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Neural Networks in RSCAD: Enhancing
MMC-Based HVDC Simulation With

Advanced Machine Learning
Bara Masalmeh , Rashmi Prasad , Member, IEEE, Vaibhav Nougain , Member, IEEE,

and Aleksandra Lekić , Senior Member, IEEE

Abstract—The potential of advanced neural networks (NNs) has
yet to be explored in the field of HVDC transmission. Implementing
such intelligent computational techniques on a real-time digital
simulator (RTDS) is challenging due to the need for rapid com-
putation and the risk of overfitting with extensive data generated
at tiny time steps. To overcome these limitations, different NN
techniques are studied using a supervised and reinforced imitation
learning method to mimic the suggested controller with labeled
data for real-time applications. Furthermore, the NN component
does not necessarily just take a label, and therefore, the authors
propose a more advanced approach by incorporating reinforced
learning through an error-tracking mechanism into the NN, apart
from its loss function. The initial offline processing identifies the
best-suited NN technique for online computational feasibility. Both
online and offline training methods as well as online adjustments
are showcased to provide a robust control solution that is easy
to implement. This work deals with developing an intuitive and
versatile Toolbox installed on a real-time simulator platform that
can integrate complex NN-based control strategies. Extensive sim-
ulations on the RTDS platform and experimental investigations of
the four terminal HVDC systems validate the interest and viability
of the proposed design methodology.

Index Terms—Advanced machine learning, HVDC-based power
system, MMC, neural network, real-time EMT simulation, RTDS.

I. INTRODUCTION

THE rapid advancement in control systems employed in
inverter-based resources, characterized by dynamics in the

order of several kHz, can be most accurately depicted on a real-
time simulation platform [2]. This further demands integrating
intelligent computational methods into complex systems models
in real-time simulations [3]. The application of intelligent com-
putation in power electronics spans various facets, including
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design optimization, control strategies, and predictive mainte-
nance [4]. Intelligent computation, like neural networks (NNs),
excels in tasks where conventional algorithmic approaches may
fall short, such as dealing with highly nonlinear systems, man-
aging large-scale data, and adapting to changing system con-
ditions [5]. NNs have shown tremendous potential in handling
complex, non-linear, and dynamic systems which can be applied
to different power electronics control strategies [6]. Moreover,
the capability of adapting to the systems’ behavior in real time
makes them crucial for the future of smart control of non-linear
systems. However, the development of advanced NNs in the
real-time-based simulator has been limited by the computational
hardware capabilities, the lack of complex programming ability
in the software, and the mathematical complexity of the models.
Due to this, NNs have only been applied in offline platforms or,
when used in real-time, are limited by elementary structures.

A data-driven approach is particularly crucial in scenarios
where system dynamics are highly nonlinear and affected by
unknown dynamics or parameter uncertainties (due to environ-
ment and operating conditions). In this sense, NNs can provide
model-free approaches (“method of learning an optimal control
policy using process data only”) that drop model dependencies
and thus address system uncertainties and improve performance
are widely established [7]. Some recent studies provide evidence
that even drawbacks of advanced control like model predictive
control approach can be mitigated with the use of data-driven,
NN-based control [8], [9]. Although data-driven techniques have
been applied to modular multilevel converters (MMCs) [10],
[11], they have not been used extensively in practical systems
to obtain measured data from MMC. The main challenge is to
reduce the technique’s computational requirements to perform
the task in real time. An adaptive dynamic programming control
strategy, developed from an NN perspective to learn the optimal
control of an MMC, is experimentally tested in achieving robust
and satisfactory tracking control behaviors in [12]. A data-driven
model-free machine learning-enhanced framework is introduced
into the inner control strategy of an MMC. This approach
can explicitly address uncertainties like unmodeled dynamics
and external disturbances, enhancing system robustness [13].
However, the method’s complexity increases the computational
demand significantly. To address this, our work further proposes
a machine-learning-based imitation technique to reduce the
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online computational burden, effectively transforming it into an
offline computation process. The methodology demonstrates the
potential for real-time complex control strategies, offering a new
direction for future research in control methods.

To enable real-time adaptation of voltage balancing in the
sub-modules (SMs) of MMCs, the authors in [14] propose using
a mixed Gaussian distribution to estimate and compensate for
voltage deviations. Additionally, they predict the SM triggering
sequence through NNs. This method enhances the precision
and speed of voltage balancing while reducing computational
complexity, offering a promising solution for managing MMCs
more efficiently and reliably. A machine learning-based emu-
lation approach is proposed to reduce the computational load
of model predictive control for MMCs by training an artificial
NN with data from traditional model predictive control methods.
This approach offloads the computational burden from online to
offline processes [15]. This greatly reduces the computational
time in transient stability simulations of large-scale AC-DC
power systems. The study achieves faster-than-real-time dig-
ital twin emulation by implementing machine learning-based
synchronous generator models and dynamic equivalent models
on field programmable gate arrays (FPGAs), with gated recur-
rent unit algorithms for modeling that enhance accuracy while
managing computational complexity. This approach allows for
efficient and accurate dynamic security assessment, offering a
significant improvement over traditional simulation methods in
terms of speed and scalability [7]. There has also been research
on the NN implementation in real time digital simulator (RTDS)
through simple artificial and recurrent NNs. However, the library
is limited to a single layer [16]. In the above work, the challenges
posed by power electronic systems (e.g., high tuning speed in
control) require specific features in these NNs that differ from
other engineering fields, such as image classification. Therefore,
further research on adapting to system behavior in real-time is
crucial for the future of smart control in non-linear systems.

Nonetheless, recent progress in real-time simulators, such as
enhancements in hardware like the introduction of Novacor pro-
cessors, has significantly improved the computational software
capabilities [17]. More complex structures are now possible by
utilizing the CBuilder interface found in the RTDS software
RSCAD. Despite its constraints in C compilation due to the ir-
regular processor employed, the authors showcase the utilization
of low-level C language and several mathematical techniques
enabling the execution of sophisticated NNs in RSCAD.

The main contribution of this work is the RSCAD Toolbox for
online and offline training, with the development of a multi-layer
NN library in RSCAD available in [1]. For the online training
component, a Library is created for an artificial NN (ANN)
and long short-term memory (LSTM) with multiple layers that
are used for training in real time using RTDS. The offline
training script file is scripted to consider collecting various case
scenarios. Advanced time series NNs such as LSTMs are used
to predict the state of the MMC. It is also possible to select
parameters and hyperparameters of NN offline with fine-tuning
in the online environment.

In the design of the toolbox, we summarize the following
contributions:

� An extensive analysis of different NN topologies is pre-
sented and trained with data collected from real-time sim-
ulator RTDS. An NN library is then designed to run on
RSCAD through the CBuilder interface to test the perfor-
mance of the NNs in real-time simulation.

� An adaptive proportional-integral (PI) control using rein-
forced learning is developed, which helps in the adaptive
change of PI tuning parameters with the change in system
parameters and configuration. This reduces the need for
heuristics in conventional static PI controllers.

� The NN-based inner loop controller is integrated with the
outer loop PI controller in a cascaded dual loop control to
study the effectiveness of the proposed toolbox. Further,
both the loops are replaced by the devised NN controller
and with different possible combinations between ANN,
LSTM, PI, and adaptive PI.

Although the components built are independent of the use
case, two use cases of such networks emerge as relevant in
large-scale HVDC-based transmission grids. To the authors’
knowledge, this is the first work where such a control real-time
toolbox is applied to large-scale MMC controllers for high-
power HVDC transmission. The development of a multilayer
NN library in RTDS [1] is unique and is not currently present in
the literature.

The rest of the article is organized as follows: Section II
details the system configuration of the HVDC system and
RSCAD/RTDS parameters. Section III discusses the challenges
and prospects for NN formulation for real-time control and
describes the steps for the NN implementation application in
HVDC control in RSCAD. Section IV proposes a Data-Driven
Model-free Control technique for Converter behavior emulation
and robust predictive control. Section V presents the results, val-
idation, and discussion, whereas section VI provides meaningful
conclusions.

II. SYSTEM CONFIGURATION OF HVDC-BASED

POWER SYSTEM

The MMC depicted in Fig. 1 is realized using half-bridge
SMs. Each MMC has three legs, and each leg consists of two
arms. Each arm of the MMC has NSM SMs. The variables
shown in Fig. 1 are defined for all three phases, i.e., j ∈ {a, b, c}.
Half-bridge SMs are represented by their averaged equivalents,
with Rarm and Larm being the resistance and inductance, re-
spectively. Each SM has capacitanceCSM . The converter model
is developed using theΣ−Δ nomenclature. The variables in the
upper and lower converter arms can be represented as [18]:

iΔj = iUj − iLj , iΣj =
iUj + iLj

2
, (1)

vΔMj =
−vUMj + vLMj

2
, vΣMj =

vUMj + vLMj

2
. (2)

To show the effectiveness and stability of the proposed ad-
vanced NNs, they are applied to control a four-terminal half-
bridge MMC-based HVDC power system using two offshore
wind farms generating a total power of 4GWs, depicted as CSA2
and CSA3 in Fig. 2. In contrast, two onshore grid-connected
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Fig. 1. MMC topology.

Fig. 2. RSCAD four-terminal HVDC power system [20].

Fig. 3. Control strategies for outer and inner control, selecting between PI and
CBuilder NN block.

converters (CSA1 and CSA4) are used to transfer this gen-
erated power. Frequency-dependent long underground cables
in bipolar configuration are used for this power transmission.
The two offshore converters connected to the wind farms are
grid-forming, while the two onshore converters connected to
the grid are grid-following. One of these two converters (given
as CSA1) is independently used to maintain the DC voltage of
the system (i.e., ±525 kV) using the conventional PI control
action. In contrast, the other converter (given as CSA4) is used
in active power reference mode [19], [20] using the advanced
NNs as shown in Fig. 3.

Fig. 4. ANN design.

The MMC control is divided into two categories. The voltage,
power, and energy controllers, together with AC and DC currents
control, are known as the higher-level control layer, and the
low-level control layer is responsible for balancing the SMs
and practical aspects of firing pulses generation. This work
focuses on higher-level control of the MMC, split into two loops:
the outer loop, which generates a current reference signal as
an output, and the inner loop, which generates a modulation
reference as an output. The proposed technique replaces the
dual-loop higher PI controls with NN techniques such as ANN
and LSTM.

III. NN FORMULATION FOR REAL-TIME CONTROL

In this work, ANN depicted in Fig. 4 for the layer l (layers
values being l = 0 for the input, l = 1 for the first hidden layer,
etc.) is given as:

z[l] = W [l] � a[l−1] + b[l], (3a)

a[l] =

{
x, for input to the ANN, l = 0,
β(z[l]), l ∈ {1, . . . , L}, (3b)

for nl being the number of nodes in layer l, and nl−1 number of
nodes for the layer l − 1, etc. and L being the number of layers
(e.g. on Fig. 4 number of layers is L = 3). Vector z[l−1] ∈ Rnl−1

is the input to the layer l, b[l] ∈ Rnl is the vector of biases, and
W ∈ Rnl×nl−1 is matrix of weights. Function β(·) represents
the activation function, and � denotes the Hadamard product.

The gradient descend optimization algorithm is used to op-
timize/tune the values of the weights by extrapolating their
gradient relative to a loss function and moving in the loss
minimization direction for ANN’s training following the Chain
rule:

∂L

∂W
[l]
ij

=
∂L

∂z
[l]
j

· ∂z
[l]
j

∂Wij
, (4)

where L denotes the defined loss function.
Without memory units, the network treats each time step in-

dependently, significantly reducing performance for time series
data. Due to the necessity of taking a certain time window
of data into account when dealing with time series analysis,
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Fig. 5. LSTM design.

different Recurrent NNs were also formulated and tested for the
proposed CBuilder Component/Toolbox. The most significant
of these types is the LSTM NN, depicted in Fig. 5, which
its two main variables can summarize at each time step t.
These are the hidden state ht and cell state Ct [21] (can also
be referred to as short-term memory and long-term memory
variables, respectively):

Ct = σ (Ufht−1 +Wfxt + bf )� Ct−1

+ σ (Uiht−1+Wixt+bi)� tanh (UCht−1+WCxt+bC) ,
(5)

ht = σ (Uoht−1 +Woxt + bo)� tanh(Ct), (6)

where xt is the input at timestep t and Uf,i,C,o ∈ Rn×n,
Wf,i,C,o ∈ Rn×m are the weights of the different gates. σ(·)
is an activation function. The four gates of the LSTM are the
input gate, forget gate, candidate memory gate, and output gate,
and each is responsible for a value that, when combined through
(6), gives the output of the layer which is used as input into the
next timestep.

To summarize, LSTM includes short-term and long-term
memory variables. The short-term memory variable is the output
of the LSTM layer at time step t. For time-step t = T where T
is the last time-step in the calculation, the short-term memory
calculated represents the final output of the LSTM layer. A
long-term variable Ct carries forward through every time step
and influences the short-term memory component. Ct−1 is the
previous long-term memory variable; it can be thought of as the
percentage of the long-term memory to remember; ironically, it
is called the forget gate. Each gate has 2 unique sets of weights,
U , which are the gate weights regarding the short-term memory,
and W , which are the weights regarding the input.

A. RTDS Toolbox Guidelines

The RTDS is widely used in academia and industry among
different real-time simulators. The RISC processor of NovaCor
in RTDS consists of ten cores (CPU units), which operate
at 3.5GHz each. In the RTDS, there are different simulation
time steps. Each modeling time step has its advantages and
disadvantages. For every simulation, three components exist
in RTDS: the Network solution, Control, and Power System.
Among these components, the Power System changes with the
type of simulation time step model (i.e., super step, main step,
etc.). The control works in the main step. Thus, the execution

of all control units has to be done within 80 μs. The control can
be split into several parallel paths for a large system. However,
this parallel path is restricted to the number of available cores in
RTDS.

NNs are modeled from scratch in Python and C. The Python
models are used for initial testing, while the C code is used
to create a toolbox using the RTDS CBuilder library. These
NNs include multi-layered ANNs, multilayered recurrent NNs
(RNNs), and LSTMs [22]. Due to the real-time simulation fea-
ture, its intensive data generation process, and the sensitivity of
power systems to continuous sudden changes, the online training
feature of the toolbox needs to be designed carefully such that
overfitting is avoided and training is done for short periods dur-
ing the same training case. To avoid the complexities of online
learning, a Python script has been developed to automatically
parse data generated from RSCAD using the script file, train
the model offline with various optimizations in TensorFlow, and
generate the weight and bias matrices. These matrices can then
be manually inserted into the CBuilder NN component code.

In total, three components have been developed as a part of
this toolbox [1]:
� The ANN component includes up to four hidden layers and

100 weights between layers.
� A NN (including LSTM) component that handles the input

of up to 10 variables for 20 time steps.
� A layer component that can be used to build an RNN or

ANN in RSCAD layer by layer, with no limitation on the
number of hidden layers. This component behaves simi-
larly to Tensorflow, where each layer communicates to the
next layer for predictions and to the previous layer for loss
backpropagation. The layers can even be distributed across
multiple processor units in the RTDS system; although not
recommended, this allows for very large NNs to be built.
This method also allows for different parameters in each
layer, such as activations and learning rates.
Please note that RNNs are used when performing time-
series analysis with sequential input-output data because
they effectively leverage the sequential nature of the data
to identify trends. In the study, sequential data is generated
from the RSCAD based on the network operation.

The limitations imposed on all these components can be
extended as the computational limit has surprisingly not been
reached. All components come with online learning. Several
challenges exist in the application of NNs in RSCAD. The main
challenges come from the RTDS specifications as follows:
� Execution time of the NN algorithm to be shorter than

50 μs.
� Creation of the algorithm using CBuilder and not availabil-

ity to use dynamic memory assignment in C (e.g., malloc
function).

� Possibility of overfitting due to constant streaming of data.
� Delays between software and RSCAD due to communica-

tion protocol of 100−200 μs.
1) Overfitting: The application of unoptimized NN libraries

is the tendency of these networks to overfit the presented data.
This problem is exaggerated due to the nature of RSCAD,
which generates 20000 data points every second (when using
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a 50 μs simulation timestep for real-time simulation). This
is pronounced, especially at the start of the training process
when the untrained model sees many data points for the same
output range. The significance of this issue diminishes when the
model weights are initialized offline and adjusted during online
training. However, the problem can still be mitigated by the use
of the batch number, regularization, and learning rate [23], [24]
as input parameters to the network. The learning rate is set as a
slider, which means it can be changed in real time. A varying
learning rate depending on the size and progression of the error
ensures the model has a “just right” fit. Furthermore, using
low-pass filters reduces the noise of the target output during
the training process.

The learning rate dictates the scale of change of the weights
due to the loss at each simulation timestep. By applying an
adaptive learning rate, the user can employ multiple training
algorithms such as ‘Adam’ and ‘RMSprop’, where the learn-
ing rate is adjusted based on the size and progression of the
error [25], [26]. Such algorithms were not employed inside the
component to give flexibility to the user, where the learning
rate can be manually changed throughout the simulation or by
using the discussed algorithm in the real-time scripting feature
in RSCAD software.

Regularization is a method used to avoid overfitting by adding
a penalty term to the loss function. This encourages sparsity in
the model parameters and, in some cases (L1 regularization)
can lead to the dropping of certain weights. The two types
of regularization methods mainly used in NNs are L1 and L2
regularization, defined by the following equations:

LL1 = L0 + λ

n∑
i=1

|wi|, LL2 = L0 + λ

n∑
i=1

w2
i (7)

where L0 is the original loss function without regularization, λ

is the regularization parameter that controls the strength of the
regularization term, wi represents the coefficients or weights
of the model, and n is the number of features or weights in
the model. The ability to drop weights out can be beneficial
when multiple outputs of the NN do not depend on the same set
of inputs. However, applying this regularization in the toolbox
came with the challenge of many weights dropping out as
RSCAD generates hundreds of thousands of timesteps every
minute. Therefore, a new feature is required that can turn on
and off this regularization feature. To mitigate this problem,
the lambda term has been made adaptive and can be changed
throughout the simulation. In this work, therefore, we use L2
regularization.

Finally, the user can use a low pass filter for the loss function
calculation as a way to reduce the noise of the target output dur-
ing the training process, this will lead to a smoother performance
by the NN when the learning stops.

2) Dynamic Memory Space: RSCADs inability to allocate
dynamic memory space in real-time, which is due to the method
of compilation of the CBuilder components where a C file is
turned into an assembly file and an object file before its integra-
tion in any simulation model limits how dynamic the interaction
between the user and the toolbox can be. CBuilder cannot use the

Fig. 6. Schematic representing an established connection between the external
machine where NN runs and RTDS where MMC model runs.

standard library in C, which has many consequences, such as the
inability to use the Malloc function (Method to dynamically allo-
cate memory). This issue is mitigated by defining the NNs with
the maximum memory size used. Then, through user-defined
input parameters and mathematically isolating a certain part of
the network, a smaller NN can be imitated.

B. RTDS Toolbox Library Structure

The RTDS environment interfaces with a GNET-SKT
(Generic Network Socket) as a network gateway for data ex-
change between the simulation and external devices or software.
The GNET-SKT uses a TCP/IP socket to send and receive data
packets, which are sent to an external controller for input to
NNs. This method is used to establish a connection with the
running simulation of the network found in Fig. 6. However, the
TCP connection introduces control latency, typically between
100 and 200 microseconds, which can be significant for some
use cases due to the round-trip data exchange delay. This setup
is primarily used for testing real-time prediction and training
of NNs before direct implementation in RSCAD. Additionally,
RSCAD features a CBuilder interface that allows users to design
components using low-level C programming manually. A NN
library can be run on RSCAD through this CBuilder interface
thus avoiding control latency.

1) CBuilder: To satisfy real-time constraints, the CBuilder
code must be efficient and cannot take excessively long to exe-
cute to avoid triggering a timestep overflow error. The Static and
RAM sections are not utilized in building an NN component ex-
cept for weight and parameter initialization. This is because there
are no constants. However, for NNs without an online training
functionality, static values and structures can be used for faster
computation of more complex NNs. For online training, func-
tionality was successfully added in the CODE_FUNCTIONS
section, which consists of user-defined functions as shown in
Fig. 7.

The proposed library is flexible and has various input features.
Namely, it takes the loss function as one of the inputs, which
allows the library to be used for any application, as the variables
it trains depend on the specified loss function. Furthermore, we
can select the following parameters:
� Backpropagation (Gradient Descend) for tuning the

weights;
� Learning Rate - it initially tunes based on the response; and

as the NN result converges, it is reduced.
� Inputs are based on physics and control type (also on

feature importance);
� The architecture of the NN - in this work, it was based on

the simplest NN that achieved a good Mean Squared Error
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Fig. 7. Simplified CBuilder compilation process.

(MSE) score (we did a grid search which tests different
acts like weights and layers/activation functions).

The Various combinations of Toolbox Features are included
in the full NN and layer component NN library as denoted:
� numInputs: Number of features the NN tries to map

(1-10).
� numOutputs: Number of prediction variables (1-10).
� type: Type of NN model (ANN, LSTM, RNN).
� numLayers: Number of hidden layers between input and

output layer.
� numNodes: Number of LSTM nodes (1-20), activated

only when type is chosen to be LSTM.
� numWeights: Number of Weights in hidden layers (1-

100 per layer).
� timesteps: Number of previous timesteps taken by the

LSTM (1-20).
� activation: Activation function in the hidden layers

(tanh, linear, ReLu, Sigmoid), not applicable for LSTM
models as they have predefined activation.

� batch_size: The number of iterations before the back-
propagation algorithm is executed.

� Learning-Rate: The rate at which NN learns.
� lambda: Regularization term to drop out weights.
For the layer component of NN, the user must manually input

the target variable and the learning rate for the next layer. The
learning rate is taken as a dynamic input, allowing the user to
adjust it to find the optimal rate, which determines the extent of
weight adjustments during each backpropagation iteration. The
C association files must be initialized after defining the initial pa-
rameters, nodes (inputs/outputs), and graphics. CBuilder enables
different C scripts based on the parameters defined, allowing
multiple scripts to be included in one component, with only the
relevant script executed based on the selected parameters. The
I/O nodes must be defined again in the inputs/outputs tabs for
use within the C script.

2) Compilation Process: The CBuilder compiles all the rele-
vant. h and. c files and generates C files of its own, most likely for

compatibility with hardware. The files are then further decoded
into an assembly file followed by object files which are finally
used to construct the User Library. The CBuilder flow diagram is
shown in Fig. 7. As mentioned before, different combinations of
NN can be formulated in CBuilder. The extreme right of Fig. 7
shows the User Library of the full NN, in which component
parameters of different options of activation functions and NN
model can be selected from the drop-down menu. All various
option selections are specified in the Component Parameters tab,
which must be chosen before RSCAD compilation. However,
due to computational constraints, the Full NN model is restricted
to a maximum of four layers. Alternatively, the authors intro-
duced another option with additional layers, termed the “layer
component,” where each layer is defined within the individual
User library.

C. Selection of NN Techniques

NN computation in RSCAD must be fast to complete each
step execution within 50 μs to avoid time overflow problems.
For the selection of model, the different models will be tested
on data sets in Python for various time series advanced NN
models like ANN, RNN, LSTM, Gate Recurrent NN (GRU),
Convolutional NN (CNN), and Convolutional Recurrent NN
(CRNN). As shown in Fig. 8, model selection is based on the
metrics such as training time (Fig. 8(a)), resource consumption
(Fig. 8(b)), and MSE (Fig. 8(c)).

As expected, none of the models struggled with modeling the
PI. A simple ANN would suffice, but using an RNN might lead
to smoother control action during the transient state. Fig. 8(c)
shows how the models gain more knowledge of the system after
every Epoch (Offline Training Iteration).

Furthermore, the ability to use parallel programming in
Python allows for faster computation of NNs. The extent of
which is tested using the LSTM model can be found in Fig. 9,
which depicts the prediction speed given variable LSTM layers
and timesteps.
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Fig. 8. Model type selection based on (a) training time [s/epoch], (b) memory
requirement (kB), (c) the mean squared error (log) loss calculated after every
epoch.

Fig. 9. Prediction time for LSTM per timestep length per number of layers
for a vectorized input computed on CPU i7-13k.

For this work, this analysis was carried out to predict in real-
time through a TCP connection. From Fig. 9, it can be seen that
also the prediction time is lower than 50 μs.

For further studies, the authors have considered ANN and
more advanced NN, i.e. LSTM, to showcase various test appli-
cations of the designed CBuilder library [1] in the next sections.

IV. PROPOSED DATA-DRIVEN MODEL FREE CONTROL

IN RSCAD

The intricate nature of MMC models demands substantial
computational resources. This work explores the integration of
NNs into the control architecture of the MMC. First, the NN

Toolbox is implemented as discussed in the previous section.
Secondly, the loss function is designed based on the optimization
problem at hand.

A. NN for Converter Control

The design of the proposed NN control involves integration
with the state-of-art PI control by simply mapping the output of
the PI control and the input error variables of the NN. Further,
stepwise modifications are done in the NN control architecture
to make an intuitively better control input along with the inherent
advantages of PI control. First, the outer and inner loops of the
current control structure can be expressed as:

iΔdq,ref = PI((P,Q)err), (8a)

υΔ
mdq = υG

dq ± ωLiΔqd + PI(idq,err), (8b)

where the PI term can be expressed as:

PI(t) = Kp · err(t) +Ki ·
∫

err(t) dt. (9)

At the time t, PI(t) is the controller output, err(t) is the error
signal (Perr/Qerr and id,err/iq,err), which is the difference
between the desired setpoint and the process variable. Kp and
Ki are the proportional and integral gains, respectively. Further-
more, they are a tuning parameter that determines the reaction
to the current error and a tuning parameter that determines the
reaction based on the accumulation of past errors.

The NN components can be implemented in the loop by
replacing the PI term or the entire loop. This is done by defining
NN with a loss function that finds the path of error minimization.
As a result, the idea of stepwise modification is incorporated into
the NN control design. Incrementally, the input error function is
refined with different approaches given ahead in the subsection.

An NN can be trained offline to extrapolate the value of the
control action by mapping input variables err(t) to the PI(t)
output. In this case, the loss used to train the NN can be taken
as the MSE loss:

MSE =
1
N

N∑
i=1

(yi − ŷi)
2. (10)

Here, the NN trains based on the direct value the PI gives.
However, since, in this case, the target y values would be the PI
control action, the NN would train based on the PI control action,
basically mimicking the PI. The NN would need an addition to
the loss function to perform better than the PI. This can be done
by taking into account a second loss term in the expression that
takes into account the remaining loss after PI control action (the
PI shortcoming), and this can be expressed as:

L =
1
N

N∑
i=1

(yi − ŷi)
2 + λ(err(t+ 1)), (11)

where err(t+ 1) represents the next time step error due to the
control action yi, and λ > 0 is a scaling constant. The approach
described here tries to train the NN not only based on the
corresponding PI action, but also including the remaining error
after the PI action.
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The authors propose a more advanced approach by incorpo-
rating reinforced learning through an error-tracking mechanism
into the NN, separate from its loss function. This mechanism
is activated after the NN completes training and is used for
online prediction. In this approach, the weights and biases of
the network continuously update during its prediction operation
achieving a robust control of the MMC. To implement such a re-
inforced learning feature, a loss function needs to be constructed
based on the relationship between the NN output (control action)
and the next error such that:

Loss = err(t+ 1). (12)

In this approach, the NN continuously updates the weights
after its training process to continuously minimize the error
independent of any relationship to the PI controller.

To adapt the weights of the NN to minimize the loss, the
following gradient will be needed:

δLoss

δŷ(t)
=

δ err(t+ 1)
δŷ(t)

. (13)

Different methods for solving this (13); however, for a model-
free approach, the authors suggest taking the numerical approx-
imation:

δ err(t+ 1)
δŷ(t)

=
err(t+ 1)t+1 − err(t+ 1)t

ŷ(t)t+1 − ŷ(t)t
. (14)

However, due to the small values involved, this method might be
unstable. To overcome the instability of (14) the authors suggest
using the same numerical approximation found in (14) but for a
loss function that includes the square sum of future loss over a
certain time period T such that:

Loss(t) =
1
T

t+1∑
k=t−T+1

err(k)2. (15)

The next time step error can be used in these equations since the
weight updates can be postponed till the next error is determined.
The gradient descend training algorithm is implemented at the
beginning of the timestep based on the previous output and the
current error.

To summarize the approach, the NN can initially train based
on the PI control action as well as the remaining error after
the PI action both incorporated in the loss function that updates
the weights of the network as given in (11). When the PI is
disconnected and the NN can no longer update its weights based
on the loss function found in (11), the weights are updated based
on a loss function that aims to minimize the error following each
control signal as seen in (12), this makes the NN more robust
and adaptive.

B. Adaptive PI Using Reinforced Learning

For adaptive PI tuning, the authors propose a similar approach
to updating NN parameters over time using reinforced learning.
The PI parameters can be adjusted based on the same gradient
descent approach [27], [28]. The PI controller equation is given
by (9). To make the PI controller adaptive, we use weights Wp

TABLE I
CONVERTER VARIABLES

and Wi instead of fixed gains:

PI(t) = Wp(t) · err(t) +Wi(t) ·
∫

err(t) dt. (16)

The weights Wp and Wi are updated using gradient descent to
minimize a loss function L(t), which is defined as the MSE over
a time window size T :

L(t) =
1
T

t+1∑
k=t−T+1

err(k)2. (17)

The gradient of the loss function concerning the weights is
calculated as follows:

∂L(t)

∂Wp,i
=

2
T

t+1∑
k=t−T+1

err(k) · ∂err(k)
∂Wp,i

(18)

Assuming the error at time step t+ 1 is only affected by the PI
output at time t: ∂err(t+1)

∂PI(t) ≈ −1, the partial derivatives of the
error concerning the weights can be approximated as:

∂err(k)
∂Wp

≈ −err(k),
∂err(k)
∂Wi

≈ −
∫

err(k − 1) dt. (19)

Substituting these approximations into the gradient equations:

∂L(t)

∂Wp
= − 2

T

t∑
k=t−T+1

err(k)2, (20a)

∂L(t)

∂Wi
= − 2

T

t∑
k=t−T+1

err(k) ·
∫

err(k − 1) dt, (20b)

the weights are updated using gradient descent:

Wp,i(t+ 1) = Wp,i(t)− ηp,i
∂L(t)

∂Wp,i
, (21)

where ηp and ηi are the learning rates for Wp and Wi, respec-
tively. Subscript p and i denote the equations and variables for
proportional and integral gains, respectively.

In summary, the adaptive PI control method continuously
adjusts the weights Wp and Wi to minimize the loss function,
improving the system’s performance over time.
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TABLE II
CONTROL MODE AND PARAMETER OF MMC-HVDC SYSTEM

V. RESULTS AND DISCUSSIONS

The proposed real-time CBuilder toolbox application [1]
is demonstrated through the following test cases in the four-
terminal MMC-based HVDC power system with parameters
with denoting conventions as given in Table I, whose values
are indicated in Table II for:
� converter control emulation with different control struc-

tures in CSA4 - (i) replacing outer and inner current control
loops with various combinations of NNs and PI, (ii) com-
parison on ANN and LSTM models with PI controller;

� an adaptive PI for fine-tuning method showcasing the abil-
ity of NNs to predict the operation of the MMC based on
its previous states.

The learning rate of NN is adjusted by monitoring the behavior
of the curve. For example, during training, if the direction of
prediction and the direction of the target are not similar during a
sudden change in input parameters, then the weights do not have
the correct signs. In this case, the learning rate will be set high at
0.0001 − 0.01 until the NN output and the target variable move
in the same direction during changes in input parameters. Once
that is achieved, the learning rate is then reduced to somewhere
10−9 − 10−4. It is ensured not to keep the same input parameter
range for extended durations of time. If, during training, the
shape of the prediction during transient is very odd, then the
training is stopped by setting the learning rate to zero during the
transient and it is resumed after transient. For the regularization
term, λ, a value of 0.0 can be taken to avoid complications.
However, if necessary, then the value of λ is set as a small number
(e.g., 10−8) and it is adjusted accordingly and reduced to 0 after a
certain time period. Setting λ to a larger value (e.g., ≥ 10−4) can
lead to most of the weights dropping out, an appropriate value of
lambda most likely is found in the range 10−8 − 10−4, the exact
number would be dependent on how long this regularization is
applied.

A. Comparison of Converter Control Approaches

The results in this section are presented for an ANN and
LSTM as it replaces a PI controller in generating a control action
signal for the inner and outer loops of the controller. This is
done for the AC-side control (iq loops) and the DC-side voltage
or active power control (id loops for cases where the reactive

current contribution is absent). The test case includes a transient
operation period where the active power reference is abruptly
changed from −500 MW to 500 MW. This physically means
that the converter goes from moving 1000 MW of power to
the AC grid to providing 1000 MW to the DC grid instead.
The difference in reference values to actual values is due to the
converter’s positive/negative sequence design. Due to the error
tracking technique integration into the NN, the weights are based
on the current error and the previous prediction. The current
and voltage measurements used in the modeling are processed
with a second-order low-pass filter, which provides robustness
against measurement noise in the signals. The proposed control
method is focussed on small-signal stability and does not cover
large-signal stability such as fault transients, N − 1 transients,
etc.

To understand the influence of the control approach on the
system, the converters’ state variables are shown in Fig. 10.
Results show a quite promising response which depicts a faster
response speed by the LSTM when implemented on both outer
and inner loops; this is expected as, unlike the PI, the network
acts instantly to the large change in the error signal. Also,
unlike using a proportional controller, the control action does not
overshoot and settles quite quickly. Ideally, the dq components
are decoupled, easing the separate control of the AC and DC
side; however, during the transient state, certain dynamics can
lead to the coupling of the two terms, as shown by the response
of the q-axis components of the PI controller to an abrupt change
in active power. The response of the NN for Qac, iΔq , and iΔq,ref
shows higher dynamics due to the influence of coupling but
still has a faster response. While the response of the Pac, iΔd ,
and iΔd,ref is quicker and damps better disturbances than the PI
response, which is important for keeping the overshoots bellow
the maximum allowed values needed for the proper operations
of the HVDC-based power system. This case demonstrates
response speed improvement by the NN technique for both the
inner and outer loop.

Fig. 11 compares the performance of ANN and LSTM with
PI control, demonstrating a smooth settling to active power
without damping or overshooting. The ANN, lacking the ability
to propagate through time, may struggle to enhance the con-
troller’s overall performance, as shown in the figure where the
ANN’s response resembles that of the PI controller. However,
an LSTM would theoretically have such capabilities as it could
derive steady state errors through the progression of the error
and state variables over time. However, such technicality is not
expected to weigh heavily since, for the outer loop, a P controller
is usually sufficient. Moreover, the LSTM might also benefit
from a limitation imposed on the rate of change in control action
due to the initial peak caused by the large error signal. Overall,
all controllers maintain stability during the transient state with
the LSTM model having the smoothest response and the ANN
model having the faster response.

B. Adaptive PI

The test scenarios were made by evaluating the performance
of the PI when the integral and proportional parameters are given
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Fig. 10. Comparison of reaction of state variables iΔd,q , their reference values and active and reactive power on the step change in the active power reference
from −0.25 p.u. to 0.25 p.u. When the control is established for PI in both inner and outer control loops - solid black line denoted as PI; LSTM in the inner loop
and PI in outer - dotted green light denoted as an inner loop; LSTM in outer and PI in the inner loop - read line denoted as an outer loop; And LSTM in both loops
- dashed blue line denoted as both loops.

Fig. 11. Comparison of reaction of state variable iΔd and active power on the
step change in the active power reference from −0.25 p.u. to 0.25 p.u. when the
control is established for PI in both inner and outer control loops - solid black
line denoted as PI; ANN in both inner and outer control loops - solid red line
denoted as ANN and LSTM in both inner and outer control loops - dotted blue
line denoted as LSTM.

an offset. The adaptive PI mechanism was then implemented
and tested directly after implementation and also tested after the
PI terms settled to their new values. The inclusion of adaptive

online learning enabled the NN models to maintain optimal
performance even with short training periods. By incorporating
the error term into the loss function, the NN was able to improve
and learn without relying on a PI controller for online training.

Fig. 12 shows the response of the classical PI, which is
compared with the proposed technique with the adaptive tech-
nique after waiting for it to tune itself and is also compared
against without waiting for tuning. It can be observed from the
figures that the proposed adaptive PI technique, both trained
and even with training, performs better than conventional PI
response. In the case of the adaptive PI control, the tuning
parameters adaptively converge to their new operation point
upon a transient. This eliminates the need for heuristics related to
PI tuning, which conventionally is challenging. The convergence
of adaptive PI tuning gains leads to faster transient response
of the controller along with the attribute of robust steady state
performance, which is the inherent property of PI controller.

Focussing on the limitations of the controller in comparison
to conventional PI, adaptive PI takes more computation than
conventional PI which is simpler to implement. Adaptive PI
brings the attribute of superior transient performance at the cost
of computation to tune the parameters according to the system
changes and parameter variation.
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Fig. 12. Comparison of reaction of state variables iΔd,q , their reference values and active and reactive power on the step change in the active power reference
from −0.25 p.u. to 0.25 p.u. when the control is established for PI in both inner and outer control loops - solid black line denoted as PI; Adaptive PI in outer and
inner loop with ongoing training - dotted green light denoted as adaptive PI training; Adaptive PI in outer and inner loop with trained parameters - dashed red line
denoted as adaptive PI trained.

VI. CONCLUSION

This paper proposes a resilient, adaptive model-free feature
for the standard cascaded PI control strategy. This represents a
unique implementation of advanced NN control techniques in a
real-time simulator, demonstrating stability even in large-scale
test cases showcased on large-scale MMC controllers for high-
power HVDC transmission systems. The developed RSCAD
Toolbox with a multi-layer NN library for online and offline
training is unique and the first of a kind. It offers the following
functionalities:
� Possibility of offline, online, or combined training of the

NN components.
� For the online training component, an NN Library is cre-

ated for ANNs and RNNs with 1,2,3, or more layers, all
with real-time training capabilities.

� The toolbox allows full flexibility in defining the structure
of the NN and the learning method where any loss function
defined in RSCAD can then be used as the training loss for
any of the NNs.

� The toolbox also allows flexibility for choosing a number
of controlled parameters and allows the use of the training
for control of both inner and outer control loops or just one
of them.

Such a toolbox opens the door to many possibilities for the
real-time testing of NN applications in HVDC systems.

In this paper, we have shown that real-time tuning of the PI
controller using this NN toolbox in RTDS shows better control
response, especially in cases when there is a disturbance in the
HVDC power system, such as active and reactive power change.
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[21] D. M. Stipanović et al., “Some local stability properties of an autonomous
long short-term memory neural network model,” in Proc. 2018 IEEE Int.
Symp. Circuits Syst., 2018, pp. 1–5.

[22] P. Qashqai, K. Al-Haddad, and R. Zgheib, “Modeling power electronic
converters using a method based on long-short term memory (LSTM)
networks,” in Proc. IECON 46th Annu. Conf. IEEE Ind. Electron. Soc.,
2020, pp. 4697–4702.

[23] J. Ba and B. Frey, “Adaptive dropout for training deep neural networks,”
in Proc. Annu. Conf. Neural Inf. Process. Syst., 2013, vol. 26, pp. 1–9.

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT press, 2016.

[25] D. P. Kingma “Adam: A method for stochastic optimization,” 2014,
arXiv:1412.6980.

[26] T. Tieleman and G. L. HintonHinton, “6.5-RMSProp,” COURSERA:
Neural Netw. Mach. Learn., Univ. Toronto, Toronto, ON, Canada, Tech.
Rep., vol. 6, 2012. Accessed: June 30, 2024. [Online]. Available: https:
//www.cs.toronto.edu/∼tijmen/csc321/slides/lecture_slides_lec6.pdf
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