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Duality between Incremental Nonlinear Dynamic Inversion and
Transformation-based Quasi-Linear Parameter-Varying Control

Tijmen Pollack*, Spilios Theodoulis, and Xuerui Wang*
Delft University of Technology, 2629HS Delft, The Netherlands

This paper presents a transformation-based robust nonlinear control design framework based
on the concepts of Incremental Nonlinear Dynamic Inversion (INDI) and quasi-Linear Parameter-
Varying (q-LPV) control. The duality between these popular control design paradigms is
investigated. Control-oriented q-LPV model representations of (I)NDI-based closed-loop
systems are presented for various inversion strategies, which creates a basis for robust synthesis
and analysis of (I)NDI-based designs in the LPV sense. This includes extensions to singular
perturbations that limit exact inversion in reality. The presented approach is demonstrated in a
design case study for a nonlinear aeroservoelastic system, where INDI-based controllers are
synthesized and quantitatively compared with direct q-LPV control based on linear fractional
transformations.

I. Introduction

NE of the key challenges in robust control design is to ensure adequate performance in the presence of uncertainty

within the limitations posed by physical hardware. This relates to stability, performance, and control activity in the
context of both dynamic and parametric uncertainty. In this context, H,, theory is foundational to obtaining important
robustness guarantees within the class of Linear Time-Invariant (LTI) systems [1H3]]. As such, it can be used to evaluate
or generate LTI controllers that inherit such properties automatically. Frameworks such as p-synthesis [3]] and Integral
Quadratic Constraints (IQCs) [4} 5] represent powerful extensions of the basic theory that allow designers to tackle a
wide variety of control problems.

However, in spite of these guarantees, LTI control design generally captures only a part of the full control design
problem. Real-world physical systems are generally nonlinear and time-varying. Consequently, LTI models only
represent local approximations of the plant dynamics around selected operating points. Therefore, a classical approach
is to perform interpolation-based gain scheduling of local LTI controllers to cover the full operating domain of the
system [[6H8]]. This procedure can lead to effective designs that preserve the input-output characteristics of the family of
linearized closed-loop systems [9,[10] and thereby retain crucial LTI robustness guarantees. However, a fundamental
limitation of this approach lies in the fact that no guarantees are obtained a-priori with respect to nonlinear stability
and performance [11},[12]. This implies that the designer cannot be confident about these aspects without additional
verification. Some design guidelines do exist to alleviate this issue: for example, good behavior can often be expected if
the scheduling parameter varies slowly [12] and if smooth interpolation of control gains is performed [13]]. Nevertheless,
additional analysis is still needed, which is often done based on an extensive number of Monte Carlo simulations. This
implies that a considerable number of design iterations may be required to ensure compliance with all objectives.

To make nonlinear robust control design more efficient, a framework is desired that provides a-priori theoretical
guarantees similar to those provided for LTI systems by H.-theory. The class of Linear Parameter-Varying (LPV) [14]]
systems forms an important concept herein. LPV systems are natural extensions of their LTI counterparts, where the
state-space matrices are functions of time-varying scheduling parameters. Within this framework, important quadratic
stability and performance guarantees can be obtained [[I5H17]. However, before LPV-based controller design can be
performed, the original nonlinear and time-varying system dynamics should be captured in the LPV form. This process
is known as LPV modeling. Several LPV modeling approaches exist [[18}[19], including Jacobian linearization, State
Transformation (ST) [20]], and Function Substitution (FS) [21]. In essence, these aim to embed [22]] the original system
dynamics into an LPV representation.

Special attention is required for those systems where the scheduling variable is a function of the open-loop system
state. These are known as quasi-LPV (q-LPV) systems. The ST approach was proposed by Shamma and Cloutier [20]] to
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construct such q-LPV descriptions for the important class of output-nonlinear systems. Through a transformation of the
state equation, this strategy aims to “remove’” plant nonlinearities [18]] without any intermediate approximations. The
resulting g-LPV model enables the use of a wide range of LPV synthesis and analysis methods. Consequently, it can
be used to obtain nonlinear control designs in accordance with well-established robust control design principles. The
technique has been used successfully in several studies and applications [20, 23H26]], which exemplifies its effectiveness.

From a broader perspective, the notion of transforming plant dynamics through a “cancellation” of nonlinearities as
in ST-based q-LPV modeling is conceptually analogous to the principle of feedback linearization. This connection has
been raised in a number of publications [20}27]]. In the aerospace community, feedback linearization is also known as
Nonlinear Dynamic Inversion (NDI) [28]. The objective of NDI is to transform the closed-loop input-output dynamics
associated with the selected controlled variables (CVs) into a chain of ideal integrators. This inversion step is achieved
in an on-line fashion through a combination of feedback and an embedded model representation of the physical plant.
Since the related transformation step forms an explicit part of the controller, the NDI technique imposes a particular
structure on the control design. This structure brings a degree of modularity and transparency that can be beneficial
during control law development [29]. Consequently, NDI-based design is a popular technique for aerospace applications
that has been shown to perform successfully on many occasions (e.g., [30-32]). However, in spite of its benefits, the
particular structure of NDI-based controllers may have important robustness implications.

First, the fact that NDI depends on the availability of an accurate model representation has been a subject of
significant concern. Consequently, there has been a widespread interest in alternative design approaches that reduce
the dependence on this model. The concept of sensor-based Incremental Nonlinear Dynamic Inversion (INDI) [33]]
has become of significance here. With this strategy, a substantial part of the model is omitted by using direct sensor
feedback. As a result, the sensor-based method has improved robustness to regular perturbations compared to the
classical variant [34]]. However, this characteristic comes at the expense of reduced robustness to unknown singular
perturbations caused by unmodeled higher-order dynamics (e.g., flexible modes and sensor delays) that typically arise in
practice [35]]. The concept of hybrid INDI has been proposed [36H38]] to enable a better balance of these robustness
properties. With this method, model-based and sensor-based inversion signals are blended to perform inversion error
compensation within a desired bandwidth. This enables the designer to improve robustness within the INDI structure.

A second factor of concern relates to the linearization property of NDI and INDI, briefly summarized as (I)NDI
from hereon, in a general sense. This relates to the fundamental nature of the (I)NDI framework as a whole and is
therefore irrespective of the selected inversion strategy (i.e., model-based, sensor-based, or hybrid). As suggested by [20]],
dynamic inversion-based transformation does not reflect typical robust design principles. For example, regulation and
tracking are often required only within a finite bandwidth. This contrasts with the inversion loop, which aims to linearize
the system dynamics across all frequencies. At the same time, exact inversion is seldom possible due to the presence
of higher-order dynamics (e.g., due to actuators, sensors, filters, and unmodeled dynamics). This results in inversion
distortions [29], which undermine the linearization property and obscure the process of obtaining guarantees.

Based on this discussion, it can be seen that the robustness implications of (I)NDI require adequate consideration.
Immediate deployment of (I)NDI-controlled systems without thorough robust stability analysis can therefore lead to
unexpected and undesirable situations. In this light, additional instruments are necessary to obtain important robustness
guarantees. It was shown in [35] [38] how H., design techniques can be used to synthesize robust (I)NDI controllers in a
divide-and-conquer LTI sense while preserving their nonlinear nature. Moreover, [39] demonstrated how ST-based
g-LPV modeling can be leveraged to analyze nonlinear stability and performance properties of locally optimized
model-based and hybrid (I)NDI controllers. In effect, this work established a first link between the INDI and q-LPV
control frameworks. This link forms an important basis for better understanding the fundamental robustness implications
of INDI-based control mentioned above, which leads to the contributions of the present work.

In brief, the aim of this paper is to develop a deeper understanding of the robustness properties of INDI-based
controllers in a q-LPV context. In doing so, the synergies between the q-LPV ST approach and the (I)NDI framework
will be revealed. It will be shown how this relates to the formulation of q-LPV models for (I)NDI-controlled nonlinear
systems of different types. The range of inversion strategies mentioned before will be covered herein. This not only
includes the model-based and hybrid variants as previously considered in [39]], but also covers the sensor-based strategy
in the filtered form. The presented q-LPV model framework is used in an example case study in which LPV synthesis of
INDI-based controllers is performed for a prototypical nonlinear aeroservoelastic system. To this end, a non-smooth
H.. synthesis scheme is established for structured LPV controllers in Linear Fractional Transformational (LFT) form.
The resulting INDI designs are compared to a direct LFT-based q-LPV controller that is of the same order but remains
unstructured otherwise. This provides quantitative insights into the robustness implications of the inversion strategy and
transformation concepts for the presented design scenario.
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In summary, the paper has the following contributions:

1) A methodological comparison of ST-based q-LPV and (I)NDI as transformation-based control schemes;

2) General g-LPV model formulations for model-based, sensor-based, and hybrid (I)NDI-based control laws,

including explicit incorporation of singular perturbations;

3) Application of non-smooth H,, synthesis to INDI control laws represented as structured q-LPV controllers.

4) Demonstration of the proposed framework to robust stabilization of a nonlinear aeroservoelastic system.

These contributions are useful not only to the INDI and broader feedback linearization communities but also provide
new insights into the implications of plant transformations in g-LPV design in general. In particular, the presented
framework enables quantitative comparisons between (I)NDI-based and direct q-LPV controllers. These insights are
broadly applicable to any nonlinear dynamic system that can be captured in the output-nonlinear form and are not
limited to the example case study presented herein.

The paper outline is as follows. Section [[I|first covers theoretical background for (I)NDI-based control design and
LPV systems. Quasi-LPV model formulations for (I)NDI-based control laws are presented in Section[[T]} together with a
discussion of the robustness implications of plant transformations. The structured LPV synthesis approach is elaborated
upon in Section The aeroservoelastic design case study is described in Section|[V] together with a presentation of the
main results and a discussion of the implications. Section|[VI|concludes the article. Finally, additional derivations can
be found in Appendix [A]

I1. Theoretical Fundamentals
This section briefly reviews the fundamentals of Incremental Nonlinear Dynamic Inversion (INDI) control and
Linear-Parameter Varying (LPV) systems theory.

A. Incremental Nonlinear Dynamic Inversion

Incremental Nonlinear Dynamic Inversion (INDI) aims to address several of the limitations of the classical Nonlinear
Dynamic Inversion (NDI) approach, which is also known as feedback linearization in the wider control community.
Accordingly, the basic principles of feedback linearization are discussed first. This is followed by a derivation of the
incremental form and a discussion of the role of different inversion strategies.

1. Feedback linearization
The concept of feedback linearization aims at transforming nonlinear plants in the sense of input-output or full-state
linearization through diffeomorphic state transformations and feedback. This applies to square, input-affine systems of
the form
x=f(x)+G(x)u
{ (1)

y =h(x)
which consists of the state vector x € R”, the input vector # € R™, the controlled variable (CV) vector y € R™, and

smooth mappings f, G, and k. A partial change of coordinates is performed by taking repeated time derivatives of y
until the control input u appears explicitly:

L) [ Lo L ) o L, LY ()
r) — : : . .
y = . + . . . u
r; . r; .—1 r; .—1 @
Lf’"hm(x) Lgl.[:ff” R (x) ... Lgm.[jff” Ry (X)

2 a(x) + B(x)u

Here, L;ﬁhi(x) and L, L;ﬁhi (x) represent the Lie derivatives of the function £; along the vectors fields f and g; [40Q].
Moreover, r is referred to as the system relative degree. If some function h exists such that ||r||; = r = n, the system is
said to be full-state feedback linearizable [40]. Otherwise, the system can be partially linearized at most. In this scenario,
a second change of variables is required for the states that cannot be observed through y. This leads to the definition of

T
the normal form, which is obtained through the combined coordinate transformation [g r T)T] =T(x) [40]:
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&= A€+ B [a(x) + B(x)u]
1= fo(n.§) €)
y=C¢
Note that the normal form requires the origin & = 5 = 0 to be an equilibrium point [40]]. Consequently, the control
law
u=3"x)[v-a®x) “4)

serves to transform the dynamics in £ to a chain of ideal integrators. Here, & (x) and $(x) represent model representations
of a(x) and B(x), respectively, and v € R is the pseudo-control vector generated by an auxiliary stabilizing control
law. The resulting transformed system takes the form of:

{;: = A€+ Bev
n=rfom§) (%)
y=C:£

Global asymptotic stability with respect to the origin requires the zero dynamics 1) = f(n, 0) to be stable, which is
influenced by the choice of the CV. Additional analysis may be required to verify this [28]]. Consequently, the zero
dynamics play a fundamental role in the behavior of the overall closed-loop system. For additional details on feedback
linearization, the reader may refer to [40].

2. Alternative inversion strategies

With regards to the standard feedback linearization framework, several fundamental limitations can be identified.
This includes, but is not limited to, the affine system assumption and the need for accurate models to perform the
linearization step. To this end, the INDI framework has been proposed [34]. The incremental formulation aims to
remove the affine system limitation and enables the reduction of controller model dependency. It is based on taking the
Taylor expansion of the output dynamics around the previous time step (indicated by the subscript |o) as follows:

0B(x,u)

r 0la(x)+B(x,u
y0 =y g Se@ B (u—ug) + R, ©6)
6x 0 ~——— a 0 ~———
Ax Au

where R represents the higher order terms. Then, the following incremental control law is constructed:

u=ug+ B (x0,u0) [‘V —y(()r)] (7

It can be seen that the dependency of the control law on a(x) can be completely removed if direct feedback of u( and
y(()r) is used. This greatly enhances robustness to regular perturbations [34] and is commonly referred to as sensor-based
INDI. The terminology emphasizes the difference from the classical case presented before, which is referred to as
model-based. Therefore, various inversion strategies can be adopted to perform feedback linearization.

The connection between the inversion strategy and robustness requires careful consideration. In this light, a robust
control design needs to have balanced robustness characteristics against a mix of different uncertainties. For example,
the improved robustness against regular perturbations generally comes at the expense of robustness against unknown
singular perturbations associated with high-order dynamic uncertainties [35]. The need for systematic robustness
trade-offs forms the motivation for hybrid INDI [38]. Using the following scheme, this approach takes advantage of

both model-based and sensor-based estimations of y(()r) as complementary sources of information:

Somg=U-KH) 9 )+ KHey s 8)

Here, the compensation gain K. € [0, 1] and filter H. enable a blending of model-based and sensor-based prediction
signals across frequency. This can be achieved using a scaled complementary filter (SCF) implementation [38]]. In
effect, this blending results in a compensation of model-based inversion errors. To illustrate this, consider the case
where the output dynamics are affected by parametric model uncertainty and an exogenous disturbance signal d:

Yo s = (I - KcHe) [@(R0) + B(Ro.u0))| +KcHe [a(xo) + B(xo. uo) + do] )

o (r)
y((f,)\,,g Yo,sB



Downloaded by Technische Universiteit Delft on January 12, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-0108

Then, taking B(£0, uo) = B(xo, uo) for the purpose of illustration and reordering terms:

35 s = [@(R0) + B(xo,u0)] + KHe [a(x0) — &(%o) + do]

~(r)
YomB

(10)

1>

+ KCHcef’()

The SCF parameters (K, and H.) represent tunable elements that determine the equivalent gain and bandwidth associated
with the inversion strategy [38]. Note that in the absence of uncertainty and disturbances, i.e., when eg = 0, the inversion
is not affected by these parameters.

B. Linear Parameter-Varying Systems

The Linear Parameter-Varying (LPV) system framework represents an ensemble of modeling techniques and design
representations. Consequently, there are many theories and concepts that fall under this category. In this section, some
elementary background is provided first. This is followed by an introduction to the State Transformation (ST) technique
proposed by Shamma and Cloutier [20] for quasi-LPV system modeling.

1. Background
LPV systems relate to a class of systems where the state space matrices are a continuous function of a generally
time-varying, exogenous scheduling parameter p : R — P. Its definition takes the form of:

x(1)
o

Alp(®))  B(p(1)
C(p(1)) D(p®)

x(1)
y()

Typically, the scheduling parameter is assumed a-priori to be bounded in terms of magnitude. Similar bounds on the
rate-of-variation —f3; < p;(t) < B; can also be considered. Although many systems may lead to representations of the
above form, care is required in terms of any interpretations that follow. For example, whereas a family of LTI systems
obtained through Jacobian linearization may take the same form, performing LPV-based analysis based on this type
of modeling approach may lead to misleading results with respect to the original nonlinear system. This shows the
importance of the underlying modeling strategy. For further discussion on this aspect, the reader may refer to [0, [7]].

2. Shamma’s State Transformation
Given this background, an LPV modeling strategy that closely relates to the original nonlinear system is desired.
This leads to the ST approach proposed by Shamma and Cloutier [20]. It considers square, nonlinear, input-affine
ki(z) N A11(z) Alz(Z)l [Z Bi(z)

systems of the form
Z
W ka(z)| |Aa(z) Axn(z)||(w| |[B2(2)

Here, z represents the controlled output that affects the state equation in a nonlinear fashion. The state vector has

T
been decomposed according to x = [zT wT] , 1.e. through a separation between scheduling and non-scheduling

(12)

states. Accordingly, this class of systems is referred to as ’output-nonlinear’ [[20]. To arrive at a model of the form
Equation |11} consider that the following holds over the equilibrium manifold for every value of z (the subscript |, to
indicate the equilibrium value):

0| _ |ki(z) N An(z) An(z) z Bi(z) ey (2) (13)
0 k> (z) A21(z) An(2)||Weq(2) B (z)
Subtracting Equation [I3]from Equation [I2] yields:
z| |0 An() z Bi(z)|
lwl o Azz(Z)l [ W —Wey(2) ¥ B (z) w (14
—_— 2 Udey

s
= Wdev
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OWeyg .

The change of variables in the system state can be completed by considering that Wgey = W — Weq(z) = W — —512.
Then, it follows from Equation [I4] that
z 0 A2(z) 4 Bi(z)
. = Weq Udey (15)
Wdev 0 Axn(z)- Wdev By (z) - B1(z)

The resulting system is referred to as quasi-LPV (q-LPV) due to the fact that, although it takes the form of Equation
[[T] the scheduling parameter z is an endogenous system variable. An attractive property of the resulting formulation
is that it forms an equivalent representation of the original nonlinear system from Equation[I2] In other words, no
approximations are involved, as, for example, in Jacobean linearization.

Despite this equivalence, an extension of the basic ST approach is required for robust control design and analysis
purposes. This is a consequence of the fact that any controller implementation involves the total control input
U = Uge, + Ueq, Whereas the above formulation only considers deviations with respect to the trim input manifold.
Consequently, let Equation [T3|be augmented as follows:

P 0 A (2) 0l z B (z)
Waew| = [0 An(z) - 224D A0 (2) 0| [Waew |+ |B2(2) - 22428, (2) | wgen (16)
i | 0 #9900 of e B

Subsequently, a key concept is to consider the time derivative of u as the new control input [20]:

u) = [ o (7)
Then, using the change of system state u ge, = #t — g in Equation@]results in
z 0 AIZ(Z) B\ (z) z 0
. O, OWe
Wae| =0 An() - P58 EAn() Ba(z) - P54 BI(2)| [waen | + 0] o (18)
i‘dev 0 ()ueq (Z) A 2(1) Z)ueq (Z) B (Z) Udev I

This approach is referred to as integrator pre-compensation[f] With this formulation, a transforming controller
can be constructed without feeding back u.,. Instead, the controller is augmented with the integrator associated with
pre-compensation and the transformation step is fully achieved through the main controller. This results in distinct
robustness benefits, which are further elaborated upon in Section@}

III. Quasi-LPV Model Framework for (I)NDI-based Control Design
In this section, the principles behind the q-LPV modeling approach introduced in Section[[I.B.2]are leveraged for
the specific case of (I)NDI-based design. The resulting models serve as a basis for robust q-LPV analysis and design for
this type of control systems. In doing so, the synergies between these two methods are explained. To show this, the
following assumption is made:

Assumption 1: The system in Eq. [12|admits a continuous, admissible control solution # 4., and trim map u.(z) for
allz e Z.

This condition gives rise to the following theorem, which will be revisited later in this section to establish a duality
between ST q-LPV and (I)NDI-based control:

Theorem 1: Under Assumption 1, the system in Eq. [I2]can be transformed to the g-LPV form in Eq. [T8]

Proof: The conclusion follows by deduction. Since u = ug., + Ueq(z) exists, its first derivative o = @t =

. u, .
Ugey + — aq @, Z also exists. Given that Z = A12W gy + B 4e, under the transformation in Eq. |1 , it follows that the

dynamics governed by # 4., = —auz,;’z(” (A12W ey + Bl gey) + o exist as well. In combination with the intermediate
result from Eq. [T3] this completes the proof. O

*This concept has strong analogies with velocity-based gain scheduling [9]], which has been used successfully in practice [41].
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Control-oriented g-LPV models for (I)NDI-based closed-loop systems are presented for a range of inversion strategies
in Subsection[[II.A] Subsection [[Il.B]elaborates on how the ST g-LPV and (I)NDI-based transformation strategies give
rise to different robustness mechanisms, despite the duality aspect.

A. Modeling inversion strategy

Quasi-LPV models for a range of inversion strategies will be presented. Purely model-based NDI is considered
first, where a distinction is made between the inversion of scheduling or non-scheduling states. This is followed by an
extension to inversion error compensation as in hybrid INDI and the incorporation of known singular perturbations that
prevent full inversion from taking place. Finally, it is shown how the latter representation can be used to establish model
formulations for filtered sensor-based INDI.

1. Baseline: model-based inversion
First, a scenario is considered where the scheduling state z forms the controlled variable (CV). Taking the original
nonlinear dynamics from Equation[I2]as starting point, the inversion law reads as

u :Bl_l(z) (v—ki(z) —An(z)z— Ann(2)w) (19)

Application of this controller to Equation[I2]leads to the following closed-loop dynamics of the transformed plant:

Z 0 0 0 z 1
= , + + v (20)
[Wl ka(z) - B3(2)k1(2)|  |A2(z) — B5(2)An(z) Axn(z) - B;(Z)A]Q(Z)l [W B} (z)
N T N | T N @21
k5 (z) A (2) A ()| |w B} (z)

where B;(z) £ B,(z)B;'(z). As mentioned in Section , assessment of the global asymptotic stability with
respect to the origin presumes that the origin is an equilibrium point. This requires the additive nonlinearity k3(z) to
vanish in the origin. As a result, the zero dynamics take the form of

(.) : 0 0 (22)
Wl (43,000 AL |w

Consequently, the zero dynamics are globally asymptotically stable with respect to the origin if A3, (0) is Hurwitz.
However, this assessment does not suffice for the purpose of robust control design and analysis, which generally concerns
all z over the system’s operating domain. Therefore, global asymptotic stability with respect to the complete trim
manifold must be considered instead:

ol _[ o 0 0 z 23)
0 kZ(Z) A;](Z) AEQ(Z) weq(z)

In accordance with the steps of Eq. in Section |lI.B.2] this results in the following transformed system:
1
wea@ |V (24)

Z -
Wdey B ; (Z) - oz
Consequently, global asymptotic stability can be verified for all trajectories z € Z. For the assessment of robustness,
the transformed system is augmented in a similar fashion as in Equation [T6}

+

Z

0 0
0 A;z (Z) Wdev

b4 0 0 0 z 1
Waew| = [0 A% @) 0| [Waew | + |B(2) - Zea@ 1y 25)
g | |0 0 0| uey Hieg @)
Finally, the corresponding output equation reads as
u=B7'(2) (v = An(@)Waev) +eq (26)

Udev
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This formulation bears direct equivalence with Equation[T9] This can be verified by substituting the equilibrium input
manifold, which is given by

Ueq(z) = —B7'(2) (k1(z) + A11(2)2 + A12(2)Weq (2)) (27)

T
Second, inversion of the non-scheduling state w is considered. Here, the decomposition w = |w pT ng] is used to
isolate the controlled variable y -y, = w . This results in the following realization of Equation [T2}

z ki(z) A(z) An(z) A@)|| z Bi(z)
Wyl = [ka(2)| + [A21(z) Axn(z) Axn(z)||w,|+ B2(z)|u (28)
We k3(z) A31(z) An(z) A3(2)||we B3(z)

From here on, the procedure is very similar as before. For clarity, the inversion law reads as:
u=By'(2) (v - k2(2) - An(2)z ~ An(2)w, — An(2)ws) (29)

Denoting A* (z) = Aij(z) — B (2)A2;(z) and B} (z) = B(z)B; !(z), the g-LPV formulation takes the form of:

Z 0 Al,(z) Al(z) 0 Bi(2)
Wpder| [0~ AL ol gy o || 1~ 22
i - * 0 e E 0 e % « 6 e "
boaer| [0 A3 - oA ) Az - PeEan) o e "By (o) - Peea )|
ueq 0 (9uc£l(z A*Q( ) au(q(z A*3( ) 0 au“,(z)B*( )
(30)
with the performance output given as:
u= Bz_l(z)(y - A22(Z)wp,dev - A23(Z)w§,dev) tUeq 3D

Udev

Corollary 1: If there exists a model-based NDI controller for the output-nonlinear system in Eq. [I2] then a
pre-compensated q-LPV representation as in Eq. [T8also exists.

Proof: Since Eq. and show that an NDI controller of this type can always be expressed as # = ugey + Uy,
the proof of Corollary 1 follows immediately from Theorem 1. O

2. Incorporating inversion error compensation

For reasons of brevity, only the special scenario where y -y, = w is considered in the sequeﬂ This can be naturally
extended to the more general cases from the preceding section based on the insights presented there. Still, this scenario
is typical for aerospace systems, where it is common to invert, e.g., low-level dynamics that are nonlinear functions of
the aerodynamic variables.

To incorporate the effect of inversion error compensation as in hybrid INDI, the CV dynamics are extended with an
additive disturbance term as follows:

W =ko(z) + A2 (2)2 + A (2)w + B2(2)u + Ba(z)d; (32)
—_——

2 5(SB) P
Ly 2 5(MB)

This shows that sensor-based predictions result in direct observation of the input disturbance signal. Consequently, this
leads to the following inversion error compensation equation:

y B = (I - K(2)He)y M) + K. (2)Hey B = yMB) L K (2)H Ba(2)d; = yMP) + K. (2)e,  (33)

It is recalled here that K. and H, represent the compensation gain and filter elements, respectively. In light of gain
scheduling, both can be configured as nonlinear functions of z, as reflected in the above equation. The compensation

"The material in this section draws further on the work in [39].
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filter introduces additional states, which must be incorporated in the q-LPV representation. To this end, the following
canonical realization is considered in light of Equation 33}

b, { éc=—Ac(2)éc + Bo(2)Ba(2)d; )
U,

.:éf

Working out the derivation along similar lines as before leads to the following control-oriented q-LPV model:

z 0 Al,(2) 0 -B}(2)K.(z) z Bi(z) 0
. a e * 6 € * e *
wae| [0 -25E45@) 0 - (1- 252 B@)) Ke(D) | | waer zaﬁwﬂ“B() L@ |,
o - e * l
deg | |0 HeEan() 0 0 teq ueas) e () 0
es 0 0 0 -Ac(2) s 0 B.(z)B2(2)
(35)
with the performance output resulting as:
u= Bz_l (2)(v = A2 (2)Waev — K¢ (Z)éf) tUeq (36)
Udev

The disturbance feedthrough directly reflects the robustness implications of the hybrid inversion loop. The compensation
parameters (K. and H.) determine how this term gets attenuated through the inversion loop.

Corollary 2: 1f there exists a hybrid INDI controller for the output-nonlinear system in Eq. then a pre-compensated
g-LPV representation as in Eq. |18|also exists.
Proof: The proof of Corollary 2 is analogous to Corollary 1. O

3. Incorporating singular perturbations

In the discussion so far, it has been implicitly assumed that exact inversion of the controlled variable is feasible.
However, this is fundamentally not the case for real systems, which are affected by additional singular perturbations
due to the presence of e.g., actuators, filters, unsteady aerodynamics, and higher-order structural dynamics. Therefore,
inversion distortions are a fundamental reality [29]. Where known, these effects should be taken into account in the
g-LPV model representation. To this end, an approximate inversion law with filtered input is considered:

u=B;'()v+¢ G7)

The variable ¢ refers to the exact inversion input signal affected by a singular perturbation. For the purpose of
brevity, this perturbation is considered to be of first order here. However, as demonstrated later in Section|V] the insights
obtained apply to more general cases as well. For hybrid INDI, this scenario amounts to:

€ =—¢ - B5'(2) [k2(2) + A1 (2)2 + A (2)w + K, (2) ¢ |
=—-¢- Bil () [AZZ(Z)wdev + KC(Z)Z’{;‘] +Ueq(2)

Here, € — 0 represents a small constant that enables the construction of a singular perturbation model [40]]. Setting
this variable to zero leads to a fundamental change of the nature of the inverted system, since ideal inversion is recovered
in this case. Using this framework, the g-LPV model that describes the singularly perturbed hybrid INDI control system
takes the form of:

(38)

b4 0 z 0

Wdev At (z) —Bg(z) 0 Bs:(z) Wdev B, (z) B3 (z)

eg | = 0 Ueyg | + v+ 0 d;
és 0 0 0 -As(z) 0 és 0 B:(z)B2(z)
€d 0 -B;'(2)An(z) I -B;'(z)K.(z) -1 ¢ 0 0

(39)

where Equation [37] represents the performance output. The complete derivation is presented in Appendix [A]

Comparing this result to Equation [35|shows that there remains a coupling between u.,, and the transformed states. This

directly reflects the impact of inversion distortion on system stability and performance. With this formulation, the
impact of singular perturbations can be analyzed systematically over the system’s operating range.
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4. Special case: filtered sensor-based form

Finally, a special case of the singular perturbation form is discussed. This concerns filtered sensor-based inversion,
which is equivalent to hybrid INDI with K. = I and the model prediction signal disconnected. In this case, the
compensation filter H. can be considered as a singular perturbation. This leads to the following q-LPV model:

Z z 0
w'dev _ Ast (Z) _Bst (Z) Bst(z) Wdev + BV(Z) v+ BQ(Z) di (40)
liog Ueg 0

ed 0 -B;'(2)Axn(z) I -1 ) 0 -1

Similar comments can be made as before regarding the impact of inversion distortion. The distortion effect becomes
more prominent as € takes larger values, i.e., when the filter bandwidth is reduced. This relates to the concept of
time-scale separation [34] that is commonly referred to in sensor-based INDI derivations.

Corollary 3: If there exists a sensor-based INDI controller for the output-nonlinear system in Eq. then a
pre-compensated q-LPV representation as in Eq. |18|also exists.

Proof: The proof draws from Appendix Using the change of variables ¢ = ¢ + u.,(z), the sensor-based INDI
control law can be expressed as u = B 1 @)V +¥ +uey £ ugey + u.q. Consequently, the conclusion follows along the
same lines as Corollaries 1 and 2. O

B. Duality and robustness
Based on Theorem 1 and Corollaries 1-3, (I)NDI-based controllers can be viewed as structured counterparts of
direct q-LPV control. This duality is underscored by restating Equation[T7for the specific case of (I)NDI-based control:

uye)VNDI(t) + Uy (t) - / o) dt @n

Consequently, (I)NDI effectively imposes a particular mapping on the signal o-. This is in contrast to direct ST g-LPV
control, which provides the opportunity for mapping o through alternative control schemes. As a result, a fundamentally
different transformation structure can be established:

» With (I)NDI-based control, plant transformation forms an explicit part of the controller structure. This concerns the
inner inversion loop, which leads to the cancellation of nonlinearities and directly incorporates u.,. Consequently,
explicit information about the inner loop is required for robust analysis and synthesis.

* Direct g-LPV control based on integrator pre-compensation provides the flexibility to eliminate the inner loop
signal u ., altogether. As a result, no inner feedback loop is required and the plant transformation step is resolved
implicitly through integrator pre-compensation and a (generally unstructured) outer loop controller.

Due to its feedback nature, the type of transformation directly affects robustness. Figure [I]serves to illustrate this
aspect. Here, the ST q-LPV and (I)NDI-based transformation interconnections are visualized in a single (combined)

z d, d,| AY

KO [l I 5 enm
Heiry &g i O Gy :

[q-LPV]\r
Kinner(p)

Fig. 1 Generalized plant transformation interconnection; both direct q-LPV and INDI setups are shown, where
the former is obtained by switching off the inner feedback loop and adding integral action at the true plant input.

10
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Fig.2 LFT interconnection of LPV control structure (adapted from [16]).

diagram. Of central importance in the figure are the perturbations (uncertainties) ¢, which form the basis for robust
analysis and design. These are shown at various locations in the feedback loop at the level of the physical (“true”)
plant and its transformed (“virtual”) counterpart. Considering input locations A and B, it becomes apparent that the
interaction between the inner transformation signal u., and the respective perturbations is of fundamentally different
nature. This implies that the robustness margins found for the transformed system (loc. B) are strictly not indicative of
robustness at the level of the true plant (loc. A). This similarly applies to robustness at the output (loc. C and D). This is
of critical importance, as only those perturbations that arise at the true plant are relevant to robust analysis and design.
By eliminating the inner feedback loop, the robustness implications induced by u., are mitigated. As discussed in [20],
this is the rationale behind the pre-compensated q-LPV control approach outlined in Section[[.B.2] For (I)NDI-based
design, key robustness implications of u., can be accounted for using the q-LPV models derived in this section.

IV. H..-Synthesis of Structured q-LPV Controllers

With the synergies and fundamental differences between q-LPV and (I)NDI-based control being identified, it is of
interest to investigate how these approaches compare quantitatively in a robust g-LPV design context. In broad terms,
LPV control design can be categorized into three approaches: polytopic [11], LFT [[16}42], and grid-based [17]].

Polytopic LPV synthesis requires an affine dependence of the scheduling parameters, which span a polytopic region
that is described by a convex hull of a finite set of vertices. This approach yields strong stability and performance
guarantees, but may also result in (overly) pessimistic results due to the affine model limitation. The LFT approach can
be considered more general in this sense, as it allows the state-space matrices to feature a rational dependency on the
scheduling parameters. However, conservativeness is also a known issue for LFT-based synthesis [6]. This is due to the
fact that the scheduling parameter rate-of-change is considered to be unbounded when quadratic stability analysis is
performed. Grid-based synthesis can be used to address this, as it allows for the explicit incorporation of rate bounds.
However, the fact that synthesis is limited to a finite grid of scheduling parameters implies that no guarantees are
obtained in-between operating points. Therefore, grid selection becomes an important aspect of the synthesis process,
and additional a-posteriori analysis may be required.

In the remainder of this paper, the focus will be on LPV synthesis of structured controllers (such as INDI) using the
LFT approach. This enables a synthesis strategy based on non-smooth Hc,-synthesis techniques. The corresponding
structured LFT synthesis formulation and synthesis routine are presented in this section.

A. LFT synthesis formulation

The principles of LFT-based LPV control are briefly reviewed ﬁrslﬂ In general, LPV control structures with linear
fractional dependence on the scheduling parameter can be considered as shown on the left of Figure 2] The operator T
that represents the closed-loop mapping between exogenous inputs w and outputs z takes the form of

*For the full technical details, the authors refer to [16] 42].

11
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T(P.K,0) =% [F.(0,P), % (K,0)] (42)

Here, ¥; and F,, represent the lower and upper linear fractional transformation, respectively. The parameter block

has a block-diagonal structure according to ® = blockdiag(p11,1, ..., prl-x). With slight abuse of notation, the
performance level is described by the induced £;-gain according to [16]:

o IT(P.K,0)lle <y (43)

A distinct characteristic of the LPV control structure is that the scheduling parameter associated with the open-loop

plant directly enters the control law as well. Consequently, the LFT interconnection can be reorganized as shown on the

right-hand side of Figure[2} This shows that the combined perturbation block has a repeated block-diagonal structure.
The resulting operator 7' can be rewritten as:

® 0

0 ® (44)

T(P,K,0) =7, (Tz (Pa,K),

where the general plant P, is augmented with additional control channels. Consequently, the transformed LPV control
problem takes a form similar to that found in p-analysis problems [43]]. This enables Ho,-synthesis of parameter-
dependent controllers based on an augmented LTI formulation. The nonlinear and time-varying nature of the structured
perturbation block is accounted for by adopting static, full-block similarity scalings according to [[16]:

L L
Leso 21| 7 ?|>0: LiLyeLe and L,0=0OL, VO €® (45)
LY L,
where
Loe2{L>0: LO=0OL, VOe®} cR™ (46)

Application of the small-gain theorem [44] results in a translation of the robust performance condition from Equation 3]
to the following scaled H,, formulation for gain-scheduled controllers [16]:

L2 -1/2

F1 (Pa, K) <y 47)

1 1

o)

Consequently, the synthesis problem is to find similarity scalings L and structure control K such that y is minimized.
As presented in [[16], the particular structure of the linear-fractional LPV setup leads to solvability conditions that are
convex in the full-order case. Iterative techniques like DK -iteratimﬂ [3}145] are therefore not required for this class of
problems, as synthesis can be performed directly based on a system of Linear Matrix Inequalities (LMIs). However, this
generally does not apply to controllers that are of fixed, low-order structure. This scenario is discussed next.

B. Non-smooth synthesis

For control structures K (k) that are parametrized by design parameters k € %, the synthesis objective based on
Equation[47]takes the form of

12 -1/2

L
min 7y such that Fi1 (Py, K(k))

< 48
KE'K‘,LEL@®® y ( )

1 1

(e8]

The decision variables k can be optimized using a non-smooth He,-synthesis algorithm [46] with explicit constraints
on the positive realness of the similarity scaling L and its elements, as reflected by Equations 4546 This can be
achieved using, for example, MATLAB® systune [47, [48]. The design parameter and scaling matrix can be optimized
simultaneously, i.e., without separate iterations between synthesis and analysis steps. Moreover, the scaling constraint
from Equation 45| can be incorporated as a passivity constraint with appropriate structure between the input and output
channels of the corresponding multiplier block:

T
/0 gL (07 pL()dr >0 (49)

which enforces L to be strict positive real. Similar considerations apply to the constraint from Equation 6]

$This procedure alternates between the controller (K) synthesis and scaling (D) optimization steps until convergence.

12
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V. Case Study
In the sequel, it is shown how the techniques presented in the preceding sections can be leveraged to synthesize
INDI-based controllers for a nonlinear aeroservoelastic wing section simulation model. The resulting INDI-based
control designs are subsequently compared with direct g-LPV control. This sheds light on the robustness implications
of the INDI transformation structure.

A. Aeroservoelastic wing section model

The aeroservoelastic simulation model under consideration has been used in previous control design studies using
LPV [49], NDI [50], and other methods [S1}152]]. The dynamics are modeled as a second-order system in both pitch and
plunge directions, governed by quasi-steady aerodynamics. Consequently, the equations of motion take the form of:

+(=C + Fx(Vo) ?l (50)

h h
T Fu(v())
a a t

M m = (=K (a) + Fy(Vo))

where the nonlinear stiffness matrix K (@) = [koh ke (14 (?k (@) ] and aerodynamic terms F, (V) feature polynomial

dependencies on the scheduling parameters. Two control inputs are considered, where §; and S3; represent the
leading-edge and trailing-edge control surfaces, respectively. The corresponding stiffness polynomial is of order four:

6k, (@) = cra + 20 + c30° + c4a’; (51)

Considering constant values for the free-stream airspeed Vj, Equation [50] be written as an output-nonlinear system
of the form presented in Equation To this end, setting z = [h a]7,w = [/ &]",andu = [ B B ]” results in:

: i)

For a complete description of the simulation model, including a more detailed specification of the related parameters,
the reader is referre(ﬂ] to [52]. The resulting system dynamics exhibit strong nonlinearities, as illustrated by the
simulation result in Figure[3] The simulation shows the emergence of a limit cycle oscillation as the typical wing section
is initialized from a nonzero initial condition. The nonlinear behavior is similarly reflected by the pole zero map and
frequency responses in Figure f] These show that the linearized system dynamics consist of badly damped oscillatory
modes, whose natural frequencies are functions of the incidence angle. Moreover, the conjugate pole pair associated
with one of these modes crosses the imaginary axis, marking a region of instability.

0
M_IFM(VO)

0 I
Az (z) An

0
B,

Z
w

A

u + u (52)

0 1
) lM-l (-K(@) + Fu(Vo) M~ (=C + Fi(W))

B. Design objectives
The unsatisfactory open-loop system characteristics motivate the design of a feedback controller whose function is
to stabilize the system and improve modal damping throughout the operating domain. It is assumed that the full state

INote that with respect to the original model, the nonlinear dependency on / has been dropped in the present case study.

10 1

0.1
0.05 o |
o "o0
A o < 0
= 3
-0.05 sl |
0.1+
10 J
-0.15 . . . . . . . .
0 2 4 6 8 10 0 2 4 6 8 10
time (s) time (s)

Fig. 3 Nonlinear time-domain simulation to nonzero initial condition (Vy = 20 m/s).
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Fig.4 LTI system characteristics as a function of incidence angle @ € [-10,10] deg. (Vo = 20 m/s).

vector can be measured, which is in line with the state feedback nature of (I)NDI model predictions. In addition to this
primary objective, the closed-loop system is subject to auxiliary objectives that relate to robustness and control activity.
In particular, the controller should exhibit adequate disk margins in all loops and feature sufficient robustness against
high-frequency unmodeled dynamics. Moreover, control activity should be limited to prevent excessive actuator usage.
This combination of performance requirements can be accommodated through the following four-block objective:

1) S,G (d; —» y) - Suppression of insufficiently damped modes is best achieved through minimization of this
objective; moreover, it enables incorporation of additional integral action, whereas the £,-gain provides an
indication of robustness against time-state-dependent parametric perturbations of the form d; = §(x,1);

2) T; (d; — 1) - robustness against high-frequency unmodeled dynamics and noise attenuation on the input
channel is achieved by constraining the control bandwidth on this channel;

3) So (d, — y) - imposing an upper bound on this objective ensures robustness in terms of S-based disk margins;
moreovert, in the case of full-state observation where the initial plant state is set as a constant output disturbance
d, = Xx;ui, its bandwidth can be modulated to achieve a minimum rate of decay of the plant states;

4) KS, (d, — u) - represents an indication of control effort due to output disturbances; in line with the above,
this relates to control activity due to nonzero initial plant conditions in the full-state observation scenario.

In light of Equation 8] this leads to the following LPV synthesis objective:

1/2 Tqes0—pose (K) * * _1p
min such that * Ts,g(k) Ts, (k < 53
KE'}(,LEL@@@)/ Wy $,G(K) 5, (k) Wi Y (53)
* Tr, (k) Tks, (k)

(o)

Table[T]summarizes the selected (constant) weighting function parameters used to minimize the combined upper bound
of the four-block system. Note that nominal nonlinear stability is ensured if LY 2Tq®®(BH ,,%@L‘l/ 2 < YVstab < 1. In line
with Sec. Equationis incorporated as a soft design objective in MATLAB® systune. This also includes the
hard constraint on the scaling L.

Table 1 Robustness and performance weighting functions

Parameter ‘ Value

WL blkdl'ag(WSOG, WT,) = blkdiag(0.126l4x4, Wulzxz) with Wu = 1/600
Wg blkdiag(Ws,, Wks,) = blkdiag(blkdiag(3W; ' Ixa, hx2), Irx2)
Waee (jw) ‘ 1072/ w+6.28

J0+6.28(10°2)

14
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In addition to minimizing the four-block upper bound, a minimum rate of decay of the closed-loop system dynamics
is also required. This implies that controller solutions that introduce slow modes must be prevented. In line with the
above description, this can be achieved by imposing a minimum bandwidth on the output sensitivity functions associated
with & and « at selected operating points:

Soh,h (j(l)) Soh,a (j(l.))

. . 54)
Soa,h (j(l)) S(’a,(z (.1 w)

Zdec (]w) = Wdec(jw)

doh (J(U)
do, (jw)

As shown in Table[T] the filter Wy, (jw) is configured as a first-order lag-lead. This additional objective is implemented
in MATLAB® systune as a hard constraint at different operating conditions in a multi-model fashion.

C. Control law structures and synthesis interconnections

To investigate the relative capabilities of INDI-based and direct g-LPV control, three configurations are compared.
All designs are based on plant state feedback and feature a total controller order of six states. The first design consists of
a hybrid INDI (HB-INDI) loop based on second-order inversion compensation in combination with a non-scheduled,
two-state virtual control law K,. The displacement 4 and rotation angle « are selected as the CVs. The rationale
behind the use of a second-order scaled complementary filter is to achieve sufficient high-frequency roll-off after
differentiation of the CVs. With this structure, nonlinearities are accommodated through the inversion loop only.
The second architecture is very similar but has the embedded model disconnected, resulting in a purely sensor-based
INDI (SB-INDI) configuration. This design has no gain-scheduled elements and therefore collapses to a pure LTI
configuration. Third, a direct q-LPV controller is considered. Two states are reserved for integrator pre-compensation,
leaving the outer feedback compensator K to be of order four. The feedback compensator is left unstructured otherwise.
Figures [5a and [5b|show the block diagrams associated with the INDI and direct q-LPV configurations, respectively.

To synthesize these controllers for the design objectives listed before, the q-LPV modeling insights from Section
are applied to the system at hand. As a starting point, consider the baseline transformed plant as:

Z 0 1 0 z 0
w | =10 A -B; w |+ |B (ueq +udev) (55)
feg| [0 2@ 0 |lue| [0

Section [[1I] shows how this baseline model can be further augmented for INDI-based control. In this light, the
decomposition used for the singular perturbation and filtered sensor-based inversion representations from Sections
II1.A.30III.A 4] is recalled. This decomposition is used to arrive at a common synthesis framework for the INDI

configurations of interest. Substitution of u = B ly + ug;\), py i Equationresults in:

:] o 1 01][z 0 0 0
w=[0 An  =B||w |+ |B|ul,, +|1]|v+|B:|di (56)
feg) [0 2@ 0 | |ug| |0 0 0

u
z % B, >
w 7
08y o(0) |
dJda [
Kqov (1) 1 u
N o 7 » 1 > < —>
5| CA(a) L« o
(a) Hybrid/sensor-based INDI controllers (b) q-LPV controller

Fig.5 Controller structures.
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(HB)

INDI takes the form of:

For hybrid INDI, the inversion input u

(HB) _ (57

és=-A.8s+ B, Bod; + B d,
-1 ~
unpy =By (Anw + Ke8g) + ey
Substitution of this scheme into Equation [5 results in complete cancellation of the nominal dynamics associated
with w. Consequently, full state linearization is achieved in this scenario. Conversely, for sensor-based INDI:

¢=-Achp+B., (-B, ' Apw +u.q —d;) - B.,B,'d,
(sB) _ (58)
Uinpr =9
Since the finite filter bandwidth leads to inversion distortions, the resulting nominal dynamics will remain nonlinear.
Finally, following Section for the direct q-LPV controller, incorporation of integrator pre-compensation in
Equation[55]leads to the following synthesis model:

z 0 I 0 z 0 0
w | =10 A Bol| w | +|0|o+]|0]|d; (59)
waer] [0 -29E 0] luae| 1] |1

Summarizing, the hybrid and sensor-based INDI designs feature respectively 18 and 17 tunable parameters, compared
to 57 parameters for the direct g-LPV controller. Therefore, the latter results in substantially more design degrees of
freedom for the same number of states.

The above q-LPV models can be converted to LFT-based LPV representations by expanding the nonlinear term
Ol og

6z(z) . From Equation [52]it is found that

Oy (z) _10A2(2)z 1 kn 0
—— =B, —————=-F, (W) |- 951, (a)a\ | + Fx(Vo) (60)
92 oz u 0 ko 1+ 22g000)
Consequently, the scheduling parameter is set as:
06
o= % =2c1a + 3c20? + 4cza’ + 5c40t (61)
a

The bounds on the scheduling parameter p € [a, b] directly follow from the operating region @ € [—10, 10] deg. The
LPVTools MATLAB® toolbox [53] is used to establish the corresponding LFT models. Since the resulting LPV
representations are described by a scalar ©® = p, the similarity scaling L becomes a 2 x 2 matrix. Figure [6a]shows the
high-level synthesis interconnection associated with the controller options considered. The INDI configuration results
in additional structure at the level of the controller itself, as shown in Figure @

Joeo a2 )<—> 2 pefe
—— 2 | /L >
T m-u*wol?
‘ d;/d;
Zu/iu
K(x)
INDI]

¢ B

(a) Full synthesis interconnection (b) INDI synthesis structure

Fig. 6 Synthesis interconnections.
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A few remarks should be made at this point. First, the propagation of the output disturbance signal through the
linear parts of the inversion laws has been accounted for. However, for the model prediction term u., in hybrid
INDI, nonlinear propagation of output disturbances cannot be accounted for in the above framework. The robustness
analysis in Section [V.E will further consider this aspect. Second, in light of the synthesis objectives from Section
the weighting filter imposed on the INDI control input signal must be augmented by additional differentiation

S

according to z;(s) = —7zu(s). Consequently, the corresponding input disturbance must be integrated according to

di(s) = #d'i(s) for consistency. Here, € is again selected as a small number. Finally, for the same reasons that only
stable weighting functions can be used to compute the (bounded) H,,-norm, the additional augmentation poles located

in the origin of Equation[56|are moved by a small value along the real axis into the left-hand plane.

D. Synthesis results

Using the transformed plant synthesis models, each control law is synthesized using the non-smooth synthesis
approach presented in Section [V} Here, the number of random starts performed during the optimization is set to 25.
The resulting LPV performance norms are summarized in Table 2] It appears that the q-LPV controller performs best,
followed by the hybrid INDI design. The sensor-based INDI controller, being a non-scheduled controller, results in the
worst performance levels. Note that for hybrid INDI, the result y,; 45 = O reflects the fact that full-state linearization is
achieved in the nominal case.

To gain further insight into the characteristics of each design, Figures [7] and [§] show the frequency responses
associated with each objective over a range of different operating conditions. Similar patterns are observed here. Note
that the corresponding LTI models have been obtained in two ways: first, by sampling the g-LPV synthesis models from
the previous section for frozen values of the scheduling parameter; and second, through trimming and linearization of
the nonlinear closed-loop system based on the implementations shown in Figure[5] Both approaches result in equivalent
outcomes, which demonstrates local linear equivalence [7] of the presented g-LPV model formulations. Figure ]
illustrates the closed-loop nonlinear response characteristics associated with each design.

E. Robustness analysis

The frequency responses from Figure [/| exhibit adequate roll-off at high frequencies, which is an indication of
robustness against high-frequency unmodeled dynamics. However, the obtained output sensitivity norms are excessively
high. The multivariable nature of the output vector leads to a substantial degree of conservativeness here. Therefore,
additional analysis is required, which is done by investigating loop-at-a-time disk margins at the plant input and output.
Figure [I0]shows the corresponding Nichols diagrams.

From these results, it appears that all designs exhibit adequate robustness at the plant input. However, some additional
discussion is pertinent for robustness at the plant output. This relates to the missing propagation of d,, through the
scheduling block in the synthesis representation, as mentioned in Section [V.C} Due to this setup, the synthesis objective
effectively relates to location D in Figure[I] Figure[I0b]shows that good robustness margins are obtained at this location.
However, breaking all loops at the sensor location C illustrates a different picture for hybrid INDI. Here, it appears that
the additional gain induced by the on-board model leads to substantial degradation of the robustness margins.

Besides additional LTI robustness analysis, further insight into nonlinear robust stability and performance charac-
teristics is also obtained. Figure [TT|shows a number of nonlinear simulation results that substantiate to what extent
the three controllers tolerate state-dependent input disturbances. Two scenarios are considered. First, an additional
alpha-dependency is introduced that is scaled by the constant Ws, ¢ used for synthesis:

di],z = WS“Ga (62)

Table 2 Ordered LPV synthesis norms, incl.

decompositions of sub-objectives. Table 3 Optimal INDI tunable inver-

sion parameters returned by synthesis.

‘ Ysyn ‘ Ystab  YSoG  YTi  YSo  YKSo
q-LPV 098 | 040 0.69 083 086 091
HB-INDI | 1.44 | 0.00 101 091 09 141
SB-INDI | 2.06 | 053 131 1.18 1.80 2.06

| Ke () w. (radls)
Hybrid 1.00 159
Sensor-based n/a 197
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With this perturbation, the analysis parallels the insights obtained previously regarding input disturbance rejection
performance. The corresponding time-domain histories are shown in Figure[TTa] Similar observations apply as before,
with direct q-LPV control exhibiting the smallest and sensor-based INDI control the largest discrepancies from nominal
performance, respectively.

Second, sampled parametric uncertainty is considered for the nonlinear stiffness polynomial dx, (). Here, the
polynomial offset has been transformed to match the plant input according to:
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di=wy(a)=F;'(V,)

0 l a (63)
koA, (@)

The simulation results are shown in Figure[TTb] The diagrams shown on the bottom row show how the sampled
uncertainty signals compare to the bound corresponding to Ws,_¢. In most cases, the induced disturbance terms remain
well within the baseline sector bounds. However, the hybrid INDI control law results in larger deviations. Worse, there
is one instance where the sector bounds are exited and the closed-loop system becomes unstable. This can be attributed
to fast transients induced by model offsets, which do not feature any form of bandwidth limitation with respect to K S,,.
These transients cause the system to get perturbed further away from its initial condition, causing the nonlinear offset to
grow in terms of its absolute norm. Therefore, as shown before in the broken-loop analysis, the use of model predictions
introduces additional effects that one must be aware of.

F. Further insights

The case study in this section illustrates several key robustness implications associated with INDI. It is shown how
the INDI and q-LPV controller setups can be related to a common basis in terms of their respective q-LPV synthesis
models. However, the different control structures that go along with each approach lead to important disparities. As
discussed in SectioanLEI, the structure of the INDI setup is such that u,,, effectively enters the control law directly
through the inversion loop. Moreover, the inversion loop is the only element through which gain scheduling is performed
in the configuration presented here. This is in contrast to the g-LPV controller, which completely eliminates feedback of
u .4 and exploits more degrees of freedom to achieve gain scheduling to maximize performance and robustness for the
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Fig. 11 Nonlinear sensitivity to uncertainty.

same number of controller statesm Consequently, the additional structure imposed by the presented INDI controllers
leads to restrictions in terms of attainable nonlinear robust stability and performance for the problem at hand.

Regarding the distinctive characteristics observed between the hybrid and sensor-based INDI alternatives, the
impact of using model predictions must be further deliberated. Thanks to the embedded model, hybrid INDI is capable
of fully eliminating the nominal nonlinearities associated with the plant under consideration. This is in contrast to
the sensor-based alternative, which relies on a filtered version of u., to perform plant transformations. This leads
to inversion distortions as a result, as discussed in Section [[ILA4] In turn, the stability properties of the nominal
closed-loop system are affected, which needs to be resolved through the virtual control law. This comes in addition to
the other design objectives, whereas the number of design degrees of freedom remains the same as in hybrid INDI. The
results in this case study show that this comes at the cost of overall performance and robustness.

On the other hand, the use of unfiltered feedback of u., as in hybrid INDI leads to other downsides. For example,
model offsets induce fast transients. This relates to additional control activity and an increased likelihood of exiting the
region of attraction of the closed-loop system. This shows the importance of imposing limits on the bandwidth of all
control loops. Whereas this leads to inversion distortions in the INDI setup, the q-LPV controller can be designed with
this aspect in mind from the onset. Similar considerations apply to stability margins at the plant output.

Finally, some remarks regarding the q-LPV controller should be made. As discussed in Section [[V] the LFT-LPV
synthesis strategy generally leads to a degree of conservativeness in the control design. This does not result in significant
limitations for the affine LPV system in the present case study. However, the impact may become substantial for systems
with more complex scheduling dependencies. This relates not only to performance and robustness, but also to nominal
stability in the case of direct q-LPV controllers. With (I)NDI-based inversion, however, nominal stability is not affected

I This also suggests that the number of states and tunable parameters could be reduced for the presented direct g-LPV design.
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by the synthesis representation. Instead, as discussed in Section it is directly determined by the selection of the CV
and the nature of the virtual control law. Therefore, as the scheduling dependency increases in complexity, (I)NDI-based
control can be expected to become a more effective option.

VI. Conclusions

This paper attempts to shed new light on the performance and robustness capabilities of INDI-based control by
exploiting the concepts of robust g-LPV design. Central to the insights obtained is the duality between the transforming
nature of (I)NDI-based control laws and state transformations in control-oriented q-LPV modeling. Both approaches
were investigated methodologically, leading to a q-LPV modeling framework for (I)NDI-based control laws that
covers a broad range of inversion strategies and scenarios. This framework enables robust analysis and synthesis of
(DNDI-based control laws in an LPV sense and is applicable to any nonlinear dynamic system that falls within the
class of output-nonlinear systems. Its effectiveness was demonstrated in a control design case study for a simulated
nonlinear aeroservoelastic system. Here, both q-LPV and INDI-based controllers were optimized and compared in
terms of robustness and performance over a wide operating range.

In summary, the following conclusions are drawn. While the aforementioned duality shows important parallels,
INDI-based control imposes a particular structure on the controller in a way that deviates from the fundamental robust
design principles as seen in robust (q-LPV) control. This structure may lead to restrictions in terms of attainable
LPV robustness and performance. The presented design case study emphasizes this aspect, where it was shown that a
direct q-LPV controller of the same order outperforms hybrid and sensor-based INDI controllers in terms of achieved
robustness levels. However, the transparency and modularity benefits associated with the (I)NDI architecture can be
important reasons for choosing this class of controllers in practical settings. This also connects to the typical trade-off
between controller capability and complexity. The framework presented in this paper enables the configuration of
(DNDI-based controllers to achieve near-optimal g-LPV robustness levels. As a result, such trade-offs can be made
effectively and systematically.
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A. Additional Derivations for (I)NDI-based q-LPV Modeling with Singular Perturbations
In this Appendix, it is shown how the q-LPV representation from Section can be constructed. To construct
the singular perturbation model, a change of variables is adopted [40]. In particular, setting € = 0 and recognizing that
Waev = 0 and & = 0 in equilibrium allows one to find the isolated real roots of ¢ as:

G, =ucq(z) = —B;' (2) [ka(2) + A21(2)z + A (2)Wey | (64)

Consequently, the change of variable ¥ = ¢ — ¢,. is employed. As a result, Equation [38|can be rewritten as

u=B"()V+y +u(2) (65)
with
. . _ - Olteq(2) |
e =€(p—9,) =—¢-B,'(2) [An(@)Waer + Ko (2)8¢] - e—ng z (66)
Subsequent application of the approximate inversion law from Eq. [38]to the system in Eq. [12]yields:
/4 ki(z) A}, (2) AL, (z) Bi(z) b4
w|= 0 + 0 0 B (z) w
El.p _ au(q(z)k ( ) _ auqu(z) A*l( ) _Eau:;;(Z)A*Z(Z) i Eaug;(Z)Bl (Z) ‘p
B} (2)A2(z) 0 Bi(2)
+ AZZ(Z) Wdev — 0 Kc(z)é{-‘ + 1 14 (67)
By (2)An(2) By'(2) e @ g (z)
At the equilibrium manifold, the following condition holds:
0 ki(2) Aj,(2) A}, (2) Bi(z) z
0 = 0 + 0 0 B>(z) Weq(2)| (68)
0 _ 6“((](Z)k ( ) _ aue(’;lz(z)A*l( ) _e_ﬁuxq(Z)A* (Z) _I_e_ﬁug;(z)Bl(z) 0
Subtraction of the resulting trim map w4 (z) results in:
4 0 A2(z) Bi(z) 4
w =10 An(z) By (z) Wdev
| [0 —eTEEALR) - B (DAn() 14D Bi)| | ¥
0 B;(2)
- 0 Kc(z)é s + I v (69)
B;'(2) —e 2@ pr(z)
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Then, the state transformation procedure is completed as:

z 0 A12(z) Bi(z) 1T =
Waer| = |0 An(z) - 2@ 41 (z) By(z) — 224D B (2) | [Waer
e | [0 -B'@An@) -2 Arx)  —1-e2a®Bi(z) || ¥
0 | B;(2)
| 0 |Ke@ég+|1- 2ea@prn)| v (70)
B;'(2)] —e2ealt) pr(g)

Finally, applying input augmentation and incorporating the inversion error filter dynamics yields the formulation:

z 0 An(z) -Bi(z) 0 Bi(z) z

. Owe MWe Ow,
Waer| |0 An(z) - 2B A1) ~Ba(z) + 2@ By (z) 0 By(z) - 22 By (2) | [Wae
fteg | = |0 et @ 415 (z) ~Heal® gy (z) 0 W@ g (z) Ueg
és 0 0 0 -Ac(2) 0 s

e | |0 -B;'(2)An(z) 1 -B;'(2)Kc(2) -1

B (z) 0

OWeq (2) 1«
- 2l gy By (z)
+| Zeape)y v+ 0 d; (71
0 B.(z)B1(z)
0 0

which is the result from Equation @} Here, the relation ¢ = ¢ + u., has been used to transform back to the original
filtered input state.
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