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A B S T R A C T

We consider the context of molecular motors modelled by a diffusion process driven by the
gradient of a weakly periodic potential that depends on an internal degree of freedom. The
switch of the internal state, that can freely be interpreted as a molecular switch, is modelled as
a Markov jump process that depends on the location of the motor. Rescaling space and time,
the limit of the trajectory of the diffusion process homogenises over the periodic potential as
well as over the internal degree of freedom. Around the homogenised limit, we prove the large
deviation principle of trajectories with a method developed by Feng and Kurtz based on the
analysis of an associated Hamilton–Jacobi–Bellman equation with an Hamiltonian that here, as
an innovative fact, depends on both position and momenta.

1. Introduction

In biochemical and biophysical processes occurring in a cell, an important role is played by several classes of active enzymatic
molecules, generally called motor proteins or molecular motors. These motors are protein molecules that convert chemical energy
into mechanical work and motion (see [17–19,33] for more details). In the last decades, such biological phenomena have been
largely investigated and this analysis was partly possible due to the contribution of the analysis of particular Markov processes
called ‘‘switching Markov processes’’ (see for instance [3,4,17,27,34]).

The process that we will consider is such a process. It is a two-component process (𝑋𝑡, 𝐼𝑡) where the first component 𝑋𝑡 is a
drift–diffusion process and the second component 𝐼𝑡 is a jump process on a finite set. In the context of molecular motors, the spatial
component 𝑋𝑡 models the location of the motor, for example on a filament, while 𝐼𝑡 models the molecular configuration. The two
processes together evolve in accordance with the following stochastic differential equation

d𝑋𝑡 = −∇𝜓(𝑋𝑡, 𝐼𝑡)d𝑡 + d𝐵𝑡, (1.1)

P
(

𝐼(𝑡 + 𝛥𝑡) = 𝑗 ∣ 𝐼(𝑡) = 𝑖, 𝑋(𝑡) = 𝑥
)

= 𝑟𝑖𝑗 (𝑥)𝛥𝑡 + (𝛥𝑡2) as 𝛥𝑡→ 0,

with 𝜓 ∈ 𝐶∞(R𝑑 × {1,… , 𝐽}), 𝑟𝑖𝑗 ∈ 𝐶∞(R𝑑 ) and ∇ is the gradient with respect to 𝑥 and 𝐵𝑡 is the Brownian motion.
It is clear that the two processes are linked by their rate functions. This means that 𝐼𝑡 stays in a first discrete state for a random

duration while the diffusion component 𝑋𝑡 evolves following a stochastic differential equation with a particular drift. Then, when
a switch of the configurational component occurs, the potential 𝜓 changes and therefore 𝑋𝑡 diffuses according to a new equation
up to another switch of 𝐼𝑡 (see Fig. 1 for a typical behaviour of this type of processes). For more details about the construction of
such switching hybrid diffusions see [34].
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Fig. 1. A typical evolution of a process (𝑋(𝑡), 𝐼(𝑡)).

To allow more flexibility to separate the local dynamics as caused by the internal switching, and macroscopic effects,
e.g. modelling the presence of energy molecules in the solution, we will work with 𝜓𝜀 and 𝑟𝜀 instead of 𝜓 and 𝑟, and we will
typically assume that {𝜓𝜀, 𝑟𝜀}𝜀 exhibit a separation of scales. The simplest instance of this separation of scale is that

𝜓𝜀(𝑥, 𝑖) = 𝜓1(𝜀𝑥, 𝑖) + 𝜓2(𝑥, 𝑖),

𝑟𝜀(𝑥, 𝑖, 𝑗) = 𝑟1(𝜀𝑥, 𝑖, 𝑗) + 𝑟2(𝑥, 𝑖, 𝑗),

i.e. 𝜓1 and 𝑟1 model the global macroscopic scale while 𝜓2 and 𝑟2 correspond to the local dynamics. We will also assume that
𝜓2 is 1–periodic. Moreover, the most general context that we will consider is such that the sequences of functions 𝜓𝜀 and 𝑟𝜀 are
actually given by two functions 𝜓 ∈ 𝐶∞(R𝑑 × R𝑑 × {1,… , 𝐽}) and 𝑟𝑖𝑗 ∈ 𝐶∞(R𝑑 × R𝑑 ) as

𝜓𝜀(𝑥, 𝑖) = 𝜓(𝜀𝑥, 𝑥, 𝑖),

𝑟𝜀(𝑥, 𝑖, 𝑗) = 𝑟(𝜀𝑥, 𝑥, 𝑖, 𝑗). (1.2)

The process arising from the stochastic differential equation with 𝜓𝜀 and 𝑟𝜀 as drift and rate function will be called (𝑋𝜀
𝑡 , 𝐼

𝜀
𝑡 ). However,

we are interested in the macroscopic motion of the molecule. Therefore, we work with the rescaled process or ‘‘zoomed out’’ process
that we obtain by scaling in space and time by the positive parameter 𝜀 > 0. More precisely, we look at (𝑌 𝜀𝑡 , 𝐼

𝜀
𝑡 ) ∶= (𝜀𝑋𝜀

𝜀−1𝑡
, 𝐼𝜀
𝜀−1𝑡

)
that evolves according the stochastic differential equation

d𝑌 𝜀𝑡 = −∇𝜓
(

𝑌 𝜀𝑡 ,
𝑌 𝜀𝑡
𝜀
, 𝐼𝑡

)

d𝑡 +
√

𝜀 d𝐵𝑡

P
(

𝐼𝜀(𝑡 + 𝛥𝑡) = 𝑗 ∣ 𝐼𝜀(𝑡) = 𝑖, 𝑌 𝜀(𝑡) = 𝑥
)

= 1
𝜀
𝑟𝑖𝑗

(

𝑥, 𝑥
𝜀

)

𝛥𝑡 + (𝛥𝑡2) as 𝛥𝑡→ 0

with 𝜓 and 𝑟𝑖𝑗 given by (1.2), and we are interested in the limit 𝜀 → 0.
Intuitively, looking from far away at the process the periodicity becomes smaller and smaller as 𝜀 decreases and the internal flip

rate diverges. Thus, we expect the periodicity and the internal dynamics to homogenise, effectively obtaining a deterministic limit
𝑋𝑡. The numerical simulation in Fig. 2 confirms our intuition. It shows sample paths of numerical approximations of a particular
switching process (𝑌 𝜀𝑡 , 𝐼

𝜀
𝑡 ) for various 𝜀. The figure suggests that for small 𝜀, the spatial component 𝑌 𝜀𝑡 tends to concentrate around

a limiting path that, in the case of the simulated process, is a path with constant velocity.
The aim of this work is to investigate large deviations around such deterministic limit of this kind of process. Showing a large

deviations principle, we then will be able to characterise the limit path using a Lagrangian rate function. Indeed, we will show in
the main theorem, Theorem 2.8, that there exists a non negative rate function  ∶ CR𝑑 [0,∞) → [0,∞] with which {𝑌 𝜀𝑡 }𝜀>0 satisfies a
path-wise large deviation principle in the sense of Definition 2.5 below. Intuitively, it means that

P (𝑌 𝜀 ≈ 𝑥) ∼ 𝑒−(𝑥)∕𝜀 𝜀 → 0,

with  written in terms of a Lagrangian function. This means that 𝑌 𝜀 has a limit path 𝑥̃ ∈ CR𝑑 and this limit is the unique minimiser
of the rate function . Moreover, for any path 𝑥 ≠ 𝑥̃ such that (𝑥) > 0, the probability that 𝑌 𝜀 is close to 𝑥 is exponentially small in
𝜀−1. In Corollary 2.10, we characterise the minimum of  by finding a representation of 𝜕𝑡𝑥̃ in terms of the drift 𝜓 similar to what
one would expect from an averaging principle.

Our work falls into a long tradition of studying the dynamical large deviations around limiting trajectories starting with [15]
for small noise diffusions, and [25] for two-scale systems. Then, in the last decades it has been used for the study of different
kind of processes (see for instance [13] or [23]). Regarding jump–diffusion, there are very few large deviations results but see
for example [24,29]. More recently, in [26], the authors prove large deviations for a class of switching Markov processes and
apply their result to examples, including the molecular motors model. Regarding this example, our work diverges from [26]
primarily due to two distinctive improvements: the transition from a compact to a non-compact setting and the introduction of
the global macroscopic effects in rates with the two components 𝜓1 and 𝑟1. These two facts complicate the proof of large deviations
principle. Most important, but without going into details, we need to prove the comparison principle for a spatially inhomogeneous
Hamilton–Jacobi–Bellman equation where the two above generalisations introduce non-trivial complications.
2
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Fig. 2. Sample paths of a numerical simulation of the spatial component 𝑌 𝜀𝑡 of a switching process for different values of 𝜀. We chose a drift 𝜓 𝑖
𝜀 equal to the

periodic part 𝜓2 for all 𝑖 ∈ {1,… , 4}. We took 𝜓2(
𝑥
𝜀
, 𝑖) equal to sin(𝑥∕𝜀), cos(𝑥∕𝜀), − sin(𝑥∕𝜀) and −cos(𝑥∕𝜀) for 𝑖 = 1, 2, 3, 4 respectively and a rate equal to 1.

The jump process switches from a value 𝑖 ∈ {1, 2, 3} to the value 𝑖 + 1 and from 4 to 1. In this way, the process starts diffusing around a minimum of sin(𝑥∕𝜀)
(𝑖 = 1). The first horizontal part of the ‘‘stair’’ corresponds to this evolution. Then, a switch of 𝐼𝜀𝑡 takes place, so the value of 𝑖 becomes 𝑖 = 2, and then the
spatial component goes to diffuse around a minimum of cos(𝑥∕𝜀), that is the second horizontal part, until another switch.

Indeed, we prove the large deviations property using a method due to Feng and Kurtz [14] in which a central role is played
by associated Hamilton–Jacobi–Bellmann equations. We will explain in more details the main innovations compared to [26] of our
work in Section 6.

The work is organised as follows. We give some preliminary contents and the statement of the large deviations theorem in
Section 2. In Section 3 we give an overview of the theory behind the method that we use for showing the large deviations result,
proved in Section 4, for the switching process modelling molecular motors. Finally, in Section 5 we are able to extract the main
mathematical structures that we use in the previous section and use them in a large deviations result for a more general class of
Switching Markov processes.

2. General setting and main theorem

In this first section we describe the setting and give some basic notions for the statement of the main theorem. First of all, the
following are frequently used notations.

• 𝐶(𝑈, 𝑉 ) the space of continuous functions from a set 𝑈 ⊆ R𝑑 to a set 𝑉 ⊆ R𝑑 ;
• 𝐶𝑘(𝑈, 𝑉 ), with 𝑘 integer, the space of k times differentiable functions from 𝑈 ⊆ R𝑑 to 𝑉 ⊆ R𝑑 ;
• 𝐶∞(𝑈, 𝑉 ) the space of infinitely differentiable functions from 𝑈 ⊆ R𝑑 to 𝑉 ⊆ R𝑑 ;
• 𝐴𝐶(𝑈, 𝑉 ) the space of absolutely continuous functions from 𝑈 ⊆ R𝑑 to 𝑉 ⊆ R𝑑 ;
• ‖𝑓‖∞ = sup𝑥∈𝐸 |𝑓 (𝑥)|;
• [𝑥]Z𝑑 = {𝑦 ∈ R𝑑 ∶ 𝑥 − 𝑦 ∈ Z𝑑} the equivalence class of 𝑥 with respect to the relation defined by Z𝑑 ;
• (𝑋) is the set of probability measures on a space 𝑋;
• C𝐸 [0,∞) is the space of functions defined on [0,∞) and taking value in a metric space 𝐸.

2.1. Preliminaries

We begin with the definition of the process that we are going to study. It is a two component Markov process (𝑋𝜀
𝑡 , 𝐼

𝜀
𝑡 ) to which

we refer in all the work with ‘‘molecular motors model’’ or ‘‘motor proteins model’’.
3
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(

Definition 2.1 (Molecular Motors). Given an integer 𝐽 , we consider the setting 𝐸 = R𝑑 × {1,… , 𝐽}. For all 𝑖, 𝑗 in {1,… , 𝐽}, let
𝑟𝑖𝑗 ∈ 𝐶∞(R𝑑 × R𝑑 ; [0,∞)) denote nonnegative smooth maps, 𝜓 𝑖 ∈ 𝐶∞(R𝑑 × R𝑑 ) a smooth and ∇𝜓 𝑖 its gradient with respect to 𝑥.
We suppose that 𝜓 𝑖 grows at most linearly in the first component and is periodic in the second one. Finally, given the following
operator

𝐴𝜀𝑓 (𝑥, 𝑖) ∶= −∇𝜓 𝑖(𝜀𝑥, 𝑥) ⋅ ∇𝑥𝑓 (⋅, 𝑖)(𝑥) +
1
2
𝛥𝑥𝑓 (⋅, 𝑖)(𝑥) +

𝐽
∑

𝑗=1
𝑟𝑖𝑗 (𝜀𝑥, 𝑥) [𝑓 (𝑥, 𝑗) − 𝑓 (𝑥, 𝑖)] ,

we define the 𝐸-valued Markov process (𝑋𝜀
𝑡 , 𝐼

𝜀
𝑡 )|𝑡≥0 as the solution to the martingale problem corresponding to 𝐴𝜀. More precisely,

𝑋𝜀
𝑡 , 𝐼

𝜀
𝑡 ) is such that for all 𝑓 ∈ 𝐷(𝐴𝜀),

𝑓 (𝑋𝜀(𝑡), 𝐼𝜀(𝑡)) − 𝑓 (𝑋𝜀(0), 𝐼𝜀(0)) − ∫

𝑡

0
𝐴𝜀𝑓 (𝑋𝜀(𝑠), 𝐼𝜀(𝑠)) 𝑑𝑠

is a martingale.

Remark 2.2. In our case 𝑟𝑖𝑗 is regular enough that the martingale problem associated to 𝐴𝜀 is well posed (see [12,31]).

Remark 2.3. It is straightforward to see that the above defined process solves the stochastic differential Eq. (1.1) given in the
introduction.

We firstly study the above particular model for which we prove the large deviations property. Then, using this model, we lead
to a theorem for a general class of processes called Switching Markov process (see Section 5).

As mentioned in the introduction, we will work with the rescaled process (𝑌 𝜀𝑡 , 𝐼
𝜀
𝑡 ) =

=
(

𝜀𝑋𝜀
𝑡∕𝜀, 𝐼

𝜀
𝑡∕𝜀

)

. Then, by the chain rule, the generator becomes

𝐴𝜀𝑓 (𝑥, 𝑖) = −∇𝜓 𝑖
(

𝑥, 𝑥
𝜀

)

∇𝑥𝑓 (⋅, 𝑖)(𝑥) +
𝜀
2
𝛥𝑥𝑓 (⋅, 𝑖)(𝑥) +

1
𝜀

𝐽
∑

𝑗=1
𝑟𝑖𝑗

(

𝑥, 𝑥
𝜀

)

[𝑓 (𝑥, 𝑗) − 𝑓 (𝑥, 𝑖)]. (2.1)

We will assume in the main theorem that the matrix (𝑅𝑖𝑗 (𝑥))𝑖𝑗 ∶= (sup𝑦∈R𝑑 𝑟𝑖𝑗 (𝑥, 𝑦))𝑖𝑗 is irreducible. Here we give the rigorous
definition.

Definition 2.4. We say that a matrix 𝐴 = (𝐴𝑖𝑗 (𝑥))𝑖𝑗∈{1,…,𝐽},𝑥∈R𝑑 is irreducible if there is no decomposition of {1,… , 𝐽} into two
disjoint sets 1 and 2 such that 𝐴𝑖𝑗 = 0 on R𝑑 whenever 𝑖 ∈ 1 and 𝑗 ∈ 2.

The main goal of this work is to prove that the spatial component 𝑌 𝜀 of the above Markov process verifies the large deviation
principle. Here we give the main definitions which are written down in terms of a general Polish space  but will later on be applied
for e.g.  = R𝑑 or  = 𝐶R𝑑 ([0,∞)).

Definition 2.5. Let {𝑋𝜀}𝜀>0 be a sequence of random variables on a Polish space 𝜒 . Given a function 𝐼 ∶ 𝜒 → [0,∞], we say that

(i) the function 𝐼 is a good rate function if the set {𝑥 ∣ 𝐼(𝑥) ≤ 𝑐} is compact for every 𝑐 ≥ 0.
(ii) the sequence {𝑋𝜀}𝜀>0 satisfies the large deviation principle with good rate function 𝐼 if for every closed set 𝐴 ⊆ 𝜒 , we have

lim sup
𝜀→0

𝜀 logP[𝑋𝜀 ∈ 𝐴] ≤ − inf
𝑥∈𝐴

𝐼(𝑥)

and, for every open set 𝑈 ⊆ 𝜒 ,

lim inf
𝜀→0

𝜀 logP[𝑋𝜀 ∈ 𝑈 ] ≥ − inf
𝑥∈𝑈

𝐼(𝑥).

We recall the definition of exponential tightness and the compact containment condition, typical properties that come out in a
large deviations context.

Definition 2.6 (Exponential Tightness). A sequence of probability measures {𝑃𝜀} on a Polish space 𝜒 is said to be exponentially tight
if for each 𝑎 > 0, there exists a compact set 𝐾𝑎 ⊂ 𝜒 such that

lim sup
𝜀→0

𝜀 log𝑃𝜀(𝐾𝑐
𝑎 ) ≤ −𝑎.

In the next we will consider for the above definitions the space 𝜒 = 𝐶R𝑑 [0,∞).
A sequence {𝑋𝜀} of 𝐸-valued random variables is exponentially tight if the corresponding sequence of distributions is

exponentially tight.

Definition 2.7. We say that the processes (𝑍𝜀(𝑡)) satisfy the exponential compact containment condition if for all 𝑇 > 0 and 𝑎 > 0
there is a compact set 𝐾 = 𝐾(𝑇 , 𝑎) ⊆ 𝐸 such that

lim sup 𝜀 logP
[

𝑍𝜀(𝑡) ∉ 𝐾 for some 𝑡 ∈ [0, 𝑇 ]
]

≤ −𝑎.
4
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o

T

2.2. Statement of the main theorem

Now we state the main theorem in which we prove sufficient conditions for the large deviation property for the spatial component
f the switching process defined in Definition 2.1.

heorem 2.8 (Large Deviation for the ‘‘Molecular Motors Model’’). Let (𝑋𝜀
𝑡 , 𝐼

𝜀
𝑡 ) be the Markov process of Definition 2.1. Suppose that

the matrix 𝑅𝑖𝑗 = (sup𝑦∈R𝑑 𝑟𝑖𝑗 (𝑦))𝑖𝑗 is irreducible. Denote 𝑌 𝜀𝑡 = 𝜀𝑋𝜀
𝑡∕𝜀 the rescaled process. Suppose further that at time zero, the family of

random variables {𝑌 𝜀(0)}𝜀>0 satisfies a large deviation principle in R𝑑 with good rate function 0 ∶ 𝐶R𝑑 [0,∞) → [0,∞]. Then, the spatial
component {𝑌 𝜀𝑡 } satisfies a large deviation principle in 𝐶R𝑑 [0,∞) with good rate function  ∶ 𝐶R𝑑 [0,∞) → [0,∞] given in the integral form

(𝑥) =

{

0(𝑥(0)) + ∫ ∞
0  (𝑥(𝑡), 𝑥̇(𝑡)) 𝑑𝑡 if 𝑥 ∈ 𝐴𝐶([0,∞);R𝑑 ),

∞ else,

with (𝑥, 𝑣) = sup𝑝{𝑝 ⋅ 𝑣 −(𝑥, 𝑝)} the Legendre transform of a Hamiltonian (𝑥, 𝑝) given in variational form by

(𝑥, 𝑝) = sup
𝜇∈(𝐸′)

[

∫𝐸′
𝑉𝑥,𝑝(𝑧) 𝑑𝜇(𝑧) − 𝐼𝑥,𝑝(𝜇)

]

, (2.2)

where 𝐸′ = T𝑑 × {1,… , 𝐽},

𝑉𝑥,𝑝(𝑦, 𝑖) =
1
2
𝑝2 − 𝑝 ⋅ ∇𝑥𝜓 𝑖 (𝑥, 𝑦)

and the map 𝐼𝑥,𝑝 ∶ (𝐸′) → [0,∞] is the Donsker–Varadhan function, i.e.

𝐼𝑥,𝑝(𝜇) = − inf
𝜑 ∫𝐸′

𝑒−𝜑𝐿𝑥,𝑝(𝑒𝜑) 𝑑𝜇,

where the infimum is taken over vectors of functions 𝜑(⋅, 𝑖) ∈ 𝐶2(T𝑑 ), and 𝐿𝑥,𝑝 is the operator defined by

𝐿𝑥,𝑝𝑢(𝑧, 𝑖) =
1
2
𝛥𝑧𝑢(𝑧, 𝑖) + (𝑝 − ∇𝑥𝜓 𝑖(𝑥, 𝑧)) ⋅ ∇𝑧𝑢(𝑧, 𝑖) +

𝐽
∑

𝑗=1
𝑟𝑖𝑗 (𝑥, 𝑧) [𝑢(𝑧, 𝑗) − 𝑢(𝑧, 𝑖)] . (2.3)

Remark 2.9. 𝐸′ captures the periodic behaviour and the internal state. In the homogenisation context described in the introduction,
𝐸′ is exactly what is being homogenised over while 𝐿𝑥,𝑝 describes the dynamics on it.

2.3. Law of large numbers and speed of the limit process

The following corollary characterises the limit process.

Corollary 2.10. Consider the same assumptions of Theorem 2.8 for the Markov process (𝑌 𝜀𝑡 , 𝐼
𝜀
𝑡 ). Then, the spatial component converges

almost surely to the path with velocity given by

𝜕𝑡𝑥 = 𝜕𝑝(𝑥, 0) = −∫𝐸′
∇𝑥𝜓 𝑖(𝑥, 𝑦) 𝑑𝜇∗𝑥(𝑦),

with 𝜇∗𝑥 the unique stationary measure of the operator 𝐿𝑥,0 given in (2.3).

Proof. By Theorem A.1 of [26], the spatial component 𝑌 𝜀𝑡 converges almost surely to the set of minimisers of the rate function.
More precisely,

𝑑(𝑌 𝜀𝑡 , { = 0}) → 0 a.s. as 𝜀→ 0

where { = 0} = {𝑥 ∈ 𝐶R𝑑 [0,∞) ∶ (𝑥) = 0}. We now prove that this set is actually a singleton and then characterise the unique
element.

With this aim, note that by [30, Theorem 23.5], 𝑣 is a minimiser of  if and only if 𝑣 ∈ 𝜕𝑝(𝑥, 0). Moreover, by [16, Theorem
4.4.2],

𝜕𝑝(𝑥, 0) = 𝑐𝑜

{

⋃

𝜇∈(𝐸′)
𝜕
[

∫𝐸′
𝑉𝑥,0 𝑑𝜇 − 𝐼𝑥,0(𝜇)

]

for all 𝜇 s.t.(𝑥, 0) = ∫𝐸′
𝑉𝑥,0 𝑑𝜇 − 𝐼𝑥,0(𝜇)

}

,

where with 𝑐𝑜 we refer to the convex hull of a set and 𝜕
[

∫𝐸′ 𝑉𝑥,0 𝑑𝜇 − 𝐼𝑥,0(𝜇)
]

is the differential of the convex functions ∫𝐸′ 𝑉𝑥,𝑝 𝑑𝜇−
𝐼𝑥,𝑝(𝜇) for 𝑝 = 0.

We know that (𝑥, 0) = 0 and 𝑉𝑥,0(𝑧) = 0 for all 𝑧 ∈ 𝐸′. Then, if 𝜇∗𝑥 is the optimal measure for (𝑥, 0), we have that

0 = (𝑥, 0) = 𝑉𝑥,0(𝑧) 𝑑𝜇∗ − 𝐼𝑥,0(𝜇∗) = 𝐼𝑥,0(𝜇∗).
5
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We can conclude that the optimal 𝜇∗𝑥 is the unique stationary measure of 𝐿𝑥,0 (see Proposition Appendix A.1 in the appendix for
existence and uniqueness of 𝜇∗𝑥). We thus find that 𝜕𝑝(𝑥, 0) =

{

𝜕
𝜕𝑝(𝑥, 𝑝)|𝑝=0

}

and hence (𝑥) = 0 ⟺ 𝜕𝑡𝑥 = 𝜕
𝜕𝑝(𝑥, 0) for almost

all 𝑡 and

𝜕𝑡𝑥 = 𝜕
𝜕𝑝

(𝑥, 0) = ∫𝐸′

𝜕𝑉𝑥,𝑝(𝑧)
𝜕𝑝

|

|

|

|𝑝=0
𝑑𝜇∗𝑥(𝑧)

= −∫𝐸′
∇𝑥𝜓(𝑥, 𝑧) 𝑑𝜇∗𝑥(𝑧). □ □

Remark 2.11. The above corollary confirms the suggestion of Fig. 2 that, when there is no dependence on 𝑥 in the drift, the spatial
component is converging to a path with constant speed. Indeed, for small 𝜀, 𝑌 𝜀𝑡 tends to concentrate around a path with a constant
velocity 𝑣 = 𝜕𝑝(0).

3. Connection with Hamilton–Jacobi equations and strategy of proof

We will now present a brief overview of the technical aspects of the Hamilton–Jacobi approach introduced by [14] to the
path-space large deviations theory for Markov processes. In the next we give an outline of the main steps of this argument.

Feng and Kurtz in [14, Theorem 5.15] used a variation of the projective limit method [8,9] to prove that the large deviations
property can be obtained as a consequence of the large deviations of the finite dimensional distributions and the exponential tightness
of the process. By Bryc’s theorem and the Markov property, large deviations for the finite dimensional distributions follows by the
convergence of the conditional ‘‘cumulant function’’ that forms the semigroup

𝑉𝜀(𝑡)𝑓 (𝑥) = 𝜀 logE
[

𝑒𝑓 (𝑋𝜀(𝑡))∕𝜀|𝑋(0) = 𝑥
]

= 𝜀 log∫𝐸
𝑒𝑓 (𝑦)∕𝜀P𝜀(𝑡, 𝑥, 𝑑𝑦), (3.1)

with P𝜀(𝑡, 𝑥, 𝑑𝑦) the transition probabilities of 𝑋𝜀
𝑡 . Note that 𝑉𝜀(𝑡)𝑓 = 𝜀 log𝑆𝜀(𝑡)𝑒𝑓∕𝜀, where 𝑆𝜀 is the linear semigroup associated to

he generator 𝐴𝜀. Computing 𝑉𝜀 and verifying its convergence is usually hard. In analogy to results for linear semigroups and their
enerators, the convergence of 𝑉𝜀 follows from the convergence of the nonlinear generators 𝐻𝜀. Formally applying the chain rule to
𝑉𝜀(𝑡) in terms of the linear semigroup 𝑆𝜀(𝑡) yields the following definition, that can be put on more rigorous grounds as exhibited
n [14,22].

efinition 3.1 (Nonlinear Generator). Let 𝐴𝜀 the generator of a process 𝑋𝜀
𝑡 . The nonlinear generator of 𝑋𝜀

𝑡 is the map defined in the
domain 𝐷(𝐻𝜀) =

{

𝑓 ∈ 𝐶(𝐸) ∶ 𝑒𝑓 (⋅)∕𝜀 ∈ 𝐷(𝐴𝜀)
}

by

𝐻𝜀𝑓 (𝑥) = 𝜀𝑒−𝑓 (𝑥)∕𝜀𝐴𝜀𝑒
𝑓 (𝑥)∕𝜀. (3.2)

More precisely, the problem comes down to two steps. First one needs to prove the convergence of the generators 𝐻𝜀 → 𝐻
in a suitable sense. Then, one has to show that the limiting operator generates a semigroup. The sufficient conditions are, using
Crandall–Liggett Theorem [6], the range condition and the dissipativity property.

Definition 3.2 (Range Condition). Let 𝐸 be an arbitrary metric space and 𝐻 ∶ 𝐷(𝐻) ⊆ 𝐶𝑏(𝐸) → 𝐶𝑏(𝐸) a nonlinear operator. We say
that 𝐻 satisfies the range condition if

∃𝜆0 > 0 ∶ 𝐷(𝐻) ⊂ (𝐼 − 𝜆𝐻) for all 0 < 𝜆 < 𝜆0.

Definition 3.3 (Dissipative Operator). We say that an operator (𝐻,𝐷(𝐻)) is dissipative if for all 𝜆 > 0,
‖

‖

(𝑓1 − 𝜆𝐻𝑓1) − (𝑓2 − 𝜆𝐻𝑓2)‖‖ ≥ ‖

‖

𝑓1 − 𝑓2‖‖

or all 𝑓1, 𝑓2 ∈ (𝐻).

The range condition corresponds to existence of classical solutions for the equation (1 − 𝜆𝐻)𝑢 = ℎ. Hence, we can conclude that,
n order to prove large deviations, we need the convergence of the nonlinear generators to a dissipative operator 𝐻 such that the
xistence of classical solutions for (1 − 𝜆𝐻)𝑢 = ℎ holds. However, it is well known that the existence of classical solutions is a too
trong condition to make this method work in most cases. As observed by Crandall – Lions in [7], the use of viscosity solutions allows
o overcome this problem. These weak solutions are defined in order to create an extension 𝐻̃ of 𝐻 that automatically satisfies the
ange condition and that is still dissipative. Below the definitions for both single and multi-valued operators.

efinition 3.4 (Sub- and Supersolutions for Single Valued Operators). Let 𝐻 ∶ (𝐻) ⊆ 𝐶(𝐸) → 𝐶(𝐸) be a nonlinear operator. Then
or 𝜆 > 0 and ℎ ∈ 𝐶(𝐸), define viscosity sub- and supersolutions of (1 − 𝜆𝐻)𝑢 = ℎ as follows:

(i) We say that 𝑢 ∶ 𝐸 → R is a viscosity subsolution if it is bounded and upper semicontinuous and, for every 𝑓 ∈ (𝐻), there
exists a sequence 𝑥𝑛 ∈ 𝐸 such that

lim
𝑛↑∞

𝑢(𝑥𝑛) − 𝑓 (𝑥𝑛) = sup
𝑥
𝑢(𝑥) − 𝑓 (𝑥),

lim 𝑢(𝑥 ) − 𝜆𝐻𝑓 (𝑥 ) − ℎ(𝑥 ) ≤ 0.
6
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(ii) We say that 𝑣 ∶ 𝐸 → R is a viscosity supersolution if it is bounded and lower semicontinuous and, for every 𝑓 ∈ (𝐻), there
exists a sequence 𝑥𝑛 ∈ 𝐸 such that

lim
𝑛↑∞

𝑣(𝑥𝑛) − 𝑓 (𝑥𝑛) = inf
𝑥
𝑣(𝑥) − 𝑓 (𝑥),

lim
𝑛↑∞

𝑣(𝑥𝑛) − 𝜆𝐻𝑓 (𝑥𝑛) − ℎ(𝑥𝑛) ≥ 0.

A function 𝑢 ∈ 𝐶(𝐸) is called a viscosity solution of (1 − 𝜆𝐻)𝑢 = ℎ if it is both a viscosity sub- and supersolution.

Definition 3.5 (Sub - and Supersolutions for Multivalued Operators). Let 𝐻 ⊆ 𝐶(𝐸)×𝐶(𝐸×𝐸′) be a multivalued operator with domain
(𝐻) ⊆ 𝐶(𝐸). Then for ℎ ∈ 𝐶(𝐸) and 𝜆 > 0, define viscosity solutions of (1 − 𝜆𝐻)𝑢 = ℎ as follows:

(i) 𝑢 ∶ 𝐸 → R is a viscosity subsolution of (1 − 𝜆𝐻)𝑢 = ℎ if it is bounded and upper semicontinuous and, for all (𝑓, 𝑔) ∈ 𝐻 , there
exists a sequence (𝑥𝑛, 𝑧𝑛) ∈ 𝐸 × 𝐸′ such that

lim
𝑛↑∞

𝑢(𝑥𝑛) − 𝑓 (𝑥𝑛) = sup
𝑥
𝑢(𝑥) − 𝑓 (𝑥),

lim sup
𝑛↑∞

𝑢(𝑥𝑛) − 𝜆𝑔(𝑥𝑛, 𝑧𝑛) − ℎ1(𝑥𝑛) ≤ 0.

(ii) 𝑣 ∶ 𝐸 → R is a viscosity supersolution of (1−𝜆𝐻)𝑢 = ℎ if it is bounded and lower semicontinuous and, for all (𝑓, 𝑔) ∈ 𝐻 , there
exists a sequence (𝑥𝑛, 𝑧𝑛) ∈ 𝐸 × 𝐸′ such that

lim
𝑛↑∞

𝑣(𝑥𝑛) − 𝑓 (𝑥𝑛) = inf
𝑥
𝑣(𝑥) − 𝑓 (𝑥),

lim inf
𝑛↑∞

𝑣(𝑥𝑛) − 𝜆𝑔(𝑥𝑛, 𝑧𝑛) − ℎ2(𝑥𝑛) ≥ 0.

A function 𝑢 ∈ 𝐶(𝐸) is called a viscosity solution of (1 − 𝜆𝐻)𝑢 = ℎ if it is both a viscosity sub- and supersolution.

Remark 3.6. Consider the definition of subsolutions. Suppose that the test function 𝑓 ∈ (𝐻) has compact sublevel sets, then
instead of working with a sequence 𝑥𝑛, there exists 𝑥0 ∈ 𝐸 such that

𝑢(𝑥0) − 𝑓 (𝑥0) = sup
𝑥
𝑢(𝑥) − 𝑓 (𝑥),

𝑢(𝑥0) − 𝜆𝐻𝑓 (𝑥0) − ℎ(𝑥0) ≤ 0.

A similar simplification holds in the case of supersolutions.

In the classical context, the range condition, combined with the dissipativity of the operator can be shown to imply unique
solvability of the equation 𝑢− 𝜆𝐻𝑢 = ℎ. However, for viscosity solutions this argument does not work anymore. The main reason is
that viscosity solutions are in general not in the domain of 𝐻 . In order to address this issue, an option can be to suppose that the
following comparison principle (implying uniqueness) holds.

Definition 3.7 (Comparison Principle). We say that a Hamilton–Jacobi equation (1 − 𝜆𝐻)𝑢 = ℎ satisfies the comparison principle if
for any viscosity subsolution 𝑢 and viscosity supersolution 𝑣, 𝑢 ≤ 𝑣 holds on 𝐸.

For two operators 𝐻†,𝐻‡ ⊆ 𝐶(𝐸) × 𝐶(𝐸 × 𝐸′), we say that the comparison principle holds if for any viscosity subsolution 𝑢 of
(1 − 𝜆𝐻†)𝑢 = ℎ and viscosity supersolution 𝑣 of (1 − 𝜆𝐻‡)𝑢 = ℎ, 𝑢 ≤ 𝑣 holds on 𝐸.

The theory above was made rigorous in [14,22]. We present the key result in our context and notations.

Theorem 3.8 (Adaptation of 7.18 Of [14] to Our Context). Let (𝑋𝜀, 𝐼𝜀) be a Markov process with generator 𝐴𝜀 and nonlinear generator
𝐻𝜀 as in Definition 3.1. Consider the semigroup 𝑉𝜀 defined in (3.1) and suppose the following

(i) ∃𝐻 s.t. 𝐻𝜀 converges to 𝐻 in the sense of Definition 4.2,
(ii) ∀𝜆 > 0, ℎ ∈ 𝐶(𝐸), the comparison principle holds for (1 − 𝜆𝐻)𝑢 = ℎ,
(iii) 𝑋𝜀 is exponentially tight,
(iv) 𝑋𝜀(0) satisfies large deviation principle with rate function 𝐼0.

Then, there exists a unique viscosity solution 𝑅(𝜆)ℎ to (1 − 𝜆𝐻)𝑓 = ℎ and a unique semigroup 𝑉 (𝑡) ∶ 𝐶𝑏(𝐸) → 𝐶𝑏(𝐸) such that

1. lim𝑚→∞ 𝑅( 𝑡𝑚 )
𝑚𝑓 (𝑥) = 𝑉 (𝑡)𝑓 (𝑥) for every 𝑓 ∈ 𝐶𝑏(𝐸), 𝑡 ≥ 0 and every 𝑥 ∈ 𝐸,

2. 𝑉𝜀 converges to 𝑉 in the sense that for any sequence of functions 𝑓𝜀 ∈ 𝐶(𝐸) and 𝑓 ∈ 𝐶(𝐸),

if ‖𝑓𝜀 − 𝑓‖𝐸
𝜀 → 0
←←←←←←←←←←←←←←←←←←←←←←→ 0 𝑡ℎ𝑒𝑛 ‖𝑉𝜀(𝑡)𝑓𝜀 → 𝑉 (𝑡)𝑓‖𝐸

𝜀→ 0
←←←←←←←←←←←←←←←←←←←←←←→ 0.

Moreover, 𝑋𝜀 satisfies the large deviation principle with rate function 𝐼 ∶ C𝐸 [0,∞) → [0,∞] given by

𝐼(𝑥) = 𝐼0(𝑥(0)) + sup
𝑘∈N

sup
(𝑡1 ,…,𝑡𝑘)

𝑘
∑

𝑖=1
𝐼𝑡𝑖−𝑡𝑖−1 (𝑥(𝑡𝑖)|𝑥(𝑡𝑖−1)) (3.3)
7

with 𝐼𝑡(𝑧|𝑦) = sup𝑓∈𝐶(𝐸)[𝑓 (𝑧) − 𝑉 (𝑡)𝑓 (𝑦)] and the supremum above is taken over all finite tuples 𝑡0 = 0 < 𝑡1 < 𝑡2 <⋯ < 𝑡𝑘.
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4. Proof of the main theorem

Using the discussion of the previous section and Theorem 3.8, we can prove Theorem 2.8.

roof of Theorem 2.8. We claim the following five facts:

1. The nonlinear generators 𝐻𝜀𝑓 = 𝜀𝑒−𝑓∕𝜀𝐴𝜀𝑒𝑓∕𝜀 of 𝑌 𝜀𝑡 converge to a multivalued operator 𝐻 ∶=
{

(𝑓,𝐻𝑓,𝜑) ∶ 𝑓 ∈ 𝐶2(R𝑑 ),
𝐻𝑓,𝜑 ∈ 𝐶(R𝑑 × 𝐸′) and 𝜑 ∈ 𝐶2(𝐸′)

}

,
2. there exists 𝜑̃ such that 𝐻𝑓,𝜑̃(𝑥, 𝑧) = 𝐻𝜑̃(𝑥, 𝑝, 𝑧) = (𝑥, 𝑝) for all 𝑧 ∈ 𝐸′ and 𝑝 = ∇𝑓 ,
3. the comparison principle for (1 − 𝜆𝐻)𝑢 = ℎ holds,
4. 𝑌 𝜀 verifies the exponential tightness property,
5. the rate function (3.3) can be represented in the following integral form

(𝑥) = 0(𝑥(0)) + ∫

∞

0
 (𝑥(𝑡), 𝑥̇(𝑡)) 𝑑𝑡

with (𝑥, 𝑣) = sup𝑝∈R𝑑 [𝑝 ⋅ 𝑣 −(𝑥, 𝑝)] is the Legendre transform of (𝑥, 𝑝) in (2.2).

We prove the above claims respectively in Propositions 4.3, (4.2), 4.16, 4.22, 4.25 in the following subsections. Then, once the
above facts are proved, we can apply Theorem 3.8 and the required large deviation property follows. □

4.1. The convergence of generators and an eigenvalue problem

The first step of the proof of large deviations is based on operator convergence. Since the process and its limit do not live in the
same space, we cannot work with the usual definition. In the following, we introduce a new definition of limit for functions and
multivalued operator on different spaces.

Definition 4.1. Let 𝑓𝜀 ∈ 𝐶(R𝑑 × {1,… , 𝐽}) and 𝑓 ∈ 𝐶2(R𝑑 ). We say that 𝐿𝐼𝑀𝑓𝑛 = 𝑓 if

‖𝑓𝜀 − 𝑓◦𝜂𝜀‖R𝑑×{1,…,𝐽} = sup
R𝑑×{1,…,𝐽}

|𝑓𝜀 − 𝑓◦𝜂𝜀| → 0 as 𝜀→ 0,

where 𝜂𝜀 ∶ R𝑑 × {1,… , 𝐽} → R𝑑 is the projection

𝜂𝜀(𝑥, 𝑖) = 𝑥.

Definition 4.2 (Extended Limit of Multivalued Operators). Let 𝐻𝜀 ⊆ 𝐶(R𝑑 × {1,… , 𝐽}). Define 𝑒𝑥 − 𝐿𝐼𝑀𝐻𝜀 as the set

𝑒𝑥 − 𝐿𝐼𝑀𝐻𝜀 =

=
{

(𝑓,𝐻) ∈ 𝐶2(R𝑑 ) × 𝐶(R𝑑 × T𝑑 × {1,… , 𝐽})|∃𝑓𝜀 ∈ 𝐷(𝐻𝜀) ∶ 𝑓 = 𝐿𝐼𝑀𝑓𝜀

and ‖𝐻◦𝜂′𝜀 −𝐻𝜀𝑓𝜀‖R𝑑×{1,…,𝐽} → 0
}

,

where 𝜂′𝜀 ∶ R𝑑 × {1,… , 𝐽} → R𝑑 × T𝑑 × {1,… , 𝐽} is the function 𝜂′𝜀(𝑥, 𝑖) =
(

𝑥,
[

𝑥
𝜀

]

Z𝑛
, 𝑖
)

.

The following basic example gives the idea of the intuition behind the definitions above.
Example: Let 𝐻𝜀𝑓 (𝑥, 𝑖) = ∇𝑓 (𝑥) + 𝜀𝛥𝑓 (𝑥). Then, for every 𝑓 ∈ 𝐶2(R𝑑 ) and 𝜑 ∈ 𝐶2(T𝑑 ), we define

𝑓𝜀(𝑥, 𝑖) = 𝑓 (𝑥) + 𝜀𝜑
(𝑥
𝜀
, 𝑖
)

and 𝐻(𝑥, 𝑦, 𝑖) = 𝛥𝜑𝑖(𝑦).

Then, (𝑓,𝐻) ∈ 𝑒𝑥 − 𝐿𝐼𝑀𝐻𝜀.

Proposition 4.3 (Convergence of Nonlinear Generator). Let 𝐸 = R𝑑 × {1,… , 𝐽} and let (𝑌 𝜀𝑡 , 𝐼
𝜀
𝑡 ) be the rescaled Markov process

with generator 𝐴𝜀 from (2.1) and let 𝐻𝜀 be the nonlinear generators defined in Definition 3.1. Then, the multivalued operator 𝐻 ⊆
𝐶(R𝑑 ) × 𝐶(R𝑑 × T𝑑 × {1,… , 𝐽}) given by

𝐻 ∶=
{

(𝑓,𝐻𝑓,𝜑) ∶ 𝑓 ∈ 𝐶2(R𝑑 ),𝐻𝑓,𝜑 ∈ 𝐶(R𝑑 × 𝐸′) and𝜑 ∈ 𝐶2(𝐸′)
}

,

where the images 𝐻𝑓,𝜑 ∶ R𝑑 × T𝑑 × {1,… , 𝐽} → R are

𝐻𝑓,𝜑(𝑥, 𝑦, 𝑖) ∶= 1
2
𝛥𝑦𝜑

𝑖(𝑦) + 1
2
|

|

|

∇𝑓 (𝑥) + ∇𝑦𝜑𝑖(𝑦)
|

|

|

2
− ∇𝑥𝜓 𝑖(𝑥, 𝑦)(∇𝑓 (𝑥) + ∇𝑦𝜑𝑖(𝑦))

+
𝐽
∑

𝑗=1
𝑟𝑖𝑗 (𝑥, 𝑦)

[

𝑒𝜑(𝑦,𝑗)−𝜑(𝑦,𝑖) − 1
]

,

is such that 𝐻 ⊆ 𝑒𝑥 − 𝐿𝐼𝑀𝐻𝜀. Moreover, for all 𝜑 parametrising the images we have a map 𝐻𝜑 ∶ R𝑑 × R𝑑 × T𝑑 × {1,… , 𝐽} → R such
that for all 𝑓 ∈ (𝐻) and any 𝑥 ∈ R𝑑 , the images 𝐻𝑓,𝜑 of 𝐻 are given by

′ ′ ′ 𝑑
8

𝐻𝑓,𝜑(𝑥, 𝑧 ) = 𝐻𝜑(𝑥,∇𝑓 (𝑥), 𝑧 ), for all 𝑧 ∈ T × {1,… , 𝐽}.
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Proof. We want to prove that 𝐻𝜀 converges to 𝐻 in terms of Definition 4.2. With this aim, note that, by the definitions of 𝐴𝜀 and
𝜀, we have

𝐻𝜀𝑓 (𝑥, 𝑖) =
𝜀
2
𝛥𝑥𝑓

𝑖(𝑥) + 1
2
|

|

∇𝑥𝑓 𝑖(𝑥)||
2 −∇𝜓 𝑖

(

𝑥, 𝑥
𝜀

)

∇𝑥𝑓 𝑖(𝑥)

+
∑

𝑟𝑖𝑗
(

𝑥, 𝑥
𝜀

)

(

𝑒(𝑓 (𝑥,𝑗)−𝑓 (𝑥,𝑖))∕𝜀 − 1
)

.

hoosing functions 𝑓𝜀(𝑥, 𝑖) of the form

𝑓𝜀(𝑥, 𝑖) = 𝑓 (𝑥) + 𝜀𝜑
([𝑥
𝜀

]

Z𝑛
, 𝑖
)

= 𝑓◦𝜂𝜀(𝑥, 𝑖) + 𝜀𝜑
([𝑥
𝜀

]

Z𝑛
, 𝑖
)

,

we obtain,

𝐻𝜀(𝑓𝜀)(𝑥, 𝑖) =
𝜀
2
𝛥𝑓 (𝑥) + 1

2
𝛥𝑦𝜑

𝑖
([𝑥
𝜀

]

Z𝑛

)

+ 1
2
|

|

|

∇𝑓 (𝑥) + ∇𝑦𝜑𝑖
([𝑥
𝜀

]

Z𝑛

)

|

|

|

2

−∇𝜓 𝑖 (𝑥, 𝑥∕𝜀)
(

∇𝑓 (𝑥) + ∇𝑦𝜑𝑖
([𝑥
𝜀

]

Z𝑛

))

+
𝐽
∑

𝑗=1
𝑟𝑖𝑗 (𝑥, 𝑥∕𝜀)

[

𝑒
𝜑
([

𝑥
𝜀

]

Z𝑛
,𝑗
)

−𝜑
([

𝑥
𝜀

]

Z𝑛
,𝑖
)

− 1
]

,

here ∇𝑦 and 𝛥𝑦 denote the gradient and Laplacian with respect to the variable 𝑦 = 𝑥∕𝜀. We can conclude that

‖𝑓◦𝜂𝜀 − 𝑓𝜀‖𝐸 = ‖𝑓 (𝑥) − 𝑓𝜀(𝑥, 𝑖)‖𝐸 = 𝜀‖𝜑‖𝐸 → 0 as 𝜀 → 0,

nd

‖𝐻𝑓,𝜑◦𝜂
′
𝜀 −𝐻𝜀𝑓𝜀‖𝐸 = sup

(𝑥,𝑖)∈𝐸

|

|

|

|

𝐻𝑓,𝜑

(

𝑥,
[𝑥
𝜀

]

Z𝑛
, 𝑖
)

−𝐻𝜀𝑓𝜀(𝑥, 𝑖)
|

|

|

|

= 𝜀
2

sup
(𝑥,𝑖)∈𝐸

| 𝛥𝑓 (𝑥)|
𝜀→0
←←←←←←←←←←←←←←←←←→ 0. □ □

Remark 4.4. Note that for all 𝑓 ∈ 𝐷(𝐻) the image 𝐻𝜑 has the representation

𝐻𝜑(𝑥, 𝑝, 𝑧) = 𝑒−𝜑(𝑧)
[

𝐵𝑥,𝑝 + 𝑉𝑥,𝑝 + 𝑅𝑥
]

𝑒𝜑(𝑧)

with 𝑝 = ∇𝑓 (𝑥) and

(𝐵𝑥,𝑝ℎ)(𝑦, 𝑖) ∶=
1
2
𝛥𝑦ℎ(𝑦, 𝑖) +

(

𝑝 − ∇𝑥𝜓 𝑖(𝑥, 𝑦)
)

⋅ ∇𝑦ℎ(𝑦, 𝑖)

(𝑉𝑥,𝑝ℎ)(𝑦, 𝑖) ∶=
( 1
2
𝑝2 − 𝑝 ⋅ ∇𝑥𝜓 𝑖(𝑥, 𝑦)

)

ℎ(𝑦, 𝑖),

(𝑅𝑥 ℎ)(𝑦, 𝑖) ∶=
𝐽
∑

𝑗=1
𝑟𝑖𝑗 (𝑥, 𝑦) [ℎ(𝑦, 𝑗) − ℎ(𝑦, 𝑖)] .

Proposition 4.5 (Existence of an Eigenvalue). Let 𝐸′ = T𝑑 × {1,… , 𝐽} and let 𝐻𝜑 ∶ R𝑑 × R𝑑 × 𝐸′ → 𝑅 the images of 𝐻 given in
Proposition 4.3. Then, for all 𝑝 ∈ R𝑑 there exists an eigenfunction 𝑔𝑥,𝑝 ∈ 𝐶2(𝐸′ × {1,… , 𝐽}) with 𝑔𝑖𝑥,𝑝 > 0 and an eigenvalue 𝜆𝑥,𝑝 such that

[

𝐵𝑥,𝑝 + 𝑉𝑥,𝑝 + 𝑅𝑥
]

𝑔𝑥,𝑝 = 𝜆𝑥,𝑝𝑔𝑥,𝑝.

Proof. We want to solve the following eigenvalue problem
[

𝐿𝑥,𝑝 + 𝑅𝑥
]

𝑔𝑥,𝑝 = 𝜆𝑥,𝑝𝑔𝑥,𝑝 (4.1)

where 𝐿𝑥,𝑝 is a diagonal matrix with (𝐿𝑥,𝑝)𝑖𝑖 = (𝐵𝑥,𝑝)𝑖 + (𝑉𝑥,𝑝)𝑖 and (𝑅𝑥)𝑖𝑗 = 𝑟𝑖𝑗 for 𝑖 ≠ 𝑗 and (𝑅𝑥)𝑖𝑖 =
∑𝐽
𝑗=1 𝑟𝑖𝑗 .

Guido Sweers showed (see [32]) that there exists 𝛾𝑥,𝑝 and 𝑔𝑥,𝑝 > 0 such that
[

−𝐿𝑥,𝑝 − 𝑅𝑥
]

𝑔𝑥,𝑝 = 𝛾𝑥,𝑝𝑔𝑥,𝑝

when 𝐿𝑥,𝑝 is a diagonal matrix with (𝐿𝑥,𝑝)𝑖𝑖 of the type −𝛥 + 𝑝 ⋅ ∇ + 𝑐. Hence, in our case, the equality (4.1) is verified by taking
𝜆𝑥,𝑝 = −𝛾𝑥,𝑝. □

In the next proposition we prove that the images 𝐻𝜑 depend only on 𝑥 and 𝑝.

Proposition 4.6. Consider the same setting of Proposition 4.5 and let (𝑥, 𝑝) be the constant depending on 𝑝 and 𝑥 given in (2.2). Then,
for all 𝑥, 𝑝 ∈ R𝑑 there exist a function 𝜑𝑥,𝑝 ∈ 𝐶2(𝐸′) such that

𝐻𝜑𝑥,𝑝 (𝑥, 𝑝, 𝑧) = (𝑥, 𝑝) for all 𝑧 ∈ 𝐸′. (4.2)

Proof. By Proposition 4.5, there exists a function 𝑔𝑥,𝑝 and a constant 𝜆𝑥,𝑝 that satisfy the eigenvalue problem for the operator
𝐿𝑥,𝑝 + 𝑅𝑥,𝑝 defined in (4.1). By the variational representation established by Donsker and Varadhan in [10], the eigenvalue is
equal to the constant (𝑥, 𝑝) defined in (2.2). Then, equality (4.2) follows from Remark 4.4 and Proposition 4.5 by choosing
𝜑 = log 𝑔 . □
9

𝑥,𝑝 𝑥,𝑝
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4.2. Regularity of the Hamiltonian

Before proving the comparison principle, we first show that the map 𝑝 ↦ (𝑥, 𝑝), constructed out of the eigenvalue problem in
ropositions 4.5 and 4.6, is convex, coercive and continuous uniformly with respect to 𝑥.

roposition 4.7 (Convexity and Coercivity of ). The map  ∶ (𝑥, 𝑝) ↦ (𝑥, 𝑝) in (2.2) is convex in 𝑝 and coercive in 𝑝 uniformly with
espect to 𝑥. Precisely,

lim
|𝑝|→∞

inf
𝑥∈𝐾

(𝑥, 𝑝) = ∞

or every 𝐾 compact set. Moreover, (𝑥, 0) = 0 for all 𝑥 ∈ R𝑑 .

roof. By Proposition 4.6 the eigenvalue (𝑥, 𝑝) admits the representation

(𝑥, 𝑝) = − sup
𝑔>0

inf
𝑧′∈𝐸′

{

1
𝑔(𝑧′)

[

(−𝐵𝑥,𝑝 − 𝑉𝑥,𝑝 − 𝑅𝑥)𝑔
]

(𝑧′)
}

= inf
𝑔>0

sup
𝑧′∈𝐸′

{

1
𝑔(𝑧′)

[

(𝐵𝑥,𝑝 + 𝑉𝑥,𝑝 + 𝑅𝑥)𝑔
]

(𝑧′)
}

= inf
𝜑

sup
𝑧′∈𝐸′

{

𝑒−𝜑(𝑧
′) [(𝐵𝑥,𝑝 + 𝑉𝑥,𝑝 + 𝑅𝑥)𝑒𝜑

]

(𝑧′)
}

=∶ inf
𝜑

sup
𝑧′∈𝐸′

𝐹 (𝑥, 𝑝, 𝜑)(𝑧′),

where the map 𝐹 is given by

𝐹 (𝑥, 𝑝, 𝜑)(𝑦, 𝑖) = 1
2
𝛥𝜑𝑖(𝑦) + 1

2
|∇𝜑𝑖(𝑦) + 𝑝|2 − ∇𝑥𝜓 𝑖(𝑥, 𝑦)(∇𝜑𝑖(𝑦) + 𝑝)

+
𝐽
∑

𝑗=1
𝑟𝑖𝑗 (𝑥, 𝑦)

[

𝑒𝜑
𝑗 (𝑦)−𝜑𝑖(𝑦) − 1

]

.

Note that 𝐹 is jointly convex in 𝑝 and 𝜑. By Proposition 4.6, for every 𝑥, 𝑝 there exists 𝜑𝑥,𝑝 such that equality holds, i.e. for any
𝑧′ ∈ 𝐸′, we have (𝑥, 𝑝) = 𝐹 (𝑥, 𝑝, 𝜑𝑥,𝑝)(𝑧′). Therefore, we obtain for 𝜉 ∈ [0, 1] and any 𝑝1, 𝑝2 ∈ R𝑑 with corresponding eigenfunctions
𝑒𝜑1 and 𝑒𝜑2 that

(𝑥, 𝜉𝑝1 + (1 − 𝜉)𝑝2) = inf
𝜑

sup
𝐸′
𝐹
(

𝑥, 𝜉𝑝1 + (1 − 𝜉)𝑝2, 𝜑
)

≤ sup
𝐸′
𝐹
(

𝑥, 𝜉𝑝1 + (1 − 𝜉)𝑝2, 𝜉𝜑1 + (1 − 𝜉)𝜑2
)

≤ sup
𝐸′

[

𝜉𝐹 (𝑥, 𝑝1, 𝜑1) + (1 − 𝜉)𝐹 (𝑥, 𝑝2, 𝜑2)
]

≤ 𝜉 sup
𝐸′
𝐹 (𝑥, 𝑝1, 𝜑1) + (1 − 𝜉) sup

𝐸′
𝐹 (𝑥, 𝑝2, 𝜑2)

= 𝜉(𝑥, 𝑝1) + (1 − 𝜉)(𝑥, 𝑝2).

Regarding coercivity of (𝑥, 𝑝), we isolate the 𝑝2 term in 𝑉𝑥,𝑝, to obtain

(𝑥, 𝑝) =
𝑝2

2
+ inf

𝜑
sup
𝐸′

{

𝑒−𝜑
[

𝐵𝑥,𝑝 − 𝑝 ⋅ ∇𝑥𝜓 + 𝑅𝑥
]

𝑒𝜑
}

.

Any 𝜑 ∈ 𝐶2(𝐸′) admits a minimum (𝑦𝑚, 𝑖𝑚) on the compact set 𝐸′, and with the thereby obtained uniform lower bound

𝛤 (𝑥, 𝑝, 𝜑) = sup
𝐸′

{

𝑒−𝜑(𝑧𝑚)
[

𝐵𝑥,𝑝 − 𝑝 ⋅ ∇𝑥𝜓 + 𝑅𝑥
]

𝑒𝜑(𝑧𝑚)
}

≥ 𝑒−𝜑(𝑧𝑚)
[

𝐵𝑥,𝑝 − 𝑝 ⋅ ∇𝑥𝜓 + 𝑅𝑥
]

𝑒𝜑(𝑧𝑚)

= 1
2
𝛥𝑦𝜑(𝑦𝑚, 𝑖𝑚)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
≥ 0

+1
2
|∇𝑦𝜑(𝑦𝑚, 𝑖𝑚)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

= 0

|

2 + (𝑝 − ∇𝑥𝜓 𝑖𝑚 (𝑥, 𝑦𝑚)) ⋅ ∇𝑦𝜑(𝑦𝑚, 𝑖𝑚)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

= 0

+
∑

𝑗≠𝑖
𝑟𝑖𝑗 (𝑥, 𝑦𝑚)

[

𝑒𝜑(𝑦𝑚 ,𝑗)−𝜑(𝑦𝑚 ,𝑖𝑚) − 1
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥ 0

−𝑝 ⋅ ∇𝑥𝜓 𝑖𝑚 (𝑥, 𝑦𝑚) ≥ −𝑝 ⋅ ∇𝑥𝜓 𝑖𝑚 (𝑥, 𝑦𝑚).

Using the lower bound 𝛤 (𝑥, 𝑝, 𝜑) ≥ −𝑝 ⋅ ∇𝑥𝜓 𝑖𝑚 (𝑥, 𝑦𝑚) ≥ inf𝐸′ (−𝑝 ⋅ ∇𝑥𝜓), it follows that, if 𝐾 is a compact set

inf
𝑥∈𝐾

(𝑥, 𝑝) ≥ 𝑝2

2
− sup
𝑥∈𝐾

sup
𝐸′

(𝑝 ⋅ ∇𝑥𝜓 𝑖(𝑥, 𝑦)) ≥
1
4
𝑝2 − sup

𝑥∈𝐾
sup
𝐸′

|∇𝑥𝜓 𝑖(𝑥, 𝑦)|
2 |𝑝|→∞
←←←←←←←←←←←←←←←←←←←←←←←←←←→ ∞.

Regarding (𝑥, 0) = 0, note that 𝛤 (𝑥, 0, 𝜑) ≤ 0 for all 𝑥 and 𝜑. Then we have the first inequality (𝑥, 0) ≥ inf𝜑 𝛤 (𝑥, 0, 𝜑) ≥ 0. For the
pposite inequality we choose the function 𝜑 = (1,… , 1) in the representation of . □

𝑑 𝑑
10

roposition 4.8 (Continuity of ). The map  ∶ (𝑥, 𝑝) ∈ R × R → (𝑥, 𝑝) ∈ R is continuous.
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We will prove the continuity of  by showing that it is lower and upper semicontinuous. For that, we need the following auxiliary
esults. In particular, for the lower semicontinuity we will make use of the 𝛤–convergence in the sense expressed in the following
emma in which we prove that property in a general context. Later, we will use it for  (𝑥, 𝑝, 𝜃) = 𝐼𝑥,𝑝(𝜃).

emma 4.9 (𝛤 -Convergence). Given two sets 𝑈, 𝑉 ⊆ R𝑑 and a constant 𝑀 ≥ 0 we define 𝛩𝑈,𝑉 ,𝑀 as

𝛩𝑈,𝑉 ,𝑀 =
⋃

𝑥∈𝑈,𝑝∈𝑉
{𝜃 ∈ 𝛩| (𝑥, 𝑝, 𝜃) ≤𝑀}.

et  ∶ R𝑑 × R𝑑 × 𝛩 → [0,∞] satisfy the following assumptions:

(i) The map (𝑥, 𝑝, 𝜃) ↦  (𝑥, 𝑝, 𝜃) is lower semi-continuous on R𝑑 × R𝑑 × 𝛩.
(ii) For every 𝑥 and 𝑝 fixed and 𝑀 ≥ 0, there exist 𝑈𝑥 and 𝑈𝑝 open and bounded neighbourhoods and a constant 𝑀 ′ such that

 (𝑦, 𝑞, 𝜃) ≤𝑀 ′ for all 𝑦 ∈ 𝑈𝑥, 𝑞 ∈ 𝑈𝑝 and 𝜃 ∈ 𝛩{𝑥},{𝑝},𝑀 .

(iii) For all compact sets 𝐾1 ⊆ R𝑑 and 𝐾2 ⊆ R𝑑 and each 𝑀 ≥ 0 the collection of functions { (⋅, ⋅, 𝜃)}𝜃∈𝛩𝐾1 ,𝐾2 ,𝑀 is equi-continuous.

Then if 𝑥𝑛 → 𝑥 and 𝑝𝑛 → 𝑝, the functionals 𝑛 defined by

𝑛(𝜃) ∶=  (𝑥𝑛, 𝑝𝑛, 𝜃)

onverge in the 𝛤 -sense to ∞(𝜃) ∶=  (𝑥, 𝑝, 𝜃). That is:

1. If 𝑥𝑛 → 𝑥, 𝑝𝑛 → 𝑝 and 𝜃𝑛 → 𝜃, then lim inf𝑛→∞  (𝑥𝑛, 𝑝𝑛, 𝜃𝑛) ≥  (𝑥, 𝑝, 𝜃),
2. For 𝑥𝑛 → 𝑥 and 𝑝𝑛 → 𝑝 and all 𝜃 ∈ 𝛩 there are controls 𝜃𝑛 ∈ 𝛩 such that 𝜃𝑛 → 𝜃 and lim sup𝑛→∞  (𝑥𝑛, 𝑝𝑛, 𝜃𝑛) ≤  (𝑥, 𝑝, 𝜃).

roof. Let 𝑥𝑛 → 𝑥 and 𝑝𝑛 → 𝑝 in R𝑑 . If 𝜃𝑛 → 𝜃, then by lower semicontinuity (i),

lim inf
𝑛→∞

 (𝑥𝑛, 𝑝𝑛, 𝜃𝑛) ≥  (𝑥, 𝑝, 𝜃).

or the lim-sup bound, let 𝜃 ∈ 𝛩. If  (𝑥, 𝑝, 𝜃) = ∞, there is nothing to prove. Thus suppose that  (𝑥, 𝑝, 𝜃) is finite, i.e., 𝜃 ∈ 𝛩{𝑥},{𝑝},𝑀
or some 𝑀 . Then, by (ii), there exist a bounded neighbourhood 𝑈𝑥 of 𝑥, a bounded neighbourhood 𝑈𝑝 of 𝑝 and a constant 𝑀 ′ such
hat for any 𝑦 ∈ 𝑈𝑥 and 𝑞 ∈ 𝑈𝑝,

 (𝑦, 𝑞, 𝜃) ≤𝑀 ′.

ince 𝑥𝑛 → 𝑥 and 𝑝𝑛 → 𝑝, the sequences 𝑥𝑛 and 𝑝𝑛 are, for 𝑛 large, contained in 𝑈𝑥 and 𝑈𝑝, respectively. Taking the constant
equence 𝜃𝑛 ∶= 𝜃, we thus get that  (𝑥𝑛, 𝑝𝑛, 𝜃𝑛) ≤ 𝑀 ′ for all 𝑛 large enough. By (iii), the family of functions { (⋅, ⋅, 𝜃)}𝜃∈𝛩𝑈̄𝑥,𝑈̄𝑝,𝑀′ is
qui-continuous, and hence

lim
𝑛→∞

| (𝑥𝑛, 𝑝𝑛, 𝜃𝑛) −  (𝑥, 𝑝, 𝜃)| ≤ 0,

nd the lim-sup bound follows. □

We can now prove that the function 𝐼𝑥,𝑝 in (2.2) is 𝛤 -convergent.

roposition 4.10 (𝛤 -Convergence of 𝐼𝑥,𝑝). Let 𝐼𝑥,𝑝 ∶ 𝛩 → [0,∞] the function defined in (2.2). If 𝑥𝑛 → 𝑥 and 𝑝𝑛 → 𝑝, the functionals
𝑛(𝜃) ∶= 𝐼𝑥𝑛 ,𝑝𝑛 (𝜃) converge in the 𝛤 -sense to 𝐼∞(𝜃) ∶= 𝐼𝑥,𝑝(𝜃).

roof. Using Lemma 4.9, we only need to prove that 𝐼𝑥,𝑝 verifies the assumptions.
Assumption (i). For any fixed function 𝑢 ∈ (𝐿𝑥,𝑝) such that 𝑢 > 0, the function (𝐿𝑥,𝑝𝑢∕𝑢) is continuous. Thus, for any such fixed

> 0 it follows that

(𝑥, 𝑝, 𝜃) ↦ ∫𝐸′

𝐿𝑥,𝑝𝑢
𝑢

𝑑𝜃

is continuous on R𝑑 × R𝑑 × 𝛩. As a consequence 𝐼(𝑥, 𝑝, 𝜃) is lower semicontinuous as the supremum over continuous functions.
Assumption (ii). Fix 𝑥, 𝑝 and 𝑀 ≥ 0. Let 𝜃 ∈ 𝛩𝑥,𝑝,𝑀 . Then, 𝐼𝑥,𝑝(𝜃) = 𝐼(𝑥, 𝑝, 𝜃) ≤ 𝑀 . It follows from [28, Theorem 3] that

he density 𝑑𝜃
𝑑𝑧 exists. Moreover, by the same theorem, for all 𝑦 and 𝑞 there exist constants 𝑐1(𝑦, 𝑞), 𝑐2(𝑦, 𝑞) positive, depending

ontinuously on 𝑦 and 𝑞, but not on 𝜃, such that

𝐼𝑦,𝑞(𝜃) ≤ 𝑐1(𝑦, 𝑞)∫𝐸′
|∇𝑔𝜃|

2 𝑑𝑧 + 𝑐2(𝑦, 𝑞),

here 𝑔𝜃 = (𝑑𝜃∕𝑑𝑧)1∕2 is the square root of the Radon–Nykodym derivative. As the dependence is continuous in 𝑦 and 𝑞, we can
ind two open neighbourhoods, 𝑈 ⊆ R𝑑 of 𝑥 and 𝑉 ⊆ R𝑑 of 𝑝, such that there exist constants 𝑐1, 𝑐2 positive, that do not depend on
, such that for any 𝑦 ∈ 𝑈 and 𝑞 ∈ 𝑉 :

𝐼𝑦,𝑞(𝜃) ≤ 𝑐1 |∇𝑔𝜃|
2 𝑑𝑧 + 𝑐2 ∶=𝑀 ′,
11

∫𝐸′
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obtaining then (ii).
Assumption (iii). By the continuity of 𝑟𝑖𝑗 and 𝜓 , assumption (iii) follows from Theorem 4 of [28]. □

The following technical lemma will give us the upper semi-continuity of .

emma 4.11 (Lemma 17.30 in [1]). Let  and  be two Polish spaces. Let 𝜙 ∶  → (), where () is the space of non-empty compact
ubsets of  . Suppose that 𝜙 is upper hemi-continuous, that is if 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦 and 𝑦𝑛 ∈ 𝜙(𝑥𝑛), then 𝑦 ∈ 𝜙(𝑥). Let 𝑓 ∶ Graph(𝜙) → R
e upper semi-continuous. Then the map 𝑚(𝑥) = sup𝑦∈𝜙(𝑥) 𝑓 (𝑥, 𝑦) is upper semi-continuous.

We can finally prove the continuity of (𝑥, 𝑝).

roof of Proposition 4.8. We have already showed that 𝐼𝑥,𝑝(𝜇) is lower semicontinuous and, since 𝑉𝑝(𝑥, 𝑖) is continuous and
ounded, ∫𝐸′ 𝑉𝑥,𝑝 𝑑𝜇 is continuous. Then, 𝑓 (𝑥, 𝑝, 𝜇) ∶= ∫𝐸′ 𝑉𝑥,𝑝 𝑑𝜇 − 𝐼𝑥,𝑝(𝜇) is upper semi-continuous.

Let 𝑥, 𝑝 ∈ R𝑑 . We know, by Proposition Appendix A.1 in the appendix, that there exists a unique stationary measure 𝜃0𝑥,𝑝 such
hat for all 𝑔 ∈ 𝐷(𝐿𝑥,𝑝),

∫𝐸′
𝐿𝑥,𝑝𝑔(𝑧, 𝑖)𝑑𝜃0𝑥,𝑝 = 0. (4.3)

Let 𝐿𝜆𝑥,𝑝 = 𝜆(𝜆 − 𝐿𝑥,𝑝)−1𝐿𝑥,𝑝 the Hille–Yosida approximation of 𝐿𝑥,𝑝. Then we have

− ∫𝐸′

𝐿𝑥,𝑝𝑢
𝑢

𝑑𝜃0𝑥,𝑝 = −∫𝐸′

𝐿𝜆𝑥,𝑝𝑢

𝑢
𝑑𝜃0𝑥,𝑝 + ∫𝐸′

(

𝐿𝜆𝑥,𝑝 − 𝐿𝑥,𝑝
)

𝑢

𝑢
𝑑𝜃0𝑥,𝑝

≤ −∫𝐸′

𝐿𝜆𝑥,𝑝𝑢

𝑢
𝑑𝜃0𝑥,𝑝 +

1
inf𝐸′ 𝑢

‖(𝐿𝜆𝑥,𝑝 − 𝐿𝑥,𝑝)𝑢‖𝐸′

≤ −∫𝐸′
𝐿𝜆𝑥,𝑝 log 𝑢 𝑑𝜃

0
𝑥,𝑝 + 𝑜(1).

Sending 𝜆 → 0 and using (4.3) we have that 𝐼𝑥,𝑝(𝜃0𝑥,𝑝) = 0. Then, (𝑥, 𝑝) ≥ ∫𝐸′ 𝑉𝑥,𝑝𝑑𝜃0𝑥,𝑝. Thus, it suffices to restrict the supremum
over 𝜃 ∈ 𝜙(𝑥, 𝑝) where

𝜙(𝑥, 𝑝) ∶=
{

𝜃 ∈ (𝐸′) | 𝐼𝑥,𝑝(𝜃) ≤ 2‖𝛱(𝑥, 𝑝, ⋅)‖(𝐸′)
}

,

where ‖⋅‖(𝐸′) denotes the supremum norm on (𝐸′) and we called for simplicity 𝛱(𝑥, 𝑝, 𝜃) = ∫𝐸′ 𝑉𝑥,𝑝𝑑𝜃.
Note that ‖𝛱(𝑥, 𝑝, 𝜃)‖(𝐸′) <∞ by definition of 𝑉𝑥,𝑝. It follows that

(𝑥, 𝑝) = sup
𝜃∈𝜙(𝑥,𝑝)

[

∫𝐸′
𝑉𝑥,𝑝 𝑑𝜇 − 𝐼𝑥,𝑝(𝜇)

]

.

𝜙(𝑥, 𝑝) is non-empty as 𝜃0𝑥,𝑝 ∈ 𝜙(𝑥, 𝑝) and it is compact because any closed subset of (𝐸′) is compact. We are left to show that 𝜙 is
upper hemi-continuous. Let (𝑥𝑛, 𝑝𝑛, 𝜃𝑛) → (𝑥, 𝑝, 𝜃) with 𝜃𝑛 ∈ 𝜙(𝑥𝑛, 𝑝𝑛). We establish that 𝜃 ∈ 𝜙(𝑥, 𝑝). By the lower semi-continuity of 𝐼
and the definition of 𝜙 we find

𝐼𝑥,𝑝(𝜃) ≤ lim inf
𝑛

𝐼𝑥𝑛 ,𝑝𝑛 (𝜃𝑛) ≤ lim inf
𝑛

2‖𝛱(𝑥𝑛, 𝑝𝑛, ⋅)‖(𝐸′) = 2‖𝛱(𝑥, 𝑝, ⋅)‖(𝐸′)

which implies indeed that 𝜃 ∈ 𝜙(𝑥, 𝑝). Thus, upper semi-continuity follows by an application of Lemma 4.11.
We proceed with proving lower semi-continuity of . Suppose that (𝑥𝑛, 𝑝𝑛) → (𝑥, 𝑝), we prove that lim inf𝑛(𝑥𝑛, 𝑝𝑛) ≥ (𝑥, 𝑝). Let

𝜃 be the measure such that (𝑥, 𝑝) = 𝛱(𝑥, 𝑝, 𝜃) − 𝐼𝑥,𝑝(𝜃). By Proposition 4.10, there are 𝜃𝑛 such that 𝜃𝑛 → 𝜃 and lim sup𝑛 𝐼𝑥𝑛 ,𝑝𝑛 (𝜃𝑛) ≤
𝐼𝑥,𝑝(𝜃). Moreover, 𝛱(𝑥𝑛, 𝑝𝑛, 𝜃𝑛) converges to 𝛱(𝑥, 𝑝, 𝜃) by continuity. Therefore,

lim inf
𝑛→∞

(𝑥𝑛, 𝑝𝑛) ≥ lim inf
𝑛→∞

[

𝛱(𝑥𝑛, 𝑝𝑛, 𝜃𝑛) − 𝐼𝑥𝑛 ,𝑝𝑛 (𝜃𝑛)
]

≥ lim inf
𝑛→∞

𝛱(𝑥𝑛, 𝑝𝑛, 𝜃𝑛) − lim sup
𝑛→∞

𝐼𝑥𝑛 ,𝑝𝑛 (𝜃𝑛)

≥ 𝛱(𝑥, 𝑝, 𝜃) − 𝐼𝑥,𝑝(𝜃) = (𝑥, 𝑝),

establishing that  is lower semi-continuous. □

4.3. Comparison principle

In this section we prove the comparison principle for the Hamilton–Jacobi equation in terms of 𝐻 by relating it to a set of
Hamilton–Jacobi equations constructed from  (Fig. 3). We introduce the operators 𝐻†,𝐻‡ and 𝐻1,𝐻2. In both cases, the new
Hamiltonians will serve as natural upper and lower bounds for 𝐇𝑓 (𝑥) = (𝑥,∇𝑓 (𝑥)) and 𝐻 respectively, where  and 𝐻 are the
perators introduced in Propositions 4.6 and 4.3. These new Hamiltonians are defined in terms of a containment function 𝛶 , which
llows us to restrict our analysis to compact sets. Here we give the rigorous definition.

efinition 4.12 (Containment Function). A function 𝛶 ∶ R𝑑 → [0,∞) is a containment function for 𝑉𝑥,𝑝 in (2.2), if 𝛶 ∈ 𝐶1(R𝑑 ) and
12

t is such that
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Fig. 3. An arrow connecting an operator 𝐴 with operator 𝐵 with subscript ‘sub’ means that viscosity subsolutions of (1−𝜆𝐴)𝑓 = ℎ are also viscosity subsolutions
of (1 − 𝜆𝐵)𝑓 = ℎ. Similarly for arrows with a subscript ‘super’. The box around the operators 𝐻† and 𝐻‡ indicates that the comparison principle holds for
subsolutions of (1 − 𝜆𝐻†)𝑓 = ℎ and supersolutions of (1 − 𝜆𝐻‡)𝑓 = ℎ.

• 𝛶 has compact sub-level sets, i.e. for every 𝑐 ≥ 0 the set {𝑥|𝛶 (𝑥) ≤ 𝑐} is compact ;
• sup𝑥∈R𝑑 ,𝑧∈𝐸′ 𝑉𝑥,∇𝛶 (𝑥)(𝑧) <∞.

Lemma 4.13. The function 𝛶 (𝑥) = 1
2 log

(

1 + |𝑥|2
)

is a containment function for 𝑉𝑥,𝑝.

Proof. Firstly note that 𝛶 has compact sub-level sets. Regarding the second property, by the definition of 𝑉𝑥,𝑝, we have for every
𝑥 ∈ R𝑑 and 𝑧 = (𝑦, 𝑖) ∈ T𝑑 × {1,… , 𝐽},

𝑉𝑥,∇𝛶 (𝑥)(𝑦, 𝑖) =
𝑥2

2(1 + |𝑥|2)2
− ∇𝑥𝜓 𝑖(𝑥, 𝑦)

𝑥
1 + |𝑥|2

.

Recalling that 𝜓 grows at most linearly in 𝑥, we can conclude that sup𝑥,𝑧 𝑉𝑥,∇𝛶 (𝑧) <∞. □

Using the above lemma we are now able to define the auxiliary operators in terms of 𝛶 . In the following we will denote by
𝐶∞
𝑙 (𝐸) the set of smooth functions on 𝐸 that have a lower bound and by 𝐶∞

𝑢 (𝐸) the set of smooth functions on 𝐸 that have an
upper bound.

Definition 4.14. Fix 𝜂 ∈ (0, 1) and given 𝛶 (𝑥) = 1
2 log

(

1 + |𝑥|2
)

, 𝐶𝛶 ∶= sup𝑥,𝑧 𝑉𝑥,∇𝛶 (𝑥)(𝑧) and 𝐇𝑓 (𝑥) = (𝑥,∇𝑓 (𝑥)), we define

• For 𝑓 ∈ 𝐶∞
𝑙 (𝐸),

𝑓 𝜂† ∶= (1 − 𝜂)𝑓 + 𝜂𝛶 ,

𝐻𝜂
†,𝑓 (𝑥) ∶= (1 − 𝜂)𝐇𝑓 (𝑥) + 𝜂𝐶𝛶 ,

and set

𝐻† ∶=
{

(𝑓 𝜂† ,𝐻
𝜂
†,𝑓 ) | 𝑓 ∈ 𝐶∞

𝑙 (𝐸), 𝜂 ∈ (0, 1)
}

.

• For 𝑓 ∈ 𝐶∞
𝑢 (𝐸),

𝑓 𝜂‡ ∶= (1 + 𝜂)𝑓 − 𝜂𝛶 ,

𝐻𝜂
‡,𝑓 (𝑥) ∶= (1 + 𝜂)𝐇𝑓 (𝑥) − 𝜂𝐶𝛶 ,

and set

𝐻‡ ∶=
{

(𝑓 𝜂‡ ,𝐻
𝜂
‡,𝑓 ) | 𝑓 ∈ 𝐶∞

𝑢 (𝐸), 𝜂 ∈ (0, 1)
}

.

Definition 4.15. Fix 𝜂 ∈ (0, 1) and given 𝛶 (𝑥) = 1
2 log

(

1 + |𝑥|2
)

, 𝐶𝛶 ∶= sup𝑥,𝑧 𝑉𝑥,∇𝛶 (𝑥)(𝑧) and 𝐇𝑓 (𝑥) = (𝑥,∇𝑓 (𝑥)), we define

• For 𝑓 ∈ 𝐶∞
𝑙 (𝐸), 𝜑 ∈ 𝐶2(𝐸′), 𝜂 ∈ (0, 1) set

𝑓 𝜂1 ∶= (1 − 𝜂)𝑓 + 𝜂𝛶 ,

𝐻𝜂
1,𝑓 ,𝜑(𝑥, 𝑧) ∶= (1 − 𝜂)𝐻𝑓,𝜑(𝑥, 𝑧) + 𝜂𝐶𝛶 ,

and set

𝐻1 ∶=
{

(𝑓 𝜂1 ,𝐻
𝜂
1,𝑓 ,𝜑) | 𝑓 ∈ 𝐶∞

𝑙 (𝐸), 𝜑 ∈ 𝐶2(𝐸′), 𝜂 ∈ (0, 1)
}

.

• For 𝑓 ∈ 𝐶∞
𝑢 (𝐸), 𝜑 ∈ 𝐶2(𝐸′), 𝜂 ∈ (0, 1) set

𝑓 𝜂 ∶= (1 + 𝜂)𝑓 − 𝜂𝛶 ,
13

2



Stochastic Processes and their Applications 170 (2024) 104301S. Della Corte and R.C. Kraaij

T

a

a

𝐻𝜂
2,𝑓 ,𝜑(𝑥, 𝑧) ∶= (1 + 𝜂)𝐻𝑓,𝜑(𝑥, 𝑧) − 𝜂𝐶𝛶 ,

and set

𝐻2 ∶=
{

(𝑓 𝜂2 ,𝐻
𝜂
2,𝑓 ,𝜑) | 𝑓 ∈ 𝐶∞

𝑢 (𝐸), 𝜑 ∈ 𝐶2(𝐸′), 𝜂 ∈ (0, 1)
}

.

We now prove the comparison principle for 𝑓 − 𝜆𝐻𝑓 = ℎ based on the results summarised in Fig. 3.

Theorem 4.16 (Comparison Principle). Let ℎ ∈ 𝐶𝑏(𝐸) and 𝜆 > 0. Let 𝑢 and 𝑣 be, respectively, any subsolution and any supersolution to
(1 − 𝜆𝐻)𝑓 = ℎ. Then we have that

sup
𝑥
𝑢(𝑥) − 𝑣(𝑥) ≤ 0.

Proof. Fix ℎ ∈ 𝐶𝑏(𝐸) and 𝜆 > 0. Let 𝑢 be a viscosity subsolution and 𝑣 be a viscosity supersolution to (1 − 𝜆𝐻)𝑓 = ℎ. By Fig. 3, the
function 𝑢 is a viscosity subsolution to (1−𝜆𝐻†)𝑓 = ℎ and 𝑣 is a viscosity supersolution to (1−𝜆𝐻‡)𝑓 = ℎ. Hence by the comparison
principle for 𝐻†,𝐻† established in Theorem 4.17 below, sup𝑥 𝑢(𝑥) − 𝑣(𝑥) ≤ 0, which finishes the proof. □

The rest of this subsection is devoted to establishing Fig. 3. More precisely, we establish Fig. 3 in results 4.17, 4.18, 4.19 and
4.24.

The next theorem contains the comparison principle for 𝐻† and 𝐻‡. The proof follows standard ideas that can be found for
instance in [2,5]. In order to be able to use both the subsolution and supersolution properties in the estimate of sup𝑥 𝑢(𝑥) − 𝑣(𝑥), we
use the following strategy based on the introduction of double variables.

1. First of all, note that the supremum over 𝑥 of 𝑢(𝑥) − 𝑣(𝑥) can be replaced, sending 𝜀→ 0, with the supremum over 𝑥 and 𝑦 of
the double variables function 𝑢(𝑥) − 𝑣(𝑦) − (2𝜀)−1(𝑥 − 𝑦)2

2. Once the supremum (x,y) is found, we are able to use the sub-super solution properties in the following way:

• fixing 𝑦 and optimising over 𝑥, it can be used in the application of the subsolution property of 𝑢
• fixing 𝑥 and optimising over 𝑦, it can be used in the application of the supersolution property of 𝑣.

Theorem 4.17. Let ℎ ∈ 𝐶𝑏(𝐸) and 𝜆 > 0. Let 𝑢 be any subsolution to (1 − 𝜆𝐻†)𝑓 = ℎ and let 𝑣 be any supersolution to (1 − 𝜆𝐻‡)𝑓 = ℎ.
Then we have that

sup
𝑥
𝑢(𝑥) − 𝑣(𝑥) ≤ 0.

Proof. Following the above steps we define the double variables function

𝛷𝜀,𝛽 (𝑥, 𝑦) =
𝑢(𝑥)
1 − 𝛽

−
𝑣(𝑦)
1 + 𝛽

−
|𝑥 − 𝑦|2

2𝜀
−

𝛽
1 − 𝛽

𝛶 (𝑥) −
𝛽

1 + 𝛽
𝛶 (𝑦).

Note that the containment function 𝛶 is introduced in order to be able to work in a compact set, and the positive constant 𝛽 will
allow us to use the convexity of . Since 𝛷𝜀,𝛽 is upper semicontinuous and lim

|𝑥|+|𝑦|→∞𝛷(𝑥, 𝑦) = −∞, for every 𝜀 ∈ (0, 1) there exists
(𝑥𝜀, 𝑦𝜀) such that

𝛷𝜀,𝛽 (𝑥𝜀, 𝑦𝜀) = sup
R𝑑×R𝑑

𝛷𝜀,𝛽 (𝑥, 𝑦). (4.4)

Suppose by contradiction that 𝛿 = 𝑢(𝑥̃) − 𝑣(𝑥̃) > 0 for some 𝑥̃. We choose 𝛽 such that 2𝛽
(1−𝛽)(1+𝛽)𝛶 (𝑥̃) < 𝛿∕2 and 2𝛽

1−𝛽2
(

‖ℎ‖ + 𝐶𝛶
)

< 𝛿∕2.
hen,

𝛷𝜀,𝛽 (𝑥𝜀, 𝑦𝜀) ≥ 𝛷𝜀,𝛽 (𝑥̃, 𝑥̃) > 𝛿 −
2𝛽

(1 − 𝛽)(1 + 𝛽)
𝛶 (𝑥̃) > 𝛿

2
> 0, (4.5)

nd
𝛽

1 − 𝛽
𝛶 (𝑥𝜀) +

𝛽
1 + 𝛽

𝛶 (𝑦𝜀) ≤ sup
(

𝑢
1 − 𝛽

)

+ sup
(

−𝑣
1 + 𝛽

)

<∞.

Therefore there exists 𝑅𝛽 > 0 such that 𝑥𝜀 and 𝑦𝜀 belong to 𝐵(0, 𝑅𝛽 ).
Next we observe that by Lemma 3.1 of [5],

|𝑥𝜀 − 𝑦𝜀|
2

𝜀
→ 0 as 𝜀→ 0+,

nd, as a consequence, |𝑥𝜀 − 𝑦𝜀| → 0 as 𝜀→ 0+. Define the functions 𝜑𝜀,𝛽1 ∈ 𝐷(𝐻†) and 𝜑𝜀,𝛽2 ∈ 𝐷(𝐻‡) by

𝜑𝜀,𝛽1 (𝑥) = (1 − 𝛽)

[

𝑣(𝑦𝜀)
1 + 𝛽

+
|𝑥 − 𝑦𝜀|

2

2𝜀
+

𝛽
1 − 𝛽

𝛶 (𝑥) +
𝛽

1 + 𝛽
𝛶 (𝑦𝜀) + (1 − 𝛽)(𝑥 − 𝑥𝜀)2

]

𝜑𝜀,𝛽2 (𝑦) = (1 + 𝛽)

[

𝑢(𝑥𝜀) −
|𝑥𝜀 − 𝑦|

2
−

𝛽
𝛶 (𝑥𝜀) −

𝛽
𝛶 (𝑦) − (1 + 𝛽)(𝑦 − 𝑦𝜀)2

]

.
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M

Using (4.4), observe that 𝑢 − 𝜑𝜀,𝛽1 attains its supremum at 𝑥 = 𝑥𝜀, and thus

sup
𝐸
(𝑢 − 𝜑𝜀,𝛽1 ) = (𝑢 − 𝜑𝜀,𝛽1 )(𝑥𝜀).

oreover, by addition of the (1 − 𝛽)(𝑥 − 𝑥𝜀)2 term, this supremum is the unique optimiser of 𝑢 − 𝜑𝜀,𝛽1 . Then, by the subsolution and
supersolution properties, taking into account Remark 3.6,

𝑢(𝑥𝜀) − 𝜆
[

(1 − 𝛽)
(

𝑥𝜀,
𝑥𝜀 − 𝑦𝜀
𝜀

)

+ 𝛽 𝐶𝛶
]

≤ ℎ(𝑥𝜀).

With a similar argument for 𝑢2 and 𝜑𝜀2, we obtain by the supersolution inequality that

𝑣(𝑦𝜀) − 𝜆
[

(1 + 𝛽)
(

𝑦𝜀,
𝑥𝜀 − 𝑦𝜀
𝜀

)

− 𝛽𝐶𝛶
]

≥ ℎ(𝑦𝜀). (4.6)

By the coercivity property obtained in Proposition 4.7 on Section 4.2 and by the inequality (4.6), 𝑝𝜀 ∶= 𝑥𝜀−𝑦𝜀
𝜀 is bounded in 𝜀,

allowing us to extract a converging subsequence 𝑝𝜀𝑘 . We conclude that for each 𝛽

lim inf
𝜀→0

𝛷(𝑥𝜀, 𝑦𝜀)

≤ lim inf
𝜀→0

𝑢(𝑥𝜀)
1 − 𝛽

−
𝑣(𝑦𝜀)
1 + 𝛽

≤ lim inf
𝑘→∞

𝜆
(

𝑥𝜀𝑘 , 𝑝𝜀𝑘
)

+
𝛽

1 − 𝛽
𝐶𝛶 − 𝜆

(

𝑦𝜀𝑘 , 𝑝𝜀𝑘
)

+
𝛽

1 + 𝛽
𝐶𝛶

+
ℎ(𝑥𝜀𝑘 )
1 − 𝛽

−
ℎ(𝑦𝜀𝑘 )
1 + 𝛽

≤ lim inf
𝑘→∞

𝜆
[


(

𝑥𝜀𝑘 , 𝑝𝜀𝑘
)

−
(

𝑦𝜀𝑘 , 𝑝𝜀𝑘
)]

+
ℎ(𝑥𝜀𝑘 ) − ℎ(𝑦𝜀𝑘 )

1 − 𝛽2
+

2𝛽
1 − 𝛽2

(

‖ℎ‖ + 𝐶𝛶
)

≤ 2𝛽
1 − 𝛽2

(

‖ℎ‖ + 𝐶𝛶
)

.

As 𝛽 is chosen such that 2𝛽
1−𝛽2

(

‖ℎ‖ + 𝐶𝛶
)

< 𝛿∕2, we obtain a contradiction with (4.5), establishing the comparison principle. □

Below, we complete the figure by proving the left-hand side of Fig. 3.

Lemma 4.18. For all ℎ ∈ 𝐶(R𝑑 ) and 𝜆 > 0, viscosity subsolutions of (1 − 𝜆𝐻)𝑓 = ℎ are viscosity subsolutions of (1 − 𝜆𝐻1)𝑓 = ℎ, and
viscosity supersolutions of (1 − 𝜆𝐻)𝑓 = ℎ are viscosity supersolutions of (1 − 𝜆𝐻2)𝑓 = ℎ.

Proof. Fix 𝜆 > 0 and ℎ ∈ 𝐶𝑏(𝐸). Let 𝑢 be a subsolution to (1 − 𝜆𝐻)𝑓 = ℎ. We prove it is also a subsolution to (1 − 𝜆𝐻1)𝑓 = ℎ. Fix
𝜂 ∈ (0, 1), 𝜑 ∈ 𝐶2(𝐸′) and 𝑓 ∈ 𝐶∞

𝑙 (𝐸), so that (𝑓 𝜂1 ,𝐻
𝜂
1,𝑓 ,𝜑) ∈ 𝐻1 with 𝑓 𝜂1 and 𝐻𝜂

1,𝑓 ,𝜑 as in Definition 4.15. We will prove that there
are (𝑥𝑛, 𝑧𝑛) such that

lim
𝑛
𝑢(𝑥𝑛) − 𝑓

𝜂
1 (𝑥𝑛) = sup

𝑥
𝑢(𝑥) − 𝑓 𝜂1 (𝑥), (4.7)

lim sup
𝑛

𝑢(𝑥𝑛) − 𝜆𝐻
𝜂
1,𝑓 ,𝜑(𝑥𝑛, 𝑧𝑛) − ℎ(𝑥𝑛) ≤ 0. (4.8)

Given 𝑀 ∶= 𝜂−1 sup𝑦 𝑢(𝑦) − (1 − 𝜂)𝑓 (𝑦) < ∞, as 𝑢 is bounded and 𝑓 ∈ 𝐶∞
𝑙 (𝐸), we have that the sequence 𝑥𝑛 along which the limit in

(4.7) is attained, is contained in the compact set 𝐾 ∶= {𝑥|𝛶 (𝑥) ≤𝑀}. We define 𝛾 ∶ R → R as a smooth increasing function such
that

𝛾(𝑟) =

{

𝑟 if 𝑟 ≤𝑀,
𝑀 + 1 if 𝑟 ≥𝑀 + 2.

Denote by 𝑓𝜂 the function on 𝐸 defined by

𝑓𝜂(𝑥) = 𝛾((1 − 𝜂)𝑓 (𝑥) + 𝜂𝛶 (𝑥)) = 𝛾(𝑓 𝜂1 (𝑥)).

By construction, 𝑓𝜂 is smooth and constant outside a compact set and thus lies in (𝐻). We conclude that (𝑓𝜂 ,𝐻𝑓𝜂 ,(1−𝜂)𝜑) ∈ 𝐻 . As
𝑢 is a viscosity subsolution for (1 − 𝜆𝐻)𝑢 = ℎ, there exist 𝑥𝑛 ∈ 𝐸 and 𝑧𝑛 ∈ 𝐸′ with

lim
𝑛
𝑢(𝑥𝑛) − 𝑓𝜂(𝑥𝑛) = sup

𝑥
𝑢(𝑥) − 𝑓𝜂(𝑥),

lim sup
𝑛

𝑢(𝑥𝑛) − 𝜆𝐻𝑓𝜂 ,(1−𝜂)𝜑(𝑥𝑛, 𝑧𝑛) − ℎ(𝑥𝑛) ≤ 0. (4.9)

Since 𝑓 𝜂1 equals 𝑓𝜂 in 𝐾 = {𝑥|𝛶 (𝑥) ≤𝑀}, we also have that

lim 𝑢(𝑥𝑛) − 𝑓
𝜂
1 (𝑥𝑛) = sup 𝑢(𝑥) − 𝑓 𝜂1 (𝑥),
15
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establishing (4.7). Convexity of 𝐻𝑓,𝜑(𝑥, 𝑧) = 𝐻𝜑(𝑥,∇𝑓 (𝑥), 𝑧) in 𝑝 and 𝜑 yields for arbitrary (𝑥, 𝑧) the elementary estimate

𝐻𝑓𝜂 ,(1−𝜂)𝜑(𝑥, 𝑧) =𝐻(1−𝜂)𝜑(𝑥, (1 − 𝜂)∇𝑓 (𝑥) + 𝜂∇𝛶 (𝑥), 𝑧)

≤ (1 − 𝜂)𝐻𝜑(𝑥,∇𝑓 (𝑥), 𝑧) + 𝜂𝐻0(𝑥,∇𝛶 (𝑥), 𝑧)

= (1 − 𝜂)𝐻𝜑(𝑥,∇𝑓 (𝑥), 𝑧) + 𝜂𝑉𝑥,∇𝛶 (𝑥)(𝑧)

≤ 𝐻𝜂
1,𝑓 ,𝜑(𝑥, 𝑧).

Combining the above inequality with (4.9), we have

lim sup
𝑛

𝑢(𝑥𝑛) − 𝜆𝐻
𝜂
1,𝑓 ,𝜑(𝑥, 𝑧) − ℎ(𝑥𝑛) ≤ lim sup

𝑛
𝑢(𝑥𝑛) − 𝜆𝐻𝑓𝜂 ,(1−𝜂)𝜑(𝑥𝑛, 𝑧𝑛) − ℎ(𝑥𝑛) ≤ 0,

establishing (4.8). The supersolution statement follows in the same way. □

Lemma 4.19. Fix 𝜆 > 0 and ℎ ∈ 𝐶𝑏(𝐸).

(a) Every subsolution to (1 − 𝜆𝐻1)𝑓 = ℎ is also a subsolution to (1 − 𝜆𝐻†)𝑓 = ℎ.
(b) Every supersolution to (1 − 𝜆𝐻1)𝑓 = ℎ is also a supersolution to (1 − 𝜆𝐻‡)𝑓 = ℎ.

The definition of viscosity solutions, Definition 3.5, is written down in terms of the existence of a sequence of points that
maximises 𝑢−𝑓 or minimises 𝑣−𝑓 . To prove the lemma above, we would like to have the subsolution and supersolution inequalities
for any point that maximises or minimises the difference. This is achieved by the following auxiliary lemma.

Lemma 4.20. Fix 𝜆 > 0 and ℎ ∈ 𝐶𝑏(𝐸).

(a) Let 𝑢 be a subsolution to (1 − 𝜆𝐻1)𝑓 = ℎ, then for all (𝑓, 𝑔) ∈ 𝐻1 and 𝑥0 ∈ 𝐸 such that

𝑢(𝑥0) − 𝑓 (𝑥0) = sup
𝑥
𝑢(𝑥) − 𝑓 (𝑥)

there exists a 𝑧 ∈ 𝐸′ such that

𝑢(𝑥0) − 𝜆𝑔(𝑥0, 𝑧) ≤ ℎ(𝑥0).

(b) Let 𝑣 be a supersolution to (1 − 𝜆𝐻2)𝑓 = ℎ, then for all (𝑓, 𝑔) ∈ 𝐻2 and 𝑥0 ∈ 𝐸 such that

𝑣(𝑥0) − 𝑓 (𝑥0) = inf
𝑥
𝑣(𝑥) − 𝑓 (𝑥)

there exists a 𝑧 ∈ 𝐸′ such that

𝑣(𝑥0) − 𝜆𝑔(𝑥0, 𝑧) ≥ ℎ(𝑥0).

For a proof of the above Lemma see Lemma 5.7 of [23].

Proof of Lemma 4.19. We only prove the subsolution statement. Fix 𝜆 > 0 and ℎ ∈ 𝐶𝑏(𝐸). Let 𝑢 be a subsolution of (1−𝜆𝐻1)𝑓 = ℎ.
We prove that it is also a subsolution of (1 − 𝜆𝐻†)𝑓 = ℎ. Let 𝑓 𝜂1 = (1 − 𝜂)𝑓 + 𝜂𝛶 ∈ (𝐻1) and let 𝑥0 be such that

𝑢(𝑥0) − 𝑓
𝜂
1 (𝑥0) = sup

𝑥
𝑢(𝑥) − 𝑓 𝜂1 (𝑥).

For each 𝛿 > 0, since (𝑥, 𝑝) is a principal eigenvalue for 𝐿𝑥,𝑝 + 𝑅𝑥 (as remarked in Proposition 4.6, there exists a function 𝑔 such
that

(𝑥0,∇𝑓 (𝑥0)) = 𝑔−1
(

𝐿𝑥0 ,∇𝑓 (𝑥0) + 𝑅𝑥0
)

𝑔. (4.10)

As
(

𝑓 𝜂1 , (1 − 𝜂)𝑔
−1

(

𝐿𝑥0 ,∇𝑓 (𝑥0) + 𝑅𝑥0
)

𝑔 + 𝜂𝐶𝛶
)

∈ 𝐻1,

we find by the subsolution property of 𝑢 and that there exists 𝑧 such that

ℎ(𝑥0) ≥ 𝑢(𝑥0) − 𝜆
(

(1 − 𝜂)𝑔−1
(

𝐿𝑥0 ,∇𝑓 (𝑥0) + 𝑅𝑥0
)

𝑔 + 𝜂𝐶𝛶
)

= 𝑢(𝑥0) − 𝜆
(

(1 − 𝜂)(𝑥0,∇𝑓 (𝑥0)) + 𝜂𝐶𝛶
)

where the second inequality follows by (4.10) and it establishes that 𝑢 is a subsolution for (1 − 𝜆𝐻†)𝑓 = ℎ. □

We conclude this subsection proving the right part of Fig. 3.

Proposition 4.21. Let the map  ∶ R𝑑 × R𝑑 → R be the eigenvalue (2.2) and let 𝐇 ∶ (𝐇) ⊆ 𝐶1(R𝑑 ) → 𝐶(R𝑑 ) be the operator
𝐇𝑓 (𝑥) ∶= (𝑥,∇𝑓 (𝑥)). Then, for all 𝜆 > 0 and ℎ ∈ 𝐶(R𝑑 ), every viscosity subsolution of (1 − 𝜆𝐇)𝑓 = ℎ is also a viscosity subsolutions of
(1 − 𝜆𝐻 )𝑓 = ℎ and every viscosity supersolution of (1 − 𝜆𝐇)𝑓 = ℎ is also a viscosity supersolution of (1 − 𝜆𝐻 )𝑓 = ℎ.
16
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𝑔

Proof. Fix 𝜆 > 0 and ℎ ∈ 𝐶𝑏(𝐸). Let 𝑢 be a subsolution to (1 − 𝜆𝐇)𝑓 = ℎ. We prove it is also a subsolution to (1 − 𝜆𝐻†)𝑓 = ℎ. Fix
𝜂 > 0 and 𝑓 ∈ 𝐶∞

𝓁 (𝐸) and let (𝑓 𝜀† ,𝐻
𝜂
†,𝑓 ) ∈ 𝐻† as in Definition 4.14. We will prove that

(

𝑢 − 𝑓 𝜂†
)

(𝑥) = sup
𝑥∈𝐸

(

𝑢(𝑥) − 𝑓 𝜂† (𝑥)
)

,

implies

𝑢(𝑥) − 𝜆𝐻𝜂
†,𝑓 (𝑥) − ℎ(𝑥) ≤ 0. (4.11)

As 𝑢 is a viscosity subsolution for (1 − 𝜆𝐇)𝑓 = ℎ and 𝑓 𝜂† ∈ 𝐷(𝐇), if
(

𝑢 − 𝑓 𝜂†
)

(𝑥) = sup
𝑥

(

𝑢(𝑥) − 𝑓 𝜂† (𝑥)
)

,

then,

𝑢(𝑥) − 𝜆𝐇𝑓 𝜂† (𝑥) − ℎ(𝑥) ≤ 0. (4.12)

Convexity of 𝑝↦ (𝑥, 𝑝) yields the estimate

𝐇𝑓𝜂(𝑥) = (𝑥,∇𝑓𝜂(𝑥))

≤ (1 − 𝜂)(𝑥,∇𝑓 (𝑥)) + 𝜂(𝑥,∇𝛶 (𝑥))

≤ (1 − 𝜂)(𝑥,∇𝑓 (𝑥)) + 𝜂𝐶𝛶 = 𝐻𝜂
†,𝑓 (𝑥).

Combining this inequality with (4.12), we have

𝑢(𝑥) − 𝜆𝐻𝜂
†,𝑓 (𝑥) − ℎ(𝑥) ≤ 𝑢(𝑥) − 𝜆𝐇𝑓 𝜂† (𝑥) − ℎ(𝑥) ≤ 0,

establishing (4.11). The supersolution statement follows in a similar way. □

4.4. Exponential tightness

To establish exponential tightness, we first note that by [14, Corollary 4.19] it suffices to establish the exponential compact
containment condition. This is the content of the next proposition.

Proposition 4.22. For all 𝐾 ⊂ 𝐸 compact, 𝑇 > 0 and 𝑎 > 0 there is a compact set 𝐾̂𝐾,𝑇 ,𝑎 ⊂ 𝐸 such that

lim sup
𝜀→0

𝜀 logP

[

⋃

𝑡∈[0,𝑇 ]

{

𝑌 𝜀(𝑡) ∉ 𝐾̂𝐾,𝑇 ,𝑎
}

≠ ∅

]

≤ max{−𝑎, lim sup
𝜀→0

𝜀 logP(𝑋𝜀(0) ∉ 𝐾)}. (4.13)

Remark 4.23. Note that, since 𝑌 𝜀(0) satisfies the large deviations principle by assumption, inequality (4.13) gives the searched
compact containment condition.

Proof of Proposition 4.22. First of all let us consider 𝜑 ≡ 0. Note that, by Lemma 4.13, we have sup𝑥,𝑧𝐻0(𝑥,∇𝛶 , 𝑧) =
sup𝑥,𝑧 𝑉𝑥,∇𝛶 (𝑥)(𝑧) ≤ 𝐶𝛶 . Choose 𝛽 > 0 such that 𝑇𝐶𝛶 − 𝛽 ≤ −𝑎. Since 𝛶 is continuous, there is some 𝑐 such that the set
𝐺 ∶= {𝑥 |𝛶 (𝑥) < 𝑐 + 𝛽} is non empty. Note that 𝐺 is open and let 𝐺 be the closure of 𝐺. Then, 𝐺 is compact. Let 𝑓 (𝑥) ∶= 𝜄◦𝛶
where 𝜄 is some smooth increasing function such that

𝜄(𝑟) =

{

𝑟 if 𝑟 ≤ 𝛽 + 𝑐,
2𝛽 + 𝑐 if 𝑟 ≥ 𝛽 + 𝑐 + 2.

It follows that 𝜄◦𝛶 equals 𝛶 on 𝐺 and is constant outside of a compact set. Set 𝑓𝜀 = 𝑓◦𝜂𝜀, 𝑔𝜀 = 𝐻𝜀𝑓𝜀 and 𝑔 = 𝐻𝑓,𝜑. Note that
(𝑥, 𝑧) = 𝐻𝜑(𝑥,∇𝛶 (𝑥), 𝑧) if 𝑥 ∈ 𝐺. Therefore, we have sup𝑥∈𝐺,𝑧∈𝐸′ 𝑔(𝑥, 𝑧) ≤ 𝐶𝛶 . Let 𝜏 be the stopping time 𝜏 ∶= inf

{

𝑡 ≥ 0 | 𝑌 𝜀(𝑡) ∉ 𝐺
}

and let

𝑀𝜀(𝑡) ∶= exp
{

1
𝜀

(

𝑓 (𝑌 𝜀(𝑡)) − 𝑓 (𝑌 𝜀(0)) − ∫

𝑡

0
𝑔𝜀(𝑌 𝜀(𝑠), 𝐼𝜀(𝑡))d𝑠

)}

.

By construction 𝑀𝜀 is a martingale. Let 𝐾 ⊂ 𝐸 be compact. We have

P

[

⋃

𝑡∈[0,𝑇 ]

{

𝑌 𝜀(𝑡) ∉ 𝐺
}

≠ ∅

]

≤ P

(

𝑌 𝜀(0) ∈ 𝐾,
⋃

𝑡∈[0,𝑇 ]

{

𝑌 𝜀(𝑡) ∉ 𝐺
}

)

+ P (𝑌 𝜀(0) ∉ 𝐾)

= E
[

1{𝑌 𝜀(0)∈𝐾}1
{

⋃

{

𝜀
}}𝑀𝜀(𝜏)𝑀𝜀(𝜏)−1

]

+ P (𝑌 𝜀(0) ∉ 𝐾)
17

𝑡∈[0,𝑇 ] 𝑌 (𝑡)∉𝐺
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S

p

w

4

T

P
t

T
𝛤

≤ exp

{

−1
𝜀

(

inf
𝑦1∉𝐺

𝑓 (𝑦1) − 𝑓 (𝑌 𝜀(0))

−𝑇 sup
𝑦2∈𝐺,𝑖∈{1,…,𝐽}

𝑔𝜀(𝑦2, 𝑖)

)}

× E
[

1{𝑌 𝜀(0)∈𝐾}1
{

⋃

𝑡∈[0,𝑇 ]

{

𝑌 𝜀(𝑡)∉𝐺
}}𝑀𝜀(𝜏)

]

+ P (𝑌 𝜀(0) ∉ 𝐾) .

ince sup𝑥∈𝐺,𝑧∈𝐸′ 𝑔(𝑥, 𝑧) ≤ 𝐶𝛶 ,𝜑 and 𝑔 is the limit of 𝑔𝜀 for 𝜀 → 0 in the sense of Definition 4.2, we obtain that the term in the
exponential is bounded by 1

𝜀

(

𝐶𝛶 𝑇 − 𝛽
)

≤ − 1
𝜀 𝑎 for sufficiently small 𝜀. The expectation is bounded by 1 due to the martingale

roperty of 𝑀𝜀(𝜏). We can conclude that

lim sup
𝜀→0

𝜀 logP

[

⋃

𝑡∈[0,𝑇 ]

{

𝑌 𝜀(𝑡) ∉ 𝐾𝑇 ,𝑎
}

≠ ∅

]

≤ max{−𝑎, lim sup
𝜀→0

𝜀 logP (𝑌 𝜀(0) ∉ 𝐾)}

here 𝐾̂𝐾,𝑇 ,𝑎 = 𝐺. □

.5. Action-integral representation of the rate function

In this section we establish a representation of the rate function as an integral of a Lagrangian function . We refer to this
representation as the ‘‘action-integral representation’’ of the rate function . We argue on basis of Section 8 of [14] for which we
need to check the following two conditions.

Lemma 4.24. Let  ∶ R𝑑 × R𝑑 → R be the map given in (2.2) and 𝐇 ∶ (𝐇) ⊆ 𝐶1(R𝑑 ) → 𝐶(R𝑑 ) the operator 𝐇𝑓 (𝑥) ∶= (𝑥,∇𝑓 (𝑥)).
hen:

(i) The Legendre-Fenchel transform (𝑥, 𝑣) ∶= sup𝑝∈R𝑑 (𝑝 ⋅𝑣−(𝑥, 𝑝)) and the operator 𝐇 satisfy Conditions 8.9, 8.10 and 8.11 of [14].
(ii) For all 𝜆 > 0 and ℎ ∈ 𝐶(R𝑑 ), the comparison principle holds for (1 − 𝜆𝐇)𝑢 = ℎ.

roof. To prove the first aim, we will show that following items (a), (b) and (c) imply Condition 8.9, 8.10 and 8.11 of [14]. Then,
he proof of (a), (b), (c) is shown in [26, Proposition 6.1].

(a) The function  ∶ R𝑑 ×R𝑑 → [0,∞] is lower semicontinuous and for every 𝐶 ≥ 0, the level set {(𝑥, 𝑣) ∈ R𝑑 ×R𝑑 ∶ (𝑥, 𝑣) ≤ 𝐶}
is relatively compact in R𝑑 × R𝑑 .

(b) For all 𝑓 ∈ (𝐻) there exists a right continuous, nondecreasing function 𝜓𝑓 ∶ [0,∞) → [0,∞) such that for all (𝑥, 𝑣) ∈ R𝑑 ×R𝑑 ,

|∇𝑓 (𝑥) ⋅ 𝑣| ≤ 𝜓𝑓 ((𝑥, 𝑣)) and lim
𝑟→∞

𝜓𝑓 (𝑟)
𝑟

= 0.

(c) For each 𝑥0 ∈ R𝑑 and every 𝑓 ∈ (𝐇), there exists an absolutely continuous path 𝑥 ∶ [0,∞) → R𝑑 such that 𝑥0 = 𝑥(0) and

∫

𝑡

0
(𝑥(𝑠),∇𝑓 (𝑥(𝑠))) 𝑑𝑠 = ∫

𝑡

0
[∇𝑓 (𝑥(𝑠)) ⋅ 𝑥̇(𝑠) − (𝑥(𝑠), 𝑥̇(𝑠))] 𝑑𝑠.

hen regarding Condition 8.9, the operator 𝐴𝑓 (𝑥, 𝑣) ∶= ∇𝑓 (𝑥) ⋅ 𝑣 on the domain (𝐴) = (𝐻) satisfies (1). For (2), we can choose
= T𝑑 × R𝑑 , and for 𝑥0 ∈ T𝑑 , take the pair (𝑥, 𝜆) with 𝑥(𝑡) = 𝑥0 and 𝜆(𝑑𝑣 × 𝑑𝑡) = 𝛿0(𝑑𝑣) × 𝑑𝑡. Part (3) is a consequence of (a) from

above. Part (4) can be verified as follows. Let 𝛶 the containment function used in Definition 4.14 and note that the sub-level sets
of 𝛶 are compact. Let 𝛾 ∈  with 𝛾(0) ∈ 𝐾 and such that the control

∫

𝑇

0
(𝛾(𝑠), 𝛾̇(𝑠)) 𝑑𝑠 ≤𝑀

implies 𝛾(𝑡) ∈ 𝐾̂ for all 𝑡 ≤ 𝑇 , with 𝐾̂ compact. Then,

𝛶 (𝛾(𝑡)) = 𝛶 (𝛾(0)) + ∫

𝑡

0
⟨∇𝛶 (𝛾(𝑠)), 𝛾̇(𝑠)⟩ 𝑑𝑠

≤ 𝛶 (𝛾(0)) + ∫

𝑡

0
(𝛾(𝑠), 𝛾̇(𝑠)) +(𝛾(𝑠),∇𝛶 (𝛾(𝑠))) 𝑑𝑠

≤ sup
𝑦∈𝐾

𝛶 (𝑦) +𝑀 + ∫

𝑇

0
sup
𝑧

(𝑧,∇𝛶 (𝑧)) 𝑑𝑠

∶= 𝐶 <∞.

Hence, we can take 𝐾̂ = {𝑧 ∈ R𝑑 |𝛶 (𝑧) ≤ 𝐶}.
Part (5) is implied by (b) from above. Condition 8.10 is implied by Condition 8.11 and the fact that 𝐇1 = 0, by Proposition 4.7

(see Remark 8.12 (e) in [14]). Finally, Condition 8.11 is implied by (c) above, with the control 𝜆(𝑑𝑣 × 𝑑𝑡) = 𝛿𝑥̇(𝑡)(𝑑𝑣) × 𝑑𝑡.
The comparison principle for 𝐇 follows from Proposition 4.21 and Theorem 4.17. □
18
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

L

T

w

P
𝐶
(

In the following, we prove the integral representation of the rate function. Firstly, let us recall that Theorem 3.8 gives the
xistence of a semigroup 𝑉 (𝑡) and a family of functions 𝑅(𝜆) and let 𝐕(𝑡) ∶ 𝐶(R𝑑 ) → 𝐶(R𝑑 ) be the Nisio semigroup with cost function
, that is

𝐕(𝑡)𝑓 (𝑥) = sup
𝛾∈ACR𝑑 [0,∞)

𝛾(0)=𝑥

[

𝑓 (𝛾(𝑡)) − ∫

𝑡

0
(𝛾(𝑡), 𝛾̇(𝑠)) 𝑑𝑠

]

.

et 𝐑(𝜆)ℎ be the operator given by

𝐑(𝜆)ℎ(𝑥) = sup
𝛾∈
𝛾(0)=𝑥

∫

∞

0
𝜆−1𝑒−𝜆

−1𝑡
[

ℎ(𝛾(𝑡)) − ∫

𝑡

0
(𝛾(𝑠), 𝛾̇(𝑠))

]

d𝑡.

The proof of the result below is based on the following four main steps.

• Fig. 3 on Section 4.3 shows that 𝑅(𝜆)ℎ is the unique function that is a sub- and supersolution to the equations (1 − 𝜆𝐻†)𝑓 = ℎ
and (1 − 𝜆𝐻‡)𝑓 = ℎ respectively.

• 𝐑(𝜆)ℎ has been proven to be the unique viscosity solution to (1−𝜆𝐇)𝑓 = ℎ. Then, again by Fig. 3, we must have 𝑅(𝜆)ℎ = 𝐑(𝜆)ℎ.
• Starting from the equality of resolvents we work to an equality for the semigroups 𝑉 (𝑡) and 𝐕(𝑡).
• Recalling that the rate function in Theorem 2.8 is given by,

𝐼(𝑥) = 𝐼0(𝑥(0)) + sup
𝑘∈N

sup
(𝑡1 ,…,𝑡𝑘)

𝑘
∑

𝑖=1
𝐼𝑡𝑖−𝑡𝑖−1 (𝑥(𝑡𝑖)|𝑥(𝑡𝑖−1))

with 𝐼𝑡(𝑧|𝑦) = sup𝑓∈𝐶(𝐸)[𝑓 (𝑧) − 𝑉 (𝑡)𝑓 (𝑦)], it is not difficult to realise that, if 𝑉 (𝑡) = 𝐕(𝑡), it follows that 𝐼𝑡(𝑦|𝑧) =
inf 𝛾∶𝛾(0)=𝑧,

𝛾(𝑡)=𝑦
∫ 𝑡0 (𝛾(𝑠), 𝛾̇(𝑠)) 𝑑𝑠.

heorem 4.25 (Integral Representation of the Rate Function). The rate function of Theorem 2.8 has the following representation

(𝑥) =

{

0(𝑥(0)) + ∫ ∞
0  (𝑥(𝑡), 𝑥̇(𝑡)) 𝑑𝑡 if 𝑥 ∈ 𝐴𝐶([0,∞);R𝑑 ),

∞ else,

here (𝑥, 𝑣) = sup𝑝∈R𝑑 [𝑝 ⋅ 𝑣 −(𝑥, 𝑝)] is the Legendre transform of .

roof. Following the above mentioned steps, we recall that, as stated by Theorem 3.8, there exists a family of operators 𝑅(𝜆) ∶
𝑏(R𝑑 ) → 𝐶𝑏(R𝑑 ), such that for 𝜆 > 0 and ℎ ∈ 𝐶𝑏(R𝑑 ), the function 𝑅(𝜆)ℎ is the unique function that is a viscosity solution to
1 − 𝜆𝐻)𝑓 = ℎ and such that

lim
𝑚→∞

‖

‖

‖

‖

𝑅
( 𝑡
𝑚

)𝑚
𝑓 − 𝑉 (𝑡)𝑓

‖

‖

‖

‖

= 0 for all 𝑓 in a dense set 𝐷 ⊆ 𝐶𝑏(R𝑑 ). (4.14)

See also [21, Theorem 7.10] or [14, Theorem 7.17] for the construction of the operators 𝑅(𝜆). By [23, Proposition 6.1] (or [14,
Chapter 8]), 𝐑(𝜆) is the unique viscosity solution to (1 − 𝜆𝐇)𝑓 = ℎ. Then, Fig. 3 on Section 4.3 shows that it must equal 𝑅(𝜆)ℎ.
Moreover, we find by [14, Lemma 8.18] (whose assumptions are implied by Lemma 4.24 above) that for all 𝑓 ∈ 𝐶𝑏(R𝑑 ) and 𝑥 ∈ R𝑑

lim
𝑚→∞

𝐑
( 𝑡
𝑚

)𝑚
𝑓 (𝑥) = 𝐕(𝑡)𝑓 (𝑥). (4.15)

We conclude from (4.14) and (4.15) that 𝑉 (𝑡)𝑓 = 𝐕(𝑡)𝑓 for all 𝑡 and 𝑓 ∈ 𝐷. Now recall that 𝐷 is sequentially strictly dense so
that equality for all 𝑓 ∈ 𝐶𝑏(R𝑑 ) follows if 𝑉 (𝑡) and 𝐕(𝑡) are sequentially continuous. The first statement follows by Theorems [20,
Theorem 7.10] and [21, Theorem 6.1]. The second statement follows by [14, Lemma 8.22]. We conclude that 𝑉 (𝑡)𝑓 = 𝐕(𝑡)𝑓 for all
𝑓 ∈ 𝐶𝑏(R𝑑 ) and 𝑡 ≥ 0. Using Theorem 8.14 of [14] and the convexity of 𝑣 ↦ (𝑥, 𝑣) we get the integral representation. □

5. A more general theorem

Analysing the proofs in the previous sections, we can state the following facts:

• In the proof of large deviations principle, the main steps are:

1. Convergence of the nonlinear operators 𝐻𝜀 to a multivalued operator 𝐻 ,
2. comparison principle for (1 − 𝜆𝐻)𝑓 = ℎ.

• The existence of an eigenvalue (𝑥, 𝑝) and its convexity, coercivity and continuity are crucial for our approach to comparison
principle and

– the arguments for existence, convexity and coercivity (proofs of Propositions 4.1 and 4.7) are based on the fact that (𝑥, 𝑝)
is the eigenvalue of an operator of the type 𝐵𝑥,𝑝+𝑉𝑥,𝑝+𝑅𝑥 with the three operators that verify particular properties such
as coercivity and the maximum principle,
19
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A

– to show the continuity of  the representation (2.2) is needed. In particular, some properties of 𝑉 and 𝐼 , like 𝛤 -
convergence, are necessary.

The above observations allow for a straightforward generalisation in Theorem 5.3 and justify the assumptions of the next subsection.
In this section we indeed prove the large deviation principle for a general switching Markov process. In particular, we will study
the Markov process (𝑌 𝜀𝑡 , 𝐼

𝜀
𝑡 ), that is the solution to the Martingale problem corresponding to the following operator

𝐴𝜀𝑓 (𝑥, 𝑖) ∶= 𝐴(𝑖)
𝜀 𝑓 (⋅, 𝑖)(𝑥) +

𝐽
∑

𝑗=1
𝑟𝑖𝑗 (𝑥, 𝑥∕𝜀) [𝑓 (𝑥, 𝑗) − 𝑓 (𝑥, 𝑖)] (5.1)

with 𝐴(𝑖)
𝜀 ∶ (𝐴(𝑖)

𝜀 ) ⊆ 𝐶(R𝑑 ) → 𝐶(R𝑑 ) be the generator of a strong R𝑑 -valued Markov process, with domain (𝐴(𝑖)
𝜀 ).

5.1. Assumptions

Here we give the assumptions needed.

Assumption 5.1. The nonlinear generators 𝐻𝜀𝑓 = 𝜀𝑒−𝑓∕𝜀𝐴𝜀𝑒𝑓∕𝜀 admits an extended limit 𝐻 ⊆ 𝑒𝑥 − 𝐿𝐼𝑀𝐻𝜀 with 𝐻 of the type

𝐻 ∶=
{

(𝑓,𝐻𝑓,𝜑) ∶ 𝑓 ∈ 𝐶2(R𝑑 ), 𝐻𝑓,𝜑 ∈ 𝐶(R𝑑 × 𝐸′) and 𝜑 ∈ 𝐶2(𝐸′)
}

.

For all 𝜑 there exist a map 𝐻𝜑 ∶ R𝑑 × R𝑑 × 𝐸′ → R such that for all 𝑓 ∈ 𝐷(𝐻), 𝑥 ∈ R𝑑 and 𝑧 ∈ 𝐸′, 𝐻𝜑,𝑓 (𝑥, 𝑧) = 𝐻𝜑(𝑥,∇𝑓, 𝑧).
Moreover, the image 𝐻𝜑 has the representation

𝐻𝜑(𝑥, 𝑝, 𝑧) = 𝑒−𝜑(𝑧)
[

𝐵𝑥,𝑝 + 𝑉𝑥,𝑝 + 𝑅𝑥
]

𝑒𝜑(𝑧)

with 𝑝 = ∇𝑓 (𝑥) and 𝐵𝑥,𝑝, 𝑉𝑥,𝑝, 𝑅𝑥 such that

(i) For all 𝑝 ∈ R𝑑 there exists an eigenfunction 𝑔𝑥,𝑝 ∈ 𝐶2(R𝑑 × 𝐽 ) with 𝑔𝑖𝑥,𝑝 > 0 and an eigenvalue (𝑥, 𝑝) such that
[

𝐵𝑥,𝑝 + 𝑉𝑥,𝑝 + 𝑅𝑥
]

𝑔𝑥,𝑝 = (𝑥, 𝑝)𝑔𝑥,𝑝.
(ii) 𝑇𝑥,𝑝 = 𝐵𝑥,𝑝 + 𝑅𝑥 verifies the maximum principle :

if (𝑖𝑚, 𝑦𝑚) = argmin𝜑 then 𝑒−𝜑(𝑖𝑚 ,𝑦𝑚)𝑇𝑥,𝑝𝑒𝜑(𝑖𝑚 ,𝑦𝑚) ≥ 0.
(iii) 𝑝 ↦ 𝑉𝑥,𝑝 is coercive uniformly with respect to 𝑥.
(iv) 𝑝 ↦ 𝐵𝑥,𝑝 and 𝑝↦ 𝑉𝑥,𝑝 are convex uniformly on compact sets.

The above assumption implies the convergence of the nonlinear operators and the existence of the principal eigenvalue .
oreover, it will imply convexity and coercivity of (𝑥, 𝑝).

ssumption 5.2. The eigenvalue  is of the type (𝑥, 𝑝) = sup𝜇∈(𝐸′)
[

𝛬(𝑥, 𝑝, 𝜇) − 𝐼𝑥,𝑝(𝜇)
]

with

𝛬(𝑥, 𝑝, 𝜇) = ∫𝐸′
𝑉𝑥,𝑝 𝑑𝜇, and 𝐼𝑥,𝑝(𝜇) = − inf

𝑢>0∫𝐸′

(𝐵𝑥,𝑝 + 𝑅𝑥)𝑢
𝑢

𝑑𝜇,

and the following properties hold

(i) 𝐼𝑥,𝑝 satisfies the assumption of Lemma 4.9,
(ii) 𝛬(𝑥, 𝑝, 𝜇) is continuous and ‖𝛬(𝑥, 𝑝, 𝜇)‖𝛩 <∞,

(iii) there exists a containment function 𝛶 for 𝛬 in the sense of Definition 4.12,
(iv) for all 𝑥, there exists a unique measure 𝜇∗𝑥 such that 𝐼𝑥,0(𝜇∗𝑥) = 0.

Assumption 5.2 implies the continuity of .

5.2. Large deviation for a switching Markov process

We are ready to state the general theorem.

Theorem 5.3 (Large Deviation for a Switching Markov Process). Let (𝑌 𝜀𝑡 , 𝐼
𝜀
𝑡 ) be the solution of the Martingale problem corresponding to the

operator given in (5.1). If Assumptions 5.1 and 5.2 hold and suppose further that at time zero, the family of random variables {𝑌 𝜀(0)}𝜀>0
satisfies a large deviation principle in R𝑑 with good rate function 0 ∶ R𝑑 → [0,∞]. Then, the spatial component {𝑌 𝜀𝑡 } satisfies a large
deviation principle in 𝐶R𝑑 [0,∞).

The proof of the above theorem follows the same lines of what is done in Section 4.3.
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6. Conclusions and comparison with previous works

To conclude our work, in the following we summarise all the main novelties of our results.

1. We prove large deviations principle for the Markov process defined in Definition 2.1. The main steps of the proof are:

(a) Convergence of the nonlinear generators 𝐻𝜀 (3.2).
(b) Proof of continuity of the Hamiltonian .
(c) Comparison principle for (1 − 𝜆𝐻)𝑢 = ℎ.
(d) Proof of exponential tightness for 𝑋𝜀.
(e) Proof of the integral representation of the rate function.

2. We prove the Law of large numbers for the path characterising the limit process by calculating its speed. To do so, we also
prove existence and uniqueness of the stationary measure of the operator (2.3).

3. We give a general result for a Switching Markov process.

The first result can be seen as an extension of part of the work [26]. We elaborate on the primary distinctions between our work
and the previously cited one and how these distinctions contribute to the increased complexity of the proof of large deviations.

• We work on R𝑑 and not on the torus T𝑑 . This transition from a compact to a non-compact set leads to the following significant
consequences:

(i) Firstly, in order to prove comparison principle, i.e step 1c, we need to construct four Hamiltonians in terms of a
containment function that allows us to restrict part of our analysis on compact sets. Hence, we need to prove diagram
3. In [26], they only need two additional operators defined as multivalued limit of the Hamiltonian 𝐻 .

(ii) Secondly, in a compact setting step 1d is trivial. Indeed, the exponential tightness is implied by exponential compact
containment condition that is always verified in a compact set.

(iii) In the proof of the integral representation of the rate function, step 1e, some details are not needed in a compact setting
as part of condition 8.9 in [14].

• We introduce a spatial component 𝑥 in the rates of the process that forces us to work with a Hamiltonian depending on both
variables 𝑥 and 𝑝. For this reason, we need to work with a spatially inhomogeneous Hamilton–Jacobi equation. In particular:

(i) Proving comparison principle one usually wants to bound the difference between sub-solution and super-solution
sup𝐸 𝑢1 − 𝑢2 by using a doubling variables procedure and typically ends up with an estimate of the following type

sup
𝐸
(𝑢1 − 𝑢2) ≤𝜆 lim inf

𝜀→0

[

(𝑥𝜀, 𝛼(𝑥𝜀 − 𝑦𝜀)) −(𝑦𝜀, 𝛼(𝑥𝜀 − 𝑦𝜀))
]

(6.1)

+ sup
𝐸
(ℎ1 − ℎ2).

If the Hamiltonian does not depend on 𝑥, the final estimate is

sup
𝐸
(𝑢1 − 𝑢2) ≤𝜆 lim inf

𝜀→0

[

(𝛼(𝑥𝜀 − 𝑦𝜀)) −(𝛼(𝑥𝜀 − 𝑦𝜀))
]

+ sup
𝐸
(ℎ1 − ℎ2)

= sup
𝐸
(ℎ1 − ℎ2),

that gives immediately comparison principle. This means that step 1c is partially immediate.
(ii) To bound (6.1) in the non-spatially homogeneous case, we instead need to prove some regularity of the Hamiltonian.

In particular, we need to prove continuity of  using some notions as 𝛤 -convergence. If the Hamiltonian depends only
on 𝑝, continuity, that is step 1b, follows immediately from convexity in 𝑝.
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Appendix. Uniqueness of the stationary measure

We give here the proof of the existence and uniqueness of the stationary measure.
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Proposition Appendix A.1. Under the assumptions of Theorem 2.8, there exists a unique stationary measure of the operator

𝐿𝑥,𝑝𝑢(𝑧, 𝑖) =
1
2
𝛥𝑧𝑢(𝑧, 𝑖) + (𝑝 − ∇𝑥𝜓 𝑖(𝑥, 𝑧)) ⋅ ∇𝑧𝑢(𝑧, 𝑖) +

𝐽
∑

𝑗=1
𝑟𝑖𝑗 (𝑥, 𝑧) [𝑢(𝑧, 𝑗) − 𝑢(𝑧, 𝑖)] .

Proof. First of all, note that 𝐿𝑥,𝑝 is of the type 𝑇𝑥,𝑝 +𝑅𝑥 where 𝑇𝑥,𝑝 is a diagonal matrix with diagonal elements (𝑇𝑥,𝑝)𝑖𝑖 of the type
𝛥 + 𝑝 ⋅ ∇ + 𝑐 and (𝑅𝑥)𝑖𝑖 =

∑𝐽
𝑗=1 𝑟𝑖𝑗 .

Let us consider, for some 𝛿 ∈ R, the operator 𝑇𝑥,𝑝 + 𝑅𝑥 + 𝛿. For the latter operator, Conditions 1, 2 and 3 of [32] hold. Then,
by [32, Theorem 1.1], there exists a unique function 𝛹 ≫ 0 such that (𝑇𝑥,𝑝 + 𝑅𝑥 + 𝛿)𝛹 = 𝜆𝛹 for some 𝜆 > 0. It follows that 𝜆 = 𝛿
and 𝛹 is the identity function. Hence, ker(𝑇𝑥,𝑝 +𝑅𝑥) is one-dimensional and it is spanned by the identity function, i.e., it consists of
onstants. Let 𝑃𝑡 be the semigroup associated to the generator 𝐿𝑥,𝑝. By [11, Corollary V.4.6], 𝑃𝑡 is mean ergodic, that means that

the Cesàro mean

𝐶(𝑟) = 1
𝑟 ∫

𝑟

0
𝑃𝑠 𝑑𝑠,

as a limit 𝑃 ∶ 𝐶𝑏(𝐸′) → 𝐶𝑏(𝐸′) for 𝑟→ ∞. Moreover, by [11, Lemma V.4.2], 𝑃𝑓 ∈ ker(𝐿𝑥,𝑝) for every 𝑓 ∈ 𝐶𝑏(𝐸′).
Let 𝑇 ∶ 𝑐1 ∈ ker(𝐿𝑥,𝑝) ↦ 𝑐 ∈ R. Then, 𝑇 ◦𝑃 ∶ 𝐶𝑏(𝐸′) → R is a linear continuous function on 𝐶𝑏(𝐸′). Then, by Riesz-Representation

theorem, there exists a unique measure 𝜇 such that (𝑇 ◦𝑃 )𝑓 = ⟨𝑓, 𝜇⟩. We show now that 𝜇 is the unique invariant measure for 𝑃𝑡.
or all 𝑓 ∈ 𝐶𝑏(𝐸′) we have

⟨𝑃𝑡𝑓, 𝜇⟩ = (𝑇 ◦𝑃 )(𝑃𝑡𝑓 ) = (𝑇 ◦𝑃 )𝑓 = ⟨𝑓, 𝜇⟩,

here in the second equality we used that 𝑃 = 𝑃𝑡𝑃 = 𝑃𝑃𝑡 = 𝑃 2 (see [11, Lemma V.4.4]). Moreover, if 𝜇∗ is an invariant probability
easure for 𝑃𝑡, let 𝑄 be the projection 𝑄 ∶ 𝑓 ∈ 𝐶𝑏(𝐸′) ↦ ⟨𝑓, 𝜇∗⟩ ∈ ker(𝐿𝑥,𝑝). We show that 𝑃 = 𝑄𝑃 = 𝑄, obtaining then the
niqueness. On one hand, for 𝑓 ∈ 𝐶𝑏(𝐸′)

𝑄𝑃𝑓 = ⟨𝑃𝑓, 𝜇∗⟩ = ⟨⟨𝑓, 𝜇⟩, 𝜇∗⟩ = ⟨𝑓, 𝜇⟩ = 𝑃𝑓.

On the other hand,

𝑄𝑃𝑓 = lim
𝑟→∞

⟨𝐶(𝑟)𝑓, 𝜇∗⟩ = lim
𝑟→∞

⟨𝑓, 𝐶∗(𝑟)𝜇∗⟩ = ⟨𝑓, 𝜇∗⟩ = 𝑄𝑓. □
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