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Abstract

Friction damping is common in engineering structures for the purpose of energy dissipation
and vibration control. Examples of applications are bolted connections and earthquake isolation
systems. However, there is a shortage of works that investigate the effects of different contact
materials on the energy dissipation performance and friction behaviour of friction dampers,
which is valuable knowledge for design optimization.

This thesis uses a numerical approach to explore the time response and energy dissipated
by friction of the harmonically excited SDOF (single-degree-of-freedom) system with Coulomb
friction contact between the sliding mass and a fixed wall. In addition, for the same SDOF
system, an experimental investigation of the friction damping performance in terms of friction
behaviour and energy dissipation is carried out for (1) steel, (2) rubber and (3) aramid contact
materials. The aim is to get a better understanding of how different contact materials affect
the performance of friction dampers. Various time scales, excitation frequencies and friction
forces are considered.

The main findings of this research are: (1) the characterization of the friction behaviour
of steel-to-steel, rubber-to-steel and aramid-to-steel contacts; (2) the comparative analysis of
the energy dissipation performance of the different contact materials; (3) the assessment of
the long-term performance of the different contacts; (4) the comparison between numerical
results based on the Coulomb friction model and experimental results. The tests have shown
that rubber has the highest energy dissipation capacity and fairly unstable behaviour, steel
has the second highest energy dissipation and irregular behaviour and aramid has the lowest
energy dissipation performance and very consistent behaviour. Finally, the application of a
method that calculates the energy dissipation of friction damping based on direct experimental
outputs is an important contribution to the field regarding experimental investigations.
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1
Introduction

Contents
1.1 Friction damping and applications in engineering structures . . . . . . . 1
1.2 Energy dissipation by friction and contact materials . . . . . . . . . . . . 2
1.3 Aim, scope and methodology of the thesis . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1. Friction damping and applications in engineering structures

Friction forces as a result of static or dynamic loading are extremely common in many types

of engineering structures. Friction can lead to negative effects such as abrasion, cracking

and fatigue [1], structural damage and even failure, reduction of damping and noise pollution.

These consequences are very disadvantageous to engineering structures and their performance.

On the other hand, friction can also positively affect the performance of various types

of engineering structures. It is used to facilitate vibration reduction, vibration isolation and

energy dissipation [2–7]. Energy dissipation and subsequent vibration control can be achieved

through friction damping, which is prevalent in many different engineering fields, such as

robotics, turbomachinery and civil engineering. Friction damping can be directly added to

a structure, for example in the form of friction dampers, or can be an additional property

of for example bolted connections and truss and brace frames, which have a lot of friction

joints. Friction dampers are devices that dissipate energy by using dry friction [2]. They are

very popular for the purpose of seismic isolation and fortification because their performance

is unaffected by the amplitude and frequency of loading and the number of loading cycles.
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Chapter 1. Introduction 2

Moreover, they are versatile, simple and reliable to use and have a relatively high energy

dissipation capacity due to their rectangular hysteresis loops [2, 5]. A large amount of novel

friction dampers have been invented and applied in the field of civil engineering since 1980

[5]. Friction dampers are also applied in suspension systems and robotic machines [2].

Even though friction is an effective type of damping and common in engineering structures,

the current knowledge of the effects of friction on the dynamic response of mechanical systems

is limited. According to Marino et al. [2, 4, 8], the main challenges in the development of a

thorough understanding of friction damped systems are caused by: the unrepeatable nature

of friction processes, the nonlinearity of dynamic friction forces and the absence of a universal

and predictive friction model. In addition, there are various conditions affecting the properties

of a friction contact, like humidity, cleaning and polishing of the surface and temperature.

Several long-term effects that change the properties of the contact, such as wear and the

formation of debris, are caused by friction during sliding. Due to all these factors playing

a role in the friction process, it is difficult to reproduce experimental results and predict the

performance of friction dampers via experiments [2, 3].

1.2. Energy dissipation by friction and contact materials

Friction is a highly complex physical process and is difficult to reliably investigate through

experiments, asmentioned in Section 1.1. However, it is still a popular research subject. There

is an abundance of theoretical work on friction, which mainly deploy analytical and numerical

methods to attain results. Asymmetric and sub-harmonic resonant solutions of a harmonically

excited dry friction oscillator have been studied in references [9, 10], illustrating interesting

features of the asymmetric responses. Marino et al. have investigated the dynamic response

of a SDOF system with Coulomb friction contact subjected to harmonic base excitation for a

fixed wall and base-wall configuration, both numerically and experimentally [2, 4, 8]. Similar

analytical results for the fixed wall case were found by Riddoch et al. [11].

Research on the subject of energy dissipation and friction damping has been performed

as well. In reference [12], beam-to-column joints equipped with friction dampers have been

developed and tested for various materials in the friction contact. The results are compared

in terms of hysteresis cycles and energy dissipation. The main findings of this work are

that the steel-to-steel contact depicted quite unstable behaviour and the hard-rubber-to-steel
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contact showed very stable behaviour and high energy dissipation capacity. Anoushehei et

al. investigated the behaviour of a rotational friction damper under cyclic loading for different

metal friction pads [6]. They found that the surfaces of the aluminum, galvanized steel and

steel pads show extensive wear after cyclic loading, whereas stainless steel is only damaged

marginally. The study in [7] shows that the Coulomb friction model is accurate enough to

predict the maximum energy dissipation of a friction damper with stiff localized contacts and

large relative displacements in the contact, through means of numerical calculations and

experiments. Finally, reference [13] uses vibration transmission and energy flow characteristics

to analytically determine the energy dissipation of a SDOF dynamical system with Coulomb

friction. It is found that the friction contact can effectively suppress the vibration response and

dissipate energy.

To the best of the author’s knowledge, there is a lack of experimental studies on the

effects of different contact materials on the energy dissipation by friction. Such works could be

extremely useful for the optimization of friction dampers. The only work found carrying out such

an investigation is reference [12]. Furthermore, knowledge on the long-term performance and

abrasion resistance, frictional behaviour and the best fitting friction model of contact materials

is limited. This research gap will be addressed in this thesis.

1.3. Aim, scope and methodology of the thesis

The study that is conducted in this thesis aims to give insight into the effects of different contact

materials on the dynamic response and energy dissipation performance of friction damped

mechanical systems.

To develop this understanding, assuming the harmonically excited SDOF system with

Coulomb friction contact between a fixed wall and sliding mass for the sake of simplicity,

the energy dissipation by friction and friction behaviour of the moving mass are investigated

numerically and experimentally. The experiments consist of three contact configurations: a

steel-to-steel contact, a rubber-to-steel contact and an aramid-to-steel contact. This allows

for a comparison of the performance and behaviour of the different contact materials, those

being (1) steel, (2) rubber and (3) aramid.

Based on the research gap described in Section 1.2, the following research questions are

derived:
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1. What kind of friction behaviour is induced by different contact materials?

2. What are the pros and cons of each material when comparing the energy dissipation

performance?

3. How do the contact materials perform in the long term?

These research questions have been answered by completing the following tasks:

1. Deriving methods to calculate the energy dissipation by friction. These methods can be

used on numerical and experimental time responses.

2. The implementation of a numerical algorithm that evaluates the time response of the

harmonically excited SDOF system with Coulomb friction damping. Both continuous

and stick-slip motions can be evaluated.

3. Obtaining numerical results for the time response and the energy dissipation of the

harmonically excited SDOF system with Coulomb friction contact, for various friction

forces and excitation frequencies.

4. Performing experiments for various frequencies and friction forces for the different friction

contact configurations mentioned previously. One short time scale and one long time

scale are considered. The test setup can be appropriately represented by a SDOFmodel.

The measured experimental time responses are used to compute the energy dissipation

and to analyze the friction behaviour. Afterwards, the numerical and experimental results

are compared.

In addition to these tasks, the energy dissipation calculation method is validated by applying it

to a harmonically excited SDOF systemwith viscous damping. Subsequently, the performance

of the viscous damped system is compared to the performance of the Coulomb friction damped

system.

1.4. Contributions

The work carried out in this thesis leads to the following two contributions to the field:

1. The development of a calculation method that evaluates the energy dissipation of a

friction damper based on the harmonic excitation and mass response. Because these



Chapter 1. Introduction 5

two motions can be measured during experiments, this calculation method is suitable for

experimental investigations.

2. A comparative analysis of the performance of three different contact materials, namely

steel, rubber and aramid. The material performance is assessed based on the friction

behaviour and energy dissipation capacity.

1.5. Structure of the thesis

This thesis report consists of six chapters. The required theoretical background on theCoulomb

frictionmodel and the fundamental analytical solution for the harmonically excited SDOF system

with Coulomb friction is given in Chapter 2. The energy dissipation calculation methods are

presented in this chapter as well. In Chapter 3, the numerical results for the friction behaviour

and energy dissipation of the SDOF Coulomb friction damped system are shown. Following

this, the experimental investigation of the friction behaviour and energy dissipation performance

of the different contact materials is carried out in Chapter 4. Chapter 5 provides the most

important conclusions of the thesis. Finally, Chapter 6 presents critical observations on the

performed work and recommendations for further research.
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Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Coulomb friction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Den Hartog’s analytical solution for the SDOF system with Coulomb

friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Energy dissipation calculation methods . . . . . . . . . . . . . . . . . . . 11

2.4.1 Energy input method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1. Introduction

The objective of this chapter is to present the theoretical background required for the numerical

and experimental investigations carried out in the following chapters.

More specifically, the Coulomb friction model, which is the friction model considered in this

thesis, is explained, as well as Den Hartog’s fundamental analytical solution for the SDOF

system with Coulomb friction contact under harmonic excitation. Because the metric used in

this research for evaluating the dissipation performance is the energy dissipated by friction,

several energy dissipation calculation methods are derived.

The Coulomb friction model is briefly described in Section 2.2. Afterwards, the exact

solution for the harmonically excited SDOF system with Coulomb friction damping by Den

Hartog is reviewed in Section 2.3. Lastly, the methods used to calculate the energy dissipation

by friction are introduced in Section 2.4.

6
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2.2. Coulomb friction model

In the field of mechanical systems involving friction, finding accurate models that correctly

describe friction forces occurring in the contact between two bodies has always been a great

challenge and popular research subject. Nowadays, numerous friction models exist and are

still being developed. One of the most prevalent and simple friction models is the Coulomb

friction model by Coulomb and Amontons, also known as the law of proportionality between

friction force and normal force [14]:

Ff = µdFn (2.1)

where Ff is the friction force, Fn is the normal force and µd is the kinetic friction coefficient

which depends on the surface of the materials in the friction contact. The friction force in

Equation 2.1 is generated by the sliding of two bodies in contact and is called the kinetic

friction force.

Morin later extended the Coulomb model with static friction or stiction [15]. The static

friction force is defined as the force that is needed to make a body slide across the surface of

another body, starting from rest or static conditions. The static friction force is generally greater

than the kinetic friction force [16]. The mathematical expression of the Coulomb friction model

with stiction is as follows:

Ff =


µdFn if vr < 0

[−µsFn, µsFn] if vr = 0

−µdFn if vr > 0

(2.2)

Where µs is the static friction coefficient and vr is the relative velocity between the sliding

bodies whose surfaces are in contact.

The Coulomb model and Coulomb model with stiction are plotted in Figure 2.1, based on

their mathematical force-velocity formulation described in Equation 2.1 and 2.2 respectively.

It is evident that according to both variations of the Coulomb model, the friction force only

changes when the velocity changes direction or becomes zero. The magnitude of the velocity

has no effect on the friction force. In the following section the Coulomb friction model plays an

important role in the work by Den Hartog.



Chapter 2. Theoretical background 8

(a) (b)

Figure 2.1: Coulomb friction model (a) and Coulomb friction model with stiction (b), friction force versus the relative
velocity between the two sliding bodies in contact [2].

2.3. Den Hartog's analytical solution for the SDOF system with Coulomb
friction

Although the dynamic behaviour of friction damped systems is difficult to determine due to their

nonlinear nature (a system is nonlinear when a change in input does not lead to a proportional

change in output [2]), several analytical, semi-analytical and numerical time integration solution

methods have been developed to analyze the dynamics of friction damped systems. One of

the most important and influential studies regarding the analytical solution methods is the

work by Den Hartog [17, 18]. He derived an analytical solution for the continuous steady-state

motion of a harmonically excited SDOF system with Coulomb friction contact between the

oscillating mass and a fixed wall. In this section, the solution by Den Hartog is briefly reviewed

as it is essential for the investigations carried out in this thesis. This review is also based on

Marino’s work in reference [2].

The SDOF model with Coulomb friction contact in Figure 2.2 is introduced. It is a mass-

spring system with massm and spring stiffness k. The system is excited through the harmonic

load P cos(ωt), with amplitude P and frequency ω. The mass motion is denoted as x. The

sliding mass is in contact with a fixed wall, generating a Coulomb friction force of amplitude

F . It is worth mentioning that this system is equivalent to a harmonically base-excited system

(instead of the harmonic load, the mass is excited by the harmonic motion of the base that

the spring is connected to) with base motion Y cos(ωt), with displacement amplitude Y and

frequency ω, by replacing P in Figure 2.2 with kY . The governing equation of motion of the
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Figure 2.2: Harmonically excited SDOF system with Coulomb friction contact between a fixed wall and the mass
[2].

SDOF system in Figure 2.2 is:

mẍ+ kx+ Fsgn(ẋ) = P cos(ω) (2.3)

With the signum function sgn() being defined as follows:

sgn(ẋ) =


−1 if ẋ < 0

[−µ, µ] if ẋ = 0

1 if ẋ > 0

(2.4)

With µ being the ratio between the static and kinetic friction force. In case that the mass is

stationary and thus ẋ = 0, the value of the signum function in the range [−µ, µ] is such that

the friction force is in equilibrium with the excitation force so that the net force is zero. Stiction

is not taken into account by Den Hartog, so throughout this thesis µ = 1 is assumed.

The governing Equation 2.3 needs to be made non-dimensional in order to reduce the

number of parameters. To be able to do this, the dimensionless time is considered:

τ = ωt (2.5)

With t being standard dimensional time. The dimensionless mass displacement is introduced

as well:

x̄ =
x

P/k
(2.6)

In addition, two non-dimensional parameters are presented. These are the frequency ratio,
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the ratio between the driving frequency and natural frequency of the system:

r =
ω

ωn
= ω

√
m

k
(2.7)

With ωn being the natural frequency, and the friction ratio, the ratio between the amplitudes of

the friction force and the harmonic load:

β =
F

P
(2.8)

After plugging Equation 2.5 and 2.6 into the governing Equation 2.3, dividing by P and using

the two newly introduced parameters in Equation 2.7 and 2.8, the non-dimensional governing

equation is acquired:

r2x̄′′ + x̄+ βsgn(x̄′) = cos(τ) (2.9)

Den Hartog made several important assumptions: (1) the time response of the mass is

continuous (there are no stops), (2) a steady-state motion has been reached, (3) the response

period equals the excitation period (which is 2π in dimensionless form) and (4) the response is

anti-periodic (a special form of symmetry, the second half of the response equals the negative

of the first half). Under these assumptions and after imposing boundary conditions of the

half-period, Den Hartog derived an exact solution of the dimensionless mass motion in the

dimensionless half-period [0,π]:

x̄ = X cos(τ) + βU sin(τ) + β
[
1− cos

(τ
r

)
− Ur sin

(τ
r

)]
(2.10)

Where X is the non-dimensional amplitude of the mass motion, which can be calculated as:

X =
√

V 2 − (βU)2 (2.11)

With V and U being the response function of an undamped SDOF system and the damping

function, respectively:

V =
1

1− r2
(2.12)
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and:

U =
sin(πr )

r[1 + cos(πr )]
(2.13)

Finally, the phase angle between the excitation and time response of themass can be computed

with the following two formulas:

cos(ϕ) = X

V
and sin(ϕ) = −βU

V
(2.14)

The solution byDenHartog presented in this section is fundamental in the field of mathematical

analysis of friction damped systems and is used in the next section to obtain methods for

calculating the energy dissipated by friction. From this point forward, the main SDOF Coulomb

friction damped system considered in this thesis is the harmonically base-excited case, since

this model represents the used experimental setup most accurately. All expressions given

above are also valid for this system by substituting P with kY , as mentioned previously for

Figure 2.2.

2.4. Energy dissipation calculation methods

The friction contact in the harmonically base-excited SDOF system provides damping through

the dissipation of energy. The main complication in the calculation of the energy dissipated

by friction during experiments is that the friction force cannot be measured directly. Obtaining

the work done by the friction force is thus impossible. A solution that does not require the

friction force is found and subsequently three energy dissipation calculation methods are

developed. These methods are: the energy input method, the hysteresis method and the

analytical method. The different methods are explained in what follows. It is worth noting

that the Coulomb friction model can be used to accurately determine the energy dissipated by

friction, according to [7].

2.4.1. Energy input method

Steady-state conditions are assumed, so the amplitude of the response is constant. This in

turn means that the total energy in the system at the start and end of each response cycle

is the same, because if the energy would change, the amplitude would change as well. The

energy input per cycle must then be equal to the the energy dissipated per cycle by friction
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damping [19]. The energy input is the work done by the excitation force per cycle, and this

force can be measured during tests.

The energy input by the base excitation force per cycle can be evaluated as:

∆Ein =

∫
T

kY cos(ωt)ẋ dt (2.15)

With ∆Ein being the energy input per cycle, ẋ being the mass velocity and T being the time

duration of one cycle. To reduce the number of parameters, the non-dimensional form can be

obtained by substituting the non-dimensional time and displacement from Equation 2.5 and

2.6 (replacing P with kY ) into Equation 2.15 and dividing by kY 2:

∆Ein = ∆Efric =

∫
2π

x̄′ cos(τ) dτ (2.16)

With ∆Ein representing the non-dimensional energy input per cycle, ∆Efric representing

the non-dimensional energy dissipated by friction per cycle, 2π representing the length of

one dimensionless time period and x̄′ representing the dimensionless mass velocity. The

units check out, since the expression was divided by kY 2, and the unit of kY 2 is Newton

meter or Joule, which is the unit of energy. The friction energy dissipation per cycle can

thus be calculated with Equation 2.16. However, because the mass velocity x̄′ is hard to

measure during experiments and numerical differentiation of displacement measurements

is not accurate enough, the method needs to be adapted in order to be able to use it for

experiments.

2.4.2. Hysteresis method

By using the following identity:

x̄′ =
dx̄

dτ
(2.17)

The energy input method shown in Equation 2.16 can be rewritten as follows:

∆Efric =

∫
C

cos(τ) dx̄ (2.18)
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With C meaning one cycle of the mass motion x̄. Since cos(τ) is the forcing of the system and

x̄ the displacement of the mass, Equation 2.18 is the area inside the hysteresis loop of one

steady-state response cycle. Literature confirms that this area equals the energy dissipation

by Coulomb friction [19]. This calculation method is very easy to apply because it only requires

the mass and base motion, two displacements which can be measured during experiments or

are direct outputs of numerical simulations. This is a significant advantage of the hysteresis

method and it is therefore preferred over the energy input method.

2.4.3. Analytical method

To allow for a verification of the hysteresis method, which will be used in the experimental

investigation of this thesis, the analytical energy dissipation calculation method is developed.

It is based on Den Hartog’s solution explained in Section 2.3 and thus is only valid in the

continuous motion regime. The exact solution by Den Hartog incorporates the lag between

excitation and response through the phase ϕ, meaning that Equation 2.16 can be rewritten as:

∆Efric =

2π∫
0

x̄′ cos(τ + ϕ) dτ (2.19)

The integration bounds are 0 and 2π so one period is considered. Den Hartog’s assumptions

mentioned in Section 2.3 apply again. Since the response is anti-periodic, the velocity x̄′,

which is the derivative of the response, is anti-periodic as well. This means that the integration

bounds can be changed:

∆Efric = 2

π∫
0

x̄′ cos(τ + ϕ) dτ (2.20)

Applying the trigonometric identity cos(a + b) = cos(a) cos(b) − sin(a) sin(b), Equation 2.20

becomes:

∆Efric = 2

π∫
0

x̄′[cos(τ) cos(ϕ)− sin(τ) sin(ϕ)] dτ (2.21)

Differentiating the mass motion for the time interval [0, π] in Equation 2.10 with respect to τ ,

gives the analytical expression of the velocity:

x̄′ = −X sin(τ) + βU cos(τ) + β

r
sin
(τ
r

)
− βU cos

(τ
r

)
(2.22)
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Plugging Equation 2.22, 2.14 (phase angle), 2.12 (response function) and 2.13 (damping

function) into Equation 2.21 and simplifying finally gives the following expression for the analytical

energy dissipation:

∆Efric = 4βX (2.23)

Literature proposes the use of equivalent viscous damping for Coulomb friction to calculate

the energy dissipated per cycle. The dimensional energy dissipation according to literature is

4FX, with F being the amplitude of the friction force and X being the amplitude of the mass

motion [19, 20]. This corresponds flawlessly with the non-dimensional analytical method in

Equation 2.23.

2.5. Conclusion

This chapter has provided the necessary prerequisite knowledge for the analyses performed

in this thesis.

The Coulomb friction model, with and without stiction, has been discussed. Secondly, the

analytical solution for the continuous steady-state response of a harmonically excited SDOF

system with Coulomb friction derived by Den Hartog has been shown. Three methods for the

calculation of the energy dissipation by friction have been developed as well.

The most important outcome of this chapter is the hysteresis method which can be used

to evaluate the energy dissipation, both numerically and experimentally. This method can be

verified with the analytical method. These two dissipation calculation methods, together with

the governing equation of the SDOF system with Coulomb friction, will be used in the next

chapters of this report.



3
Numerical investigation of a Coulomb

friction damped system

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Numerical time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Explanation of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Steady-state time response . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Energy dissipation continuous motion . . . . . . . . . . . . . . . . . . 21
3.4.3 Energy dissipation continuous and stick-slip motion . . . . . . . . . . 24

3.5 Viscous damper validation and comparison . . . . . . . . . . . . . . . . . 25
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1. Introduction

This chapter carries out a numerical investigation of the steady-state time response and the

energy dissipated by friction per steady-state cycle of the harmonically excited SDOF mass-

spring system with Coulomb friction contact. The aim of this investigation is to provide a

numerical framework and validation for the experimental results that will be discussed in the

following chapter. Additionally, the goal is to gain insight into the friction behaviour and energy

dissipation performance and how these two properties depend on the excitation frequency and

friction force.

An algorithm that computes the time response of the dynamic system through numerical

integration is implemented, handling both continuous and stick-slip motion regimes. Numerical

time responses are evaluated for varying frequencies and friction forces to acquire a large data

15
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set. Afterwards, the friction energy dissipation of these numerical simulations is calculated with

the analytical and hysteresis method introduced in the previous chapter and the results are

compared. The hysteresis method is validated by applying it to the harmonically excited SDOF

mass-spring-dashpot system.

Section 3.2 discusses the solution method of numerical time integration and its problems

and limitations. The implemented numerical algorithm is explained in detail in Section 3.3. The

obtained numerical results, being the steady-state time response and the energy dissipation

of the system for both continuous and stick-slip motion, are presented in Section 3.4. Based

on these results, a detailed discussion of the friction and energy dissipation behaviour is

given. Lastly, Section 3.5 presents a SDOF viscous damped system to validate the hysteresis

method and compares the energy dissipation performance of the viscous damped system to

the performance of the Coulomb friction damped system.

3.2. Numerical time integration

Asmentioned in Section 2.3, onemethod to examine the dynamic behaviour of friction damped

mechanical systems is numerical time integration. This solution method will be used to solve

the governing equation of motion in Equation 2.9 of the SDOF model with Coulomb friction in

Figure 2.2.

The high nonlinearity of the Coulomb friction model, which is due to the discontinuity at zero

velocity where the friction force changes direction, causes some difficulty for the numerical

time integration approach. Furthermore, in the stick-slip motion regime, the transition between

sticking and sliding of the mass (zero and non-zero velocity) occurs very quickly and frequently.

In the case of a numerical solver with automatic step size, these numerous switches between

sticking and sliding phases drastically increase computation time. Numerical solvers with

fixed step size do not suffer from high computation times but lack accuracy [3]. This problem

regarding the discontinuities and swift changes between sticking and sliding phases is called

numerical stiffness. A simple technique to handle stiffness is applying an event-driven approach

that incorporates standard numerical integrationmethods. The event function stops the integration

sequence whenever the mass gets stuck and imposes new initial conditions for the next

integration sequence [8]. The implemented numerical algorithm explained in the next section

is also event-driven.
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The numerical time integration also covers the transient phase of the response of the SDOF

model with Coulomb friction contact. Since only the steady-state response is of importance

in this thesis, this increases computation time. This especially holds for low friction cases,

which are lightly-damped and thus have a long transient [3]. However, both high and low

friction systems will be explored in the numerical analysis, so the high computational costs

are accepted.

Numerical solutions are dependent on and limited by the friction model that is used. Even

though the Coulomb friction model is relatively simple, more advanced friction models have

their own limitations as well. In order to get a thorough and more complete understanding

of the dynamic behaviour of friction damped SDOF systems and their dissipative properties,

experimental results will be compared to and validated with numerical results based on the

Coulomb friction model.

3.3. Explanation of the algorithm

The aim of the implemented algorithm is to compute the time response of the SDOF Coulomb

friction damped system for a specific combination of frequency and friction ratio. Subsequently,

the energy dissipated per cycle by friction for this combination of r and β values can be

calculated with the energy dissipation calculation methods from Section 2.4.

The governing equation in Equation 2.9 is numerically integrated to find the solution. Whereas

continuous motions can be calculated with standard numerical integration methods, stick-slip

motions entail the problem of numerical stiffness, as explained in Section 3.2. An event-driven

approach is used to deal with this numerical stiffness. The algorithm uses a standard numerical

integration method and the event handles the transition between sliding and sticking phases

when certain imposed conditions are met. The numerical algorithm is visualized in a flowchart

in Figure 3.1 and the steps are explained below.

1. The time response of the SDOF system is fully governed by the frequency ratio r, friction

ratio β and the ratio between the static and kinetic friction force µ, three dimensionless

parameters introduced in Section 2.3. These parameters, together with the initial non-

dimensional displacement x̄0, initial non-dimensional velocity x̄′0 and the amount of excitation

periods Ncyc, are the input of the algorithm. Because dimensionless time is considered,

the duration of each cycle is 2π. The final time of the numerical integration τf then equals
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2πNcyc. Different frequency and friction ratios are investigated. As mentioned in Section

2.2, it is assumed that µ = 1. To make sure that a steady-state condition has been

reached, Ncyc = 100. The initial displacement and velocity have been set to zero.

Figure 3.1: Flowchart of the algorithm that computes the time response of the harmonically excited SDOF system
with Coulomb friction contact via numerical integration. Based on flowchart by Marino [2].

2. Given the initial conditions, it is first verified if the excitation force overcomes themaximum

friction force with the equation:

|x̄0 − cos τ0| > µβ (3.1)
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The force on the left-hand side is the amplitude of the sum of all the non-inertial forces

(including spring force and external excitation) acting in the frictional contact, the right-

hand side is the friction force [8]. Based on which force is greater, the sticking or sliding

phase will begin.

3. When the sliding phase takes place, there is no numerical stiffness since the motion

is continuous. The governing equation of the SDOF system with Coulomb friction is

integrated with the standard variable step numerical integration method Runge-Kutta,

RK45 for short. This method is supported by Python in the numerical solver function

solve_ivp from the Scipy package [21]. The integration is terminated if both event conditions

are met. These conditions are x̄′0 = 0 (velocity of the mass is zero) and, similar to

Equation (3.1), |x̄0 − cos τ0| ≤ µβ (excitation force is smaller than or equal to friction

force). When the event conditions are simultaneously satisfied, the mass is stuck. The

algorithm output, being (dimensionless) vectors of time, displacement and velocity, is

updated and the last entries of these vectors become the new initial conditions. If the

final time has not been reached yet, the algorithm goes back to step 1 and enters the

sticking phase.

4. If sticking of the mass occurs, the next point in time where the dynamic loading in the

contact overcomes the static friction force needs to be found. This is done by solving

the below equation with the Brent root-finding algorithm [22] implemented in the Python

function brentq from the Scipy package [21]:

|x̄0 − cos τ∗| − µβ = 0 (3.2)

After the time τ∗ where the mass gets unstuck is obtained, the initial conditions for the

next integration sequence are updated. The initial displacement stays the same and the

initial velocity becomes zero because the mass was stuck and thus stationary. The new

initial time becomes τ∗ + ϵ. A very small margin of ϵ is added so that the event does not

immediately terminate the next integration. When τ0 < τf , the numerical algorithm goes

back to the start and enters the sliding phase. Eventually the full numerical solution is

calculated through piecewise integration of the continuous motion parts.
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5. When the final time is reached, the algorithm has completed the numerical integration

and returns the full output, being the time, displacement and velocity vectors.

3.4. Results and discussion

To directly obtain the time response of the SDOF systemwith Coulomb friction, the dimensionless

displacement and time vectors of the numerical solution can be plotted against each other.

The analytical method and hysteresis method from Section 2.4 are used to obtain the desired

energy dissipation metrics from the numerical solution. This procedure is carried out for

different combinations of the r and β parameters.

3.4.1. Steady-state time response

To gain insight into the different motion regimes and corresponding characteristics, time frames

of the steady-state time response of several combinations of r and β are displayed in Figure

3.2. Each plot shows a different motion regime.

(a) Continuous motion, r = 0.7, β = 0.2 (b) Asymmetric non-sticking motion, r = 0.5, β = 0.2

(c) Two-stops stick-slip motion, r = 0.4, β = 0.3 (d) Four-stops stick-slip motion, r = 0.2, β = 0.3

(e) Multiple-stops stick-slip motion, r = 0.05, β = 0.4

Figure 3.2: Short time frame of the steady-state time response of the SDOF system with Coulomb friction for
various values of r and β, based on numerical results.
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The observed numerical solutions are in good agreement with numerical results obtained

by Marino [8] and analytical results by Riddoch et al. [11] for the same SDOF dynamic system.

As can be seen in Figure 3.2, the amount of stops during one cycle of stick-slip motion

increases with the friction ratio and decreases with the frequency ratio. The more stops a

cycle has, the steeper and shorter these stops are. The amplitude of the mass displacement

on the other hand decreases with friction and increases with frequency.

In addition, an asymmetric non-sticking time response is shown in Figure 3.2b (even though

the positive peaks seem flat, these are not stops). This is an interesting phenomenon since

all the other responses in Figure 3.2 are symmetric, which is expected because the sinusoidal

excitation is symmetric as well.

Current knowledge on asymmetric behaviour is limited to theoretical studies from amathematical

perspective. Considering an equivalent SDOF system with Coulomb friction for numerical

analysis, Licskó discussed asymmetric solutions [10] andCsernák et al. even found asymmetric

non-sticking responses similar to Figure 3.2b for µ = 1 [9]. These asymmetric non-sticking

solutions exist for the even sub-resonant frequencies when:

r =
1

2n
and β ≤ 1

4n2 − 1
(3.3)

where n = 1, 2, 3, . . . . The parameters of the asymmetric non-sticking solution in Figure 3.2b

satisfy Equation 3.3, because r = 0.5 means that n = 1 and β = 0.2 < 1
3 .

3.4.2. Energy dissipation continuous motion

The energy dissipation per cycle of the numerical solutions is calculated with the analytical

method (Equation 2.23) and the hysteresis method (Equation 2.18). The results of these two

methods are compared as well. Since the analytical formula is only valid in the continuous

motion regime, only continuous motions are considered.

Two hysteresis loops are illustrated in Figure 3.3 to better explain the application of the

hysteresis method. As the forcing or excitation ȳ is plotted against the displacement x̄, the

area inside this closed loop equals the non-dimensional energy dissipated by friction per cycle

[19]. The two-stop hysteresis loop clearly has a different shape than the continuous one.

For each numerical time response, one steady-state cycle can be assessed to determine the
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(a) Continuous motion, r = 0.7, β = 0.2 (b) Two-stops stick-slip motion, r = 0.4, β = 0.3

Figure 3.3: Hysteresis loop of one steady-state cycle of the SDOF Coulomb friction damped system for two
different motion regimes, based on numerical results. The red arrows denote the flow direction of the loop.

energy dissipation.

Friction ratio values ranging from 0.1 to 0.8 (β = 0.9 causes only stick-slip) and the according

frequency ratios for continuous motion are investigated. The limit values of r for continuous

motion for each β are calculated according to Marino [4], who derived expressions for the

boundary between stick-slip and continuous regimes for the SDOF system with Coulomb

friction contact based on Den Hartog’s work [17, 18]. The energy dissipation computed from

the numerical solutions has been plotted in Figure 3.4. Because only the continuous regime

is considered, the curves have different start and end points. An excellent agreement between

the analytical and hysteresis energy dissipation calculationmethods has been observed across

the entire parameter space. Other noticeable things are:

• The energy dissipation peak is at resonance. This is logical since the dynamic system

absorbs more energy the closer the excitation frequency is to its natural frequency.

• As expected, the higher the friction ratio and thus the friction force, the higher the energy

dissipation. This makes sense because greater forces result in more work done per

cycle. However, this principle only holds in general, since there are some exceptions for

β = 0.8 and r > 1.

• With higher friction, the energy dissipation curve shifts slightly towards the left of the

frequency range, similar to the dynamic magnification factor of SDOF systems with

viscous damping [23]. For a sufficiently high damping ratio ζ, the damped natural frequency

ωd = ωn

√
1− ζ2 is significantly lower than the undamped natural frequency ωn and



Chapter 3. Numerical investigation of a Coulomb friction damped system 23

Figure 3.4: Numerical evaluation of dimensionless energy dissipation per cycle for the SDOF systemwith Coulomb
friction contact for varying parameters r and β, continuous motion only: comparison between analytical method
(round markers) and hysteresis method (continuous lines).

thus the resonance peak is located at a lower frequency than ωn, where the excitation

frequency equals ωd. In the case of friction damping, the same shift occurs for high

friction ratios. This can be seen for β = 0.8; its peak is located to the left of r = 1.

A more in-depth comparison between the friction and viscous damped system will be

carried out in Section 3.5.

• There is an inversion to the right of the resonance peak where higher friction ratios do

not result in more energy being dissipated. β = 0.5 leads to the largest amount of energy

being dissipated by friction per cycle for r > 1. Any further increase of the friction ratio

brings about a reduction of energy dissipation. This inversion is a result of the curves

shifting towards the left for high friction ratios, as explained above. The high frequency

tails of the curves cross each other, causing the inversion.

• At high frequency ratios, that is r > 1.5, the difference in energy dissipation between

the various curves shrinks. Increasing the friction force at high frequencies does not

significantly enhance dissipation.
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3.4.3. Energy dissipation continuous and stick-slip motion

To get a complete overview of the energy dissipation behaviour of the SDOF system with

Coulomb friction, including the stick-slip motion regime, the hysteresis method is applied to

calculate the energy dissipation of the numerical time response. The numerical simulations

were carried out for values of r ranging from 0 to 2.5 and values of β ranging from 0.1 to 0.9.

The obtained energy dissipation curves are shown in Figure 3.5.

Figure 3.5: Dimensionless energy dissipation per cycle for the SDOF system with Coulomb friction contact for
varying parameters r and β, based on numerical simulations: continuous motion (continuous lines) and stick-slip
motion (round markers).

Each curve transitions smoothly from the stick-slip regime to the continuous regime and

vice versa. The same characteristics listed under Figure 3.4 can be observed here as well,

including the inversion and leftward shifts. New striking features of the plot are:

• Within the low frequency interval 0 < r < 0.3 in the stick-slip motion regime, wavy and

bumpy patterns can be seen. Changes in the number of stops per cycle, due to merging

and splitting of the sticking sections, causes this bumpy behaviour [9].

• The curve corresponding to β = 0.9 is moved considerably more towards the lower

frequencies compared to the other curves.
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• Between the bumpy stick-slip region and r = 1, changes in the slope of the energy

dissipation curves are visible when the friction ratio rises. A bump develops, where the

slope is rather steep at first, diminishes and then increases again.

• For higher friction cases, there are two stick-slip regions. These two regions are located

at low and high frequencies, respectively.

3.5. Viscous damper validation and comparison

In this section, the hysteresis energy dissipation calculationmethod (Equation 2.18) is validated

by applying it to a viscous dampedSDOF system. Afterwards the energy dissipation performance

and properties of the Coulomb friction damper can be compared to those of themore conventional

viscous damper.

Apart from the viscous damper that replaces the friction contact, the harmonically excited

SDOF system with viscous damping displayed in Figure 3.6 is equivalent to the SDOF system

with Coulomb friction in Figure 2.2 that is the main focus of this thesis.

Figure 3.6: Harmonically excited SDOF system with viscous damping [2].

It is a mass-spring-dashpot system with mass m, spring stiffness k and damping coefficient c

subjected to a harmonic load of frequency ω and amplitude P . The equation of motion of this

system is:

mẍ+ cẋ+ kx = P cosωt (3.4)

If we introduce the non-dimensional time τ from Equation 2.5 and the non-dimensional mass

displacement x̄ fromEquation 2.6 and substitute them into Equation 3.4, the following dimensionless
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governing equation is obtained:

r2x̄′′ + 2ζrx̄′ + x̄ = cos τ (3.5)

With ζ being the damping ratio of the system, related to the damping coefficient according to

the expression c = 2ζmωn.

An analytical expression of the energy dissipated per cycle by the viscous damper in the

mass-spring-dashpot system of Figure 3.6 is available in literature [24]:

∆Evisc =

∫
T

cẋ2 dt (3.6)

With T representing one period and ẋ representing the velocity of the mass. This formulation

allows for a direct comparison to the hysteresis method. The expression can be made non-

dimensional by inserting the non-dimensional time and displacement again and multiplying

with k/P 2 (which is equivalent to the division by kY 2 in Equation 2.16):

∆Evisc = 2ζr

∫
2π

x̄′2 dτ (3.7)

With 2π being the length of one dimensionless time period and x̄′ representing the dimensionless

mass velocity. Numerical simulations of the governing equation (Equation 3.5) are performed

in order to get time response data on which the analytical energy dissipation formula from

literature and the hysteresis method can be applied. The SDOF viscous damped system

introduces no numerical stiffness, so events and stopping conditions are not necessary. The

solve_ivp function from the Scipy package [21] is used again for the numerical integration,

using the RK45 integration method. All initial conditions are set to zero and Ncyc = 50. The

same frequency ratio range, 0 to 2.5, is considered, as well as ζ values ranging from 0.1 to 0.9.

One steady-state cycle is used for the calculation of the energy dissipation. The computed

energy dissipation curves of the viscous damped system are illustrated in Figure 3.7. The

plot shows an exceptional agreement between the analytical formula from literature and the

hysteresis method in the entire parameter space. The viscous damper analogy confirms the

validity and usability of the hysteresis energy dissipation calculation method. Moreover, it can
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be seen that:

• When looking at the curves corresponding to higher damping ratios, their peaks are

shifted gradually towards lower frequencies. This is due to the damped natural frequency

of the system, as explained in Section 3.4.2. These shifts cause inversions of the curves.

Figure 3.7: Dimensionless energy dissipation per cycle for the SDOF system with viscous damping for varying
parameters r and ζ, based on numerical simulations: comparison between analytical formula from literature
(continuous lines) and hysteresis method (round markers).

• There are two inversion regions where the vertical order of the various curves is reversed.

For lower and higher values of the parameter r, a higher damping ratio ζ leads to more

energy being dissipated per cycle. On the other hand, around r = 1, lowering the

damping ratio increases the energy dissipation. Dai et al. also found these inversions in

their study [13].

• Changing the damping ratio of the system does substantially alter the energy dissipation

around the resonant frequency, whereas at the lower and high ends of the frequency

range such a change results in a marginal alteration of the energy dissipation.

Taking into account Figure 3.7 and Figure 3.5, the energy dissipation properties of friction

damped and viscous damped SDOF systems can be compared. One feature that both cases
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have in common is that with increasing damping or friction ratio, the peak of the respective

dissipation curve moves to the left. Both friction and viscous damped systems have inversions

because of the curves shifting towards lower frequencies.

Regarding the energy dissipation performance, the viscous damper is more effective at

dissipating energy close to the resonance frequency and less effective at dissipating energy

at low and high frequencies, given the curves being relatively close to each other in those

regions. This is logical, since the energy dissipated by the viscous damper depends on the

velocity, which is largest near resonance. The Coulomb friction contact also dissipates less

energy in the high frequency region given the marginal differences between the curves. On

the other hand, it is quite effective at dissipating energy at sub-resonant frequencies. The

increase in dissipation between the curves at r < 1 for increasing friction forces in Figure 3.5

is evidence of this property. The work done by Dao et al. confirms these differences in energy

dissipation performance between the friction and viscous cases [13].

3.6. Conclusion

The steady-state time response and energy dissipation performance of a SDOF Coulomb

friction oscillator subjected to harmonic base excitation have been numerically analyzed in

this chapter.

An algorithm has been implemented to calculate the dynamic time response of the SDOF

system with Coulomb friction contact for any combination of the parameters r and β using

numerical time integration. The numerical approach is event-driven so that certain events and

conditions enable the simulation to smoothly transition from sticking to sliding phases and vice

versa in the stick-slip motion regime. The complete time response of numerically stiff stick-slip

motions is computed via piecewise integration of the sliding phases.

Regarding the steady-state time response, continuousmotion and various stick-slipmotions

have been found. The different time responses are consistent with results from literature

[8, 11]. In addition, an asymmetric non-sticking motion has been observed for parameters

corresponding to another study [9].

Considering only the numerical solutions in the continuous motion regime, the energy

dissipated by friction per cycle evaluated with the analytical method matches flawlessly with

the energy dissipation evaluated with the hysteresis method. The hysteresis method properly
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shows the energy dissipation in the stick-slip regime, depicting bumpy behaviour for r < 0.3

due to the number of stops per cycle changing. When it comes to the energy dissipation metric,

the main findings are:

1. Friction energy dissipation increases towards the resonance frequency, as to be expected.

Increasing the friction force magnifies dissipation as well, until certain friction ratios.

Higher friction mainly enhances the energy dissipation significantly for r < 1.

2. There is an inversion for r > 1; for these higher frequencies, increasing the friction ratio

only amplifies the energy dissipation until a certain value of β has been reached. Further

increasing β beyond this limit value decreases the energy dissipated by friction.

3. For relatively high friction forces, the energy dissipation curve is shifted towards lower

frequencies due to the damped natural frequency of the system becoming lower.

The hysteresismethod is validated by applying it to the numerical response of a harmonically

excited SDOFmass-spring-dashpot system. The energy dissipation according to the hysteresis

method is in excellent agreement with the results from the analytical formula available in

literature [24]. Comparing the performance of friction and viscous damped systems, a viscous

damper is more effective at dissipating energy near resonance, whereas a friction damper is

better at dissipating energy in the frequency region below resonance.

All in all, the numerical results of this chapter help to better understand the friction behaviour

and energy dissipation properties of the SDOF system with Coulomb friction. It has to be noted

that these results are heavily reliant on assumptions and models, such as the relatively simple

Coulomb friction law. Even though this may limit the validity of the numerical results, they are

still useful grounds for the next chapter and can be compared to experimental results.
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4.1. Introduction

This chapter presents an experimental investigation of the friction behaviour and energy dissipation

performance of a SDOF system subjected to harmonic base excitation for three different

contact materials. The goal of this investigation is to obtain the time response and energy

dissipation of each contact material for varying excitation frequencies, friction forces and

time scales in order to compare and understand the performance and characteristics of the

materials. Secondly, this chapter aims to establish a link between the theoretical results from

Chapter 3 and experimental observations to substantiate the findings of this research.

30
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A single-storey shear frame is used to carry out the experiments. The considered contact

configurations are steel-to-steel, rubber-to-steel and aramid-to-steel. To cover two different

time scales, the investigation is split up into short-term and long-term experiments. Short-

term and long-term results for the frictional behaviour and energy dissipation performance of

the different materials are analyzed and compared to each other, as well as to the numerical

results.

The procedure and test setup of the experimental investigation is explained in detail in

Section 4.2. Section 4.3 presents the outcome of the short-term experiments regarding the

friction behaviour and dissipation of the different materials, including a comparison to the

numerical results. Subsequently, the long-term test results are shown and compared to the

findings of the previous section in Section 4.4.

4.2. Experimental test setup and procedure

In this section, the test setup that is used to carry out the experiments of this research is

presented. In addition, the chosen contact materials and the procedure of the experimental

campaign are described as well.

4.2.1. Test apparatus

A single-storey shear frame that consists of two metal plates, one base plate and one top plate

which are connected to each other with four metal stanchions, is used for the experimental

campaign of this thesis. The setup is presented in Figure 4.1.

The steel disc that presses on the surface of the top plate initiates a friction force in the

system through the line of contact between the plate and disc. The steel disc is connected to

a rod with a steel fork. This fork allows the disc to rotate around the longitudinal axis of the rod

so that the surface of the disc is pressed against the surface of the top plate as flat as possible,

with no space in between. The pinned rod has brass weights attached to it and serves as a

counterweight mechanism; by changing the position of the counterweights along the bar or

adding or removing weights, the normal force and thus the friction force that the disc exerts

on the top plate can be adjusted. The fixed wall configuration is considered by pinning the rod

of the counterweight system to the external steel frame. The test rig is the same as the one

Marino used in his experimental work [8], save for the disc and fork which are new. To better
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Figure 4.1: Photo of the test setup used for the experiments. The system can be harmonically excited through
horizontal movement of the base plate, which is connected to an electric motor via a Scotch-yoke mechanism. A
normal force is applied to the top plate by an externally fixed counterweight mechanism with a disc.

understand the test setup, a schematic representation from Marino [8] is shown in Figure 4.2.

Figure 4.2: Schematic representation of the test rig according to Marino [8].

The rotation of the rotor (DKM-9PBK) is converted to the horizontal harmonic motion of the

base plate through a Scotch-yokemechanism, which excites the dynamic system. The rotation

speed of the motor, and thus the excitation frequency of the base plate, can be regulated with

an inverter motor speed regulator (RS Pro RS510). The amplitude of the base plate motion is

fixed by not changing the location of the Scotch-yoke on the rotor. The displacements of both
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the top (mass displacement) and base plate (excitation) are measured during experiments by

two laser displacement sensors (model optoNCDT 1420, measuring range up to 50 mm [25]),

which are connected to the external steel frame.

It is worth mentioning that Marino verified that the single-storey steel frame used for the

experimental investigation can be appropriately represented by a SDOF model [8]. This is

essential because the numerical results are based on a SDOFmodel with Coulomb friction and

it needs to be possible to compare them to the experimental results. The top plate represents

the mass, the base plate represents the oscillating wall, the four stanchions represent the

spring and the line of contact between the top plate and the disc is the friction contact.

4.2.2. Contact materials

The three contact materials that are investigated are steel, rubber and aramid. More specifically,

the different friction contact configurations are steel-to-steel, rubber-to-steel and aramid-to

steel. Steel acts as a baseline in each contact to enable proper comparison between the

three materials.

The steel grade of the disc is S355 structural steel. Both the steel disc and steel top plate

are polished. Steel was chosen because it is an easily available and abundant construction

material. It is common in friction dampers and steel-to-steel is a very common combination

for sliding and rolling contacts in engineering systems [26]. It is easily mountable since the

contact can be created by letting the steel disc rest on the steel top plate.

The rubber used for experiments is a natural rubber (NR40 Luna Para rubber plate from

ERIKS [27]). Rubber was chosen as a contact material because it is used in many technical

applications where large frictional forces occur, such as rollers and laminated isolation bearings

[28]. It is flexible under lateral forces; this could introduce a lag effect in the time response. An

interesting property of rubber friction is that energy is partially dissipated via internal friction of

the rubber particles [29]. Hard rubbers in particular have a relatively high energy dissipation

capacity and abrasion resistance [12]. A flat rubber strip is mounted to the surface of the top

plate with double-sided tap, see Figure 4.3. The tape was chosen such that the adhesion is as

strong as possible so that the connection can be considered rigid, while still making removal

of the tape possible. The steel disc of the counterweight rod is put on top of the rubber strip

to create the frictional contact.
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(a) Fixing double-sided tape (b) Peeling of tape seal (c) Attaching rubber strip

Figure 4.3: Mounting the rubber strip on the surface of the steel top plate.

The third contact material, aramid, is a woven material of synthetic fibres commonly used

in (automotive) brake-line pads. Because of their technological significance, it is suggested

by Cabboi that brake-line materials are studied in friction related research [30]. Similarly to

the rubber case in Figure 4.3, a strip of aramid is attached to the top plate with double-sided

tape and the steel disc rests on this strip.

4.2.3. Test procedure

The experimental campaign is split up into two parts: short-term and long-term experiments.

Short-term tests are carried out to achieve a large parameter space of various frequency ratios

and friction forces. The goal of the long-term tests is to capture long-term effects and the

variation of the material performance over time.

The short-term experiments cover frequency ratios from r = 0.05 to r = 2.5, skipping a

frequency band near resonance to avoid damage to the test rig due to excessive response

amplitudes. At higher frequencies, the frequency step size between different measurements is

increased because based on the numerical results and observations during tests, not much is

changing in this region. The friction force is changed by altering the counterweight mechanism.

Since the friction force cannot be measured directly, the weight of the disc on the material

underneath is measured with a scale. Measuring the disc weight is equivalent to measuring

the normal force exerted by the disc. For each material, five normal forces are considered.

For aramid and steel normal forces of 1.0 N, 1.25 N, 1.5 N, 2.35 N and 3.2 N are used, and for

rubber normal forces of 0.5 N, 0.75 N, 1.0 N, 1.25 N and 1.5 N. The rubber normal forces are

lower because for 2.35 N and 3.2 N the mass got stuck before the end of the test, but a set of

five different normal forces was still desired. Each short-term test lasts 90 seconds, starting

with turning on the harmonic excitation and thus including the transient.
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The long-term experiments last 30 minutes each, including the transient. Since these time

frames are quite long, only one normal force of 1.25 N is considered. One lower frequency

of r = 0.3 and one higher frequency of r = 1.2 are investigated, so that both continuous and

stick-slip motions can be observed for a long duration. Fewer parameter values are required

to limit the execution time of the experiments.

The surfaces of the contact materials and the steel disc are carefully cleaned after each

test to remove debris.

4.2.4. Post-processing measurements

After performing the experiments and acquiring the signals, consisting of the mass motion x

(top plate displacement vector vs. time vector) and base motion y (base plate displacement

vector vs. time vector), the signals need to be post-processed in order to be able to evaluate

the desired metrics regarding energy dissipation and frictional behaviour.

The natural and driving frequencies are necessary to estimate the frequency ratio of each

test (Equation 2.7). The (angular) driving frequency ω can be changed by adjusting the input

frequency of the inverter. ω can be found by computing the FFT (Fast Fourier Transform) of

the base motion and analyzing its frequency spectrum. The peak of this spectrum is located

at the driving frequency f = ω
2π . To obtain the natural frequency of the test rig, free vibration

of the mass is induced by displacing the top plate and letting it freely vibrate. Subsequently,

the FFT of the mass motion is computed and the peak of its frequency spectrum is positioned

at the natural frequency. This has been done several times and averaging the results gives

fn = ωn
2π = 3.126 Hz. By using the FFT and frequency spectra, the frequency ratio of each

test can be estimated. To make the peaks in the frequency spectra more accurate, zero-

padding and the Hanning window are used to process the signals to reduce spectral leakage

and increase the frequency resolution [31].

The mass motion x and base motion y need to be made non-dimensional in order to

compare them to numerical results and to be able to apply the hysteresis method to compute

the non-dimensional energy dissipation. x and y are made dimensionless by dividing them by

the amplitude of the base motion Y (Equation 2.6, replacing P with kY 2 gives a division by Y ).

Non-dimensional time is obtained by multiplying the time vector t with the driving frequency ω

(Equation 2.5).
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4.3. Short-term experiments

After performing the short-term experiments for the frequency ratios and normal forcesmentioned

in Section 4.2.3, the friction behaviour and energy dissipation properties of the materials can

be examined. The friction behaviour can be analyzed by looking at the time response of

the mass (mass motion), whereas the energy dissipation performance can be studied after

applying the hysteresis method to one cycle of steady-state motion. The first 20 seconds of

the time response have been cut off to skip the transient.

4.3.1. Friction behaviour

For all three materials, continuous as well as multiple stick-slip motions have been seen. The

rubber and aramid stick-slip responses have no more than two stops per cycle, while stick-slip

responses with more than two stops per cycle do occur for the steel-to-steel contact. This

interesting difference in friction behaviour could be important for identifying the underlying

friction law of the sliding contacts. Cabboi et al. compared the Coulomb friction law to the

rate-and-state Dieterich-Ruina friction law and found that for r = 0.1, µs ≥ µk and certain

parameters of the rate-and-statemodel, the Dieterich-Ruina law is unable to achieve intermediate

stops, leading to a stick-slip motion with two stops. The Coulomb law on the other hand is

able to produce a multiple stops stick-slip motion for similar parameters [32]. Looking at the

experimental stick-slip responses, this might suggest that the friction behaviour of aramid and

rubber is better described by the rate-and-state Dieterich-Ruina friction law than the Coulomb

friction law and vice versa for steel. The numerical results reinforce the suggestion that

the Coulomb model is more suitable for steel than for aramid and rubber, since Figure 3.2

also shows stick-slip motions with more than two stops per cycle. Nonetheless, this inverse

approach of friction law identification needs to be used with caution because mistakes are

easily made.

Furthermore, the beating phenomenon has been observed for low friction cases and near

the resonant frequency. Examples of steady experimental time responses can be seen in

Figure 4.4a and 4.4b. Unsteady signals have also been observed however, see Figure 4.4c

and 4.4d for examples.

Friction is a highly complex physical process with lots of factors influencing its behaviour,

as opposed to the friction models and numerical simulations that simplify it. Because of
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(a) Rubber-to-steel contact, normal force = 1.5 N, r = 0.3 (b) Aramid-to-steel contact, normal force = 1.5 N, r = 0.75

(c) Steel-to-steel contact, normal force = 1.5 N, r = 1.25 (d) Steel-to-steel contact, normal force = 2.35 N, r = 0.15

Figure 4.4: Examples of steady (a,b) and unsteady (c,d) experimental time responses.

this, unsteady and irregular experimental responses are expected. When comparing the

experimental and numerical responses, Figure 4.4a and 4.4b are similar in shape to Figure

3.2c and 3.2a, respectively. Other steady experimental responses also correspond well with

numerical results. On the other hand, unsteady motions such as Figure 4.4c and 4.4d are

very different from the numerical solutions in Figure 3.2. This implies that the Coulomb friction

model is suitable for describing regular motions, but cannot capture unsteady friction behaviour.

To quantify the irregularity of the frictional behaviour and to gain insight into how frequency

and friction force affect this irregularity, the so-called irregularity index has been developed.

The irregularity index of a signal is evaluated as:

1

Ncyc − 1

Ncyc−1∑
j=1

(∑Np

i=1 |xj+1,i − xj,i|∑Np

i=1 |xj,i|

)
(4.1)

With Ncyc the number of cycles and Np the number of data points in one cycle. This index

measures the irregularity of the time response. It is the averaged normalized difference

between the points of one cycle and the points of a subsequent cycle for the entire signal.

The higher the irregularity index, the more irregular the experimental time response is. The

irregularity index of every short-term experiment has been calculated and is visualized in a

color plot in Figure 4.5. The limit value of the color scale is the maximum occurring irregularity

index minus 0.1 to increase the contrast between the other colors and magnify the differences
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for clarity. When looking at the color plot of the irregularity index, several things can be noted:

Figure 4.5: Irregularity index of the short-term experiments of all three contact materials. Frequencies near
resonance have been skipped, hence the white space and red dotted lines.

• Higher normal forces and thus higher friction forces generally cause the experimental

time response to be more unsteady, especially for the steel-to-steel contact.

• Higher values of r also increase the irregularity index, r = 2.3 in particular. However,

this irregularity is mainly attributed to the base excitation, which is less harmonic at high

frequencies due to the fast rotation speed of the motor.

• Some stick-slip behaviour of the steel-to-steel contact is quite unsteady for r ≤ 0.15 and

normal forces ≥ 1.5 N. Figure 4.6 shows an example of this irregular stick-slip motion.
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• The frictional behaviour of aramid is very regular and constant.

• The time response of the rubber contact is very irregular in the high frequency region, but

this is partially due to vertical bouncing of the steel disc on the rubber strip at relatively

low normal forces (or disc weights).

Figure 4.6: Irregular multiple-stops stick-slip motion of the steel-to-steel contact for r = 0.05 and normal force
= 1.5 N. The number of stops per cycle and the amplitude are changing.

Material properties that influence the irregularity of the response are the coefficient of

friction and resistance to abrasion. This is because the friction coefficient is directly related to

the friction force. Moreover, a wear resistant contact material tends to show regular behaviour

since its surface is not altered during sliding. Figure 4.5 implies that aramid has a low friction

coefficient and high resistance to wear, for steel and rubber it is the opposite. The low friction

coefficient of aramid is also found in other studies [33–35].

Regarding the frictional behaviour of the rubber-to-steel contact, interesting bumps and

tilted peaks in the experimental response have been observed. These characteristics are

depicted in Figure 4.7.

(a) Normal force = 1.5 N, r = 0.2 (b) Normal force = 0.5 N, r = 0.3

Figure 4.7: Experimental time response of the mass for the rubber-to-steel contact.

These peaks and bumps could be a result of the elasticity of the rubber which causes a lag

effect. Due to the elasticity of the rubber the top of the strip can move slightly with respect to

the bottom, so when the motion of the steel disc changes direction, the rubber strip causes the
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steel top plate to lag behind the disc movement. Overall, the short-term frictional behaviour of

rubber is quite consistent.

4.3.2. Energy dissipation performance

The dimensionless energy dissipated by friction per cycle for each contact material is plotted in

Figures 4.8, 4.9 and 4.10 for varying normal forces and frequency ratios. The last steady-state

cycle of the 90 second time response of the mass is used to evaluate the energy dissipation

of the rubber and aramid cases according to the hysteresis method. To make the energy

dissipation curves of the steel-to-steel contact slightly smoother, the hysteresis method is

not applied to the last cycle but to each full cycle in the last 15 second time frame instead,

averaging the result. For the rubber and aramid this averaging did not change the results so

for the sake of simplicity the last cycle is considered.

Figure 4.8: Dimensionless energy dissipation per cycle for the steel-to-steel contact for varying values of r and
normal force, based on short-term experimental results.

When looking at the curves of the materials it can be noted that the energy dissipation

enhances near resonance and is proportional to the normal force. This is expected, since

a higher normal force results in a higher friction force. None of the energy dissipation plots

display the distinct bumpy behaviour in the stick-slip motion regime of the numerical dissipation

curves in Figure 3.5. It is apparently difficult to capture these bumpy patterns experimentally.

It is also worth mentioning that the values of the experimental energy dissipation and the
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dissipation curve shapes are generally in good agreement with numerical results across the

whole parameter space.

For the steel-to-steel contact, increasing the normal forces only increases the energy being

dissipated by friction up until a certain point. This is evident by the fact that the differences

between subsequent curves become smaller with higher normal force, especially at higher

frequencies. The orange and red curves, corresponding to a normal force of 2.35 N and 3.2 N

respectively, are even reasonably similar. The numerical results in Figure 3.4 and 3.5 illustrate

the same feature of the dissipation curves getting closer to each other. This suggests that the

experimental curves shift leftward with higher friction due to the damped natural frequency,

just as the numerical curves. Additionally, The curves become less smooth as friction rises.

Finally, the bump in the curves at frequencies below resonance observed for the numerical

results appears to develop here as well.

Figure 4.9: Dimensionless energy dissipation per cycle for the aramid-to-steel contact for varying values of r and
normal force, based on short-term experimental results.

Considering the energy dissipation plot for aramid in Figure 4.9, it can be seen that the

energy dissipated per cycle for the three lowest normal forces is almost identical for all values

of r. Nonetheless, the energy dissipation performance is enhanced when further increasing

the normal force to 2.35 N and 3.2 N. The lines in the graph are also quite continuous, in line

with the consistent frictional behaviour of the aramid-to-steel contact discussed in the previous

section.
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Figure 4.10: Dimensionless energy dissipation per cycle for the rubber-to-steel contact for varying values of r and
normal force, based on short-term experimental results.

The energy dissipated by friction for the rubber-to-steel contact keeps increasing in the

frequency region below resonance when amplifying the normal force. When looking at the right

side of the resonance peak however, the differences between subsequent curves diminish with

higher normal force, similarly to the steel-to-steel contact. This is evident from the orange and

red curves in Figure 4.10, which are fairly identical. Furthermore, the red curve depicts the

same bump to the left of the resonance peak as the numerical energy dissipation results in

Figure 3.5.

A final comparison between the experimental energy dissipation performance of the three

different contact materials is made in Figure 4.11, based on the normal forces they have in

common. When looking at these graphs, the contact material with the best energy dissipation

performance is rubber, followed by steel and then aramid. Since the kinetic friction coefficient

is the predominant material property that affects energy dissipation (since energy is only

dissipated by friction during the sliding phase [32]), the performance comparison suggests that

rubber has relatively the highest kinetic friction coefficient, followed by steel and aramid. The

energy dissipation of rubber is augmented due to its viscous material properties and internal

friction [29]. Work done by Latour et al. shows that the friction behaviour of a hard-rubber-

to-steel contact is stable, while the behaviour of a steel-to-steel contact is unstable. The

energy dissipation capacity of the hard-rubber-to-steel contact is quite high [12]. The obtained
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(a) Normal force = 1.0 N

(b) Normal force = 1.25 N

(c) Normal force = 1.5 N

Figure 4.11: Comparison between the energy dissipation performance of the steel-to-steel, aramid-to-steel and
rubber-to-steel contact for different normal forces, based on short-term experimental results.

experimental results match fairly well with this study.
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4.4. Long-term experiments

The frictional behaviour and energy dissipation ability of the different contact materials is

also investigated based on long-term experiments to take their long-term performance into

consideration. The hysteresis method is used again to compute the non-dimensional friction

energy dissipation per steady-state cycle. The transient phase is skipped by deleting the first

20 seconds of the time response.

4.4.1. Debris and wear

A factor of great importance to the long-term performance of the friction contact materials is

wear and the formation of debris. Because of the constant sliding under friction, the surface of

the contact materials can degrade and wear down and debris can form due to material being

scraped off the surface. Figure 4.12 presents the line of contact between the disc and the

friction material after a long-term experiment to show possible wear and debris.

(a) Steel-to-steel contact

(b) Rubber-to-steel contact

(c) Aramid-to-steel contact

Figure 4.12: Pictures of the frictional contact in the test rig for the different materials after performing a long-term
test. First the yellow area is zoomed in on, then the red area, which is the line of contact between the steel disc
and the material below.

Wear in the form of scratches at the bottom of the line of contact can be seen for the steel-
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to-steel case. This is due to the alignment between the surfaces of the steel disc and top plate,

which is never perfectly flat in practice but slightly tilted. This causes scratches on the side of

the top plate that is closer to the disc. Even though this is a limitation of the test setup for the

long-term experiments, the experimental results of the steel contact should not be disregarded.

Measured time responses are reasonably steady and comparable to the responses of other

contact materials. Moreover, the steel-to-steel line of contact was initiated with extra care,

after proper cleaning of the surfaces. Excessive wear of steel after cyclic loading is also found

in reference [6].

Rubber and aramid on the other hand are more flexible and soft, allowing for a more flat

alignment between the steel disc and the contact material. The rubber strip shows a black

print that outlines the line of contact. This shape is caused by wear and the pressure of the

disc. Some rubber debris, similar to the material coming off a pencil eraser when you use it,

is also visible. The aramid strip shows no signs of abrasion at all.

4.4.2. Friction behaviour

Two frequency ratios (r = 0.3 for the stick-slip motion regime, r = 1.2 for the continuous

motion regime) and one normal force of 1.25 N are considered for this part of the experimental

campaign, resulting in two 30minute time responses per contact material. Themost noticeable

characteristics of the observed long-term frictional behaviour of the different contact configurations

are presented in Figure 4.13.

The complete long-term asymmetric time response of the steel-to-steel contact, depicted in

Figure 4.13b, shows a highly variable motion. The steady-state solution appears to be multi-

stable, meaning that multiple stable solutions exist. The exact origin of these multi-stable

solutions is unknown, but physical agents of the friction process cause the time response

to switch between these solutions. These switches are visible at the start of the signal in

Figure 4.13b; the amplitude of the asymmetric displacement alternates from the positive to

the negative vertical axis. Figure 4.13a illustrates the motion for r = 0.3 on a shorter time

scale, displaying random bumps and secondary stops.

It has been found that the amount of stops per cycle for the stick-slip motion of the rubber-

to-steel and steel-to-steel contact changes during the test. The rubber time response shows

several irregular peaks and stops in Figure 4.13c and has a fluctuating amplitude in Figure
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(a) Steel-to-steel contact, r = 0.3 (b) Steel-to-steel contact, r = 0.3, zoomed out

(c) Rubber-to-steel contact, r = 0.3 (d) Rubber-to-steel contact, r = 1.2

Figure 4.13: Examples of long-term experimental time responses for normal force = 1.25 N.

4.13d. In contrast, the observed long-term time response of aramid is very stable and regular.

The long-term time responses for r = 1.2 correspond generally well with the short-term

and numerical responses, as well as the aramid response for r = 0.3. In contrast, the long-

term friction behaviour of steel and rubber is very different and more irregular, especially the

stick-slip motion. This difference in regularity of the friction behaviour is caused by various

long-term effects, such as abrasion and debris formation.

4.4.3. Energy dissipation performance

The non-dimensional friction energy dissipation per cycle during the long-term experiments for

the three materials is visualized in Figure 4.14 and 4.15, for stick-slip motion and continuous

motion respectively. These plots show how the energy dissipation performance of the different

contact materials changes over time. The energy dissipation of one cycle of the long-term

response is computed with the hysteresis method, with a ten second interval between each

analyzed cycle.

When looking at the long-term energy dissipation in Figure 4.14 and 4.15, it can be seen

that the performance of steel and rubber is quite inconstant, whereas the performance of

aramid is consistent. This distinction in consistency is in line with the friction behaviour results

discussed in Section 4.4.2.

The long-term performance of aramid for r = 0.3 in Figure 4.14 shows a constant trend, the
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Figure 4.14: Dimensionless energy dissipation per cycle for the different contact materials for r = 0.3 and normal
force = 1.25 N, based on long-term experimental results. Dotted trend lines are included.

steel energy dissipation trend slightly increases and the rubber trend line slightly decreases.

Apart from the short-term energy dissipation of rubber being marginally larger, the long-term

dissipation values illustrated in Figure 4.14 are overall in good agreement with the short-term

experimental results.

Figure 4.15: Dimensionless energy dissipation per cycle for the different contact materials for r = 1.2 and normal
force = 1.25 N, based on long-term experimental results. Dotted trend lines are included.

In Figure 4.15, the long-term performance for continuous motion of aramid displays a

slightly decreasing trend, steel has an increasing trend line and the rubber dissipation trend

increases even more. The long-term energy dissipation results reported in Figure 4.15 concur

with the short-term experimental results.
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Finally, it is interesting to hypothesize on the long-term effects that influence the performance

and how they provoke the change in energy dissipation over time. Fan et al. show that contact

surfaces can flatten or roughen due to wear, depending on sliding speed and contact pressure

[36]. The increased surface roughness is caused by the formation of new asperities; micro

peaks on the surface that enhance friction. However, the asperities can also be sheared and

pulverized, forming debris that can fill the valleys between the asperities. This reduces the

ploughing effect of the asperities. If enough debris fills the valleys and covers the contact

area, a continuous friction film which acts as a lubricant is created. It is evident that wear

and debris can either lead to a higher or lower friction coefficient, and this definitely plays an

important role in the fluctuation of the energy dissipation seen in the plots.

4.5. Conclusion

In this chapter, the friction behaviour and energy dissipation performance of a harmonically

base-excited SDOF system with friction contact have been experimentally investigated for

various contact materials .

A single-storey frame test setup has been used to carry out the experiments. The system

is excited through harmonic base excitation and the friction contact is initiated between the

top plate and an externally fixed steel disc. The contact material can be changed by mounting

a material strip on the top plate. The different contact configurations that are considered are:

steel-to-steel, aramid-to-steel and rubber-to-steel. The limitation of the steel-to-steel contact

regarding asymmetric wear has also been discussed, but this does not completely disprove

the validity of the measurements and test rig. The experiments consist of short-term tests for

different frequency ratios and friction forces and long-term tests for fewer parameter values.

The response metrics that are analyzed, are: the steady-state time response, the irregularity

index (only for the short-term experiments) and the energy dissipation per cycle.

For the short-term tests, it was found that rubber and aramid stick-slip responses have

a maximum of two stops per cycle, whereas steel has multiple-stops motions. This might

indicate that the Coulomb model fits the steel friction behaviour better than the rubber and

aramid friction behaviour, at least in the stick-slip regime. The irregularity index illustrates that

higher friction generally leads to a more irregular response. Additionally, the index reveals

highly irregular behaviour of the steel-to-steel contact in a certain domain of the stick-slip
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regime. The short-term time response of rubber depicts features that could be a result of the

elasticity and lag effect of rubber. For all contact materials, the energy dissipation enhances

near resonance and is proportional to the friction force, as expected. It can be noticed that for

steel and to a lesser degree for rubber, the increase in energy dissipation due to an increase in

friction force diminishes at higher friction, similar to the numerical results for Coulomb friction.

Lastly, a bump in the dissipation curves of steel and rubber in the low frequency region is

visible for high normal forces. The numerical dissipation curves have the same bump for high

friction ratios.

The long-term frictional behaviour of aramid is very constant, while the rubber and steel

behaviour is quite irregular. Similar to the long-term time response of the materials, the long-

term energy dissipation of aramid is quite consistent, whereas the performance of rubber and

steel changes over time. There are several long-term effects which can affect friction and thus

energy dissipation, such as wear and debris.

When comparing the short-term experimental, long-term experimental and numerical results

to each other, it can be concluded that:

1. TheCoulomb frictionmodel can accurately describe steady experimental friction behaviour,

but cannot capture unsteady motions. This is expected, since the model is relatively

simple and does not incorporate the numerous physical agents that influence the dynamic

friction behaviour in practice.

2. The short-term time responses are more irregular than the the numerical results, and

the long-term time responses are even more irregular than the short-term ones. This

is a result of the complexity of the physical friction process and the long-term effects,

respectively.

3. Short-term, long-term and numerical results for energy dissipation by friction are in good

agreement with each other.

The numerical and experimental findings presented in Chapter 3 and 4 provide insight into

the performance of the different contact materials with respect to friction behaviour and energy

dissipation and are essential to the main conclusions of this thesis presented in the following

chapter.



5
Main conclusions

The goal of this thesis was to develop an understanding of how different contact materials

affect the performance of a friction damper with respect to its frictional behaviour and energy

dissipation capacity.

The SDOF system with Coulomb friction contact between the sliding mass and a fixed

wall subjected to harmonic excitation was considered. Numerical approaches were used to

investigate the frictional behaviour of the system and the energy dissipated by friction. An

experimental investigation was performed to obtain the friction behaviour and energy dissipation

for the different contact materials of (1) steel, (2) rubber and (3) aramid in the following contact

configurations, respectively: a steel-to-steel contact, a rubber-to-steel contact and an aramid-

to-steel contact. Short- and long-term experiments were carried out. The performance of the

different contact materials was compared. Moreover, the experimental results were compared

to the numerical results for validation.

The principal results of this thesis are reviewed below:

1. Energy dissipation calculation methods for SDOF friction damped systems were derived.

The most important calculation method is the hysteresis method; since it only requires

the base motion and time response of the mass, it is very useful for experiments.

2. Numerical results for the response and energy dissipation of the SDOF system with

Coulomb friction contact subjected to harmonic excitation were attained for continuous

and stick-slip motions. The dependency of the energy dissipation on friction force and

excitation frequency was shown in graphs.
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3. Short-term and long-term experimental results for the friction behaviour and energy dissipation

performance of steel, rubber and aramid were presented. The irregularity index was

also developed to quantify the irregularity of the short-term time responses. Short-term

experimental results, long-term experimental results and numerical results were compared

to each other. Short-term, long-term and numerical results for energy dissipation were

found to be in good agreement with each other.

Themain findings regarding the friction behaviour, energy dissipation and long-term performance

of the different contact materials are, respectively:

1. Friction behaviour. The stick-slip responses of aramid and rubber have no more than

two stops per cycle, while steel shows stick-slip motions with more than two stops. This

might suggest that the Coulomb friction model describes the friction behaviour of steel

better than the behaviour of rubber and aramid. Secondly, a specific region of the stick-

slip motion regime of the steel-to-steel contact corresponds to highly irregular behaviour,

based on the irregularity index. The rubber friction behaviour shows characteristics that

could be attributed to the flexibility of rubber.

2. Energy dissipation. As expected, dissipation by friction enhances near resonance and

is proportional to the friction force. However, this proportionality declines when higher

friction is considered for the steel-to-steel contact and rubber-to-steel contact.

3. Long-term performance. Considering a longer time scale, the friction behaviour and

energy dissipation of aramid is stable and consistent. On the other hand, the friction

behaviour and energy dissipation of steel and rubber is irregular and inconsistent.

Finally, taking the experimental results and research questions into account, the different

contact materials can be ranked relatively to each other based on three performance criteria

(with number 1 performing the best etc.):

• Energy dissipation: (1) rubber, (2) steel, (3) aramid.

• Friction behaviour consistency: (1) aramid, (2) rubber, (3) steel.

• Wear resistance: (1) aramid, (2) rubber and steel.
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A very important material property affecting performance and thus these rankings is the friction

coefficient. The outcome of the experiments suggests that rubber has the highest friction

coefficient, followed by steel and then aramid.



6
Recommendations

Although the findings of this thesis allow a better understanding of the effects of the investigated

contact materials on the performance of friction damping, they are reliant on and limited by

the assumptions made, equipment used and assumed models. Several limitations and factors

of uncertainty are briefly discussed in this chapter. A limitation of the steel-to-steel contact

regarding asymmetric abrasion has already been discussed in Section 4.4.1.

It is worth noting that probably not all asymmetries seen in the experimental responses are

due to real friction induced asymmetries. The exact causes are unknown, but the observed

asymmetries might be a result of irregularities in the friction contact or in the test setup itself.

Additionally, SDOF systems, which are used extensively in this research, are very simple

models. They often cannot accurately describe the behaviour of more complex real-life structures

[2]. This limits the usefulness of the thesis results to real-life applications.

Finally, since the motion of the top plate in the single-storey frame used for the experiments

is not perfectly straight, it is highly likely that the plate moves in the out-of-plane or lateral

direction as well (in the direction perpendicular to the length of the top plate). This out-of-

plane motion was not measured during the tests. This is a limitation because it means that

the test rig is less well represented by a SDOF system.

Interesting suggestions for future research on friction damping and contact materials are:

investigating more and other contact materials, long-term experiments with more excitation

frequencies and friction forces, using the base-wall configuration from references [2, 4], considering

other friction models for the numerical results and applying different types of excitation.
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