is C30/37 (𝑓𝑐𝑘 = 30 [𝑀𝑃𝑎], 𝜆 = 1), the steel 

reinforcement used is grade B500S (𝑓𝑦𝑘 = 500 [𝑀𝑃𝑎]; 𝐸𝑠 = 200 [𝐺𝑃𝑎]) and the distributed dead 

and imposed loads are considered through a factored load of 𝑞𝑑 = 80 [𝑘𝑁/𝑚
2]. 

The slab incorporated prestressing strands to improve its shear resistance. Four strands with 150 

mm2 (𝜙𝑝 = 15.7 [𝑚𝑚], 𝐸𝑝 = 196 [𝐺𝑃𝑎]) in a flat duct every 800mm are placed (𝑎𝑝 = 750 𝑚𝑚
2/

𝑚). The nominal yield stress is 𝑓𝑝0.1𝑘 = 1500 [𝑀𝑃𝑎], and the stress in the strands after friction 

losses reported is 𝑓𝑝.0 = 1275 [𝑀𝑃𝑎]. The losses due to creep, shrinkage and relaxation are 

assumed to be 22%, resulting in an effective prestress of 𝑓𝑝.∞ = 994.5 [𝑀𝑃𝑎].  

The non-prestressed longitudinal steel reinforcement area is 𝑎𝑠 = 1340 [𝑚𝑚
2/

𝑚] (𝜙16 @ 150 𝑚𝑚), applied at 𝑑𝑠 = 0.64 [𝑚] for both faces of the deck. 

For the specified compressive strength, the relationship stated in section 4.1.1 was assumed 

(𝑓𝑐
′ = 31.6 [𝑀𝑃𝑎]). The maximum size and lower limit of aggregates were also assumed as 𝑎𝑔 =

40 [𝑚𝑚] and 𝐷𝑙𝑜𝑤𝑒𝑟 = 20 [𝑚𝑚] respectively.  
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Figure 6-1 Geometry and cross-sectional dimensions of tunnel [dimensions in [m]; (Design example adapted from [56]) with details of 
intermediate support 

The prestressing tendon profile is defined like in Figure 6-2, assuming the points of contraflexure 

at 𝑥 = [1.16, 7.42, 13.68, 19.94] [𝑚], being 𝑥 the distance from one of the support axis. With this 
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information is possible to calculate the prestressing shear and bending moment applied to the 

deck. The values obtained with half-meter intervals are shown in Figure 6-3. 

eA
eS

eB

eA= 0.10 m, eS= eB = 0.27 m
 

Figure 6-2 Prestressing tendons profile 

With this information is possible to calculate the acting shear and bending moment (𝑉𝐸𝑑,𝑀𝐸𝑑) 

shown in Figure 6-3. The lateral and axial stiffness of the walls has been considered for this 

calculation, and the results are obtained in units per meter. 

With these values, the European design codes can verify if the demand is greater than the 

estimated shear design resistance at each interval, assuming a constant effective prestress along 

the length of the deck. These results are shown in Figure 6-4. 

For the design codes used in America, the applied load by self-weight is required to be calculated 

separately, then it’s assumed the concrete density equal to 24 [𝑘𝑁/𝑚3] that results in a distribute 

load of 16.8 [𝑘𝑁/𝑚2]. The shear and bending moment due to self-weight is calculated along the 

length of the deck and with this information the shear resistance can be estimated by ACI318-19 

and AASTHO-LRFD. The results obtained can be seen in Figure 6-5. 

 

 
Figure 6-3 Moment and shear force diagrams for half of deck slab of tunnel 

Different points of interest can be chosen to verify the shear resistance by analyzing the shear 

and bending forces illustrated in the last figure. When there is a uniform distributed load, the critical 

points to analyze are located near supports or near the points of contraflexure, as it is a continuous 

beam. Generally, one should consider a control section near static or geometric discontinuities, 

as mentioned in section 2.4.2 in the procedure state for the new Eurocode proposal (prEN1992). 
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The results obtained for all approaches show the critical location near the intermediate support 

(at a distance equal to the effective depth 𝑑 approximately) as expected since this region has the 

highest moment and shear force. Among the European codes, alternative 1 (prEN1) gives the 

least conservative estimate of shear resistance if we compare the results obtained with the acting 

design shear. Considering the critical location at 𝑥 = 𝐿 − 𝑑 ≈ 9.75 [𝑚], the estimated shear force 

by prEN1 is 𝑉𝑅𝑑,𝑐(𝑥 = 9.75 𝑚) = 428.20 [𝑘𝑁] in relation with the acting design shear equal to 

𝑉𝐸𝑑(𝑥 = 9.75 𝑚) = 342.9 [𝑘𝑁].  

Evaluating the results at the same critical location (𝑥𝑟 = 9.75 [𝑚]) and defining a unity check 

factor 𝑈𝐶 = (𝑉𝐸𝑑/𝑉𝑅𝑑,𝑐   [−] ) some observations could be made to the different approaches for 

this design case. For the approaches applied in Eurocodes the unity check factors (𝑈𝐶) calculated 

for EC2, prEN1, prEN2, prEN3 and prEN4 have values of 0.97, 0.80, 0.93, 0.93 and 0.90 

respectively. By carrying out the same procedure to analyze the American codes this time 

(𝑈𝐶 = 𝑉𝑢/𝑉𝑐) , it is obtained that ACI318-19 with his approximate method obtains the least 

conservative estimation of the shear resistance with a 𝑈𝐶 = 0.37 , then the AASHTO-LRFD 

obtains a 𝑈𝐶 = 𝑉𝑢/𝑉𝑛 = 0.60, and the ACI318-19 with his detailed method obtains a 𝑈𝐶 = 0.92. 

As a result, it can be said that among the alternatives for the new Eurocode prEN1 is the least 

conservative for the assumed critical location 𝑥𝑟 = 9.75 [𝑚], followed by prEN4 in this case 

because prEN2 and prEN3 assumed a limit for their factor influencing the axial stress contribution 

(𝑘1 < 0.15), otherwise the shear strength estimated by these two alternatives will be greater and 

less conservative, obtaining an 𝑈𝐶 = 0.9  for prEN2 and 𝑈𝐶 = 0.6  for prEN3, being as 

conservative as prEN4 in the case of prEN2, and much less conservative than prEN4 or prEN1 in 

the case of prEN3. 

The results obtained in the practical design cases then follow the trend shown in comparison with 

the tests (section 4.6.3), with prEN4 being the method that is mainly on the safe side. prEN2 and 

prEN3, as explained in the previous paragraph, can obtain more conservative values than prEN4 

in regions where certain limits have been set for them. 

For a step-by-step verification of the results obtained, in Appendix D is presented the spreadsheet 

that was used as a basis for the calculation of the shear strength according to all the design codes 

proposed in this thesis. There one can follow the calculations done to estimate the shear strength 

of concrete for the critical location assumed at 𝑥𝑟 ≈ 9.75 [𝑚]. 

 
Figure 6-4 Shear resistance along the deck slab according to design codes applied in Europe 
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Figure 6-5 Shear resistance along the deck slab according to design codes applied in America 

Analyzing Figure 6-5, one can question the results obtained by AASHTO-LRFD, which are much 

more conservative in this case than those obtained by ACI318-19M. As seen in section 4.6.4, the 

ACI318-19M detailed method considers only part of the longitudinal reinforcement ratio (𝜌𝑙)  

influence because it doesn’t include this parameter in its formulation. Then, the results can be 

more similar by varying the prestressing level, as will be done in the next section 6.3.2.2 to verify 

this hypothesis, using the load combinations, and live load corresponding to each design code. 

6.2 TRAFFIC LOADS 
For Eurocodes a generic model is defined as load model 1. A design truck defined with a tandem 

system which is combined with a uniformly distributed load called design lane load. The tandem 

system has an axle load of 𝛼𝑄1 × 300 𝑘𝑁 for the first lane, 𝛼𝑄2 × 200 𝑘𝑁 in the second lane and 

𝛼𝑄3 × 100 𝑘𝑁 in the third lane. The 𝛼𝑄𝑖 terms are parameters determined by each nation to tailor 

the Eurocode load model to local traffic loading situation, but the recommended value is 1. The 

uniformly distributed load applied over the full lane’s width is 𝛼𝑞𝑖 × 9 𝑘𝑁/𝑚
2 for the first lane and 

𝛼𝑞1 × 2.5 𝑘𝑁/𝑚
2 for all other lanes, with 𝛼𝑞𝑖 for bridges with three or more notional lanes 𝛼𝑞1 =

1.15  and 𝛼𝑞𝑖 = 1.4 . The separation between axle loads is 1.2 meters and the transverse 

separation is 2 meters. 

For AASHTO-LRFD, the combination is between a design truck or design tandem with a design 

lane load. The design truck has three axle loads, one of 35 kN and two of 145 kN, with a 

longitudinal separation of 4.3 meters between the minor and intermediate axle and a variable 

separation between 4.3 and 9 meters between the major axles of 145 kN. The design tandem 

consists of two 110 kN axles separated 1.2 meters apart. The transverse separation for both cases 

is 1.8 meters and a dynamic load allowance (IM) of 33% is considered for both too. The design 

lane load of 9.3 N/mm uniformly distributed in the longitudinal direction, and transversely 

distributed over a 3 meters width, smaller than the full lane width of 3.6 meters. 

Considering the definitions given above Figure 6-6 illustrates the traffic loads considered for the 

analysis of the bridge decks assessed in the next section. 
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Figure 6-6 Traffic load according to Eurocodes (A) and AASHTO-LRFD for combination 1 (B) and combination 2 (C) 

6.3 BRIDGE DESIGN EVALUATION 
Based on the analysis contained in the report “Shear resistance of prestressed members without 

shear reinforcement according to prEN1992/D7 by Hageman”, case studies on two bridges that 

are assumed to have been built in the Netherlands will be evaluated. The load combinations and 

critical load analysis are obtained from this report where the traffic load was analyzed at different 

positions to obtain the critical value. It will be assumed that the design of both bridges was carried 

out following the guidelines of the current Eurocode (EN1992-1-1:2004).  

Then, having the shear (𝑉𝐸𝑑 , 𝑉𝑢, 𝑉𝑝) and bending (𝑀𝐸𝑑 ,𝑀𝑢,𝑀𝑝) acting on the beam, the next step 

is to perform the design with the different alternatives studied in this document to make a 

comparative analysis of the results. 

6.3.1 Prestressed concrete simple supported bridge deck 

The first case is a simple supported bridge deck illustrated in Figure 6-7, the information required 

for the analysis of this problem can be found in Table 6-2. The analysis focuses on the assumed 

critical location near the supports, since distributed loads are applied. Then the region from 0 to 6 

meters from the support axis will be assessed. 

 

Figure 6-7 Side view of prestressed bridge deck 

A 

B 

C 
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Table 6-2 Simple supported bridge deck parameters 

Dimensions 𝑳 = 𝟐𝟏. 𝟒 [𝒎];  𝒃 = 𝟏 [𝒎];  𝒉 = 𝟎. 𝟖 [𝒎]  

Concrete C35/45 𝑓𝑐𝑘 = 35 [𝑀𝑃𝑎]; 𝑓𝑐
′ = 36.6 [𝑀𝑃𝑎]; 𝐸𝑐 = 28.4 [𝐺𝑃𝑎]; 𝜆 = 1  

𝑎𝑔 = 40 [𝑚𝑚];𝐷𝑙𝑜𝑤𝑒𝑟 = 20 [𝑚𝑚]  

Prestressed steel 

(Y1860S). 

64 cables, 

12φ15.7mm 

𝜙𝑝 = 15.7 [𝑚𝑚]; 𝐴𝑝 = 4000 [𝑚𝑚
2]; 𝐸𝑝 = 196 [𝐺𝑃𝑎]  

𝑓𝑝𝑢 = 1860 [𝑀𝑃𝑎]; 𝑓𝑝𝑑 = 1455.65 [𝑀𝑃𝑎]; 𝑓𝑠𝑒 = 1092.01 [𝑀𝑃𝑎]  

Reinforcement steel 

B500, φ16-200 

𝑑𝑠 = 722 [𝑚𝑚]; 𝐴𝑠 = 1005 [𝑚𝑚
2]; 𝑓𝑦 = 500 [𝑀𝑃𝑎]; 𝐸𝑠 =

200 [𝐺𝑃𝑎]  

6.3.1.1 Load cases and load combinations 

In the Hageman report cited above, it is reported that a FEM was configured for the analysis of 

this problem. The critical location obtained is the called “location 2” (Figure 6-8) with about 36% 

higher design shear forces than the rest of the slab deck.  

 

Figure 6-8 Considered critical load case for simple supported bridge deck 

The load cases and load combination applied are detailed in Table 6-3.  

Table 6-3 Load cases and load combinations for simple supported bridge deck 

Load cases 

Self-weight 𝑝 = ℎ ⋅ 𝛾𝑐𝑜𝑛𝑐 = 0.8 ⋅ 25 = 20 [𝑘𝑁/𝑚
2]  

Asphalt 𝑝 = 𝑑𝑎𝑠𝑝ℎ𝑎𝑙𝑡 ⋅ 𝛾𝑎𝑠𝑝ℎ𝑎𝑙𝑡 = 0.14 ⋅ 23 = 3.2 [𝑘𝑁/𝑚
2]  

Prestress 𝑝 = 16 [𝑘𝑁/𝑚2] upwards, after losses, from design calculation) 

 

Traffic load 
EC2 

𝑝 = 1.4 ⋅ 2.5 = 3.5 [𝑘𝑁/𝑚2] over the entire bridge deck 

𝑝 = 1.15 ⋅ 9.0 − 3.5 = 6.85 [𝑘𝑁/𝑚2] extra for lane 1 
𝑇𝑆1 → 2 ⋅ 300 = 600 [𝑘𝑁]  
𝑇𝑆2 → 2 ⋅ 200 = 400 [𝑘𝑁]  
𝑇𝑆3 → 2 ⋅ 100 = 200 [𝑘𝑁]  

Common Factored Load Combination  

EN1990 (6.10b), Consequence class 
3 (CC3). Also, for prEN1992. 

𝜉𝛾𝐺𝐺 + 𝛾𝑄𝑄 + 𝛾𝑝𝑃 = 1.25𝐺 + 1.5𝑄 + 1.0𝑃 

G: Dead load, Q: Live load, P: Prestress load 
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The design bending moment and shear force due to traffic load (UDL and TS) were determined 

with a FEM-model with the results summarized in the report and presented in Figure 6-9. The 

tandem system TS1 is placed at a distance 𝑑 from the considered control section, with a minimum 

of 2𝑑 from the support according to the specifications of the calculations done. Applying the 

different load combinations, the following Figure 6-9 summarize the load cases for Eurocodes. 

 

Figure 6-9 Shear and bending moment acting on simple supported bridge deck 

Considering that only Eurocode traffic loads were taken into account in the configured FEM, it is 

only suitable for estimating the shear strength of concrete for prEN1992 and EC2 approaches as 

shown in Figure 6-10 below.  

All alternatives for the new Eurocode (prEN1992), except alternative prEN4, indicate that the 

flexural-shear failure is verified in all the control sections established every half meter. The results 

obtained for alternatives prEN1, prEN3, and prEN4 have a similar trend, decreasing the estimated 

shear strength for control sections moving away from the support. On the other hand, prEN2 and 

EC2 tend to increase the estimated shear strength for control sections moving away from the 

support.  

 
Figure 6-10 Shear resistance (𝑉𝑅𝑑,𝑐) along a simple supported bridge deck according to design codes applied in Europe 

Suppose the most vulnerable location defined as the point where the unity check 𝑈𝐶 =

(𝑉𝐸𝑑/𝑉𝑅𝑑,𝑐   [−] ) is the highest. In that case, the vulnerable location marked by alternative 1 

(prEN1) is at approximately 3.5 meters (≈ 5𝑑) with an 𝑈𝐶 = 0.942. Alternative 4 (prEN4) marks a 

range between 2 meters (≈ 3𝑑) and 3.5 meters (≈ 5𝑑) as the most vulnerable region with 𝑈𝐶 =
[1.047, 1.067, 1.047, 1.02] for 𝑥 = [2.0, 2.5, 3.0, 3.5] [𝑚] respectively, being the critical location at 

𝑥 = 2.5 𝑚 the most critical. The other codes mark the assumed critical location at 𝑥 = 𝑑 with 𝑈𝐶 =

0.811 for EC2, 𝑈𝐶 = 0.915 for prEN2, and 𝑈𝐶 = 0.854 for prEN3 
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However, what is desired is to assess the codes applied in America too, which is complicated by 

applying the FEM results from the Hageman report without configuring another FEM with the traffic 

loads corresponding to AASHTO-LRFD. To overcome this problem, a conservative approach has 

been assumed by converting the traffic loads (defined in section 6.2) into equivalent distributed 

loads, as detailed in Appendix E. 

For the Eurocodes, the equivalent load for the critical lane has been calculated, obtaining an 

equivalent distributed live load of 𝑞𝑙𝑙.𝐸𝐶 = 27.78 𝑘𝑁/𝑚. For AASHTO-LRFD [37] specification for 

Slab-Type Bridges given in §4.6.2.3 have been used, obtaining the equivalent strip width and the 

equivalent distributed load 𝑞𝑙𝑙.𝐴𝐴𝑆𝐻 = 11.61 𝑘𝑁/𝑚 . Combined with the information already 

provided for dead loads and prestressed loads, the design loads according the load combination 

defined in Table 6-1 were calculated and the results are shown in Figure 6-11. 

 
Figure 6-11 Shear forces and bending moments for simple supported bridge in region near support 

The shear resistances applying the Eurocodes are presented in Figure 6-12, and applying 

AASHTO-LRFD and ACI318-19M in Figure 6-13. The shear strength is plotted from the assumed 

critical location equal to the effective depth (𝑑).  

 
Figure 6-12 Shear resistance along a simple supported bridge deck according to design codes applied in Europe 

With this conservative approach prEN4 marks a vulnerable region in the range between 1.5 and 

4 meters (≈ 2𝑑 𝑡𝑜 6𝑑)  with a unity check 𝑈𝐶 = [1.06, 1.14, 1.13, 1.10, 1.06, 1.01]  for 𝑥 =
[1.5, 2.0, 2.5, 3.0, 3.5, 4.0] respectively. In case of prEN1 now there is vulnerable region between 

2.5 and 3.5 meters approximately (≈ 3𝑑 𝑡𝑜 5𝑑) wit 𝑈𝐶 = [1.05, 1.05, 1.02] for 𝑥 = [2.5, 3.0, 3.5]. 

the other alternatives comply with the verification with unity checks less than 1, of which prEN3 

marks the most vulnerable location at 2.5 meters (≈ 3𝑑) with UC=0.89, the others mark the critical 
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location at the beginning, at a distance 𝑑 from the support with UC=0.89 for prEN2 and UC=0.79 

for EC2. 

 
Figure 6-13 Shear resistance along a simple supported bridge deck according to design codes applied in America 

Following the same logic of vulnerable locations, but now analyzing the results obtained by 

ACI318-19, one can observe that between 2.5 and 3 meters (≈ 3𝑑 𝑎𝑛𝑑 4𝑑) from the support axis, 

the locations with the highest unity check values (𝑈𝐶 = 𝑉𝑢/𝑉𝑛)  can be found, with 𝑈𝐶 =  0.77 at 

x=2.5 meters for the approximate method and 𝑈𝐶 = 0.78 at x=3 meters for the detailed method. 

One can remark that this range contains the critical locations highlighted by prEN4 and prEN1 

before.  

On the other hand, AASHTO-LRFD marks its most vulnerable location at 6 meters (≈ 8.5𝑑), the 

farthest of all with an 𝑈𝐶 = 0.29. Here, like the last design case presented in Figure 6-5, for a 

continuous deck slab, one questions the highly conservative values obtained by AASHTO-LRFD. 

In this case for a simply supported bridge, where near supports the probability of flexural-shear 

failure is lower due to the low flexural stresses present in this region. It is also presumed that 

AASHTO-LRFD considers the total effect of the prestressing force, and that ACI318-19 considers 

only a part of it as was noted in section 4.6.4. A detailed study is done in the following section 

6.3.2.2 to evaluate the results obtained by AASHTO-LRFD. 

6.3.2 Prestressed concrete continuous bridge deck 

This case study for a continuous bridge with a variable deck height of 0.67 to 1 meter (Figure 

6-14). The critical locations near the end and intermediate support are of interest, because 

distributed loads are the dominant again. So, the results are obtained for a range of 0 to 6 

meters from the support axis. The parameters required to calculate the shear strength are 

detailed in Table 6-4, and the shear resistances obtained applying codes from Europe and 

America are presented in Figure 6-16 for region near end support and Figure 6-18 for region 

near middle support.  

 

Figure 6-14 Side view of bridge deck with schematic prestress tendon profile 
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Table 6-4 Prestressed concrete continuous bridge parameters 

Dimensions 𝑳 = 𝟐 𝒙 𝟐𝟔. 𝟎 [𝒎];  𝒃 = 𝟓. 𝟒𝟗 [𝒎];  𝒉 = 𝟎. 𝟔𝟕 − 𝟏 [𝒎]  

Concrete C55/67 𝑓𝑐𝑘 = 55 [𝑀𝑃𝑎]; 𝑓𝑐
′ = 56.6 [𝑀𝑃𝑎]; 𝐸𝑐 = 35.4 [𝐺𝑃𝑎]; 𝜆 = 1  

𝑎𝑔 = 40 [𝑚𝑚];𝐷𝑙𝑜𝑤𝑒𝑟 = 20 [𝑚𝑚]  

Prestressed steel 

(Y1860S). 

7 cables, 19φ15.7mm 

𝜙𝑝 = 15.7 [𝑚𝑚]; 𝐴𝑝 = 3634 [𝑚𝑚
2]; 𝐸𝑝 = 196 [𝐺𝑃𝑎]  

𝑓𝑝𝑢 = 1860 [𝑀𝑃𝑎]; 𝑓𝑝𝑑 = 1455.65 [𝑀𝑃𝑎]; 𝑓𝑠𝑒 =

1187.42 [𝑀𝑃𝑎]  

Reinforcement steel 

B500, φ16c200 

𝑑𝑠 = ℎ − 200 [𝑚𝑚]; 𝐴𝑠 = 1340 [𝑚𝑚
2];  

𝑓𝑦 = 500 [𝑀𝑃𝑎]; 𝐸𝑠 = 200 [𝐺𝑃𝑎]  

 

6.3.2.1 Load cases and load combinations 

The report with the results mentions that the study was calibrated with the previously available 

FEM-model because of the relatively small deck width. The calibration was done using effective 

width smaller than the width of the deck. Using for bending effective widths equal to the deck 

width, but for shear using effective widths equal to the width of the tandem system (2(𝑚 + 𝑑)). 

The load cases and load combination applied are the following: 

Table 6-5 Load cases and load combinations for simple supported bridge deck 

Load cases 

Self-weight 𝑞 = ℎ ⋅ 𝛾𝑐𝑜𝑛𝑐 ⋅ 𝑏𝑑𝑒𝑐𝑘 = (0.67 𝑡𝑜 1.0) ⋅ 25 ⋅ 5.49 = 92 𝑡𝑜 137.3 [𝑘𝑁/𝑚]  

Asphalt + edge 
load 

𝑞 = 21 [𝑘𝑁/𝑚], from design calculation  

Prestress After losses, from design calculations 
Upwards along 11.2 m: 𝑞 = 81.6 ⋅ 0.91 = 74.2 [𝑘𝑁/𝑚] 
Upwards along 13.3 m: 𝑞 = 94.3 ⋅ 0.91 = 85.8 [𝑘𝑁/𝑚] 
Downwards along 1.5 m: 𝑞 = 842.6 ⋅ 0.91 = 766.8 [𝑘𝑁/𝑚] 
Same in second span (vice-versa) 

Traffic load 𝑞 = 9 ⋅ 3 + 2.5 ⋅ 2 = 32 [𝑘𝑁/𝑚]  
𝑇𝑆1 → 2 ⋅ 300 = 600 [𝑘𝑁]   

Traffic load  
AASHTO-LRFD 

𝑞 = 9.3 [𝑘𝑁/𝑚]  
𝐻𝐿 − 93 → 2𝑥145 [𝑘𝑁] + 35 [𝑘𝑁]  
𝑇𝐷 → 2𝑥110 [𝑘𝑁]  

 

The results in Hageman report specify the effective width considered for each of the loads, which 

facilitates the consideration of other live loads in the analysis. For the end support analysis, in 

case of Eurocodes, the UDL (𝑞 = 32 𝑘𝑁/𝑚) applied only in one span, and the TS1 load of 600 

kN at variable locations close to the support was considered, capturing the envelope. The same 

was done for the AASHTO-LRFD distributed load, design truck and design tandem, where the 

critical case envelope was captured. 

For the intermediate support analysis, using Eurocode traffic loads, the UDL was applied to both 

spans, and the distance of TS1 from the middle support was varied to capture the envelope. In 

the case of AASHTO-LRFD, 90 percent of the distributed load was applied to both spans, and two 

HL-93 design truck loads were applied 15 meters apart equidistant from the middle support, thus 

capturing the moment and shear for the problem. 

After this analysis of live loads and obtaining the envelopes, the values of bending moment and 

shear force equivalent to a strip of 1 meter were obtained. For the Eurocodes, the defined effective 
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widths were applied, and for AASHTO-LRFD, the equivalent strip width calculated as detailed at 

the end of appendix E was used (𝐸𝑖 = 3.34 [𝑚]). 

Applying the different load combinations, the following Figure 6-15 and Figure 6-17 summarize 

the load cases for Eurocodes, ACI318-19M and AASHTO-LRFD for the regions near the end and 

mid support 

6.3.2.2 End support 

 

Figure 6-15 Ultimate and acting shear and bending moment for continuous bridge in region near end support 

With this information one can estimate the design shear resistance according to the different 

design codes as follow, for the region near the end support. 

 

Figure 6-16 Shear resistance near end support of a continuous bridge deck according to design codes applied in Europe and America 

The behavior of all the design codes is identical to that described in the previous section 

with the case of the simply supported deck. Here one can interpret the high values 

obtained for AASHTO-LRFD again due to the influence of the low bending moment, which 

apparently is not enough to generate considerable longitudinal strains in the region being 

analyzed since it is a region near a simple support where the bending moments are the 

lowest of the whole span. AASHTO-LRFD, which depends on the principal stresses, 

recognizes low longitudinal strain values in this region, then high shear strength values 

are generated. 

But in order to analyze now this observation in detail, it is necessary to review the 

assumptions made in the formulation of the SMCFT to simplify the procedure stated by 

the MCFT, to obtain the approach used for AASHTO-LRFD. 
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The SMCFT [45] uses the “strain effect factor” (4.8 (1 + 750𝜀𝑠)⁄ )  and the “size effect 

factor” (1300 (1000 + 𝑠𝑥𝑒⁄ ))  as independent factors, suppressing their interdependence 

stated in the MCFT for the calculation of the factor that represents the ability of the shear 

crack to transmit tension and shear (𝛽). The authors were able to simplify the calculation 

of this last factor (𝛽) by observing the results obtained with the MCFT, assuming different 

values for the cracking space parameter (𝑠𝑥𝑒). With this analysis, the “size effect factor” 

expression was stated like the expression detailed before, and the final expression for 𝛽 

resulted in [Eq.  2-31]:  

𝛽 =
4.8

1 + 750𝜀𝑠
⋅

1300

1000 + 𝑠𝑥𝑒
 

With this "size effect factor" approximation, the authors observed that for very low values 

of longitudinal strain with low crack separation parameters, conservative values are 

produced by this simplified expression of 𝛽 . This is related with the case of slender 

prestressed concrete members without shear reinforcement where the crack spacing 

parameter tends to be low, as the crack spacing parameter without the influence of 

aggregate size (𝑠𝑥) is assumed to be equal to the effective shear depth (𝑑𝑣), explaining 

in some way the conservative results obtained by this approach. 

This tendency to generate conservative values can be partly analyzed by varying the 

amount of prestressing applied to the same problem, and this will help to check the 

different hypotheses that have been made about the results obtained by ACI318-19 

compared with AASHTO-LRFD. In Appendix C, the same input data used for this problem, 

for the region near end support, has been used but considering different cases with only 

50%, 25%, and 0% of the prestressing force applied. 

Figure 0-2 of the appendix C shows that by reducing the prestressing by 50%, AASHTO-

LRFD already starts to obtain more conservative shear strength values along the span. 

Figure 0-4 of the appendix C shows that reducing the prestressing by 25%, AASHTO-

LRFD obtains more conservative shear strength values than ACI318-19M at critical 

locations at a distance of approximately 4𝑑 from the support, and obtains intermediate 

values between ACI318-19 approximate and detailed method at critical locations close to 

the support. Figure 0-6 of the appendix C shows that suppressing the prestress, AASHTO-

LRFD obtains more conservative values than ACI318-19 approximate method at a 

distance of approximately 4𝑑 from the support and obtains intermediate values between 

ACI318-19 approximate and detailed method for distances less than 2𝑑 from the support. 

Based on what has been observed in this brief analysis of the influence of prestressing on 

the estimation of shear strength of prestressed concrete members without shear 

reinforcement, one can point out that two factors influence AASHTO-LRFD to estimate 

very high values compared to ACI318-19. 

Firstly, the inclusion of the parameter taking into account the longitudinal 

reinforcement ratio effect is demonstrated in the parameter analysis of section 4. 

Second, the tendency related with the size effect factor to generate conservative 

values in members with low longitudinal strain and crack spacing parameter 

values.  

Also, it is necessary to point out the debate that exists regarding the interpretation of the 

factor called "Modulus of elasticity of prestressing steel multiplied by the locked-in 

difference in strain between the prestressing steel and the surrounding concrete" (𝑓𝑝𝑜) that 

directly influences the calculated longitudinal strain (𝜀𝑠), some authors such as [50] refer 

to different ways of interpreting this parameter. 
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Finally, taking advantage of the various figures generated in appendix C, one can also 

appreciate the close relationship between prEN1 and prEN4 with different levels of 

prestressing, prEN4 being constantly on the safe side. It can also be seen that the 

dependence of the alternatives for prEN1992 on a/d now demarcates critical zones not 

recognized in principle by the current EC2 and that prEN1 and prEN4, in this design case, 

obtain more conservative values than EC2 for different critical locations more distant from 

the support. 

6.3.2.3 Mid support 

 

Figure 6-17 Ultimate and acting shear and bending moment for continuous bridge in region near mid support 

With this information one can estimate the design shear resistance according to the different 

design codes as follow, for the region near the mid support. 

  
Figure 6-18 Shear resistance near middle support of a continuous bridge deck according to design codes applied in Europe 

Near the intermediate support, there is a combination of high bending moments with high 

shear forces, then as in case of the slab deck for a tunnel in section 0, it is expected to 

have the critical location near the support .  

Following the same logic of vulnerable locations according to the values of unity check 

(𝑈𝐶 = 𝑉𝐸𝑑/𝑉𝑐   [−]) described in the previous sections, comparing the difference between 

the estimated strength and the design shear, approaches applied in Europe mark the 

vulnerable locations at 𝑥 ≈ 1.5𝑑 𝑡𝑜 2𝑑 for the current Eurocode, EC2 with 𝑈𝐶 = 1.2 at x=1 

meter from support. prEN1 results that does not meet the unit check a region 4 meters 

from the middle support and prEN4 a region 4.5 meters from the middle support. All other 

alternatives are below demand along the studied region. The highest unity check for all 

the alternatives for the new Eurocode is located at a distance 𝑑 from middle support with 

a value of 𝑈𝐶 = 3.8 approx. 
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The same logic applied for ACI318-19 and AASHTO-LRFD denotes the vulnerable region 

for AASHTO-LRFD from the middle support until 𝑥 ≈ 5𝑑, and ACI318-19 does no comply 

with the unity check in the whole region. The highest unity check in all cases is for  𝑥 = 𝑑 

from the support with 𝑈𝐶 = 3.9 for AASHTO-LRFD and 𝑈𝐶 = 2.37 for ACI318-19. 

Here, again one must comment the influence of the magnitude of the bending moment for 

AASHTO-LRFD results, so the principal stresses and the longitudinal strain emulates the 

flexural-shear failure case, otherwise the longitudinal strain obtained is not enough to derive 

in a shear failure.  

6.4 DISCUSSION AND CONCLUSIONS 
- For the verification that is carried out for each design code, different distances at which 

the critical cross-section is located are indicated. ACI318-19 indicates locations at a 

distance ℎ/2  from the support axis, AASHTO-LRFD at 0.5𝑑𝑣 cot(𝜃)  𝑜𝑟 𝑑𝑣 from the face of 

the support, and prEN1992 indicates critical locations at a distance 𝑑/2 from geometric 

discontinuities, supports, point loads or contraflexure points. The current Eurocode (EC2) 

as it doesn’t depend on the acting shear or bending moment will result in in a constant 

value over the whole span. 

 

- To compare the design standards from Europe and America, it is necessary to distinguish 

the differences in the concept for the demanded resistance. Because as prestress is 

preload for Eurocodes, the acting shear force (𝑉𝐸𝑑) that is the demanded resistance will 

not be equal to the demanded shear resistance for AASTHO-LRFD and ACI318-19, that 

is the ultimate shear load (𝑉𝑢) which doesn’t consider the prestressing influence. 

 

- The two alternatives proposed for the new Eurocode, prEN3 and prEN4 have similar 

performances except for regions close to intermediate supports from continuous beams. 

This is because the eccentricity of the tendon considered for alternative prEN3 increases 

the estimated shear resistance calculated although its magnitude is limited by the upper 

bound stated for the factor 𝑘1. 

 

- To evaluate the different methods in terms of usability, one has to take into account the 

number of parameters used and the ease of interpreting intermediate results. 

o ACI318-19, has two practical methods, at first according to the results obtained in 

chapter 3 with a very accurate approximate method apparently, but with a safety 

level below the desired one. It does not take into account the influence of the 

prestressing force at any time within the approach, which negates the interpretation 

of results based on the applied prestressing. 

The detailed method solves this drawback and considers composite and non-

composite sections cleverly, making it easy to use and easy to interpret when 

comparing the two types of shear failure that can occur in beams of any shape. 

o AASHTO-LRFD is a laborious but worthwhile method to develop for a detailed 

analysis of the influence of the prestressing force, the intermediate factors like the 

longitudinal strain or crack spacing parameter, give important details of the 

behavior of the structure and give further clues of the influence of different 

parameters on the final shear strength calculated. 

o  EC2, is the most straightforward method and the parameters are not too 

complicated to verify or obtain. This empirical formulation doesn’t depend on 

external loads and the influence of prestressing is taken into account by a 

separated term that allow us to easily estimate the contribution of prestress for 

shear resistance. 
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o The alternatives for the new Eurocode 2, 3 and 4 are similar, but prEN4 is the one 

that interprets the role of the initial shear stress 𝜏0 in a correct way. The alternative 

prEN1 is the one that maintains the structure of the initially proposed approach 

based on the CSCT, and the others are linearized simplifications of the main failure 

criterion. The disadvantage of alternative 1 is the visualization of the normal load 

contribution in the shear resistance.  

 

- Evaluating the new proposals suggested (prEN3 and prEN4) in terms of easy-of-use, and 

the assumptions made in the derivation prEN4 is the best option, because it is easy to 

distinguish the influence of the normal load and it is not required to calculate any other 

additional term. The assumptions and the derivation based on theory is closely related 

with the assumption of prestressed as preload applied for Eurocodes, letting the normal 

force be the only one influencing shear strength. 

 

- In the different design cases of continuous beams, the intermediate supports concentrating 

a high shear force and bending moment produced by a uniformly distributed load indicate 

the critical location close to the support, as suggested in most design codes, except EC2, 

which assumes a constant value for the shear span. This is also verified by results 

obtained in chapters 4 and 5, where the critical location indicated with higher precision is 

the one closest to the point load, which in this case is created by the intermediate support. 

In the case of distributed loads on simply supported beams, the critical locations are 

displaced further away from the supports, making it necessary to calculate the estimated 

shear strength at various intermediate points of the beam span to verify that it meets the 

demand. 

- The shear strength of prestressed concrete elements without shear reinforcement 

according to AASHTO-LRFD can be much higher than that of ACI318-19M due to the 

inclusion of the complete influence of the longitudinal reinforcement ratio on concrete 

shear strength. In addition, there is a tendency produced by the "size effect factor" to 

generate conservative values in elements with low values of longitudinal strain and low 

crack spacing parameters. 
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7  CONCLUSIONS AND 

RECOMMENDATIONS 
First of all, a set of general conclusions that were reached in the process will be presented. These 

are related to the most relevant findings along the intermediate steps established to answer the 

research question. Then, the research questions formulated will be answered based on the results 

obtained. Observations and recommendations for future works are given at the end. 

7.1 GENERAL CONCLUSIONS 
The performance of various design codes for calculating the flexural-shear resistance of 

prestressed concrete members without shear reinforcement has been evaluated. Semi-empirical 

approaches (ACI318-19M and EC2), MCFT-based approaches (AASHTO-LRFD), and CSCT-

based approaches (prEN199) were studied. The proposal of the new Eurocode (prEN1992) 

contains two alternatives (prEN1 and prEN2) that are evaluated with other two approaches 

proposed (prEN3 and prEN4), in order to eventually choose the most suitable expression, with a 

solid theoretical basis and good performance compared to experimental results. 

The ACI-DAfStb-PC/2015 database (214 tests) for prestressed concrete members without shear 

reinforcement, contains tests with beams of different cross-section shapes and failure modes, and 

some approaches of the design codes focus on only one type of failure or cross-section shape. 

Therefore, it was convenient to divide the database into 3 subsets defined as follow: 

• Subset 1 (143 tests): Capturing tests from ACI-DAfStb-PC/2015 with flexural-shear 

failure regardless of cross-section shape (I/T/rectangular). 

• Subset 2 (102 tests): Only rectangular beams from subset 1. 

• Subset 3 (66 tests): Only tests that comply with the assessment for flexural and 

anchorage failure. The latter considered conservative. 

 

- In this way, it is expected to correctly relate the failure mode considered by the approaches 

and the one undergone by the tests to obtain representative comparative values. In this 

way, for the different statistical indicators such as the coefficient of variation (COV), a 

range of values is given, indicating the minimum and maximum value obtained analyzing 

the 3 subsets. 

The comparison carried out in Chapters 4 and 5 of the shear strengths estimated by ACI318-19M, 

AASHTO-LRFD, EC2, and prEN1992, with the experimental results presented in the ACI-DAfStb-

PC/2015 database for slender prestressed concrete members without shear reinforcement, 

concludes that: 

- AASHTO-LRFD is the most precise approach for evaluating flexural-shear capacity in 

simply supported slender prestressed beams without shear reinforcement with equidistant 

point loads applied, with COV=0.22-0.23 values at the critical location closest to the point 

load. This approach is followed by prEN1 with COV=0.23-0.24, which is still considered a 

good precision. In third place comes prEN4 with COV=0.25-0.26, which is at the limit of a 

good and reasonable level of precision. The approaches EC2 (COV=0.28-0.31), prEN2 

(COV=0.29-0.30), and prEN3 (COV=0.29-0.30) obtain reasonable levels of precision, and 

finally, ACI318-19M with its detailed and approximate method obtains in most of the cases 

a poor level of precision with COV=0.29-0.45. 
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- In terms of safety, it can be highlighted that EC2, prEN2, and prEN4 obtain good safety 

levels according to the 5th percentile lower bound value obtained, which is in the range 

between 0.8-1. prEN1, AASHTO-LRFD, and ACI318-19 detailed method tend to be 

conservative with 5th percentile lower bound values greater than 1 obtained with a range 

between 0.98 to 1.06 for prEN3, 1.03 to 1.05 for prEN1, and 1.23 to 1.30 for AASHTO-

LRFD being the most conservative of all. The ACI318-19 approximate method tends to a 

lower than desirable level of safety with 5th percentile lower bound values less than 0.7 in 

the range 0.49-0.52. 

Based on the analysis of the parameters taken into account in the different design codes (section 

4.6.4 and 5.3.1), it was noted that: 

- Concrete shear strength (𝑉𝑐) according ACI318-19 approximate method depends on few 

parameters (𝑓𝑐
′, 𝑑𝑝, 𝑉𝑢,𝑀𝑢, 𝑏𝑤, 𝑑) in which prestressing is not included, and of which 𝑓𝑐

′ has 

the greatest influence. The detailed method does not consider the total contribution of the 

longitudinal reinforcement ratio, although it implicitly includes it through the effective 

prestress applied. For the current approach used by ACI318-19M, the size effect factor for 

prestressed concrete members has not yet been included, although all other design codes 

studied have already included it, recognizing its relevance. 

 

- AASHTO-LRFD tends to obtain less conservative values than ACI318-19 in slender 

beams without shear reinforcement with high levels of prestressing because it considers 

the total contribution of the longitudinal reinforcement ratio and has a tendency produced 

by the "size effect factor" to generate conservative values in elements with low values of 

longitudinal strain and low crack spacing parameters. 

 

- EC2 current expression does not consider the shear span-to-effective depth ratio, thus a 

constant shear strength of concrete is obtained commonly for the entire span for beams 

with straight tendons. The alternatives for prEN1992 modify this by including the effective 

shear span parameter that relates the acting bending moment to the acting shear force to 

identify the most likely zones for critical shear crack formation. It should be noted that 

critical shear crack formation is dependent on the structural configuration of the element 

and that the alternatives for the new Eurocode (prEN1992) based on the CSCT only focus 

on flexural-shear cracks. 

By solving the design cases presented in chapter 6, it was shown that: 

- AASHTO-LRFD is the most laborious method, but it provides information about the shear 

behavior of the beam and the influence of the prestressing on the longitudinal strain. An 

iterative process must be performed to calculate the nominal flexural moment in a detailed 

calculation, but the code also offers simplified procedures for rectangular and I/T cross-

section shape beams. 

 

- ACI318-19 and EC2 are semi-empirical approaches that are easy to use and help make 

quick estimates of the shear strength of concrete. ACI318-19 detailed method is a more 

conservative method that takes the lowest value between the web-shear and flexural-

shear strength as the final value. 

 

- prEN1992 approaches start from a non-linear relationship such as prEN1, which estimates 

the least conservative values. The alternatives that linearize the main failure criterion as 

prEN2, prEN3, and prEN4 are approaches that estimate more conservative design values 

than prEN1 and that, compared with the current EC2, obtain similar values in the cases of 

design near supports that concentrate high shear forces and bending moments. However, 

in the case of simply supported beams with distributed loading, the new proposals indicate 
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critical locations further away from the supports that EC2 does not recognize. This is 

produced because the new alternatives (prEN1992) are sensitive to the effective shear 

span (𝑎𝑐𝑠) value obtained, which tends to reduce the concrete shear strength for high 

values of bending moment over shear force. 

Analyzing the four alternatives for the new Eurocode proposal, there are two groups of 

alternatives. prEN2 and prEN3 that erroneously incorporate eccentric axial loads in the moment 

of equilibrium of the cross-section, thus considering doubly the applied prestressing, since it was 

implicitly included with the acting shear force and bending moment (𝑉𝐸𝑑,𝑀𝐸𝑑). 

The other group (prEN1 and prEN4), noticing that the effect of prestressing was implicitly 

considered, only include the normal load in at the neutral axis as shown in Figure 5-5 presented 

again below. This difference turns out to be the break point between the two groups of alternatives. 
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From prEN1 and prEN4, which are the most reliable alternatives, prEN4 is a more conservative 

alternative than prEN1, and it is handy for quick estimations showing the effect of normal loads 

by a term dependent on the ratio 𝑑/𝑎𝑐𝑠 multiplied by the concrete axial stress (𝜎𝑐𝑝) considering 

that the effect of prestressing is implicitly immersed in the effective shear span factor (𝑎𝑣). 

7.2 RESEARCH QUESTION 
The research question stated is: 

How can prestressing force influence be taken into account to estimate the flexural-

shear resistance of members without shear reinforcement in a straightforward way, 

with an approach based on Critical Shear Crack Theory (CSCT)? 

The answer to the research question is: 

Alternative 4 (prEN4) estimates the flexural-shear resistance of prestressed concrete 

members without shear reinforcement using a CSCT-based method derived consistently 

to evaluate rectangular beams or one-way slabs. prEN4 adds to the concrete shear 

strength the contribution of the normal stresses dependent on the shear span (𝑎𝑐𝑠) and 

effective depth (𝑑) assuming that prestressing is implicitly incorporated through the acting 

shear force and acting bending moment as prestressing is considered preload. Comparing 

this approach with tests results is the most precise from all the linearized alternatives for 

prEN1992 and the estimation of the shear strength is on the safe side comparing with the 

non-linearized expression that presents prEN1. prEN4 is also much easier to use than the 

other alternatives since it is an expression very similar to that used in the current EC2, 

replacing the empirical factor 𝑘1 by a value dependent on the 𝑑/𝑎𝑐𝑠 ratio. 

7.3 FUTURE WORK 
• The critical location or the critical shear crack location is significant in the CSCT-based 

alternatives, so it is necessary to increase the number of tests for prestressed beams that 
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contain this information varying the structural configuration like the type of loads since 

there is not much information available for cases with distributed loads..  

 

• The number of tests or reports on prestressed continuous concrete beams is still limited 

compared to those on simply supported beams, and the scale of the tests could be 

increased to better study the size effect factor. 

 

• It is suggested to study in more detail the value to consider for the 𝑓𝑝𝑜 factor used in 

AASHTO-LRFD when there are high prestress losses and the influence of the called “size 

effect factor”, included in the derivation of the SMCFT, to verify its influence in the 

calculation of the shear strength of slender prestressed concrete members without shear 

reinforcement. 

 

• The size effect factor has been incorporated into the ACI318-19M for reinforced concrete 

members with axial loads, but the method for prestressed beams remains unchanged. 

Remembering that prestressed is considered as capacity by ACI318-19, it is 

recommended to evaluate the influence of the effective depth on the shear carrying 

mechanics for beams without shear reinforcement. 

 

• The estimation of the flexural-shear resistance for rectangular beams or one-way slabs is 

possible through the expression proposed for prEN4 [Eq.  5-47], but it is possible to include 

beams with different cross-section maintaining the gross cross-section area in expression 

presented in [Eq.  5-46]. Therefore, it is suggested to evaluate this variation in alternative 

4 to include beams of different cross-section by comparing the estimated shear strength 

of this formula with the experimental results available for this group. 

 

• The motivation of this thesis was the theoretical and experimental comparison of the 

different approaches estimating the flexural-shear resistance, but in the case of design for 

the comparison of the different design codes, more things must be considered as a 

detailed investigation of the probabilistic background of each code, as each region has 

different criteria for durability, reliability, safety, and affordability of their structures, e.g. 

 

 

 

 

 

 

 

 

 

 

 

 

 



P a g e  | 125 

 

BIBLIOGRAPHY 
[1] A. M. Neville, Properties of concrete, vol. 4. London: Longman, 1995. 

[2] K.-H. Reineck, E. C. Bentz, B. Fitik, D. A. Kuchma, and O. Bayrak, “ACI-DAfStb Database 
of Shear Tests on Slender Reinforced Concrete Beams without Stirrups.,” ACI Structural 
Journal, vol. 110, no. 5, 2013. 

[3] D. Dunkelberg, L. H. Sneed, K. Zilch, and K.-H. Reineck, “The 2015 ACI-DAfStb database 
of shear tests on slender prestressed concrete beams without stirrups—Overview and 
evaluation of current design approaches.,” Structural Concrete, vol. 19, no. 6, pp. 1740–
1759, 2018, doi: 10.1002/suco.201700216. 

[4] E. G. Nawy, Prestressed Concrete - A fundamental approach, 5th. The State University of 
New Jersey, 2009. 

[5] M. A. Roosen, “Shear failure of prestressed girders in regions without flexural cracks,” Ph.D 
Thesis, TU Delft, 2021. 

[6] Y. Yang, J. Walraven, and J. den Uijl, “Shear behavior of Reinfoced Concrete beams 
without transverse reinfocement based on critical shear displacement,” Journal of 
Structural Engineering, vol. 143, no. 1, p. 04016146, 2017, doi: 10.1061/(ASCE)ST.1943-
541X.0001608. 

[7] L. Xie, “The Influence of Axial Load and Prestress on The Shear Strength of Web-Shear 
Critical Reinforced Concrete Elements,” University of Toronto, 2009. 

[8] M. Sozen, E. Zwoyer, and C. Siess, “Investigation of prestressed concrete for highway 
bridges: Part I strength in shear of beams without web reinforcement,” Urbana Champaign, 
1959. 

[9] A. Muttoni and M. F. Ruiz, “Shear Strength of Members without Transverse Reinforcement 
as Fucntion of Critical Shear Crack Width,” ACI Structural Journal, vol. S17, no. 105, pp. 
163–172, 2008. 

[10] M. Fernández Ruiz, A. Muttoni, and J. Sagaseta, “Shear strength of concrete members 
without transverse reinforcement: A mechanical approach to consistently account for size 
and strain effects,” Engineering Structures, vol. 99, pp. 360–372, 2015, doi: 
10.1016/j.engstruct.2015.05.007. 

[11] A. D. Sousa and E. O. L. Lantsoght, “One-way shear strength of wide reinforced concrete 
members without stirrups,” Structural Concrete, vol. 22, no. 2, pp. 968–992, 2021, doi: 
10.1002/suco.202000034. 

[12] F. Cavagnis, “Shear in reinforced concrete without transverse reinforcement: from refined 
experimental measurements to mechanical models,” Ph.D Thesis, École Polytechnique 
Fédérale de Lausanne, 2017. 

[13] A. Muttoni and M. Fernández Ruiz, “From experimental evidence to mechanical modeling 
and design expressions: The Critical Shear Crack Theory for shear design,” Structural 
Concrete, vol. 20, no. 4, pp. 1464–1480, 2019, doi: 10.1002/suco.201900193. 

[14] P. Huber, T. Huber, and J. Kollegger, “Shear transfer actions in reinforced and prestressed 
beams with no stirrups or a small number of stirrups,” fib bulletin 85, Towards a rational 
understanding of shear in beams and slabs, vol. 85, pp. 33–48, 2016. 

[15] P. Huber, T. Huber, and J. Kollegger, “Influence of loading conditions on the shear capacity 
of post-tensioned beams with low shear reinforcement ratios,” Engineering Structures, vol. 
170, no. February, pp. 91–102, 2018, doi: 10.1016/j.engstruct.2018.05.079. 



P a g e  | 126 

 

[16] G. N. J. Kani, “The Riddle of Shear Failure and its Solution,” ACI Journal, vol. 61, no. 4, pp. 
441–468, 1964, doi: 10.14359/7791. 

[17] J. C. Kim, K. K. Choi, and G. T. Truong, “Shear design for prestressed concrete beams 
based on compression zone failure mechanism,” Proceedings of the Institution of Civil 
Engineers: Structures and Buildings, vol. 174, no. 7, pp. 561–580, 2021, doi: 
10.1680/jstbu.17.00196. 

[18] R. Sarkhosh, J. A. den Uijl, C. R. Braam, and J. C. Walraven, “Shear Capacity of Concrete 
Beams without Shear Reinforcement under Sustained Loads,” Delft, The Netherlands, 
2010. 

[19] J. . Walraven, “Aggregate Interlock: A theoretical and experimental analysis,” Ph.D Thesis, 
TU Delft, Delft, The Netherlands, 1980. 

[20] Y. Yang, “Shear Behaviour of Reinforced Concrete Members without Shear Reinforcement 
A New Look at an Old Problem.,” Ph.D Thesis, Technische Universiteit Delft, 2014. 

[21] R. H. Evans and M. S. Marathe, “Microcracking and Stress-Strain Curves for Concrete in 
Tension,” Materials and Structures, vol. 1, no. 1, pp. 61–64, 1968. 

[22] M. M. Hillerborg and P.-E. Petersson, “Analysis of crack formation and crack growth in 
concrete by means of fracture mechanics and finite elements,” Cement and Concrete 
research, vol. 6, pp. 773–782, 1976. 

[23] G. N. J. Kani, “Basic Facts Concerning Shear Failure,” Journal of the American Concrete 
Institute, vol. 63, no. 6, pp. 675–692, 1966. 

[24] J. Hegger, A. Karakas, E. Pelke, and U. Schölch, “Zur Querkraftgefährdung bestehender 
Spannbetonbrücken Teil I: Grundlagen,” Beton- und Stahlbetonbau, vol. 104, no. 11, pp. 
737–746, 2009, doi: 10.1002/best.200900039. 

[25] M. Zink, Zum Biegeschubversagen schlanker Bauteile aus Hochleistungsbeton mit und 
ohne Vorspannung. Leipzig: Springer Gachmedien Wiesbaden GmbH, 199AD. 

[26] G. N. J. Kani, “How safe are our large reinforced concrete beams?,” ACI Journal, vol. 64, 
no. 12, pp. 128–141, 1967. 

[27] M. Hebrand, “Shear Strength Models for Reinforced and Prestressed Concrete Members,” 
Ph.D Thesis, RWTH Aachen University, 2017. 

[28] F. J. Vecchio and M. P. Collins, “Modified Compression-Field Theory for Reinforced 
Concrete Elements Subjected To Shear.,” Journal of the American Concrete Institute, vol. 
83, no. 2. pp. 219–231, 1986, doi: 10.14359/10416. 

[29] A. Muttoni, M. F. Ruiz, and J. T. Simões, “Recent improvements of the critical shear crack 
theory for punching shear design and its simplification for code provisions,” FIB 2018 - 
Proceedings for the 2018 fib Congress: Better, Smarter, Stronger. FIB, pp. 116–129, 2019. 

[30] F. Cavagnis, M. Fernández Ruiz, and A. Muttoni, “A mechanical model for failures in shear 
of members without transverse reinforcement based on development of a critical shear 
crack,” Engineering Structures, vol. 157, no. February 2017, pp. 300–315, 2018, doi: 
10.1016/j.engstruct.2017.12.004. 

[31] V. Sadeghian and F. J. Vecchio, “The Modified Compression Field Theory: Then and now,” 
ACI Structural Journal, vol. 3, no. 1, pp. 3.1-3.20, 2018. 

[32] M. P. Collins, E. C. Bentz, E. G. Sherwood, and L. Xie, “An adequate theory for the shear 
strength of reinforced concrete structures,” Magazine of Concrete Research, vol. 60, no. 9, 
pp. 635–650, 2008, doi: 10.1680/macr.2008.60.9.635. 

[33] SIA Zurich, SIA 262:2013. 2013. 



P a g e  | 127 

 

[34] Canadian Standards Association, CSA A23.3-04. Ontario, Canada, 2004. 

[35] European Committee for Standarization, “Eurocode 2: Design of concrete structures - Part 
1-1 : General rules and rules for buildings Eurocode (EN 1992-1-1:2004),” no. 2004. 
Brussels, 2010. 

[36] American Concrete Institute, “ACI 318-19: Building code requirements for structural 
concrete and commentary.” Farmington Hills, MI 48331, 2019, doi: 10.14359/51716937. 

[37] American Association of State Highway and Transportation Officials, AASHTO LRFD 
Bridge Design Specifications, 8th. Washington, DC, 2017. 

[38] European Committee for Standarization, “prEN1992-1-1-D7: 2020, Draft of Eurocode 2: 
Design of concrete structures Part 1–1: General rules and rules for buildings, bridges and 
civil engineering structures,” vol. 7. pp. 1–455, 2020. 

[39] C. Walraven and R. Braam, Prestressed concrete. Delft, The Netherlands: Delft University 
of Technology, 2019. 

[40] G. Konig and J. Fischer, “Model Uncertainties concerning Design Equations for the Shear 
Capacity of Concrete Members without Shear Reinforcement,” Federation internationale 
du beton (fib), Darmstadt, Germany, 1995. 

[41] P. E. Regan, A. Al-Hussaini, K.-E. Ramdane, and H.-Y. Xue, “Behaviour of High Strength 
Concrete Slabs,” Concrete 2000, vol. 1, pp. 761–773, Sep. 1993. 

[42] D. A. Kuchma, S. Wei, D. H. Sanders, A. Belarbi, and L. C. Novak, “Development of the 
One-Way Shear Design Provisions of ACI 318-19 for Reinforced Concrete,” no. 116, pp. 
285–296, 2019, doi: 10.14359/51716739. 

[43] B. J. G. Macgregor and J. M. Hanson, “Proposed Changes in Shear Provisions for 
Reinforced and Prestressed Concrete Beams*,” ACI Journal Proceedings, vol. 66, no. 4, 
pp. 276–288, 1969, doi: 10.14359/7360. 

[44] ACI-ASCE committee 326, “Shear and diagonal tension,” 1962. 

[45] E. C. Bentz, F. J. Vecchio, and M. P. Collins, “Simplified modified compression field theory 
for calculating shear strength of reinforced concrete elements,” ACI Structural Journal, vol. 
103, no. 4, pp. 614–624, 2006, doi: 10.14359/16438. 

[46] E. Nakamura, “Shear Database for Prestressed Concrete Members,” MSc. Thesis, 
University of Texas at Austin, 2011. 

[47] D. A. Kuchma and B. Fitik, “Extended databases with shear tests on structural concrete 
beams without and with stirrups for the assessment of shear design procedures,” 2010. 

[48] K. H. Reineck, D. A. Kuchma, K. S. Kim, and S. Marx, “Shear database for reinforced 
concrete members without shear reinforcement,” ACI Structural Journal, vol. 100, no. 2, 
pp. 240–249, 2003, doi: 10.14359/12488. 

[49] C. W. Dolan, Prestressed Concrete. Building, Design, and Construction. Laramie, WY, 
USA: Springer Nature Switzerland AG 2019, 2019. 

[50] A. E. Naaman, Prestressed concrete Analysis and Design, 2nd. Editi. Ann Arbor, Michigan, 
USA: Quality Books, Inc., 2004. 

[51] N. L. Tran, “A mechanical model for the shear capacity of slender reinforced concrete 
members without shear reinforcement,” Engineering Structures, vol. 219, no. June, p. 
110803, 2020, doi: 10.1016/j.engstruct.2020.110803. 

[52]  and M. National Academies of Sciences, Engineering, Simplified Shear Design of 
Structural Concrete Members Appendixes. Washington, DC, 2005. 



P a g e  | 128 

 

[53] A. Muttoni, M. Fernández Ruiz, and F. Cavagnis, “Shear in members without transverse 
reinforcement: from detailed test observations to a mechanical model and simple 
expressions for codes of practice.” fib bulletin 85, Towards a rational understanding of 
shear in beams and slabs, Zurich, Switzerland, pp. 17–32, 2016. 

[54] F. Cavagnis, J. T. Simões, M. F. Ruiz, and A. Muttoni, “Shear strength of members without 
transverse reinforcement based on development of critical shear crack,” ACI Structural 
Journal, vol. 117, no. 1, pp. 103–118, 2020, doi: 10.14359/51718012. 

[55] E. O. L. Lantsoght, C. Van Der Veen, A. De Boer, and J. C. Walraven, “Using Eurocodes 
and Aashto for assessing shear in slab bridges,” Proceedings of the Institution of Civil 
Engineers: Bridge Engineering, vol. 169, no. 4, pp. 285–287, 2016, doi: 
10.1680/jbren.14.00022. 

[56] V. Sigrist et al., “Background to the fib Model Code 2010 shear provisions - Part I: Beams 
and slabs,” Structural Concrete, vol. 14, no. 3, pp. 195–203, 2013, doi: 
10.1002/suco.201200066. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



P a g e  | 129 

 

LIST OF FIGURES 
FIGURE 1-1 STRUCTURE OF THE METHODOLOGY ....................................................................................................................... 3 
FIGURE 2-1 PRINCIPAL STRESSES, AND RESULTING SHEAR AND FLEXURAL STRESSES ACTING ON BEAM AFTER PRESTRESSING [4] ................. 4 
FIGURE 2-2 TYPES OF CRACKS [4]. ......................................................................................................................................... 5 
FIGURE 2-3 POTENTIAL SHEAR-TRANSFER ACTIONS FOR REINF. CONCRETE ELEMENTS WITHOUT SHEAR REINFORCEMENT: AGGREGATE 

INTERLOCK (VA), RESIDUAL TENSILE STRENGTH (VT), CONTRIBUTION OF INCLINATION OF COMPRESSION CHORD (VC), AND DOWEL 

ACTION OF LONGITUDINAL REINF. (VD) [13] ..................................................................................................................... 7 
FIGURE 2-4 STRUT AND TIE MODELS (TENSILE FORCE – SOLID LINES, COMPRESSIVE FORCE – DASHED LINES) FOR SHEAR-TRANSFER ACTIONS: 

(A) COMPRESSION ZONE CAPACITY; (B) AGGREGATE INTERLOCK; (C) DOWEL ACTION; (D) RESIDUAL TENSILE STRENGTH OF CONCRETE; 

(E-F) ARCHING ACTION [10]. ........................................................................................................................................ 8 
FIGURE 2-5 A) FREE-BODY DIAGRAM OF THE POSSIBLE SHEAR-TRANSFER ACTIONS ACTING IN A POST-TENSIONED BEAM B) BREAKDOWN OR 

DETAIL OF THE VERTICAL COMPONENT OF PRESTRESSING FORCE [14] .................................................................................... 8 
FIGURE 2-6 COMB-LIKE STRUCTURE DEFINED BY KANI [12] ......................................................................................................... 9 
FIGURE 2-7 STRAIN AND STRESS DISTRIBUTION OF A PRESTRESSED CONCRETE BEAM [17] .................................................................. 9 
FIGURE 2-8 AGGREGATE INTERLOCK: (A) KINEMATICS OF A SHEAR CRACK WITH RELATIVE COMPONENTS OF OPENING (W) AND SLIP (Δ); AND 

(B) CONTACT STRESSES [12] ....................................................................................................................................... 10 
FIGURE 2-9 (A) TENSILE LOAD-DEFORMATION RESPONSE OF A CONCRETE SPECIMEN; (B) ILLUSTRATION OF THE FRACTURE PROCESS ZONE 

AROUND THE TIP OF THE CRACK: MICRO-CRACKS (1-2), MICRO-CRACKS MERGE INTO A MACROCRACK IN THE SOFTENING REGION 

AFTER THE TENSILE PEAK [12] ..................................................................................................................................... 11 
FIGURE 2-10 KANI'S VALLEY: GOVERNING SHEAR TRANSFER ACTIONS AS FUNCTION OF SHEAR SPAN-TO-EFFECTIVE DEPTH RATIO [23] ...... 11 
FIGURE 2-11 INFLUENCE OF PRESTRESS FORCE ON ANALOGOUS TRUSS [24] ................................................................................. 12 
FIGURE 2-12 KANI’S SHEAR FAILURE VALLEY, SHEAR STRENGTH AS FUNCTION OF A/D AND 𝜌𝑙 (REINFORCEMENT RATIO) ........................ 13 
FIGURE 2-13 SHEAR AND MOMENT DIAGRAM FOR EXAMPLE, WITH STRESSES CALCULATED AT CROSS-SECTION ANALYZED ...................... 14 
FIGURE 2-14 PRINCIPAL STRESSES AT NEUTRAL AXIS FOR A BEAM WITH (A) A PRESTRESS FORCE EQUAL ZERO (B) PRESTRESSING ............. 15 
FIGURE 2-15 SHEAR STRESS REQUIRED FOR CRACKING AS FUNCTION OF THE PRESTRESS FORCE APPLIED ............................................. 16 
FIGURE 2-16 VARIATION OF THE PRINCIPAL ANGLE AS FUNCTION OF THE APPLIED PRESTRESSING ...................................................... 16 
FIGURE 2-17 CRITICAL SHEAR CRACK THEORY (CSCT) ASSUMPTIONS: CONTROL SECTION AND REFERENCE FIBRE FOR STRAIN [9]. .......... 17 
FIGURE 2-18 RIGID BODY EQUILIBRIUM AND INTERNAL FORCES [12] ........................................................................................... 19 
FIGURE 2-19 MOHR'S CIRCLE FOR THE CALCULATION OF THE SHEAR TENSION CAPACITY .................................................................. 23 
FIGURE 2-20 REGIONS WHERE DETAILED SHEAR STRENGTH VERIFICATION MAY BE OMITTED (LEFT) PREDOMINANT DISTRIBUTED LOAD 

(RIGHT) PREDOMINANT CONCENTRATED LOADS .............................................................................................................. 24 
FIGURE 2-21 LOCATIONS FOR CONTROL SECTIONS ACCORDING PREN1992 .................................................................................. 26 
FIGURE 2-22 FLOWCHART FOR THE CALCULATION OF THE SHEAR STRENGTH OF A MEMBER WITHOUT SHEAR REINFORCEMENT ................ 27 
FIGURE 2-23 ILLUSTRATION OF PARAMETERS FOR SHEAR STRESS ACCORDING AASHTO LRFD ......................................................... 31 
FIGURE 2-24 ILLUSTRATION LONGITUDINAL STRAINS. 𝜀𝑠(LEFT) 𝜀𝑥(RIGHT), FOR SECTIONS CONTAINING LESS THAN THE MINIMUM AMOUNT 

OF SHEAR REINFORCEMENT ......................................................................................................................................... 33 
FIGURE 3-1 NUMBER OF TESTS FOR ACI-DAFSTB-PC DATABASE ............................................................................................... 36 
FIGURE 3-2 NOTATIONS USED FOR CROSS-SECTION DIMENSIONS AND LONGITUDINAL REINFORCEMENT PARAMETERS ........................... 39 
FIGURE 3-3 NOTATION USED FOR LOAD AND BEAM ................................................................................................................. 39 
FIGURE 3-4 DEFINITION IN CASE OF A SINGLE POINT LOAD [47] .................................................................................................. 39 
FIGURE 3-5 MAIN CHARACTERISTIC OF THE ACI-DAFSTB-PC DATABASE...................................................................................... 40 
FIGURE 3-6 EFFECTIVE DEPTH DISTRIBUTION IN ACI-DAFSTB-PC DATABASE ................................................................................ 40 
FIGURE 3-7 SLENDERNESS DISTRIBUION IN ACI-DAFSTB-PC DATABASE....................................................................................... 41 
FIGURE 3-8 MEAN CYLINDER COMPRESSIVE STRENGTH DISTRIBUTION IN ACI-DAFSTB-PC DATABASE ............................................... 41 
FIGURE 3-9 YIELD STRENGTH DISTRIBUTION IN ACI-DAFSTB-PC DATABASE ................................................................................. 42 
FIGURE 3-10 NON-PRESTRESSED LONGITUDINAL REINFORCEMENT STEEL RATIO DISTRIBUTION IN ACI-DAFSTB-PC DATABASE ............... 42 
FIGURE 3-11 SCATTERPLOT FOR NON-PRESTRESSED LONGITUDINAL REINFORCEMENT STEEL RATIO VS YIELD STRENGTH IN ACI-DAFSTB-PC 

DATABASE ............................................................................................................................................................... 43 
FIGURE 3-12 PRESTRESSING STEEL YIELD STRENGTH FOR ACI-DAFSTB-PC DATABASE .................................................................... 44 
FIGURE 3-13 TOTAL LONGITUDINAL REINFORCEMENT RATIO FOR ACI-DAFSTB-PC DATABASE ......................................................... 44 
FIGURE 3-14 MECHANICAL REINFORCEMENT RATIO FOR ACI-DAFSTB-PC DATABASE .................................................................... 44 



P a g e  | 130 

 

FIGURE 3-15 AXIAL CONCRETE STRESS AT CENTER OF GRAVITY FOR ACI-DAFSTB-PC DATABASE ....................................................... 45 
FIGURE 3-16 DIMENSION-FREE AXIAL FORCE FOR ACI-DAFSTB-PC DATABASE. CONSIDERING PRESTRESS WITH NEGATIVE SIGN. ............ 46 
FIGURE 3-17 SCATTERPLOT FOR DIMENSION-FREE AXIAL FORCE VS PRESTRESSED FORCE APPLIED FOR ACI-DAFSTB-PC ........................ 46 
FIGURE 3-18 DISTRIBUTION OF POST- OR PRE- TENSIONED BEAMS ACCORDING TO THE HEIGHT OR SLENDERNESS ................................ 46 
FIGURE 3-19 DESCRIPTION OF THE ACI-DAFSTB-PC DATABASE ACCORDING TO THE SHEAR FAILURE CRACK AND SHEAR FAILURE MODE. .. 48 
FIGURE 3-20 MEASURES FOR THE LOCATION OF THE CRITICAL SHEAR CRACK 𝑥𝑟 [47] .................................................................... 48 
FIGURE 3-21 PROPOSED RELATIONSHIP FOR LOCATION OF THE CSC FOR PRESTRESSED CONCRETE BEAMS WITHOUT SHEAR REINFORCEMENT 

[47] ...................................................................................................................................................................... 49 
FIGURE 3-22 HISTOGRAMS OF THE ACI-DAFSTB-PC DATABASE FOR THE DIFFERENT SUBSETS FOR THE VARIABLES: (A) EFFECTIVE HEIGHT 

(B) SHEAR SPAN-TO-EFFECTIVE DEPTH RATIO (C) MEAN COMPRESSIVE STRENGTH OF CONCRETE (D) YIELD STRENGTH OF PRESTRESSED 

STEEL (E) LONGITUDINAL REINFORCEMENT RATIO (F) MECHANICAL REINFORCEMENT RATIO (G) AXIAL CONCRETE STRESS (H) 

DIMENSION-FREE AXIAL FORCE .................................................................................................................................... 52 
FIGURE 4-1 HISTOGRAM FOR TRANSMISSION LENGTH IN RELATION TO CRITICAL LOCATION. FOR PREN1992 AND EN1992-1-1 ............ 60 
FIGURE 4-2 HISTOGRAM FOR TRANSMISSION LENGTH IN RELATION TO CRITICAL LOCATION. FOR ACI318-19M AND AASTHO-LRFD .... 60 
FIGURE 4-3 ITERATIVE PROCEDURE FOR THE CALCULATION OF THE SHEAR CAPACITY ACCORDING TO THE DESIGN CODES STUDIED. ............ 61 
FIGURE 4-4 STRAIN AND EQUIVALENT STRESS AS SECTION IS LOADED TO NOMINAL STRENGTH .......................................................... 65 
FIGURE 4-5 STRESS-STRAIN DIAGRAM FOR (A) NON-PRESTRESSED AND (B) PRESTRESSED LONGITUDINAL STEEL REINFORCEMENT ............ 66 
FIGURE 4-6 HISTOGRAMS COMPARING RESULTS OBTAINED USING SUBSET 1 AND XR=0.65A, FOR BEAMS WITH RECTANGULAR CROSS-

SECTION AND BEAMS WITH I- OR T-SHAPE CROSS-SECTION. (A) ACI318-19M APPROXIMATE APPROACH (B) ACI318-19M 

DETAILED APPROACH (C) AASHTO-LRFD (D) EUROCODE 2 (E) PREN1 (F) PREN2 ............................................................. 71 
FIGURE 4-7 HISTOGRAMS FROM COMPARISON OF DESIGN CODES WITH EXPERIMENTAL DATA FOR ALL THE DEFINED SUBSETS. (A) ACI318-

19M APPROXIMATE APPROACH (B) ACI318-19M DETAILED APPROACH (C) AASHTO-LRFD (D) EUROCODE 2 (E) PREN1 (F) 

PREN2 ................................................................................................................................................................... 73 
FIGURE 4-8 SUBSET 2 MEAN VALUES FOR COMPARISON OF VTEST/VCALC AS FUNCTION OF THE CRITICAL LOCATION FOR DIFFERENT DESIGN 

CODES. ................................................................................................................................................................... 75 
FIGURE 4-9 SUBSET 2 COEFFICIENTS OF VARIATION FOR COMPARISON OF VTEST/VCALC AS FUNCTION OF THE CRITICAL LOCATION FOR 

DIFFERENT DESIGN CODES. .......................................................................................................................................... 75 
FIGURE 4-10 SUBSET 2, 5TH PERCENTILE LOWER BOUND OF VTEST/VCALC AS FUNCTION OF THE CRITICAL LOCATION FOR DIFFERENT DESIGN 

CODES. ................................................................................................................................................................... 75 
FIGURE 4-11 FLEXURAL AND SHEAR STRESSES ALONG THE BEAM LENGTH FOR TYPICAL STRUCTURAL CONFIGURATION OF TESTS FROM ACI-

DAFSTB DATABASE USED. .......................................................................................................................................... 76 
FIGURE 4-12 TYPICAL LOAD-DEFORMATION CURVE OF A BEAM WITH SHEAR FAILURE [51] .............................................................. 77 
FIGURE 4-13 SHEAR STRENGTH RATIO 𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐  VERSUS MEAN CONCRETE COMPRESSIVE STRENGTH 𝑓𝑐𝑚 FOR SUBSET 1 FROM ACI-

DAFSTB-PC DATABASE.............................................................................................................................................. 78 
FIGURE 4-14 SHEAR STRENGTH RATIO 𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐  VERSUS EFFECTIVE DEPTH 𝑑 FOR SUBSET 1 FROM ACI-DAFSTB-PC DATABASE ..... 79 
FIGURE 4-15 SHEAR STRENGTH RATIO 𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐  VERSUS LONGITUDINAL REINFORCEMENT RATIO 𝜌𝑙 FOR SUBSET 1 FROM ACI-

DAFSTB-PC DATABASE.............................................................................................................................................. 80 
FIGURE 4-16 SHEAR STRENGTH RATIO 𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐  VERSUS SHEAR SPAN-TO-EFFECTIVE DEPTH RATIO 𝑎/𝑑 FOR SUBSET 1 FROM ACI-

DAFSTB-PC DATABASE.............................................................................................................................................. 80 
FIGURE 4-17 SHEAR STRENGTH RATIO 𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐  VERSUS DIMENSION FREE AXIAL FORCE 𝜎𝑐𝑝/𝑓𝑐𝑚 FOR SUBSET 1 FROM ACI-

DAFSTB-PC DATABASE.............................................................................................................................................. 81 
FIGURE 5-1 DESIGN APPLYING CSCT FAILURE CRITERION AND LOAD-DEFORMATION RELATIONSHIP [12] ............................................ 85 
FIGURE 5-2 REFERENCE FIBRE ASSUMED FOR CSCT [12] .......................................................................................................... 86 
FIGURE 5-3 FAILURE ENVELOPES FOR SIMPLE SUPPORTED BEAM WITH POINT LOADS  [12] ............................................................... 87 
FIGURE 5-4 EVOLUTION OF THE EFFECTIVE SHEAR SPAN IN RELATION TO THE SHEAR SPAN-TO-EFFECTIVE DEPTH RATIO .......................... 88 
FIGURE 5-5 MOMENT OF EQUILIBRIUM OF A CROSS-SECTION UNDER NORMAL FORCE. .................................................................... 89 
FIGURE 5-6 LINEAR APPROXIMATION OF THE FAILURE CRITERION FOR ALTERNATIVE 3 .................................................................... 91 
FIGURE 5-7 LINEAR APPROXIMATION OF THE FAILURE CRITERION FOR ALTERNATIVE 4 .................................................................... 94 
FIGURE 5-8 HISTOGRAMS COMPARING RESULTS OBTAINED USING SUBSET 1 AND XR=A-D, FOR BEAMS WITH RECTANGULAR CROSS-SECTION 

AND BEAMS WITH I- OR T-SHAPE CROSS-SECTION. (A) PREN1 (B) PREN2. (C) PREN3 AND (D) PREN4 ................................... 97 
FIGURE 5-9 HISTOGRAMS FOR COMPARISON LEVELS OF DESIGN CODES WITH EXPERIMENTAL DATA AT XR=A-D. (A) PREN1 AND (B) PREN2, 

(C) PREN3 AND (D) PREN4 ....................................................................................................................................... 98 
FIGURE 5-10 SUBSET 2, MEAN VALUES FOR COMPARISON OF VTEST/VCALC AS FUNCTION OF THE CRITICAL LOCATION FOR EC2 AND 

PREN1992 PROPOSALS. ............................................................................................................................................ 99 



P a g e  | 131 

 

FIGURE 5-11 SUBSET 2, COEFFICIENTS OF VARIATION FOR COMPARISON OF VTEST/VCALC AS FUNCTION OF THE CRITICAL LOCATION FOR EC2 

AND PREN1992 PROPOSALS. ................................................................................................................................... 100 
FIGURE 5-12 SUBSET 2, 5TH PERCENTILE LOWER BOUND OF VTEST/VCALC AS FUNCTION OF THE CRITICAL LOCATION FOR EC2 AND PREN1992 

PROPOSALS ........................................................................................................................................................... 100 
FIGURE 5-13 SHEAR STRENGTH RATIO 𝑉𝑝𝑟𝐸𝑁 − 1/𝑉𝑐𝑎𝑙𝑐  VERSUS LONGITUDINAL REINFORCEMENT RATIO 𝜌𝑙 FOR SUBSET 1 FROM ACI-

DAFSTB-PC DATABASE............................................................................................................................................ 101 
FIGURE 5-14 SHEAR STRENGTH RATIO 𝑉𝑝𝑟𝐸𝑁 − 1/𝑉𝑐𝑎𝑙𝑐  VERSUS DIMENSION-FREE AXIAL FORCE 𝜎𝑐𝑝/𝑓𝑐𝑚 FOR SUBSET 1 FROM ACI-

DAFSTB-PC DATABASE............................................................................................................................................ 102 
FIGURE 5-15 SHEAR STRENGTH RATIO 𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐  VERSUS SHEAR SPAN-TO-EFFECTIVE DEPTH RATIO 𝑎/𝑑 FOR SUBSET 1 FROM ACI-

DAFSTB-PC DATABASE............................................................................................................................................ 102 
FIGURE 6-1 GEOMETRY AND CROSS-SECTIONAL DIMENSIONS OF TUNNEL [DIMENSIONS IN [M]; (DESIGN EXAMPLE ADAPTED FROM [56]) 

WITH DETAILS OF INTERMEDIATE SUPPORT ................................................................................................................... 106 
FIGURE 6-2 PRESTRESSING TENDONS PROFILE ....................................................................................................................... 107 
FIGURE 6-3 MOMENT AND SHEAR FORCE DIAGRAMS FOR HALF OF DECK SLAB OF TUNNEL.............................................................. 107 
FIGURE 6-4 SHEAR RESISTANCE ALONG THE DECK SLAB ACCORDING TO DESIGN CODES APPLIED IN EUROPE ....................................... 108 
FIGURE 6-5 SHEAR RESISTANCE ALONG THE DECK SLAB ACCORDING TO DESIGN CODES APPLIED IN AMERICA ...................................... 109 
FIGURE 6-6 TRAFFIC LOAD ACCORDING TO EUROCODES (A) AND AASHTO-LRFD FOR COMBINATION 1 (B) AND COMBINATION 2 (C) . 110 
FIGURE 6-7 SIDE VIEW OF PRESTRESSED BRIDGE DECK ............................................................................................................ 110 
FIGURE 6-8 CONSIDERED CRITICAL LOAD CASE FOR SIMPLE SUPPORTED BRIDGE DECK .................................................................... 111 
FIGURE 6-9 SHEAR AND BENDING MOMENT ACTING ON SIMPLE SUPPORTED BRIDGE DECK ............................................................. 112 
FIGURE 6-10 SHEAR RESISTANCE 𝑉𝑅𝑑, 𝑐 ALONG A SIMPLE SUPPORTED BRIDGE DECK ACCORDING TO DESIGN CODES APPLIED IN EUROPE

 ........................................................................................................................................................................... 112 
FIGURE 6-11 SHEAR FORCES AND BENDING MOMENTS FOR SIMPLE SUPPORTED BRIDGE IN REGION NEAR SUPPORT............................. 113 
FIGURE 6-12 SHEAR RESISTANCE ALONG A SIMPLE SUPPORTED BRIDGE DECK ACCORDING TO DESIGN CODES APPLIED IN EUROPE ........... 113 
FIGURE 6-13 SHEAR RESISTANCE ALONG A SIMPLE SUPPORTED BRIDGE DECK ACCORDING TO DESIGN CODES APPLIED IN AMERICA ......... 114 
FIGURE 6-14 SIDE VIEW OF BRIDGE DECK WITH SCHEMATIC PRESTRESS TENDON PROFILE ............................................................... 114 
FIGURE 6-15 ULTIMATE AND ACTING SHEAR AND BENDING MOMENT FOR CONTINUOUS BRIDGE IN REGION NEAR END SUPPORT ........... 116 
FIGURE 6-16 SHEAR RESISTANCE NEAR END SUPPORT OF A CONTINUOUS BRIDGE DECK ACCORDING TO DESIGN CODES APPLIED IN EUROPE 

AND AMERICA ....................................................................................................................................................... 116 
FIGURE 6-17 ULTIMATE AND ACTING SHEAR AND BENDING MOMENT FOR CONTINUOUS BRIDGE IN REGION NEAR MID SUPPORT ........... 118 
FIGURE 6-18 SHEAR RESISTANCE NEAR MIDDLE SUPPORT OF A CONTINUOUS BRIDGE DECK ACCORDING TO DESIGN CODES APPLIED IN 

EUROPE ................................................................................................................................................................ 118 
FIGURE 0-1 STRESS STATE AT INFINITESIMAL LEVEL, PRINCIPAL STRESSES .................................................................................... 133 
FIGURE 0-2 ACI318-19M APPROXIMATE METHOD GRAPHICAL RELATION OF PARAMETERS ........................................................... 135 
FIGURE 0-1 FREE-BODY DIAGRAM AND PARAMETERS TO CALCULATE THE ULTIMATE BENDING MOMENT OF PRESTRESSED CONCRETE BEAMS 

[47] .................................................................................................................................................................... 137 
FIGURE 0-2 FREE-BODY DIAGRAM, NOTATION AND PARAMETERS CONSIDERED FOR CALCULATING THE ULTIMATE BENDING MOMENT FOR 

PRESTRESSED CONCRETE BEAMS. ............................................................................................................................... 140 
FIGURE 0-1 ULTIMATE AND ACTING SHEAR AND BENDING MOMENT FOR CONTINUOUS BRIDGE IN REGION NEAR END SUPPORT, 

CONSIDERING ONLY 50% OF THE PRESTRESSING FORCE INITIALLY STATED ........................................................................... 144 
FIGURE 0-2 SHEAR RESISTANCE NEAR END SUPPORT OF A CONTINUOUS BRIDGE DECK ACCORDING TO DESIGN CODES APPLIED IN EUROPE 

AND AMERICA FOR THE CASE APPLYING ONLY 50% OF THE PRESTRESSING FORCE INITIALLY STATED ......................................... 144 
FIGURE 0-3 ULTIMATE AND ACTING SHEAR AND BENDING MOMENT FOR CONTINUOUS BRIDGE IN REGION NEAR END SUPPORT, 

CONSIDERING ONLY 25% OF THE PRESTRESSING FORCE INITIALLY STATED ........................................................................... 145 
FIGURE 0-4 SHEAR RESISTANCE NEAR END SUPPORT OF A CONTINUOUS BRIDGE DECK ACCORDING TO DESIGN CODES APPLIED IN EUROPE 

AND AMERICA FOR THE CASE APPLYING ONLY 25% OF THE PRESTRESSING FORCE INITIALLY STATED ......................................... 145 
FIGURE 0-5 ULTIMATE AND ACTING SHEAR AND BENDING MOMENT FOR CONTINUOUS BRIDGE IN REGION NEAR END SUPPORT, 

CONSIDERING 0% OF THE PRESTRESSING FORCE INITIALLY STATED..................................................................................... 146 
FIGURE 0-6 SHEAR RESISTANCE NEAR END SUPPORT OF A CONTINUOUS BRIDGE DECK ACCORDING TO DESIGN CODES APPLIED IN EUROPE 

AND AMERICA FOR THE CASE APPLYING 0% OF THE PRESTRESSING FORCE INITIALLY STATED ................................................... 146 

 
 



P a g e  | 132 

 

LIST OF TABLES 
TABLE 2-1 FAILURE MODE OF MEMBERS WITHOUT SHEAR REINFORCEMENT, RELATED WITH TYPE OF CRACKS AND MOMENT-SHEAR RATIO .. 6 
TABLE 2-2 MODIFIED COMPRESSION FIELD THEORY EQUILIBRIUM EQUATIONS, GEOMETRIC CONDITIONS AND STRESS-STRAIN 

RELATIONSHIPS [32] ................................................................................................................................................. 20 
TABLE 2-3 FAILURE MODES IN THE DIFFERENT DESIGN CODES ..................................................................................................... 21 
TABLE 2-4 PARAMETER FOR DETAILED VERIFICATION OF SHEAR RESISTANCE OF MEMBERS WITHOUT SHEAR REINFORCEMENT ACCORDING TO 

PREN1992 [38] ...................................................................................................................................................... 25 
TABLE 3-1 NOTATION USED BY ACI-DAFSTB-PC DATABASE ...................................................................................................... 37 
TABLE 3-2 MAIN CHARACTERISTICS OF THE SUBSETS STATED ...................................................................................................... 51 
TABLE 3-3 SUMMARY OF RELEVANT VARIATIONS BETWEEN SUBSETS ........................................................................................... 53 
TABLE 4-1 STATISTICAL CHARACTERISTICS OF ACI-DAFSTB-PC DATABASE AND SUBSET 1. ASSUMED 𝑥𝑟 = 0.65𝑎 ............................. 70 
TABLE 4-2 STATISTICAL INFORMATION FROM COMPARING THE DESIGN CODES RESULTS WITH TESTS FOR THE DEFINED SUBSETS WHEN 

CRITICAL LOCATION IS XR = 0.65A ................................................................................................................................ 72 
TABLE 4-3 STATISTICAL INFORMATION FROM COMPARING THE DESIGN CODES RESULTS WITH TESTS FOR THE DEFINED SUBSETS WHEN 

CRITICAL LOCATION IS XR = A-D .................................................................................................................................... 74 
TABLE 4-4 STATISTICAL INFORMATION FROM COMPARING THE DESIGN CODES RESULTS WITH TESTS FOR THE DEFINED SUBSETS WHEN 

CRITICAL LOCATION IS XR = D ....................................................................................................................................... 74 
TABLE 4-5 RELATIVE ASSESSMENT FOR STATISTICAL INDICATORS (CAPTURED FROM [52]) ................................................................ 77 
TABLE 5-1 STATISTICAL INFORMATION FROM COMPARING THE DESIGN CODES RESULTS WITH TESTS FOR THE DEFINED SUBSETS WHEN 

CRITICAL LOCATION IS XR = A-D INCLUDING NEW PROPOSALS (PREN3 AND PREN4) ............................................................... 97 
TABLE 6-1 COMMON FACTORED LOAD COMBINATIONS FOR THE STUDIED DESIGN CODES ............................................................... 106 
TABLE 6-2 SIMPLE SUPPORTED BRIDGE DECK PARAMETERS ...................................................................................................... 111 
TABLE 6-3 LOAD CASES AND LOAD COMBINATIONS FOR SIMPLE SUPPORTED BRIDGE DECK ............................................................. 111 
TABLE 6-4 PRESTRESSED CONCRETE CONTINUOUS BRIDGE PARAMETERS .................................................................................... 115 
TABLE 6-5 LOAD CASES AND LOAD COMBINATIONS FOR SIMPLE SUPPORTED BRIDGE DECK ............................................................. 115 
TABLE 0-1 MAIN FILTERS (KON_I) APPLIED TO THE ACI-DAFSTB-PC/2015 GROSS DATABASE. ...................................................... 136 
TABLE 0-2 COMPOSED CONDITIONAL KON_34 ..................................................................................................................... 136 
TABLE 0-3 BREAKDOWN OF THE FILTERS USED, KON_A4 AND KON_A5 .................................................................................. 137 

 

  



P a g e  | 133 

 

APPENDIX A 
Derivation of Concrete contribution according to ACI 318-19 [43] 

The derivation of concrete contribution expression used in ACI code starts by looking at an 

infinitesimal element located directly at the top of a flexural-shear crack. 
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Figure 0-1 Stress state at infinitesimal level, principal stresses 

The maximum tensile stress acting on the element can be found with Mohr’s circle as follow: 

𝑓𝑚𝑎𝑥 =
𝑓𝑡
2
+ √(

𝑓𝑡
2
)
2

+ 𝑓𝑣
2  (𝐚) [Eq.  0-1] 

Assuming the shear stress equal to: 

𝑓𝑣 =
𝑉𝑛 ∙ 𝑄

𝐼 ∙ 𝑏
= 𝑘1

𝑉𝑛
𝑏 ∙ 𝑑

      (𝐛) [Eq.  0-2] 

And estimating the tensile stresses from flexure as follow: 

Stablishing a relation between the nominal flexural moment with the steel stress as shown below. 

𝑀𝑛 = 𝐴𝑠𝑓𝑦 (𝑑 −
𝛽𝑐

2
) → 𝑓𝑠𝑡𝑒𝑒𝑙 ∝

𝑀𝑛
𝐴𝑠𝑑

  [Eq.  0-3] 

Transforming steel stresses to concrete stresses: 

𝑓𝑡 ∝
𝐸𝑐
𝐸𝑠
𝑓𝑠𝑡𝑒𝑒𝑙 [Eq.  0-4] 

Assuming the modulus of elasticity of concrete can be approximated by: 

𝐸𝑐 = 4700√𝑓𝑐
′ [𝑀𝑃𝑎] [Eq.  0-5] 

 Combining expressions [Eq.  0-3], [Eq.  0-4], and [Eq.  0-5] one can obtain: 
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𝑓𝑡 ∝
4700√𝑓𝑐

′

𝐸𝑠
∙

𝑀𝑛
𝜌 ∙ 𝑏 ∙ 𝑑2

 [Eq.  0-6] 

which parameterized is equal to: 

𝑓𝑡 =
𝑘4
𝐸𝑠
∙ (
√𝑓𝑐

′

𝜌
) ∙

𝑀𝑛
𝑏 ∙ 𝑑2

  (𝐜) [Eq.  0-7] 

Finally, the maximum stress can be assumed as a function of another parameter: 

𝑓𝑚𝑎𝑥 = 𝑘5√𝑓𝑐
′  (𝐝) [Eq.  0-8] 

Then, one can combine all the expression replacing [Eq.  0-2], [Eq.  0-7], and [Eq.  0-8] into [Eq.  

0-1] to obtain: 

𝑘5√𝑓𝑐
′ =

1

2

𝑘4
𝐸𝑠
(
√𝑓𝑐

′

𝜌
)(

𝑀𝑛
𝑏 ∙ 𝑑2

) + √[
1

2

𝑘4
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(
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′

𝜌
)(
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)]

2

+ [𝑘1
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𝑏 ∙ 𝑑

]
2

 [Eq.  0-9] 

Solving the last expression for normalized shear stress: 

[
𝑘5√𝑓𝑐

′

𝑉𝑛
−
1
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2
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[Eq.  0-10] 

  To simplify the last expression, variables can be defined as follow: 

- Independent variable: 𝑥 =
𝑉𝑛∙𝑑

𝑀𝑛
∙
𝜌

√𝑓𝑐
′
; case prestressed member 𝜌 is suppressed. 

- Dependent variable: 𝑦 =
𝑉𝑛

𝑏∙𝑑∙√𝑓𝑐
′
 

and according to what was defined above, the following expression is obtained 

𝑦 =
𝑘5𝐸𝑠

1
𝑥 +

√[
1
𝑥]
2

+ 𝑘1
2

 
[Eq.  0-11] 

This expression is the theoretically correct one and the constants 𝑘5 and 𝑘1 could be calibrated 

using the collected experimental results. But for the ACI things were simplified even further 

linearizing the last expression as 𝑦 = 𝐴𝑥 + 𝐵 resulting in the known first 2 expressions for the 

simplified procedure for ACI 318-19M (refer to section 2.4.3 of this document): 

𝑉𝑐.𝑎

𝑏𝑤𝑑√𝑓𝑐
′
= 0.05𝜆 + 4.8

𝑉𝑢𝑑𝑝

𝑀𝑢√𝑓𝑐
′
[𝑀𝑃𝑎]

𝜆=1
→   𝑦 = 0.05 + 4.8𝑥 [Eq.  0-12] 
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The last expression used in ACI318-19M approximate method defines the that the linear 

relationship is defined for one segment only that is delimited by upper and lower limits as shown 

in Figure 0-2. 

 

Figure 0-2 ACI318-19M approximate method graphical relation of parameters 
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APPENDIX B 
Main criteria for data selection and sorting 

The main filters applied to the gross ACI-DAfStb-PC/2015 database are shown in the following 

Table 0-1, considering the definitions corresponding to: 

- Uniaxial compressive strength of concrete: 𝑓1𝑐 = 0.95 ⋅ 𝑓𝑐𝑚,𝑐𝑦𝑙 

- Mechanical reinforcement Ratio of tension chord: 𝜔𝑙 =
𝐴𝑠⋅𝑓𝑠𝑦

𝑏⋅𝑑⋅𝑓1𝑐
+
𝐴𝑝𝑏𝑜𝑡⋅𝑓𝑝𝑦

𝑏⋅𝑑⋅𝑓1𝑐
 

- Factor for depth of compression zone: 𝜉𝑡𝑒𝑠𝑡 = 2 ⋅ (1 −
𝑧𝑡𝑒𝑠𝑡

𝑑
); where 𝑧𝑡𝑒𝑠𝑡 is the inner lever 

arm. 

- Longitudinal reinforcement type of bars used 𝑓𝑟: ribbed bars, plain bars, not reported 

- Longitudinal prestressed reinforcement type of tendon 𝑓𝑟𝑝: ribbed, plain. 

- Assessment of flexural failure 𝛽𝑓𝑙𝑒𝑥 and anchorage failure 𝛽𝑙𝑏 (section 3.5 document)  

Table 0-1 Main filters (kon_i) applied to the ACI-DAfStb-PC/2015 gross database. 

kon_1 𝑓1𝑐 > 12 [𝑀𝑃𝑎] 

kon_2 𝑓1𝑐 < 100 [𝑀𝑃𝑎] 

kon_3 𝑏𝑤 > 50 [𝑚𝑚] 

kon_4 ℎ ≥ 70 [𝑚𝑚] 

kon_5 𝑎/𝑑 > 2.89 

kon_6 2.4 ≤ 𝑎/𝑑 ≤ 2.89 

kon_7 𝜔𝑙 ≠ 0 → 𝜉𝑡𝑒𝑠𝑡 ≤ 0.5 

kon_8 𝛽𝑓𝑙𝑒𝑥 = 𝜇𝑢/𝜇𝑓𝑙𝑒𝑥 < 1.0 

kon_81 1.0 ≤ 𝛽𝑓𝑙𝑒𝑥 ≤ 1.1 

kon_10 𝑓𝑟 𝑂𝑅 𝑓𝑟𝑝 = 𝑟𝑖𝑏𝑏𝑒𝑑 𝑏𝑎𝑟𝑠; 𝐴𝑁𝐷 𝑃𝑚𝑒𝑡ℎ𝑜𝑑 = "𝑃𝑜𝑠𝑡" 

kon_11 𝛽𝑙𝑏 = 𝑙𝑏,𝑟𝑒𝑞/𝑙𝑏,𝑎𝑣 < 1.0 

kon_15 Other failure type 

 

Some experiments did not specify explicitly the value of the beam height, so the following 

conditional (auxiliary filter) was devised where a beam height is assumed based on the effective 

depth of the non-prestressed longitudinal reinforcement equal ℎ = 𝑑𝑠/0.9, for the group of beams 

complying with the length and width conditions as specified in the following Table 0-2. 

Table 0-2 Composed conditional kon_34 

kon_31 50 ≤ 𝑏𝑤 ≤ 100 [𝑚𝑚] 

kon_4 ℎ ≥ 70 [𝑚𝑚] 

kon_41 
(ℎ = 0) ⋅ (70 ≤

𝑑𝑠
0.9

< 150)𝑂𝑅 (70 ≤ ℎ < 150) 

kon_34 𝑘𝑜𝑛41 ⋅ 𝑘𝑜𝑛31 = [(ℎ = 0) ⋅ (70 ≤
𝑑𝑠
0.9

< 150)𝑂𝑅 (70 ≤ ℎ < 150)] ⋅ (50 ≤ 𝑏𝑤 ≤ 100) 

 

The combination of conditionals mentioned before in different ways end up forming the filters 

KON_A4 and KON_A5 detailed in the following Table 0-3. The sum of the tests captured by these 

filters end up forming the database used. 

ACI-DAfSTb-PC = KON_A4 + KON_5 
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Table 0-3 Breakdown of the filters used, KON_A4 and KON_A5  

KON_A4 𝐾𝑂𝑁𝐴2 ⋅ 𝒌𝒐𝒏𝟑𝟒  

KON_A2 𝐾𝑂𝑁𝐴21 𝑜𝑟 𝐾𝑂𝑁𝐴22 

 

KON_A21 

𝐾𝑂𝑁𝐴21𝑎 ⋅ 𝒌𝒐𝒏𝟏𝟏 

𝐾𝑂𝑁𝐴0 ⋅ 𝒌𝒐𝒏𝟓 ⋅ 𝒌𝒐𝒏𝟖 

𝒌𝒐𝒏𝟏 ⋅ 𝒌𝒐𝒏𝟑 ⋅ 𝒌𝒐𝒏𝟒 ⋅ 𝒌𝒐𝒏𝟕 ⋅ 𝒌𝒐𝒏𝟏𝟎 ⋅ 𝒌𝒐𝒏𝟏𝟓 ⋅ 𝒌𝒐𝒏𝟓 ⋅ 𝒌𝒐𝒏𝟖 ⋅ 𝒌𝒐𝒏𝟏𝟏 

 

KON_A22 

𝐾𝑂𝑁𝐴22𝑎 ⋅ 𝒌𝒐𝒏𝟏𝟏 

𝐾𝑂𝑁𝐴0 ⋅ 𝒌𝒐𝒏𝟓 ⋅ 𝒌𝒐𝒏𝟖𝟏 

𝒌𝒐𝒏𝟏 ⋅ 𝒌𝒐𝒏𝟑 ⋅ 𝒌𝒐𝒏𝟒 ⋅ 𝒌𝒐𝒏𝟕 ⋅ 𝒌𝒐𝒏𝟏𝟎 ⋅ 𝒌𝒐𝒏𝟏𝟓 ⋅ 𝒌𝒐𝒏𝟓 ⋅ 𝒌𝒐𝒏𝟖𝟏 ⋅ 𝒌𝒐𝒏𝟏𝟏 
 

KON_A5 𝐾𝑂𝑁𝐴3 ⋅ 𝒌𝒐𝒏𝟑𝟒  

KON_A3 𝐾𝑂𝑁𝐴31 𝑜𝑟 𝐾𝑂𝑁𝐴32 

 

KON_A31 𝒌𝒐𝒏𝟏 ⋅ 𝒌𝒐𝒏𝟑 ⋅ 𝒌𝒐𝒏𝟒 ⋅ 𝒌𝒐𝒏𝟕 ⋅ 𝒌𝒐𝒏𝟏𝟎 ⋅ 𝒌𝒐𝒏𝟏𝟓 ⋅ 𝒌𝒐𝒏𝟔 ⋅ 𝒌𝒐𝒏𝟖 

KON_A32 𝒌𝒐𝒏𝟏 ⋅ 𝒌𝒐𝒏𝟑 ⋅ 𝒌𝒐𝒏𝟒 ⋅ 𝒌𝒐𝒏𝟕 ⋅ 𝒌𝒐𝒏𝟏𝟎 ⋅ 𝒌𝒐𝒏𝟏𝟓 ⋅ 𝒌𝒐𝒏𝟔 ⋅ 𝒌𝒐𝒏𝟖𝟏 
 

Calculation of the ultimate bending moment of prestressed 

concrete beams. 

The factors used, the notation, and the procedures are based on the base document for the ACI-

DAfStb-PC database [47]. 

 

Figure 0-1 Free-body diagram and parameters to calculate the ultimate bending moment of prestressed concrete beams [47] 

When 𝜔𝑙 > 𝜔𝑙𝑖𝑚 = 𝜅𝑐 ⋅
0.4⋅𝑑𝑠

𝑑
  the tensile force of reinforcing steel (𝐹𝑠) , the tensile force of 

prestressing steel (𝐹𝑝), and the compressive force of concrete (𝐹𝑐) are defined as: 

𝐹𝑠 = 𝐴𝑠 ⋅ 𝜀𝑠 ⋅ 𝐸𝑠 [𝑁] [Eq.  0-1] 

𝐹𝑝 = 𝐴𝑝 ⋅ (Δ𝜀𝑝 + 𝜀𝑝𝑝) ⋅ 𝐸𝑝 [𝑁] [Eq.  0-2] 

𝐹𝑐 = 𝜅𝑐 ⋅ 𝑓𝑐 ⋅ 𝜉 ⋅ 𝑏 ⋅ 𝑑 [𝑁] [Eq.  0-3] 

Where:  

Cross-section area of reinforcing steel: 𝐴𝑠 [𝑚𝑚
2] 

Cross-section area of prestressing steel: 𝐴𝑝 [𝑚𝑚
2] 

Strain of reinforcing steel: 𝜀𝑠 [−] 
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Additional strain in prestressing steel: Δ𝜀𝑝 [−] 

Strain in prestressing steel due to prestress: 𝜀𝑝𝑝 =
𝜎𝑝𝑝

𝐸𝑝
=

𝑃

𝐸𝑝⋅𝐴𝑝
 [−] 

Young modulus in steel: 𝐸𝑠; 𝐸𝑝 [𝑀𝑃𝑎] 

Effective depth: 𝑑 =
𝐴𝑝⋅𝑓𝑝𝑦⋅𝑑𝑝+𝐴𝑠⋅𝑓𝑠𝑦⋅𝑑𝑠

𝐴𝑝⋅𝑓𝑝𝑦+𝐴𝑠⋅𝑓𝑠𝑦
 [𝑚𝑚] 

Stress block coefficient according to CEB-FIP MC 90: 𝜅𝑐 = 1 −
𝑓𝑐

250
 [−] 

Coefficient to locate the neutral axis: ξ [– ] 

And when 𝜔𝑙 < 𝜔𝑙𝑖𝑚 

𝐹𝑠 = 𝐴𝑠 ⋅ 𝑓𝑠𝑦 [𝑁] [Eq.  0-4] 

𝐹𝑝 = 𝐴𝑝 ⋅ 𝑓𝑝𝑦 [𝑁] [Eq.  0-5] 

To have handy expressions the mechanical reinforcement ratios for prestressing steel (𝜔𝑝), and 

for non-prestressed steel reinforcement (𝜔𝑠) are defined as. 

𝜔𝑝 =
𝐴𝑝 ⋅ 𝑓𝑝𝑦

𝑏 ⋅ 𝑑 ⋅ 𝑓𝑐
 [−] [Eq.  0-6] 

𝜔𝑠 =
𝐴𝑠 ⋅ 𝑓𝑠𝑦

𝑏 ⋅ 𝑑 ⋅ 𝑓𝑐
 [−] [Eq.  0-7] 

And to have a general term of analysis, in cases where both prestressed and non-prestressed 

longitudinal reinforcement are used or not, the mechanical reinforcement ratio of the tension 

chord is defined as. 

𝜔𝑙 = 𝜔𝑠 +𝜔𝑝 [−] [Eq.  0-8] 

In order to determine the ultimate flexural moment, the procedure explained below is applied. 

• When 𝜔𝑙 < 𝜔lim is true, where the limit of reinforcement ratio 

By the equilibrium of horizontal forces one can estimate the coefficient for the neutral 

axis as follow 

• ∑𝐻 = 0:  𝜉 =
𝐴𝑝⋅𝑓𝑝𝑦+𝐴𝑠⋅𝑓𝑠𝑦

𝜅𝑐⋅𝑏⋅𝑑⋅𝑓𝑐
=

1

𝜅𝑐
⋅ (𝜔𝑠 +𝜔𝑝) =

𝜔𝑙

𝜅𝑐
 [– ] 

And by the equilibrium of moments using the inner lever arm equal to the distance 

between the resultant of total compression force and resultant of tension force from 

prestressed and non-prestressed steel, one can estimate the ultimate bending moment 

in this case equal to: 

• ∑𝑀:         𝑀 = 𝐹𝑐 ⋅ 𝑧 = (𝜅𝑐 ⋅ 𝑏 ⋅ 𝑑 ⋅ 𝑓𝑐 ⋅ 𝜉) ⋅ 𝑧 

Where 

Inner lever arm: 𝑧 = 𝜁 ⋅ 𝑑 

Coefficient for inner lever arm: 𝜁 = 1 −
1

2
𝜉 

In order to calculate a dimension-free ultimate flexural moment the following 

definition is established.  

𝜇𝑓𝑙𝑒𝑥,1 =
𝑀

𝑏 ⋅ 𝑑2 ⋅ 𝑓𝑐
=

𝐹𝑐 ⋅ 𝑧

𝑏 ⋅ 𝑑2 ⋅ 𝑓𝑐
=
𝜅𝑐 ⋅ 𝑓𝑐 ⋅ 𝜉 ⋅ 𝑏 ⋅ 𝑑𝑠 ⋅ 𝜁 ⋅ 𝑑

𝑏 ⋅ 𝑑2 ⋅ 𝑓𝑐
= 𝜅𝑐 ⋅ 𝜉 ⋅ 𝜁 = 𝜔𝑙 ⋅ 𝜁 [Eq.  0-9] 

Only applicable for pure bending, without consideration of the compressive 

reinforcement and when the upper limit for the concrete strain is 𝜀 < 3.5/1000 
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• If 𝜔𝑙 > 𝜔𝑙𝑖𝑚 

The horizontal equilibrium of forces is equal to 

∑𝐻 = 0:     𝜅𝑐 ⋅ 𝑏 ⋅ 𝑑 ⋅ 𝑓𝑐 ⋅ 𝜉 = 𝐴𝑝 ⋅ (Δ𝜀𝑝 + 𝜀𝑝𝑝) ⋅ 𝐸𝑝 + 𝐴𝑠 ⋅ 𝜀𝑠 ⋅ 𝐸𝑠 

Where, from the strain distribution follows that: 

𝜉 =
𝜀𝑐

𝜀𝑠 + 𝜀𝑐
 [Eq.  0-10] 

Δ𝜀𝑝 =
𝑑𝑝
𝑑
⋅ (𝜀𝑐 + Δ𝜀) − 𝜀𝑐 

[Eq.  0-11] 

εs =
𝑑𝑠
𝑑
⋅ (𝜀𝑐 + Δ𝜀) − 𝜀𝑐 

[Eq.  0-12] 

Considering Δ𝜀 the additional strain at level of effective depth 𝑑. 

After substitution of last equation into the equilibrium condition the following equation can 

be solved for Δ𝜀. 

(
𝜔𝑝

𝜀𝑝𝑦
⋅
𝑑𝑝

𝑑
+
𝜔𝑠
𝜀𝑠𝑦
⋅
𝑑𝑠
𝑑
) ⋅ Δ𝜀2 + (

𝜔𝑝

𝜀𝑝𝑦
⋅ (2 ⋅ 𝜀𝑐 ⋅

𝑑𝑝

𝑑
− 𝜀𝑐 + 𝜀𝑝𝑝) +

𝜔𝑠
𝜀𝑠𝑦
⋅ 𝜀𝑐 ⋅ (2 ⋅

𝑑𝑠
𝑑
− 1)) ⋅ Δε

+
ωp

εpy
⋅ 𝜀𝑐 ⋅ (

𝑑𝑝
𝑑
⋅ 𝜀𝑐 − 𝜀𝑐 + 𝜀𝑝𝑝) +

𝜔𝑠
𝜀𝑠𝑦
⋅ 𝜀𝑐
2 ⋅ (

𝑑𝑠
𝑑
− 1) − 𝜅𝑐 ⋅ 𝜀𝑐 = 0 

[Eq.  0-13] 

Where 
𝜔𝑝

𝜀𝑝𝑦
=
𝜌𝑝⋅𝐸𝑝

𝑓𝑐
 and 𝜀𝑝𝑦 =

𝑓𝑝𝑦

𝐸𝑝
 for prestressed steel, 

𝜔𝑠

𝜀𝑠𝑦
=
𝜌𝑠⋅𝐸𝑠

𝑓𝑐
 and 𝜀𝑠𝑦 =

𝑓𝑠𝑦

𝐸𝑠
 for non-

prestressed longitudinal reinforcement. 

• For members with non-prestressed longitudinal reinforcement, where 𝜔𝑠 ≠ 0;
𝑑𝑝

𝑑
< 1 and 

Δ𝜀 = Δ𝜀𝑝, the calculated ultimate flexural moment will be 

∑𝑀:        𝑀 = 𝐹𝑝 ⋅ (𝑑𝑝 −
1

2
⋅ 𝜉 ⋅ 𝑑) + 𝐹𝑠 ⋅ (𝑑𝑠 −

1

2
⋅ 𝜉 ⋅ 𝑑) [−] [Eq.  0-14] 

And the non-dimensional flexural moment is equal to: 

𝜇𝑓𝑙𝑒𝑥,2 =
𝑀

𝑏 ⋅ 𝑑2 ⋅ 𝑓𝑐
=
𝐹𝑝 ⋅ (𝑑𝑝 −

1
2
⋅ 𝜉 ⋅ 𝑑) + 𝐹𝑠 ⋅ (𝑑𝑠 −

1
2
⋅ 𝜉 ⋅ 𝑑)

𝑏 ⋅ 𝑑2 ⋅ 𝑓𝑐

=
𝜔𝑝
𝜀𝑝𝑦

⋅ (Δ𝜀𝑝 + 𝜀𝑝𝑝) ⋅ (
𝑑𝑝
𝑑
−
1

2
⋅ 𝜉) +

𝜔𝑠
𝜀𝑠𝑦
⋅ 𝜀𝑠 ⋅ (

𝑑𝑠
𝑑
−
1

2
⋅ 𝜉) 

[Eq.  0-15] 

• For members without non-prestressed longitudinal reinforcement, follow that 𝜔𝑠 = 0;
𝑑𝑝

𝑑
=

1 and Δ𝜀 = Δ𝜀𝑝, and the non-dimensional flexural moment is equal to: 

𝜇𝑓𝑙𝑒𝑥,2 =
𝜔𝑝

𝜀𝑝𝑦
⋅ (Δ𝜀𝑝 + 𝜀𝑝𝑝) ⋅ 𝜁 [Eq.  0-16] 

Inner lever-arm at shear failure calculation 

The contribution of steel in compression is not considered in the approach proposed by [47]. It is 

assumed that their contribution is minimal and a conservative result is obtained too. 
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Figure 0-2 Free-body diagram, notation and parameters considered for calculating the ultimate bending moment for prestressed concrete 
beams. 

Prestressed concrete beams without reinforcing steel 

In this case it is not necessary to consider a resultant for the tensile force by non-prestressed 

longitudinal steel reinforcement. 

From equilibrium of horizontal forces, results in: 

∑𝐻 = 0:     𝜉 =
𝐴𝑝 ⋅ 𝜎𝑝

𝜅𝑐 ⋅ 𝑏 ⋅ 𝑑 ⋅ 𝑓𝑐
=
𝜔𝑝 ⋅ 𝜎𝑝

𝜅𝑐 ⋅ 𝑓𝑝𝑦 
[– ] 

In this case 𝑑 = 𝑑𝑝 

With, ∑𝑀: 𝐹𝑐 ⋅ 𝑧 = 𝐹𝑝 ⋅ 𝑧, using non-dimensional flexural moment results in: 

𝜇𝑢 =
𝑀𝑢

𝑏 ⋅ 𝑑2 ⋅ 𝑓𝑐
=

𝐹𝑐 ⋅ 𝑧

𝑏 ⋅ 𝑑2 ⋅ 𝑓𝑐
=
𝜅𝑐 ⋅ 𝑓𝑐 ⋅ 𝜉 ⋅ 𝑏 ⋅ 𝑑 ⋅ (𝜁 ⋅ 𝑑)

𝑏 ⋅ 𝑑2 ⋅ 𝑓𝑐
= 𝜅𝑐 ⋅ 𝜉 ⋅ (1 −

𝜉

2
) [Eq.  0-17] 

 

Where: 

Coefficient for inner lever arm: 𝜁 = 1 −
1

2
⋅ 𝜉 [−] 

 

Solving for 𝜉, it is obtained that: 

𝜉 = 1 − √1 − 2 ⋅
𝜇𝑢
𝜅𝑐
 [– ] [Eq.  0-18] 

 

And subsequently, can be determined the following reltaion: 

𝜎𝑝 =
𝜅𝑐 ⋅ 𝑓𝑝𝑦

𝜔𝑝
⋅ 𝜉 ≤ 𝑓𝑝𝑦 [𝑀𝑃𝑎] [Eq.  0-19] 

For prestressed concrete beams with longitudinal non-prestressed steel 

reinforcement 

Considering the collaboration by non-prestressed longitudinal steel reinforcement. 

From equilibrium of horizontal forces ∑𝐻 = 0 results that: 

𝐹𝑐 = 𝐹𝑠 + 𝐹𝑝 → 𝜅𝑐 ⋅ 𝑓𝑐 ⋅ 𝜉𝑡𝑒𝑠𝑡 ⋅ 𝑑 ⋅ 𝑏 = 𝐴𝑝 ⋅ Δ𝜎𝑝 + 𝐴𝑠 ⋅ 𝜀𝑠 ⋅ 𝐸𝑠  [Eq.  0-20] 

Then, taking the coefficient to locate the neutral axis as one of the variables to find. 

𝜉𝑡𝑒𝑠𝑡 =
𝜔𝑝 ⋅ 𝐸𝑝

𝜅𝑐 ⋅ 𝑓𝑝𝑦
⋅ (Δ𝜀𝑝 + 𝜀𝑝𝑝) +

𝜔𝑠 ⋅ 𝐸𝑠
𝜅𝑐 ⋅ 𝑓𝑠𝑦

⋅ 𝜀𝑠 =
𝜔𝑝 ⋅ 𝜀𝑝𝑝

𝜅𝑐 ⋅ 𝜀𝑝𝑦
+
𝜔𝑝 ⋅ Δ𝜀𝑝

𝜅𝑐 ⋅ 𝜀𝑝𝑦
+
𝜔𝑠 ⋅ 𝜀𝑠
𝜅𝑐 ⋅ 𝜀𝑠𝑦

 

Where:  

Mechanical reinforcement ratio of reinforcing steel: 𝜔𝑠 =
𝐴𝑠⋅𝑓𝑠𝑦

𝑏⋅𝑑⋅𝑓𝑐
 

[Eq.  0-21] 
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Mechanical reinforcement ratio of prestressing steel: 𝜔𝑝 =
𝐴𝑝⋅𝑓𝑝𝑦

𝑏⋅𝑑⋅𝑓𝑐
 

Yield strain of reinforcing steel: 𝜀𝑠𝑦 = 𝑓𝑠𝑦/𝐸𝑠 

Yield strain of prestressing steel: 𝜀𝑝𝑦 = 𝑓𝑝𝑦/𝐸𝑝 

 

One can use the theorem of intersecting lines to find the relation between strains. 

Δ𝜀𝑝
𝜀𝑠
=
𝑑𝑝 − 𝑥

𝑑𝑠 − 𝑥

𝑤𝑖𝑡ℎ 𝑥=𝜉⋅𝑑
→        Δ𝜀𝑝 = (

𝑑𝑝 − 𝜉 ⋅ 𝑑

𝑑𝑠 − 𝜉 ⋅ 𝑑
) 𝜀𝑠  [Eq.  0-22] 

Combining [Eq.  0-21] and [Eq.  0-22], results that 

𝜉𝑡𝑒𝑠𝑡 =
𝜔𝑝 ⋅ 𝜀𝑝𝑝

𝜅𝑐 ⋅ 𝜀𝑝𝑦
+
𝜔𝑝 ⋅ 𝜀𝑠

𝜅𝑐 ⋅ 𝜀𝑝𝑦
⋅ (
𝑑𝑝 − 𝜉 ⋅ 𝑑

𝑑𝑠 − 𝜉 ⋅ 𝑑
) +

𝜔𝑠 ⋅ 𝜀𝑠
𝜅𝑐 ⋅ 𝜀𝑠𝑦

 [Eq.  0-23] 

Now, for ∑𝑀 one obtains that: 

𝜇𝑢 = 𝜔𝑠 ⋅
𝜀𝑠
𝜀𝑠𝑦
⋅ (
𝑑𝑠
𝑑
−

𝑥

2 ⋅ 𝑑
) + 𝜔𝑝 ⋅

Δ𝜀𝑝
𝜀𝑝𝑦

⋅ (
𝑑𝑝
𝑑
−

𝑥

2 ⋅ 𝑑
) + 𝜔𝑝 ⋅

𝜀𝑝𝑝
𝜀𝑝𝑦

⋅ (
𝑑𝑝
𝑑
−

𝑥

2 ⋅ 𝑑
) [Eq.  0-24] 

And inserting [Eq.  0-22] with [Eq.  0-24] the following relation is obtained. 

𝜇𝑢 = 𝜔𝑠 ⋅
𝜀𝑠
𝜀𝑠𝑦
⋅ (
𝑑𝑠
𝑑
−

𝑥

2 ⋅ 𝑑
) + 𝜔𝑝 ⋅

𝜀𝑠
𝜀𝑝𝑦

⋅ (
𝑑𝑝 − 𝜉 ⋅ 𝑑

𝑑𝑠 − 𝜉 ⋅ 𝑑
) ⋅ (

𝑑𝑝

𝑑
−

𝑥

2 ⋅ 𝑑
) + 𝜔𝑝 ⋅

𝜀𝑝𝑝

𝜀𝑝𝑦
⋅ (
𝑑𝑝

𝑑
−

𝑥

2 ⋅ 𝑑
) 

= (
𝑑𝑠
𝑑
−
𝜉𝑡𝑒𝑠𝑡
2
) + [𝜔𝑠 ⋅

𝜀𝑠
𝜀𝑠𝑦
+𝜔𝑝 ⋅

𝜀𝑠
𝜀𝑝𝑦

⋅ (
𝑑𝑝 − 𝑥

𝑑𝑠 − 𝑥
) ⋅ (

𝑑𝑝 −
𝑥
2

𝑑𝑠 −
𝑥
2

) + 𝜔𝑝 ⋅
𝜀𝑝𝑝

𝜀𝑝𝑦
⋅ (
𝑑𝑝 −

𝑥
2

𝑑𝑠 −
𝑥
2

)] 

[Eq.  0-25] 

According to the background document of the ACI-DAfStb-PC [47], as the difference 

between 𝑑𝑝 and 𝑑𝑠 is small, and after an internal evaluation of the results obtained, the 

following equalities were established 

𝑑𝑝 − 𝜉 ⋅ 𝑑

𝑑𝑠 − 𝜉 ⋅ 𝑑
= 0.9578 [−] [Eq.  0-26] 

𝑑𝑝 − 𝑥/2

𝑑𝑠 − 𝑥/2
= 0.9680 [−] [Eq.  0-27] 

Inserting [Eq.  0-23] into [Eq.  0-24] and subsequently using the relations established in 

[Eq.  0-26] and [Eq.  0-27], a relation to find the longitudinal strain of non-prestressed steel 

reinforcement results as follow: 

𝜀𝑠 =
−𝑏𝑐𝑎𝑙−√𝑏𝑐𝑎𝑙

2 −4⋅𝑎𝑐𝑎𝑙⋅𝑐𝑐𝑎𝑙

2⋅𝑎𝑐𝑎𝑙
  

[Eq.  0-28] 

Where: 

𝑎𝑐𝑎𝑙 = (
𝜔𝑠
2

𝜀𝑠𝑦
2 + 1.9680 ⋅ 0.9578 ⋅

𝜔𝑠 ⋅ 𝜔𝑝

𝜀𝑠𝑦 ⋅ 𝜀𝑝𝑦
+ 0.95782 ⋅ 0.9680 ⋅

𝜔𝑝
2

𝜀𝑝𝑦
2 ) [−] 

𝑏𝑐𝑎𝑙 = 2 ⋅ 𝜅𝑐 ⋅
𝑑𝑠
𝑑
⋅ (
𝜔𝑠
𝜀𝑠𝑦
+ 0.9578 ⋅ 0.9680 ⋅

𝜔𝑝

𝜀𝑝𝑦
) + 0.9680 ⋅

𝜔𝑠 ⋅ 𝜔𝑝

𝜀𝑠𝑦 ⋅ 𝜀𝑝𝑦
⋅ 𝜀𝑝𝑝 + 2 ⋅ 0.9578 ⋅ 0.9680 ⋅

𝜔𝑝
2

𝜀𝑝𝑦
2 ⋅ 𝜀𝑝𝑝 [– ] 

𝑐𝑐𝑎𝑙 = 0.9680 ⋅
𝜔𝑝
2

𝜀𝑝𝑦
2 ⋅ 𝜀𝑝𝑝

2 − 2 ⋅ 0.9680 ⋅ 𝜅𝑐 ⋅
𝑑𝑠
𝑑
⋅
𝜔𝑝

𝜀𝑝𝑦
⋅ 𝜀𝑝𝑝 + 2 ⋅ 𝜅𝑐 ⋅ 𝜇𝑢  [−] 

Finally, with the longitudinal strain determined then, the coefficient to locate the neutral axis can 

be calculated from [Eq.  0-23] and the coefficient for inner lever arm 𝜁 subsequently. 

Anchorage failures at end support 
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In order to assess the anchorage capacity some input parameters are important, the width of the 

support (𝑎𝐴) and the overhang of the beam behind the support axis (𝑏𝐴) are some. In the report 

of the ACI-DAfStb-PC database [47], it is reported that some tests do not contain some 

information, so some assumptions were made in order not to discard too much information. These 

assumptions are listed below. 

𝑙𝑏,𝑝𝑟𝑜𝑣 = 0.5 ⋅ 𝑎𝐴 + 𝑏𝐴 − (ℎ − 𝑑) [𝑚𝑚]  𝑖𝑓 𝑎𝐴 > 0 𝑎𝑛𝑑 𝑏𝐴 > 0 

𝑙𝑏,𝑝𝑟𝑜𝑣 = 𝑏𝐴 [𝑚𝑚] 𝑖𝑓 𝑎𝐴 = 0 𝑎𝑛𝑑 𝑏𝐴 > 0 

𝑙𝑏,𝑝𝑟𝑜𝑣 = 𝑎𝐴 + 0.1 ⋅ 𝑑 [𝑚𝑚]  𝑖𝑓 𝑎𝐴 > 0 𝑎𝑛𝑑 𝑏𝐴 = 0 

𝑙𝑏,𝑝𝑟𝑜𝑣 = 0.25 ⋅ 𝑑 [𝑚𝑚]  𝑖𝑓 𝑎𝐴 = 0 𝑎𝑛𝑑 𝑏𝐴 = 0 

Where 𝑑 is the effective depth of the beam. 

 

Assessment of anchorage for prestressed concrete beams without shear reinforcement. 

Determination of the tension chord force 

Using a truss with concrete struts inclined at an angle of 24 degrees (cot 𝜃 = 2.20) from the 

longitudinal axis and concrete ties inclined 66 degrees the force to be anchored was determined 

as follow. 

𝐹𝑠𝐴 = 𝑉𝑢,𝑅𝑒𝑝 ⋅ (0.5
𝑎𝐴
𝑧
+ 2.20

ℎ − 𝑑

𝑧
+ 0.873) [𝑘𝑁] [Eq.  0-29] 

Where: 

Shear force at failure: 𝑉𝑢,𝑅𝑒𝑝 [𝑘𝑁] 

Associated stress: 𝜎𝑝𝑎𝑢 =
𝐹𝑠𝐴

𝐴𝑝
 [𝑀𝑃𝑎] 

Assessment without consideration of non-tensioned reinforcement 

The following equations apply for: 

• Beams with 7-wire strands for prestressing steel 

𝑙𝑏,𝑟𝑒𝑞 =
𝑑𝑠𝑝

4 ⋅ 0.55 ⋅ 𝑓𝑐𝑡𝑚,𝑐𝑎𝑙
⋅ (0.5 ⋅ 𝜎𝑝𝑝 + 0.8 ⋅ 𝜎𝑝𝑎𝑢) [𝑚𝑚] [Eq.  0-30] 

• Beams with other types of prestressing steel 

𝑙𝑏,𝑟𝑒𝑞 =
𝑑𝑠𝑝

4 ⋅ 0.641 ⋅ 𝑓𝑐𝑡𝑚,𝑐𝑎𝑙
⋅ (0.7 ⋅ 𝜎𝑝𝑝 + 1.0 ⋅ 𝜎𝑝𝑎𝑢) [𝑚𝑚] [Eq.  0-31] 

• Post-tensioned beams, for all types of prestressing steel 

𝑙𝑏,𝑟𝑒𝑞 =
𝛼𝑎 ⋅ 𝑑𝑠𝑝 ⋅ (𝜎𝑝 + 𝜎𝑝𝑎𝑢)

9 ⋅ 𝑓𝑐𝑡𝑚,𝑐𝑎𝑙
 [𝑚𝑚] [Eq.  0-32] 

Where: 

Stress in prestressing steel due to prestress: 𝜎𝑝𝑝 = 𝑃/𝐴𝑝 [𝑀𝑃𝑎] 

Prestressing steel cross-sectional area: 𝐴𝑝 

If 𝑎𝐴 = 0 it is assumed 𝑎𝐴 = 0.2 ⋅ 𝑑 instead 

Type of anchorage dependent factor (hook 0.1; straight 1; anchor plate 0.01): 𝛼𝑎  [– ] 
Diameter of prestressing steel: 𝑑𝑠𝑝 
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Calculated value of concrete tensile strength: 𝑓𝑐𝑡𝑚,𝑐𝑎𝑙 

Assessment with consideration of non-prestressed reinforcement 

The non-prestressed reinforcement is checked first, reviewing if it provides enough anchorage 

length. Therefore, the following ratio is calculated for the actual force to be anchored in relation to 

the yield force. 

𝛼 =
𝐹𝑠𝐴

𝐴𝑠 ⋅ 𝑓𝑠𝑦
[−] [Eq.  0-33] 

And according to this ratio the following conditions apply to calculate the first required length. 

𝑙𝑏,𝑟𝑒𝑞 =
𝛼𝑎 ⋅ 𝑑𝑠𝑡 ⋅ 𝜎𝑠𝑙𝑎𝑢
9 ⋅ 𝑓𝑐𝑡𝑚,𝑐𝑎𝑙

 [𝑚𝑚];𝑤ℎ𝑒𝑛 𝛼 < 1 𝑤𝑖𝑡ℎ 𝜎𝑠𝑙𝑎𝑢 =
𝐹𝑠𝐴
𝐴𝑠
 [𝑀𝑃𝑎] [Eq.  0-34] 

𝑙𝑏,𝑟𝑒𝑞 =
𝛼𝑎 ⋅ 𝑑𝑠𝑡 ⋅ 𝑓𝑠𝑦

9 ⋅ 𝑓𝑐𝑡𝑚,𝑐𝑎𝑙
 [𝑚𝑚];𝑤ℎ𝑒𝑛 𝛼 > 1 [Eq.  0-35] 

Then the anchorage length ratio is checked, and used to compute the required anchorage force 

Δ𝐹𝑠𝐴 that the prestressing steel has to resist. Then if 𝛽𝑙𝑏1 > 1 for the non-prestressed steel, it 

means that prestressed steel needs to provide the remaining anchorage force that is calculated 

as stated below. 

Δ𝐹𝑠𝐴 = 𝐹𝑠𝐴 − 𝐹𝑠𝐴,𝑝𝑟𝑜𝑣  [𝑘𝑁] [Eq.  0-36] 

Where: 𝐹𝑠𝐴,𝑝𝑟𝑜𝑣 =
𝐹𝑠𝐴

𝛽𝑙𝑏1
 [𝑘𝑁] 𝑖𝑓 𝛼 < 1; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝐹𝑠𝐴,𝑝𝑟𝑜𝑣 =

𝐴𝑠⋅𝑓𝑠𝑦

𝛽𝑙𝑏1
 [𝑘𝑁] 

So, the associated stress in prestressing steel reinforcement is equal to: 

𝜎𝑝𝑎𝑢 =
Δ𝐹𝑠𝐴
𝐴𝑝

 [𝑀𝑃𝑎] [Eq.  0-37] 

And in this case the following equations apply for case of pretensioned members: 

• For members with 7-wire strands as prestressing steel 

𝑙𝑏,𝑟𝑒𝑞 =
𝑑𝑠𝑝

4 ⋅ 0.55 ⋅ 𝑓𝑐𝑡𝑚,𝑐𝑎𝑙
⋅ (0.5 ⋅ 𝜎𝑝𝑝 + 0.8 ⋅ 𝜎𝑝𝑎𝑢) [𝑚𝑚] [Eq.  0-38] 

• For members with other types as prestressing steel 

𝑙𝑏,𝑟𝑒𝑞 =
𝑑𝑠𝑝

4 ⋅ 0.641 ⋅ 𝑓𝑐𝑡𝑚,𝑐𝑎𝑙
⋅ (0.7 ⋅ 𝜎𝑝𝑝 + 1.0 ⋅ 𝜎𝑝𝑎𝑢) [𝑚𝑚] [Eq.  0-39] 

• For post-tensioned beams 

𝑙𝑏,𝑟𝑒𝑞 =
𝛼𝑎 ⋅ 𝑑𝑠𝑝 ⋅ (𝜎𝑝𝑝 + 𝜎𝑝𝑎𝑢)

9 ⋅ 𝑓𝑐𝑡𝑚,𝑐𝑎𝑙
 [𝑚𝑚] [Eq.  0-40] 

Finally, the new anchorage ratio can be generated as follow. 

𝛽𝑙𝑏2 =
𝑙𝑏,𝑟𝑒𝑞

𝑙𝑏,𝑝𝑟𝑜𝑣
 [−] [Eq.  0-41] 
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APPENDIX C 
Analysis of region near end support for prestressed concrete continuous bridge deck, 

using only 50% of the prestressing force initially stated. 

 

 
Figure 0-1 Ultimate and acting shear and bending moment for continuous bridge in region near end support, considering only 50% of the 

prestressing force initially stated 

 
 

Figure 0-2 Shear resistance near end support of a continuous bridge deck according to design codes applied in Europe and America for the 
case applying only 50% of the prestressing force initially stated 
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Analysis of region near end support for prestressed concrete continuous bridge deck, 

using only 25% of the prestressing force initially stated. 

 

 
Figure 0-3 Ultimate and acting shear and bending moment for continuous bridge in region near end support, considering only 25% of the 

prestressing force initially stated 

 

 
 

Figure 0-4 Shear resistance near end support of a continuous bridge deck according to design codes applied in Europe and America for the 
case applying only 25% of the prestressing force initially stated 
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Analysis of region near end support for prestressed concrete continuous bridge deck, 

using 0% of the prestressing force initially stated. 

 

 
Figure 0-5 Ultimate and acting shear and bending moment for continuous bridge in region near end support, considering 0% of the prestressing 

force initially stated 

 

 
 

Figure 0-6 Shear resistance near end support of a continuous bridge deck according to design codes applied in Europe and America for the 
case applying 0% of the prestressing force initially stated 
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APPENDIX D 
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APPENDIX E 
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