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Abstract

Predicting functional outcome after intra-arterial treatment (IAT) in acute ischemic stroke (AIS) patients is
an important aspect of treatment decision making and prognostics. Standard methods for functional outcome
prediction after stroke combine baseline clinical (and radiological) parameters.

In this study, we investigated to what extent baseline CTA images can be used for the prediction of functional
outcome and how this relates to standard scoring methods. Furthermore, it was investigated whether combining
baseline CTA images with clinical parameters improved the predictive accuracy compared to outcome prediction
based on clinical parameters.

We proposed two network architectures, a convolutional neural network (CNN) for the processing of image
data and a multilayer perceptron for the processing of clinical (and radiological) parameters. Various training
strategies were applied for the fusion of image and clinical data.

The CNN processing CTA images achieved an average cross-validated area under the curve (AUC) score of
0.67, which was lower than for models processing clinical (and radiological) parameters. The best performing
model combining CTA images and clinical parameters was trained end-to-end and applied weight initialization of
the pre-trained CNN (AUC = 0.78). The DeLong test showed that the combined model performed significantly
better than the model processing clinical parameters (AUC = 0.75). However, the difference is small and might not
be clinically relevant. Compared to scoring methods processing clinical and radiological parameters the combined
model achieved similar performance.
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I. INTRODUCTION

A. Clinical Background

Stroke is worldwide the second leading cause of death and the third leading cause of disability [1]. In 2019
the annual incidence of stroke was around 2 per 1000 in The Netherlands. Half of patients die or remain severely
disabled [2]. A stroke occurs when blood flow is reduced in an artery that supplies blood to the brain, leading
to damage or death of brain cells. Brain damage can be permanent when the circulation is not restored quickly,
and therefore commencing treatment quickly is crucial for reducing the chances of disability and death [3].
Acute ischemic stroke (AIS) covers 80% of strokes in Western countries [4]. This type of stroke is caused by
a blood clot blocking an artery within the brain. There are two treatment options for AIS patients. The first
option is intravenous thrombolysis with tissue plasminogen activator (IV-tPA), which attempts to dissolve the
blood clot by intravenous injection of medication. Up until 2015 this was the only therapy with proven efficiency
in patients with AIS, provided that the treatment commenced within 4.5 hours after stroke onset [5]. However
IV-tPA injection is less effective for the dissolution of blood clots in the proximal arteries than for blood clots in
the distal arteries [6]. A second treatment option is available for occlusions in the proximal arteries, namely intra-
arterial therapy (IAT). With this therapy a catheter is inserted and guided towards the occluded area under X-ray
guidance, subsequently the thrombolytic agents can be delivered locally (thrombolysis) or the clot is removed
mechanically (thrombectomy). A randomized trial by Berkhemer et al. [7] concluded that IAT performed within
6 hours after stroke onset was effective and safe for proximal occlusions. A meta-analysis in 2016 concluded that
IAT thrombectomy led to an increase in functional outcome in a majority of patients, which included different
age groups, varying stroke severity, sex and stroke localization [8]. However, this concerned an average benefit



over a patient group. Treatment benefit is likely to vary for individual patients [9]. Patients with no treatment
benefit are preferably withhold from IAT, because IAT carries a small risk of bleeding or movement of blood
clots to previously unaffected parts of the brain due to insertion of catheters and guidewires. By distinguishing
between patients who do and do not benefit from IAT, personalized stroke care may be improved.

In current practice, the physician relies on experience and several patient specific parameters to decide which
treatment to perform. Predicting functional outcome after treatment from baseline parameters provides support
for treatment decision making and assists physicians with informing patients on their prognosis after treatment.
Functional outcome of stroke patients is generally measured 90 days after treatment with the modified Rankin
Scale (mRS).

Several clinical and radiological parameters serve as predictors for the mRS. Machine learning methods have
been developed to automate functional outcome prediction based on these parameters [10]. A recent study
developed a convolutional neural network for functional outcome prediction based on CT images [11]. Their
promising result raised the question whether baseline images that are routinely acquired when a patient is admitted
in the hospital with stroke symptoms have predicted value and can be used to directly predict functional outcome.
The aim of this study can be divided into two parts. First, we investigated to what extent baseline CTA images
can be used for the prediction of functional outcome after IAT in stroke patients and how this relates to traditional
scoring methods. Secondly, it was investigated whether combining baseline CTA images with clinical parameters
improves the predictive accuracy compared to outcome prediction based on clinical parameters. This combined
approach was compared to standard prediction methods based on both clinical and radiological parameters to
investigate whether the CTA image removes the need of radiological parameters for outcome prediction.

B. Related Work

1) Clinical parameter analysis: The majority of existing work regarding automated functional outcome pre-
diction in AIS patients is based on clinical information only, and investigated machine learning algorithms such
as: logistic regression (LR) [12][13][14][15][16][17][18][19][20], random forest (RF) [12][13][17][18][19][20]
[21][22], support vector machine (SVM) [12][13][18][19][20][21][23], super learner [20] and artificial neural
networks (ANN) [17][19][20][21][23]. Machine learning approaches based on baseline parameters performed
more accurately than single pretreatment scores or clinical judgement alone [17][18]. Venema et al. [15][16]
applied LR for (good) functional outcome prediction with 11 baseline clinical and radiological parameters. Their
decision making tool, MR PREDICTS, was the first to be developed from a recent multicenter cohort within
the Netherlands. The tool had modest discriminative potential, reaching an externally validated Area Under ROC
Curve (AUC) of 0.73 for the prediction of good functional outcome. Studies comparing various machine learning
algorithms for this task found insignificant difference in performance [13][17][18][19][20][21]. A study by Van
Os et al. [20] performed on 1,383 subjects from the Netherlands compared LR, SVM, RF and Super Learner
approaches and found a mean AUC range of 0.77-0.79.

Model performance depended highly on selecting the right parameters, and less on the selected machine
learning algorithm. For example, Heo et al. [17] conducted two different experiments on three machine learning
algorithms with a large cohort of 2604 subjects, one with 38 parameters and the second with 6 parameters used in
a pretreatment scoring system (ASTRAL). ML algorithms did not outperform the ASTRAL scoring system when
using the same parameters, however with the 38 parameters all ML algorithms had a higher performance than
the ASTRAL score. Studies that included non-baseline parameters in their model predicted more accurately. For
example, Lin et al. [21] found a mean AUC range of 0.94-0.95 using 30 day follow up data with no significant
performance difference between RF, SVM and ANN. This information is valuable for prognosis, but it is not
relevant for treatment decision-making [14][20][21].
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TABLE 1: mRS after 90 days prediction methods combining imaging and clinical parameters

Study AUC
image

AUC
clinical

AUC
fused

Training
strategy

Image
modality

Clinical parameters

Bacchi et al.
[31]

0.54 0.61 0.75 End-to-end NCCT Age, gender, time from stroke onset,
NIHSS, blood pressure,blood glucose,
temperature, past history of hyperten-
sion, diabetes mellitus, hypercholes-
terolaemia, or atrialfibrillation

Samak et al.
[33]

0.67 0.70 0.75 End-to-end NCCT Clinical parameters used by Van Os et
al. [19].

Zihni et al. [32] 0.68 0.75 0.76
0.75

End-to-end
Extracted

feature

TOF-
MRA

Age, sex, initial NIHSS, cardiac his-
tory, diabetes, hypercholesterolemia
and thrombolysis treatment

AUC = Area Under the Curve; NIHSS = National Institutes of Health Stroke Scale

2) Image data analysis: Recently, CNN’s have become popular in stroke segmentation and image classification
tasks. Deep learning has successfully been introduced to automate scoring of biomarkers such as ASPECTS and
collateral score, reporting high accuracy [24][25][26]. These methods required expert annotation and are subject to
inter-observer variability. Only a few studies have taken the prediction of functional outcome into consideration
and whether imaging features can serve as clinically relevant prognostic biomarkers. This section elaborates
on state-of-the-art convolutional neural networks for dichotomized functional outcome prediction. Hilbert et al.
[11] reported that in their specific dataset deep learning methods outperformed models using radiological image
biomarkers for acute ischemic stroke outcome prediction in three out of four cross-validation folds (average AUC
of 0.71). Their dataset consisted of Maximum Intensity Projections (MIP) from CTA data in the axial plane of
1301 patients from the MR CLEAN Registry part 1 [27]. A Residual Neural Network (ResNet) was adapted with
Structured Receptive Fields (RFNN), which redefined convolutional kernels as a fixed set of Gaussian derivative
filters.

Nishi et al. [28] designed a multi-output CNN to segment ischemic core lesions and derived high level imaging
features for the prediction of functional outcome. An U-Net design [29] was applied for the segmentation task.
From the deepest convolutional layer of the encoder path high level image features are extracted, followed by a
2 layer neural network for the prediction of functional outcome. The model was trained with diffusion weighted
MRI images of 146 patients. Their method showed moderate performance (AUC = 0.73) and this was significantly
higher than predictions based on a standard neuroimaging biomarker (AUC = 0.64).

3) Imaging and clinical parameters combined: Previous work in the medical domain proved promising results
for combined clinical parameters and image modalities in outcome prediction. For example, performance improved
for the assessment of tumor response in breast cancer patients when imaging and clinical parameters were
combined in a multimodal network [30]. Also in stroke outcome prediction, these approaches have been pursued.
A summary of studies concerning automated functional outcome prediction in AIS patients from baseline image
and clinical parameter data with their performance is provided in Table I.

In 2019 Bacchi et al. [31] conducted a pilot study over 204 patients who received IV-tPA therapy. They merged
a CNN trained on non-contrast enhanced CT images with an Artificial Neural Network (ANN) trained on 11
clinical parameters for the prediction of good functional outcome and trained the entire network from scratch.
The result was compared with single use of the CNN and ANN. Their best performing model was the combined
network, reaching an accuracy and AUC of 0.74 and 0.75 respectively.

Zihni et al. [32] proposed two learning strategies for their combined network: extracted features and end-to-
end. For the processing of 7 clinical parameters a Multilayer Perceptron (MLP) was used with a single fully
connected layer. TOF-MRA data of 316 patients was processed with a 3D CNN consisting of 3 convolutional
blocks. Their best performing model was the end-to-end model, reaching a mean AUC of 0.76 over 5 folds. The
extracted features strategy had an equal performance as the MLP with a mean AUC of 0.75.
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C. Contributions

Image data analysis for functional outcome prediction in stroke thus far yielded a moderate performance.
Reported predictions from image data analysis were relatively poor compared to clinical parameter analysis.
Possibly, the performance of image data analysis could improve to some extent, but for substantial improvement it
might be necessary to include clinical parameters. Combining baseline imaging with clinical information showed
improvement in performance compared to models processing images [31][32]. Combined models performed
similar [32] or better [31][33][34] than clinical parameter analysis. Overall, the effect of combining images with
clinical parameters is small but promising. To the best of my knowledge, no studies combined baseline clinical
parameters and baseline CTA for (dichotomized) functional outcome prediction after IAT in stroke patients.

The contribution of this study is two-fold, we apply a CNN trained on baseline volumetric CTA data from a
large dataset for the prediction of dichotomized functional outcome and investigated how this model relates to
traditional clinical parameter analysis. Second, we apply baseline CTA data and clinical parameters in a combined
model for the outcome prediction in stroke patients, which has not been done for a large dataset and for this image
modality. Different network architectures and training strategies were adopted with the purpose of automating
the process of functional outcome prediction in AIS patients.

The remainder of this report is organized as follows: Section II describes the data used in our experiments
and provides an overview of our proposed networks. Section III presents the experimental design. Section IV
presents the results. Section V provides further discussion, section VI concludes the report.

II. METHOD

In our method we first applied a preprocessing of the imaging data to address the variation in image resolution
and enhance the contrast in brain tissue. Subsequently, the imaging data is processed by a CNN, after which
imaging data is combined with baseline clinicalF parameters processed by a MLP. In the next section we describe
the data used, followed by processing of image data. Finally, we present an overview of our proposed networks.

A. Data

The dataset used in this project was of patients from the MR CLEAN registry 1 and 2 [27]. This registry is an
ongoing, prospective, observational multicenter study at 17 medical centers distributed across The Netherlands,
containing AIS patients treated with IAT registered since March 2014. For each patient the dataset includes CTA
image data acquired before IAT and clinical and radiological parameters, such as: patients demographics, medical
history, and outcome data. Functional outcome is available as the mRS after 90 days.This 7 point scale measures
the degree of disability and dependence in daily live activities of stroke patients. 0 indicates no symptoms and a
score of 6 indicates the patient did not survive. Scores in between are linked to progressing disability, see Table
2. For the dichotomized mRS a good functional outcome corresponds a score between 0-2 an a poor outcome a
score between 3-6.

TABLE 2: The modified Rankin Scale

score description.
0 No symptoms.
1 No significant disability. Able to carry out usual activities

despite some symptoms.
2 Slight disability. Able to look out after own affairs without

assistance, but unable to carry out all previous activities.
3 Moderate disability. Requires some help, but able to walk

unassisted.
4 Moderate severe disability. Unable to attend own bodily needs

without assistance, and unable to walk unassisted
5 Severe disability. Requires constant nursing care and attention,

bedridden, incontinent.
6 Dead.
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B. Data Selection

Data were selected based on image quality, performed procedure, stroke location and availability of the mRS
after 90 days. Images were excluded when (1) scans consisted of less than 50 slices, (2) slice spacing or slice
thickness was >1.5 mm and (3) slice thickness < slice spacing, followed by a manual inspection to remove images
with poor quality and to select one image per patient. The quality during manual inspection was assessed by
brain coverage, visible artefacts, symmetry of the brain (whether a part of the frontal lobe or the occipital lobe
is cropped from the image), contrast and sharpness. Patients with large vessel occlusions are generally eligible
for IAT. Patients treated with IAT and an occlusion in the internal carotid artery, M1 segment or M2 segment
were included, see Figure 1.

Fig. 1: Brain vasculature. [35]

The dataset consisted of 3280 patients, based on our image quality criteria 1569 were excluded. Of these 231
were excluded due to a failed registration, 111 were excluded due to missing mRS scores and 369 were excluded
because they contained occlusion locations other than the ICA, M1 and M2 segment. The flowchart is provided
in Supplementary Data A. Table 3 provides baseline characteristics of patients used in our experiments.

Two different sets of clinical predictors were selected as clinical input. One set adopted 11 clinical predictors
used by Venema et al. [15] as input: age, known diabetes mellitus, systolic blood pressure, National Institutes of
Health Stroke Scale (NIHSS), pre-mRS, glucose, ASPECT, use of IV alteplase, location of occlusion, collateral
score and the estimated time from onset to groin puncture. The second set excluded radiological image biomarkers
from the first set, leaving 9 clinical predictors. Ordinal parameters such as pre-mRS, NIHSS, ASPECT and
collateral score were treated as linear continuous scores. Missing values (less than 2 percent) were imputed with
the mean (see Supplementary Data C), hereafter all clinical features were normalized to [0,1].

C. Image Data Preprocessing

The raw CTA scans were of different slice spacing and axial extent and were acquired with various acquisition
protocols. The main purpose of the preprocessing was to spatially align the images to an atlas, and to adapt the
intensity range. It was assumed that such a preprocessing will be beneficial for the subsequent CNN. Therefore,
the CTA scans were first registered to a reference brain atlas with no abnormalities [36], using rigid and affine
registration with ANTs software [37]. In order to maintain high level brain structures, an additional elastic
transformation was applied to the reference image, and the mask images that were defined in the reference image
space. Intensity values were clipped between -40 and +260 Hounsfield Units and normalized to [0,1]. The skull
was removed by multiplying the baseline CTA images with a brain mask which was available from the brain atlas.
Finally, all occluded hemispheres were flipped to the same lateral side. To preserve spatial context information,
we opted to keep the image data volumetric. The final input size of both hemispheres for the DL models was
80x160x112 pixels (voxel size of 1x1x1 mm). Figure 2 shows an example image after processing.
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Fig. 2: (A) Original image, (B) spatially aligned to the reference scan (C) intensity range range normalized between
-50 + 260 HU (D) brain mask applied (E) occluded hemisphere aligned (F) occluded hemisphere masked with
MCA region.

D. Proposed Networks

We proposed two network architectures, one for the processing of image data and one for the processing of
clinical (and radiological) parameters. Various training strategies were applied for the fusion of image and clinical
data, leading to a total of four different approaches.

1) CNN: Image data were processed using a Siamese Neural Network, which was used for the classification of
collateral score from CTA images. This network consisted of two branches that contained identical subnetworks
and configuration of parameters and weights. The network expected three inputs: a volumetric image of the
occluded hemisphere, a volumetric image of the healthy hemisphere and a mask containing the region of interest.
We opted for a probability density mask of the MCA region. The network is based on voxelwise residual
network (VoxResNet) [38]. Deep residual learning networks currently have state-of-the-art performance on 2D
image recognition tasks and are best known for tackling the optimization degradation problem by approximating
the objective with residual functions [39][40]. VoxResNet extended this concept to volumetric input data. Feature
maps were multiplied with a probability density map of the MCA region followed by a global average pooling
(GAP) layer. The network ended with a fully connected (FC) layer with sigmoid normalization, which output
the predicted probability. See Figure 3. The CNN was used to evaluate the predictive value of baseline CTA
for the prediction of dichotomized outcome. Subsequently, the CNN served as feature extractor for the network
architectures combining imaging and clinical parameters.

Fig. 3: Diagram of the CNN used for the processing of image data.
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2) MLP A: Baseline clinical (and radiological) parameters were processed by MLP. The MLP consisted of a
single fully connected (FC) hidden layer of 10 neurons. The hidden layer allowed the model to make non-linear
relations between input parameters and output. This network was used to process 9 clinical parameters (MLP
A.1) and 9 clinical and 2 radiological parameters (MLP A.2). Both networks served as baseline. MLP A.1 is
used as building block for the combined network architectures.

3) MLP B: The third approach combined image features with clinical parameters. The network required 56
image features and 9 clinical parameters as input. Image features were extracted and frozen from the pre-trained
CNN. Clinical parameters were processed by MLP A.1, followed by concatenation with the pre-trained image
features. The first network (MLP B.1) ended with a fully connected (FC) layer with sigmoid normalization,
which output the predicted probability. The second network (MLP B.2) added one FC layer with 10 neurons after
concatenation, see Figure 4. Adding an extra layer increased the number of weights, i.e. the model complexity.

Fig. 4: Diagram of the MLP used for the processing of image features and clinical parameters.

4) MLP + CNN: The last approach combined baseline CTA images with 9 clinical parameters. Images and
clinical parameters were processed by the CNN and MLP A.1 respectively. Image and clinical features were
concatenated, and fed into two FC layers adopted from MLP B.2. The network is trained end-to-end, which means
the network processed the images and clinical parameters simultaneously. Three training variants were applied
to this network. The first variant applied random weight initialization at the beginning of training (CNN+MLP
1). The second and third variant loaded in weights from previously trained networks. The weights provided a
starting point for the optimization of the model, they were not frozen. Weights of the CNN were applied in the
second variant (CNN + MLP 2). The third variant (CNN + MLP 3) applied the weights of CNN and MLP B.2.

Fig. 5: Diagram of the MLP+CNN used for the processing of images and clinical parameters.
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TABLE 3: Patients characteristics at baseline in MR CLEAN Registry and MR CLEAN Trial

Characteristics MR CLEAN
Registry
N = 1000

MR CLEAN
Registry
mRS 0-2
N = 417

MR CLEAN
Registry
mRS 3-6
N= 583

MR CLEAN
Trial
N = 132

MR CLEAN
Trial
mRS 0-2
N = 42

MR CLEAN
Registry
mRS 3-6
N= 90

Median age (years)
(IQR)

71 (62 – 79) 67 (55 – 74) 75 (66 – 83) 64 (54-76) 59 (48-69) 67 (58-79)

Male (%) 506 (50.6) 233 (55.9) 273 (46.8) 76 (58) 22 (52) 54 (60)
Median NIHSS (IQR) 16 (11 – 19) 14 (9 – 17) 17 (17 – 21) 17 (14-20) 15 (11-19) 18 (15-21)
Pre-stroke mRS (IQR) 0 (0 – 0) 0 (0 – 0) 0 (0 – 2) 0 (0-0) 0 (0-0) 0 (0-1)
Diabetes mellitus (%) 162 (16.2) 40 (9.6) 122 (20.9) 19 (14) 2 (5) 17 (19)
Mean systolic blood
pressure (mmHg) (std)

150 (24.5) 147 (22.6) 152 (25.5) 143 (23.1) 137 (19.9) 146 (24.0)

Mean glucose (std) 7.4 (2.2) 6.9 (1.8) 7.7 (2.5) 7.6 (4.4) 6.6 (1.4) 8.1 (5.2)
IV alteplase (%) 702 (70.2) 310 (74.3) 392 (67.2) 110 (83.3) 38 (91) 72 (80)
Median ASPECT score
(IQR)

9 (8 – 10) 9 (8 – 10) 9 (7 – 10) 9 (7-10) 9 (8-10) 8 (7-10)

Occlusion Location(%)
•ICA
•M1
•M2

235 (23.5)
530 (53.0)
235 (23.5)

64 (15.3)
245 (58.8)
108 (25.9)

171 (29.3)
285 (48.9)
127 (21.8)

0 (0)
107(81.1)
25 (19)

0 (0)
33 (79)
9 (21)

0 (0)
74 (82)
16 (18)

Collateral score(%)
•Absent
•< 50%
•> 50% < 100%
•100%

54 (5.4)
364 (36.4)
393 (39.3)
189 (18.9)

10 (2.4)
124 (29.7)
182 (43.6)
101 (24.2)

44 (7.5)
240(41.2)
211 (36.2)
88 (15.1)

6 (5)
35 (27)
55 (42)
36 (27)

0 (0)
7 (17)
17 (41)
18 (43)

6 (7)
28 (31)
38 (42)
18 (20)

Estimated time from
onset to groin puncture
(minutes) (IQR)

190
(140–254)

173
(134–235)

200
(152–268)

258 (210-
307)

237 (196-
299)

270 (221-
313)

mRS = modified Rankin Scale; IQR = interquartile range; NIHSS = National Institutes of Health Stroke Scale; ASPECT =
Alberta Stroke Program Early CT

E. External Dataset

External data were available from the MRCLEAN Trial [7]. After applying the exclusion criteria listed in II.B
134 patients were included in the dataset. Preprocessing of the external data were performed as described in
section II.b and II.c. Baseline characteristics of patients used as external data are provided in Tabel 3.

III. EXPERIMENTS

A. Implementation

Each network was implemented in Python 3.7.4 and TensorFlow 2.2.0. Experiments were conducted on a
computer installed with a NVIDIA GeForce RTX 2080 GPU. The ADAM was optimizer used to minimize the
Binary Cross Entropy (BCE) loss. The BCE loss is a common choice for binary classification tasks. The loss
function encompasses the performance of the model, a loss of 0 indicates that the model predicts all subjects
correctly. Training lasted for 90 epochs, all training data were iterated once per epoch. A mini-batch size of 1
was set due to the limited GPU memory. See Supplementary Data B for the complete list of hyperparameter
settings.

B. Hyperparameter Optimization

Learning rate (scheduler), number of image features and image data augmentation were tuned on the validation
set of the CNN and applied to the remaining network architectures. Data augmentation was applied on image
data on-the-fly and consisted of random translations (x-direction∈[5,5]; y-direction∈[-15,6]; z-direction ∈[-5,5])
and rotations (∈[15°,15°]). Transformation range was set while keeping the entire ipsilateral MCA region visible
in the bounding box, as well as the MCA region of the contralateral hemisphere not appearing. We applied a
learning rate scheduler with a warm-up of 20 epochs to a learning rate of 0.0002 followed by decay. Warmup
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removed the effect of early overfitting. By decreasing the learning rate in the scheduler we enabled the network
to take smaller steps which might avoid overshooting low areas of the loss landscape. The number of image
features was set at 28.

C. Evaluation Criteria

Model performance was evaluated on the test set using the Area Under Curve (AUC) of the Receiver Operating
Characteristic (ROC) curve. Poor functional outcome was defined as the positive class. We tested whether models
combining imaging and clinical parameters differed significantly from models using clinical (and radiological)
parameters using the DeLong test [41]. Difference was considered statistically significant at a p-value <0.05.

Furthermore, for the networks described in II.d we presented the following results:
• The learning curve of the loss function and AUC.
• ROC-curve.
• Confusion matrix.
• Violin plot.
The learning curves illustrated the training process and kept track of overfitting. The ROC curve, confusion matrix
and violin plot were generated on the test set. The confusion matrix showed the relation between the predicted
label against the actual label. The accuracy, specificity and sensitivity can be derived from the confusion matrix.
The threshold that determined the predicted label is set by the Youden Index. The distribution of the predicted
probability against the dichotomized and categorical class label is visualized as a violin plot.

D. Experimental Setup

Experiments were performed for each network approach and training variation described in section II.d. All
followed the same pipeline. Model evaluation was performed on the test set for 1000 patients through cross-
validation. The data were randomly split into 5 folds, 3 folds for training, one fold for validation and one fold
for testing. All splitting was done in a stratified manner to preserve class balance. The validation set was used
for selecting model weights (weights are saved at the lowest validation loss).

Models trained during cross-validation were evaluated against the external dataset for each network approach
and training variation. At each fold the best performing model is saved. Hence, for each approach and training
variation 5 models were created and tested against the external dataset.

IV. RESULTS
Table 4 summarizes performances for the network approaches and training variations described in II.d. The

highest average cross-validated result was found for the models combining imaging and clinical data trained
end-to-end with weight initialization. For each experiment the learning curves of the loss function and AUC are
provided in Supplementary Data D. Supplementary Data E shows the ROC-curve for each network architecture and
training strategy. Confusion matrices of the predictions on the test sets are depicted in Figure 6 and Supplementary
Data F. Violin plots of the predicted probability of CNN + MLP 3 against the dichotomized and categorical label
are shown in Figure 7. The violin plot showed that the the predicted probability value tends to increase with
increasing labels of the (dichotomized) mRS.

TABLE 4: Cross validation results

Test performance AUC
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

CNN 0.578 0.754 0.657 0.677 0.698 0.673
MLP A.1 0.740 0.777 0.716 0.754 0.741 0.746
MLP A.2 0.752 0.775 0.740 0.774 0.803 0.769
MLP B.1 0.763 0.802 0.717 0.770 0.736 0.758
MLP B.2 0.774 0.814 0.719 0.762 0.755 0.765

MLP + CNN 1 0.728 0.810 0.697 0.740 0.747 0.744
MLP + CNN 2 0.771 0.820 0.740 0.781 0.791 0.781
MLP + CNN 3 0.760 0.820 0.746 0.785 0.783 0.779
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A. CNN

The CNN had an average cross-validated AUC score of 0.66 over the 5 folds on the test set. There was a
strong overfitting behavior found from the learning curves of the loss function.

B. MLP A

MLP A.1 and MLP A.2 achieved an average cross validated AUC score of 0.75 and 0.77 respectively. The
significance test showed that MLP A.2 performed significantly better than MLP A.1 (p-value = 2e-4).

C. MLP B

MLP B.1 achieved an average cross validated AUC score of 0.76. MLP B.2 performed slightly better achieving
an average cross validated AUC of 0.77. Both MLP B.1 and MLP B.2 achieved a higher AUC score than the
MLP that processed clinical parameters, though not statistically significant (p-value = 0.4 and 0.2 respectively).

D. MLP + CNN

MLP + CNN 1 was the only model combining imaging and clinical parameters that achieved a lower averaged
cross validated AUC score than MLP A.1 (AUC = 0.74). The model performed significantly worse than MLP
A.2 (p-value = 0.03).

MLP + CNN 2 achieved the highest average cross validated AUC score (AUC = 0.78). The statistical test
showed that the end-to-end III approach performed significantly better than MLP A.1 (p-value = 2e-4 ). No
significant difference was found with the MLP A.2 (p-value = 0.2).

MLP + CNN 3 achieved an average cross validated AUC of 0.78. The model performed significantly better
than MLP A.1 (p-value = 8e-4 ). No significant difference was found with the MLP A.2 (p-value = 0.2).

Fig. 6: Confusion matrices of the CNN, MLP A.1, MLP A.2 and MLP+CNN 3. Elements of the matrix are
normalized.
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Fig. 7: MLP + CNN 3: Violin plots of (left) the predicted probability related to the dichotomized mRS and (right)
the predicted probability related to the categorical mRS

E. External Dataset

Table 5 summarizes the results of the assessment of the external dataset on the models trained during cross
validation. The average cross-validated AUC was highest for MLP A.2. Except CNN + MLP 1, all combined
networks achieved a higher cross validated AUC than the MLP processing clinical parameters.

TABLE 5: External test set results

Test performance AUC
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

CNN 0.637 0.681 0.634 0.584 0.654 0.638
MLP A.1 0.673 0.698 0.743 0.735 0.736 0.717
MLP A.2 0.724 0.747 0.761 0.753 0.740 0.745
MLP B.1 0.715 0.693 0.740 0.731 0.711 0.718
MLP B.2 0.727 0.735 0.744 0.763 0.728 0.739

MLP + CNN 1 0.654 0.693 0.640 0.654 0.665 0.661
MLP + CNN 2 0.718 0.723 0.738 0.756 0.730 0.733
MLP + CNN 3 0.701 0.744 0.725 0.730 0.707 0.721

V. DISCUSSION

We have shown the potential predictive value of baseline CTA images for the prediction of dichotomized
functional outcome after IAT in stroke patients. On the MR CLEAN Registry, pretrained end-to-end models
combining CTA images with baseline clinical parameters significantly increases AUC compared to the model
processing clinical parameters. Except for the end-to-end model with random weight initialization, all combined
models had a similar AUC as the model combining clinical and radiological parameters.

We first investigated to what extent baseline CTA images can be used for the prediction of dichotomized
functional outcome. To this end, an existing Siamese Neural Network once used for classification of collateral
score was adopted. The confusion matrix demonstrates an accuracy of 0.65, which was lower than accuracies
found for the MLPs and MLP + CNNs. This is in line with the expectations. It was hypothesized that image data
might improve the performance of prediction models based on clinical parameters, rather than providing reliable
functional outcome predictions by itself.
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Secondly, it was investigated whether combining baseline image information with clinical parameters improved
prediction accuracy compared to prediction methods based on clinical (and radiological) parameters. Various
networks and training strategies were assessed.

MLP A.1 and MLP A.2 served as baseline for the combined networks. MLP A.2 added two radiological
biomarkers to the clinical input. The significance test showed that this model had a significant increase in
performance compared to the model using clinical parameters. The accuracy of MLP A.2 was slightly higher
than MLP A.1, achieving a value of 0.72 and 0.70 respectively. The results suggests that the information derived
from images has adds to the predictive value for the dichotomized functional outcome prediction after IAT in
stroke patients.

The models with frozen image features achieved a higher average cross-validated AUC than the model
processing clinical parameters, though not statistically significant. Furthermore, MLP B.2 performed better in
terms of cross-validated AUC and accuracy than MLP B.1. For this reason, the added FC layer of MLP B.2 was
adopted in CNN + MLP models.

MLP + CNN 1 achieved a lower average cross-validated AUC then the models processing clinical (and
radiological) parameters. The network performed significantly worse than MLP A.2. It was hypothesized that
adding weights of previously trained models might improve the performance by guiding the model in a certain
direction in the loss landscape, which was adopted in MLP + CNN 2 and MLP + CNN 3.

The end-to-end models with weight initialization yielded a significantly better average cross-validated AUC
score than the model processing clinical parameters. From the confusion matrices an accuracy of 0.72 and 0.73
was found for MLP + CNN 2 and MLP + CNN 3 respectively.

Following these results we found that combining baseline images with clinical parameters can improve the
performance of models processing clinical parameters for the dichotomized functional outcome prediction of
stroke patients. Though, the difference is small and therefore might not be relevant. Compared to the model
processing clinical and radiological parameters a combined model can achieve similar performance. However, it
might be advantageous to replace radiological parameters with CTA in a model combining imaging and clinical
information as it improves assessment time and removes the inter-observer variability in radiological scoring.

The relation between predicted probability and actual class label was explored visually using a violin plot.
The distribution of predicted probabilities is positively correlated with the dichotomized and categorical labels.
Predicted probability tends to increase with increasing labels of the (dichotomized) mRS.

Results of the CNN were comparable to the study by Hilbert et al. [10]. They selected images from the same
dataset but created MIPs on the volumetric data. Creating MIPs or slicing the images decreases training time
and memory usage. We opted to keep data volumetric to preserve spatial context. This might not be necessary
for functional outcome prediction as results are comparable

Results of the combined imaging and clinical parameter model are in line with recent literature [31][32][33].
They found that adding image data to clinical parameters leads to an increase in AUC compared to models
processing images or clinical parameters for the dichotomized functional outcome prediction in stroke. However,
in these studies different image modalities and clinical parameters were applied. For example, Zihni et al. [32]
applied TOF-MRA image data. In The Netherlands, MRI is generally not the image modality used when patients
with stroke symptoms are hospitalized. Commonly, CT images are generated. Two studies applied non-contrast
CT [31][33]. This was the first study combining baseline CTA images and clinical parameters for the dichotomized
outcome prediction. Furthermore, this study did not only compare the combined model against a model processing
clinical parameters, but compared against a model processing clinical and radiological parameters as well. This
allowed us to investigate to what extent radiological parameters can be replaced by adding the complete image
to clinical parameter models.
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Limitations

Training time was longer for the network variations that processed images. As a consequence, the number
of folds was limited to 5. Furthermore, cross validation was not performed for the optimization of each model.
Instead, hyperparameter settings were tuned on one fold of the CNN and used for remaining networks. Results
between folds might be more stable when cross-validation is performed at each fold for hyperparameter settings.
The external dataset gave insight to how each model performs at a different test set. For external validation each
network and training variation must be trained on the complete MR CLEAN Registry, followed by an evaluation
on the MR CLEAN Trial data.

Recommendations

Future work consists of incorporating categorical functional outcome prediction. We investigated the perfor-
mance of our models on the prediction of dichotomized functional outcome. For dichotomized classification a
score of 3 and 6 both belong to the same class. However, the difference between categorical labels is clinically
very relevant.

Secondly, in this study we combined clinical parameters with baseline CTA. Information (derived) from non-
contrast enhanced CT is not included, adding one channel in the model for non-contrast CT might make the
model more complete.

Third, CTA scans were masked with MCA region probability density map. Hereby occlusions in the ICA are
not visible in the region of interest. It was hypothesized that occlusions in the ICA would be visible in the M2
segment indirectly. However, using the full brain instead of the MCA region provides more information, which
is possibly relevant for outcome prediction.

Furthermore, more insight in the predictions of the automated method can be provided by visualizing relevant
regions in the CTA for the classification. Class Activation Mapping [42] is a suitable technique for this task.

Finally, our model could provide a first step into for further development into a treatment decision making
tool. For this, data is required of patients who did not undergo IAT, of whom very limited data is available. We
suggest to resolve this problem by comparing functional outcome of patients with successful reperfusion with
patients that were not successfully treated, classifying them as treated and not treated with IAT respectively.

VI. CONCLUSION

We investigated to what extent baseline CTA images can be used for the prediction of dichotomized functional
outcome after IAT in stroke patients. The CNN processing CTA images achieved a cross-validated AUC of 0.67,
which was lower than for models processing clinical (and radiological) parameters. Furthermore, it was investi-
gated whether combining baseline image information with clinical parameters improves performance compared
to prediction methods based on clinical parameters. The best performing combined model performed significantly
better than the model processing clinical parameters, achieving an average cross-validated AUC of 0.78 and 0.75
respectively. Performance is similar to traditional scoring methods combining clinical and radiological parameters.
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SUPPLEMENTARY DATA

A. Flowchart of included patients from the MR CLEAN Registry
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B. Imputed clinical and radiological variables of the MR CLEAN Registry

Variables Missing in
selection
sheet

Missing in
total sheet

Average in
selection

Average in
total

Imputed

Age 0 0 - - -
Baseline NIHSS 11 57 15,03 15,4 15
Pre-stroke mRs 21 72 0.68 0.7 1
Diabetes mellitus 6 24 No No No
Baseline systolic
blood pressure
(mmHg)

22 89 149.9 149.7 150

Baseline glucose 99 371 7.41 7.35 7.4
IV alteplase 4 12 Yes Yes Yes
ASPECT score 13 109 8.3 8.3 8
Location of occlu-
sion

0 0 - -

CTA collateral
score

14 207 ⟩50⟨100 ⟩50⟨100 ⟩50⟨100

Estimated time
from onset to
groin puncture

4 15 214.5 213.8 214
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C. Hyperparameter values for network architectures of section II.d.

Hyperparameter Value
Intensity normalization Rescaled 0 to 1 for Hounsfield be-

tween -40 and +260 HU
Data augmentation:
Translation x-direction
Translation y-direction
Translation z-direction
Rotation x-y-z-direction

[-5, 5]
[-15, 6]
[-5,5]
[-15, 15]

Batch size 1
Epochs 90
Siamese features 28
Optimizer Adam
Learning rate 0.0002
Learning rate scheduler Warm-up decay
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D. Learning curves of the loss function and AUC during training.

CNN

MLP A.1

MLP B.1
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MLP B.2

MLP + CNN 1

MLP + CNN 2
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MLP + CNN 3

E. ROC-AUC of the cross-validated test set

CNN and MLP A.1

MLP B.1 and MLP B.2
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MLP + CNN 1 and MLP + CNN 2

MLP + CNN 3
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F. Confusion matrices of MLP B.1, MLP B.2, MLP + CNN 1 and MLP + CNN 2
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