Tm: a code generator for recursive data structures *

C. van Reeuwijk
Delft University of Technology
Faculty of Electrical Engineering
P.O. Box 5031
2600 GA Delft
The Netherlands

Abstract

The transfer of data structures between programs is often carried
out using binary or ad-hoc textual formats. However, this can re-
sult in ambiguous and non-portable file formats. The program ‘Tm’
(for ‘template manager’) prevents these problems by using a textual
representation of the data structures and generating the code to read
and write this representation from an abstract definition of the data
structures. The same program is used to generate code for the simple
data-structure manipulations that are necessary in almost every pro-
gram. At the moment, code can be generated for the programming
languages C, Pascal, Lisp and Miranda. Support for other languages
is easily added.

Keywords: internal representation, interfacing, code generators.

Introduction

The transfer of structured data between programs is often carried out using
binary or ad-hoc textual formats. However, this can result in ambiguous
and non-portable file formats. For example, the Pascal type declaration

record foo x,y: integer; c: char; end;
is ‘equivalent’ to the C type definition

typedef struct { int x, y; char c; } foo;

“Research for this paper was supported by the European Community as part of ESPRIT
project 881 (FORFUN).

This does not imply that it is easy to transfer data in these records and
structures from one language to the other. Facilities that are provided for
this purpose, like get and put in Pascal and fread and fwrite in C are
useless, and may even cause problems if data is transferred between different
implementations of the same language.

An effective way to solve this problem is to introduce a textual represen-
tation of the data. The binary read and write routines can then be replaced
by text printing and parsing routines. It is now necessary, however, to define
a suitable language for this representation; if this is not done properly, it
leads to inconsistency or system dependency.

The program Tm (for template manager) solves this problem by generat-
ing the text printing and parsing routines automatically. Given a description
of the data structures, Tm will generate the appropriate interface code for
a number of programming languages.

Tm code generation is based on templates: source texts for the target
programming language interspersed with text substitution and repetition
commands for Tm. At the moment, Tm can generate code for C, Lisp,
Miranda and Pascal, but code generation for other languages is easily added
by writing the appropriate template.

Data structures for Tm are defined in a special data-structure definition
language inspired by Miranda[l, 2]. The language allows the definition of
tuples (similar to Pascal records and C structures), lists and constructors
(similar to Pascal variant records), and thereby supports a very broad class
of data structures.

Using the templates and the data-structure definitions, code can be gen-
erated to read and write a textual representation of the data structures.
The templates are independent of the data structures: provided that the
data structures are described as tuples, constructors or lists, Tm is able to
generate the appropriate code.

Although Tm was originally designed for the generation of interface code,
it soon became clear that it was useful to let it generate other functions as
well. Some of these functions were necessary for the interface code anyway,
but others were added at the request of the users. The templates for most
languages can generate code for the following functions:

1. List manipulation (append, insert, concatenate).
2. Textual representation interface (read and write).
3. Dynamic memory allocation.

Practice has shown that adding functions beyond this is difficult: the func-
tions to be added are either rarely useful or require interpretation of the
data. For example, a ‘sort’ function would require a comparison function,
and hence interpretation of the data.

Data-structure definition

Both the syntax of the data-structure definitions and the textual represen-
tation of the data structures are derived from the tuple and algebraic types
of the functional programming language Miranda[l, 2]. In fact, it is often
possible to use the textual representation as Miranda source text.

The types that can be defined in the data-structure definition file are
tuple types and a constructor types.

A tuple is a group of elements of fixed length and order. Such a tuple
type is similar to the records of Pascal, the structures of C and the tuples
used in data-base systems. In Tm, a tuple type definition consists of a list
of element types; each element is also given a name. For example,

foo == (x:int, y:int, c:char);

defines a tuple type with element types int, int and char. The element
names are x, y and c.

A constructor type consists of a number of alternative element groups.
Constructor types are convenient for the representation of recursive struc-
tures. For example:

tree ::= Tree v:int l:tree r:tree | TreeNIL;

defines a constructor type.

The words Tree and TreeNIL are used to differentiate between possible
alternatives and are called constructors. The character ‘|’ is used to separate
alternatives. By convention, constructors start with an upper case character,
while type and element names start with a lower case character.

Constructor and tuple elements may be constructors and tuples, but the
elements may also be of any other type. If the type name is not known to
Tm, it is assumed that the type is defined elsewhere; such a type is called a
primitive type. For example, in type tree type int is primitive.

Constructors and tuple elements can also be lists. Such lists can be of
arbitrary length (including length 0). All elements must be of the same
type. To indicate that a list is intended, the type name is surrounded by
square brackets. For example, [foo] is a valid list type. Like constructor
and tuple elements, list elements may be tuples, constructors or elements
of primitive types. However, for implementation reasons Tm does not allow
lists of lists. Thus, [[foo]] is not allowed.

Textual data representation

The type definitions described in the previous section are used as the syntax
of the actual textual representation. For example, an instance of type [fool
is:

(€ 3,5, ’¢c”),(-1, 42, ’7?)]

and an instance of type tree is:

Tree 2 (Tree 6 TreeNIL TreeNIL) TreeNIL
Another instance of type tree is:

TreeNIL

The exact rules for this representation are described in the users’ manual[3].
The representation can be parsed by a simple recursive descent parser.
Such a parser is easily implemented in almost any programming language.

The text substitution language

Tm can generate code to read and write the textual representation described
in the previous section for a number of programming languages. This is done
by providing templates for the various languages that are filled in using the
given data-structure definitions. Templates are source texts for the target
programming language interspersed with text substitution and repetition
commands for Tm. An example of a template is given in an appendix.

The templates for the various languages are implemented using the text
substitution language described in this section. The casual user of Tm is
expected to use only the standard templates that have been prepared for
various programming languages, and needs only limited knowledge of the
text substitution language.

In this paper, the text substitution language is only described superfi-
cially, the defining document is the users’ manual[3].

Tm will copy all text from the template to the output file, with two
exceptions:

1. All lines starting with a period (‘.”) are interpreted as commands to

Tm. They are called line commands. Some line commands ‘bracket’
a number of lines. For example:

L.if 0
True

.else
False
.endif

results in:

False

since Tm interprets 0 as the boolean value ‘false’. There are also line
commands for repetition and file inclusion.

Another important line command is .set. It is used to assign to
variables. For example:

.set blah foo bar

Assigns the words foo bar to the T'm variable blah.

Comment can be included in the template using two periods at the
beginning of the line. For example:

. This is a comment line.

2. Within all lines (both line commands and normal lines), the character
‘$’ indicates the start of an expression that is evaluated by Tm. In the
output the expression is replaced by the result of evaluation.

There are three forms of $ expressions:

1. Expressions of the form ${fn parm ... parm} are function applica-
tions. The first word within the brackets is the function name, the
remaining words are the parameters of the function. Tm provides
functions for type definition access, arithmetic, comparison, list ma-
nipulation, version control, and various other functions. For example:

.set 1 hacbdc

${sort $1}

${uniq $1}

${prod ${len $1} 7}
results in:

abccdh

abcdh

42

An important class of Tm functions is that for data-structure access.
These functions return information about the defined data structures.
For example, ${typelist} returns the list of defined types.

2. Expressions of the form $[expr] are numerical expressions. All the
standard arithmetic operators are available. For example:

$[1+2+3]
results in:
6

3. Expressions of the form $(varname) are variable references. These
variables are set with the line command . set, see above. If the variable
name consists of a single character, the parentheses may be omitted.
For example:

.set bar text
.set z substitution
Tm does $(bar) $z!

results in:

Tm does text substitution!

To see how this language can be used for code generation, a simplified
fragment of the standard C code template is listed in an appendix.

The text substitution language is powerful enough to allow the imple-
mentation of complicated templates. For example, the templates for all sup-
ported languages require that the user supplies a list of wanted functions.
From this list, the functions that are necessary to support these functions is
deduced using the text substitution language.

Applications of Tm

The original purpose of Tm was to provide a well-defined interface between a
parser program for the system description language Glass[4] and a number
of programs that each give an interpretation of the system descriptions.
Tm has proved to be very useful for this purpose, especially since it allows
interpretation functions to be written in several languages. It has also been
used for other, similar applications.

Tm has also been used extensively to define data structures that are only
used within one program. This was done for the following reasons:

e Code that is generated by Tm is well tested. Essentially the same code
(only differing in type names) is used for all data types in all generated
code. Therefore, it has been exposed to a large number of runs in code
that is generated for other programs, and, therefore, has been better
tested than similar code written by hand for the same purpose.

e The generated functions are documented.

e Tm code assists debugging. For example, the C templates of Tm
generate code to count the number of allocations and deallocations
of each particular type, and the origin (source file and line) of the
allocations. This has proven to be invaluable for the detection of
memory leakage (memory allocation not followed by deallocation) and
repeated deallocation of the same memory.

Also, since there is a textual representation, inspection of the data is
easily possible.

e Tm encourages a standard coding style. The standardization of Tm
functions also forces more standardization on the functions that use
the Tm functions. This enhances the clarity of the code.

These advantages have led some users of Tm not to use it to generate inter-
face code, but simply to generate correct and debug-assisting code.

For example, one program that uses Tm consists of about 112500 lines
of C code. Of these lines, 70000 were generated by Tm, the remaining 42500
were written by hand. This code was written in about four months.

Conclusion

By using Tm it is possible to define the format of data files in a flexible way.
The data files that are defined in this way are easily read and written in
any sufficiently powerful programming language, and Tm is able to generate
code for that purpose automatically. The quality of the generated code
is ensured, since it is essentially the same code that is exposed to a large
number of runs for different types in many programs. This makes Tm-
generated code useful even if no interfacing to data files is necessary. If a
template for a programming language is not available, it may be provided
by the user. This is a tedious but simple job.

References

[1] Simon L. Peyton Jones. The Implementation of Functional Programming
Languages. Prentice-Hall, Englewood Cliffs, N.J., 1984.

[2] David Turner. Miranda: A non-strict functional language with poly-
morphic types. In J. P. Jouannaud, editor, Functional programming
languages and computer architecture, volume 201 of Lecture Notes in
Computer Science. Springer-Verlag, 1985.

[3] C. van Reeuwijk. Tm users’ manual. Technical report, Delft University
of Technology, Department of Electrical Engineering, Delft, 1992.

[4] H. Oolman, M. Seutter, and C. van Reeuwijk. Glass, a language for
analog and digital circuit description, and its environment. The EU-
ROMICRO Journal on Microprocessing and Microprogramming, 27(1-
5):267-271, August 1989.

APPENDIX

To illustrate the use of the text substitution language of Tm, this appendix
lists a simplified fragment of the standard C language template. Only the
generation the structure definitions and of the tuple and list output functions
is shown. The code generation will be demonstrated for the following tuples:

tuplea == (na:int, nb:int, s:string);
tupleb == (lbl:string, tl:[tuplea]);

In the example the following line commands are used:

.foreach <var> <val>..<val>
Set variable <var> to each of the values <val> and do a repeated trans-
lation of all following lines up to the next unbalanced .endforeach for
each of these values of <var>.

.if <expr>

Evaluate <expr>. If <expr> is false, only translate all lines between the
following unbalanced .else and .endif. If no .else is encountered,
no translation is done.

If <expr> is

true, translate the following lines up to the next unbal-

anced .else or .endif and if relevant skip all lines between .else

and .endif.

.set <var> <val>..<val>

Set variable <var> to the given list of values.

Also, the following Tm functions are used (remember that in the template
they occur as ${<function> <par> .. <par>}):

typelist

telmlist t

ttypeclass t e

ttypename t e

Return the list of types defined in the data structure
file.

Given a tuple type t, return the list of element names
of that tuple. For a constructor type return an empty
list.

Given a tuple type t and a tuple element name e, return
the type class of that element. Possible type classes
are single and list for a single element and a list of
elements respectively. If t is a constructor type, an error
message is given.

Given a tuple type t and a tuple element name e, return
the type that element. If t is a constructor type, an
error message is given.

The template to generate the data-structure definitions and the output

functions is:

.foreach t ${typelist}
typedef struct str_$t_list *$t_list;

.endforeach

.foreach t ${typelist}
typedef struct str_$t *$t;

.endforeach

.foreach t ${typelist}

struct str_$t {

.foreach e ${telmlist $t}

.if ${eq list ${ttypeclass $t $el}}

${ttypename $t $e}_list $e;
.else

${ttypename $t $e} $e;
.endif
.endforeach

};

struct str_$t_list {
unsigned int sz, room;
$t *arr;

};

.endforeach

/* Forward declarations. */

.foreach t ${typelist}

void fprint_$t(FILE *f, $t t);

void fprint_$t_list(FILE *f, $t_list t);
.endforeach

.foreach t ${typelist}
void fprint_$t(FILE *f, $t t)
{
putc(C >C, £);
.set first 1
.foreach e ${telmlist $t}
Lif $(first)
.set first 0
.else
fputs(",\n", £);
.endif
.if ${eq list ${ttypeclass $t $el}}
fprint_${ttypename $t $e}_list(£, t->%e);
.else
fprint_${ttypename $t $e}(£, t->$e);
.endif
.endforeach
fputs(")\n", £);

.endforeach

.foreach t ${typelist}

void fprint_$t_list(FILE *f, $t_list 1)
{

unsigned int ix;

putc(’[’, £);

for(ix=0; ix<1->sz; ix++){
if(ix!=0) fputc(’,’, £);
fprint_$t(£, 1->arr[ix]);

}
fputs("]\n", £);

.endforeach
The following code will be generated:

typedef struct str_tuplea_list *tuplea_list;
typedef struct str_tupleb_list *tupleb_list;
typedef struct str_tuplea *tuplea;
typedef struct str_tupleb *tupleb;

struct str_tuplea {
int na;
int nb;
string s;

};

struct str_tuplea_list {
unsigned int sz, room;
tuplea *arr;

};

struct str_tupleb {
string 1bl;
tuplea_list tl;
s

struct str_tupleb_list {
unsigned int sz, room;
tupleb *arr;

};

/* Forward declarations. */

void fprint_tuplea(FILE *f, tuplea t);

void fprint_tuplea_list(FILE *f, tuplea_list t);
void fprint_tupleb(FILE *f, tupleb t);

void fprint_tupleb_list(FILE *f, tupleb_list t);

void fprint_tuplea(FILE *f, tuplea t)
{

putc(C >C, £);

fprint_int(£, t->na);

fputs(",\n", £);

fprint_int(£, t->nb);

fputs(",\n", £);

fprint_string(£, t->s);

fputs(")\n", £);

10

void fprint_tupleb(FILE *f, tupleb t)

{
putc(C >C, £);
fprint_string(£, t->1bl);
fputs(",\n", £);
fprint_tuplea_list(£, t->tl);
fputs(")\n", £);
}
void fprint_tuplea_list(FILE *f, tuplea_list 1)
{
unsigned int ix;
putc(>[’, £);
for(ix=0; ix<1->sz; ix++){
if(ix!=0) fputc(’,’, £);
fprint_tuplea(f, 1->arr[ix]);
}
fputs("J\n", £);
}
void fprint_tupleb_list(FILE *f, tupleb_list 1)
{
unsigned int ix;
putc(’[’, £);
for(ix=0; ix<1l->sz; ix++){
if(ix!=0) fputc(’,’, £);
fprint_tupleb(f, 1->arr[ix]);
}
fputs("J\n", £);
}

The functions fprintf_tuplea() and fprint_tupleb() write a textual
representation of a tuple to a file. The functions fprintf_tuplea_list ()
and fprint_tupleb_list() write a textual representation of a list of tuples
to a file. It is assumed that the functions fprint_int () and fprint_string
are provided elsewhere.

The example is a highly simplified version of an actual template for the
following reasons:

e The real templates can generate other functions: allocation and free-
ing of constructors, tuples and lists, with associated administration to
facilitate the detection of memory leakage; input of the textual repre-
sentation; appending, inserting and deleting elements from lists; and
concatenation of lists.

e The template only handles list an tuple types, not constructor types.

11

e All routines are generated for all types. In the real templates only
those routines are generated that are requested by the user or are
used by one of the other routines that are generated.

e Only ANSI C code (as opposed to ‘classical’ C code) is generated.

e In reality, there is a separate template to generate an #include file
with declarations of all functions and data structures that must be
visible outside the generated code file.

12

