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Abstract

The continuously increasing population within cities imposes the future challenges related to planning
and managing the sustainable environment, where people’s health and wellbeing is prioritized.
Currently more than half of the world’s population live in cities which results in the rise of the human
footprint, affecting the local climate. Simultaneously the planet’s climate is changing towards less
predictable weather conditions with high extremes, e.g., heavy rainfalls, followed by long dry periods
or severe heatwaves. Frequently extreme weather conditions are associated with flooding and

hurricanes, while heatwaves represent an equally important danger for the health of city’s citizens.

UHI has been recognized as one of the leading environmental issues of the 21% century. The UHI is
defined as the area within a city with the higher surface or air temperatures compared to its
surroundings. The higher urban temperatures are resulting in health-related issues among the

population, greater energy demands, and various economic losses.

Thus, the current work is focusing on researching the air temperatures in the urban canopy layer,
which are mainly affected by the heat radiated from the urban surfaces during the night. Moreover,
there are differences in the heat exchange phases between the neighborhoods, which are caused by
the heterogenicity of the morphological characteristics of the city. Such information can be of great
use for the development of UHI mitigation strategies, but it is currently very sparse or not detailed
enough. Therefore this master thesis investigates the possibility for generation of more detailed

models, taking into account the intraurban variability.

For the development of the statistical models explaining the UHI effect in the city of the Hague
different spatial and sensor datasets have been used. The data about the temperatures in the city for
2017 have been collected with the means of the Netatmo weather stations. Additionally, different
spatial representations and their effect on the statistical analysis have been investigated. In
combination with the different spatial models, six distinct UHI contributing factors have been
researched, namely the Buildings density, the Land cover index, the Vegetation index, the Sky View
Factor, the Non-permeable surfaces in the city and the Vehicle traffic density. These variables have
been calculated and utilized in the statistical analysis of their relationship with the air temperatures in
the Hague. The results indicated a weak relationship between the air temperatures and the different
spatial characteristics of the city where only the Sky View Factor and the Non-permeable surfaces

proved to be statistically significant variables.
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1. Introduction

1.1. The Urban Heat Island Effect

The continuously increasing population within cities imposes the future challenges related to planning
and managing the sustainable environment, where people’s health and wellbeing is prioritized.
Currently more than half of the world’s population lives in cities (O’Malley, Piroozfarb, Farr, & Gates,
2014) which results in the rise of the human footprint, affecting the local climate. Simultaneously the
planet’s climate is changing towards less predictable weather conditions with high extremes, e.g.,
heavy rainfalls, followed by long dry periods, or severe heatwaves (Huber & Gulledge, 2011).
Frequently extreme weather conditions are associated with flooding and hurricanes, while heatwaves

represent an equally important danger for the health of the city’s citizens.

In the last ten years, extreme heat conditions were observed more frequently, which provided more
information about the related negative effects on the population and the economy. An example is a
heatwave, which affected Paris in August 2003 (Hoeven & Wandl, n.d.). During this event the elderly
population within the city was affected by the heat, peaking at eight times more deaths compared to
an average number of deaths for the year. Studies mention that up to 14 800 people died during this
period because of the heat. Furthermore, it was observed that public authorities and structures are

not well prepared to respond adequately to such events, resulting in chaos and low-quality services.

In relation to the previously mentioned phenomena, a lot of studies are investigating the Urban Heat
Island (UHI) effect within different major cities in the world. UHI has been recognized as one of the
leading environmental issues of the 21 century cities (Memon, Leung, & Chunho, 2008). The UHI is
defined as the area within a city with the higher surface or air temperatures compared to its
surroundings (South, Working, & October, 2008). The higher urban temperatures are resulting in
health-related issues among the population, higher energy demands, and various economic losses.
Therefore UHI studies are important for the analysis and the mitigation of this phenomenon.

There are two main types of UHI effects recognized, namely surface and atmospheric. Surface UHI
refers to the higher temperatures of the surfaces within the city than its surroundings and the
atmospheric UHI is related to the air temperatures in the built environment. These two phenomena
have different characteristics and are observed with the means of different techniques. The
atmospheric UHI, for example, is mainly a nocturnal phenomenon, this means that it is more
pronounced at night. The reason for that is the slow release of the stored during the day heat from
the city’s man-made surfaces like roads, buildings, parkings, etc. The atmospheric UHI is measured

using in situ sensors — these could be for example weather stations, small distributed sensors
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measuring temperatures outside buildings or car traverses. In contrast, the surface urban heat island
has been measured using remote sensing techniques like satellite imagery or airborne sensors. In this
case, the temperatures of the city’s surfaces are of interest. The focus of the current work is on the
Canopy Urban Heat Island, which refers to the air temperatures of Urban Canopy Layer — the layer
between the ground and the mean height of the buildings within the city. This type of UHI has a direct

influence on the human'’s health since this is where people are living.

In order for the UHI effect to be studied in detail, the contributing factors have to be identified. Broadly
the UHI generating factors can be classified as controllable and uncontrollable (Memon et al., 2008).
The uncontrollable factors are the ones, which are related to climate properties, such as airspeed,
cloud coverage, solar radiation, etc. On the other hand, controllable are the factors describing the
structure of the city — green areas, buildings volume, sealed surfaces, types of material that have been
used, Sky View Factor, anthropogenic heat and others. All these factors have a different influence on
the UHI effect. For example, the heat, which is generated by the anthropogenic activities (automobiles,
air-conditioners, etc.), is being released to the environment directly and instantly, while only part of
the solar radiation heats up the environment directly because man-made structures such as buildings,
roads and roofs are absorbing and storing it. Thus, the whole process of surface energy balance has to
be followed, which is based on the principle that energy cannot be lost (Nunez & Oke, 1980).
Therefore, the total energy that the sun radiates to the city’s surfaces is equal to the energy that is
exchanged between the surfaces, the air, the water and the vegetation (sensible heat, evaporation

and transpiration).

Q* = QE + QH + QS

Q’ - Net solar radiation, received by the earth surface
QE - Energy exchanged through evaporation (by water and greenery)
QH - Sensible heat (conversion of heat from the surface to air)

QS - Energy absorbed by the ground, buildings and surface water

Thus, the current work is focusing on researching the air temperatures in the urban canopy layer,
which is the result of the heat radiated from the urban surfaces during the night. There are differences
in the heat exchange phases between the neighborhoods, which is caused by the heterogenicity of
their morphological characteristics. Such information can be of great use for the development of UHI
mitigation strategies, but it is currently not available. Therefore this master thesis will investigate the

possibility for generation of more detailed models, taking into account the intraurban variability.
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1.2. Problem Statement

The problem of Urban Heat Islands has been widely recognized, therefore the scientific interest of the
current work is to gain a deep understanding of the pattern of this phenomenon. In order for the UHI
effect to be effectively tackled, its variability within the city and the factors that define this pattern
have to be identified. This can be achieved by using highly detailed UHI models, which is the main
focus of the current work. Currently, there is lack of such models for the whole city. Some studies
provide such information but for limited spatial extent — usually for a maximum of few buildings up to
a neighborhood. On the other hand, a lot of research has been conducted on a city scale, but with very
coarse models, which prove the existence of UHI effect in the study area but can’t provide more
information of its intraurban variability and the weight of the contributing factors. The satellite data
that has been mostly incorporated in such studies provide an overview of the conditions of the area
of interest, but it has poor spatial and temporal resolution. Hence, the problem that this work is
focusing on is bridging the gap between the highly detailed small-scale models and the coarse city

scale ones.

The challenge of the current work is to provide the urban planners with a tool, with which they can
address the Urban Heat Island problem effectively. This can be achieved with the means of highly
detailed data, which will provide inside in the relevant urban characteristics, causing the higher
temperatures in the cities. In this way, urbanists will be able to customize their actions, depending on

the city’s location and its neighborhoods properties.

1.3. Research aim and questions

The aim of the current work is to model the atmospheric Urban Heat Island variability, based on the
measurements of the Netatmo sensors in the city of The Hague for the year of 2017. In order to achieve
this, different statistical modeling methods will be analyzed and compared. In addition, the main UHI
contributing factors will be derived based on the morphological characteristics of the city and their
correlation to the UHI temperatures and the statistical modeling significance will be analyzed. The
scope of the work is limited to the temperatures within the urban canopy layer of the city, therefore
surface temperatures will not be considered in this study. In order to achieve this, the following main

research question and the corresponding sub-questions have been defined:
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How to accurately model the spatial and time variability of the Canopy Urban Heat Island

(CUHI) effect in the city of The Hague?

1. How to collect, clean and validate the raw sensor data?

2. Which factors or combination of factors influences the UHI effect at most?

3. What level of detail is needed to model the UHI variability?

4. How does the UHI effect variate in the different parts of the city during the day and night?

The goal of the current research is highly connected with the Geomatics field of knowledge because it
covers the whole process from spatial data acquisition, storage, processing, modeling and
representation. For the sake of this scientific research, data from over 200 sensors, deployed in the
area of The Hague has been used. These data have been continuously gathered and stored in a server
property of the TU Delft. Broadly the methodology that is going to be followed will consist of retrieving
the data, cleaning and storing it in a spatial database, then these sensor data will be used in
combination with another relevant spatial information in the process of modeling the Urban Heat

Island effect in The Hague.

1.4. Methodology

1.4.1. A literature review of the current state of the art in Urban Heat Island studies

and models

In this step, a comprehensive literature review has been performed, which leads to the definition of
the main contributing factors to the UHI effect. These factors are further incorporated in the definition
of the spatial model and the regression models as well. The literature review provides an overview of
the spatial, statistical and analytical techniques that have been used in the process of the Urban Heat
Island study. Further, the technological and terminological basis of the current work is built upon the

preceding studies in the field of Urban Heat Island mitigation.
1.4.2. Sensor data retrieval, analysis, cleaning and storage in a spatial database

The second phase of this research will focus on the processing of the temperature data and namely
the sensor measurements have been retrieved, processed and stored in a spatial database. This is
particularly important due to the enormous amount of data, which is stored in separate files for every
timestamp, resulting in almost 20 000 files for April - December 2017. Therefore, the storage of these
files in a spatial database provides the opportunity to combine, process and query the data. In this

way, the spatial extent of the temperature data can be refined and the hottest days to be extracted.
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Further, these raw measurements have been analyzed regarding the errors and outliers that they
contain, which can be a result of system failures or wrong positioning of the sensors (e.g., under direct

sun radiation).
1.4.3. Collection, aggregation and analysis of additional relevant spatial data

Further, the spatial data needed for the representation of the Urban Heat Island contributing factors
have been collected. The data are analyzed and aggregated to the area of interest. Some of the
parameters are retrieved after spatial processing operations like the Normalized Difference Vegetation
Index for example, which has been extracted from satellite imagery. This index provides information
about the green areas, water and ground surfaces within the city. Another important indicator is the
Sky View Factor, which is calculated from Digital Elevation Models using GIS processing tools. Thus, in
this step of the methodology the input data for the spatial model, representing the UHI explanatory

characteristics, are prepared.
1.4.4. Calculation of the spatial input parameters for the regression models

Following is the calculation of the explanatory variables, which are the input parameters for the
regression analysis. The choice of these factors is based on the preceding literature review, where the
main UHI contributing factors and their calculation methods are defined. In this phase, the collected
in the previous step spatial data will be processed using Geographical Information Systems software,
resulting in a set of values for every explanatory variable. The most important characteristics are the
Buildings Density explained as the ratio between the buildings volumes and the total area, followed
by the Land Cover which incorporates the areas of the planar surfaces of the buildings, the Sky View
Factor, the Vegetation areas, the Non-permeable surfaces areas and the Vehicle traffic density. All of
these indicators are calculated in the GIS software, based on different datasets. The calculation

methods and the datasets used are further explained in the Spatial modeling section.

1.4.5. Definition of the relationship between the spatial characteristics and the

temperatures

After obtaining all crucial spatial indicators, the relationship between them and the temperatures has
to be defined in terms of the spatial model. Different ways of spatial association are explored in this
step, resulting in different types of spatial joins between the aggregated temperatures and the cities
characteristics. The output from this step is crucial and it essentially represents all dependent and

independent variables, which are defining the input for the statistical analysis.
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1.4.6. Recursive building and validation of the alternative models

The following methodological phase consists of the creation and validation of the statistical models.
During this phase, the difference between the ordinary and the spatial regression models is explored.
The interest is focused on the performance of the spatial models and how well the Urban Heat Island
phenomenon can be explained. The models use the Vegetation coverage, the Non-permeable
surfaces, the Building density, the Land cover ratio, the Vehicle traffic density and the Sky View Factor
as independent variables and the temperature difference between rural and urban areas as the

dependent variable.
1.4.7. Analysis and comparison of the obtained results from the models

Finally, the obtained models are statistically analyzed and compared. The results of the regression
models are visualized and further analyzed, resulting in the definition of the most important for the
UHI effect factors and explanation of the intraurban temperature variability. The comparison between
the models provides information about the advantages and disadvantages of the different techniques
and their appropriateness for the explanation of the Urban Heat Island phenomenon. Also, the
statistical analysis indicates the correlation between the chosen variables and the Urban Heat Island

effect.
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Figure 1: Methodology of the research
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2. Related work

This section provides an overview of the relevant literature, explaining the essence of the Urban Heat
Island effect and its relationship with the structure of the city. Furthermore, review of the related

acquisition and modeling methods has been provided.

2.1. Challenges in modeling the UHI effect

Considering the complexity of the UHI phenomenon different studies are approaching the problem in
various ways, employing different design complexity and scale of application. The main challenge that
has been recognized in the process of studying the UHI effect is to take into account the complexity of
the phenomena, which occur in the city (Mirzaei, 2015). The intricacy of the urban physics is rooted in
the fact that these processes interact at a different scale —from the human body to city scale, therefore
the important first step is the simplification of the problem according to the goal of the study. As an
example, some of the widely investigated UHI topics are an evaluation of mitigation strategies,
improvement of citizen’s comfort and health, building energy demand and others (Mirzaei, 2015).
Considering this diversity of topics, one can understand the variety of UHI models, which can be

observed.

Depending on the scale of the research area, UHI studies can be divided into three main classes —
building-scale models, micro-scale models and city-scale models (Mirzaei, 2015). The first class is
characterized by the largest detail of representation where a big amount of complex factors are
incorporated, but usually, these models are highly limited in terms of spatial extent. In such models,
multiple different alternatives for the development of the buildings are investigated, where the focus
is on the influence of the architecture on the temperatures in the study area. Further, the micro-scale
models are investigating the microclimate in a certain area and the interaction of a building with its
environment. Usually, these models are incorporating complex data such as air flow patterns, which
are modeled using computational fluid dynamics techniques (CFD). In general, these models can be
utilized in the investigation of different parameters of the city’s structure, such as buildings
orientation, materials, sky view factors, vegetation and others. Despite the greater complexity of
factors, which these models incorporate, they are still limited in their spatially. In the third class of
models — city-scale models — one can observe the variation of the UHI effect. These models are mainly
used for the development of mitigation strategies and their evaluation. Compared to the micro-scale
models the city-scale ones incorporate fewer factors and model the temperatures in the cities with
less detail. It is important to mention that the city-scale models often lack resolution quality because
they have been applied on very coarse cells, which eventually affects the possibility of one to observe

the interaction between the buildings and their environment.
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2.2. Mapping of the UHI effect using satellite and sensor data

The definition of Urban Heat Island — increased temperatures of the surface or the air within the city,
compared to the rural areas (Gomez, 2011) — implies that there are different types of heat islands that
can be observed in the city. This differentiation is based on the theoretical division of the space to

surface, canopy and boundary layers (see Figure 2).

_ _ .URBAN AND RURAL

- BOUNDARY LAYERS

Figure 2: Main tessellation of the urban atmosphere.

This tessellation of the space refers to the different physical phenomena, which have been studied —
the Canopy UHI (CUHI) and the Boundary Urban Heat Island (BUHI) are related to the higher air
temperatures within the city. On the other hand, the Surface Urban Heat Island refers to the higher
temperatures of the buildings, roads and other man-made surfaces within the city. The urban canopy
layer is defined as the layer between the ground and the mean height of the buildings within the city
or in the rural areas. The boundary layer is theoretically positioned above the canopy layer up to 1 km

in the atmosphere (Gomez, 2011).

The Canopy Urban Heat Island is the most studied one because of its direct relevance to the people’s
health, therefore CUHI is the type that is mostly discussed concerning the UHI topics. There is an
important difference in the behavior of the surface and air temperatures in the city — the atmospheric
urban heat island is mainly a nocturnal phenomenon (it becomes more pronounced during the
evenings, because of the slow release of heat from the buildings and surfaces). Therefore the CUHI
has been mostly studied by measuring the temperatures of the air after sunset, when the maximum

intensity of this effect can be measured (van Hove et al., 2015).

Depending on the different types of UHI two main acquisition methods have been used — remote
sensing or ground-based temperature measuring stations. The main difference between the two

methods lies in their spatiotemporal characteristics - ground-based measuring has the advantage of
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high temporal resolution, but on the other hand, it has a poor spatial resolution, while on the contrary,

remotely-sensed data has a higher temporal resolution, but the data describes one point in the time.

Regarding the remote sensing acquisition techniques, the study conducted by Hardy and Nel for the
city of Johannesburg (Hardy & Nel, 2015) describes a methodology based on multisensorial multi-
temporal remote sensed data collected for the purpose of building a predictive model, based on
multiple influencing factors. In this study, the authors recognize the high importance of the type of
urban landscape regarding the temperatures within the city. The different surfaces have different
properties — e.g., thermal characteristics, placement, and others — and they are primarily described by
the land use types in the urban area. Furthermore, this study relies on the cloud-free thermal data
acquired from Landsat 5 TM, Landsat 7 ETM+, and ENVISAT AATSR. The Landsat thermal bands were
converted to temperature maps and unsupervised k-means classification has been performed in order
to obtain the underlying land-use classes. In addition, the mean surface temperature values were
calculated from the data in order to minimize the cloud contamination. Then the UHI intensity was
calculated by subtracting the mean temperatures from the rural areas for every type of urban land use
class. The results showed that there is a considerable difference in the temperatures between the
areas with high presence of vegetation compared to the densely populated built-up areas. This study
describes a suitable methodology for studying the UHI effect for areas with a sparse availability of

spatial data, where satellite data could provide the needed information.

The other acquisition method for studying the UHI is based on the data provided by ground-based
sensors. The challenge which this technique presents lies in the fact that these measurements give
information about the temperatures within the city for a limited number of specific locations,
therefore the performance of the interpolation method to be used plays crucial role for the quality of
the results. Szymanowski and Kryza (Szymanowski & Kryza, 2009) investigate different interpolation
algorithms and evaluate them based on the statistical errors of the results and their visual
representation. In addition to the temperature data derived from mobile traverses and ground-based
weather stations, supplementary spatial data related to the UHI effect was incorporated. These data
consist of information about the artificial and the non-built-up areas, the Normalized Difference
Vegetation Index (NDVI), the roughness length, the thermal admittance (estimated on the ratio
between vegetated and artificial surfaces) and the anthropogenic heat emission. These parameters
were then approximated in relation to the land use class that they belong to, resulting in a set of
values, which were used for the replacement of the land use categories. For this study, stochastic and
deterministic interpolation methods were applied. The other classification of interpolation techniques
divides them into global and local methods. The difference between them is that the global methods

use all available data to predict the phenomenon, while the local ones use data from the direct
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neighborhood of the point, which is going to be estimated. Another subdivision of these methods
considers if they preserve the measured values or not. Finally, one can consider using the
multidimensional interpolation techniques, which are incorporating additional explanatory data. The
methods that were compared in this study are Inverse Distance Weighting (IDW), Regularized Spline
with Tension (RST), Ordinary Kriging (OK), Multiple Linear Regression (MLR) and Residual Kriging (RK).
As a result, the RK and OK methods were statistically more accurate, while with IDW and MLR the
largest errors were observed. Further, it was observed that the IDW method overestimates the
temperatures within the city. The preceding overview highlights the importance of the choice of
interpolation algorithms for the results of the UHI modeling. Important to be considered is the diverse
characteristics of these methods, which affect the methodology of the study, for example with some

interpolation techniques additional data can be incorporated, while with others this is not possible.

2.3. Research on the UHI contributing factors

An important part of the UHI studies is the identification of the explanatory factors of this
phenomenon. The knowledge about these factors provides the opportunity for adequate mitigation

measures to be taken as well as more accurate prediction models to be built.

In their study, Stanganelli and Soravia are investigating the connections between the urban structure
and the UHI effect. The indicators that have been used in the correlation analysis between the urban
structure and the temperatures are the non-permeable surfaces index (ratio between paved and open
areas), the percentage of green areas, the land cover ratio and the density and height of the buildings
(Stanganelli, Marialuce, and Soravia, 2012). The main indexes have been calculated based on the
relationships between the relevant areas and the total area. Consequently, each of these indicators
was correlated to the measured temperatures within the city. It has been concluded that there is a
direct relationship between the land cover ratio and the temperatures — with the increase of the land
cover ratio the temperatures are increasing as well. On the other hand, green areas have a strong
positive influence on the temperatures in the cities. Furthermore, the increase in the average height
of the buildings leads to the increase in the temperatures as well. This can be explained by the

decreased ability for longwave radiation during the night in densely populated areas.

Another important factor connected with the characteristics of the urban environment is the type of
materials that have been used. Depending on their technical characteristics the materials absorb and
reflect the radiated heat differently from the sun and thus affect the thermal comfort conditions of
the buildings and the open spaces in a different way. Therefore, many studies have been conducted
on the so-called cool materials, i.e., materials with high solar reflectance and infrared emittance

properties. The reflectance is the ability of a material to reflect the solar radiation while the infrared
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emittance measures the ability of a surface to release heat (Santamouris, Synnefa, & Karlessi, 2011).
The beneficial applications of such materials for the mitigation of the UHI effect is for the coverage of
roads, roofs and other surfaces in the city and this is another important indicator that can be

incorporated in the analysis of the UHI effect generation.

From all previously mentioned factors affecting the UHI intensity within the cities, the presence of
greenery has been defined as one of the best mitigations strategies that should be incorporated in the
planning process. Considering the positive effect of the green areas, the extent of their influence has
been studied. In their study, Luan et al. (Luan, Ye, Liu, & Li, 2014) use satellite imagery to retrieve the
surface temperatures and the extent of the green areas in the city of Beijing with the goal of
quantifying the influence area of the urban green lands on the surrounding buildings. The urban green
lands were identified by calculating the Normalized Difference Vegetation Index (NDVI) and
parameters like area, perimeter and shape were incorporated into the analysis. Further, these data
were spatially overlaid with the available temperature data and statistically analyzed. It was observed
that the vegetation significantly influences the cooling effect in the city, but in order for this effect to
be quantified, analysis on the distance of influence was performed. For this purpose, buffer zones of
different distances from the green area were created and the temperatures within the different areas
were compared. As a result, it has been observed that the green areas are affecting the surrounding
buildings only in the first 100m distance, which means that outside this area the greenery does not
provide its temperature relieving effect. Furthermore, no significant evidence about the correlation
between the green land parameters (area, perimeter, shape, etc.) and the temperature relief has been

found.

In the following table (Table 1), a summary of the different UHI contributing factors and their

calculation methods is provided.

Table 1. UHI contributing factors and their calculation methods

Factor Calculation method Study

NDVI — NDVl;

_ (Luan et al., 2014)
NDVloy — NDViin

Vegetation coverage f

NDVI,,in —min NDVI value for area
NDVI — NDVI value for each pixel

NDV I, — max NDVI value for area

Solar Reflectance Index Ry = Ibtack = Tsurace o0 (Santamouris et al., 2011)
Thiack = Twhite
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Tpiack — state temp. of black surface
Twhite — State temp. of white surface

Tsurface — state temp. of material surface

Non-permeable Surfaces Index Paved open areas (Stanganelli, Marialuce, and
Total open areas

Soravia, 2012)

Land cover ratio Built surface (Stanganelli, Marialuce, and
Land area

Soravia, 2012)

Built surfaces = sum of all building plots

Buildings density Buildings volumes (Stanganelli, Marialuce, and
Entire area

Soravia, 2012)

Anthropogenic heat VID = SUM (——— * length) (Yang & Chen, 2016)

distance

VTD - vehicle traffic density
Length—road length

Distance— distance to the road

Sky View Factor the ratio between radiation (Svensson, 2004)

received by a planar

surface and that from the entire
hemispheric radiating

environment

2.4, Spatio-temporal variability of UHI

The spatial variation of the urban microclimate and the UHI contributing factors have been studied by
Yang and Chen (Yang & Chen, 2016). In their approach towards building a thermal atlas of spatial
variations of the urban microclimate as a design decision-support tool, the authors incorporate urban
morphological variables in the modeling process. They have recognized the role of the empirical
models built upon carefully selected morphological variables, which can be used as an explanatory
tool of the intraurban thermal variations. The set of variables that have been used consists of data
about the land cover, the buildings form and density, the anthropogenic heat, the green areas and the
proximity to heat sinks. Temperature data was retrieved from fixed weather stations for the period of

29 — 30%™, July 2013. The methodology that has been followed consists of GIS-based spatial analysis
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tools used for the calculation of the influence parameters and statistical methods like Pearson
correlation and regression analyses. The results showed a considerable correlation between the
measured influence factors and the physiological equivalent temperature (PET). For example, the Sky
View Factor was positively correlated with the PET, accounting for more than 50% of the variations in
the index. Contrarily the vegetation in the city showed opposite correlation than the expected, where
green areas were hotter than the surrounding areas. Additionally, based on the Pearson correlation
analysis the PET index was significantly related with the Sky View Factor, the Green plot ration, the
Frontal density area and the Proximity to heat sink at 0.01 significance level, while the Vehicle traffic
density has been found not significant for the PET index. Further, a regression analysis of the variables
and the PET index have been performed. For this, the researchers used the stepwise regression
method which removes the insignificant variables progressively from the model. Thus, the final model
included the Sky View Factor, the Green plot ratio and the measured temperatures as independent
variables and the PET index as the dependent variable. The model explained 76% of the variability in

the index.

The importance of studying the spatial and temporal variability of the UHI effect has been recognized
by van Hoven et al. in their study (van Hove et al., 2015). The increased temperatures in the cities lead
to many problems related to the quality of the life of the citizens and significant economic losses.
Moreover, in comparison to other disasters such as floods, coastal erosion and others, the UHI effect
has received the least attention from the research community. Also, it has been mentioned that there
is lack of long-term observational data, which limits the quality of the performed studies. Further, it
has been concluded that the intraurban variability of the UHI is strongly related to the buildings, the

greenery, the sealed surfaces and the height of the buildings.

2.5. Statistical modeling

Regression analysis is a statistically based technique for exploration of the relationships between
different phenomena. The simplest regression form models the relationship between a single pair of
response and predictor variables. Since the aim is to explore the trend between two variables in

mathematical terms this is done by defining the best line of fit, which can be expressed as follows:

y=Bo+ Bx+ u (Eq. 1)

This simplest form of linear regression is also called bivariate linear regression because it relates two
variables — y (dependent variable) and x (independent or explanatory variable). The definition of the
best fitting line is based on the exploration of the prediction errors, which have the smallest possible

values. This is done by minimizing the squares of the prediction errors. (Wooldridge, 2013).
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The Ordinary Least Squares (OLS) regression is the most common type of statistical model, where a
linear relationship between one or multiple variables is developed. The OLS method is referred to as
the Best Linear Unbiased Estimator (BLUE). Besides the simple OLS, there are different types of
regression models depending on their main characteristics. OLS is a global model, where a single
equation, explaining the overall relationship between the variables is built. The models can be divided
into simple and multiple linear regressions, depending on the number of explanatory variables used.
In contrast to the OLS, there are local statistical models which define single equations for all data
points (Fotheringham, Brunsdon, & Charlton, 2002). Such models have been extensively used for
modeling spatial data, where different phenomena and their explanatory processes have high

variability in the space.

In the current work, four different types of models have been considered — OLS and three types of
spatially varying statistical models (Spatial Lag, Spatial error and Geographically weighted regression).
The spatial regression models are based on the standard linear regression with the difference that
spatial dependence terms are added in the models’ definition. There are two main approaches for the
incorporation of the spatial dependence terms —in the form of the spatially lagged dependent variable

(Wy, Eq.2) or in the error term (g, Eq. 3) (Anselin, n.d.-a).

y = pWy+x + ¢, (Eq. 2 Spatial lag model),

Where:
y is a vector of observations on the dependent variable;
Wy is a spatially lagged dependent variable for weights matrix W;
x is a matrix of observations of the explanatory variables;
€ is the error term.

y = Xp + &, (Eq. 3 Spatial error model),

Where:

y is a vector of observations on the dependent variable;
x is a matrix of observations of the explanatory variables;
€ is a vector of spatially autocorrelated error terms.

In addition to the two types of spatially varying statistical models, a local Geographically weighted
regression model (GWR) is included. GWR (Eqg.4) generates a separate regression equation for each
observation. Each equation is calibrated using a different weighting of the observations contained in

the data set (Brunsdon, Fotheringham, & Charlton, 2010):

Vi = Qjo + Xk=1.m UixXik + €, (Eq. 4 GWR),

Where:
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y; is the i-th value of the dependent variable;

X;r is the i-th observation of the k-th independent variable;
€; are the independent, normally distributed error terms;
a; is the value of the kth parameter at location .

The main assumption behind the definition of the GWR is that observations are influenced by each
other in the space, where closer ones have greater influence than the observations further apart.
Therefore, a weight is assigned to each observation, which is based on a distance decay function
centered at the current observation. The distance decay function, which may take a variety of forms,

is modified by a bandwidth setting defining the extent of the function.

The development of the modeling methodology starts with the definition of the Ordinary Least
Squares model, which is based on three main assumptions —the data sample is random and represents
the general population, the sampling distribution is normal and the individual observations are
independent. Based on these assumptions few main properties of the OLS models have to be
investigated — the normal distribution of the random error (suggesting that there is no systematic
misspecification or bias in the model), the constant variance of the errors (homoscedasticity) and the
spatial independence of the variables and error terms. The reliability of the OLS regression model and
the possibility to develop analysis and conclusions about the populations is strongly dependent on
these prior assumptions. The violation of any of these assumptions can lead to bias, inefficiency in the
regression estimates or unreliability of the confidence intervals, therefore any conclusions or statistical
inference have to be carefully made. The notion of spatial dependency is another important
impediment for the ordinary linear regression, which is carefully studied and incorporated in the
spatial models. The presence of spatial dependency is confirmed when values at a location are affected
by the neighboring locations. There are two main types of spatial dependence that can be observed in
regression models - when the error terms across different observations are correlated (spatial error)
or when the dependent variable is affected by independent variables from multiple locations (spatial
lag). When a spatial error is observed in OLS regression, the assumption of uncorrelated error terms is
violated, which results in inefficient estimates. On the other hand, if the OLS regression is affected by
spatial lag, both assumptions of no correlation in the errors and the independence of the observations

are violated, which results in bias and inefficiency of the model (Shoff, n.d.).

Page | 25



SENSOR DATA

Page | 26



3.Sensor data

The following section provides an overview of the main dataset, which has been used for the
development of the current research and namely the temperature measurements collected by the
sensor network deployed in the area of The Hague. The data have been further processed and
analyzed resulting in a temperature dataset, which represents the dependent variable in the

developed statistical model.

3.1. Sensors setup

The temperature data has been collected from a network of small weather stations, deployed in the
wider area of The Hague. The period that has been observed and analyzed covers the months from
April until December 2017. The measurements are collected by the Netatmo weather stations (Figure
3a), which have been deployed for the purpose of analyzing the Urban Heat Island effect in The Hague
(Hoeven & Wandl, 2018).
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Figure 3: (a) The Netatmo weather station’; (b) Spatial extent of the Netatmo sensors

Over 850 small weather stations have been deployed with the help of citizens and volunteers. The
45x45x105 mm sensors have UV-resistant aluminum shell. The module is powered by batteries and it
is equipped with WI-FI communication, which has been used for sending data to a remote server. The
data is in comma separated format and consists of the id of the sensor, its position and altitude, the

temperature, the humidity and the pressure and rain for the last day. The spatial extent of the raw

thttps://www.netatmo.com/en-US/product/weather/
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dataset spreads out of The Hague area including cities like Leiden, Zoetermeer, Rotterdam and others

(Figure 3b) and it is further refined to the area of interest and namely the area of The Hague.

Since the focus of the current work is on the UHI effect within the city, mainly the temperature
measurements and the location of the sensors are included in the study, leaving the other attributes

outside the scope of this research.

3.2. Database building

The whole dataset consists of roughly 22 thousand files for the period of April until December 2017,
where every file represents a collection of all measurements for a time stamp (for around 870 different
locations) and the frequency of measurements is roughly every 15 minutes. Considering the size of the
data a spatial database was created, where the whole dataset was stored and therefore prepared for

processing and analysis.

The database software, which was used is PostgreSQL. This is an open source object-relational
database with full ACID compliance. In addition, it supports geographical data with its PostGIS
extension, which provides the spatial data processing capabilities. This database is mainly used to
maintain the enormous amount of sensor measurements, allowing their clustering in a single platform
and therefore easier access to the needed information, querying and processing functionality. The

version of the software that has been used is PostgreSQL 9.6.

In order to automatically process, parse and upload the great amount of data, a Python script has been
developed. The script establishes an automatic connection to the local database and creates a table,
where the data is stored. The fields, which were used for organizing the data are measurement id,
sensor geometry, date, time, MAC, altitude, temperature, humidity, rain 60 min and rain 24h. Further,
all files within a specified directory have been iterated and parsed. The location of every sensor has
been defined as point geometry and stored in the database. Thus, the whole data for the year 2017
was organized in a single table (Figure 4) and could be further processed and analyzed using standard
querying language for storing, manipulating and retrieving data in a database — Structured Query

Language (SQL).
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] | measure... | sensor date time nac altitude . tempera.. humidity rain_60.. rain_24h pressure

[PK] dou... | geometry | date time wit.. text double p... | double p... | double p... | double p.. .. | double p... |
01 0101000 2017-04-.. 04:36:17 70:ee:S0.. 3 8.9 92 1020.2
a2 0101000.. 2017-04-.. 04:36:17 70:ee:S50.. 2 8.9 89 0 0 1019
O s 0101000.. 2017-04-. 04:36:17 70:ee:S0.. 2 9.3 85 1025
4 0101000.. 2017-04-. 04:36:17 70:ee:50.. 4 9 87 0 0 1026.8
Ols 0101000.. 2017-04-.. 04:36:17 70:ee:S0.. 14 11.6 72 1024.4
O s 0101000.. 2017-04-.. 04:36:17 70:ee:50.. 116 74 1026.5
Oz 0101000.. 2017-04-. 04:36:17 70:ee:50.. 1 10.6 77 0 0 1024.1
O |s 0101000.. 2017-04-.. 04:36:17 70:ee:S0.. 6 9.9 82 10239
O le 0101000.. 2017-04-.. 04:36:17 70:ee:S50.. 2 9.8 85 1028.5
O 10 0101000.. 2017-04-.. 04:36:17 70:ee:50.. 2 1024.7
O 11 0101000 2017-04-.. 04:36:17 70:ee:S0.. 2 9.4 84 0 0 1023.6
O 12 0101000.. 2017-04-.. 04:36:17 70:ee:50.. 1 9.2 82 1025.5
O |13 0101000.. 2017-04-.. 04:36:17 70:ee:S0.. O 10.8 78 1027.2
0 14 0101000.. 2017-04-.. 04:36:17 70:ee:S0.. O 1023.9

Figure 4: Excerpt from the Postgres spatial database
3.3. Temperature data analysis

Since the main aim of the current work is to study and model the Urban Heat Island effect in the city
of the Hague, the analysis of the temperature data is targeted at the hottest days of 2017. According
to the definition of the UHI effect, a period of 5 consecutive days, for which the maximum
temperatures exceed 25° is qualified as a heat wave. In addition, for at least 3 of these 5 days, the
temperatures are expected to be higher than 30° According to this definition, an analysis of the
temperatures for 2017 was performed based on the weather statistics for 2017. The Royal Dutch
Meteorological Institute (Koninklijk Nederlands Meteorologisch Instituut, KNMI) provides historical
weather data for the Netherlands. The overall temperature pattern for 2017 can be observed in Figure

5.
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Figure 5: Yearly weather statistics (Hoek van Holland)?

2 https://weerstatistieken.nl/hoek-van-holland/2017
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The hottest days of the year were found to be in May and June, where temperatures above 30° were
measured. Therefore, the spatial database containing all measurements was filtered resulting in
separate tables for the hottest days. Due to a gap in the dataset, the final collection of the hottest days

covers the period from the 26" to the 29" of May and from 18™ to the 20" of June.

Further, in order to analyze the temporal and spatial pattern of the heating and cooling processes in
the city, a set of analytical tools was developed. First, an open source Python library for interactive
visualizations (Bokeh3) was used to create interactive plots, which can help in the analysis of the data.
Based on the initial plots of the different datasets a data quality analysis was developed. As it can be
seen in Figure 6a, the raw data contains systematic errors and outliers. In addition, the dataset
contains a lot of empty measurements due to sensor failures. Therefore, all empty measurements,
sensors yielding constant temperatures and extreme outliers were removed from the dataset based
on the information provided from the plots (unique MAC addresses), resulting in refined visualization

of the temperature patterns (Figure 6b).

Figure 6: (a) Temperature vs. Time (19-06-2017); (b) refined data

Further, Figures 7 (a-g) provide an overview of the temporal patterns of the cooling and heating
processes in the Hague for the hottest days of 2017. As it can be seen there is clearly expressed pattern
of the heating process in the city between 10 am and 8 pm. In addition, the temperature range during
the day is observably wider compared to the nigh-time measurements. This can be explained by the
solar radiation during the day and the position of the sensors —some sensors had direct sunlight, which
resulted in the measurement of extreme temperatures. However, the wider temperature range during
the day can be attributed to the spatial differences between the areas, where the sensors are
positioned as well. Therefore, the different spatial characteristics of the city influence the heating
processes of the urban environment. These results give important insight into the temporal pattern of

the development of the UHI effect.

3 https://bokeh.pydata.org/en/latest/

Page | 30



Temperature va Time 26.05.2017

T A A

o

PRl L s )

w2

6h

=
Time

]

(a) 26-05-2017

Temperature va Time 27.05.2017

18

2

Time
(b) 27-06-2017

T
w1

Temperature vs Time 28.05.2017

e & B CTIENE N
B —— -
#® N AR ARRIENLY | SELAAA AR

B S i G ——

" s e e ————
e " man T Cm— —— = =

D = P e

B R R e W e

Ll T | I L)

SLTETEETomIinI
. LR SR SRS UL ¢

B TR S T

w1

28-06-2017

(c)

Page | 31



& va Time 20.05.2017

Temperatur

- ems——— L S r¥ ey e
e m— 1o mmemi S e
- o T . . smEE e W e R -
P e esme—— Se o mms e [
1 AN raEmanErEsmn e ———— . - ————
. s - . e p——
S AR - ll.al..ll..llil ] O PR
S ——— . A s — . o v ——
e e . I e U O R RO S A —
LI 4 PR R " 1 - . - G R W R
B e s ———— . ot Bt e m—— - -..- .l!.-!-l
0 1 )RV R O Lg 5 e S VR AT PN Ls . o A ——
e —————— - - DLt I tme st —— . " WE R TN A
17" IR IR alea oo v e o S e T
B R ] . e T T l N e S
# - S e R — .
P ———— = e . 1B % RIS AN N §
8 08 B semesememmey " T —
P ——— Tor O a m e mm—— 1 GMOVARN R AS S R
B0 E e ATEER ] NN S CRE . e
g : ¢ g - b e e ————
L -...’u.lu!l-lﬂl..lllll-l'lnh— o e i g o - L] W LR TR T e
016! S IS, e ———
. Eii - —————— & A TR T AT
R e —— " ms e ————
- O e RN A xs ¢ "‘iil!
-. - “- II"II.III" - A S G SRS | TSI L s
N . i e D A AR “wm T S S ——
- Lt mmmm e e e e e e m————————
m e O M s N lu'lu.!iil
- e IE ~ W ms m E S ST S e
© e it S) “3m i ——
0_ T biii!i N - ————
lez oy SSRGS, A i lae O 1o 0 IPINEUASEMS VIRTIETEL L
=N B = Q B e A
- tes e— - 0 TELTLILTEEEL L
s i (i - X CEmE e
A e —— ) . J T ———
- L — ~ 7 II “I.-ll.lll.llrlh"“u
[FRE L Rl ot L] e ————— .
» i ———— v 51»!"‘ 1
s e - - s ——
e e— P
LR - ] e =
o ————— O BRI P e
m ) 8 5 DT M - R T
- s ee———— o)
ir e m—— . e e ——————
- eV e
e ————— [P ——
- R s - lIILII'
- o> e e IolaRTERET
.HEJ o e e —
= LR L L E
e e
[ — g Semreriemerei
L mmn i rn 2 amm———
4 - m— | g o o —————
vt SNSRI
- ——— e mm——
= - ————n ~ e
o - m - s T e
2 o —— 1 = - ] BT
] e—— ] My ——— ]
S ey g T
E ————— E s i
B L
. e —— . P —
H ¢
* P——" i -
2 mm———— g
H o 2 B}
mﬁ. z
| | § |
H -3 ] B - = R 0 - - | E- 8 ® 0 -3
1 o] o dioer e oo g

Page | 32

19-06-2017

(f)
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Figure 7: (a-g) Patterns of temperatures in the Hague for the hottest days (Temperatures vs. Time)

Moreover, the patterns of the temperatures of the hottest days of 2017 were compared to few regular

summer days, where no heat wave was observed.

In Figures 8 a-b, two average summer days are presented for comparison purposes. Generally, the

temperature ranges during these days differ noticeably from the days associated with the UHI effect

in the city. The heating process of the urban environment follows less rapid development. In

conclusion, the preceding observations provide evidence for the presence of the UHI effect in the city,

the intraurban variability of the temperatures and the difference in the temperature patterns during

extreme and normal summer days.

Temperature vs Time 01_08_2017

(a) 01-08-2017
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Temperature v Time 03_08_2017

(b) 03-08-2017
Figure 8: (a-b) Temperature patterns for 2 reqular summer days (Temperature vs. time)

In addition, supplementary analysis of the spatial patterns of the temperatures within the city was
developed using the QGIS software and the time manager plugin, which provides possibilities for
animated visualization of spatial data. Thus, the change of the temperatures in the different locations
was observed, where evidence for the intraurban variability of the Heat Island effect was noticed.
Figures 9 (a-n) and Figure 10 (a-n) represent separate frames from the dynamic visualization of the
change of the temperatures in the Hague for the 27" of May and the 3™ of August. It can be seen that

there is a clear difference between the temperatures measured from the different sensors in the city.
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Temperatures (deq)

Temperatures (deq)

Figure 9: (a-n) Frames from the dynamic visualization of the spatial pattern of the temperature change (03-08-2017)
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Figure 10: (a-n) Frames from the dynamic visualization of the spatial pattern of the temperature change (03-08-2017)

Also, it is worth mentioning that the development of statistically based methods for data cleaning was
considered. For example, in many studies, the implementation of least squares fits for errors and noise
detection is performed during the process of analysis of raw sensor data. However, since the focus of
this research is targeted at understanding the temporal and spatial variability of the Urban Heat Island
effect, the implementation of such methodologies can result in the loss of essential data. These
methods would be suitable for models which are investigating averaged values or studies which are
focused on similarities of certain phenomena rather than differences. In these cases, the extreme
values and the noise are to be avoided for better performance of the models. On the contrary, the
focus of the current work is on the extreme temperatures and their variability in the city. Therefore,
the data cleaning process was limited to the removal of empty measurements and systematic errors.
Thus, the variability of the data illustrating the complicated urban climate processes was preserved.
However, the aggregation methods developed and explained in the following section are assisting in

the removal of extreme outliers, which can affect the results of the modeling process.

3.4. Aggregation

Following the analysis of the obtained data from the Netatmo weather network is the process of data
aggregation. This step is required due to the great amount of data resulting from the high measuring
frequency of the sensors (on average every 15 minutes). In addition, the temperatures represent the
dependent variables of the statistical models and therefore they have to be reduced and processed in
a way that will preserve the essential information, which the dataset provides. The whole process of
temperature aggregation was based on trials of multiple possibilities and combinations, resulting in

one final dataset, where one temperature value is used for every sensor.

Initially, the temperatures were averaged per hour for every sensor. The results are averaged
temperatures for every hour of the 7 hottest days (Figures 11 a-g). In this way, the data was

transformed into a better understandable form. In addition, this aggregation resulted in the finer
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dataset, where part of the noise and errors were removed. Subsequently, based on the characteristics

of those days, the hottest day of the 27" of May was chosen for the modeling phase.

Another approach of aggregating the values for the hottest period was considered but rejected due to
the highest level of smoothing of the data signal. Such approach can result in undesired results and
bad performance of the models. Also, the choice of aggregation method and final values directly
depend on the purpose for which the statistical models are built. In the current case, the goal is to
construct a model, which can predict the highest temperatures in the city during a heatwave and for

that reason the hottest of the seven days was chosen.

Further, taking into account the definition of UHI effect and namely the deviation between the
temperatures within the cities and their rural areas, additional analysis was performed. The difference
between the temperatures, measured by every sensor in the Hague for the 24 hours of the 27" of
May, and a rural location was calculated. The rural reference point was chosen from the Netatmo
dataset based on a satellite image. The location was chosen to be as close to a rural area as possible.
As a result, the highest disparity between the urban and rural temperatures was observed at 1 am
with almost 3 degrees of difference. Therefore, the final dataset consists of the aggregated

temperatures of the hour representing the highest difference between rural and urban.
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Figure 11: (a-g) Temperatures vs. time (aggregated data for the hottest 7 days)
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SPATIAL MODELS
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4. Spatial modeling

The spatial modeling phase of the current research is one of the main aspects of the work, where the
definitions of the space and the city’s characteristics are created. The spatial parameters and their
calculation methods represent important choices along the way of the creation of the statistical

models.

The following section provides step by step overview of the process of city’s structure parametrization.
The chapter starts with the explanation of the design choices for the space tessellation. The different
methods for grids creation are represented along with the analysis of their main characteristics
regarding the spatial modeling performance. Further, the calculation of the spatial indicators takes

place, where the GIS processing choices are explained and the obtained results are analyzed.

4.1. Space division

The main goal of this research is to model the UHI phenomenon in the city of The Hague. In order to
achieve this, a substantial part of the work is to define the space and its characteristics. This
abstraction will allow the creation of a mathematical representation of the relationships between the
structure of the city and the observed temperatures. With the abstraction process, one aims at
representing real-life features and their characteristics as measurable and quantifiable notions. The
results from this process are the so-called “buckets”, which store the processed data. There are two
main types of space tessellations that one may consider — one that is primarily based on the features,
which are going to be modeled (feature-primary tessellation) and one that decompositions space
(space-primary tessellation)(Lee, Y., Li, Z., Li, 2000). Depending on the type of the tessellation process
the results are either feature cells (FPT) or space cells, obtained from the space-primary tessellation

(SPT).

Using either approach one obtains a representation of both the attributes and the space with the
difference of where the focus is on. With the feature-primary tessellation (FTP) there is a direct
relationship between the feature cell and the feature, in contrast to SPT where one cell can be

associated with multiple features.

For the purposes of modeling the UHI phenomenon, the one to many relationship type has been
chosen. In this way, the different characteristics of the city can be stored in the defined space cells.
The space tessellation notion can be explored in a different manner, considering the expected results.
In the current approach, two main types have been analyzed and namely the regular and unregular

space divisions. For these purposes, three main grid types have been defined — equal sized rectangular
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grid, equal sized hexagonal grid and a Voronoi tessellation. All tessellations have been produced as

polygonal features with the means of GIS software and can be seen in Figures 12 a-c.

Figure 12: (a) Rectangular tessellation; (b) Hexagonal grid; (c) Voronoi diagram

The created rectangular grid covers the area of The Hague and it is based on the Dutch CBS (Centraal
Bureau voor de Statistiek) grid, which is widely used for statistical purposes. In order to maintain the
compatibility of the different tessellations, the origin, the cell size and the extent of the CBS grid have
been used for the creation of the rectangular tessellation. The purpose of this space abstraction is to
capture the detailed characteristics of the city and therefore a 100m cell size has been chosen as an
appropriate detailed representation. The grid contains 9062 cells and represents a full space

partitioning of The Hague area, where the comparability of the different units is secured.

The second chosen space partitioning method is based on the hexagonal shape. For comparison
purposes, the distance between the two sides of the hexagons is 100m and the resulting grid contains

10 359 cells.
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These two types of tessellations have different characteristics, which affect the way the spatial data is
associated with the cells. The hexagons represent more compact shapes and one of their main
advantages is that the edge effects of the data patterns are reduced. Also, the hexagons are preferable
for visualization purposes due to their ability to map better the curvature patterns of the data. On the
other hand, the rectangles are simpler shapes (easier to define and store) and are scalable, which
means that the chosen approach can be easily transferred to different areas and cities. Furthermore,

from a processing point of view rectangles can be more easily used in different raster operations.

Finally, a third space representation approach based on the Voronoi tessellation has been
incorporated in this study. The Voronoi tessellation has been substantially used in the field of
computer science and can be roughly described as a space tessellation based on a discrete number of
points, where each side of the polygons is closer to the point that lies within it, rather than to any
other (Aurenhammer, n.d.). For the creation of these polygons, the locations of the unique sensors in
these areas have been used. First, the working sensors for the period of interest of this study have
been retrieved from the spatial database. Then the unique sensors were filtered from the data files
and their point geometry was used as seed points for the Voronoi algorithm. The generation of the
vector data set is performed using GIS software and its embedded Voronoi algorithms. The resulting

grid contains 273 cells with varying areas.

The three resulting types of data “buckets” are used in the following step of the calculation of the UHI
contributing spatial indicators. This means that the grid cells are the aggregation unit for every

indicator and essentially store all parametrized values.

4.2. Calculation of the spatial indicators

The essential work of the spatial modeling phase is the representation of the morphological
characteristics of the city as measurable indicators, which will explain the difference in the
temperatures within The Hague. These characteristics are defined as the main UHI contributing
indicators. The methodology of deriving these indicators from raw spatial data, the processing steps

and final calculation procedure are presented in the following section.

4.2.1. Buildings density

Table 2: Buildings density indicator information
Indicator Values Datasets

Buildings density 0 (no buildings) — max volume AHN3, TOP10NL

The urban heat island phenomenon is characterized by the difference between the temperatures

within the city and its surrounding areas (Stanganelli, Marialuce, and Soravia, 2012). The reason for
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this difference is the subject of interest of this study and namely how to measure and quantify these
factors. One of the most important characteristics is the city’s structure and more precisely the built
environment. The buildings within the city play an important role in the definition of the urban
microclimate. The geometry of the built-up areas can be easily measured and it is crucial for the
thermal energy exchange in the city. The heat storage and exchange properties of the different
materials have been thoroughly studied and their contribution to the higher temperatures within the
city has been established (Santamouris et al., 2011). Therefore, it is important to include the structure

of the buildings in the development of the UHI studies.

In the current study, the geometry of the city is defined and measured as the Buildings density index.
This index is expressed by the ratio between the sum of all buildings volumes falling within a grid cell
to its area (Stanganelli, Marialuce, and Soravia, 2012). The datasets that have been incorporated in
the calculation of the density of the buildings are the Dutch digital surface model (AHN3) and the

topographic dataset containing the buildings footprints — the TOP10NL.

On Figures 13a and 13b, the spatial extent and the resolution of the AHN raster are represented. The
surface elevation raster is derived from a lidar point cloud and has a resolution of 0.5 x 0.5m. Important
to mention is that the values are stored as absolute numbers (not relative to the sea level), which
essentially affects the calculation method of the heights of the buildings. First, the spatial extent of
the dataset has been refined to the area of interested by combining all relevant tiles and clipping them

to the area of The Hague.

0 R N AT \'\1
2 Pt - 7 2N\ sl
7 & el S\

. A ; !
|
|
|

::. ‘- 3

> .
|
i
|
\ | |
: | ; |
; h | |
o .'. |
; | ‘
i |
|
| |
()
|___ _ W ALk W WD S ot N US W LR A s & B
AHN elevation 1 14.6 AHN elevation | 14.6 o 100 200 00m
W37 H27 a7 ot
2.4 1.1 The Hague area =24 1..! The Hague area
8.52 8.52

Figure 13: (a) AHN3 spatial extent; (b) AHN3 resolution
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The calculation of the buildings density index is performed in multiple stages and is represented in
Figure 14. The elevation raster has been used in the initial steps of the method where the volumes of
the buildings are calculated. This has been done by multiplying the area of the buildings footprints by
the extracted average height. The first important decision to be made at this stage is how to derive
the heights of the buildings from the elevation raster accurately. The followed approach is to overlay
the buildings footprints and the AHN3 datasets spatially. Further, the height values are derived by
extracting summary statistics using the embedded in QGIS zonal statistics plugin. Essentially, this
algorithm performs spatial overlay between the vector and raster datasets, where a statistic per every
polygon, based on the underlying raster values is calculated. Important here is the choice of
aggregation value from the different options — minimum, maximum, mean, median, etc. In the current
method, the mean has been defined as the most appropriate value based on literature references and
comparison between the different options. After performing this operation, a substantial amount of
the resulted heights values was negative. This indicated that the elevation values stored in the raster
file were absolute numbers. This problem has been overcome by creating a buffer around the
buildings, which is then clipped with the buildings footprints in order to retrieve the surrounding areas
only. Further, the mean heights of these areas are calculated from the AHN elevation raster. Therefore,
the final heights of the buildings are defined as the difference between the average height of the
building plot and the surrounding area. The height attribute is then joined to the buildings layer and

used for further analysis.

CALCULATION METHOD

Figure 14: Calculation method of the Buildings density

Further, the buildings plots have been intersected with the three different grid types, resulting in
partitioning of the areas of the buildings according to the cell that they belong to. In the next steps,
the areas of the parts of the buildings, falling within every cell have been calculated and multiplied by
their height, resulting in the calculation of the volumes of the buildings in every cell. Next, the unique
identification numbers of the cells of the grids are joined to the buildings layer. An important step
before the final calculation of the Buildings density index is the removal of the small pieces and silver
polygons resulted from the intersection operation. Thus, all buildings pieces with areas smaller than 1
m? and all buildings heights smaller than 0.1 m are removed from the dataset and considered as

irrelevant for the calculation of the current indicator. Finally, the Buildings density indicator is
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calculated by summing all volumes of the buildings per cell id and dividing them by the area of the cell

that they belong to.

4.2.2. Land cover ratio

Table 3: Land cover index information
Indicator Values Datasets

Land cover index 0 (no buildings) — 1 (entirely covered cell) TOP10NL

The second indicator describing the geometry of the city which was included in this research is the
Land cover ratio. This index is expressed as the ratio between the sum of all buildings plots and the
areas of the cells. As the previous indicator, the relevance of the Land cover ratio is related to the heat
storing properties of the materials and the decreased amount of vegetation within the city. It has been
observed that vegetation has a positive influence on the urban microclimate and assists in the
decreasing of the temperatures within the city (Akbari et al., n.d.). Thus, measuring the density of the
built-up areas is highly relevant to the UHI studies. The difference between the Buildings density and
the Land cover indices is that the first one represents the volumes of the building. The 3-dimensional
indicator incorporates another important phenomenon for the heat exchange in the city and namely

the so-called canyon effect, where temperatures are higher due to the limited long-wave radiation.

The calculation method of the Land cover index is very similar to the one followed in the previous
section and is illustrated in Figure 15. The TOP10NL vector data set has been used again, and more
precisely the buildings footprints, which are extracted from the original GML files. The spatial extent
of the data is refined to the area of The Hague. Further, the resulting layer has been intersected with

the three different grids.

.

BUILDING PLOT HEXAGONAL GRID INTERSECTION AREA PIECE /TOTAL AREA

Figure 15: calculation method of the Land cover index
Thus, the buildings are partitioned according to the geometry of the different spatial tessellations and
the areas of the buildings falling within the different cells can be obtained separately. Further, the
values are summed per grid cell and divided by its area. The result is a normalized spatial indicator,

varying from 0 (no buildings in the cell) to 1 (entirely covered by buildings cell). Finally, all small pieces
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and sliver polygons, which are considered irrelevant for the research have been removed from the

dataset.

Depending the tessellation type, it can be observed that the regular grids have a higher probability of
being entirely covered by buildings plots due to their smaller cell sizes. This means that overall the
regular grids yield more extreme values, while the Voronoi tessellation gives a smoother

representation of the index.

4.2.3. Non-permeable surfaces index

Table 4: Non-permeable surfaces index information
Indicator Values Datasets

Non-permeable surfaces 0 (no buildings) — 1 (entirely covered cell) TOP10ONL

The impermeable surfaces in the cities are identified as one of the major contributing factors to the
higher ambient temperatures in the urban areas (Asaeda & Ca, 2000). The heating and cooling
processes in the cities are highly related to the balance of the surface energy fluxes, where the
transportation and transformation of water play a crucial role. The impermeable surfaces have high
heat absorbing and storage capacities, which affect the temperatures in the cities directly. Due to the
limited evaporation processes, the heat stored during the day cannot be released into the atmosphere
or in the ground, which causes the perceptibly higher air temperatures. In contrast, natural surfaces
covered by soil or vegetation are characterized by higher ability to cool down during the night. This
means that ambient temperatures in natural areas are high during the day, but after sunset, a rapid
decline can be observed (Asaeda & Ca, 2000). Therefore, the percentage of sealed surfaces within a
certain area provides important information for the analysis of the higher temperatures within the

city.

In this study, the Non-permeable surfaces indicator is expressed as the ratio between the paved open
and the total open areas per grid cell. For the spatial processing, land use classification data provided
by the municipality of The Hague has been used. The dataset contains a highly detailed classification
of the surfaces within the city, divided by different categories such as types, used materials,
permeability and others. For the calculation of the current indicator, the “type” attribute has been
chosen. It includes categories like roads, roofs, gardens, buildings, parking lots, bike paths, etc. Based
on this classification the dataset has been divided into two different layers — one representing the total
amount of open areas in the city (the urban area with excluded buildings) and the second one
describing the impermeable surfaces in the city (roads, parkings, bike lanes, construction sites, etc.).
In Figure 16a and Figure 16b, the spatial extent and more detailed overview of the two layers are

provided.
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Figure 16: (a) Paved open and total open areas; (b) Paved open and total open areas (detail)

Both layers are intersected with the three different grids and dissolved by the cell id that they belong
to. Further the areas of the resulted polygons are calculated and finally, the two tables of the paved
open areas and total open areas have been joined for the calculation of the ratio between paved and

open areas per grid cell (Figure 17).
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Figure 17: Calculation method of the Non-permeable surfaces index

The result is an indicator with values varying between 0 (cell covered with open, permeable surfaces)
and 1 (entirely impermeable area). Important to be mentioned here is that the exclusion of the areas
of the buildings from this indicator is beneficial for the developed statistical models. The
multicollinearity between different independent variables introduces bias in the statistical models and
it has to be avoided while creating the explanatory variables. Therefore, the surfaces of the buildings
are purposefully excluded from the calculation of the impervious surfaces in the city, although

essentially the belong to this category.
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4.2.4. Vegetation coverage

Table 5: Vegetation index information
Indicator Values Datasets

Vegetation index 0 (no vegetation) — 1 (entirely covered cell) Sentinel-2

The influence of the vegetation on the temperatures within the cities have been studied extensively
(Luan et al., 2014). Overall the positive effect of the green areas on the urban microclimate has been
recognized and vegetation is described as one of the main UHI mitigation strategies (Gago, Roldan,
Pacheco-Torres, & Ordoneez, 2013; Memon et al.,, 2008; O’Malley et al., 2014). The different
characteristics of the urban green areas are also important to consider, such as area, vegetation type,
density, etc. Greenery can positively affect the Urban Heat Islands not only in the form of big park
areas but as green roofs and facades as well (Wijerathne & Halwatura, n.d.). Thus, the inclusion of
indices related to the vegetation coverage within the cities is crucial for the development of the UHI

models.

The calculation of the number of green areas can be performed in multiple ways using diverse
datasets. In the current work, the Sentinel-2 satellite collection has been utilized. Satellite images
provide detailed information with high temporal frequency, which allows a detailed analysis to be
performed on the urban greenery. The Sentinel-2 is an Earth observation mission, developed by the
European Space Agency with the mission of providing data for environmental, disaster management,
change detection purposes and others (“Sentinel-2: The operational Copernicus optical high resolution
land mission,” n.d.). The Sentinel-2 satellites provide multispectral data with 13 bands, covering the
visible, near-infrared and short-wave radiation. The revisiting time is approximately every 5 days and

the data have a spatial resolution of 10 m.

The processing of the satellite images has been performed using the Google Earth Engine platform
(Gorelick et al., 2017). Using the web-based APl one can retrieve and analyze satellite images entirely

within the web browser environment.

In order to define the green areas from the Satellite images, the Normalized Difference Vegetation
Index (NDVI) has been calculated. This index can determine the amount, the density and the condition
of the vegetation, based on the analysis of the reflected visible and near-infrared light from the plants
(Herring, 2000). It has been observed that healthy vegetation absorbs most of the visible light and
reflects bigger part of the near-infrared wavelengths, while in sparse or unhealthy plants the opposite
relation is detected. Thus, the NDVI index values vary between -1 and 1, where values close to 1
indicate high-density green areas. The index has been computed according to the following formula:

RED — NIR / RED + NIR and the resulting NDVI map is illustrated in Figure 18.
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Figure 18: NDVI map
The obtained NDVI index is in raster format and has been further processed in QGIS for the definition

of the ratio between the green areas and the area of the grid cell.

Further, the calculation method is illustrated in Figure 20 and it starts with the extraction of these
values from the NDVI raster, which represent the densely vegetated areas. This is done by defining a
vegetation class with values varying from 0.6 to 1. These cells are then extracted from the raster using
a raster mask. Thus, the green areas within the city have a value of 1 in the reclassified raster and

everything else is O (Figure 19).
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Figure 19: Reclassified vegetation raster
In order to calculate the vegetation areas, the raster file was vectorized. The resulting vector layer was
intersected with the three grids, and thus the vegetated areas in every grid cell were obtained. Finally,
the areas of the resulting polygons were calculated and divided by the cell areas, resulting in the ratio

between the vegetation coverage and the area of the cell.

: NDVI RASTER EXTRACTION OF VEGETATION VECTORIZATION INTERSECTION VEGETATION AREA / CELL
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Figure 20: Vegetation index calculation method

4.2.5. Sky View Factor

Table 6: Sky View Factor information
Indicator Values Datasets

Sky View Factor 0 (obstructed areas) — 1 (open areas) AHN3

The Urban Heat Island effect illustrates the processes of higher temperatures in the cities due to the
diminished cooling properties of the urban environment. During the day all man-made surfaces within
the city accumulate heat, which is slowly released after sunset and during the night. Thus, the cooling
processes in the city are very important and strongly related to the UHI effect. The Sky View Factor is
an important indicator, which has been investigated excessively in the context of the UHI studies
(Hdmmerle, Gal, Unger, & Matzarakis, 2014; Svensson, 2004; Unger, 2009). The Sky View Factor
expresses the ratio between the received radiation from the surface and the entire hemispheric
radiation. In other words, the SVF denotes the fraction of visible sky from a certain point on the
ground. It variates between 0 and 1, where 0 is a full obstruction in contrast to 1, which denotes open
areas. The proportion of open sky is extremely important for the release of the heat and the cooling
processes in the cities. The urban canyons are characterized by very high buildings, which essentially
have higher heat storage properties due to the obstructed long-wave radiation. Thus, the low Sky

View Factor values within a certain area can be connected to the presence of the UHI effect.

The calculation of the SVF can be performed in two ways — within QGIS using specifically developed
algorithm by SAGA or using the Relief Visualization Toolbox (RVT) — a tool developed by the Institute
of Anthropological and Spatial Studies in Slovenia (Kokalij, Zaksek, & Ostir, 2011). The computation of

the SVF is based on an elevation model, which was derived from the PDOK portal. The AHN3 raster
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files of the area of interest were derived and resampled to 1 m resolution due to the heavy load of the
SVF computation. The algorithm implemented in the RVT computes the vertical elevation angle of the
horizon from a certain point in a number of directions to the radius, specified by the user. The
parameters that have been used are search radius of 10 pixels in 8 directions and the results can be

seen in Figures 21 a-b.
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Figure 21: (a) Sky View Factor;(b) Sky View Factor (detail)

It should be mention that the AHN 3 digital surface model contains trees, which are included in the
calculation of the Sky View Factor. Therefore, areas with high trees have low SVF values and are

considered as obstructed.

Further, the obtained SVF raster file has a spatial resolution of 1 m, meaning that the obtained values
have to be aggregated per every grid cell. For this purpose, the Zonal statistics tool has been used,
where the average SVF value per cell was calculated and used as the final value for the current

indicator (Figure 22).
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Figure 22: SVF calculation method



4.2.6. Vehicle traffic density

Table 7: Information about the Vehicle traffic density index
Indicator Values Datasets

Vehicle traffic density 0 (no roads) — 1 (cell entirely covered by roads) TOP10ONL

The heat generated from the different anthropogenic activities is largely contributing to the difference
in the temperatures between the city and its surrounding areas. Therefore, the inclusion of the
indicators for the anthropogenic activities in the city is crucial for the reliability of the UHI studies. In
the current work, the heat generated from the vehicles has been considered in the analysis of the UHI
contributing factors. However, the calculation of the vehicle traffic density and the heat generated
from the cars is very complicated and includes multiple factors, which are difficult to estimate and
require empirical data. Therefore, this index has been simplified to the computation of the density of
the road network within a grid cell. In this way the Vehicle Traffic Density indicator can be included in

the study, considering the current availability of data.

Another approach would be the inclusion of data, representing the number of vehicles passing through
certain roads. Based on this numbers an estimation of the generated heat could be produced and
included in the set of UHI explanatory variables. However, it should be considered that this indicator
has high spatial and temporal variability, meaning that the number of vehicles passing through some
area depends on the time of the day and the main function of the area (e.g., city center, densely
populated neighborhoods, commercial area, etc.). Therefore, the generated anthropogenic heat has

high variability during the different times of the day and the different parts of the cities.

However, in the current work, a simplified approach based on the density of the roads has been
adopted. For this purpose, the TOP10NL vector data, derived from the PDOK online data catalog, have
been used. This dataset contains the road network of The Hauge in two formats — either as polygons
or lines. Thus the vehicle traffic density indicator has been calculated in two ways — including the areas

of the roads or the length of the network within the grid cell (Figures 23 a-b).
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Figure 23:(a) Road network (lines); (b) Road network (polygons)

The data is provided as a tiled service and therefore had to be clipped to the area of interest. Further

the intersection between the road polygons and lines with the different grid types was computed.

In addition, filtering based on the type of the main traffic has been performed. The dataset contains
attribute classification of the roads, based on their main functions — bike paths, pedestrian lanes,
roads, etc. Therefore, the roads, which don’t contain automobile traffic were excluded from the
dataset. Thus, the relation of this indicator to the possible heat generated from the vehicles has been

preserved despite the simplified calculation process.

Further, the calculation of the final values was performed in a different manner depending on the
different feature types. After obtaining the intersection of the roads with the grid cells, the road areas
were dissolved by cell id, which resulted in one polygon per cell. Finally, the areas of all polygons were
calculated and divided by the cell area. In contrast, the road lines were not dissolved, but the length

of all roads was calculated and summed for every cell (Figure 24).
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Figure 24:VTD calculation method



The outcomes indicated that using only the length of the roads results in very small values, which can
be considered insignificant. In contrast, the road areas were more comparable to the cells and

therefore resulted in preferable values for the modeling purposes.

4.3. Results comparison and conclusions

The results obtained from the spatial modeling phase represent six different indicators, which have
been calculated for every grid cell from the hexagonal, rectangular and Voronoi grids. All indicators
except the Buildings density are normalized and therefore vary from 0 to 1, where 1 represents full
coverage of the cell. In addition, it is important to mention that all variables have purely spatial
character and have been derived from raw spatial datasets with the means of the Geographical
information system. In contrast, many different studies, which aim at statistical modeling use as
independent variables indicators originating from diverse fields like economics, social sciences, health
or others. The aim of the current work is to explore how the spatial characteristics of the city influence
the Urban Heat Island effect. These results can provide input for further research and exploration of
different planning alternatives and how they influence the temperatures in the cities. Therefore, the

spatial indicators calculated in the previous step are the main input variables for the statistical models.

Further, for the analysis of the obtained results, every indicator has been calculated and mapped

separately for the different spatial tessellations. In Figures 25 a-c, the resulting maps of the Buildings

density index are represented.
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Figure 25: (a) Buildings density (hexagonal grid); (b) Buildings density (rectangular grid); (c) Buildings density (Voronoi
diagram)

This is the only indicator that exceeds values of one due to the fact that the three-dimensional
geometry of the buildings has been compared to the areas of the grid cells and therefore these values
are not normalized. The resulting maps clearly show the spatial distribution of the densely populated
areas in the city of The Hague, which correspond to the areas around the main train station. This is the

main commercial and office area of the city, where the tallest buildings are concentrated. According
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to the different grid types and the difference in the total areas of the cells, the maximum values of this
indicator vary. The highest values of the Buildings density are observed for the rectangular spatial
aggregation, while the smallest - for the Voronoi tessellation. This variation of the values is expected

and it can be explained by the difference of the total areas of the cells.

Further, the second spatial indicator which was calculated is the Land cover index. The results can be

seen in Figures 26 a-c.
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Figure 26:(a) Land cover index (hexagonal grid); (b) Land cover index (rectangular grid); (c) Land cover index (Voronoi
diagram)

Although the Land cover index is directly connected to the built environment in the city (similar to the
Buildings density), the spatial distribution of the highest values is different. The city center of The
Hague is characterized by the highest density of buildings, where a lot of the cells of the grids have
more than 50% of their areas occupied by buildings plots. Generally, the Land cover index represents

well the structure of The Hague and provides a different perspective on the geometry of the city.

Further on Figures 27 a-c, the spatial distribution of the Non-permeable surfaces in the city can be
observed. It can be noted that this indicator is calculated based on the open areas of the city, thus the
buildings plots haven’t been included in the index. Again, the highest concentration of sealed surfaces
can be observed in the central parts of the city. In addition, it should be mentioned that compared to
the Voronoi diagram, the regular grids provide a great amount of detail, where the streets structure
of the city is visible. Generally, the Voronoi diagram provides a smoother representation of the
indicator, where only a few cells have areas of 75% to 100% occupation with non-permeable surfaces.
In contrast, visibly greater number of cells from the same class can be observed in the other two

tessellations.
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Figure 27: (a) Non-permeable surfaces (hexagonal grid); (b) Non-permeable surfaces (rectangular grid); (c) Non-permeable
surfaces (Voronoi diagram)

The next indicator is the Sky View Factor and the obtained results are visualized in Figures 28 a-c.
Similar to the previous variables, the SVF ranges between 0 and 1, where the lower values denote the
bigger percentage of obstructed sky and higher values correspond to open areas. On the maps, it can
be observed that mostly the peripheral areas of the city have higher SVF (the coastal area, industrial
zones and big transport junctions). In contrast, the central parts of the city have between 60% to 70%
of their areas open. Important to be mentioned here is that the trees in the city are included in the
calculation of the indicator. Therefore the areas with the lowest SVF values correspond to the parks

or other areas with high vegetation.
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Figure 28: (a) Sky View Factor (hexagonal grid); (b) Sky View Factor (rectangular grid); (c) Sky View Factor (Voronoi diagram)

In the following figures (Figures 29 a-c) is the vegetation coverage of the city illustrated. The similarity
of the spatial distributions of the SVF and the Vegetation index is observable. Mainly the boundary
areas of the city have higher percentages of vegetation, which is in relation to the higher percentages
of buildings and man-made surfaces in the central areas. In central parts of the city are concentrated
the cells with less than 25% of their areas occupied with vegetation. In addition, a big part of these

cells has less than 1% vegetation, while in the peripheral areas most of the cells contain more than
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75% of vegetated areas. These results are highly affected by the chosen method of calculation of the
Vegetation indicator, where the dense green areas have been extracted from the NDVI raster, leaving

out the sparsely vegetated areas of the city.
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Figure 29: (a) Vegetation coverage (hexagonal grid); (b) Vegetation coverage (rectangular grid); (c) Vegetation coverage
(Voronoi diagram)

The final calculated indicator is illustrated in Figures 30 a-c. The Vehicle traffic density is representing
the density of the road network in the city of the Hague. Most of the grid cells have from 15% to 45%
of roads coverage and only a few cells reach the highest values of roughly 80% road coverage. It should
be mentioned that considering the detail of roads in the city (they don’t represent big clustered areas
but are linear structures) the Voronoi diagram doesn’t provide detailed enough representation of the
road network in the city. On the other hand in the regular grids, the structure of the road network in
the city can be seen. For example, in the south-west part of The Hague, the main highway of the city is
clearly visible. In the central parts these patterns are less clear due to the higher diversity and density
of the urban fabric. In addition, it should be mentioned that considerable amount of these streets

contain mixed traffic including bike paths and pedestrians, where cars are not that predominant.
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Figure 30: (a) Vehicle traffic density (hexagonal grid); (b) Vehicle traffic density (rectangular grid); (c) Vehicle traffic density
(Voronoi diagram)
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Generally, the difference between the two regular grids is small and it can be concluded that they
provide a good amount of detail in the spatial representation of the morphological characteristics of
the city of The Hague. In contrast, the varying sizes of the Voronoi tessellation result in bigger areas
and overall averaging of the indicators. Further, compared to the rectangular grid, the hexagons
provide a better visual representation of the curvature of the data, in contrast to the rectangular grids

where the attention is focused on the straight parallel lines of the squares.

Some advantages of the rectangular tessellations are that they are simpler to define, which can be
relevant for the storage of big datasets. In addition, this tessellation is easily scalable and it is suitable
for raster operations. However, for the current research, the hexagonal grid is generally performing
better than the other two tessellations, because of its better properties for visualization and its edge

reducing effect.

4.4, Spatial join

The final step preceding the statistical modeling of the temperatures in the city of The Hague is the
definition of the relation between the calculated spatial indicators and the location of the sensors in
the city. This is a crucial component of the final spatial model and has a direct implication on the

statistics.

The definition of the morphology of the city has the purpose of constructing the main Urban Heat
Island contributing factors, while the relationship between these variables and the sensors locations,

implies the area of influence of these spatial indicators.

The inputs for this step are the three different grid types, which contain the values of every indicator
for every grid cell and the locations of the sensors, which provide information about the temperatures
in the city. In order to construct the input parameters for the statistical models (dependent and
independent variables), the two different types of datasets have to be spatially associated. This can be

achieved using GIS software and different spatial relation operations.

The first method that has been adopted (Figure 31) is to directly associate the spatial indicators with
the temperatures, which are measured by the sensors. Therefore, the joining has been performed
directly. Thus, the spatial indicators of the cell that the sensors belong to have been directly added to
the sensor dataset. Theoretically, this association means that the temperatures have been directly

influenced by the spatial characteristics of the city related only to the current cell.
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Figure 31: Method of direct spatial relation

Considering the complexity of the urban environment and the interdependency of all processes in the
city, the pure direct association between the temperatures and the space characteristics can be
considered as unrealistic and theoretical. Therefore, another approach of association has been
adopted. The second method (Figure 32) takes into account the interdependency of the different grid
cells, which effectively represent only a theoretical division of the space. Therefore, the association
between the spatial indicators and the temperatures is performed considering an area of influence.
For this purpose, a buffer of 100m around every sensor has been calculated and intersected with the
three different grid types. The resulting polygons represent whole cells or parts of a grid cell, which

fall within this area of influence. Hence, the resulting indicators represent area weighted averaged

values.
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Figure 32: Area-weighted averaged indicators
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STATISTICAL ANALYSIS
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5. Statistical modeling

The following section of the research examines the principles of the statistical modeling and the
methodology and results obtained from this work. Different statistical models aiming at the prediction
of extreme temperatures have been implemented and compared. The goal of this work is to create a
predictive tool, which can be used for the analysis of different planning alternatives and their effect
on the urban microclimate. Therefore, the relationship between the urban morphology and the air
temperatures in the city has to be established. This has been done with the means of regression
analysis, where different alternatives and assumptions have been evaluated. Further, the role of

geographic weights and their modeling enhancement characteristics have been analyzed.

Four different types of models have been implemented and the performance and the quality of the
results have been compared in this section. Different characteristics of the models have been
considered in the analytical process. First, the coefficients of the independent variables, between the
models have been analyzed. These coefficients define the direction and magnitude of the relationship
between the explanatory and dependent variables. In addition, the significance of every variable was
examined by the probability values (p-values) of every model. Finally, the performance and goodness
of fit of the models have been compared considering the R-squared (R2) values and the Akaike
information criterion (AIC). The so-called R-squared values represent a statistical measure of the
closeness of the observed data to the estimated regression line. Its values vary between 0 and 1, where
zero indicates no correlation between the modeled variables. The R-squared measure is the most
common performance criteria for the simple statistical models, which is not always reliable measure
for the spatial models though. Therefore, a more robust measure of the models’ performance has
been incorporated as well — the Akaike information criterion. This indicator provides information
about the quality of the statistical model, based on its goodness of fit and complexity. AIC can be used
only for comparison purposes, where lower values indicate better performance of the models (Anselin,

n.d.-a).

In the modeling implementations, tests against all these criteria have been incorporated. The main
software that has been used for the statistical analysis is Geoda®. This is an open source statistical
software, developed by Luc Anselin and his team. The program incorporates a great amount of
functionality, including implementation of the spatial lag and the spatial regression models, the

correlation analysis and the basic assumptions tests. In addition, for the Geographically weighted

4 https://geodacenter.github.io/
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regression models a separate software — GWR4® - developed by Professor Tomoki Nakaya, from the

Ritsumeikan University in Japan, was used.

5.1. Analysis of the independent variables

Based on the prior assumptions of the Ordinary Least Squares regression model (explained in Section
2.5) a statistical analysis of the dependent and independent variables was performed. The spatial
autocorrelation is characterized by the clustering of similar values in nearby locations. When high
values are found close to each other, e.g., big clusters of similar values, it is referred to as positive
correlation. On the other hand, negative autocorrelation can be found in locations, where high values
are surrounded by a cluster of low values or vice versa (Anselin, n.d.-b). The presence of spatial
autocorrelation between the variables violates the general assumptions of independence and
stationarity of the OLS regression models, which can affect their performance and reliability. In
addition, the presence of spatial autocorrelation indicates that the relationships between the variables
differ in space and therefore a global model could be unsuitable for the development of the statistical
analysis. On the other hand, local models, which are estimated uniquely for every location based on

its neighbors as well, can provide a better understanding of the phenomenon (Fotheringham, 2009).

For the analysis of the spatial autocorrelation of the measured temperature differences by the
Netatmo sensors, global and local autocorrelation statistics have been utilized. The global Moran’s |
scatterplot is presented in Figure 33a. The Moran’s [ is a global inferential statistic measuring spatial
autocorrelation. The interpretation of the results can be done by computing statistical significance and
its p-values (“Moran’s |: Definition, Examples,” n.d.). The statistic analyzes the data under the null
hypothesis of random distribution, therefore low significance values refer to the rejection of the null
hypothesis and the presence of spatial autocorrelation. The scatterplot consists of the original (x-axis)
and spatially lagged (y-axis) variables. In addition, each quadrant of the graph corresponds to a
different type of spatial autocorrelation — positive (high-high and low-low clusters) and negative (high-
low and low-high) (“Global Spatial Autocorrelation (1),” n.d.). On the scatterplot below (Figure 33a)
the presence of distinct outliers can be seen in three out of the four quadrants in the plot. Additionally,
the computed Moran’s value is 0.15 with its pseudo p-value of 0.002 indicating strong rejection of the
null hypothesis of independence. The combination of the visual information from the scatter plot and
the computed significance value show clear evidence for the presence of spatial autocorrelation in the
current model. Since the Moran’s I is a general measure of the presence of spatial autocorrelation and
it does not provide any further information about the specific locations and patterns, the Local

Indicators of Spatial Autocorrelation (LISA) have been investigated as well. These indicators have been

> http://gwr.maynoothuniversity.ie/gwr4-software/
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used for the definition of the location and the magnitude of the spatially autocorrelated values. In

Figures 34 a-b are the Cluster and Significance maps of the correlated variables presented. It can be

observed that 51 of the selected variables are autocorrelated and depending on the type of correlation

they have been classified into four different groups, representing the positive and negative

autocorrelations. According to the p-values, 30 of these locations are statistically significant,

considering the threshold value of 0.05. In conclusion, based on the spatial autocorrelation analysis of

the temperature measurements all autocorrelated dependent variables have been removed from the

modeling group, assuring the preservation of the independence and stationarity of the variables.
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Figure 34: Local indicators of spatial association (LISA) (a) Cluster map; (b) Significance map

In addition to the autocorrelation analysis, multicollinearity tests of all independent variables have

been performed. Multicollinearity is observed when independent variables are correlated with each
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other. The presence of multicollinearity can affect the results and the accuracy of the regression model
because of the higher standard errors of the variables in the equation. This can lead to false

computations of the significance of some variables (“The problem of multicollinearity,” 1997).

Depending on the definition of the spatial representation of the UHI contributing factors and the
different association methods which were tested, five different statistical models have been explored.
Since the models are based on different spatial tessellations and aggregation areas, the relationships
between the different variables can differ. Therefore, the multicollinearity of the independent
variables has been explored and compared between the five models using scatterplot matrices, which
define the correlation between the variables. It has been observed that the correlation between the
explanatory variables is very similar between the rectangular and hexagonal models, including their
area-weighted averaged (AWA) variations. Therefore, the scatterplot matrices of the hexagonal and
Voronoi models have been presented in Figures 35 a-b. Generally, substantial differences between the
multicollinearity of the variables can be observed between these two models only, which can be

attributed to the significant difference between the sizes of the cells of the two models.

Regarding the Figures 35 a-b, the analysis of the correlation between the variables is based on the
visual inspection of the plots where the clustering and the closeness of the data points to the
regression line indicate the interdependence of the variables. In the graphs below it can be observed
that the Buildings density index is related to the Sky View Factor, the Land cover index, the Non-
permeable surfaces, the Vegetation index and the Vehicle traffic density. Therefore this variable has
to be used with caution in the statistical phase and if not significant, it has to be removed from the
model. In addition, the Non-permeable surfaces index is related to the Vehicle traffic density, which is
an expected result, because the Vehicle traffic density represents the roads density, which is part of
the impermeable surfaces in the city. Generally, the correlations of the Buildings density index with
the other indicators are weaker in the Hexagonal model, but still present. In addition to that, the
aggregation in the Voronoi representation leads to a more pronounced correlation between the Non-
permeable surfaces and the Land cover index and the Vehicle traffic density; and between the Land
cover index and the Vehicle traffic density. These differences can be attributed to the generally bigger

areas of the Voronoi cells, where the spatial characteristics tend to be more correlated.

These observations suggest, that these variables have to be used with caution in the regression models

and if multicollinearity problems occur, the highly correlated variables in the model can be removed.
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Figure 35: (b) Scatterplot matrix (Voronoi diagram)

5.2. The first stage of modeling

Following the analysis of the independent variables, the first stage of statistical modeling was
performed. In this phase, the Ordinary Least Squares regression model was developed for all spatial

models and the results have been compared.

As explained in Section 4.4, five different spatial models representing the morphological

characteristics of the Hague have been developed. They can be differentiated by two main
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characteristics — the type of spatial tessellation (hexagonal grid, rectangular grid and Voronoi diagram)
and the association methods between the observed temperatures and the spatial indicators (direct
joins of the indicators to the sensors, based on the grid cell they belong to and the area-weighted
averaged indicators). Considering these differences, the initial statistical analysis has been performed

on all five models, with the goal of comparing their performance.

The first step of the development of the spatial or non-spatial regression models starts with the
definition of the OLS model, which is tested against different assumptions and the presence of spatial
dependency between the variables. For this purpose, the Geoda software has been used, where all
spatial models have been imported separately. In order to define and test the spatial dependency of
the data, a spatial weights matrix has to be computed. Since the dataset is representing points (the
sensors locations with their attached spatial parameters) the most suitable weights representation is
defined by the distance between the points. Thus, for every point, its neighbors and the distances
between them have been defined based on a threshold value. The default threshold distance value is

computed in such way that every point in the dataset has at least one neighbor.

After obtaining the spatial weights, the Ordinary Least Squares regression model can be created,
including the diagnostics for spatial dependence. These tests essentially explore the two other
alternative models, which are included in the statistical software — the spatial lag and spatial error
models. The results from the OLS regression models are presented in Tables 8-10, where the general
model performance in terms of goodness of fit, including all tests, coefficients and the significance of

the independent variables are presented.

The initial R? results from the regression models are in the range of 0.03 and 0.04 (Table 8), which
indicates an extremely small correlation between the independent and dependent variables. Also, all
models experience multicollinearity issues (values above 30 are considered as problematic), which is
expected result considering that all independent variables have been included at this stage. The other
indices, which represent the goodness of fit of the models (AIC and Log-likelihood) indicate the

presence of a very small difference between the five models.

Table 8: Comparison of models' performance

R?- LOG - MULTICOLLINEARITY
2
MODEL R ADJUSTED AlC LIKELIHOOD CONDITION NUMBER

HEX (DIRECT) 0.03 -0.012 415.682 -200.841 45.70

RECT (DIRECT) 0.03 -0.003 414.425 -200.213 47.92

VORONOI 0.04 0.002 413.592 -199.796 71.12
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HEX (AWA)

0.04

0.004

413.283

-199.642

62.81

RECT (AWA)

0.04

0.005

413.051

-199.526

62.50

Further, Table 9 represents the results of the tests against the main OLS assumptions — the normality

of the errors, the presence of heteroscedasticity and the two alternative spatial models. Generally, for

all models, it can be observed that there is evidence for the non-normal distribution of the errors —

the low probability values of the Jarque-Bera tests indicate rejection of the null hypothesis of

normality. Except this, all other tests have probability values exceeding the most commonly used

significance threshold value of 0.05. Therefore, it can be concluded that there is no indication for the

presence of heteroscedasticity in the models and that the spatial lag or regression models are not

indicated as better alternatives at this stage.

Table 9: Results of the statistical tests

BJI‘EARRAQ'Il'JEEST B-Ir:»liléf::l\ll-l KBOAEsliléE: WHITE | MORAN’S (:- :IIG) ROLBI\l,IJ ST LM ROLBI\l,IJ ST
(NORMALITY | TEST TEST (HS) [ (L4G) (ERROR) (ERROR)
OFERRORS) |  (HS) (HS)
HEXAGONAL GRID (DIRECT) ‘
VALUE 9.846 7.144 5769 | 16478 | -1.230 | 1432 | 2.547 | 2.060 | 3.175
PROBABILITY |  0.0072 03077 | 04496 | 09432 | 02187 | 0.2315 | 0.1105 | 0.1512 | 0.0748
RECTANGULAR GRID (DIRECT) ‘
VALUE 10.629 5.665 4407 | 24108 | -1.245 | 1.880 | 0371 | 2.148 | 0.637
PROBABILITY |  0.0049 04618 | 0.6218 | 0.6243 | 02132 | 0.1702 | 0.5426 | 0.1428 | 0.4247
VORONOI DIAGRAM (DIRECT)
VALUE 13.301 4.797 3751 | 23611 | -1.358 | 2.014 | 0726 | 2511 | 1.223
PROBABILITY |  0.0019 05701 | 07104 | 0.6518 | 0.1745 | 0.1558 | 0.3941 | 0.1131 | 0.2688
HEXAGONAL GRID (AWA) ‘
VALUE 9.7408 7.9077 | 6.6003 | 27.3523 | -1.2625 | 1.7813 | 0.9030 | 2.3364 | 1.4580
PROBABILITY |  0.0077 02449 | 03594 | 0.4449 | 0.2068 | 0.1820 | 0.3420 | 0.1264 | 0.2272
RECTANGULAR GRID (AWA) ‘
VALUE 11.131 5.429 4452 | 23515 | -1.252 | 1.818 | 0.608 | 2.294 | 1.085
PROBABILITY |  0.0038 04900 | 0.6158 | 0.6570 | 0.2105 | 0.1776 | 0.4354 | 0.1298 | 0.2976

Finally, the coefficients of the estimated regression variables and their significance levels are

presented in Table 10. As a whole, the significance level of all variables is lower than the presumed

thresholds (t-value > | 2| or p-value < 0.05). It can be observed that the models representing the

direct join between the temperatures and the spatial indicators have the lowest performance in
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terms of the significance of the coefficients, where only the Non-preamble surfaces index for the
hexagonal grid can be considered as significant. Overall the differences between the hexagonal,
rectangular and Voronoi grids are very small. In contrast, both representations of the area
weighted averaged indicators have slightly higher significance values, where Sky View Factor, Non-
permeable surfaces and Vehicle traffic density are approaching the significance threshold. It is
important to consider that these values are affected by all variables included in the model, which
means that the removal of all insignificant indicators can improve the overall performance of the

others.

However, generally the results from the initial OLS models give very low indications of the
correlation between the measured extreme temperatures and the morphological characteristics
of The Hague. In addition, the difference between the performance of the direct models is very
small. Compared to the direct relationships, the models incorporating the broader area of
influence of the variables yield better results. Therefore, for the second stage, where different
approaches for improving the results are explored, the area-weighted averaged models have been

considered only.

Table 10: Independent variables coefficients and significance

SVF BD LC NONPS VEG VvTD
HEXAGONAL GRID (DIRECT)
COEFFICIENT -1.2818 -0.0586 -0.2475 1.3438 -0.2010 -1.0807
T-STATISTIC -0.7739 -0.9129 -0.4127 1.7952 -0.2506 -0.7489
P-VALUE 0.44039 0.3629 0.6804 0.0748 0.8024 0.4552
RECTANGULAR GRID (DIRECT)
COEFFICIENT -0.9518 0.0325 -0.3079 0.6709 -0.1239 0.2965
T-STATISTIC -0.5621 0.5851 -0.5267 0.8781 -0.1441 0.1898
P-VALUE 0.5749 0.5594 0.5992 0.3814 0.8856 0.8497

VORONOI DIAGRAM

COEFFICIENT -2.1701 -0.0334 0.3877 1.0948 -0.6776 -3.4852
T-STATISTIC -1.0278 -0.2994 0.3308 1.1077 -0.5313 -1.4100
P-VALUE 0.3059 0.7651 0.7412 0.2699 0.5960 0.1608

HEXAGONAL GRID (AWA)

COEFFICIENT -2.4328 -0.0751 0.3085 1.9227 0.1071 -3.6976
T-STATISTIC -1.1616 -0.8635 0.3567 1.7670 0.0898 -1.6608
P-VALUE 0.24747 0.3893 0.7218 0.0795 0.9285 0.0991

RECTANGULAR GRID (AWA)

COEFFICIENT -2.8955 -0.0784 0.1512 2.0012 -0.0317 -3.4379
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T-STATISTIC -1.3974 -0.9200 0.1687 1.7872 -0.0261 -1.4907
P-VALUE 0.1646 0.3592 0.8662 0.0761 0.9792 0.1384

5.3. Improvement of the models

Following the results of the initial statistical analysis, multiple options for the improvement of the
models were explored. The initial stage of the modeling showed a very limited correlation between
the morphological characteristics of the city and the measured extreme temperatures. However, the
comparison between the different models indicated that broader areas of influence of the computed
indicators could be considered. Therefore, different areas of influence for the independent variables
were explored by computing their area-weighted averaged values for different buffer sizes, generated
from the sensor dataset. Further, the statistical significance of all variables considering the different
radiuses of influence was compared. For this purpose, all indicators have been computed using six
different buffer sizes — 100m, 200m, 300m, 400m, 600m and 800m of their areas of influence. At this
stage, the area-weighted averaged hexagonal spatial model was used only. Moreover, six different
OLS models were developed, considering the diverse buffer sizes. The significance of the explanatory
variables has been compared in terms of the computed t-values and the results are illustrated in Figure
36 a-f. Generally, it can be observed that the all variables have different areas of influence, which are
relevant for the OLS models. Some variables improve their importance with the bigger aggregation
areas — Sky View Factor, Vegetation index and Vehicle traffic density. On the other hand, Buildings
density, Land cover index and Non-permeable surfaces have higher absolute t-values for the smaller

areas.

On the graphs below (Figure 36 a-f) are the best-suited radii for every variable shown in red. The choice
of the best averaging radius was driven by the trade-off between the significance of the factors and
the size of the buffer. The goal was to achieve as high importance as possible for the smallest possible
radii. The reason for this choice lies in the fact that the usage of big buffer sizes leads to a smoothing
of the results. Also, when too big aggregation areas are used in spatial studies, the data can experience

high levels of bias.

Further, based on the combination of optimal areas of influence an improved version of the initial
hexagonal area-averaged model was developed. Again, the significance levels of all variables have
been analyzed. The insignificant variables were excluded from the final model in order to increase its
performance and to remove the correlated indicators. Moreover, the spatial lag, spatial error and

Geographically weighted regression models were developed and compared to the OLS regression.

The results of the optimized models are presented and further analyzed in the following section.
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Figure 36: (a-f) T-scores against buffer radii
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5.4, Final model

Based on the preceding steps of the initial statistical analysis and the exploration of the methods for
improvement of these results, the final models were developed. These models were built using the
optimal combination of explanatory variables, which was selected in the previous step. The results are

represented in Tables 11-13 and for comparison purposes, the initial OLS hexagonal model is included.

As indicated in the previous chapters, the statistical analysis starts with the Ordinary Least Squares
model, against which all other variations are compared. At this stage, the OLS model was developed
using all indicators with their varying areas of influence. This model was then reduced to the significant
variables only, which are Sky View Factor and Non-permeable surfaces. The exclusion of the
insignificant indices is an important step in the regression analysis, which results in overall better
performance and stability of the model and thus reduction of the multicollinearity problems. This can
be observed in the adjusted R? value, which is higher for the refined OLS model (Table 11). Also,
compared to the first models which were developed, the refined simple linear regression has

considerably improved.

Table 11: Model's performance

woor | [ we [, | Moy
OL:_I_(II_\T;!)IAL 0.04 0.004 413.283 -199.642 62.810

oLS 0.11 0.07 431.275 -207.638 163.427
OLS (REFINED) 0.10 0.09 422.786 -208.393 31.8182
SPATIAL LAG 0.11 - 424 -208 -
SPATIAL ERROR 0.11 - 422.221 -208.110 -

GWR 0.20 0.15 424.767 - -

Further, all statistical tests except one suggest that there is no rejection of the null hypothesis,
therefore no heteroscedasticity or autocorrelation is present in the model (Table 12). The single
positive test indicates that the residuals of the OLS regression are not normally distributed. This means
that there is a considerable difference between the predicted and observed values in the model. This

disparity can be attributed to the spatial variance of the predictors in the model.

However, the performance of the two global spatial models in terms of suitability — spatial lag and

spatial error - has no substantial difference. These two models include diagnostics for spatial
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dependence which are not statistically significant for both of them, meaning that there are no other
spatial effects present in the model. Moreover, the additional variables, which the two models
introduce — the spatial lag and error terms are not statistically significant as well. Finally, compared to
the refined OLS model the two explanatory variables — the Sky View Factor and the Non-permeable
surfaces — have higher significance in the spatial regressions (Table 13). In conclusion, it can be
observed that there is no significant difference between the global OLS, Spatial lag and Spatial error

models.

Table 12: Statistical tests

GERATEST | -PAGAN | BASSETT | WHITE | moraws| (I | ROSUST |y, | ROBUST
(NORMALITY |  TEST TEST (HS) l (LAG) (ERROR) (ERROR)
OF ERRORS) |  (HS) (HS)
OLS (INITIAL STAGE) ‘
VALUE 9.741 7.908 6.600 | 27352 | -1.262 | 1.781 | 0903 | 2336 | 1.458
PROBABILITY |  0.0077 02449 | 0359 | 04449 | 02068 | 0.1820 | 0.3420 | 0.1264 | 0.2272
oLS ‘
VALUE 16.484 7.055 4978 | 21307 | 1474 | 1.092 | 0591 | 0739 | 0.239
PROBABILITY |  0.0003 04232 | 06626 | 09667 | 0.1404 | 0.2961 | 0.4418 | 0.3898 | 0.6248
OLS (REFINED) ‘
VALUE 17.766 2.323 1.641 3328 | 1191 | 0942 | 0513 | 0636 | 0.121
PROBABILITY |  0.0001 03129 | 04401 | 06496 | 02335 | 03316 | 0.4739 | 0.4250 | 0.6493
VALUE - 1.6069 - - ] - - - -
PROBABILITY - 0.44778 - - - - - - -
SPATIAL ERROR ‘
VALUE 1.7266
PROBABILITY 0.42178

Lastly, the GWR model was developed as an alternative to the three global models. The GWR is a local
model, which creates a separate equation for every location, which is calibrated based on the
neighboring data points. From the results, it can be observed that the GWR model improves the
regression outcomes considerably with adjusted R? values almost twice higher than the OLS model
(Table 11). Therefore, it can be concluded that the global models, which imply that the relationships
between the variables are constant in space, are less suitable for the analysis of the UHI effect. On the
other hand, the use of locally varying coefficients improves the overall correlation between the

dependent and the independent variables.
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In conclusion, the different steps, which aimed at the improvement of the statistical analysis resulted
in the considerable improvement of the refined models. Therefore, the regression analysis of the UHI
effect requires a custom approach to the problem, where the influence of the different variables has
to be explored prior to the modeling phase. In addition, the approach, which was adopted in the
current work focuses on the explanation of the UHI phenomenon based on the space and the
morphology of the city. This essentially affects the performance of the simple linear regression models,
where spatial dependence between the explanatory and the independent variables can be observed.
In addition, the exclusion of the autocorrelated sensors locations and multicollinear variables yielded

better results in the regression analysis.

Finally, the locally varying GWR model proved to be a better alternative for the analysis of the UHI

effect with significantly higher suitability values.

Table 13: Coefficients and significance of the explanatory variables

SVF BD LC NONPS VEG VTD
(400M) (100Mm) (200Mm) (300M) | (400M) | (600M)

OoLS
COEFFICIENT -4.816 -0.012 0.035 2.932 -0.156 -3.121
T-STATISTIC -1.926 -0.085 0.036 2.126 -0.133 -0.948
P-VALUE 0.0562 0.9326 0.9716 0.0353 0.8947 0.3446
T-STATISTIC -2.482 - - 3.147 - -
P-VALUE 0.0142 - - 0.0020 - -
COEFFICIENT -3.735 - - 1.889 - R
T-STATISTIC -2.325 - - 2.862 - -
P-VALUE 0.0200 - - 0.0042 . _
SPATIAL ERROR
COEFFICIENT -3.974 - - 2.011 - -
T-STATISTIC -2.410 - - 2.994 - R
P-VALUE 0.0159 - - 0.0027 - -
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6. Conclusions and discussion

This final section of the research gives an overview of the obtained results. Also, the answers to the
main research questions are provided along with the conclusions and discussion, which resulted from

the exploration process of the work.

6.1. Answers to the research questions
How to collect, clean and validate the raw sensor data?

The data representing the temperatures in the Hague for 2017 was collected by the Netatmo sensor
network. The network is built from small weather stations which are deployed with the help of the
citizens. The data was collected using the private WI-FI networks of the house owners and it was
directly sent to a remote server. The files were transferred using File Transfer Protocol (FTP), which is
a standard protocol for establishing client-server communication. The collected data was further
organized in a spatial database. This step is essential in the process of analyzing the data due to the
great number of files (22 271 separate files for the period April — December). The spatial information
is imported as points in the database, defined by the coordinates of the sensors locations. With the

use of the spatial database, the sensor data could be further processed and analyzed.

Since the focus of this study is on the extreme temperatures, representing the UHI effect in the city,
the extreme measurements were not removed from the dataset. In addition, using the Bokeh python
library, the data was visualized. Thus, all systematic errors and empty measurements were identified

and removed from the dataset.

Finally, by aggregating all measurements per hour for the different sensors, the noise was removed
from the dataset. Thus, the essential information, which the data provides was preserved, while the

noise in the dataset was notably decreased.
Which factors or combination of factors influences the UHI effect at most?

The spatial indicators, which were explored in the current work are the Buildings density, the Land
cover index, the Non-permeable surfaces, the Vegetation index, the Sky View Factor and the Vehicle
traffic density. Based on the statistical analysis, it was observed that the different indicators have a
different area of influence, which is relevant to the Urban Heat Island phenomenon. Therefore,
multiple different variations of the aggregations were explored - 100, 200, 300, 400, 600 and 800 m

wide buffers, containing the area-averaged values of the indicators.

However, the analysis of the Ordinary least squares regression model indicated that only the Sky View

Factor and the Non-permeable surfaces are statistically significant variables. Also, it was observed that
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when the statistically insignificant variables are removed, the results from the model improve, which

can be explained by the presence of multicollinearity issues between the variables.

Finally, important to mention is that the Sky View Factor and the Non-permeable surfaces are the
indicators that influence the night time temperatures at most. The independent variables in the model
are defined by the highest difference between the temperatures in the city and the rural areas. The
highest variation was observed at 1 am (the 27" of May 2017), when the UHI effect was pronounced
at most. However, if different temperature patterns were used in the statistical models, the resulting

significance of the variables would have been different.
What level of detail is needed to model the UHI variability?

For the definition of the spatial model of the city, different techniques for space tessellation were
explored. The performance of two regular grids (hexagonal and rectangular) was compared to the
Voronoi tessellation, which is built based on the locations of the Netatmo sensors. The regular grids
were defined with cell sizes of 100 m. As a result, it was observed that generally, the regular grids are
more suitable for the representation of the morphological characteristics of the city, because of the
smaller cell sizes which provide enough detail. On the other hand, the Voronoi diagram with its varying
size provides less detail, which leads to an overall smoothing of the data, where the intraurban spatial

variations are not distinguishable.

In addition, in between the two types of regular grids, the hexagonal representation was selected as
more suitable, due to its edge reducing effects. Thus, the hexagonal grid provides a detailed
representation of the morphological characteristics of the city, where the patterns of the data can be

easily observed.
How does the UHI effect variate in the different parts of the city during the day and night?

The analysis of the temperature data was performed using interactive scatterplots and time-varying
animations, which provided a good overview of the heating and cooling processes in the city.
Generally, it was observed that the temperatures have higher ranges of variability during the day,
compared to the night. Additionally, the same pattern was present for the days where a heat wave is

present compared to the regular summer days.

Further, the animations, which were generated with the QGIS Time manager, provided a suitable
illustration of the temperature change for the different locations of the sensors. Usually, few different
locations close to the city center were characterized by higher temperatures and slower cooling

processes.
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How to accurately model the spatial and time variability of the Canopy Urban Heat Island (CUHI)

effect in the city of The Hague?

In the process of the statistical analysis of all collected data, multiple different variations were
explored. The results indicated that the morphological characteristics of the city have different areas
of influence, which can explain the UHI effect in the city. Further, in order to create valid models, the
data has to be analyzed beforehand. The presence of autocorrelated measurements proved to have a
high negative influence on the performance of the models. Additionally, the intra-correlated

explanatory variables introduce bias in the model, resulting in low reliability of the regression results.

Further, for the statistical analysis global and local regression models were explored. The Ordinary
Least Squares regression is always used in the first stage of the analysis. At this stage, the results from
the OLS regression provide information about the data and the most suitable statistical approach. The
outcomes from all tests give an indication of the stability of the model regarding the presence of spatial

dependence in the data, heteroscedasticity, multicollinearity and autocorrelation.

Finally, in comparison to the OLS regression, the Spatial lag, and Spatial error models, the GWR proved
to provide better statistical results. This outcome can be attributed to the local nature of the GWR
model, which creates and calibrates a regression equation individually for every data point, which

proved to be the more suitable approach for the analysis of the UHI effect in The Hague.

6.2. Conclusions

The Geographically weighted Urban Heat Island modeling research focuses on the exploration of a
modeling technique, which is primarily based on spatial data. Multiple reasons guide the choice of
such approach. The use of spatial data exclusively will provide relative independence of the model
from the availability of current and accurate weather data. Thus, the model could be used as a tool,
assisting different planning strategies and the development of different UHI mitigation measurements.
The model can provide valuable information about the patterns and the influencing factors on the UHI
effect. In this way, different experts can address the UHI problem by evaluating the significance of the
different spatial indicators for the temperatures in the city. For example, urban planners can develop
their designs using such models as a tool. The parametrization of the urban structure provides the
possibilities to analyze its quality. In this way, for example, the best suitable heat relief measurements
can be designed for the hottest neighborhoods in the city by comparing different alternatives.
Additionally, by using the model and predicting the temperatures in the cities the preparedness for
responding to heat waves can be improved. Therefore, the development and improvement of such

models are of great importance for minimizing the negative consequences of the climate extremes.
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However, there are different types of UHI effects, which are recognized in the literature — the surface
and the atmospheric UHI. This research is primarily focused on the Canopy Urban Heat Island, which
is defined as the air temperature differences between the urban and rural areas. Therefore, the data
that was extensively used in this work is collected from small temperature sensors, deployed in the

broader area of the Hague.

The whole research process was based on the exploration of different techniques and solutions of the
adopted methodology. Therefore, every step and decision in the process have a direct effect on the

final results of the developed models.

Nevertheless, the results from this research proved the complexity and interdependency of the
Canopy Urban Heat island phenomenon on different factors. The urban morphology is relevant and it
contributes to the development of the higher temperatures in the cities, but additional factors have
to be included in the analysis of the extreme ambient temperatures in the urban areas. In addition,
since the air has lower heat capacity, the heating and cooling processes have higher frequencies and
are less stable. Therefore, meteorological processes like wind and rain have a direct and immediate
effect on the air temperatures in the cities. On the other hand, the temperatures of the surfaces are

more constant and therefore easily predictable.

Further, the development of such models is highly dependent on the availability of current spatial and
meteorological data. In this study, information from more than 200 separate sensors was used. Since
the whole research is based on the weather data, its quality and reliability are of great importance.
Therefore, more research has to be performed regarding the best suitable locations of the sensors and

the quality of the information that they provide.

The spatial information, which was used for the development of this research was openly available
vector and satellite data. Thus, the advancement of the open data movement provides opportunities
for the development of open and freely accessible spatial and statistical models, which can be used
from broader target groups for different purposes. Thus, the overall quality of such studies can be

increased, leading to broader positive effects and greater added value.

Finally, the complexity of all spatial processes requires a lot of investigation and exploration of
different alternatives. On the other hand, this provides a certain degree of freedom, regarding the

data and methodologies, which one can use.

This work was developed as part of the Geomatics programme and follows the principles and the
knowledge obtained in this study. The whole process from data collection, storage, analysis,
processing and modeling has been covered. Further, different types of spatial and sensor data have

been used in this thesis and diverse spatial, geographical and statistical methods have been utilized in
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the process of the UHI effect study. Thus, this work is in full compliance with the methodological line
of approach of the Master in Geomatics. Additionally, this project has considerable influence on the
wider social context due to the importance of the UHI studies for the development of healthy and

sustainable environments for the increasing urban populations.

6.3. Discussion

The development process of this research revealed different shortcomings of the applied methods,

which have to be recognized and incorporated in the analysis of the obtained results.

Generally, the statistical analysis showed a very limited correlation between the chosen spatial
indicators and the temperature measurements. These results can be attributed to two main reasons
— the more inconstant nature of the air temperature fluctuations and the errors in the sensor
measurements. Since the focus of the research is targeted at the Canopy Urban Heat Island, the air
temperatures were investigated only. The analysis of the heat variations during the day and the night
revealed the unstable variations of the air temperatures. This means that different meteorological
processes can cause an immediate change in the observed measurements — for example, when wind
appears the air temperatures can drop instantly with few degrees. These characteristics of the air
fluctuations have a direct effect on the performance of the models, which are less stable and therefore

have limited ability for explaining the variations in the data.

Additionally, the measurements, which are obtained from the Netatmo weather stations contain a
significant amount of error. These errors can be caused by the position of the sensors or different
technical failures. The location of the sensors has a direct effect on the reliability of the obtained
results. Direct sunlight can cause unrealistically high measured temperatures for example. Therefore,
the positioning of the weather stations has to be controlled and analyzed during their deployment.
For example, a series of different recommendations about the dispose and the maintenance of the
sensors can be prepared for the citizens. In this way, the reliability of the data can be drastically
improved. Also, the quality of the measurements can be continuously observed, resulting in the

exclusion of failing sensors — e.g., sensors that are measuring continuously the same temperatures.

Further, the performance of the statistical analysis can be further improved by exploring different
types of models. In the current work, global and local linear models have been used. These models
assume that the relationship between the dependent and independent variables has linear character.
However, different types of non-linear models can be further incorporated in the analysis of the Urban

Heat Island effect in the cities.

Page | 81



Besides the quality of the temperature data, the spatial datasets influence the final results as well. In
order to obtain the final spatial indices, every spatial dataset has undergone multiple processing steps,
which influence the outcomes. Therefore, all conversion and analysis algorithms have to be used with
caution and awareness of the possible shortcomings. For example, the conversion between different
data formats usually leads to a loss in the quality or resolution of the data. In addition, all aggregation
techniques change essentially the information which the data provides. For example, when the data
is aggregated to very big areas, this leads to an overall smoothing of the information, where all
extremes are removed from the data. This could be the desired outcome for some methodologies or
unnecessary loss of vital information for others. Therefore, every step of the spatial analysis has to be
done with the consideration of the desired results and the main aim of the research. Part of the
definition of the spatial model is the choice of the space tessellation technique. For this work, three
different representations have been compared. Based on the different outcomes, it was observed that
both the area and the shape of the grids influence the statistical analysis of the Urban Heat Island

effect.

Additionally, the way some of the indicators have been calculated or the data that has been used can
be further improved. For example, the Vehicle traffic density index has been simplified in this work to
the calculation of the roads density. The indicator could be considerably improved if additional traffic
data is included in the calculation. Data about the number of vehicles passing by these roads can be
combined with the expected amount of heat released from the cars resulting in more sophisticated
indicator measuring the released anthropogenic heat from the cars. Except for the Vehicle traffic
density, the calculation method of the vegetation index could be further improved as well. Currently,
the indicator is defined by the values from the NDVI index, which correspond to the densely vegetated
areas. In this way, small green spots along roads or around buildings are disregarded from the
research. Thus, the inclusion of all values from the NDVI index, which correspond to the different land

type classes (water, soil and vegetation) could improve the performance of the Vegetation index.

Finally, the complexity of the Urban Heat Island phenomenon revealed the necessity for the inclusion
of different indicators in the modeling process. Therefore, it is advised that in the future works broader
set of indicators is included in the statistical analysis. In addition, the choice of independent variables
has to be driven by the knowledge of the primary requirements of the statistical models. Thus,
problems like multicollinearity of the variables can be resolved in the initial stages of the research and

such approach can improve the stability and the reliability of the models as well.

The reusability of the methodology of this research is highly dependent on the availability of spatial
and temperature data. The datasets that have been used are obtained from the open geospatial

portal, developed for the Netherlands. However, such availability and quality of open spatial data are
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still limited for many countries and regions. Thus, the results of the implementation of this
methodology can be different. On the other hand, the spatial indicators that have been used in this
work are widely recognized and have been used in multiple different studies. Additionally, these
indicators can be derived from different datasets using diverse methods, which provides certain

freedom in the development of the spatial analysis of the territory.

In conclusion, the process of modeling and analyzing the Urban Heats Island effect contains a great
amount of exploration of different alternatives. Therefore, there is no single approach towards this
problem, but the complexity of factors drives the whole process. Thus, the characteristics of the
research methodology are defined by the main goal of the work and the current state of the art in the

spatial and statistical domains.
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Appendix 1: Maps of calculated spatial indicators
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Appendix 2: Database creation
import os

import psycopg?2

import datetime

directory = "D:\MASTER THESIS\Data\sensor measurements"

def

connect db () :
try:
global conn
# creating db connection object

conn = psycopg2.connect ("host=localhost password=heat

dbname=Temp data user=postgres")

def

def

global cur
cur = conn.cursor () #used to execute commands
print "Connected."

except (Exception, psycopg2.DatabaseError) as error:
print (error)

create table():
cur.execute (""" Drop table IF EXISTS Temp data3""")
cur.execute ("""
CREATE TABLE Temp_data3 (
measure_id float NOT NULL PRIMARY KEY,
Sensor geometry,
Date date,
Time time,
MAC text,
Altitude float,
Temperature float,
Humidity float,
Rain 60min float,
Rain_ 24h float,
Pressure float)
e
print "Table created."
conn.commit ()

insert to db():

measure_id = 0
inserted = 0
failed = 0

for filename in os.listdir (directory):
if filename.endswith (".txt"):

with open (os.path.join(directory, filename))
content = f.readlines () [1:]
id = 0
for line in content:
row = line.strip() .split(",")

coordinates = 'POINT (%s %s)' % (row[1l],

# Specify time

time = filename.split (" ")

day = datetime.datetime.strptime (time[0],
%d') .date ()

time = datetime.datetime.strptime (time[l],
"$H_%M_%S') .time ()

row = ['NULL' if v is "" else v for v in row]

id+=1



measure_ id+=1
strsql = "INSERT INTO Temp_ data3 (measure_id,
Sensor,Date, Time, MAC, Altitude, Temperature,Humidity,Rain 60min,Rain_24h,
Pressure) VALUES ({}, ST GeomFromText('{}', {}),'{}',
R A ALY (Y A, (), {)) s format (measure _id, coordinates, 4326,
day,time, row[0], row[3], row[4], row[5], row[6], row[7],row[9])
try:
cur.execute (strsql)
conn.commit ()
inserted+=1
except psycopg2.Error as e:
print ('Insert failed: '+ str(e))
failed+=1
print strsqgl

print filename
print 'Number of rows inserted {}'.format (inserted)
print 'Number of rows failed {}'.format (failed)

if name == '_main_ ':
connect db ()
create table()
insert to db()



Appendix 3: Python Bokeh Plots

from bokeh.plotting import figure, show, save, ColumnDataSource
from bokeh.models import HoverTool

from bokeh.io import output file

import datetime as dt

import os

import numpy as np

# Color schema [269 different colors]
# source = https://graphicdesign.stackexchange.com/revisions/3815/8
colors 269 = [

"#000000", "#FFFFO0", "#1CE6FF", "#FF34FF", "#FF4A46", "#008941",
"#006FA6", "#A30059", "#FFDBE5",
"#7A4900", "#0000A6", "#63FFAC", "#B79762", "#004D43", "#8FBOFE"
"#997D87", "#5A0007", "#809693",
"#FEFFE6", "#1B4400", "#4FC601", "#3BSDFF", "#4A3B53", "#FF2F80"
"#61615A", "#BA0900", "#6B7900",
"#00C2A0", "#FFAA92", "#FF90C9", "#B903AA", "#D16100", "#DDEFFF"
"#000035", "#7B4F4B", "#A1lC299",
"#300018", "#0AA6D8", "#013349", "#00846F", "#372101", "H#FFB500"
"#C2FFED", "#A079BF", "#CC0744",
"#COBOB2", "#C2FF99", "#001E09", "#00489C", "#6F0062", "#0CBD66"
"#EEC3FF", "#456D75", "#B77B68",
"#7A87A1", "#788D66", "#885578", "H#FADOOF", "#FFSAOA", "#D157A0"
"#BEC459", "#456648", "#0086ED",
"#886F4AC", "#34362D", "#B4AASBD", "#00AGAA", "#452C2C", "#636375"
"#A3C8CO", "H#FFO13F", "#938A81",
"#575329", "#00FECF", "#BO5B6F", "#8CDOFF", "#3B9700", "#04F757"
"#C8A1A1", "#1E6E00", "#7900D7",
"#A77500", "#6367A9", "H#A05837", "#6B002C", "#772600", "#D790FF"
"#9B9700", "#549E79", "#FFF69F",
"#201625", "#72418F", "#BC23FF", "#99ADCO", "#3A2465", "#922329"
"#5B4534", "#FDESDC", "#404E55",
"#0089A3", "#CB7E98", "#A4E804", "#324E72", "#6A3A4C", "#83AB58"
"#001C1E", "#D1F7CE", "#004B28",
"#C8DOF6", "#A3A489", "#806C66", "#222800", "#BF5650", "H#E83000"
"#66796D", "#DA007C", "#FF1lA59",
"#8ADBB4", "#1E0200", "#5B4E51", "#C895C5", "#320033", "#FF6832"
"#66E1D3", "#CFCDAC", "#DOAC94",
"#7ED379", "#012C58", "#7ATBFF", "#D68EOL1l", "#353339", "#78AFAl"
"#FEB2C6", "#75797C", "#837393",
"#943A4D", "#B5FAFF", "#D2DCD5", "#9556BD", "#6A714A", "#001325"
"#02525F", "#0AA3F7", "#E98176",
"#DBD5DD", "#5EBCD1", "#3D4F44", "#7E6405", "#02684E", "#962B75"
"#8D8546", "#9695C5", "#ET773CE",
"#D86A78", "H#3ES89BE", "#CAS834E", "#518A87", "#5B113C", "#55813B"
"#E704C4", "#00005F", "#A97399",
"#4B8160", "#59738A", "#FF5DA7", "#FTCOBF", "#643127", "#513A01"
"#6B94AA", "#51A058", "#A45B02",
"#1D1702", "#E20027", "#E7AB63", "#4C6001", "#9C6966", "#64547B"
"#97979E", "#006A66", "#391406",
"#F4D749", "#0045D2", "#006C31", "#DDB6DO", "#7C6571", "#9FB2A4"
"#00D891", "#15A08A", "#BC65E9",
"#FFFFFE", "#C6DC99", "#203B3C", "#671190", "#6B3A64", "#FSE1FF"
"#FFAQOF2", "#CCAA35", "#374527",
"#8BB400", "#797868", "#C6005A", "#3BOOOA", "#C86240", "#29607C"
"#402334", "#7D5A44", "#CCB87C",
"#B88183", "#AAS5199", "#B5D6C3", "#A38469", "#9F94F0", "#A74571"
"#B894A6", "#71BB8C", "#00B433",



"#789EC9", "#6D8S8OBA", "#953F00", "#5EFF03", "#EAFFFC", "#1BE1l77",

"#BCB1ES5", "#76912F", "#003109",

"#0060CD", "#D20096", "#895563", "#29201D", "#5B3213", "#AT6F42",

"#89412E", "#1A3A2A", "#494B5A",

"#A88C85", "#FAABAA", "#A3F3AB", "#00C6C8", "H#EA8B66", "#958A9F",

"#BDCOD2", "#9FA064", "#BE4700",

"#658188", "#83A485", "#453C23", "#47675D", "#3A3F00", "#061203",

"#DFFB71", "#868E7E", "#98D058",

"#6C8F7D", "#D7BFC2", "#3C3E6E", "#D83D66", "#2F5D9B", "#6C5E46",

"#D25B88", "#5B656C", "#O00B57F",

"#545C46", "#866097", "#365D25", "#252F99", "#OOCCFF", "#674E60",

"#FCO09C", "#92896B"

]

# Read a file

def reading file(fpath):
listx = []
tseconds =
listy = []
listmac = []
color counter = 0
colors = []
names = []
macdict = {}

[]

# Read file
with open (fpath, 'r') as f:
# Skip header
next (f)
for line in f:
t = line.strip().split(";")
# Assign color [check if it is a 'new' mac]
if t[2] in macdict:
colors.append (macdict[t[2]])
else: # we need a new color + we store it
color counter += 1
newcolor = colors 269[color counter]
macdict[t[2]] = newcolor
colors.append (newcolor)

# List with time strings
listx.append(t[1])

#(h, m, s) = t[1].split(':")
# List with mac addresses
listmac.append(t[2])
names.append(t[2])

# List with temperatures
listy.append(t[3])

return listx, listy, listmac, names, colors

# Plot time series
def plot tseries(fpath):
# Get filename [without extension]
f name = os.path.basename (fpath) .replace('.csv','")
listx, listy, listmac, names, colors = reading file(fpath)

# Convert datetimes to X axis

x = [(dt.datetime.strptime(d, '$H:$M:%S') .time()) for d in listx]
temp = [xi1 + '0' for xi in listy] #add 0 to no data values

y = [float(xi) for xi in temp] #convert temperatures to floats



# Prepare tooltips

# - Source data dict

source = ColumnDataSource (data=dict (
X=X,
Y=Y

color=colors,
names=names,
dates=listx

))

# Plot with bokeh

TOOLS = 'pan,wheel zoom, box zoom, reset, hover, save'

p = figure(width=1300, height=600, title='Temperature vs Time
{}'.format (f name), x axis type='datetime', tools=TOOLS)

p.xaxis.axis label = 'Time’

p.yaxis.axis label = 'Temperature'

p.square (x='x', y='y', color='color', source=source)

# - Mouse hover
hover = p.select one (HoverTool)
hover.point policy = "follow_mouse"
hover.tooltips = """
<div>
<div>
<span style="font-size: 12px;font-weight: bold;">Sensor:</span>
<span style="font-size: 12px; color: #777777;">@names</span>
</div>
<div>
<span style="font-size: 12px;font-weight:
bold; ">Temperature:</span>
<span style="font-size: 12px; color: #777777;">Qy</span>
</div>
<div>
<span style="font-size: 12px;font-weight: bold;">Time:</span>
<span style="font-size: 12px; color: #777777;">Qdates</span>
</div>
</div>

# Save to file
output file(fpath.replace('.csv','.html'))

save (p)
## MAIN
if name == "_main_ ":

# For every csv in a directory
dir = r'D:\MASTER THESIS\Data\sensor measurements\hot
days\raw_plots\raw_plots'
for £ in os.listdir(dir):
if f.endswith('.csv'):
print 'Processing: {}'.format (f)
plot tseries(os.path.join(dir, f)



Appendix 4: Reports from the final statistical models

>>05/18/18 12:10:48
REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : combined best ind fin clear
Dependent Variable : highest t diff
Number of Observations: 146
Mean dependent var : 3.02151 Number of Variables : 8
S.D. dependent var : 1.0686 Degrees of Freedom : 138
R-squared : 0.118578 F-statistic : 2.65217
Adjusted R-squared : 0.073868 Prob (F-statistic) : 0.0132556
Sum squared residual: 146.948 Log likelihood : -207.638
Sigma-square : 1.06484 Akaike info criterion : 431.275
S.E. of regression : 1.03191 Schwarz criterion : 455.144
Sigma-square ML : 1.0065
S.E of regression ML: 1.00324
Variable Coefficient Std.Error t-Statistic
Probability
CONSTANT 3.77755 4.28657 0.881251 0.37972
net rad 0.00304949 0.00536894 0.567988 0.57096
BD AWA 100m -0.0125145 0.147797 -0.0846737 0.93263
LC_AWA 200m 0.0353911 0.991983 0.0356771 0.97157
SVF_AWA 400m -4.81558 2.50069 -1.9257 0.05620
Veg AWA 400m -0.156079 1.17649 -0.132666 0.89466
NonPS AWA 300m 2.93255 1.37961 2.12564 0.03531
VID AWA 600m -3.12084 3.29058 -0.948416 0.34458

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 163.427989

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-Bera 2 16.4840 0.00026

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test 7 7.0551 0.42317
Koenker-Bassett test 7 4.9782 0.66263
SPECIFICATION ROBUST TEST

TEST DF VALUE PROB
White 35 21.3067 0.96675

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : combined best ind fin clear

(row-standardized weights)

TEST MI/DF VALUE PROB

Moran's I (error) 0.0455 1.4742 0.14043
Lagrange Multiplier (lag) 1 1.0917 0.29610
Robust LM (lag) 1 0.5914 0.44187
Lagrange Multiplier (error) 1 0.7395 0.38984
Robust LM (error) 1 0.2392 0.62480



Lagrange Multiplier

(SARMA)

COEFFICIENTS VARIANCE MATRIX

CONSTANT
18.374720
-0.019763
-0.070667
-1.338658
-6.651736
-2.702396
-1.444711
-2.981668

-0.
0.
-0.
0.
0.
0.
0.
-0.

net rad
019763
000029
000073
001146
002059
001143
002579
001377

BD _AWA 100m
-0.
-0.

070667 -1.
000073 0.
.021844 -0.
.026779 0.
.138384 0.
.027532 0.
.104110 -0.
.195285 -0.

1.3309

LC_AWA 200m

338658
001146
026779
984031
788677
460799
137037
956838

Veg AWA 400m NonPS AWA 300m VTD AWA 600m

-2.702396
0.001143
0.027532
0.460799
1.863773
1.384118
0.300129
1.100732
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-1
0
-0
-0
-0
0
1
-1

3
2
3
3
2
2
1
3
1
3
1
4
2
3
1
0
2
3
2
2
2
2
2
3
2
3
2
2
2
2
2
3
2
1
3
1

.444711
.002579
.104110
.137037
.631743
.300129
.903321
.911208

highest t diff

.70000
.78000
.95000
.10000
.10000
.25000
.53000
.08000
.60000
.00000
.83000
.00000
.75000
.28000
.48000
.90000
.70000
.18000
.88000
.65000
.23000
.70000
.15000
.30000
.88000
.55000
.53000
.55000
.55000
.80000
.95000
.63000
.58000
.65000
.43000
.45000

-2.
-0.
0.
-0.
3.
1.
-1.
10.

981668
001377
195285
956838
758175
100732
911208
827886

PREDICTED
.37422
.15465
.02146
.78045
.35939
.41275
.15822
.18799
.22073
.83915
.48074
.10026
.51499
.89142
.03426
.83703
. 75707
.04490
.37347
.87773
.42805
.31159
.21839
.06523
.97193
.47826
.87223
.28186
.76702
.34969
.32565
.93126
.48362
.40879
.41692
.85270
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-0

0.51405

SVF_AWA 400m

-6.

0.
.138384
.788677
.253434
.863773
.631743
.758175

w O = oy O O

651736
002059

RESIDUAL
0.

32578

.37465
.92854
.31955
.25939
.16275
.62822
.10799
.62073
.16085
.65074
.89974
.23501
.61142
.55426
.93703
.05707
.13510
.49347
.22773
.19805
.61159
.06839
.23477
.09193
.07174
.34223
.73186
.21702
.45031
.37565
.69874
.90362
.75879
.01308
.40270
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39
40
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43
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46
47
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53
54
55
56
57
58
59
60
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63
64
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66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
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85
86
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89
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92
93
94
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.93000
.18000
.05000
.98000
.40000
.18000
.23000
.88000
.63000
.70000
.15000
.13000
.60000
.58000
.80000
.15000
.00000
.88000
.40000
.63000
.18000
.48000
.35000
.25000
.18000
.08000
.15000
.35000
.90000
.65000
.63000
.48000
.23000
.73000
.13000
.48000
.53000
.65000
.10000
.35000
.45000
.05000
.58000
.73000
.78000
.68000
.90000
.73000
.83000
.98000
.88000
.33000
.95000
.00000
.33000
.03000
.38000
.28000
.58000
.48000
.55000
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.14618
.13696
.51650
.97439
.67020
.21577
.41110
.09873
.37288
.03441
.99098
.44615
.14752
.33259
.98270
.49631
.85340
.11086
.99711
.17239
.62259
.60224
.37108
.37929
.59294
.17971
.45864
. 77952
.83765
.16329
.14388
.05831
.57287
.33380
.16809
.20604
.25244
.87644
.29118
.93074
.86354
.15866
.19738
.71456
.06819
.29723
.86959
.51032
.18074
.83975
.36306
.96165
.65044
.02024
.53993
.07764
.94322
.20911
.49063
.07389
.15079

.21618
.95696
.53350
.00561
.27020
.96423
.18110
.21873
.74288
.33441
.15902
.31615
.54752
.24741
.81730
.34631
.14660
.23086
.40289
.45761
.55741
12224
.02108
.12929
.41294
.90029
.69136
.42952
.06235
.51329
.48612
.57831
.65713
.60380
.03809
.27396
72244
.77356
.19118
.58074
.41354
.10866
.61738
.01544
.28819
.38277
.03041
.78032
.35074
.14025
.48306
.36835
.70044
.97976
.20993
.04764
.56322
.07089
.08937
.40611
.39921
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.68000
.08000
.93000
.10000
.30000
.45000
.33000
.05000
.98000
.83000
.88000
.23000
.53000
.20000
.28000
.90000
.53000
.43000
.93000
.68000
.40000
.05000
.55000
.25000
.28000
.10000
.08000
.68000
.50000
.08000
.30000
.28000
.43000
.27000
.58000
.03000
.30000
.78000
.55000
.63000
.78000
.03000
.35000
.45000
.40000
.45000
.73000
.98000
.00000

.30473
.93641
.86634
.14636
.08451
.10848
.27225
.48893
.49820
.54052
.98009
.53345
.15956
.13917
.59355
.89859
.06489
.18606
.45117
. 95615
.97833
.17362
.14096
.00339
.83566
. 72899
.17052
.34175
.81782
.33456
.16472
.11268
.46910
.34775
.49599
.38934
.14337
.81902
.27848
.99478
. 78486
.35356
.24902
.36319
.67288
.46287
.50657
.49968
.60470
END OF REPORT
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.37527
.14359
.06366
.95364
.21549
.34152
.05775
.43893
.48180
.71052
.10009
.69655
.62956
.93917
.68645
.00141
.46511
.24394
.47883
.27615
.42167
.12362
.59096
.75339
.44434
.37101
.90948
.66175
.68218
.25456
.13528
.16732
.03910
.07775
.08401
.35934
.84337
.03902
.72848
.63522
.00486
.67644
.10098
.08681
.12712
.01287
77657
.48032
.60470



>>05/18/18 12:11:46
REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : combined best ind fin clear
Dependent Variable : highest t diff
Number of Observations: 146
Mean dependent var : 3.02151 Number of Variables : 3
S.D. dependent var : 1.0686 Degrees of Freedom . 143
R-squared : 0.109414 F-statistic : 8.78422
Adjusted R-squared : 0.096958 Prob (F-statistic) : 0.000252245
Sum squared residual: 148.476 Log likelihood : -208.393
Sigma-square : 1.0383 Akaike info criterion : 422.786
S.E. of regression : 1.01897 Schwarz criterion : 431.736
Sigma-square ML : 1.01696
S.E of regression ML: 1.00844
Variable Coefficient Std.Error t-Statistic
Probability
CONSTANT 4.79853 1.14541 4.18934 0.00005
SVF_AWA 400m -3.93405 1.58479 -2.48238 0.01421
NonPS AWA 300m 2.0318 0.64562 3.14704 0.00201

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 31.818256

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB
Jarque-Bera 2 17.7657 0.00014

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS

TEST DF VALUE PROB
Breusch-Pagan test 2 2.3235 0.31293
Koenker-Bassett test 2 1.6415 0.44010
SPECIFICATION ROBUST TEST

TEST DF VALUE PROB
White 5 3.3276 0.64962

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : combined best ind fin clear

(row-standardized weights)

TEST MI/DF VALUE PROB

Moran's I (error) 0.0422 1.1913 0.23354
Lagrange Multiplier (lag) 1 0.9425 0.33162
Robust LM (lag) 1 0.5130 0.47386
Lagrange Multiplier (error) 1 0.6364 0.42503
Robust LM (error) 1 0.2068 0.64930
Lagrange Multiplier (SARMA) 2 1.1493 0.56289

COEFFICIENTS VARIANCE MATRIX
CONSTANT SVF AWA 400m NonPS AWA 300m
1.311975 -1.752409 -0.246814
-1.752409 2.511549 0.089565
-0.246814 0.089565 0.416825
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highest t diff

3.
.78000
.95000
.10000
.10000
.25000
.53000
.08000
.60000
.00000
.83000
.00000
.75000
.28000
.48000
.90000
.70000
.18000
.88000
.65000
.23000
.70000
.15000
.30000
.88000
.55000
.53000
.55000
.55000
.80000
.95000
.63000
.58000
.65000
.43000
.45000
.93000
.18000
.05000
.98000
.40000
.18000
.23000
.88000
.63000
.70000
.15000
.13000
.60000
.58000
.80000
.15000
.00000
.88000
.40000
.63000
.18000
.48000
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70000

PREDICTED
.23569
.14794
.04894
. 73940
.35465
.41431
.27632
.30053
.27467
.01737
.47397
.11119
.45235
.82491
.04511
.92703
.58074
.18121
.38439
.03769
.38698
.13539
.16437
.03510
.97933
.49852
. 76231
.25600
.72167
.37497
.32084
. 94905
.37532
.15571
.29794
.84358
.17862
.04764
.36666
.99317
.63522
.18121
.49982
.10512
.40082
.09476
.97414
.30571
.15053
.27632
.09994
.49852
.88510
.04505
.93739
.05671
.62526
.56042
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-0

RESIDUAL
0.
.36794
.90106
.36060
.25465
.16431
.74632
.22053
.67467
.01737
.64397
.88881
.29765
.54491
.56511
.02703
.11926
.00121
.50439
.38769
.15698
.43539
.01437
.26490
.09933
.05148
.23231
.70600
17167
.42503
.37084
.68095
. 79532
.50571
.13206
.39358
.24862
.86764
. 68334
.98683
.23522
.99879
.26982
.22512
.77082
.39476
.17586
17571
.55053
.30368
.70006
.34852
.11490
.16505
.46261
.57329
.55474
.08042

46431



59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
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92
93
94
95
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97
98
99
100
101
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104
105
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107
108
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.35000
.25000
.18000
.08000
.15000
.35000
.90000
.65000
.63000
.48000
.23000
.73000
.13000
.48000
.53000
.65000
.10000
.35000
.45000
.05000
.58000
.73000
.78000
.68000
.90000
.73000
.83000
.98000
.88000
.33000
.95000
.00000
.33000
.03000
.38000
.28000
.58000
.48000
.55000
.68000
.08000
.93000
.10000
.30000
.45000
.33000
.05000
.98000
.83000
.88000
.23000
.53000
.20000
.28000
.90000
.53000
.43000
.93000
.68000
.40000
.05000
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.37367
.44146
.64040
.27891
.49852
.90671
.81419
.17085
.33857
.25989
.48692
.25082
.50206
.11637
.23533
.72296
.21278
.80424
.87255
.20023
.13798
.59976
.07573
.14705
. 95124
.46437
.25600
.72296
.46048
.09735
.48727
.01608
.51201
.17603
. 91578
.23569
.44275
.09605
.22573
.38050
.01348
.97933
.13539
.01737
.31955
.21537
.51849
.42373
.69617
.70170
.37756
.28150
.30182
.48080
.13928
.23828
.21666
.54564
.05282
.93480
.09346
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.02367
.19146
.46040
.80109
.65148
.55671
.08581
.52085
.29143
.77989
. 74308
.52082
.37206
.36363
.70533
.92704
.11278
.45424
.42255
.15023
.55798
.13024
.29573
.53295
.05124
. 73437
.42600
.25704
.58048
.23265
.53727
. 98392
.18201
.14603
.53578
.04431
.13725
.38395
.32427
.29950
.06652
.04933
.96461
.28263
.13045
.11463
.46849
.55627
-0.
.82170
.85244
.75150
.10182
.79920
.23928
.29172
.21334
.38436
.37282
.46520
.04346

86617



120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
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.55000
.25000
.28000
.10000
.08000
.68000
.50000
.08000
.30000
.28000
.43000
.27000
.58000
.03000
.30000
.78000
.55000
.63000
.78000
.03000
.35000
.45000
.40000
.45000
.73000
.98000
.00000

.84263
.12414
.99705
.66937
.05412
.50630
.85094
.46013
.21796
.22055
.46013
.40047
.46013
.39399
.13669
.72126
.13539
.00830
.81937
.25471
.25471
.46048
.57038
.36407
.53881
.43981
.56301
END OF REPORT
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.29263
.87414
.28295
.43063
.02588
.82630
.64906
.38013
.08204
.05945
.03013
.13047
.11987
.36399
.83669
.05874
.58539
.62170
.03937
. 77529
.09529
.01048
.82962
.91407
.80881
.54019
.56301



>>05/18/18 12:12:52
REGRESSION

SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION

Data set : combined best ind fin clear
Spatial Weight : combined best ind fin clear
Dependent Variable : highest t diff
Number of Observations: 146
Mean dependent var : 3.021507 Number of Variables : 3
S.D. dependent var : 1.068597 Degrees of Freedom . 143
Lag coeff. (Lambda) : 0.092735
R-squared : 0.114178 R-squared (BUSE) HE
Sg. Correlation HE Log likelihood : -208.110430
Sigma-square : 1.01152 Akaike info criterion : 422.221
S.E of regression : 1.00574 Schwarz criterion : 431.172
Variable Coefficient Std.Error z-value
Probability
CONSTANT 4.83313 1.18686 4.07221 0.00005
SVF AWA 400m -3.97429 1.6491 -2.40998 0.01595
NonPS AWA 300m 2.01155 0.67174 2.99454 0.00275
LAMBDA 0.0927353 0.1308 0.708984 0.47833
REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 2 1.7266 0.42178

DIAGNOSTICS FOR SPATIAL DEPENDENCE

SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX : combined best ind fin clear
TEST DF VALUE PROB
Likelihood Ratio Test 1 0.5647 0.45239

COEFFICIENTS VARIANCE MATRIX

CONSTANT SVF AWA 400m NonPS AWA 300m LAMBDA
1.408629 -1.888330 -0.251874 0.000000
-1.888330 2.719523 0.074742 0.000000
-0.251874 0.074742 0.451234 0.000000
0.000000 0.000000 0.000000 0.017109
OBS highest t diff PREDICTED RESIDUAL PRED ERROR
1 3.7 3.23502 0.44340 0.46498
2 2.78 3.15211 -0.33464 -0.37211
3 3.95 3.05251 0.94105 0.89749
4 3.1 2.73652 0.38702 0.36348
5 2.1 2.35481 -0.21414 -0.25481
6 2.25 2.41467 -0.12296 -0.16467
7 1.53 3.27525 -1.74298 -1.74525
8 3.08 3.29683 -0.20129 -0.21683
9 1.6 2.27484 -0.63121 -0.67484
10 3 3.01570 -0.02567 -0.01570
11 1.83 2.47453 -0.60838 -0.64453



12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

2.75
3.28
1.48

0.9

2.7
3.18
2.88
2.65
2.23

2.7
2.15

3.3
2.88
3.55
2.53
2.55
2.55
2.8
.95
.63
.58
.65
.43
.45
.93
.18
.05
.98
2.4
4.18
3.23
2.88
2.63

2.7
3.15
3.13

1.6
4.58

5.8
3.15

Wb P REP P WEDNDWIN

2.88
4.4
.63
.18
.48
.35
.25
.18
.08
.15
.35
3.9
.65
.63
.48
.23
.73
.13
.48
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.11335
.45393
.81837
.03882
.93182
.57706
17711
.37827
.03581
.37924
.13493
.17076
.03484
.97644
.49603
.75761
.25513
. 71738
.37493
.31694
. 94012
.37485
.15504
.29585
.83807
.17613
.05202
.35913
.99412
. 63497
17711
.49652
.09860
.39692
.09470
.97449
.29878
.15309
.27525
.09665
.49603
.89110
.05105
.93572
.05544
.61876
.55695
.37444
.43715
.63692
.27622
.49603
.91170
.81454
.17320
.33608
.25660
.47941
.25318
.49758
.11530

.85835
.31439
.52341
.83562
.97837
.09503
.01634
.50956
.43282
.15289
.40374
.00182
.29647
.11043
.03782
.19380
.80302
.13291
47362
.36664
. 72618
.80497
.50351
.11121
.36127
.24255
77192
.69441
.95723
.26133
.96743
.277222
.20670
.77324
.42553
.06350
.17664
.50723
.32248
.70856
.36555
.08520
.11558
.48890
.53608
.60853
.05451
.99269
.18549
.46053
.83306
. 64524
.49121
.97114
.54138
.30207
.79606
. 73238
.53370
.41878
.43800

.88665
.29607
.53837
.55882
.03182
.12294
.00289
.49827
.38581
.14924
.43493
.02076
.26516
.09644
.05397
.22761
.70513
.16738
.42507
.36694
.68988
.79485
.50504
.13415
.38807
.24613
.87202
.69087
.98588
.23497
.00289
.26652
.21860
.76692
.39470
.17551
.16878
.55309
.30475
.70335
.34603
.10890
.17105
.46428
.57456
.56124
.07695
.02444
.18715
.45692
.80378
. 65397
.56170
.08546
.52320
.29392
.77660
.75059
.52318
.36758
.36470
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74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

1.53
3.65
3.1
.35
.45
.05
.58
.73
.78
.68
2.9
.73
.83
.98
.88
.33
.95

W kR WwWhhNDNDDN
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.33
.03
.38
.28
.58
.48
.55
.68
.08
.93
5.1
3.3
.45
.33
.05
.98
.83
.88
.23
.53
2.2
4.28

2.9
3.53
4.43
3.93
1.68

3.4
3.05
3.55
2.25
3.28

3.1
6.08
2.68

4.5
2.08
3.3
.28
.43
.27
.58
.03
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.23510
.71787
.21392
.79833
.87391
.19674
.13590
.59669
.07507
.13932
. 95340
.45824
.25513
.71787
.45677
.09567
.47933
.01521
.51379
.17516
. 91512
.23502
.43764
.09518
.21881
.37680
.01423
.97644
.13493
.01570
.31645
.21490
.51623
.41801
.69531
.69718
.37591
.27720
.29732
.47689
.13639
.23599
.21539
.53870
.05398
.93475
.09421
.83751
.11823
.99558
.67276
.05446
.49896
.85331
.45686
.21588
.21685
.45686
.39700
.45686
.39456

|
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.84988
.91673
.08701
.38933
.39995
.09477
.56693
.12102
.39936
.51916
.02494
.78150
.42305
.23637
.59199
.22023
.52975
.03331
.15052
.19075
.57332
.05134
.12908
.33115
.34239
.28694
.03381
.07699
.90542
.23933
.14077
.09338
.49201
.59741
LTT7736
.84232
. 79284
.75764
.02772
.83148
.19235
.28443
.16340
.40985
.34595
.42508
.09155
.28960
.82326
.39076
.35862
.96525
.89058
.58274
.33072
.09893
.09278
.07301
.15478
16777
.31790

|
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.70510
.93213
.11392
.44833
.42391
.14674
.55590
.13331
.29507
.54068
.05340
.72824
.42513
.26213
.57677
.23433
.52933
.98479
.18379
.14516
.53512
.04498
.14236
.38482
.33119
.30320
.06577
.04644
.96507
.28430
.13355
.11510
.46623
.56199
.86531
.81718
.85409
.74720
.09732
.80311
.23639
.29401
.21461
.39130
.37398
.46525
.04421
.28751
.86823
.28442
42724
.02554
.81896
. 64669
.37686
.08412
.06315
.02686
.12700
.12314
.36456



134 2.3 3.13541 -0.89207 -0.83541
135 2.78 2.72969 0.01661 0.05031
136 2.55 3.13493 -0.56633 -0.58493
137 3.63 3.01228 0.65355 0.61772
138 1.78 2.81649 -0.93266 -1.03649
139 4.03 3.25464 0.79409 0.77536
140 4.35 3.25464 1.11833 1.09536
141 3.45 3.45677 -0.01847 -0.00677
142 5.4 2.57316 2.77807 2.82684
143 2.45 3.35815 -0.90620 -0.90815
144 1.73 2.53634 -0.83663 -0.80634
145 2.98 2.43674 0.57885 0.54326
146 2 2.55792 -0.59163 -0.55792
147 -5.5693e+307 0.41000 0.00000 -

584909117760265980000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000
00000000.00000

END OF REPORT




>>05/18/18 12:12:16
REGRESSION

SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELTIHOOD ESTIMATION

Data set : combined best ind fin clear
Spatial Weight : combined best ind fin clear
Dependent Variable : highest t diff
Number of Observations: 146
Mean dependent var : 3.02151 DNumber of Variables : 4
S.D. dependent var : 1.0686 Degrees of Freedom : 142
Lag coeff. (Rho) : 0.101731
R-squared : 0.115792 Log likelihood : -208
Sg. Correlation HE Akaike info criterion : 424
Sigma-square : 1.00968 Schwarz criterion : 435.934
S.E of regression : 1.00483
Variable Coefficient Std.Error z-value
Probability
W _highest t 0.101731 0.125289 0.811975 0.41681
CONSTANT 4.4156 1.25908 3.50699 0.00045
SVF AWA 400m -3.73532 1.6063 -2.32542 0.02005
NonPS AWA 300m 1.88879 0.659903 2.86222 0.00421
REGRESSION DIAGNOSTICS
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 2 1.6069 0.44778

DIAGNOSTICS FOR SPATIAL DEPENDENCE

SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : combined best ind fin clear
TEST DF VALUE PROB
Likelihood Ratio Test 1 0.7857 0.37540

COEFFICIENTS VARIANCE MATRIX
CONSTANT SVF AWA 400m NonPS AWA 300m W highest t

1.585294 -1.910665 -0.143439 -0.069699
-1.910665 2.580187 0.022641 0.046519
-0.143439 0.022641 0.435471 -0.021749
-0.069699 0.046519 -0.021749 0.015697
OBS highest t diff PREDICTED RESIDUAL PRED ERROR
1 3.7 3.21492 0.46214 0.48508
2 2.78 3.14901 -0.32760 -0.36901
3 3.95 3.06834 0.92968 0.88166
4 3.1 2.71223 0.41253 0.38777
5 2.1 2.32816 -0.18643 -0.22816
6 2.25 2.38369 -0.09076 -0.13369
7 1.53 3.27611 -1.74299 -1.74611
8 3.08 3.29668 -0.19884 -0.21668
9 1.6 2.26131 -0.61676 -0.66131
10 3 3.04084 -0.05129 -0.04084
11 1.83 2.43922 -0.57234 -0.60922
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15
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18
19
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21
22
23
24
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26
27
28
29
30
31
32
33
34
35
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37
38
39
40
41
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49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

2.75
3.28
1.48

0.9

2.7
3.18
2.88
2.65
2.23

2.7
2.15

3.3
2.88
3.55
2.53
2.55
2.55
2.8
.95
.63
.58
.65
.43
.45
.93
.18
.05
.98
2.4
4.18
3.23
2.88
2.63

2.7
3.15
3.13

1.6
4.58

5.8
3.15
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2.88
4.4
.63
.18
.48
.35
.25
.18
.08
.15
.35
3.9
.65
.63
.48
.23
.73
.13
.48
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.11635
.45401
.82016
.09218
.94232
.55623
.17802
.41001
.04420
.36525
.12595
.16570
.04167
.99764
.50356
.71964
.23433
.68579
.34681
.31734
.96269
.39886
.15063
.27405
. 79046
.18272
.04838
.34290
.99321
.65792
.15970
.49729
.10999
.40402
.10552
.97160
.28705
.15144
.26981
.11646
.50356
.90884
.06678
.93143
.05629
.58205
.53236
.34639
.42666
.60840
.27814
.49867
.92366
.81269
.19409
.33982
.26840
.46586
.24957
.48381
.11402

.85362
.31254
.52166
.91914
.98361
.11099
.01809
.54098
.44554
.13861
.39152
.99454
.29275
.13235
.03008
.15465
.79125
.10044
.50359
.36618
.70728
.82867
.49910
.13134
.31317
.24816
.75764
.71216
.95650
.28767
.98184
.27257
.21638
.78000
.43917
.05515
.16455
.50024
.32956
.69008
.37362
.06593
.12597
.49533
.53129
.64842
.03010
.96443
.17400
.43490
.83479
.64321
.49629
.96208
.56303
.29973
.80910
.74188
.53123
.41330
.44618

.88365
.29599
.54016
.61218
.04232
.14377
.00198
.53001
.39420
.13525
.42595
.01570
.25833
.11764
.04644
.18964
.68433
.13579
.45319
.36734
.66731
.81886
.50063
.15595
.34046
.25272
.86838
.70710
.98679
.25792
.02030
.26729
.22999
.77402
.40552
.17840
.15705
.55144
.31019
. 68354
.35356
.09116
.18678
.46857
.57371
.59795
.05236
.99639
.17666
.42840
.80186
.65133
.57366
.08731
.54409
.29018
.78840
.76414
.51957
.35381
.36598
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3.65
3.1
.35
.45
.05
.58
.73
.78
.68
2.9
.73
.83
.98
.88
.33
.95
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.33
.03
.38
.28
.58
.48
.55
.68
.08
.93
5.1
3.3
.45
.33
.05
.98
.83
.88
.23
.53
2.2
4.28

2.9
3.53
4.43
3.93
1.68

3.4
3.05
3.55
2.25
3.28

3.1
6.08
2.68

4.5
2.08
3.3
.28
.43
.27
.58
.03
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.23608
.68624
.20786
.75781
.89008
.19653
.13060
.57439
.05682
.15877
.96511
.48514
.25632
.68624
.45501
.11480
.50259
.98262
.47889
.17436
.91773
.25276
.43989
.09843
.25108
.38304
.02319
.98314
.13270
.00158
.32147
.20287
.50261
.44580
. 71045
.70524
.41144
.28151
.29220
.50248
.14481
.24186
.20679
.55106
.04809
.94486
.09436
.83502
.12813
.01295
.68399
.05684
.49658
.85964
.45088
.21973
.22205
.43921
.45542
.43102
.36426
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.86864
.94488
.07810
.34454
.41386
.08877
.56286
.13999
.39194
.49939
.03437
.81157
.42336
.26352
.59067
.20018
.55128
.07132
.11525
.19401
.57941
.03485
.12639
.32288
.31198
.28005
.02200
.08663
.90183
.24814
.13705
.10350
.48345
.57476
.78460
.85082
.75204
.76223
.01524
.81018
.19567
.27800
.16722
.40123
.33727
.41072
.09675
.28539
.82822
.38369
.34063
. 95647
.89273
.57042
.32405
.09716
.09121
.09784
.21803
.19506
.28595
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.70608
.96376
.10786
.40781
.44008
.14653
.55060
.15561
.27682
.52123
.06511
.75514
.42632
.29376
.57501
.21520
.55259
.01738
.14889
.14436
.53773
.02724
.14011
.38157
.29892
.29696
.05681
.05314
.96730
.29842
.12853
.12713
.45261
.53420
.88045
.82524
.81856
.75151
.09220
17752
.24481
.28814
.22321
.37894
.36809
.45514
.04436
.28502
.87813
.26705
.41601
.02316
.81658
.64036
.37088
.08027
.05795
.00921
.18542
.14898
.33426
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2.3
.78
.55
.63
.78
.03
.35
.45
5.4
2.45
1.73
2.98
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.13407
. 71434
.13212
.01838
.81237
.27306
.27306
.45501
.58741
.34601
.52123
.50201
.55238
END OF REPORT
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.89579
.02621
.56190
.65118
.91800
.77864
.10329
.01680
.75893
.89328
.82699
.51566
.59182

.83407
.06566
.58212
.61162
.03237
.75694
.07694
.00501
.81259
.89601
.79123
.47799
.55238



KK R AR R AR AR A A A A A A A A A AR A AR A AR A AR A AR A AR A A AR A KA A A KA A A KA AR A AR A AR A AR A AR A AR A A AR AR A AR XK

Semiparametric Geographically Weighted Regression
Release 1.0.90 (GWR 4.0.90)
12 May 2015
(Originally coded by T. Nakaya: 1 Nov 2009)
Tomoki Nakaya(l), Martin Charlton(2), Chris Brunsdon (2)
Paul Lewis (2), Jing Yao (3), A Stewart Fotheringham (4)
(c) GWR4 development team

(1) Ritsumeikan University, (2) National University of Ireland, Maynooth,
* (3) University of Glasgow, (4) Arizona State University
R I I I b b b b b S b e b b b b b b b A I b b b b b b M I 2 b b b b b b S I b b b b b b A b b b b b b b a4 2 b b b b Ib b A 4 b b b b b g

Program began at 18.5.2018 r. 14:06:26

KK AR A AR A AR A AR A A A A A A A A A A A A A A A A A AA KA A IR AA KA A I A A I AR I AR I AR A AR A AR A AR A AR A A XA AR A, * K

P S . S . S

* x

Session:

Session control file: D:\MASTER
THESIS\Data\Modelling\final joined\CSVs\AWA differrent buffers\combined bes
t indicators FINAL\new t diff\gwr\GWR 2 ind.ctl

KK AR A AR A A AR A A A A A A A AR A AR A AR A A A A A A A IR AA KA A KA A A I A A I A A IR A A A A A A AR A AR A AR A AR A AR A AR AR KK
* %

Data filename: D:\MASTER
THESIS\Data\Modelling\final joined\CSVs\AWA differrent buffers\combined bes
t indicators FINAL\new_ t difflcombined best ind fin clear GWR.csv

Number of areas/points: 147

Model settings--—-——-———-"-""""""""""""""""-"-"-"-"--"—"———

Model type: Gaussian

Geographic kernel: adaptive Gaussian

Method for optimal bandwidth search: Golden section search
Criterion for optimal bandwidth: AIC

Number of varying coefficients: 3

Number of fixed coefficients: 0

Modelling options—--—-—-—-—-—-----"-"-"-"-"---—————————-~————~——
Standardisation of independent variables: OFF

Testing geographical variability of local coefficients: OFF
Local to Global Variable selection: OFF

Global to Local Variable selection: OFF

Prediction at non-regression points: OFF

Variable settings—-—-—----------""""-"-"""-"-"-"-"—"-"—-"-"—-~—"——~——

Area key: field2: MAC

Easting (x-coord): field3 : xcoord

Northing (y-coord): field4: ycoord

Cartesian coordinates: Euclidean distance

Dependent variable: fieldl6: highest t diff

Offset variable is not specified

Intercept: varying (Local) intercept

Independent variable with varying (Local) coefficient: fieldll:
SVF_AWA 400m

Independent variable with varying (Local) coefficient: fieldl3:
NonPS AWA 300m

KK R AR AR AR A A A A A AR A A A A A AR A AR A AR A AR A AR A AR A AR A A A A A A A A A AR A AR A AR A AR A A A AR A AR A A A AR AR XK
* k

R SR R I S b I S b I Sb b I S b I Sb b I S I S S S Sb S 2 S b S b e Sb b I S b I Sh b I S I S b I S b S b b Sh b Sb b b db b b 2b b Sb Sb b S Sb b 4
* %

Global regression result
R R IR I e S b b I b b 2 Sh b b dh S b S dh b b db Sb b 2 dh b b db b b Sh b I db b b 2 Sh b b S S b 2 dh b b db Sb b d dh b i Sb A Sb b S Sh b i dh b b 2 Sb b b db b 4

* %

< Diagnostic information >



Residual sum of squar

Number of parameters:
(Note:

model)

ML based global sigma

Unbiased global sigma

-2 log-likelihood:

Classic AIC:

AICc:

BIC/MDL:

Cv:

R square:

Adjusted R square:

Variable
Intercept

SVF AWA 400m
NonPS AWA 300m

es:

this num does not include an error variance term

estimate:
estimate:

Estimate
4,815323
-3,877811
1,857430

159,483691
3

1,041596
1,052390
429,149764
437,149764
437,431454
449,111494

1,124697
0,092734
0,073700

Standard Error t (Est/SE)
1,182973 4,070527
1,636671 -2,369328
0,664499 2,795233

for a Gaussian

LR R IR b dh b b Sh b I 2 Sh b b 2h ah b S Sh b b 2h Sh b 2 Ah b b dh Sb b db Sh b b 2h b b 2 Sh b b 2h Ib b 2h Sh b b Sh Sh b 2 dh b b Sb Ib b 2 ah b b 2h Sb I 2h Sh b S 2h S 4
* %

GWR (Geographically weighted regression) bandwidth selection
KA AR A A A A A A A A A A A A A A A A A A A A A A A A A A AR A A AR A AR A A AR A AR A A AR A AR A A AR A AR A A AR A A AR A A kK kK

* %

Bandwidth search <golden section search>
Limits: 46, 147

Golden section search begins...
Initial wvalues

pL Bandwidth: 46,000 Criterion: 423,879
pl Bandwidth: 48,150 Criterion: 424,002
P2 Bandwidth: 49,479 Criterion: 424,144
pU Bandwidth: 51,629 Criterion: 424,391
iter 1 (pl) Bandwidth: 48,150 Criterion: 424,002 Diff: 1,329
iter 2 (pl) Bandwidth: 47,329 Criterion: 423,907 Diff: 0,821
iter 3 (pl) Bandwidth: 46,821 Criterion: 423,879 Diff: 0,508

Best bandwidth size 46,000
Minimum AIC 423,879

KK A A A AR A A A A A A A A A A A A A A AR A AR A A AR A A A A A A A AR A A A A A A A A AR A A A A A AR A AR A Ak A Ak Ak Ak Ak kA xk k%

* %

GWR (Geographically weighted regression) result

KK AR AR A AR A A A A A AR A A A A AR A AR A AR A AR A A A A A A A A A A A A A I A A A A A A A A KA A A AR AR A AR A AR AR A A XA ALK

* x

Bandwidth and geographic ranges

Bandwidth size: 46,821192

Coordinate Min Max Range
X-coord 74876,696480 88218,453760 13341,757280
Y-coord 448367,765400 458968, 992700 10601,227300

Diagnostic information

Residual sum of squares: 139,194055

Effective number of parameters (model: trace(S)):
6,365861

Effective number of parameters (variance: trace(S'S)):
4,353976

Degree of freedom
140,634139
Degree of freedom
138,622255

(model: n - trace(S)):

(residual: n - 2trace(S) + trace(S'S)):



ML based sigma estimate:
Unbiased sigma estimate:

-2 log-likelihood:
Classic AIC:

0,973087
1,002060
409,147087
423,878808

AICc: 424,767792
BIC/MDL: 445,905917
CV: 1,025838
R square: 0,208157
Adjusted R square: 0,159953

KK R AR A AR A AR A AR AR A AR A AR KA AR A A KRR AR A AR A AR A AR AR A AR AR A A AR AR Ak kK

<< Geographically varying

(Local)

coefficients >>

R R R I I I I I S I e IR I I I b I e b b I R b I e b b I I b b e I b I b b b e S b b4

Estimates of varying coefficients have been saved in the following file.

Listwise output file:

D:\MASTER

THESIS\Data\Modelling\final joined\CSVs\AWA differrent buffers\combined bes
t _indicators FINAL\new t diff\gwr\GWR 2 ind listwise.csv

Summary statistics for varying

Variable
Intercept

SVF _AWA 400m
NonPS AWA 300m

Variable
Intercept
SVF_AWA 400m
NonPS AWA 300m

Variable
Intercept
SVF_AWA 400m
NonPS AWA 300m

Variable

Intercept

SVE AWA 400m

NonPS AWA 300m
(Note:

Robust STD is given by

(Local) coefficients
Mean STD
3,9660493 1,855875
-1,850484 2,743443
0,956365 0,980413

Min Max
1,129191 7,266308
-6,020359 2,719052
-0,613972 2,515170

Lwr Quartile Median
2,184371 4,028858
-4,111420 -2,265463
0,038746 0,846243

Interquartile R

Robust STD

3,574993 2,650106
5,019445 3,720863
1,820970 1,349866

6,137117
8,739411
3,129143

Upr Quartile
5,759363
0,908025
1,859715

(interquartile range / 1.349) )

KK A AR R A A A A A A A A A A A A A A A A A A AR A AR A A A A A A AR A A A A AR A A A A A A AR A A AR A AR A Ak Ak Ak Ak Ak Ak kA vk k%

* %

GWR ANOVA Table

KK AR AR A AR A A A A A AR A A A A AR A AR A AR A AR A A A A A A A A A A A A A I A A A A A A A A KA A A AR AR A AR A AR AR A A XA ALK

* x

Global Residuals
GWR Improvement
GWR Residuals
3,757390

SS DF
159,484 144,000
20,290 5,378
139,194 138,622

3,773
1,004

R R R I S b I b b I S b I S b I S R I S S S S Sb S dE S b e S b S b I S b I S R I Sb b S b b S Sb b S S S b I Sb b S b Sb b I S b I S b 3

* x

Program terminated at 18.5.2018 r.

14:06:28
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