
THE FUTURE OF FRAUD DETECTION
Detecting Fraudulent Insurance Claims Using Machine Learning Methods

R.V. Plaisant van der Wal

i

The Future of Fraud Detection:
Detecting Fraudulent Insurance Claims

Using Machine Learning Methods

by

R.V. Plaisant van der Wal

to obtain the degree of

Master of Science in Computer Engineering

at Delft University of Technology,
to be defended on Friday, August 17, 2018 at 10:00 AM

Student number: 4206169
Date of submission: August 12, 2018

Responsible professor: dr. ir. Zaid Al-Ars TU Delft

Thesis committee: dr. ir. Zaid Al-Ars TU Delft, jury chairman
dr. ir. Sicco Verwer TU Delft, jury member
Willem de Voogd Voogd & Voogd, jury member

CE-MS-2018-18
Computer Engineering
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology
Mekelweg 4,
2628 CD, Delft
The Netherlands

iii

Abstract

Machine learning methods are explored in an attempt to achieve
better predictive performance than the legacy rule-based fraud detection
systems that are currently used to detect fraudulent car insurance
claims. There are two key principles that lead the exploration of
machine learning techniques and algorithms in this thesis, namely, the
applicability to imbalanced data, and the interpretability of predictions.
The dataset used for model training and evaluation contains only 0.3%
fraudulent claims compared to 99.7% non-fraudulent claims, which can
therefore be considered highly imbalanced. Furthermore, prediction
interpretability is of great importance, since fraud experts are directly
interfacing with the output of the machine learning models. With the
key principles in mind, this thesis considers four algorithms, Logistic
Regression, Random Forest, LightGBM and a Stacking classifier. The
algorithms are trained on the imbalanced learning problem by using a
combination of undersampling (random and Edited Nearest Neighbors),
oversampling (SMOTE) and class weighting. Conclusively, each trained
model meets the objective, with the Stacking classifier combining the best
performance with the lowest variance. By benchmarking the baseline
for two different parameters, the models can be evaluated for two
boundary conditions, which leads to tunable performance between the
two conditions. Ultimately, the performance of the Stacking classifier
is tunable (by moving its classification threshold) to roughly a 70-80%
increase in extra fraud caught or a 75% reduction in effort. Extra fraud
will increase the amount of real fraudulent claims that fraud experts get
to see, and effort reduction leads to an increase in capacity, which enables
fraud experts to spend more time on other more relevant tasks.

Contents

Contents v

List of Figures vii

List of Tables xi

1 Introduction 1
1.1 Context . 1
1.2 Objective . 2
1.3 Outline . 2

2 Machine Learning Theory 3
2.1 Machine Learning . 3
2.2 Data Preprocessing . 4

2.2.1 Sample Weighting . 4
2.2.2 Data Resampling . 5
2.2.3 Feature Selection and Crossing 7

2.3 Linear Models . 8
2.3.1 Linear Regression . 8
2.3.2 Logistic Regression . 9
2.3.3 Regularization . 10

2.4 Decision Tree Learning . 10
2.4.1 Bias and Variance Trade-off 14
2.4.2 Gradient Boosting and Gradient Boosted Trees 14
2.4.3 Random Forest . 17

2.5 Stacking Classifier . 18

3 Analysis, Preprocessing and Modeling 19
3.1 Overview . 19
3.2 Rule-Based Fraud Detection System 20
3.3 Data Acquisition, Analysis and Partitioning 20

3.3.1 The Dataset . 21
3.3.2 Data Partitioning: Train, Validation and Test 21
3.3.3 Cross Validation . 23
3.3.4 Final Data Partitioning: TrainVal A, TrainVal B and Test 23
3.3.5 New Features through Claim Analysis 25

3.4 Challenges . 25

v

vi CONTENTS

3.5 Data Preprocessing . 26
3.5.1 Label Enrichment . 26
3.5.2 Data Resampling and Label Weighting 28
3.5.3 Category Encoding . 28

3.6 Modeling . 29
3.6.1 Algorithm Requirements 29
3.6.2 Logistic Regression . 30
3.6.3 Tree-based Models . 30
3.6.4 Stacking Classifier . 32

4 Model Evaluation and Interpretation 33
4.1 Overview . 33
4.2 Evaluation . 33

4.2.1 Basic Performance Metrics: Confusion Matrix, Recall,
Precision and Specificity 33

4.2.2 Baseline Performance . 35
4.2.3 Alternative Performance Metrics 36
4.2.4 Model Optimization and Comparison 44
4.2.5 Baseline Comparison . 44
4.2.6 Dataset Improvement through Claim Analysis 46

4.3 Final Pipeline Design . 47
4.4 Interpreting Model Predictions 49

4.4.1 Interpretation of Logistic Regression 50
4.4.2 Interpretation of Decision Trees 51
4.4.3 Interpretation of Stacking Classifier 53

5 Discussion and Results 55
5.1 Overview . 55
5.2 Probability Density . 56
5.3 Research Cost . 58
5.4 Precision and Recall . 61
5.5 Model Comparison . 64
5.6 Models vs. Baseline . 66

6 Conclusion & Evaluation 71
6.1 Main Objective . 71
6.2 Evaluation . 71
6.3 Additional Contributions . 72
6.4 Real World Performance . 73
6.5 Recommendations . 74

Bibliography I

List of Figures

2.1 Artificial data generation with SMOTE. Data points get added on
the line segment connecting two existing data points. 6

2.2 The identification and removal of Tomek links 7
2.3 A simple decision tree for an input space with two features X1 and

X2. The space is partitioned into 5 regions. Each leaf shows its
class label distribution (n0, n1), with n0 positive samples and n1
negative samples. 11

2.4 Node impurity measures for binary classification. Entropy has
been rescaled to pass through the peak of the Gini index. 13

2.5 The squares and dots represent a dataset with two classes, and
the line represents the fitted model. Left: underfitted model that
suffers from high bias. Center: good fitted model that captures
the underlying structure of the data. Right: overfitted model that
suffers from high variance. 15

3.1 Illustration of machine learning workflow, where one starts with
data and ends up in the evaluation stage with predictions.
After the evaluation stage the models should be made ready for
execution in a production environment. 19

3.2 Label distribution of the entire dataset 22
3.3 A visual representation of 10-fold cross validation. The dataset is

split up in 10 folds, from which 10 distinctive datasets are created;
consisting of 9 train folds and 1 validation fold. 23

3.4 The final data partitioning of the dataset, and the names that
belong to each partition. The dataset is split into three partitions,
TrainVal A, TrainVal B and Test. Cross validation is also applied
on TrainVal A and TrainVal B to measure the generalization of the
predictions. 24

4.1 Accuracy scores for all possible combinations of precision and
recall on both balanced (a) and imbalanced (b) data. 38

4.2 F1-scores for all possible combinations of precision and recall on
both balanced (a) and imbalanced (b) data. 39

4.3 F2-scores for all possible combinations of precision and recall on
both balanced (a) and imbalanced (b) data. 39

4.4 Balanced accuracy scores for all possible combinations of precision
and recall on both balanced (a) and imbalanced (b) data. 40

vii

viii List of Figures

4.5 Youden scores for all possible combinations of precision and recall
on both balanced (a) and imbalanced (b) data. 41

4.6 MCC scores for all possible combinations of precision and recall
on both balanced (a) and imbalanced (b) data. 42

4.7 Example of a research cost plot. With the predicted probability
that a claim is fraudulent on the x-axis and the research cost on the
y-axis. The mean cost line indicates the average research cost per
bin and uses the right y-axis. 46

4.8 An abstract visual representation of the process to go from data
to predictions. The different colors separate the classical machine
learning models from Stacking. Moreover, a hatched block
indicates that it is used for model optimization and determining
the final model configuration. 48

4.9 A detailed visual representation of the process to go from data to
predictions. The different colors separate the classical machine
learning models from Stacking. Moreover, a hatched block
indicates that it is used for model optimization and determining
the final model configuration. 50

4.10 A simple decision tree for an input space with two features J1 and
J2. The space is partitioned into 3 regions. Each leaf shows its
class label distribution (n0, n1), with n0 positive samples and n1
negative samples. [p0 , p1], indicates the probability for an instance
to belong to either class. {c0, c1} are the contributions of a feature
to the branching decision for either class. 52

5.1 Probability density distribution plot of Logistic Regression. The
fraudulent claims have relatively high probabilities, whereas the
non-fraudulent claims have relatively low probabilities. 56

5.2 Probability density distribution plot of Random Forest. Most non-
fraudulent claims have a low predicted probability, whereas the
fraudulent claims have a more equal spread of probabilities. . . . 57

5.3 Probability density distribution plot of LightGBM. There is
aggressive separation of the claims, with a high concentration of
non-fraudulent claims in the low probability range. 57

5.4 Probability density distribution plot of the Stacking classifier. It
blends characteristics of the other probability distributions. 58

5.5 Research cost plot of Logistic Regression. The bottom density
plot is normalized separately for fraud and non-fraud, this means
that the plot indicates what percentage of claims is gathered in a
specific region. 59

5.6 Research cost plot of Random Forest. The bottom density plot is
normalized separately for fraud and non-fraud, this means that the
plot indicates what percentage of claims is gathered in a specific
region. 60

List of Figures ix

5.7 Research cost plot of LightGBM. The bottom density plot is
normalized separately for fraud and non-fraud, this means that the
plot indicates what percentage of claims is gathered in a specific
region. 60

5.8 Research cost plot of the Stacking classifier. The bottom density
plot is normalized separately for fraud and non-fraud, this means
that the plot indicates what percentage of claims is gathered in a
specific region. 61

5.9 Precision and recall plot (a), and the precision-recall curve (b) of
Logistic Regression. 62

5.10 Precision and recall plot (a), and the precision-recall curve (b) of
Random Forest. 63

5.11 Precision and recall plot (a), and the precision-recall curve (b) of
LightGBM. 63

5.12 Precision and recall plot (a), and the precision-recall curve (b) of
the Stacking classifier. 64

5.13 Final baseline to model comparison. The diagram illustrates the
overall quality of a model as compared to the baseline within the
objective constraints. The trend of the effort reduction and fraud
increase are shown over the course of the normalized threshold
regions belonging to each model. 69

List of Tables

3.1 Label distribution across different splits 25
3.2 Label distribution for different subsets after label enrichment.

“Extra Fraud” indicates the number of times more fraudulent
claims that are now present in the dataset. 27

4.1 Confusion matrix, a tabular representation of the intersection
between actual labels and predicted values 34

4.2 Precision and recall of rule-based system for multiple fraud score
thresholds on the TrainVal A set . 35

5.1 Area under curve values measured on precision-recall curves for
different models on different partitions. For the cross validation
folds the AUC is given as the mean and the standard deviation,
with 1.0 the maximum value of AUC. The values between “()” are
the standard deviations of the cross validation folds. 65

5.2 The effort reduction and fraud increase for both performance
constraints for each model on various data partitions. The values
between “()” are the standard deviations of the cross validation folds. 66

5.3 The AUCs computed according to the approach described in
section 4.2.5 of each model on various data partitions. The values
between “()” are the standard deviations of the cross validation folds. 67

5.4 Final results for each model on the Test set. The effort reduction
and fraud increase are presented for both performance constraints.
AUCtotal displays the average of the AUCs shown in figure 5.13 . . 68

xi

Chapter 1

Introduction

1.1 Context

Insurance is an integral component of society and must be affordable and
reliable in order to provide everyone with aid in time of need. However,
insurance fraud brings disturbance to the insurance sector, increasing the
cost for both insurers and insureds. With technology on the rise, insurance
companies seek state-of-the-art solutions to improve fraud detection. This
research is executed in collaboration with one such company, which provides
an opportunity to improve fraud detection with machine learning methods
on real-world data; the key focus of this thesis being to bring improvements
to the detection of fraudulent car insurance claims.

Insurance fraud is any act of deception with the intent to obtain a benefit
that does not rightfully belong to the deceiver, with financial profit being
the main driver behind insurance fraud [1]. Studies have been carried out
in an attempt to appraise the cost of insurance fraud in Europe. However,
it is difficult to determine the exact losses due to insurance fraud, because
insurance fraud is deliberately kept under the radar by fraudsters. Therefore,
the portion of fraudulent claims that are detected is much smaller than
the portion of fraudulent acts that are committed [1]. According to the
European federation of insurance companies—“Insurance Europe”—detected
and undetected fraud is estimated to represent up to 10% of all claims
expenditure in Europe [2]. A study by the car insurance industry in Quebec
has shown that 3 to 6.4% of all claim payments contained fraud [3].

Due to the sheer number of claims submitted each day, it would be
far too expensive for insurance companies to have employees check each
claim for symptoms of fraud [4]. Instead, many companies use automated
systems to identify suspicious claims for further investigation [5]. This also
applies to the collaborating insurance company. They have incorporated a
two-step procedure to catch fraud. Firstly, the suspicious claims with the
highest probability to be fraudulent are identified by a so-called rule-based
detection system Thereafter, during the second step, the identified claims are
referred to fraud experts that check the claims again for potentially fraudulent
characteristics, to decide whether a more elaborate investigation is needed.

1

2 CHAPTER 1. INTRODUCTION

1.2 Objective

The advent of machine learning and other related technologies opens up
new paths for exploration to bring about improvements to the predictive
performance of the previously mentioned rule-based fraud detection system.
This thesis makes an attempt at achieving this. The attempt is successful
when the final results satisfy the following objective statement:

Achieve better predictive performance than the rule-based
fraud detection system, which is currently installed at the col-
laborating insurance company, using machine learning meth-
ods

“Better predictive performance” is defined by the following two constraints:

• Catching a higher amount of fraud than the rule-based detection
system.

• Flagging fraudulent claims with a higher efficiency than the rule-based
detection system. Thus, flagging a lower amount of claims as suspicious,
while catching a similar amount of fraud.

Complying to the constraints above, ensures that the machine learning
methods will catch a higher amount of fraudulent claims with a higher
efficiency i.e. less misclassifications. Which in turn will increase fraud
expert efficiency, reduce cost and leave more time to focus on relevant claims;
increasing the chance to catch fraudsters.

1.3 Outline

Chapter 2 kicks things of with a discussion of the machine learning related
topics that are used in this thesis. It provides information about a variety
of algorithms as well as concepts like overfitting and data resampling.
Chapters 3 and 4 build upon the theoretical foundation established in
chapter 2, with a description of the approach used to turn data into a model
that is able to predict fraud. Subsequently, the results obtained with the
previously described approach are presented in chapter 5. The predictive
performance of the models is compared to the baseline, in order to see if
the yielded results match the requirements that are stated in the objective.
Following the presentation of the results, chapter 6 concludes and evaluates
the results. Moreover, the possible machine learning solution to satisfy the
main objective is discussed, and some additional words are shared regarding
the use of performance metrics on imbalanced data problems. Lastly,
extra results are presented regarding the potential difference in predictive
performance of the final model in a real world environment.

Chapter 2

Machine Learning Theory

2.1 Machine Learning

Machine learning can be defined as the practice of using algorithms on
large amounts of data to learn and discover the underlying patterns and
relationships in the data, and then make a determination or prediction about
something in the world. The field of machine learning encompasses a wide
variety of techniques and algorithms and a high level way of categorizing
these techniques and algorithms is:

• Supervised learning
Supervised machine learning algorithms are trained on datasets with
labels. With supervised learning an algorithm learns a mapping
function from the input variables to the output variable. The algorithm
tries to approximate the mapping function to such a degree that it can
predict the output variable for new input variables. Supervised learning
derives its name from its learning process being supervised. For
every wrongly predicted value the algorithm is corrected, and training
is stopped when the algorithm achieves reasonable performance.
Supervised learning can be split into two different problem types,
regression and classification. A continuous output space indicates that
one is dealing with a regression problem, whereas a target variable made
up of classes indicated that one is dealing with a classification problem.

• Unsupervised learning
With unsupervised machine learning, algorithms are trained on unla-
beled data and try to model the underlying structure or distribution of
the data. There are only input variables available and no output vari-
ables. Unlike supervised learning algorithms, unsupervised learning
algorithms cannot be corrected with a target output. They are left to
their own devises to find patterns and structures in the data. Clustering
and dimension reduction are both examples of unsupervised learning
problems.

A variation on supervised and unsupervised learning is semi-supervised
learning. Semi-supervised learning algorithms train on data that is only

3

4 CHAPTER 2. MACHINE LEARNING THEORY

partially labeled and use a combination of supervised and unsupervised
learning techniques. The above categorization will help to understand later
on why a certain choice for techniques and algorithms is made. The rest of
this chapter will elaborate more on common techniques that are used in the
field of machine learning and also discuss the machine learning algorithms
that will be used to achieve the objective of this thesis.

2.2 Data Preprocessing

The sections below discuss multiple data preprocessing techniques that are
used in the field of machine learning to alter the input space for better
predictive performance. Most techniques apply to imbalanced datasets,
this is relevant, because that dataset that is used for this research is highly
imbalanced; see section 3.3.1.

2.2.1 Sample Weighting

With sample weighting, weights get added to single instances or entire classes
to bias an algorithm towards the weighted instances/classes. When dealing
with imbalanced data, weighting is a useful tool to counter the naturally
occurring bias an algorithm has towards the majority class. The following
example illustrates how weighting samples can change the direction to which
an algorithm tries to optimize.

Example A: An algorithm’s natural bias towards majority class
Given an imbalanced dataset with a 1000/10 majority/minority
instances ratio.
Scenario A.1: A classification accuracy of 90% on the majority
class and 10% on the minority class, gives a total score of:
(90%) · 1000maj + (10%) · 10min = 901.
Scenario A.2: A classification accuracy of 10% on the majority
class and 90% on the minority class, gives a total score of:
(10%) · 1000maj + (90%) · 10min = 109.

The first scenario in example A performs roughly 8 times better than the
second scenario. Thus, for the algorithm it pays off to focus more on learning
to predict the majority rather than the minority class. By adding weights to
the minority class, it is possible to create a scenario where the algorithm gets
rewarded more for classifying minority instances.

Example B: Sample weighting helps to shift class balance
Scenario B.1: Class distribution like scenario 1a plus a minority
class weight of 1000, gives a total score of:
(90%) · 1000maj + (10%) · 10min · 1000weight = 1900.
Scenario B.2: Class distribution like scenario 2a plus a minority
class weight of 1000, gives a total score of:
(10%) · 1000maj + (90%) · 10min · 1000weight = 9100.

2.2. DATA PREPROCESSING 5

As one can see in example B, after weighting, it now pays off for
the algorithm to shift its focus more towards learning the minority class.
Algorithms have multiple ways of dealing with sample weights, some use the
weights in their loss function, others duplicate minority instances to simulate
the weight effect.

Weighting is similar to sampling (section 2.2.2), in the sense that it tries
to restore data balance. Furthermore, an advantage weighting has over
sampling, is that it does not alter the data and thus not remove any valuable
entries from the dataset.

2.2.2 Data Resampling

Data resampling, just like sample weighting, is a technique to counter data
imbalance. However, the main difference is that with data resampling
one creates a different data distribution, rather than adding weights. By
changing the distribution, the dataset will appear more balanced for the
algorithm. Resampling by removing data points is called undersampling, and
resampling by adding artificial data points is called oversampling.

Random Resampling

Random resampling is the most basic form of data resampling and is focused
to restore data balance within a dataset to improve algorithm training. Data
balance is restored by oversampling the minority class and/or undersampling
the majority class.

Random undersampling randomly removes instances from the majority
class, lowering the size of the majority class, and balancing the dataset to the
required majority/minority ratio. A drawback of this technique is the possible
loss of important information, some discarded instances can be essential for
good performance.

Random oversampling does the exact opposite of random undersampling.
Instead of decreasing the size of the majority class to restore balance,
random oversampling increases the size of the minority class. It does
so by adding replications of instances from the minority class, and thus
balancing the dataset to the required majority/minority ratio. An advantage
oversampling has over undersampling is that no valuable information is lost.
However, random oversampling makes algorithms more prone to overfitting
by replicating instances multiple times.

Synthetic Minority Oversampling TEchnique (SMOTE)

SMOTE (Synthetic Minority Oversampling TEchnique) [6] is an oversampling
technique that uses synthetic data generation to overcome imbalance in the
original dataset. An arbitrary number of synthetic minority instances are
generated to shift the classifier learning bias towards the minority class.

Figure 2.1, illustrates the creation process of the artificial data points.
SMOTE first picks a random instance from the minority class and computes
the k-nearest minority neighbors of this instance. The artificial instances

6 CHAPTER 2. MACHINE LEARNING THEORY

Synthetic
samples

Figure 2.1: Artificial data generation with SMOTE. Data points get added on
the line segment connecting two existing data points.

are then generated between one of the randomly chosen neighbors and the
originally chosen instance. Below follows a more detailed approach of how
new instance are being generated:

1. For every minority instance i, randomly select one of its k nearest
neighbors x

2. Find the difference vector ~v between i and x

3. Randomly select a point p along ~v, by p = i+ rand(0, 1) · ~v (i, x)

4. Add point p to the minority class

This process gets repeated for every minority instance and is completed when
the target imbalance ratio is reached.

By creating new synthetic samples instead of exact replications—like
random oversampling—overfitting is less likely to happen. Since, replications
tighten decision boundaries around one single observation, whereas synthetic
samples soften the decision boundary for better generalization.

Tomek Links

The removal of Tomek links is a data cleaning method that attempts to remove
overlap between classes, making it easier for a machine learning algorithm to
distinguish between classes.

The definition of a Tomek link is given as: given an instance pair (xi, xj),
where xi ∈ Smin, xj ∈ Smaj , and d (xi, xj) is the distance between xi and xj ,
then the (xi, xj) pair is called a Tomek link if there is no instance xk, such that
d (xi, xk) < d (xi, xj) or d (xj , xk) < d (xi, xj) [7], [8].

Meaning that point pairs forming Tomek links are considered to be noise
or class borders. By removing Tomek links, one can obtain well-defined class
clusters in the training dataset, which can, in turn, improve classification
performance.

Edited Nearest Neighbors (ENN)

Edited Nearest Neighbors (ENN) [9] attempts to edit out noisy instances and
close border cases, a similar goal to that of Tomek links. Whenever the

2.2. DATA PREPROCESSING 7

Tomek
links

Figure 2.2: The identification and removal of Tomek links

majority of the k-nearest neighbors of an instance contradict with its own
class, the instance is removed.

2.2.3 Feature Selection and Crossing

Feature selection and feature crossing are two techniques to alter the
dimensions of the input space. Feature selection reduces the dimensionality
by making a selection of features, to reduce the noise induced by input
features that do not contain any information about the target. Feature
crossing creates new features by combing existing features, to make certain
relationships between features more explicit.

Feature Selection

Feature selection algorithms can be divided into three categories:

• Filter methods
Filter methods score features by applying a statistical method. The
features are then ranked by their score and generally the features with
the lowest scores are discarded, and the features with the highest scores
are kept for model training. A common technique of filtered feature
selection is the selection of features based on their mutual information
values. Mutual information [10] measures the dependency between two
variables, in this case a feature and the target label. With this technique
it is possible to identify whether the target label depends on the feature
and thus if it contains information about the target. Higher mutual
information means a higher dependency between feature and target
label.

• Wrapper methods
Wrapper methods prepare, compare and evaluate different feature sets
to determine which selection of features has the best performance.
An example of wrapped feature selection is the recursive feature
elimination algorithm [11].

• Embedded methods
Embedded methods find the features that contribute most to the

8 CHAPTER 2. MACHINE LEARNING THEORY

accuracy of a model during training. Regularization (see section 2.3.3)
is the most common type of embedded feature selection.

As one can see, the field of feature selection encompasses many techniques
and is widely covered in literature. However, various methods to select
features were tried, but none yielded considerably improved performance.
Therefore, the switch was made to select features by hand and not
programmatically.

Feature Crossing

Feature crossing attempts to make the relationships between features more
explicit. With feature crossing, features get transformed into a new one,
through a mathematical operation. This makes sense when the meaning of
each feature is known. For example, in the case that one has the features length
and width, a new feature area could be created by multiplication. By including
a crossed feature, one makes the relationship between two features more
explicit to the model, which in return can improve training results. However,
for this research, feature meanings and raw values are not disclosed, which
complicates creating valuable crossed relationship and therefore is beyond
the scope of this thesis.

2.3 Linear Models

This section will introduce both Linear and Logistic Regression. Since this
thesis is about a classification problem, only Logistic Regression will actually
be used, however, linear regression is easy to understand and provides good
background knowledge for Logistic Regression.

2.3.1 Linear Regression

One of the most commonly used machine learning models to tackle regression
problems is linear regression. A linear regression model attempts to model
the linear relationship between the response variable y and input variables
(features) x, through an error variable ε. Combining the above, the model can
be written as

y(x) = wTx + ε

with w the model’s weight vector, ε the residual error between the predictions
and true response, and x a matrix made up of row vectors xi for i = 1, 2, ..., J

where J the number of features. One often assumes ε to be normally
distributed

ε ∼ N
(
µ, σ2

)
where µ is the mean and σ the variance. With this assumption, one can rewrite
linear regression to the following form:

p(y|x, θ) = N
(
y|µ(x), σ2(x)

)

2.3. LINEAR MODELS 9

In the simplest case, one can assume µ to be a linear function of x, µ(x) =

wTx, and the noise to be fixed, σ2(x) = σ2. Now, θ represents the parameters
of the model θ =

(
w, σ2

)
, and the model can be rewritten to:

p(y|x,w, σ2) = N
(
y|wTx, σ2

)
Now with the final derivation of linear regression, all that is left is to estimate
the parameters of linear regression. A common method for estimating the
parameters of a linear regression model is: ordinary least squares (OLS). OLS
tries to minimize the sum of square differences between the true response and
predictions. Using OLS, the weight vector w is computed using:

w =
(
xTx

)−1
xT y

2.3.2 Logistic Regression

Logistic regression is a generalization of linear regression to make it suitable
for (binary) classification. In order to achieve this generalization two changes
to standard linear regression need to be made.

Firstly, the normal distribution for y is replaced by a Bernoulli distribution
(indicated by Ber) that better suits a binary response, y ∈ {0, 1}. The Bernoulli
distribution is a discrete distribution that describes a boolean outcome, its
probability density function is defined by

f(k; p) =

{
p if n = 1,

1− p if n = 0.

with p the probability and n the outcome. Now the model is described by

p(y|x,w) = Ber (y|µ(x)) (2.1)

where µ(x) = p(y = 1|x).
Secondly, to ensure that µ(x), the linear combination of the input variables

x with weights w, is bound between 0 and 1, it is passed through a sigmoid
function

µ(x) = sigm
(
wTx

)
where sigm is defined as:

sigm(η) =
1

1 + exp (−η)
(2.2)

The term “sigmoid” means S-shaped. It is also known as a squashing function,
since it squashes all values between 0 and 1.

Combining both steps together gives

p(y|x,w) = Ber
(
y | sigm

(
wTx

))
the final representation of logistic regression1.

1Note that, unlike its name implies, logistic regression is a form of classification not
regression.

10 CHAPTER 2. MACHINE LEARNING THEORY

A big difference between Linear Regression and Logistic Regression is how
the line is fit to the data, Linear Regression uses Ordinary Least Squares,
whereas Logistic regression does not have the same concept as residuals, it
uses maximum likelihood. The concept of maximum likelihood is elaborated
on in section 2.4.2, where it is used to train gradient boosted decision
trees. Furthermore, Logistic Regression uses regularization to improve its
generalization to other data.

2.3.3 Regularization

Regularization can help to reduce overfitting (see section 2.4.1), and thus
improve the generalization performance i.e. the performance on new
unseen data. Regularization applies artificial constraints on an algorithm,
to implicitly reduce the amount of free parameters of the algorithm, while
maintaining its optimization efficiency.

The constraints are applied by adding an expression that penalizes the
overfitting properties of the fit. The penalty of L2 regularization, is the
squared `2-norm of w:

R`2(w) = ‖w‖22 =

n∑
i=0

w2
i (2.3)

where w are the weights defined for both linear and logistic regression. The
regularization strength can be tuned by a coefficient usually signified by λ2.
Taking Logistic Regression as an example, the larger its coefficients, the larger
R will be, and because R is added to the loss function, the larger the loss
function will be. Thus L2-regularization effectively tries to tune down the
regression coefficients, which results in a more general model.

For L1 regularization the `1-norm is used:

R(w) = ‖w‖1 =

n∑
i=0

|wi| (2.4)

which is the sum of the absolute values of the regression coefficients—also
known as the Manhattan distance. instead of scaling everything by a uniform
factor like L2 regularization, L1 regularization can make certain coefficients
zero. By setting feature coefficients to zero, L1 regularization does a form
of feature selection. Yuan et al. [12], gives a comprehensive review of `1
regularized Logistic Regression.

There is also a third form of regularization that combines both L1
and L2 regularization [13]. However, this form is not supported by the
implementation of Logistic Regression that is used for this research, and
therefore also not discussed in more detail.

2.4 Decision Tree Learning

A decision tree [14] performs classification by recursively considering a set
of decision points—also called branches—that partition the input space x

2.4. DECISION TREE LEARNING 11

into multiple regions {R1, R2, ..., RM} with corresponding labels—also called
leaves.

Starting from the root node, a tree is grown, by creating branches (based
on decision criteria) that attempt to split data in a way to minimize a cost
function. Every branch connects two nodes, but a node can have multiple
branches sprouting from it. Branches are created until the tree reaches a
certain size or exceeds its cost reduction threshold.

During prediction, data follows the appropriate branches, until it
terminates in a so-called leaf node, where the data gets assigned the
corresponding label of the region that the leaf node represents. All nodes
in a tree—except leaf nodes—contain a decision criterion that gets evaluated
to determine the next branch and corresponding node for the data to go to, see
figure 2.3. A decision criterion can either be a threshold or equality constraint.

X1 ≤ t1

X1 ≤ t2

R0; 4,0 X2 ≤ t4

R3; 1,1 R4; 0,2

X2 ≤ t3

R1; 4,0 R2; 0,5

Figure 2.3: A simple decision tree for an input space with two features X1

and X2. The space is partitioned into 5 regions. Each leaf shows its class label
distribution (n0, n1), with n0 positive samples and n1 negative samples.

The response of a classification tree is a probability value that is based on
the class label distribution of the leaf node at the end of the path taken by the
input data. This probability is the empirical fraction of positive samples that
are grouped in the same region belonging to that leaf, defined by

p(y = 1|x) =
n0

n0 + n1
(2.5)

where n0 the positive class and n1 the negative class. Using equation (2.5) and
the class distributions of figure 2.3, a few examples of region probabilities
can be computed. The probability of R0 becomes 4/(4 + 0) = 1, for R1 the
probability is 1/(1 + 1) = 0.5, etc.

When growing a tree, finding the optimal data splits is an NP-complete
problem. Hence, the reason why a heuristic based approach in the shape of
algorithm 1 is used. Given a node, data D and maximum tree depth. The
algorithm first computes the prediction using the class label distribution
method described above. Secondly, it computes the best feature j∗ and
optimal threshold t∗ using

(j∗, t∗) = arg min
j∈1,...,p

min
t∈Tj

[cost ({xi, yi : xij ≤ t}) + cost ({xi, yi : xij > t})] ,

12 CHAPTER 2. MACHINE LEARNING THEORY

Algorithm 1 Fitting a decision tree

function fit_tree(node, D, depth)
node.prediction = class_label_probability(yi : i ∈ D)
(j∗, t∗,DL,DR) = split(D)

if worth_splitting(depth, cost, DL, DR) then
node.test = λx.xj∗ > t∗

node.left = fit_tree(new node, DL, depth+ 1)
node.right = fit_tree(new node, DR, depth+ 1)

end if

return node
end function

to split the dataset into DL and DR. The algorithm is recursive and keeps
repeating the described steps until it meets its stopping criteria.

When using decision trees for classification there are multiple ways to
measure the quality/cost of a split. For either way, the class conditional
probability is part of the computation, and is specified as:

π̂c =
1

|D|
∑
i∈D

1(yi = c)

where D is the data in the leaf, and 1 the indicator function that is 1 when yi
belongs to class c and 0 when not. The class conditional probability π̂c outputs
a fraction between 0 and 1 that indicates the percentage of the data D belongs
to class c. Below two ways of computing the classification cost are given:

• Entropy

H(π̂) = −
C∑
c=1

π̂c log π̂c

• Gini index

gini(π̂) = 1−
∑
c

π̂2
c =

∑
c

π̂c −
∑
c

π̂2
c = 1−

∑
c

π̂2
c

Figure 2.4, shows the impurity scores of both Entropy and the Gini index for
the entire probability space. Both measures are more sensitive for the lower
and higher probability regions. Moreover, as one can see, entropy and Gini
have a very similar response. Gini is generally preferred, because Gini is faster
to compute and in only 2% of the cases Entropy gives different results.[15]

Once the split has been computed, the algorithm checks whether it is
worth making the split, by using stopping heuristics like:

• is the reduction in cost too small?

• will the tree exceed the maximum specified depth?

2.4. DECISION TREE LEARNING 13

0.0 0.2 0.4 0.6 0.8 1.0
Probability

0.0

0.1

0.2

0.3

0.4

0.5
Sc

or
e

Entropy
Gini Index

Figure 2.4: Node impurity measures for binary classification. Entropy has
been rescaled to pass through the peak of the Gini index.

• is the distribution of the instances in the response sufficiently pure—e.g.
either DL or DR contain labels that are mostly similar.

• are there enough samples present in both resulting data splits DL and
DR?

This process continues till the tree growth criteria are met, or the loss criterion
is satisfied.

The advantages of using decision tree models are: interpretability,
flexibility and also robustness to the input features. Decision trees are simple
to understand and to interpret, they can be visualized. The conditions in the
model are easily explained by boolean logic. For more complex trees it can
be difficult to still comprehend the decision making, to solve this, section 4.4
describes an approach to extract the feature contributions of a decision tree
for a specific prediction. Furthermore, decision trees are flexible and robust.
They require little data preparation, and are able to handle both numerical
and categorical data.

The main weakness of using a single decision tree is that it is prone to
overfitting—unable to generalize to other data. Overfitting happens when
no limit is posed on tree growth, and a tree is allowed to continue making
splits to better split the data and minimize the cost function. A way to
prevent overfitting is to limit tree growth, this will help to prevent making
very specific splits that only work well on the train set. However, by
limiting tree depth, underfitting is a serious risk, making the tree too general.
Furthermore, decision trees can be unstable. Small variations in the data
might result in a completely different tree being generated. Sections 2.4.2
and 2.4.3, discuss possible algorithmic solutions to mitigate the weaknesses of
a single decision tree, by combining multiple decision trees to create a model
that is specific, general and more stable.

14 CHAPTER 2. MACHINE LEARNING THEORY

2.4.1 Bias and Variance Trade-off

Before moving on to the algorithmic solutions to mitigate the weaknesses
of a decision tree, bias and variance need to be discussed for a better
understanding of the trade-offs that are involved. Bias and variance play
a large role when improving decision trees or any other machine learning
algorithm. This section attempts to clarify the terms bias and variance and
why there is a trade-off between the two.

Supervised machine learning algorithms aim to estimate a mapping
function for an output variable given some input data. This mapping function
has a certain error, which is partially caused by bias and variance, defined by:

error = bias2 + variance + irreducible error.

The irreducible error is irreducible in a sense that it cannot be reduced by
the choice of algorithm or parameter tuning. It is deeply embedded in the
problem itself and can only be tackled in the data engineering stage. Hence,
the reason that, when choosing a model, one should focus on the bias and
variance trade-off.

To introduce the concept of bias, let’s introduce the simplest form of a
decision tree (see section 2.4), called a stump, comprised of a single rule that
divides data into two groups. This binary approach ignores the complexity
and hidden relationships in the training data, making the model prone to
errors due to bias. Bias indicates the level of mismatch between the predicted
and true value. The more bias a model has, the more a model will ignore
relevant details and produce wrong predictions i.e. the model is underfitting.
In order to mitigate bias, additional splits can be added to the stump, creating
a tree, and allowing the tree to base classifications on more complexity. One
can keep adding splits until every instance has its own branch. However, by
adding splits, the tree becomes more prone to modeling characteristics that
are not part of the data, but rather of a second process. The tree starts to suffer
from prediction errors due to variance. It is unable to generalize predictions
to other relatively similar instances i.e. the model is overfitting. Overfitting
makes a model sensitive to minor changes in the training data, increasing
the variance at the output. Figure 2.5, illustrates the concepts of over and
underfitting on a two-class dataset.

Summarizing, an overly-complex (error due to variance) model performs
just as poor as an overly-simplistic (error due to bias) one. Therefore, a
modeler has to make a trade-off between bias and variance, to minimize the
overall error.

2.4.2 Gradient Boosting and Gradient Boosted Trees

Gradient boosting [16] is a method that fits a complex model by re-fitting
simpler models (typically decision trees) to residuals, it works on both
classification and regression problems. Gradient boosting is part of a family
called ensemble methods. Ensemble methods are methods that perform
classification by building a linear estimate over many other classifiers. There
are two main types of ensemble methods, bagging (bootstrap aggregating,

2.4. DECISION TREE LEARNING 15

Figure 2.5: The squares and dots represent a dataset with two classes, and
the line represents the fitted model. Left: underfitted model that suffers from
high bias. Center: good fitted model that captures the underlying structure
of the data. Right: overfitted model that suffers from high variance.

[17]) and boosting. Bagging inspired classifiers work by averaging sub-
models, like Random Forest; see section 2.4.3. And boosting inspired
classifiers fit complex models by iteratively fitting sub-models to residuals.

With gradient boosting, the model being boosted is called a weak learner.
Many models can function as weak learners, but typically decision trees are
used, because gradient boosting using decision trees is seen as one of the
best off-the-shelf classifiers in the world [18]. As mentioned before, gradient
boosting works by iteratively fitting new weak learners to the residual error
of the previous iteration. Below follows a more detailed description of how
gradient boosting achieves this.

The goal of gradient boosting is to find a function f(x) that operates on a
training set, such that the misclassification error at the testing set is as small
as possible:

f(x) = min
∑

(x,y)∈T

(f(x) 6= y)

where T is a test set given by T = (xi, yi), ..., (xn, yn). To find this function, a
probabilistic model that models the probability of the loglink of an object is
used:

p(y = 1|x) =
1

1 + exp(−
∑M
m=1 hm(x))

where hm(x) a decision tree. This probabilistic model is derived from the
sigmoid function that maps all real values into the range between 0 and 1, see
equation (2.2). Now, denote f(x) as an ensemble of decision trees, by taking
the sum of all decision trees:

f(x) =

M∑
m=1

hm(x).

The probability of the loglink on the positive class can now be rewritten as:

p(y = 1|x) =
1

1 + exp(−f(x))
.

16 CHAPTER 2. MACHINE LEARNING THEORY

Gradient boosting uses the principle of maximum likelihood. To understand
this principle, let’s first discuss likelihood. Likelihood is the probability of
observing some data given a statistical model. For a dataset with n data
entries, the likelihood function becomes:

n∏
i=1

p(yi|xi) = p(y1|x1) · ... · p(yn|xn).

The principle of maximum likelihood states that the algorithm should find a
function f(x) which maximizes the likelihood. Thus, the algorithm should
find the underlying statistical model that maximizes the likelihood. This is
equivalent to finding a function f(x) that maximizes the logarithm of the
likelihood.2 The likelihood can now be denoted by:

Q(f) =

n∑
i=1

log(p(yi|xi))

which is the sum of all logarithms of probabilities. The maximum likelihood
is computed by maximizing Q(f). For simplicity reasons, one can rewrite
Q(f) as:

Q(f) =

n∑
i=1

L(yi, f(xi))

with L(yi, f(xi)) the loss function given by:

L(yi, f(xi)) = log(p(yi|xi)).

Using the above, any weak learner can be trained using gradient boosting.
Below follows an explanation of the training steps involved to train a gradient
boosted model. In this case, decision trees are used as the weak learners. It
all starts with the initial approximation, which is the optimal approximation
of the sigmoid function, given by:

f0(x) = log
p1

1− p1

Now, the steps below get repeated M (number of trees) times in an iterative
manner. First, calculate the gradient of the loss function, using:

gi =

[
∂L(yi, f(xi))

∂f(xi)

]
f=fm−1

In order to maximize Q(f), the solutions should move in the direction of
the gradient. Therefore, the gradient is computed for each data entry in
the dataset. Now, a decision tree hm(xi) is fitted to an auxiliary training set
(xi, gi), ..., (xn, gn) that is created with the gradients from the previous step.
The difference with the original set, is that the labels yi are replaced by the

2From a computational point of view it is easier to deal with logarithms.

2.4. DECISION TREE LEARNING 17

gradients gi After fitting the decision tree, the optimal step size ρm can be
computed using:

ρm = arg max
ρ

Q(fm−1(x) + ρhm(x))

which computes the step size that maximizes the likelihood for the addition
of the newly fitted tree hm(x). Finally, the new decision tree hm(x) is added
to the ensemble, with an extra shrinkage parameter ν to improve convergence:

fm(x) = fm−1(x) + νρmhm(xi)

the value of ν typically ranges between 0.01 and 0.1.
For the full algorithm for fitting gradient boosted trees, see algorithm 2.

Note that the method described above is not reserved solely for decision trees,
it also applies to other weak learners.

Algorithm 2 Fitting gradient boosted trees

Initialize f0(x)
for m = 1 : M do

Compute gi =
[
∂L(yi,f(xi))

∂f(xi)

]
f=fm−1

Fit a decision tree hm(x) to the target gi on (xi, gi), ..., (xn, gn)

Compute the step size ρm = arg maxρQ(fm−1(x) + ρhm(x))

Add hm(x) to the ensemble fm(x) = fm−1(x) + νρmhm(xi)

end for
return f(x) = fM (x)

2.4.3 Random Forest

Random Forest is based on a technique called bootstrap aggregating (bagging)
[17], which makes an attempt at mitigating the inability of a decision tree
to generalize well to other data—so-called overfitting. Random forest is an
ensemble of decision trees, that can perform both regression and classification
tasks. Random Forest grows many specialized decision trees on different
subsets of the training data and its features [19]. Separately, each specialized
tree has a low bias and high variance. However, by creating a forest of trees
that uses a combination of many trees for a prediction, a model is created with
low bias and low variance.

As shown by equation (2.6), the final prediction value of a Random Forest
is computed by summing and averaging the prediction values of the separate
decision trees.

f(x) =
1

M

M∑
m=1

hm(x) (2.6)

with M the number of trees and hm the prediction function of a single
decision tree.

18 CHAPTER 2. MACHINE LEARNING THEORY

2.5 Stacking Classifier

Stacking is a technique that can be applied to both regression and classifica-
tion problems. A Stacking classifier is concerned with combining multiple
classifiers into a single estimation [20]. The most basic form of stacking aver-
ages the predicted outputs of its input models into a final prediction. A more
sophisticated approach, is to replace the averaging scheme for an estimator
that gets trained on the predictions of the other models, to create a model that
predicts with different weights for each separate sample. Ultimately, stack-
ing is “a scheme for minimizing the generalization error rate of one or more
generalizers” [20].

Chapter 3

Analysis, Preprocessing and
Modeling

3.1 Overview

The main use case of machine learning is to make predictions on data.
The process to go from data to trained models is described in this chapter.
Chapter 4, follows this up with a description of the evaluation process
of the predictive performance and how the predictions can be interpreted.
Figure 3.1 illustrates how each of the different steps link to each other.

Data
Data

Analysis
Data

Preprocessing Modeling Model
Evaluation

Feature Enrichment

Preprocessing Parameters Tuning

Parameter Tuning

Figure 3.1: Illustration of machine learning workflow, where one starts
with data and ends up in the evaluation stage with predictions. After
the evaluation stage the models should be made ready for execution in a
production environment.

The first step in the process is to acquire a dataset and analyze it. The
dataset is provided and put together by the fraud experts that work for the
collaborating insurance company. The dataset is analyzed to get an idea of
the technologies that might perform well on the data and to get an idea of the
challenges that lie ahead, see section 3.3.

With the challenges (section 3.4) in mind, the algorithms are chosen
(section 3.6) and the data preprocessing steps are designed (section 3.5), and
model training can begin.

After each training round, the predictive performance of the models
is evaluated. The evaluation stage provides feedback on the chosen

19

20 CHAPTER 3. ANALYSIS, PREPROCESSING AND MODELING

preprocessing steps and algorithms. The effects of parameter tuning on the
predictive performance is also evaluated. Furthermore, model evaluation also
helps to identify new features that can be added to the dataset to improve
model performance. Section 4.2, elaborates on the tasks carried out in the
evaluation stage. The steps above are repeated until the models meet the
requirements and are ready for release in production. Sections 4.3 and 4.4,
conclude the approach with a look at the final workflow and the interpretation
of model predictions.

3.2 Rule-Based Fraud Detection System

Before moving on to the rest of the machine learning work flow that is
described above, it is helpful to understand the current system that is in place
at the collaborating insurance company to detect fraud. Machine learning
models can help to improve existing processes. However, in order to gauge
the performance of a machine learning model, one needs a baseline. For this
research, this happens to be the rule-based detection system that is currently
installed at the collaborating insurance company.

The rule-based detection system operates by evaluating, for each claim, a
set of rules. Whenever the conditions of a rule are satisfied, a weighted value
is added to the output score of a claim. After evaluation of all the rules, the
output score is converted, with the help of thresholding, to a 4-value fraud
score—ranging from 0 (non-fraudulent) to 3 (fraudulent). This fraud score is
then used to decide if a claim is worth investigating or not.

Currently, the rules that the system uses are rules that fraud experts
perceive as important, based on their experience with previous fraudulent
claims. This is not necessarily a bad thing, however, the system contains no
feedback that checks the effectiveness of a certain rule or condition. A rule
might increase the amount of fraud caught, but also double the workload,
because a rule is too general and flags a lot of non-fraudulent claims. This
is where machine learning can help, since machine learning algorithms are
able to identify more complex relationships and more nuanced interaction
between features; generating more complex condition structures that better
describe the root cause of why a claim is fraudulent.

Since the rule-based system is just a collection of rules and conditions,
the underlying decision making is easy to interpret. After the system awards
a fraud score, the fraud experts get to see the rules that counted towards
the final output. This way fraud experts can quickly decide if the claim is
worth investigating, and it also helps targeting the investigation at the right
variables. Fraud experts consider this model transparency as one of the key
features of the rule-based system. Section 4.4, describes solutions to also add
this transparency to machine learning models.

3.3 Data Acquisition, Analysis and Partitioning

The data-driven nature of machine learning makes data acquisition a logical
first step in the process. With data acquisition, one makes a preselection of

3.3. DATA ACQUISITION, ANALYSIS AND PARTITIONING 21

features that seem valuable to solve the task at hand—detecting fraud for car
insurance claims.

Data quantity and quality are both important in this step. Quality-wise,
including too many features unrelated to the task can pose problems later
on when training machine learning models. To ensure that the features are
related to the detection of fraudulent claims, a fraud expert helps to make
a selection of features that seem reasonable to include. Quantity-wise, more
data instances is generally better, as the machine learning models have more
data to train on. The sections below contain an elaborate description of the
dataset and how it is partitioned to make it ready for machine learning.

3.3.1 The Dataset

The dataset assembled for this research contains 161,247 records that each
represent a claim. Each claim is represented by 76 features, of which 54 are
scalar and 22 are categorical. Examples of scalar features are: insurer age,
insurance premium, car’s value, etc. Examples of categorical features are: car
brand, car color, etc. All features are provided anonymized with blind feature
names (e.g. x0) and with encoded values. Scalar features are encoded by
removing the mean and scaling to unit variance; also called standard scaling.
Categorical features are encoded with numerical codes; also called integer
encoding.

From all these records, roughly 0.3% (519 claims) is labeled as fraud,
meaning that the dataset is highly imbalanced. A couple of reasons for this
high imbalance are:

• Only a small percentage (3-6.4%) of claims is actually fraud [3].

• In the provided dataset only proven fraud has been labeled as fraud,
(highly) suspicious uninvestigated claims have similar labels as legiti-
mate claims. It is therefore not possible to distinguish suspicious claims
from other non-fraudulent claims, by label, in the dataset.

Figure 3.2, illustrates the label distribution of the dataset, this visual
impression makes the magnitude of label imbalance even more apparent.
Data imbalance plays an important role throughout the rest of this thesis and
influences the choice of algorithms, model evaluation etc.

3.3.2 Data Partitioning: Train, Validation and Test

To determine the predictive performance of a machine learning model, the
dataset needs to be partitioned into at least a train and test set. The train
set is used to fit a model, and the test set is used to determine its predictive
performance. With this simple way of partitioning, one runs into problems
with the tuning of model parameters. Whenever the test set is used for both
tuning parameters and estimating predictive performance, one is basically
polluting the model with prior knowledge of the test set. Giving the model an
unfair performance boost that does not generalize well to other parts of the
data. To mitigate this effect, a validation partition must be added, on which

22 CHAPTER 3. ANALYSIS, PREPROCESSING AND MODELING

No Fraud Fraud
0

20000

40000

60000

80000

100000

120000

140000

160000
Nu

m
be

r o
f C

la
im

s

160728

519

Figure 3.2: Label distribution of the entire dataset

the model parameters are tuned. The test set now becomes a hold out set that
is only used to estimate the final predictive performance of the model. Below
the use cases of each subset are described:

• Train: This subset is solely used to train a model.

• Validation: This subset is used to estimate model performance.
Additionally, it is used to tune model parameters, in an attempt to
increase a model’s predictive performance.

• Test (hold out): This subset is used to validate model performance on
data that the trained model has never seen before and data that has also
not been used to tune any of the model parameters. The performance
on this set can be considered a good estimation for how well the model
will perform in a production environment.1

The problem with using a single test set is that the predictive performance
is based on a single partition and this does not guarantee that the performance
will be similar on other partitions. By checking the difference in predictive
performance between both the validation and test set, one can attempt to
draw a conclusion on whether the model generalizes well to different parts
of the data. However, as mentioned before, the predictive performance on
the validation set is biased. Moreover, checking generalization on only two
data partitions is not always enough, especially when dealing with models
with high variance. In order to gain more confidence about the predictive
performance of a model and whether it generalizes well to other parts of the
data; cross validation can be used.

1To ensure that the predictive performance on the test set is not boosted by a “lucky” split, it
is important to check whether a model’s predictions generalizes well to other parts of the data.

3.3. DATA ACQUISITION, ANALYSIS AND PARTITIONING 23

3.3.3 Cross Validation

Cross validation is a way to estimate the confidence bounds of a model’s
predictive performance, these confidence bounds indicate how well the
predictions of a model generalize to other parts of the data. Cross validation
can be performed in many different ways, for this research, k-fold cross
validation is chosen, because it allows for the highest amount of validations
with the smallest loss of training data.

With k-fold cross validation, the train and validation sets are merged and
randomly partitioned into k equal subsets. From these k subsets, 1 subset
is used for performance validation and the other k − 1 subsets are used to
train the model. Training is repeated k times using every subset once for
validation. Choosing the value of k is a science on its own, since there is
a bias-variance trade-off (section 2.4.1) associated with the choice of k in k-
fold cross-validation. In this thesis the merely standard 5 or 10-fold cross
validation is used, because: “as these values have been shown empirically to
yield test error rate estimates that suffer neither from excessively high bias
nor from very high variance” [21]. Figure 3.3, illustrates the data partitioning
for 10-fold cross validation.

...

Validation Set

Train Set

Figure 3.3: A visual representation of 10-fold cross validation. The dataset is
split up in 10 folds, from which 10 distinctive datasets are created; consisting
of 9 train folds and 1 validation fold.

After cross validation, one has k results that can be converted to a single
performance estimation (mean) with the standard deviation. The final model
is trained on all the data (train and validation combined) and is evaluated on
the test set. One should expect the performance on the test set to be similar
to the performance determined with cross validation.

3.3.4 Final Data Partitioning: TrainVal A, TrainVal B and Test

The final partitioning of the dataset consists of two train/validation pairs
and one test set. This differs from the previously described partitioning
that is discussed in the rest of this section. Instead of the regular train,
validation and test partitioning, the dataset is partitioned into train/validation
A, train/validation B and test, see figure 3.4. The reason for this is the use

24 CHAPTER 3. ANALYSIS, PREPROCESSING AND MODELING

of a Stacking classifier. Section 2.5 contains more information on what a
Stacking classifier actually is, however, for now one just needs to know that
a Stacking classifier uses the predicted output of other models as its input.
Hence, the reason that an extra train/validation pair is needed to train the
Stacking classifier on.

A
(60%)

Data

Cross Val.

Train

Val.

Train A (folds)

Validation A (folds)

TrainVal A

B
(30%)

Cross Val.

Train

Val.

Train B (folds)

Validation B (folds)

TrainVal B

Test
(10%) Test

Figure 3.4: The final data partitioning of the dataset, and the names that
belong to each partition. The dataset is split into three partitions, TrainVal
A, TrainVal B and Test. Cross validation is also applied on TrainVal A and
TrainVal B to measure the generalization of the predictions.

All models except the Stacking classifier are trained and validated on the
A subset using 10-fold cross validation. In line with section 3.3.3, all final
models are trained on the entire A subset. After which, their predictive
performance is checked on the test subset.

The Stacking classifier is trained and validated on the B subset using 5-
fold2 cross validation. The models that are fit on subset A are now used to
provide the input for the Stacking classifier, by performing predictions on
the values of subset B. The test subset is again used to check the predictive
performance of the Stacking classifier.

Table 3.1, shows the final label distribution and size for each of the
subsets after the final partitioning round and figure 3.4 illustrates the final
partitioning of the dataset.

2Due to the lower claim count in subset B as compared to subset A, 10-fold cross validation
would leave too little fraud cases to train on.

3.4. CHALLENGES 25

Table 3.1: Label distribution across different splits

Fraud # Non-Fraud Fraud (%) Size of Subset (%)

TrainVal A 312 96436 0.32 60.00
TrainVal B 161 48213 0.33 30.00
Test 46 16079 0.29 10.00

3.3.5 New Features through Claim Analysis

Lastly, data acquisition has a tight feedback loop with the prediction stage,
certain claims are used to further enrich the dataset with new features based
on their predicted fraud probability. A fraud expert inspects these claims and
extracts data features that strongly profile these claims. Any features that are
not present in the dataset yet are added for the next iteration. Section 4.2
contains more information on this process and explains how claims are
filtered to look for new features.

3.4 Challenges

The three main challenges that this thesis faces are:

• Imbalanced data
As mentioned in section 3.3.1 the dataset is highly imbalanced—only a
small portion of the claims in the dataset is labeled as fraud. Imbalanced
data complicates model training, pressing the need for data resampling
and label weighting; see section 3.5.2. Moreover, imbalanced data also
complicates the usage of metrics to evaluate the predictive performance
of a model. Section 4.2.3 explores the most widely used performance
metrics and tests them for their ability to give useful insights on an
imbalanced data problem.

• Unlabeled fraudulent/suspicious claims
Apart from data imbalance, section 3.3.1 also mentioned that suspicious
claims are labeled as non-fraud in the dataset. Making it impossible
to distinguish non-fraud from suspicious claims, even though the goal
of the fraud detection system is to flag both fraudulent and suspicious
claims as well. This complicates both model training and evaluation.
Section 3.5.1, makes an attempt at reducing this problem.

• Comparison to baseline
The research goal states that the machine learning models should
achieve better predictive performance than the rule-based detection
system, by finding more fraudulent claims with a higher efficiency.
However, beyond these requirements, which metric should be favored
more: finding extra fraudulent claims or an increase efficiency;
section 4.2.5 tries to answer this question.

26 CHAPTER 3. ANALYSIS, PREPROCESSING AND MODELING

3.5 Data Preprocessing

Where data acquisition is meant for an initial selection of features and
records, data preprocessing enhances the data and prepares it for use with
machine learning algorithms.3 Data preprocessing is an important step where
much of the model’s performance is determined. Machine learning is not
a magical tool, and needs good data to function; hence, data preprocessing
needs to distill the right features and records that contain information about
claim fraudulence, guiding the algorithm in the right direction. The following
sections elaborate on the types of preprocessing that are being used.

3.5.1 Label Enrichment

Data labels are an important part of the dataset, they indicate if a claim is
fraudulent or not. Supervised learning algorithms use this information during
training. Data labels are also used to check the predictive performance of a
model, to see how many labels are predicted correctly. Below a few ways are
proposed to increase label quality and potentially restore some balance within
the dataset.

Section 3.3, briefly mentioned that only proven fraud has been labeled
as fraud and that suspicious and legitimate claims are treated equally. Even
though, suspicious claims should fall within the fraudulent category, in the
dataset suspicious claims are labeled as legitimate instead of fraudulent;
complicating supervised learning and the evaluation of the predictive
performance:

• In the case of supervised learning, a model gets punished for misclas-
sifying claims as fraudulent that are labeled as non-fraudulent, even
though they are suspicious and should be classified as fraudulent.

• The same goes for the evaluation of predictive performance, faulty
labels will induce errors in the final performance measurements.

To mitigate the problems stated above, an attempt is made to identify past
suspicious claims and relabel them to being fraudulent. Two variables are
found that potentially profile claims considered as suspicious in the past.

• Fraud score history
Internally fraud experts use a so-called fraud score that integrates with
the legacy rule-based system. When a claim comes in, the rule-based
system awards a score between 0 and 3 (higher is more fraudulent),
after which, fraud experts mutate this score based on their findings.
Mutations can be both incremental and decremental, and in some cases
a multitude of mutations are applied. On closing a claim, only proven
fraudulent claims get to keep a fraud score of 3 and receive the fraud
label. Suspicious and legitimate claims, get mutated to a score between
0 and 2 and receive a non-fraud label—even when their current fraud
score is 3.

3Each algorithm has its own tailored preprocessing pipeline

3.5. DATA PREPROCESSING 27

One could argue that a score of 2 seems more fraudulent than a score
of 0, however, based on the reports of fraud experts, the scoring between
0 and 2 is unreliable. Since, the fraud score levels are not explicitly de-
fined and scores not always get mutated when new findings are added
to the case. As a results of this, one cannot rely on the fact that higher
means more fraudulent. The last option left to use as a measure to
identify suspicious claims, is to check if claims received a fraud score of
3 somewhere during the period while the case was active; this method
only partially works. On the one hand, many claims receive a score of
3 at the beginning of the process by the legacy rule-based system, and
fraud experts might not always mutate fraud scores even when claims
are not suspicious; which makes a score of 3 not very useful. On the
other hand, mutations from a lower score to 3, are almost always inten-
tional, and indicate that a fraud expert suspected fraud.

Therefore, every processed claim that had a mutation of its fraud score
from 0-2 to 3 somewhere in the history of the case, will be considered as
fraudulent.

• Claim research cost
For each processed claim, the so called research cost are available. These
costs indicate how much money was spend on both fraud inspection
and claim handling for a specific claim. According to fraud experts, re-
search costs above a certain threshold can be considered as suspicious,
since commitments to further case inspections are only made when a
claim is highly suspicious.

Therefore, every processed claim with research costs higher than a certain
threshold, will be considered as suspicious.

It is important to note that label enrichment can only be applied to processed
claims, it solely aids training (for supervised models), and provides valuable
insights for the predictive performance on the validation and test data. Label
enrichment does not transform the actual features of new incoming future
claims. The resulting label count is shown in table 3.2. The dataset is
still highly imbalanced, however, it now contains more than twice as many
‘fraudulent’ cases.

Table 3.2: Label distribution for different subsets after label enrichment.
“Extra Fraud” indicates the number of times more fraudulent claims that are
now present in the dataset.

Fraud # Non-Faud Extra Fraud Fraud (%)

TrainVal A 839 95909 2.69 0.87
TrainVal B 417 47957 2.59 0.86
Test 132 15993 2.87 0.82

28 CHAPTER 3. ANALYSIS, PREPROCESSING AND MODELING

3.5.2 Data Resampling and Label Weighting

Apart from data sanitization and label enrichment, more can be done to cope
with the data imbalance mentioned in section 3.3. Namely, data resampling
and sample weighting; see sections 2.2.1 and 2.2.2 for more background on
these topics. Through experimentation is found that the way of dealing with
data imbalance greatly depends on the type of algorithm that will be used.
In general a mix of both undersampling and oversampling in combination
with label weighting yields the best results. For each algorithm, except for
the Stacking classifier that is presented later on, the following preprocessing
pipeline is used. The resampling ratios and label weights that work best, have
to be found through experimentation.

1. The majority class (non-fraud) is randomly undersampled.

2. The minority class is oversampled using SMOTE. This helps to further
restore class balance and makes fraud stand out more among the rest of
the data.

3. Both classes are resampled using Edited Nearest Neighbors4 (ENN), to
remove noisy data points and to make class borders more explicit.

4. Label weighting is used to further shift the importance to the minority
class.

3.5.3 Category Encoding

Multiple ways exist to represent categorical features in a dataset. In
this particular dataset integer encoding has already been applied to every
categorical feature (section 3.3). Integer encoding is most useful in cases
where the ordered relationship between categories is considered important,
in such cases integer encoding is usually referred to as ordinal encoding. For
example: importance levels that get encoded as integers, where 2 is more
important than 1 and 1 is more important than 0.

Whenever no ordinal relationship exists, ordinal encoding may cause
poor performance, because a model assumes an ordering between categories
that does not exist. In this case, a one-hot encoding scheme can be used
to transform the integer representation into a separate binary column for
each category; creating n features for n categories in one feature x, see
equation (3.1). By treating every category as a separate ‘yes’ ‘no’ entity the
ordinal relationship is removed.

~xn =

{
0 if x 6= n;

1 if x = n.
(3.1)

A disadvantage of one-hot encoding is that for a single categorical feature,
many one-hot encoded features are added—e.g. for a categorical feature with
5 categories, 5 one-hot encoded features are created.

4Through experimentation was found that ENN produced more stable results with less
variation than Tomek Links.

3.6. MODELING 29

For each model discussed in this thesis one-hot encoding is used as one
of the preprocessing steps. Especially when using SMOTE it makes more
sense to use one-hot encoding. For example, let’s take the categorical feature
car color. Imagine that the colors red and black are good indicators that
something is fraud. Now, when using SMOTE to create artificial fraudulent
claims. For the integer encoded variant of car color it might generate a claim
with a blue car, because the integer value for blue happens to be between
the values of red and black. Whereas for the one-hot encoded variant of car
color, SMOTE will generate a claim that is both half red and half black. Even
though the latter option is maybe not physical possible. An algorithm will
still be enabled to pick up the signal that a red or black car is an indicator
for fraud. Whereas with the integer encoded case, the algorithm is trained on
wrong data that does not represent reality.

3.6 Modeling

After data analysis, the preprocessing steps and algorithms can be chosen.
This section discusses the algorithms that are chosen to reach the objective,
the reasoning behind the choice of algorithms, and which modeling steps are
most important to focus on for each particular algorithm.

There are a wide variety of different machine learning algorithms and
choosing the right one for the task is based on the dataset, the objective and
experimentation. In an attempt to ease the process of algorithm choosing,
some requirements that the algorithms should comply to are discussed. This
is followed by a discussion of the chosen algorithms and the reasoning behind
these choices.

3.6.1 Algorithm Requirements

Based on the objective set in section 1.2 and the challenges discussed in
section 3.4, the algorithms should meet the following requirements:

• They must be suitable for binary classification;

• They must produce explanatory predictions; so that the feature
contributions of a particular prediction can be retrieved. This will
improve the process of claim evaluation for the fraud experts.

• They must contain parameters to deal with class imbalance.

Furthermore, following the discussion in section 2.1 on the types of
machine learning models, a choice is made for using supervised learning
algorithms. A supervised learning algorithm tries to predict a ground truth
that it trained on with the use of labeled data, whereas an unsupervised
model tries to learn a better representation or structure of the data without
any ground truth as guidance. The reason to choose for supervised learning
is because it provides more control over what the algorithms are trying to
classify. Supervised learning allows to set the target to distinguishing between
fraudulent and non-fraudulent claims, whereas unsupervised algorithms

30 CHAPTER 3. ANALYSIS, PREPROCESSING AND MODELING

might choose to separate claims based on other patterns than the fraudulence
of a claim.

The machine learning algorithms that seem most appropriate to achieve
the objective and that comply with the requirements above are: Logistic
Regression, Random Forest and LightGBM. The sections below will discuss
in more detail why these algorithms are chosen and which things one should
focus on during model training.

3.6.2 Logistic Regression

Logistic Regression is probably the most standard classification algorithm
that exists in the world of machine learning, and is also used for fraud
detection [22], [23]. It is in fact so standard that it is common practice to
always include a Logistic Regression model for binary classification.

As mentioned in section 2.3.2, Logistic Regression is prone to overfitting,
which can be controlled with regularization (section 2.3.3). The Sci-kit
learn implementation of Logistic Regression implements regularization, for
which both the type of regularization (L1, L2) and its strength can be set.
Furthermore, class weighting is available to deal with class imbalance. It also
allows to set a weight for each sample separately, however in the case of binary
classification there are no specific weights that need to be added to claims
other than the class weights.

3.6.3 Tree-based Models

Since the data is provided with scaled features (section 3.3.1), it is very likely
that some of the features were scaled out of proportion due to outliers—
squeezing most values in a very narrow region with a few outliers with far
higher values. Since the features are kind of black box, tree-based models are
an obvious choice, because they are generally more robust to outliers and data
transformations than other algorithms.

The final model setup contains two algorithms that are based on decision
trees, namely, Random Forest (see section 2.4.3 for more background) and
LightGBM. LightGBM is an implementation of gradient boosted decision
trees (see section 2.4.2 for more background). Modeling for each follows a
similar approach. Given the nature of tree-based algorithms, the key aspect
of modeling is to control overfitting; section 2.4 explains why overfitting is
such a big issue with tree-based models and the techniques that are applied
to control it.

Both algorithms rely on combining trees to create a model with low bias
and low variance; section 2.4.1 discusses the terms bias and variance. A
Random Forest classifier grows many specialized trees on different subsets
of the training data. Separately, each specialized tree has a low bias and high
variance, however, by creating a forest of trees that uses a combination of
many trees for a prediction, a model is created with low bias and low variance.
LightGBM takes the opposite approach of Random Forest and uses trees with
a high bias and low variance, so-called weak learners. LightGBM recursively

3.6. MODELING 31

grows weak learners that reduce the error of the ones before it, to end up with
a low bias and low variance.

Random Forest

Sci-kit learn’s implementation of Random Forest is used. As mentioned
before, algorithms based on decision trees are prone to overfitting, therefore
modeling is mainly about controlling tree growth. Tree growth can be
controlled by setting the maximum tree depth, minimum amount of samples
per leaf and the maximum amount of features that can be used for each tree.
To further reduce the variance, the number of trees can be specified.

As a decision criterion, talked about in section 2.4, Gini impurity is
preferred over Entropy. Especially because Gini is faster to compute and in
only 2% of the cases Entropy gives different results [15].

Lastly, just like is the case for the other models, the class weight is again
tuned to make up for the class imbalance.

LightGBM

From the many implementations of gradient boosting trees, Microsoft’s
LightGBM is chosen for its speed and high level of configurability [24].
Modeling is mainly focused on choosing the right class weights and finding
a balance between tree growth and generalization. Just like Random
Forest, LightGBM enables the modeler to control tree growth by setting
the maximum tree depth, minimum amount of samples per leaf and the
maximum amount of features that can be used for each tree. Apart from the
standard functionality of boosting trees, described by section 2.4.2, LightGBM
also implements bagging. Bagging allows for the subsampling of features
and/or data samples, to help improve generalization.

Furthermore, LightGBM supports a training mechanic called early stop-
ping that can be used during the training phase to help prevent overfitting.
It works by continuously validating performance5 on a validation set during
the training phase.6 Whenever performance on the validation set stagnates,
and performance is still increasing for the primary training data; overfitting is
likely happening. After multiple concurrent training iterations without an in-
crease in performance on the validation set, training will stop, and LightGBM
will take the iteration with the highest performance for future predictions.

Its speed and configurability make LightGBM one of the most versatile
algorithms that is suitable for any problem, hence the reason that is also
applicable to fraud detection. Moreover, LightGBM being a tree-based model
also allows for relative easy derivation of the feature contributions.

5Weighted binary logloss is used as performance metric for early stopping.
6To prevent performance bias on the actual validation set, a split of the training set is used as

a validation set for early stopping

32 CHAPTER 3. ANALYSIS, PREPROCESSING AND MODELING

3.6.4 Stacking Classifier

As mentioned in section 2.5, the job of a Stacking classifier is to improve
generalization while maintaining the performance of the other models [20],
hence the reason that a Stacking classifier is included in the final model
lineup. For this research, the Stacking classifier is actually a Logistic
Regression model that takes the predictions of the other three models
(Logistic Regression, Random Forest and LightGBM) as its input.

The modeling steps that were previously mentioned for Logistic Regres-
sion also apply to the Stacking classifier. The main difference is that no pre-
processing steps will be used to transform the input space of the Stacking
classifier. Class weighting, on the other hand, is still necessary to obtain a
balanced prediction output.

Chapter 4

Model Evaluation and
Interpretation

4.1 Overview

First, section 4.2 describes the model evaluation process. After the discussion
on model evaluation, section 4.3 recaps how the training and prediction steps
relate to each other. The last part of the approach is described in section 4.4,
which is a discussion on how the predictions of linear and tree-based models
can be interpreted, to prepare the predictions for display to the fraud experts.

4.2 Evaluation

In the evaluation stage the predictive performance of the models is measured
and evaluated. This includes comparing different parameter versions of the
same model, comparing models based on different algorithms and lastly
comparing models to the baseline. Model evaluation for classifiers on
imbalanced data can be done with many different metrics [25]. Section 4.2.1,
introduces the basic performance metrics, followed by the establishment of
the baseline performance in section 4.2.2. Section 4.2.3, discusses the most
widely used performance metrics and why or why not they are suitable to an
imbalanced learning problem. Sections 4.2.4 and 4.2.5, follow this up with
a description of the approaches used for model to model comparisons and
comparisons to the baseline. Lastly, in section 4.2.6, an approach to improve
the quality of the dataset is discussed.

4.2.1 Basic Performance Metrics: Confusion Matrix, Recall,
Precision and Specificity

A confusion matrix, is a tool to visualize the classification performance of
machine learning models, by presenting the four base classification statistics
in a tabular fashion. Table 4.1, shows an example of a confusion matrix.
Below follows an explanation of the four base statistics that are present in
the confusion matrix, and all other metrics are based on:

33

34 CHAPTER 4. MODEL EVALUATION AND INTERPRETATION

Table 4.1: Confusion matrix, a tabular representation of the intersection
between actual labels and predicted values

Actual

Positive (P) Negative (N)

Predicted
Positive TP FP

Negative FN TN

• TP, true positive, number of labeled positives (labeled fraud) that are
correctly classified as positive (predicted fraud)

• FN, false negative, number of labeled positives (labeled fraud) that are
incorrectly classified as negative (predicted non-fraud)

• FP, false positive, number of labeled negatives (labeled non-fraud) that
are incorrectly classified as positive (predicted fraud)

• TN, true negative, number of labeled negatives (labeled non-fraud) that
are correctly classified as negative (predicted non-fraud)

The relationship of these statistics is described by equation (4.1).

FN = P − TP
FP = N − TN

(4.1)

With P the number of real positive cases, and N the number of real negative
cases in the data. From this base, three metrics (recall, precision and
specificity) are defined that break down classification performance, for a
complete overview.

Recall (also called Sensitivity) indicates the fraction of labeled positives
(fraud) that are identified as positive, see equation (4.2).

recall =
TP

TP + FN
(4.2)

For fraud detection, recall is useful to measure the fraction of fraudulent
claims that are identified by a machine learning model.

Precision is the fraction of correctly classified labeled positives (fraud)
among all classified positives, see equation (4.3).

precision =
TP

TP + FP
(4.3)

A low precision indicates a high false positive ratio, meaning that many
instances classified as positive are actually negative. For fraud detection,
precision indicates how many of the flagged claims are actually fraud, and
thus says something about the amount of claims fraud experts need to check
before they find fraud.

Specificity measures the fraction of labeled negatives that are correctly
identified as negative, see equation (4.4).

specificity =
TN

TN + FP
(4.4)

4.2. EVALUATION 35

Specificity indicates the ratio of negatives that has been correctly classified
as negative, basically recall on the negative instead of positive class. Since,
fraud detection is all about catching fraud (positives), recall is a more intuitive
metric than specificity to evaluate a fraud detection algorithm.

4.2.2 Baseline Performance

Baseline performance is constructed using the legacy rule-based system
(discussed in more detail in section 3.2) that is currently installed at the
collaborating insurance company to detect fraudulent car insurance claims.
Baseline performance can be measured in many different ways and the choice
of metrics is dependent on the application. For fraud detection, one is usually
interested in increasing the amount of fraud caught and reducing the effort to
find fraud.

From the metrics specified in section 4.2.1, the two metrics that seem most
suitable for the application are:

• Recall, the percentage of known labeled frauds that a model is able to
classify as fraudulent. Recall is be able to keep track of the amount of
fraud that gets caught.

• Precision, the percentage of correctly classified claims that are flagged
as fraudulent. It is the ratio between true positives and false positives.
Precision indicates the quality of the predicted fraud, in other words,
how much effort it takes to find a fraudulent claim between all the
claims that are predicted as fraud.

Having decided on the metrics, the next important step is to create
a baseline to which the machine learning models can be compared and
evaluated. Using fraud score—awarded to every incoming claim by the rule-
based system (section 3.3)—as a threshold to classify claims, one can calculate
the precision and recall for each of the fraud score thresholds. Every claim
with a fraud score similar or higher than that of the fraud score threshold, is
flagged as fraud. The obtained labels are then compared to the actual labels,
after which, precision and recall for the particular threshold can be calculated.
Table 4.2, lists the obtained performance metrics of the rule-based system for
three fraud score thresholds.

Table 4.2: Precision and recall of rule-based system for multiple fraud score
thresholds on the TrainVal A set

Recall Precision Flagged (%)

Fraud Score: >= 1 0.94 0.01 93.66
Fraud Score: >= 2 0.44 0.04 8.17
Fraud Score: >= 3 0.15 0.06 1.86

One can see that a fraud score threshold of 1 catches almost all currently
known frauds (94%, 0.94 recall), however due to the very low precision, more
than 93% of claims get classified as fraud. This leaves the fraud experts with

36 CHAPTER 4. MODEL EVALUATION AND INTERPRETATION

almost all claims being suspicious, which is not very helpful. A fraud score
threshold of 2 produces more useful results. Investigating 8% of all incoming
claims results in catching 44% of all currently known fraud. However, more
than half of the fraudulent claims are left undetected, indicating that many
fraudulent claims get detected due to human intervention while processing
the claim. With a fraud score threshold of 3, about 15% of currently known
fraud gets detected and only 2% of all incoming claims needs to be checked.
Making it useful for easy catches, but most of the fraudulent claims stay
untouched.

In practice, fraud experts consider a fraud score of 2, on an incoming claim,
to be a good threshold, and anything with a lower score is considered not to
be worth investigating. Therefore, the performance metrics belonging to a
fraud score threshold of 2, are used to evaluate the final performance of the
machine learning models.

4.2.3 Alternative Performance Metrics

As mentioned in section 4.2.2, precision and recall provide the best overview
to evaluate the ability of a model to detect fraud. Recall keeps track of the
amount of fraud caught, and precision indicates with what kind of efficiency
fraud is caught. Recall serves as quantity control, to guarantee a certain
amount of fraud being detected. Precision serves as quality control, a higher
precision will mean more fraudulent claims among all claims classified as
fraud, and thus leaving less work for the fraud experts.

Precision and recall can both be computed for the baseline, so it is possible
to compare models directly with precision and recall. However, even though
these two metrics give a complete picture, from a comparison point of view,
it is desirable to have a single metric to describe model performance. With
a single metric, performance is well defined—a higher score indicates better
performance. With two metrics on the other hand, performance evaluation is
not as clear-cut. It is obvious that a model has better performance when both
metrics are higher, however, the comparison becomes ill defined whenever
one metric is higher and the other one is lower.

Below follows an explanation and analysis of the performance metrics that
are most widely used in the context of imbalanced learning [26]. The metrics
are tested for their viability of replacing precision and recall with a single
metric estimation on highly imbalanced data (0.03 ratio). In the dataset, fraud
belongs to the positive class and non-fraud belongs to the negative/majority
class. Therefore, classification performance on the positive/minority class is
more important than on the negative class, after all, one wants to evaluate how
good a model is at classifying fraud. This is an important consideration, since
many metrics are biased towards the majority class (non-fraud), when dealing
with imbalanced data. That is, for increasing data imbalance, the minority
class performance has a decreasing impact on the metric score. Therefore,
each metric is reviewed for its behavior on imbalanced data and whether it
produces viable output scores.

A metric is considered viable when it summarizes performance

4.2. EVALUATION 37

on the positive class in a way that no situation can occur where
a model’s performance converges to a point that yields poorer
fraud detection performance than the baseline i.e. quantity and/or
quality-wise worse than baseline.

To find a metric that summarizes precision and recall for easier performance
comparisons. Heat maps—e.g. figure 4.1—are created with metric scores for
all possible combinations of precision and recall on balanced and imbalanced
data. The heat maps will give an impression of how a metric summarizes
precision and recall, and how it is affected by data imbalance.

Accuracy

Accuracy is the fraction of correctly classified instances among all instances,
see equation (4.5).

accuracy =
TP + TN

TP + TN + FP + FN
(4.5)

Intuitively, accuracy seems to be a good metric to estimate the predictive
performance of a model. However, it weighs correctly classified minority and
majority instances equally, which poses a problem when dealing with (highly)
imbalanced data. As the following example illustrates, accuracy can give very
distorted performance indications for imbalanced learning problems; hence
accuracy is considered not to be applicable to this problem.

Example: Accuracy failing on imbalanced learning problem
Given an imbalanced dataset with a minority ratio of 1%. In
case a model predicts every instance to be part of the majority
class, one ends up with an accuracy of 99%. This hints at great
predictive performance, however, the prediction accuracy on the
minority class is 0%. For fraud detection, this means that an
accuracy of 99% can still mean that 0 fraudulent claims are being
identified.

Figure 4.1, confirms that precision and recall are not reflected in the
accuracy score for highly imbalanced data. The majority class is simply too
big to be affected by performance changes in the minority class.

F-score, b-varied F-score

F-score [27] is a metric that attempts to summarize the quality of classification
on (mainly) the positive class, because F-score is based on the two metrics
(precision and recall) that describe the positive classification performance.
Standard F-score (F1 score) is the harmonic mean1of precision and recall,
given by equation (4.6).

F1 =
2

1
recall + 1

precision

= 2 · precision · recall
precision + recall

(4.6)

1Because one is dealing with fractions, it makes sense to use the harmonic mean, as the
harmonic mean can be described as: the reciprocal of the arithmetic mean of reciprocals.

38 CHAPTER 4. MODEL EVALUATION AND INTERPRETATION

(a) Balanced data: Accuracy is sensitive
for value changes of both precision and
recall.

(b) Imbalanced data (ratio 0.003): Accu-
racy is insensitive to value changes of ei-
ther precision or recall.

Figure 4.1: Accuracy scores for all possible combinations of precision and
recall on both balanced (a) and imbalanced (b) data.

Even though F-score is focused on the positive class, it is still able to also
summarize model classification performance for both classes on a balanced
dataset. Since, precision is directly linked to the amount of true negatives
(TN) via the false positives (FP) (equation (4.3)). For highly imbalanced data,
however, the relationship between TN (relatively large) and FP (relatively
small) gets out of proportion, biasing F-score more towards the positive class.

Since F-score is only dependent on precision and recall (equation (4.6)),
it is obvious that F-score shows the same relationship to precision and recall,
regardless of class imbalance; illustrated by figures 4.2a and 4.2b. F-score
is able to optimize performance when precision and recall are considered
equally important. However, the equal treatment of precision and recall poses
a problem for the detection of fraud, because for a similar F-score one might
obtain a model with either high recall with low precision or low recall with high
precision. In the first case a lot of fraud is detected with a low efficiency, and
in the second case little fraud is detected with high efficiency. This makes it
difficult to guarantee better performance (higher precision and recall) than
the baseline for a higher F-score.

A more general defined variant of F-score is β-varied F-score, which
contains functionality to alter the relative importance between precision and
recall; with β controlling this behavior, see equation (4.7).

Fβ = (1 + β) · precision · recall
(β2 · precision) + recall

(4.7)

• For β < 1, F-score becomes more biased towards precision

• For β > 1, F-score becomes more biased towards recall

Figure 4.3, illustrates how a β of 2 transforms the score space. This
extension of F-score helps to overcome the previously stated problem, of F1.
However, choosing β is not an exact science, so it is difficult to decide how
large β should be.

4.2. EVALUATION 39

(a) Balanced data: F1 is equally sensitive
to value changes of both precision and
recall.

(b) Imbalanced data (ratio 0.003): F1 is
not affected by class imbalance.

Figure 4.2: F1-scores for all possible combinations of precision and recall on
both balanced (a) and imbalanced (b) data.

(a) Balanced data: F2 is biased more to
recall than to precision.

(b) Imbalanced data (ratio 0.003): F2 is
biased more to recall than to precision
and not affected by class imbalance.

Figure 4.3: F2-scores for all possible combinations of precision and recall on
both balanced (a) and imbalanced (b) data.

Balanced Accuracy

Balanced accuracy [28] describes the average accuracy of both classes, by
taking the average of sensitivity and specificity, see equation (4.8).

balanced accuracy =
sensitivity + specificity

2
=

TP
TP+FN + TN

TN+FP

2
(4.8)

Balanced accuracy produces similar output as classical accuracy whenever
the obtained accuracy is the same for both classes. However, unlike classical
accuracy, balanced accuracy is able to reflect a change in either the positive
or negative class accuracy, regardless of class imbalance. Figure 4.4, confirms
this, because recall (accuracy of minority class) affects the output—the score is
increasing along the recall axis—for both the balanced and imbalanced case.
This is the main advantage over conventional accuracy, since conventional
accuracy does neither reflect precision or recall in its output when dealing

40 CHAPTER 4. MODEL EVALUATION AND INTERPRETATION

(a) Balanced data: Balanced accuracy is,
like conventional accuracy, sensitive to
both precision and recall.

(b) Imbalanced data (ratio 0.003): Bal-
anced accuracy is only sensitive to recall
and negligible small values of precision.

Figure 4.4: Balanced accuracy scores for all possible combinations of precision
and recall on both balanced (a) and imbalanced (b) data.

with imbalanced data; illustrated by figure 4.1. Despite this advantage,
balanced accuracy does not reflect precision in its output for the imbalanced
data case—figure 4.4b shows a gradient along the recall axis. In order for
precision to have an effect on balanced accuracy, it needs to become negligible
small. Because of this, balanced accuracy is unable to correctly summarize
model performance for the fraud detection problem.

Youden’s Index

Youden’s index (also indicated by γ, [29]) is another attempt to summarize
performance with a single metric. The index tells something about the
proportion of combined misclassified instances for both classes, and is
described by both sensitivity and specificity, see equation (4.9).

γ = sensitivity− (1− specificity) =
TP

TP + FN
+

TN

TN + FP
− 1 (4.9)

Its output ranges from -1 to 1, with 0 as a baseline when similar proportions of
both classes are classified as positive. An output of 1 is awarded when no false
positives or negatives are present, i.e. the model has perfect performance; for
-1 vice versa.

Youden’s index equally weights false positives and negatives, and thus
it is impossible to conclude from the index score which class has more
misclassifications. This becomes a serious issue with imbalanced data,
illustrated by figure 4.5. Figure 4.5a, shows that Youden’s index reflects both
precision and recall in its output for the balanced data case. However, as
one can see in figure 4.5b, for highly imbalanced data Youden’s index only
contains information about the recall performance of a model. Precision has
to become negligible small in order to be reflected in the output, meaning that
the quality of the classification on the positive class is not reflected in Youden’s
index for highly imbalanced data. Making Youden’s index not a good metric
to summarize the performance of fraud detection models.

4.2. EVALUATION 41

(a) Balanced data: Youden’s index is
sensitive to both precision and recall.

(b) Imbalanced data (ratio 0.003):
Youden’s index is only sensitive to recall
and negligible small values of precision.

Figure 4.5: Youden scores for all possible combinations of precision and recall
on both balanced (a) and imbalanced (b) data.

Matthews correlation coefficient (MCC)

Matthews Correlation Coefficient (MCC) [30] is a single performance metric
that measures the quality of a binary classification. It is regarded as a measure
that is less impacted by imbalanced data, because it considers all aspects of
the confusion matrix.[31] Essentially, MCC is a correlation coefficient between
the actual and predicted classification , which is returned as an outcome
between 1 and -1; see equation (4.10). A value of 1 indicates a perfect
prediction, 0 similar performance as random, and -1 everything wrongly
predicted.

MCC =
(TP · TN)− (FP · FN)√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
(4.10)

Even though a confusion matrix can never be fully replaced by a single
number, MCC is regarded to be one of the best singular assessment metrics,
especially when dealing with imbalanced data.[32] Figure 4.6, helps to
identify the strengths and weaknesses of using MCC, it illustrates the MCC
scores for all combinations of precision and recall on highly imbalanced data
(minority class of 0.3%). As one can see, MCC’s score increases equally for
both precision and recall, and shows no distortion induced by imbalanced
data. For some cases this might be desired behavior, however, for the fraud
detection case, MCC gives a wrong perception of the actual performance.
After all, a high recall with low precision is very different from low recall with
high precision. In the first case, a lot of fraud is detected with a low efficiency
In the second case little fraud is detected with a high efficiency. MCC is
therefore unable to guarantee that an MCC score higher than the baseline,
always means that neither precision or recall are lower than the baseline. This
violates the previously defined viability requirement, and thus MCC is not
applicable to summarize the performance of fraud detection models.

42 CHAPTER 4. MODEL EVALUATION AND INTERPRETATION

(a) Balanced data: MCC is equally sen-
sitive to value changes of both precision
and recall.

(b) Imbalanced data (ratio 0.003): MCC is
hardly affected by class imbalance.

Figure 4.6: MCC scores for all possible combinations of precision and recall
on both balanced (a) and imbalanced (b) data.

Receiver Operating Characteristic (ROC) Curve

A receiver operating characteristic curve, i.e. ROC curve [33], is a graphical
tool to evaluate model performance on a binary classification problem for a
varying classification threshold.

A ROC curve is created by plotting the true positive rate (TPR) against
the false positive rate (FPR) for each classification threshold. Recall and
sensitivity are alternative names for true positive rate, and TPR is therefore
specified by equation (4.2). The false positive rate is specified as (1 −
specificity), and more elaborately by equation (4.11).

FPR = 1− specificity =
FP

FP + TN
(4.11)

Saito et al. [34] shows that the visual interpretability of ROC curves in the
context of imbalanced datasets can be deceptive with respect to conclusions
about the reliability of classification performance. Section 4.2.3, contains an
example that illustrates why a ROC curve can be deceptive with imbalanced
data.

Precision-Recall Curve (PRC)

A precision-recall curve (PRC) is a graphical representation of a model’s
classification performance on the positive class, expressed by precision/recall
pairs. By varying the classification probability threshold, it is possible to
obtain many precision/recall pairs that can be plotted, to form a curve with
recall on the x-axis and precision on the y-axis. PRC provides a way to judge
the classification performance of a model over the entire recall space, instead
of just a single probability threshold.

Davis et al. [35] states that one can better use a precision-recall curve than
a ROC curve for imbalanced data. To illustrate this, an example is given that
shows the ROC and PRC scores measured on a single point for two different
models on an imbalanced dataset.

4.2. EVALUATION 43

Example: PRC is more sensitive to positive class than ROC for
imbalanced data
Model 1: 100 retrieved claims, 90 are fraudulent
Model 2: 2000 retrieved claims, 90 are fraudulent
Model 2 has significantly worse performance, since the workload
is 20 times higher for the same amount of fraud. The scores for
the ROC curve become:
Model 1: TPR: 0.9, FPR: 0.00001
Model 2: TPR: 0.9, FPR: 0.00191 (difference: 0.0019)
The scores for PRC become:
Model 1: Recall: 0.9, Precision: 0.9
Model 2: Recall: 0.9, Precision: 0.045 (difference: 0.855)

As one can see, the score difference between the models is significantly
higher in the case of the precision-recall curve; the FPR shows only a
slight change. Obviously, these are single point scores, however, when this
imbalance persists across various classification thresholds, the precision-
recall curve is a better choice than the ROC curve for imbalanced datasets.

For easy comparison of precision recall curves, one could consider using
the area under curve method.

Area Under Curve (AUC)

Area under curve (AUC) converts a curve to a single metric approximation,
by approximating the area underneath a curve; simplifying the comparison
between multiple instances of a graphical metric. Intuitively, a larger AUC
usually indicates better performance, since a bigger area indicates that the
overall values of the curve are higher.

AUC is computed with the trapezoidal rule that tries to estimate the
definite integral. The trapezoidal rule works by approximating the area
under the curve as the area of a trapezoid. By partitioning the curve and
fitting multiple trapezoids, the approximation becomes more accurate. The
smaller the partition size, the more accurate the approximation becomes. The
trapezoidal rule is defined by

N∑
k=1

f(xk−1) + f(xk)

2
∆xk (4.12)

with ∆xk the horizontal distance between points xk−1 and xk—in other words
∆xk is the width of partition k.

In many cases AUC is used in combination with ROC, however, ROC
is found to be an unreliable measure to compare model performance in an
imbalanced data setting. Therefore, AUC will also yield unreliable results
when used to compare ROC curves. Fortunately, AUC is still a viable metric
to compare other more meaningful curves, such as the precision-recall curve.

44 CHAPTER 4. MODEL EVALUATION AND INTERPRETATION

4.2.4 Model Optimization and Comparison

With model optimization one compares the same algorithm with different
parameter setups and/or preprocessing pipelines, to find the configuration
with the best predictive performance. Model comparison involves comparing
models based on different algorithms. Again, to see which model has the best
predictive performance. In this thesis model optimization and comparison
are done in the same way.

Section 4.2.3, discusses the most widely used metrics to measure
predictive performance for imbalanced learning problems. From this
discussion, three metrics can be distilled that summarize precision and recall,
and hold up with data imbalance; F-score, Matthews correlation coefficient
(MCC) and the area under curve of the precision-recall curve. F-score and
MCC are both point estimates, measured for a single classification threshold,
whereas the precision-recall curve covers the performance of the entire
prediction space.

Section 4.2.3 already described that the standard version of F-score, F1,
and MCC both treat precision equally to recall. From this follows that both
measures can optimize a model to both a high recall with low precision or a low
recall with high precision, for the same metric score. In the first case a lot of
fraud is detected with a low efficiency, and in the second case little fraud is
detected with high efficiency. This layer of abstraction removes transparency
for the modeler, and might cause a model to be wrongly optimized. This
same problem partially applies to the area under curve of the precision-recall
curve, after all, the area under curve can be the same for a peak in precision for
either a high or low recall. However, by showing the precision-recall curve in
combination with the AUC score, it is immediately obvious what the precision
and recall scores are like.

Furthermore, since the models are going to be used in a production
environment, in which model requirements might change. It is good
to evaluate a model on its overall prediction performance for all the
classification thresholds, in case that the classification threshold needs to be
moved to change a model’s performance—e.g. get a higher recall. The area
under curve of the precision-recall curve summarizes the overall performance
better than the other two metrics.

The precision-recall curve in combination with the area under curve,
maintains transparency through visual feedback, while also allowing for easy
comparison with a single metric estimation of the entire prediction space.

4.2.5 Baseline Comparison

The last step in the evaluation process is to compare the models to the
baseline. Baseline comparison is useful to estimate the actual performance
improvements that the models bring about. The increase in predictive
performance is evaluated by comparing the performance of the models on
the validation sets2 and the test set3 against the baseline performance.

2There are multiple validation sets, because cross-validation is used.
3The test set is only used for the final model comparison, to prevent bias.

4.2. EVALUATION 45

Baseline performance (section 4.2.2) is defined as the classification
performance of the rule-based system for a fraud score higher than 2, for
which multiple metrics can be computed; see table 4.2. Since the baseline
performance is expressed in both precision and recall, it is clear that a model
should have at least a recall and precision that is higher than the baseline.
However, beyond this requirement, it is difficult to decide which one of the
metrics should be considered more important. After all, a higher precision
will lower the workload and a higher recall will increase the amount of fraud
caught; both are important.

By moving a model’s classification threshold, it is possible to favor either
precision or recall, creating a range of possible thresholds. Therefore, the
baseline will be defined as two performance boundaries that constrain this
range of possible thresholds:

• Maximum effort
The effort fraud experts currently spend on checking all claims that are
classified as fraud by the baseline.

• Minimum recall
The level of recall, or the current amount of fraud currently caught by
the baseline.

These two boundaries are expressed in recall and effort. Effort is given by
equation (4.13), and is incorporated into precision, see equation (4.14). Effort
is not really a metric in the sense that it depends on the size of the dataset,
hence the reason that a precision-based metric (precision-recall curve) is still
used for model to model comparisons between different subsets of the data.

effort = TP + FP (4.13)

precision =
TP

TP + FP
=

TP

effort
(4.14)

Models are compared to the baseline by computing the fraud increase and
effort reduction, given by equations (4.15) and (4.16).

fraud increase =
recallmodel − recallbaseline

recallbaseline
· 100% (4.15)

effort reduction =
effortbaseline − effortmodel

effortbaseline
· 100% (4.16)

By computing the above metrics for the classification thresholds that lie
between the boundaries, one obtains two curves for fraud increase and effort
reduction. These curves are then normalized on the x-axis, so that only the
height of both fraud increase and effort reduction count towards the quality of
the model. Then, the area under curve is computed for each model separately.
And to obtain the final performance estimation the two AUCs are averaged,
as given by equation (4.17).

AUCtotal =
AUCfraud increase + AUCeffort reduction

2
(4.17)

46 CHAPTER 4. MODEL EVALUATION AND INTERPRETATION

4.2.6 Dataset Improvement through Claim Analysis

In an attempt to improve claim classification, wrongly classified claims are
discussed with a fraud expert to gain valuable insights on what might have
caused misclassification. There are two types of misclassifications:

• Fraud is classified as non-fraud; false negatives.

• Non-Fraud is classified as fraud; false positives.

Misclassified fraud is considered to be more valuable to be analyzed further,
by a fraud expert, than misclassified non-fraud. Firstly, because the dataset is
highly imbalanced and the main goal is to detect fraudulent claims. Secondly,
for misclassified non-fraud, it is difficult to judge if a claim has really been
misclassified, due to the fact that suspicious claims are labeled as legitimate
claims in the dataset (section 3.3). Claims chosen for further analysis can help
in the following ways:

• Finding new features that better profile a fraudulent claim; fraud might
be profiled by specific features that are not always present in the current
dataset.

• Label or feature value correction; in some cases labels or values were
wrongly put into the system and have to be corrected.

As mentioned in section 3.3, for each processed claim, the so-called
research cost are available. These cost indicate the amount of money that was
spent on fraud investigation and claim handling for a specific claim, where
higher cost usually indicate more suspicious. Figure 4.7, shows an example of
a research cost plot.

0

812

1625

2437

3249

4061

Re
se

ar
ch

 C
os

t

8.1

104.4

216.9

329.4

441.9

554.4

M
ea

n
Re

se
ar

ch
 C

os
t

No Fraud
Enriched Fraud
Fraud
Mean Cost (y2)
Thresholds

0.2 0.4 0.6 0.8 1.0
Predicted Probability

Figure 4.7: Example of a research cost plot. With the predicted probability
that a claim is fraudulent on the x-axis and the research cost on the y-axis.
The mean cost line indicates the average research cost per bin and uses the
right y-axis.

In the plot each claim is represented by a dot and is positioned according
to its predicted probability and research cost. The plot differentiates between

4.3. FINAL PIPELINE DESIGN 47

non-fraud, originally labeled fraud and claims that received a fraud label after
label enrichment (section 3.5.1). The mean research cost line represents the
mean cost of all claims in each bin. Ideally, fraudulent claims reside mainly
on the right side and non-fraudulent claims reside mainly on the left side,
because a higher predicted probability means that a claim is more suspicious.

This visualization helps to learn more about the dataset in collaboration
with a fraud expert, to improve the predictive performance of the machine
learning models. The plot regions that are most helpful to learn more about
the dataset are:

• Fraudulent claims with low probability:

– and low research cost;
the model thinks the claim is non-fraudulent, which means the
model is likely wrong. The model did not receive a lot of attention
by the fraud experts, because the research cost are low. This means
that the claim is either clearly fraudulent or the label is wrong.
When the claim is clearly fraudulent, it probably contains new
features that the model did not train with that can help profile
fraud.

– and high research cost;
the model thinks the claim is non-fraudulent, which means the
model is likely wrong. The research cost are high, thus the claim
received attention from the fraud experts. Moreover, the claim has
been proven to be fraudulent. The claim can therefore probably
provide the model with new features to profile fraudulent claims.

• Enriched fraudulent claims with low probability:

– and high research cost;
the model thinks the claim is non-fraudulent, which matches with
the original label. However, the claim has been enriched, because
in the past the claim received attention by the fraud experts. So,
there should be a feature that triggered them into thinking the
claim is fraudulent. If the model is right, future research cost can
be saved.

– and low research cost;
the model thinks the claim is non-fraudulent, which matches with
the original label. The research cost are low, which means that the
claim has a suspicious fraud score history, but did not receive a lot
of attention from the fraud experts. It is therefore plausible that
this claim has been wrongly enriched.

The new features and label cleanups are applied in the data acquisition and
preprocessing stage.

4.3 Final Pipeline Design

This section gives an overview of how the previously discussed stages of the
machine learning work flow relate to each other and how data is turned into

48 CHAPTER 4. MODEL EVALUATION AND INTERPRETATION

trained models and predictions.

A
(60%)

Data

Cross Validation

LR RFC LGBM

Train Final Models

LR RFC LGBM

P1

B
(30%)

Predict

LR RFC LGBM

Cross Validation

Stacking

Train Final Model

Stacking

P2

P3

Test
(10%)

Predict

LR RFC LGBM
Predict

Stacking

P4

P5

Figure 4.8: An abstract visual representation of the process to go from data
to predictions. The different colors separate the classical machine learning
models from Stacking. Moreover, a hatched block indicates that it is used for
model optimization and determining the final model configuration.

Figure 4.8, gives an abstract visualization of the data that is used to train
certain models. The different colors in the diagram separate the classical
machine learning models from the Stacking classifier. Moreover, blocks
with a hatched background determine the final configuration of a model,
whereas the solid colored block use the final configuration for either training
or predicting.

Starting with the classical models, every model starts with cross valida-
tion. Here, models are optimized and the final model configuration is de-
termined. With the final configuration ready, the models are trained on the
entire train set, which happens to be partition A (TrainVal A) for the classi-

4.4. INTERPRETING MODEL PREDICTIONS 49

cal models. The trained models are then tested on partition B (TrainVal B)
and the Test partition. The visualization shows that Stacking uses the predic-
tions of the other models as its input. Also Stacking is first optimized with
cross validation to find the final parameter configuration. This configuration
is then used to train Stacking on the predictions of the other classical models.
The trained model of Stacking is then tested on the Test partition, using the
predictions of the other models as its input.

To clarify the steps described above, a more detailed version of all the steps
is given by figure 4.9. Here, cross validation is depicted more explicit and also
the resample and preprocessing steps are shown. Technically, resampling
is part of preprocessing, but it is important to note that resampling only
happens on the training input of models, it is not done on input that is
going to be predicted. It is important to note that only the classical machine
learning models contain preprocessing steps. Stacking does not contain this,
because its input is already nicely formatted. Namely, three features with
values between 0 and 1, after all, its input are the predicted outputs of the
tree models: Logistic Regression, Random Forest and LightGBM.

Lastly, it is interesting to talk about the use of each prediction indicated by
Pi in the diagrams. Predictions P1 and P3 both contain the predicted output
of cross validation. This output is mainly used during the optimization of
a model, to help with parameter tuning, and create the final configuration.
Moreover, cross validation is used to compute the standard deviation of
a model, so a judgement can be made on how well a model generalizes
to other parts of the data, and whether certain predictive performance is
representative. Prediction P2, is the predicted output of the classical models
on the B set (TrainVal B). The results of P2 will be used to be able to compare
the classical models more fairly to the Stacking performance of P3, since
they are both tested on the same dataset. Predictions P4 and P5 contain
the predictions of the classical models and Stacking on the Test set. This is
the fairest comparison, as both Stacking and the other models are tested on
exactly the same set. Therefore, it will be used to draw conclusions about the
predictive performance of the models.

4.4 Interpreting Model Predictions

An important difference between machine learning models and the legacy
rule-based system is that the latter is transparent. For each claim it shows
the most important rules that lead to its classification; helping fraud experts
to quickly verify any suspicions. In order to turn machine learning models
into a viable solution, it is required that fraud experts are given clues on
the features that are most important for a specific prediction. The following
sections explain how to find the top most contributing features of a claim for
different types of algorithms.

50 CHAPTER 4. MODEL EVALUATION AND INTERPRETATION

A
(60%)

Data

Cross Val.

Train

Val.

Resample Preprocess

Preprocess

Train
Model(s)

Predict

Resample Preprocess
Train
Final

Model(s)

P1

B
(30%)

Preprocess Predict Cross Val.

Train

Val.

Train
Stacking

Predict

Train
Final

Stacking

P3

P2

Test
(10%) Preprocess Predict

Predict

P4

P5

Figure 4.9: A detailed visual representation of the process to go from data
to predictions. The different colors separate the classical machine learning
models from Stacking. Moreover, a hatched block indicates that it is used for
model optimization and determining the final model configuration.

4.4.1 Interpretation of Logistic Regression

As mentioned in section 3.3.1, standard scaling has been applied to all scalar
features to make their values anonymous. As an added benefit all the features
have the same scale, which simplifies the process of computing the feature
contributions for Logistic Regression.

Because standardized data is used, the predictors already all have the same
scale, which allows for the direct comparison of the regression coefficients.
The standardized coefficients represent the mean change in the response
given a one standard deviation change in the predictor.

Multiplying the values of the predictor with their corresponding regres-

4.4. INTERPRETING MODEL PREDICTIONS 51

sion coefficients, gives the contribution for each feature for the predictor. The
features with a high positive contribution will be the top contributing features
to why a claim is classified as positive/fraudulent, whereas the features with
a high negative contribution will be the top contributing features as to why a
claim is classified as negative/non-fraudulent.

4.4.2 Interpretation of Decision Trees

One possible way of getting insights into a decision tree is to compute its
feature importances, this functionality is offered by Scikit-learn. Feature
importance basically describes how prominent a feature is in the classification
tree. How much a feature contributes to the predictions overall, but not
specifically to a single prediction. A general idea of which features contribute
most to a prediction helps to get a feel if the model bases its predictions on
sensible features. However, it does not provide the granularity to tell the
feature contributions of a single prediction. Below an approach is described
on how to find the feature contribution for each prediction separately.

Each decision in a tree corresponds with a feature, which either adds or
subtracts from the value of the parent node. A prediction is defined as the
sum of feature contributions plus the bias4, given by equation (4.18).

f(x) = cbias +

J∑
j=1

contrib(x, j) (4.18)

Where cbias is the value at the root of the node, J is the number of features
and contrib the contribution of feature j for instance x.

Figure 4.10, provides visual aid to understand how the contribution of
features is computed. The tree represents a fitted decision tree model with
an input space that consists of two features J1 and J2. During training the
tree has 100 samples available, 50 for each class; (n0, n1) shows the class
label distribution for each node, with n0 positive samples and n1 negative
samples. To learn more about how a decision tree is trained, see section 2.4.
The values between brackets [p0 , p1], show the probability for an instance to
belong either to the positive p0 or negative p1 class. These probabilities are
then used to compute the contribution of a feature to the branching decision,
by subtracting the probability of the previous node from the probability of
the current node; resulting in {c0, c1}. The contribution values of a node
represent the contribution of the feature belonging to the previous node.

Now, with all the tree data available, the feature contributions for a
prediction can be computed. As an example, take x with feature values j1 > t1
and j2 < t2. The instance is predicted to first take the right branch because it
has a value bigger than t1, the feature contribution value of j1 now becomes
0.32. Thereafter, at the second decision point, the instances is directed to
take the left branch; resulting in a contribution value of 0.07 for j2. The
predicted probability that x belongs to the positive class now becomes 0.89,
with feature contribution values for j1 and j2 of 0.32 and 0.07 respectively.

4The ratio of a class at the parent node as determined during training.

52 CHAPTER 4. MODEL EVALUATION AND INTERPRETATION

J1 ≤ t1
(50,50)

[0.50,0.50]

J2 ≤ t2
(45,10)

[0.82,0.18]
{0.32,-0.32}

(5,5)
[0.50,0.50]
{-0.32,0.32}

(40,5)
[0.89,0.11]
{0.07,-0.07}

(5,40)
[0.11,0.89]
{-0.39,0.39}

Figure 4.10: A simple decision tree for an input space with two features J1
and J2. The space is partitioned into 3 regions. Each leaf shows its class label
distribution (n0, n1), with n0 positive samples and n1 negative samples. [p0 ,
p1], indicates the probability for an instance to belong to either class. {c0, c1}
are the contributions of a feature to the branching decision for either class.

According to equation (4.18), the predicted probability is the bias plus the
feature contributions, which gives 0.5 + 0.32 + 0.07 = 0.87, this is indeed
correct.

Interpretation of Random Forest

Section 4.4.2, describes an approach to compute the contribution each feature
makes towards a final prediction, to aid the user of the prediction with further
analysis. This approach can be extended upon for random forests, as random
forests rely on decision trees to make predictions. Instead of using a single
decision tree, random forests uses a forest of trees that together count towards
the final prediction, see section 2.4.3 for more background.

In order to move from a decision tree to a forest of trees, one should sum
and take the average of the tree predictions. The predicted output for random
forests is given by:

F (x) =
1

M

M∑
m=1

fm(x)

withM the number of trees and fm(x) the function for the prediction value of
a decision tree. By replacing f(x) with equation (4.18), the prediction value
for random forests can be written as:

F (x) =
1

M

M∑
m=1

cbias,m +

J∑
j=1

(
1

M

M∑
m=1

contribm(x, j)

)
(4.19)

with J the number of features and contribm is computed according to the
approach described in section 4.4.2. By summing and averaging the feature

4.4. INTERPRETING MODEL PREDICTIONS 53

contributions for each path taken in each tree, one is able to compute
the contribution of each feature for each prediction of random forests
separately. The feature contribution for instance x and feature j is given by
equation (4.20).

feature contribution(x, j) =
1

M

M∑
m=1

cbias,m +
1

M

M∑
m=1

contribm(x, j) (4.20)

Interpretation of LightGBM

Section 4.4.2 lays the foundation for computing feature contributions
for decision trees. This can be extended upon to compute the feature
contributions for LightGBM. There is a fundamental difference between
bagging trees (Random Forests) and boosting trees (LightGBM). In order to
maintain equation (4.18), where “prediction = bias + sum of the feature
contributions”. Each bagged tree, maps from bias to target, and the bagged
ensemble is the average vote of all bagged trees together. Hence the prediction
of Random Forests, see equation (4.19), is computed by dividing the bias and
feature contributions by the number of trees. Each boosted tree on the other
hand, maps from residual to target, and the boosted ensemble maps from bias
to target. Therefore, the prediction is given by

F (x) =

M∑
m=1

fm(x)

withM the number of trees and fm(x) the function for the prediction value of
a decision tree. By replacing f(x) with equation (4.18), the prediction value
for LightGBM can be written as:

F (x) =

M∑
m=1

cbias,m +

J∑
j=1

(
M∑
m=1

contribm(x, j)

)

with J the number of features and contribm is computed according to the
approach described in section 4.4.2. By summing the bias and feature
contributions for each path taken in each tree, one is able to compute the final
bias and feature contributions for every prediction separately. The feature
contribution for instance x and feature j is given by equation (4.21).

feature contribution(x, j) =

M∑
m=1

cbias,m +

M∑
m=1

contribm(x, j) (4.21)

4.4.3 Interpretation of Stacking Classifier

The computation of feature contributions for the Stacking Classifier is
similar to that of section 4.4.1, since the Stacking classifier is a Logistic
Regression model that uses the predictions of the other three models—
Logistic Regression, Random Forest, LightGBM—as its input. For a
prediction, the feature contributions of each input model are computed

54 CHAPTER 4. MODEL EVALUATION AND INTERPRETATION

separately. After this, the feature contributions of the input models are
multiplied by their respective (stacking) regression coefficients. This results
in three contribution values for each feature, these values are summed to end
up with the final feature contribution values. Again, the high positive feature
contributions are contributing to the probability that a claim belongs to the
positive/fraudulent class, whereas the large negative feature contributions are
contributing to the probability that a claim is negative/non-fraudulent.

Chapter 5

Discussion and Results

5.1 Overview

This chapter lists and discusses the results that are obtained by following
the approach as described in chapter 4. The main goal is to find the best
performing model and see how it compares to the baseline; to get a feel
for the predictive performance that can be expected when the model goes
live. Furthermore, it is interesting to see if the chosen evaluation metrics
are able to capture the results well, and if they hold up in an imbalanced
data setting. The following four models are featured in this chapter: Logistic
Regression, Random Forest, LightGBM and a Stacking classifier based on
Logistic Regression.

Before discussing the results, it helps to understand the partitioning of
the dataset, and the role each partition plays in the process from algorithm
to prediction. For a reference of the data partition names, see figure 3.4.
Section 3.3 provides more background on the reasoning behind the use of
multiple data partitions.

Apart, from the partitioning of the dataset, it is also valuable to get
familiar with the term classification threshold region, since it is used extensively
throughout the entire results chapter. The classification threshold region,
depicted in some figures, indicates the possible probabilities to put the
classification threshold, in order to still comply with the performance
boundaries set in section 4.2.5. For reference, the baseline performance is
set by a fraud score higher than 2. With the two boundary constraints being:

• Maximum Effort: the model should not classify more claims as
fraudulent than the baseline, thus it should comply to a certain amount
of effort (number of claims) that it flags as potentially fraudulent.

• Minimum Recall: the model should at least catch a similar amount of
fraudulent claims as the baseline, thus it should have a recall that is
similar or higher than the baseline.

The thresholds of a model are the mean of the thresholds that comply
with the boundaries described above when cross validating the model.
Section 4.2 contains more information on the evaluation metrics used and

55

56 CHAPTER 5. DISCUSSION AND RESULTS

how classification thresholds are chosen to match the performance with the
baseline.

5.2 Probability Density

This section studies how each model is separating fraudulent claims from
non-fraudulent ones. A visualization that can help with studying this
behavior is the probability density plot. The probability density plot
illustrates the distribution of predicted probabilities for both fraud and non-
fraud.

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0

1

2

3

4

5

De
ns

ity

No Fraud
Fraud
Thresholds
Test
TrainVal B
Validation A (folds)

Figure 5.1: Probability density distribution plot of Logistic Regression.
The fraudulent claims have relatively high probabilities, whereas the non-
fraudulent claims have relatively low probabilities.

Figure 5.1, depicts the density of the predicted probability for Logistic
Regression. It is interesting to note that, the spread (or variance) of the
probability density lines obtained through cross validation is higher for
fraud than for non-fraud. This is likely due to the small amount of fraud
cases that are present in the dataset; catching a few extra fraud cases can
already significantly change the probability density graph. Furthermore,
the threshold region, indicated by the dashed hatch, shows the possible
probabilities where a classification threshold can be placed to stay within the
performance boundaries mentioned before.

The probability density distribution of Random Forest is shown by
figure 5.2. Compared to Logistic Regression, the peak of non-fraudulent
claims is twice as high. In return, the fraudulent claims are almost evenly
distributed across the entire probability space. However, this more aggressive
approach pushes most non-fraudulent claims in the low probability region.
Leaving Random Forest with slightly more separation than that of Logistic

5.2. PROBABILITY DENSITY 57

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0

1

2

3

4

5
De

ns
ity

No Fraud
Fraud
Thresholds
Test
TrainVal B
Validation A (folds)

Figure 5.2: Probability density distribution plot of Random Forest. Most non-
fraudulent claims have a low predicted probability, whereas the fraudulent
claims have a more equal spread of probabilities.

Regression and thus a wider threshold region.1,2 The variance for non-fraud
is again relatively small as compared to fraud.

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0

1

2

3

4

5

De
ns

ity

No Fraud
Fraud
Thresholds
Test
TrainVal B
Validation A (folds)

Figure 5.3: Probability density distribution plot of LightGBM. There is
aggressive separation of the claims, with a high concentration of non-
fraudulent claims in the low probability range.

From figure 5.3, one can conclude that LightGBM has the most aggressive

1It is important to note that a wider threshold region is not necessarily better, it just indicates
that the claims are separated more, making it easier to pick a threshold that will generalize well
to other data partitions.

2Interesting to note is that Random Forest is the only one of all tested models that actually
has a classification threshold region around the conventional 0.5 probability mark.

58 CHAPTER 5. DISCUSSION AND RESULTS

separation of all trained models. The probability density peak of non-
fraudulent cases is twice as high as the one of Random Forests and four
times as high as the one of Logistic Regression. The fraudulent claims,
in the meantime, get pushed towards the higher end of the probability
space. However, part of the fraudulent claims end up in the low probability
area; this is likely due to the aggressive separation, which causes a few
misclassifications. The probability density graph of LightGBM seems to
borrow characteristics of the fraud peak of Logistic Regression and the no
fraud peak of Random Forest. Yet again, the variance for the fraudulent claims
is relatively high as compared to the non-fraudulent claims; something that
the Stacking classifier aims to solve.

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0

1

2

3

4

5

De
ns

ity

No Fraud
Fraud
Thresholds
Test
Validation B (folds)

Figure 5.4: Probability density distribution plot of the Stacking classifier. It
blends characteristics of the other probability distributions.

Figure 5.4, depicts the probability density distribution for the Stacking
classifier. Since the Stacking classifier uses the predictions of the other three
models as its input, it is no surprise that its probability density distribution
shows a lot of resemblance to the other models. The distribution seems to
have inherited the separation strategy from LightGBM, with two clear peaks
on either side of the graph. Moreover, the low probability part of the fraud
distribution is similar to that of Logistic Regression; removing the bump
that is present in the distribution of LightGBM. Apart from this, the most
important takeaway is that by building an ensemble of models, the variance
in the fraud distribution is visibly smaller.

5.3 Research Cost

The research cost plot enables a modeler to quickly spot interesting cases
based on the predicted probability and research cost. Section 4.2.6, elaborates
more on how this plot helps improve data quality and discusses the regions
of the plot that are most interesting to explore. Each claim in a research cost

5.3. RESEARCH COST 59

plot is represented by a dot that is positioned according to its corresponding
research cost and predicted probability. The research cost are cost that
were spend on claim handling and fraud investigations for a specific claim.
Therefore, higher cost generally mean more suspicious. Figure 5.5, shows the

0

812

1625

2437

3249

4061

Re
se

ar
ch

 C
os

t

3.6

65.0

126.5

187.9

249.3

310.8

M
ea

n
Re

se
ar

ch
 C

os
t

No Fraud
Enriched Fraud
Fraud
Mean Cost (y2)
Thresholds

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

Figure 5.5: Research cost plot of Logistic Regression. The bottom density plot
is normalized separately for fraud and non-fraud, this means that the plot
indicates what percentage of claims is gathered in a specific region.

research cost plot of Logistic Regression. The mean research cost only shows
a firm increase in the last 10% probability. This is good, as it shows that
most of the fraudulent cases are pushed towards the top 10%, beyond the
threshold region. There are only a few fraudulent claims with high research
cost floating in front of the threshold region. Most misclassified fraudulent
claims have low research cost. These are interesting to look at with further
research, as low research cost might mean that these cases have been wrongly
flagged as fraud in the dataset, as they have not had any investigations. On the
bottom right side of the graph, there is a fairly large blob of non-fraudulent
cases, however they have higher research cost than their counterparts that are
evenly distributed among the bottom of the graph. It might be very plausible
that those non-fraudulent claims with relatively high expert costs are actually
suspicious and have thus received the correct classification.

As indicated by the probability density plot of Random Forests (figure 5.2)
and what is confirmed by its research cost plot (figure 5.6), for Random
Forest the fraudulent claims are evenly spread across the entire probability
space. The non-fraudulent cases are mainly packed at the lower end of the
probability space. The threshold region of Random Forests is shifted more to
the beginning of the graph and because of this the claims on the right hand
side are spread out more. Even though it does not look similar to that of
Logistic Regression, in classification terms the result is similar. The blob of
non-fraudulent claims with higher research cost that was identified in the
research cost plot of Logistic Regression, is spread out more with Random
Forest. More of these claims reside in the lower end of the probability
space before the classification threshold region. This means that Random

60 CHAPTER 5. DISCUSSION AND RESULTS

0

812

1625

2437

3249

4061
Re

se
ar

ch
 C

os
t

47

232

511

790

1070

1349

M
ea

n
Re

se
ar

ch
 C

os
t

No Fraud
Enriched Fraud
Fraud
Mean Cost (y2)
Thresholds

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

Figure 5.6: Research cost plot of Random Forest. The bottom density plot
is normalized separately for fraud and non-fraud, this means that the plot
indicates what percentage of claims is gathered in a specific region.

Forest finds these claims less suspicious than for example Logistic Regression.
In performance terms this is good, since those claims have the non-fraud
label, however, in real-life it might turn out that those claims are actually
suspicious; which would be in favor of Logistic Regression.

0

812

1625

2437

3249

4061

Re
se

ar
ch

 C
os

t

4.6

71.9

139.2

206.5

273.8

341.0

M
ea

n
Re

se
ar

ch
 C

os
t

No Fraud
Enriched Fraud
Fraud
Mean Cost (y2)
Thresholds

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

Figure 5.7: Research cost plot of LightGBM. The bottom density plot is
normalized separately for fraud and non-fraud, this means that the plot
indicates what percentage of claims is gathered in a specific region.

Figure 5.3, shows that LightGBM has aggressive separation and this is
reflected in its research cost plot, see figure 5.7. Most fraudulent claims are
pushed towards the far right side of the graph. However, due to the aggressive
separation, also quite a few fraudulent claims reside on the far left side of
the graph; Logistic Regression handles these cases better. The mean research
cost for LightGBM increases steeply towards the end of the probability space.

5.4. PRECISION AND RECALL 61

Around a predicted probability of 0.8 there is a small peak in mean cost, this
is likely caused due to the little claims that are present due to the aggressive
separation, making the mean cost more prone to outliers. A thing to note is
that the non-fraudulent claims with a relatively high research cost are split
in two by the LightGBM model. A part of those claim reside on the far left
side of the graph, and the rest resides on the far right side of the graph. This
behavior is similar to that of RFC and differs from that of Logistic Regression.
Furthermore, fraudulent cases with research cost higher than 1600 all have a
probability higher than the lowest threshold boundary, something that is not
the case with the other models.

0

812

1625

2437

3249

4061

Re
se

ar
ch

 C
os

t

8.1

104.4

216.9

329.4

441.9

554.4

M
ea

n
Re

se
ar

ch
 C

os
t

No Fraud
Enriched Fraud
Fraud
Mean Cost (y2)
Thresholds

0.2 0.4 0.6 0.8 1.0
Predicted Probability

Figure 5.8: Research cost plot of the Stacking classifier. The bottom density
plot is normalized separately for fraud and non-fraud, this means that the
plot indicates what percentage of claims is gathered in a specific region.

In the research cost plot of the Stacking classifier (figure 5.8), one expects
to see the same hybrid performance as in figure 5.4; borrowing characteristics
of the other trained models. The fraudulent claims that are present on the far
left side of the graph of LightGBM, are spread out more in the graph of the
Stacking classifier. Basically the graph shows the pattern of LightGBM with
some extra probability spread induced by Logistic Regression and Random
Forest. This also shows with the mean research cost, where the peaks of
LightGBM have been dampened by the other algorithms.

5.4 Precision and Recall

As mentioned in section 4.2.1, precision and recall are metrics that enable
the modeler to measure the performance of a model for a single classification
threshold. However, by recursively moving the classification threshold along
the entire probability space and measuring the precision and recall for each
of those thresholds, one can create a precision and recall plot and a precision-
recall curve. Figure 5.9a, shows the precision and recall plot for Logistic
Regression, which illustrates the precision and recall scores (y-axis) for the

62 CHAPTER 5. DISCUSSION AND RESULTS

entire predicted probability range (x-axis). This plot differs from the more
conventional precision-recall curve (figure 5.9b), where precision is plot on
the y-axis and recall is plot on the x-axis. The precision and recall plot is
useful to check the variance on precision and recall separately, whereas the
precision-recall curve is mainly interesting for model comparison, because
in combination with the area under curve it is able to summarize the entire
predictive performance into a single metric.

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Recall
Precision
Thresholds
Test
TrainVal B
Validation A (folds)

(a) Precision and recall plot

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Test
TrainVal B
Validation A (folds)

(b) Precision-recall curve

Figure 5.9: Precision and recall plot (a), and the precision-recall curve (b) of
Logistic Regression.

From figure 5.9a, one can conclude that the recall performance on the Test
set is a good representation of the average recall inside the threshold region,
because the lines lie between the other fold lines. Furthermore, the lower
recall becomes, the higher the variance within precision, because with lower
recall less fraudulent claims are present. The peak at the beginning of the
precision-recall curve (figure 5.9b) is caused by the claim with the highest
probability being fraudulent. In this case, precision becomes 100% for a recall
with a value equal to only one claim.

The recall line of Random Forests, see figure 5.10, falls of quicker than
that of Logistic Regression. This is likely due to the fact that Random Forest
classifies most non-fraudulent cases at the start of the probability space, and
thus part of the fraudulent claims got also classified in this region. However,
because of this strategy, the precision rises also faster than that of Logistic
Regression. The variance for recall at the end of the threshold region is also
lower for Random Forest. Furthermore, after surpassing a recall of 0.2, the
values for precision become noisy just like with Logistic Regression. However,
in this case the effect is more profound, because the recall line is less steep in
this area. With Logistic Regression this noise is pushed to the border of the
graph.

Figure 5.11a, illustrates the precision and recall plot of LightGBM.
An interesting thing to note when looking at figure 5.11a, is that recall
immediately dips to about 0.8. The reason for this is the high amount of

5.4. PRECISION AND RECALL 63

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
Recall
Precision
Thresholds
Test
TrainVal B
Validation A (folds)

(a) Precision and recall plot

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Test
TrainVal B
Validation A (folds)

(b) Precision-recall curve

Figure 5.10: Precision and recall plot (a), and the precision-recall curve (b) of
Random Forest.

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Recall
Precision
Thresholds
Test
TrainVal B
Validation A (folds)

(a) Precision and recall plot

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Test
TrainVal B
Validation A (folds)

(b) Precision-recall curve

Figure 5.11: Precision and recall plot (a), and the precision-recall curve (b) of
LightGBM.

claims that reside at the beginning of the probability space. LightGBM is
not able to separate all the fraudulent claims from the non-fraudulent ones,
and because of this a part of the fraudulent claims received a low probability,
hence the immediate dip in recall. Another thing that is apparent in the
graph, is that the variance on recall is larger as compared to the recall of
Logistic Regression and Random Forest. A likely reason for this is the small
claim count that is present in the middle of the probability space, the variance
is likely to be higher when there is a small amount of claims present. Again,
the smaller recall becomes, and thus the lesser amount of fraudulent cases are
caught, the more variance precision has.

64 CHAPTER 5. DISCUSSION AND RESULTS

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
e

Recall
Precision
Thresholds
Test
Validation B (folds)

(a) Precision and recall plot

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Test
Validation B (folds)

(b) Precision-recall curve

Figure 5.12: Precision and recall plot (a), and the precision-recall curve (b) of
the Stacking classifier.

Figure 5.12, shows the precision and recall plot, and the precision-recall
curve of the Stacking classifier. The variance in the precision and recall plot
(figure 5.12a) is lower as compared to that of the other models. Moreover,
recall does not show the same drop as LightGBM. It is also interesting to see
that recall follows a constant decent as is also present in the plots of Random
Forest and LightGBM, whereas the recall plot of Logistic Regression has more
of a curving descent. The precision-recall curve (figure 5.12b) shows a line
of similar performance as the ones from Random Forests (figure 5.10b) and
LightGBM (figure 5.11b). However, with slightly better variance, especially
when compared to the variance in the precision-recall curve of Random
Forest.

5.5 Model Comparison

As mentioned in section 4.2.4, model comparison is done using the area
under curve metric measured on the precision-recall curve of each model;
see figures 5.9b, 5.10b, 5.11b and 5.12b. This evaluation technique is used to
compare the performance of the same model for differently tuned parameters,
and also to find the best performing model. The models presented here have
already been tweaked and tuned to its fullest, hence the comparison is mainly
about which one of the different models performs best. Table 5.1, presents the
AUCs for each model on each partition that the models are evaluated on.

The table shows that the Stacking classifier has the highest AUC on both
the validation folds and the test set. However, Random Forest (RFC) and
LightGBM (LGBM) only have marginally lower performance. Especially when
the cross validated performance of Stacking on the B partition (Validation B
(folds)) is compared to the performance of Random Forest and LightGBM on
the B partition (TrainVal B), the difference is marginal. Taking into account
the standard deviation, even though Stacking has the highest mean, its value
range is almost entirely overlapped by that of Random Forest and LightGBM.

5.5. MODEL COMPARISON 65

Table 5.1: Area under curve values measured on precision-recall curves for
different models on different partitions. For the cross validation folds the
AUC is given as the mean and the standard deviation, with 1.0 the maximum
value of AUC. The values between “()” are the standard deviations of the cross
validation folds.

Data Partition Model AUC

Validation A (folds)
LR 0.09 (0.025)
RFC 0.13 (0.034)
LGBM 0.13 (0.034)

Validation B (folds) Stacking 0.16 (0.031)

TrainVal B
LR 0.09
RFC 0.14
LGBM 0.15

Test

LR 0.10
RFC 0.20
LGBM 0.20
Stacking 0.22

The Test set yields the same results in terms of differences. Moreover, it
seems like the Test set favors Random Forest, LightGBM and Stacking, as their
AUC is significantly higher than on the other sets, where the AUC of Logistic
Regression hardly changes.

The main goal of using Stacking is to maintain the performance of the
best performing model and reduce its variance. The models with the best
performance (highest AUC) are Random Forest and LightGBM, and indeed
Stacking has a similar or even higher performance, and a slightly smaller
standard deviation, however, this difference is again only marginal. Logistic
Regression on the other hand, has the smallest standard deviation but also the
lowest AUC. For low recall scores, the precision-recall curves become noisy,
this likely overshadows the rest of the curve performance, thus the standard
deviation of each model is relatively similar.

One could argue that judging a model on the entire recall space
is generally a good idea. However, with large class imbalance and a
small amount of fraudulent claims, the performance measurements become
unstable for small values of recall. The higher recall part of the precision-
recall curve of Stacking seems to have less variance than the other models,
especially when compared to LightGBM. This leads to the conclusion that the
tree-based models and Stacking definitely outperform Logistic Regression.
Moreover, there are signs that Stacking is able to maintain or even improve
performance with a lower variance; especially for higher values of recall.

66 CHAPTER 5. DISCUSSION AND RESULTS

5.6 Models vs. Baseline

Table 5.2, shows the performance of each model at the boundaries of the
threshold regions previously mentioned in sections 4.2.5 and 5.1. The two
main things to look at are the fraud increase for maximum effort and the effort
reduction for minimum recall. On the cross validation folds, Stacking is the
best performer in terms of both fraud increase and effort reduction. Also its
standard deviation is lower than that of the other models for both boundaries.
However, with some further investigation, one can see that the performance
of the tree-based models on the TrainVal B set is nearly identical to that
of Stacking on the cross validated B set. The performance improvement of
Random Forests on the B partition is not completely fair though, as its effort
reduction for maximum effort is -10%, which means that its effort exceeds the
boundary limit in order to achieve a fraud increase of almost 80%. The reason
for this is explained below.

Table 5.2: The effort reduction and fraud increase for both performance
constraints for each model on various data partitions. The values between
“()” are the standard deviations of the cross validation folds.

Partition Model Maximum Effort Minimum Recall

Effort
Reduction
(%)

Fraud
Increase
(%)

Effort
Reduction
(%)

Fraud
Increase
(%)

Validation A
(folds)

LR 0.20 (0.94) 41.75 (12.11) 54.97 (11.92) 0.55 (1.43)
RFC -0.17 (0.63) 56.04 (10.25) 65.61 (5.74) -0.39 (1.49)
LGBM 0.12 (0.26) 63.15 (23.03) 72.52 (7.24) -0.56 (1.30)

Validation B
(folds)

Stacking 0.56 (0.45) 78.77 (8.05) 77.25 (3.49) -3.21 (1.79)

TrainVal B
LR -6.86 53.70 52.01 11.11
RFC -10.33 79.63 61.98 19.14
LGBM -4.23 75.31 69.40 23.46

Test

LR -3.22 61.22 53.00 26.53
RFC -9.74 83.67 59.66 38.78
LGBM -2.64 85.71 67.64 44.90
Stacking 4.03 81.63 74.89 28.57

Before moving on to evaluating the performance on the test set, it is
important to check the effort reduction column for maximum effort and the
fraud increase column for minimum recall. Under ideal circumstances both
these columns should be zero. After all, the effort reduction at maximum
effort should be zero and the fraud increase for minimum recall should also
be zero. However, the numbers in these columns fluctuate and this is because
the classification thresholds are determined in the cross validation partitions
and do not generalize perfectly to the other data partitions. As one can
see, the numbers are near zero for the cross validation partitions and change

5.6. MODELS VS. BASELINE 67

value for the TrainVal B and Test partitions. Sections 4.2.5 and 5.1, elaborate
more on how the classification thresholds are chosen. In a nutshell, during
cross validation, for each fold separately, the two classification thresholds
that match the boundary are computed. After that, the final two boundary
classification thresholds are computed by taking the mean over the thresholds
computed in the folds. These thresholds are then used to benchmark the
boundary performance on the other partitions.

Coming back to the performance on the Test partition. Random Forest
and LighGBM both have a higher fraud increase for maximum effort than
the Stacking classifier. However, the Stacking classifier has positive effort
reduction, whereas the tree-based models have a negative one. Obviously,
with more effort, fraud increase also increase, so one can conclude that the
three models have the same range of performance for the maximum effort
threshold boundary. The Stacking classifier outperforms the other models
in terms of effort reduction for the minimum recall. However, again, the
boundary threshold does not generalize perfectly to the Test partition. So,
LightGBM and Random Forest have a lower effort reduction, but a higher
fraud increase, which is also beneficial for the performance. Thus, one could
argue that also for this threshold boundary the performance is similar on the
Test partition.

Table 5.3: The AUCs computed according to the approach described in
section 4.2.5 of each model on various data partitions. The values between
“()” are the standard deviations of the cross validation folds.

Partition Model AUCeffort reduction AUCfraud increase AUCtotal

Validation A
(folds)

LR 28.70 (7.46) 23.31 (20.46) 26.00 (11.94)
RFC 37.33 (3.67) 30.95 (20.71) 34.14 (10.80)
LGBM 37.26 (4.08) 39.15 (27.22) 38.21 (13.53)

Validation B
(folds)

Stacking 38.33 (2.94) 54.96 (11.81) 46.65 (6.32)

TrainVal B
LR 23.45 34.42 28.94
RFC 30.90 46.93 38.91
LGBM 32.63 56.90 44.76

Test

LR 25.34 42.85 34.09
RFC 30.50 62.39 46.44
LGBM 32.90 64.02 48.46
Stacking 39.10 59.88 49.49

Table 5.3, shows the results of an attempt to measure the performance
difference of each of the models over their entire respective threshold region.
Section 4.2.5, elaborates more on the approach that is being used to end
up with this comparison. The sections before already talked about effort
reduction and fraud increase. To extend upon this, one can compute the
effort reduction and fraud increase for many thresholds within the threshold
region. This allows for an effort reduction curve and a fraud increase curve to

68 CHAPTER 5. DISCUSSION AND RESULTS

be created, see figure 5.13 for a visual presentation of these curves on the Test
partition. To allow for the comparison of these curves, the area under curve is
measured for both curves (AUCeffort reduction, AUCfraud increase), after which, they
are averaged to end up with AUCtotal.3 AUCtotal basically describes the quality
of the threshold region of each model. The higher effort reduction and fraud
increase are in the entire threshold region, the higher AUCtotal will be.

Now looking at table 5.3, one can see that for effort reduction, Stacking
is the best performer with the lowest standard deviation. For fraud increase,
Stacking is outperformed by LightGBM and also Random Forest on the Test
partition, however, Stacking does have the lowest standard deviation. Finally,
the averaged total of the two curves results in Stacking to be the highest
performer with the lowest standard deviation. However, LightGBM and
Random Forest have similar performance, but worse generalization. Another
interesting thing to note, is that the standard deviation for effort reduction
is lower than that of fraud increase, while their values are of the same order
of magnitude. A reason for this is that effort reduction is influenced by both
the fraudulent and non-fraudulent claims, see equation (4.13), whereas recall
solely measures the positive claims. Because of the large class imbalance,
effort reduction is “buffered” by the negative claims, thus has a lower standard
deviation.

Table 5.4: Final results for each model on the Test set. The effort reduction
and fraud increase are presented for both performance constraints. AUCtotal

displays the average of the AUCs shown in figure 5.13

Model Maximum Effort Minimum Recall AUCtotal

Effort Re-
duction
(%)

Fraud
Increase
(%)

Effort Re-
duction
(%)

Fraud
Increase
(%)

LR -3.22 61.22 53.00 26.53 34.09
RFC -9.74 83.67 59.66 38.78 46.44
LGBM -2.64 85.71 67.64 44.90 48.46
Stacking 4.03 81.63 74.89 28.57 49.49

Table 5.4, summarizes the final results on the Test set, for which figure 5.13
gives a visual representation. Using tables 5.2 and 5.3, one can see how
well the numbers presented in table 5.4 generalize. The main takeaway is
that the Stacking classifier matches the performance of LightGBM and in
some scenarios even has better performance, with better generalization—
lower standard deviation. Random Forest comes close to the performance
of Stacking and LightGBM, but also with a standard deviation higher than
that of Stacking. Logistic Regression is not able to match the performance of
the tree-based models, then again, in some scenarios it is able to contain its
variance a bit better, which might have helped the Stacking classifier in the
end.

3It is important to realize that the x-axis is normalized, thus only the values of fraud increase
and effort reduction contribute to the AUC, not the width of the threshold region.

5.6. MODELS VS. BASELINE 69

The final performance evaluation by computing the area under curve of
the curve shown in figure 5.13, is merely to confirm that the Stacking classifier
is at least on par with the best performance whilst improving generalization.
The AUC values consequently show that Stacking is the best performer, but
given the standard deviation measured on the cross validation folds this
conclusion cannot be drawn with full certainty.

Maximum Effort Minimum Recall

0

20

40

60

80

Pe
rc

en
ta

ge

Effort Reduction
Fraud Increase
LR
RFC
LGBM
Stacking

Figure 5.13: Final baseline to model comparison. The diagram illustrates the
overall quality of a model as compared to the baseline within the objective
constraints. The trend of the effort reduction and fraud increase are shown
over the course of the normalized threshold regions belonging to each model.

Chapter 6

Conclusion & Evaluation

6.1 Main Objective

The main objective to outperform the currently installed rule-based fraud
detection system has been achieved. The final model is able to find more
fraudulent insurance claims with a higher efficiency than the currently
installed rule-based fraud detection system. Moreover, the classification
threshold of the model can be chosen in such a way to either favor more fraud
or a smaller workload, while still respecting the boundaries of the objective.
Compared to the rule-based system, the final model can be tuned to roughly
a 70-80% increase in extra fraud caught or a 75% reduction in effort; see
section 5.6. It is up to the collaborating insurance company to decide which
parameter they find more important. The extra fraud caught will obviously
increase the amount of real fraudulent claims that the fraud experts get to
see. The smaller workload leads to an increase in capacity, enabling the fraud
experts to spend more time on relevant claims, which increases the chance to
catch fraudsters of suspicious claims.

The final model is a Stacking classifier based on Logistic Regression
that combines three other models. The three models used for the Stacking
classifier are: Logistic Regression, Random Forest (bagging tree) and
LightGBM (boosting tree). These three models are trained on the imbalanced
learning problem by using a combination of undersampling (random and
Edited Nearest Neighbors), oversampling (SMOTE) and class weighting.

6.2 Evaluation

From the things discussed in this thesis some things worked out well and
others did not work out exactly as expected. This section recaps the most
important lessons.

The first thing that stands out is that the evaluation of the models was
rather complicated due to the small population of fraudulent claims. This
gave the results a rather high variance and made it more difficult to draw
reasonable conclusions. It also complicated model optimization, as it is
difficult to judge whether a performance improvement is due to a lucky split

71

72 CHAPTER 6. CONCLUSION & EVALUATION

or an actually better model. Label enrichment, as described in section 3.5.2,
can help to mitigate this problem.

The high data imbalance also adds difficulty to drawing conclusions on
the performance of the Stacking classifier. From the models to baseline
comparison (section 5.6) can be concluded that the Stacking classifier matches
or improves upon the predictive performance of the top performing models,
and combines this with a lower variance/standard deviation. However, with
the model to model comparisons, the standard deviation of Stacking was
relatively similar, which gives reasons to think that the variance is not always
smaller for Stacking. Section 5.5 gives an explanation as to why the variance
might have been similar in this case.

Furthermore, bounding performance by the two constraints, as discussed
in the objective statement, proves to be a good method to somewhat restrict
the area of performance on which the models were evaluated. However,
because models contain variance, the chosen thresholds did not always stay
within the constrained performance. One should take this into account when
choosing for a similar approach to compare models to the baseline.

6.3 Additional Contributions

Part of this thesis is heavily focused on how to evaluate predictive perfor-
mance; for both model to model comparisons and model to baseline compar-
isons. The insights that were derived are described below.

This thesis introduces a new way of looking at classification output by
adding an extra dimension in the form of research cost to the end results
of the predictions; see section 4.2.6. The plot makes it easy to differentiate
between non-fraudulent and suspicious/fraudulent claims and provides a
quick overview of the overall quality of the classification. Claims that reside
in the wrong probability regions can be forwarded to a fraud expert to check if
there are any features missing in the dataset that profile this particular claim.
This type of plot can help with any classification problem, as long as a second
dimension is available that correlates with the class types that one tries to
predict.

Generally, for classification problems, baseline performance is either a
machine learning model, or a single metric value. When the baseline consists
of a single metric value, it is tempting to convert the predictive performance
of the, to be compared, machine learning models to a single value as well.
However, this makes it difficult to draw a conclusion on the overall quality
of the models, since they are only compared on one specific classification
threshold. What this thesis tries to show is that whenever one has a baseline
that is made up of single performance metrics, one can likely shape the
problem into two constraints rather than one. By evaluating models on a
space rather than a single point, more confidence can be gained in the overall
quality of a model.

Lastly, the most widely used metrics for measuring predictive perfor-
mance on (imbalanced) classification problems [25] have been investigated;
see section 4.2. To see how these metrics are influenced by imbalanced data

6.4. REAL WORLD PERFORMANCE 73

and to judge their ability to summarize the predictive performance on the
positive/minority class. The main highlights of this investigation are:

• A confusion matrix is the most transparent way of looking at imbal-
anced data (precision and recall mainly).

• F-score and Matthews Correlation Coefficient hold up well as single
classification threshold measurements, however, they have little advan-
tage over just using precision and recall.

• Using the popular ROC curves for imbalanced data gives a skewed view
of performance when dealing with imbalanced data, especially on the
positive/minority class.

• The precision-recall curve in combination with the area under curve,
maintains the transparency of the confusion matrix through visual
feedback, while also allowing for easy comparison with a single metric
estimation.

6.4 Real World Performance

During this research multiple extra small scale tests have been carried out to
check the predictions of the models with the opinion of the fraud expert. It
is important to note that these tests do not have enough scientific foundation
to draw any conclusions. The results that will be presented are merely to
take note of how much real world performance can differ from the theoretical
performance measured using the data labels.

The first test was carried out to get a feel for how many suspicious claims
are likely to be in the dataset, and how much the actual performance is
different from the measured performance. For this test, 5 claims were taken
that were labeled as non-fraudulent in the dataset, but that were classified as
fraud by the model. 4/5 claims happened to be suspicious, which gives reason
to think that the real world performance is way better than the measured
performance. After all, according to the labels the model misclassified all of
these claims.

The second test was done to find out if the computed feature contributions
helped the fraud expert to find fraud more easily. This time 8 claims—labeled
as non-fraudulent in the dataset but marked as suspicious/fraudulent by the
model—were tested. 6/8 claims happened to be suspicious and from these 6
suspicious claims the feature contributions helped 5 times to point the fraud
expert in the right direction. There was one particular case, where the fraud
expert confirmed that the algorithm made a misclassification and that the
non-fraud label in the dataset was indeed correct. However, after providing
the fraud expert with the most important features that triggered the high
fraud probability, the claim turned out to be highly suspicious after all. With
the feature clues, the fraud expert was able to direct his investigation to the
important features and found that the same person filed 3 very similar claims
in one year. Separately the claims looked normal, but together they raised a
lot of suspicion.

74 CHAPTER 6. CONCLUSION & EVALUATION

Again, these tests can only be used as an indication. Nonetheless, it
is interesting to see how many suspicious claims there actually are in the
dataset. From the 5 + 8 = 13 misclassifications that were tested, 4 + 6 = 10

turned out to be correctly classified as suspicious/fraudulent. Further tests
are needed to investigate the exact difference in performance, but the results
project a promising boost in performance once the model goes live.

6.5 Recommendations

Following the conclusion and evaluation of the results, several recommenda-
tions are shared that can bring improvements to both the performance and
performance measurements.

Raw Data Values

As mentioned in section 3.3.1, all features were provided anonymized with
encoded values. The scalar features were encoded by removing the mean and
scaling to unit variance; also called standard scaling. Due to the scaling, it
is difficult to combine features of different magnitudes into a new feature to
make their relationship more explicit—e.g. combine length and width into
area. Moreover, some features only contain values for some claims, as for
most claims this data is not available. These empty values, however, are saved
as infinity values in the dataset, after which the entire feature is scaled to unit
variance. Due to the many infinity values that are present, the distribution of
the feature becomes distorted. Lastly, data cleanup of for example duplicate
categories (e.g. “None”, “none”, “NONE”) can only be done before they are
anonymized. The usage of raw untransformed feature values will therefore
allow for a more thorough analysis of the dataset and potentially increase the
quality of the input space.

Class Label Improvements

One of the challenges of this thesis, was trying to cope with the fact that only
proven fraud is labeled as fraudulent in the dataset, meaning that suspicious
claims have the same labels as other non-fraudulent claims. However, since
the ultimate goal of the fraud detection system is to flag both suspicious
and fraudulent claims, supervised learning algorithms and performance
evaluation are compromised by “wrongly” labeled suspicious claims.

Label enrichment, as discussed in section 3.5.1, partially deals with this
issue, but the process of flagging claims needs to be changed at the respective
insurance company. Especially, because the small scale tests with the fraud
experts as mentioned in section 6.4 show that the predictive performance
of the models might be significantly better than what is indicated by the
performance measurements that were done according to the data labels.

The fraud experts should get better tools and be more methodical
when labeling claims. There should be a clear distinction between proven
fraud, suspicious claims and seemingly normal claims. This will lead to

6.5. RECOMMENDATIONS 75

a performance indication that is closer to the real world performance, and
supervised learning algorithms will also benefit from more accurate labels.

New Viable Algorithms

There are two things that can open up a wide variety of new algorithms
to function as a fraud detector. Firstly, unsupervised learning becomes
more viable when the output of a model can be checked directly by a
fraud expert, instead of having to rely on labels for performance evaluation.
Since the labels do not completely separate the claims correctly, it might
be possible for an unsupervised model to have relatively poor predictive
performance according to the labels, while it is actually fitting very well to
the underlying structure. Secondly, according to the algorithm requirements
set in section 3.6.1, algorithms should be interpretable1, which means that it
should be possible to retrieve the contribution of each feature for a certain
prediction. Since many algorithms, e.g. neural networks, are not designed to
be interpretable, a requirement like this narrows down the algorithm space
significantly. Therefore, new approaches like LIME [36] that turn black box
models into white box models should be investigated. Technologies like these
allow for many other algorithms to be investigated, which opens up many new
avenues to research.

1Interpretability is of great importance, especially when people need to interface with the
output of a machine learning model.

Bibliography

[1] A. Manes, “Insurance crimes,” Journal of Criminal Law and Criminology
(1931-1951), vol. 35, no. 1, pp. 34–42, 1945, issn: 08852731. [Online].
Available: http://www.jstor.org/stable/1138134.

[2] I. Europe, “The impact of insurance fraud,” Brussels: Insurance Europe,
2013.

[3] L. Caron and G. Dionne, “Insurance fraud estimation: More evidence
from the quebec automobile insurance industry,” in Automobile Insur-
ance: Road Safety, New Drivers, Risks, Insurance Fraud and Regulation, G.
Dionne and C. Laberge-Nadeau, Eds. Boston, MA: Springer US, 1999,
pp. 175–182, isbn: 978-1-4615-4058-8. doi: 10.1007/978- 1- 4615-
4058-8_9. [Online]. Available: https://doi.org/10.1007/978-1-
4615-4058-8_9.

[4] R. J. Bolton and D. J. Hand, “Statistical fraud detection: A review,”
Statistical science, pp. 235–249, 2002.

[5] D. R. A., “Insurance fraud,” Journal of Risk and Insurance, vol. 69, no. 3,
pp. 271–287, doi: 10 . 1111 / 1539 - 6975 . 00026. eprint: https : / /
onlinelibrary.wiley.com/doi/pdf/10.1111/1539-6975.00026.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1111/1539-6975.00026.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[7] I. Tomek, “Two modifications of cnn,” IEEE Trans. Systems, Man and
Cybernetics, vol. 6, pp. 769–772, 1976.

[8] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–
1284, Sep. 2009, issn: 1041-4347. doi: 10.1109/TKDE.2008.239.

[9] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using
edited data,” IEEE Transactions on Systems, Man, and Cybernetics, no. 3,
pp. 408–421, 1972.

[10] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Physical review E, vol. 69, no. 6, p. 066 138, 2004.

I

http://www.jstor.org/stable/1138134
https://doi.org/10.1007/978-1-4615-4058-8_9
https://doi.org/10.1007/978-1-4615-4058-8_9
https://doi.org/10.1007/978-1-4615-4058-8_9
https://doi.org/10.1007/978-1-4615-4058-8_9
https://doi.org/10.1111/1539-6975.00026
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1539-6975.00026
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1539-6975.00026
https://onlinelibrary.wiley.com/doi/abs/10.1111/1539-6975.00026
https://onlinelibrary.wiley.com/doi/abs/10.1111/1539-6975.00026
https://doi.org/10.1109/TKDE.2008.239

II BIBLIOGRAPHY

[11] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Machine learning,
vol. 46, no. 1-3, pp. 389–422, 2002.

[12] G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin, “A comparison of
optimization methods and software for large-scale l1-regularized linear
classification,” Journal of Machine Learning Research, vol. 11, no. Nov,
pp. 3183–3234, 2010.

[13] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 67, no. 2, pp. 301–320, 2005.

[14] B. Leo, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and
regression trees,” Wadsworth International Group, 1984.

[15] L. E. Raileanu and K. Stoffel, “Theoretical comparison between the
gini index and information gain criteria,” Annals of Mathematics and
Artificial Intelligence, vol. 41, no. 1, pp. 77–93, 2004.

[16] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[17] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2,
pp. 123–140, 1996.

[18] T. Hastie, R. Tibshirani, and J. Friedman, “Unsupervised learning,” in
The elements of statistical learning, Springer, 2009, pp. 485–585.

[19] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–
32, 2001.

[20] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2,
pp. 241–259, 1992.

[21] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning. Springer, 2013, vol. 112.

[22] E. Kirkos, C. Spathis, and Y. Manolopoulos, “Data mining techniques
for the detection of fraudulent financial statements,” Expert systems
with applications, vol. 32, no. 4, pp. 995–1003, 2007.

[23] R. Maranzato, A. Pereira, A. P. do Lago, and M. Neubert, “Fraud
detection in reputation systems in e-markets using logistic regression,”
in Proceedings of the 2010 ACM symposium on applied computing, ACM,
2010, pp. 1454–1455.

[24] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.
Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” in
Advances in Neural Information Processing Systems, 2017, pp. 3146–3154.

[25] M. Bekkar, H. K. Djemaa, and T. A. Alitouche, “Evaluation measures for
models assessment over imbalanced datasets,” Iournal Of Information
Engineering and Applications, vol. 3, no. 10, 2013.

[26] M. Bekkar, H. K. Djemaa, and T. A. Alitouche, “Evaluation measures for
models assessment over imbalanced datasets,” Iournal Of Information
Engineering and Applications, vol. 3, no. 10, 2013.

BIBLIOGRAPHY III

[27] N. Chinchor, “The statistical significance of the muc-4 results,” in
Proceedings of the 4th conference on Message understanding, Association
for Computational Linguistics, 1992, pp. 30–50.

[28] V. Garcia, R. A. Mollineda, and J. S. Sanchez, “Index of balanced
accuracy: A performance measure for skewed class distributions,” in
Iberian Conference on Pattern Recognition and Image Analysis, Springer,
2009, pp. 441–448.

[29] W. J. Youden, “Index for rating diagnostic tests,” Cancer, vol. 3, no. 1,
pp. 32–35, 1950.

[30] B. W. Matthews, “Comparison of the predicted and observed secondary
structure of t4 phage lysozyme,” Biochimica et Biophysica Acta (BBA)-
Protein Structure, vol. 405, no. 2, pp. 442–451, 1975.

[31] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for
imbalanced data using matthews correlation coefficient metric,” PLOS
ONE, vol. 12, no. 6, pp. 1–17, Jun. 2017. doi: 10.1371/journal.pone.
0177678. [Online]. Available: https://doi.org/10.1371/journal.
pone.0177678.

[32] Z. Ding, “Diversified ensemble classifiers for highly imbalanced data
learning and its application in bioinformatics,” AAI3486649, PhD
thesis, Atlanta, GA, USA, 2011, isbn: 978-1-267-04661-1.

[33] R. M. Centor, “Receiver operating characteristic (roc) curve analysis
using microcomputer spreadsheets,” in Proceedings of the Annual
Symposium on Computer Application in Medical Care, American Medical
Informatics Association, 1985, p. 207.

[34] T. Saito and M. Rehmsmeier, “The precision-recall plot is more
informative than the roc plot when evaluating binary classifiers on
imbalanced datasets,” PLOS ONE, vol. 10, no. 3, pp. 1–21, Mar. 2015.
doi: 10.1371/journal.pone.0118432. [Online]. Available: https:
//doi.org/10.1371/journal.pone.0118432.

[35] J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” in Proceedings of the 23rd international conference on
Machine learning, 2006, pp. 233–240.

[36] M. T. Ribeiro, S. Singh, and C. Guestrin, “"why should I trust you?":
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, August 13-17, 2016, 2016, pp. 1135–
1144.

https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432

	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Objective
	Outline

	Machine Learning Theory
	Machine Learning
	Data Preprocessing
	Sample Weighting
	Data Resampling
	Feature Selection and Crossing

	Linear Models
	Linear Regression
	Logistic Regression
	Regularization

	Decision Tree Learning
	Bias and Variance Trade-off
	Gradient Boosting and Gradient Boosted Trees
	Random Forest

	Stacking Classifier

	Analysis, Preprocessing and Modeling
	Overview
	Rule-Based Fraud Detection System
	Data Acquisition, Analysis and Partitioning
	The Dataset
	Data Partitioning: Train, Validation and Test
	Cross Validation
	Final Data Partitioning: TrainVal A, TrainVal B and Test
	New Features through Claim Analysis

	Challenges
	Data Preprocessing
	Label Enrichment
	Data Resampling and Label Weighting
	Category Encoding

	Modeling
	Algorithm Requirements
	Logistic Regression
	Tree-based Models
	Stacking Classifier

	Model Evaluation and Interpretation
	Overview
	Evaluation
	Basic Performance Metrics: Confusion Matrix, Recall, Precision and Specificity
	Baseline Performance
	Alternative Performance Metrics
	Model Optimization and Comparison
	Baseline Comparison
	Dataset Improvement through Claim Analysis

	Final Pipeline Design
	Interpreting Model Predictions
	Interpretation of Logistic Regression
	Interpretation of Decision Trees
	Interpretation of Stacking Classifier

	Discussion and Results
	Overview
	Probability Density
	Research Cost
	Precision and Recall
	Model Comparison
	Models vs. Baseline

	Conclusion & Evaluation
	Main Objective
	Evaluation
	Additional Contributions
	Real World Performance
	Recommendations

	Bibliography

