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Summary

Nowadays, the numerical errors are decreased to an acceptable level in the sense that
the variability of the model parameters is becoming more important for obtaining results
with higher reliability. Therefore, the focus of this thesis is on the quantification of the
uncertainties of the turbulent closure model k− ǫ. The k− ǫ model is tuned to free shear
flows and used for wall-bounded flows in combination with wall functions. To increase
the reliability of the k − ǫ model for predictions of turbulent flows the uncertainty quan-
tification (UQ) methodology is applied in this thesis. As a test case the external flow over
the airfoil DU96-W-180 is considered.

Hence, the first aim of the thesis is the application of the UQ methodology to the consid-
ered phenomenon. This incorporates the quantification of the uncertainties to the analysis
of the effects of the uncertainties on the desired outputs. In this thesis only the parametric
uncertainty is quantified and the desired outputs are the lift and drag coefficients Cl and
Cd. The uncertainties are efficiently propagated through the k − ǫ model for one- and
five-dimensional analysis with the Probabilistic Collocation (PC) method. The multi-
dimensional analysis is limited to five parameters because of the curse of dimensionality.

From 1-D UQ analysis followed that the discretization error is about 8.3 % and 1.74 % of
the range of the most influential parameters respectively for the lift and drag coefficient.
This illustrates the importance of UQ analysis. Furthermore, the uncertainty in the force
coefficients increases for increasing multi-dimensional analysis and for increasing angles
of attack α.

The second aim of the report is to calibrate the standard k − ǫ model with the experi-
mental data of the force coefficients by employing Bayesian framework with the Markov
Chain Monte Carlo method for the five most influential parameters. For the evaluation of
the standard k − ǫ model the surrogate models obtained from 5-D UQ analysis are used.
The calibrations are performed for the domain of α where the lift curve is linear and by
using varying amount of experimental data.

The calibrations did not yield the expected accurate fit of the numerical simulations to the
experimental data for the desired domain. The main reasons therefore are the presence
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vi Summary

of model inadequacy and the observed discrepancy between the surrogate model and the
numerical simulations especially for high α. However, for α up to five degrees much better
fit is obtained of the numerical simulations to the experimental data.
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Chapter 1

Introduction

Though this be madness, yet there is method in it. William Shakespeare

In the last decades the abundant computational resources are extensively used to decrease
the numerical errors. In that objective a level is achieved where the importance of uncer-
tainty of the model parameters can be more significant than the numerical errors. In usual
engineering the uncertainties that are inherently present in the process are dealt by design
safety factors or knockdown factors. To improve the overall efficiency and reliability of
the design the effect of the uncertainty, like in the model parameters, can be quantified.
Besides, the quantification of the uncertainty can be used to calibrate the mathemati-
cal model in a Bayesian framework. In this thesis the uncertainty quantification (UQ)
analysis and calibration of the model parameters of the standard k − ǫ turbulence model
are performed. Introductory information is given about UQ analysis in Section 1.1. The
considered physical phenomenon to perform these analyses is stated in Section 1.2. The
objectives and outline of this thesis are stated in Section 1.3.

1.1 Uncertainty Quantification

Usually, after representing a physical phenomenon by a mathematical model the model
is solved deterministically. This means that the input parameters are provided as fixed
values to the model. However, almost in every physical problem there are variations,
uncertainties which make it difficult to supply the model only with fixed values. For in-
stance, in real flight the freestream velocity, angle of attack are uncertain due to varying
atmospheric conditions. Production tolerances cause uncertainty in the geometry, in the
physical properties of the material like the stiffness. Besides that, the degeneration of
materials due to wear and tear changes their physical properties. Hence, the presence of
uncertainty is ubiquitous.

1



2 Introduction

Because of the complexity of the mathematical models often engineering problems are
numerically solved like in computational fluid dynamics (CFD). This results in the nu-
merical errors like the discretization and iteration error. The increasing computational
resources of the latest twenty years are mainly utilized to decrease the numerical errors.
At this stage, the level of uncertainty in the parameters can cause higher unreliability
in the quantities of interest than the numerical errors. The reliability of the output can
be improved by knowing the effects of the uncertainties in the output. Therefore, the
uncertainties present in the system have to be quantified. After the uncertainties are
represented by probability density functions (pdf) they need to be propagated through
the mathematical model to analyze the effects on the quantities of interest. Basically,
uncertainty quantification (UQ) incorporates the whole process of uncertainty analysis
from defining and propagating the uncertainty to the stochastic output analysis.

There are different methods available to propagate the uncertainty through the mathe-
matical model. A chronology of the popular methods in this field are the Monte Carlo
method (S. Metropolis & Ulam, 1949), the Galerkin Polynomial Chaos (GPC) method
(Ghanem & Spanos, 1991) and the Probabilistic Collocation (PC) method (Babuska,
Nobile, & Tempone, 2007; G. J. A. Loeven, Witteveen, & Bijl, 2007). The Monte Carlo
method is impractical to CFD problems due to its low convergence rate. The GPC results
in coupled equations. Unlike the GPC the PC method results in decoupled equations for
all kinds of input distributions. The decoupled equations increase the feasibility of UQ
analysis. More information and examples of the PC and the other methods can be found
in the references (G. J. A. Loeven, 2010; Witteveen, 2009; A. Loeven, Witteveen, & Bijl,
2006; G. J. A. Loeven & Bijl, 2008).

1.2 The considered physical phenomenon

The considered physical phenomenon in this thesis is the external turbulent flow over
the airfoil DU96-W-180 (Timmer & Rooij, 2003). Experimental data of the lift coeffi-
cient Cl and the drag coefficient Cd are available for the considered physical phenomenon
for 24 different angles of attack α in the range of [−4.71◦, 14.64◦] at Reynolds number
R = 2 · 106 and Mach number M = 0.15. This phenomenon is numerically solved with
the software OpenFOAM (OpenFOAM Team, n.d.) by employing the Reynolds Averaged
Navier Stokes (RANS) equations and the standard k − ǫ turbulence model as the turbu-
lence closure model. For detailed information about the physics of turbulence and about
turbulence modelling the following sources are suggested (Davidson, 2004; Pope, 1998),
(Bradshwa, Cebeci, & Whitelaw, 1981), (Wilcox, 1994) and (Gatski, Hussaini, & Lumley,
1996).

1.3 Objectives and outline of the thesis

The k−ǫ turbulence model parameters were calibrated to simple free shear flows by using
experimental as well as numerical simulations. The presence of wall is incorporated in
this model by making use of wall functions. Despite this methodology the original values
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of the model parameters are kept the same as for free shear flows. In this thesis the model
parameters of the k − ǫ model and the wall function are assumed to be uncertain. Note
that for wall-bounded flows the terminology standard k − ǫ model or just k − ǫ model
incorporates the standard wall function.

In light of the considered physical phenomenon the aim of this thesis is twofold:

1. Perform uncertainty quantification of the model parameters of the standard k − ǫ
model.

2. Based on the results of the UQ analysis calibrate the standard k − ǫ model param-
eters.

Based on literature research the uncertainties in the parameters are determined by using
analytical relations, experimental data and expert opinion. The standard k−ǫ model and
the determination of the uncertainties in the parameters are reported in Chapter 2.

The k− ǫ model parameters are also assumed uncertain in the thesis of (Platteeuw, 2008)
for UQ analysis. However, there are significant differences between the applied methodol-
ogy and the results of Platteeuw and this thesis. A non-conservative approach is applied
in this thesis in the sense that an attempt is made to find the largest possible dispersive
distribution of the parameters. In Platteeuw’s work some of the parameters are kept
constant or assumed dependent on other uncertain parameters which result in neglecting
uncertainty. Because the employed analytical relations are only valid to some specific flow
and they contain also different uncertain parameters they are not used to define depen-
dency relations between the uncertain parameters in this thesis. Furthermore, Platteeuw
uses a different wall function.

To have a known and low discretization error mesh convergence study is performed in
Chapter 3. For the objectives of the thesis it is important that the discretization error is
not dominant with respect to the effects of the uncertainties.

Subsequently, the defined distributions of the uncertain parameters are used to investigate
the effect of them on the quantities of interest Cl and Cd in Chapter 4. This has been
pursued by propagating the uncertainties separately (1-D) and simultaneously (3-D and
5-D) with the PC method. Two of the seven uncertain parameters are discarded for 5-D
UQ analysis based on the results of 1-D UQ analysis.

To have a better fit of the force coefficients from the simulations to the experimental data
the model parameters of the standard k − ǫ are calibrated. For this purpose Bayesian
Inference (Kennedy & O’Hagan, 2001; Wikle & Berliner, 2006) is applied in combination
with the Markov Chain Monte Carlo method (MCMC) in Chapter 5. For the evaluation
of the standard k − ǫ model the surrogate models are used that are obtained from 5-D
UQ analysis for α 1.45◦, 4.54◦ and 7.61◦. The calibration is performed by employing
varying amount of experimental data from two to six. The calibration may result in a
set of calibrated parameters that eventually results in better match to the experimental
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data of the considered physical phenomenon when numerically simulated. If the results
are satisfying the calibrated parameters might be used to simulate external turbulent flow
over other airfoils for similar conditions of the freestream.

Calibration with the Bayesian framework is applied by (Cheung, Oliver, Prudencio, Prud-
homme, & Moser, 2011) to the Spalart-Allmaras turbulence closure model. Cheung et.
al. did not perform a detailed research to quantify the uncertainties nor did he investigate
the effect of the uncertainties on the quantities of interest. Furthermore, Cheung et. al.
use different model classes to take into account the model inadequacy. That approach is
out of the scope of this thesis.

Finally, the conclusion and the recommendations of this work are stated in Chapter 6.



Chapter 2

Quantification of the parametric

uncertainties of the standard k − ǫ

model

The main objective of this chapter is to quantify the uncertainties in the model parameters
of the k − ǫ model. Therefore, the rational behind the k − ǫ model is discussed starting
from the RANS equations in Section 2.1. Subsequently, the principles of the k − ǫ are
stated in Section 2.2. The distributions of the uncertain parameters are determined in
Section 2.3. The uncertain parameters consist of the core k− ǫ model parameters and the
wall-function parameters. The determined distributions are illustrated at the last page of
this chapter in Figure 2.4.

2.1 Reynolds Averaged Navier-Stokes

Despite the chaotic flow properties of turbulence its statistics indicate a clear mean part
and a fluctuating part around the mean when observed over time. This very important
statistical property of turbulence brought the idea of averaging of the Navier-Stokes (NS)
equations, which govern the motion of the fluid flow (Davidson, 2004). Averaging of the
NS equations yields the Reynolds Averaged Navier-Stokes equations (RANS). The desired
aim of RANS is to obtain the mean properties of turbulent flow. The immediate effect
of obtaining only the mean properties of a flow is the loss of the fine details, however,
averaging simplifies the turbulent flow modelling enormously, at least for engineering
purposes. The idea of averaging is to decompose the state variables in a mean and a
fluctuating part e.g. the velocity vector decomposition yields u = u+ u′, with u the real
velocity field, u is the mean part of the velocity field and u′ is the fluctuation around
the mean. This idea is first introduced by Osborne Reynolds, he came to this idea after
visualizing a turbulent water flow through a pipe (Osborne, 1883a, 1883b; Eckhardt,

5
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2009). Eventually, the RANS equations, the overbars indicate the mean properties, are

ρ(u · ∇)ui = − ∂p

∂xi
+

∂

∂xj

[
τ ij + τRij

]
, (2.1)

where ρ is the density of the flow
[
kg
m3

]

, p is the pressure
[
N
m2

]
, u represents the ve-

locity
[
m
s

]
, τ ij represents the shear stress

[
N
m2

]
for Newtonian fluids its definition is

τ ij = ρν
[
∂ui

∂xj
+

∂uj

∂xi

]

where ν represents the kinematic viscosity
[
m2

s

]

and τRij = −ρu′iu
′
j

represent the Reynolds stresses
[
N
m2

]
.

The Reynolds averaging process leads to a new term namely the Reynolds stresses, in fact
the Reynolds stresses represent the mean momentum fluxes induced by the turbulence.
The Reynolds stresses are unknown, so this averaging process accumulates the unknowns.
There are only four equations available, three momentum equations in x, y, z directions
and the continuity equation. The unknown variables in the RANS equation are velocity
vector, pressure and six Reynolds-stresses. The fact that there are more unknowns than
the available equations is called in the turbulence terminology the closure problem of tur-
bulence. It looks like there is a dilemma, the Navier-Stokes equations are deterministic,
they can give chaotic representation of the velocity field, however, they are too complex
for engineering applications and on the other hand the obtained equations by averaging
of Navier-Stokes leads to the closure problem of turbulence.

The last resource for this dilemma is to model the Reynolds stresses to reduce the number
of unknowns. Therefore turbulence closure models are invented. The eddy viscosity
hypothesis is still the backbone of many engineering turbulence closure models. The first
eddy-viscosity model dates back to 1870s and it is the work of Boussinesq. The main idea
of this work is that Reynolds stresses can be linked to the mean rate of deformation, this
will be further explored in the next section.

2.2 The k − ǫ turbulence model

The Reynolds stresses in the RANS equations can be approximated by the eddy viscosity
hypothesis. This hypothesis is based on the work of Boussinesq and Prandtl. Boussinesq
proposed in 1870 for averaged flows the following expression

τxy + τRxy = ρ(ν + νt)
∂ux
∂y

. (2.2)

The idea of Boussinesq’s work is that the turbulent mixing of momentum is analogous
to the laminar stress τxy, however, the effective viscosity is raised from ν to ν + νt, νt is

called the eddy viscosity
[
m2

s

]

. The Boussinesq expression is of one-dimensional nature,

in three-dimensional form it can be generalized as

τRij /ρ = 2νtSij − (2/3)kδij (2.3)
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where S is the strain rate tensor, S = 1
2

[
∂ui

∂xj
+

∂uj

∂xi

]

. The only undefined term is the

eddy viscosity νt in Boussinesq equation (2.3). A relation for the eddy viscosity is given
by Prandtl

νt = lVT (2.4)

where l is the integral length scale and VT is a suitable measure of the fluctuations in the
velocity. VT is assumed to be equal to

√
k, k is the kinetic energy of the turbulence for

unit mass its dimension is
[
m2

s2

]

. With this assumption the eddy viscosity becomes

νt ∼
√
kl. (2.5)

The idea is that at higher kinetic energy of the turbulence the momentum exchange will
increase and this will lead to larger eddy viscosity. In this phase the relation between the

dissipation rate of the kinetic energy ǫ
[
m2

s3

]

, the velocity and the integral scale can be

utilized

ǫ ∼ u3

l
. (2.6)

Integral scale in the last equation is substituted in the eddy viscosity relation (2.5), which
yields the new form of the eddy viscosity

νt ∼
k2

ǫ
. (2.7)

The k − ǫ model uses the latter eddy viscosity relation in this form

νt = Cµ
k2

ǫ
(2.8)

where Cµ is a constant parameter. The kinetic energy of the turbulence k and the dissipa-
tion rate of the turbulence kinetic energy ǫ are determined from the transport equations
respectively for k and ǫ. The semi-empirical transport equations for k and ǫ are:

Dk

Dt
︸︷︷︸

CD

=
τRij
ρ
Sij

︸ ︷︷ ︸

P

− ǫ
︸︷︷︸

Ds

+
∂

∂xj

[(

ν +
νt
σk

)
∂k

∂xj

]

︸ ︷︷ ︸

Df

(2.9)

Dǫ

Dt
︸︷︷︸

CD

= Cǫ1

τRij
ρ
Sij

ǫ

k
︸ ︷︷ ︸

P

−Cǫ2
ǫ2

k
︸ ︷︷ ︸

Ds

+
∂

∂xj

[(

ν +
νt
σǫ

)
∂ǫ

∂xj

]

︸ ︷︷ ︸

Df

. (2.10)

The terms in the equation (2.9) represents:
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Cµ σk Cǫ1 Cǫ2 σǫ
0.09 1.0 1.44 1.92 1.3

Table 2.1: Standard closure coefficients of k − ǫ model (Launder & Spalding, 1974) .

• CD is the convective derivative of k.

• P is the production of the kinetic energy.

• Ds is the rate of dissipation of the kinetic energy.

• Df is the diffusion term. In the reference (Chen & Jaw, 1998) it is mentioned that
the diffusion term is the only modelled term in the k equation.

The terms in the equation (2.10) represents:

• CD is the convective derivative of ǫ.

• P is the production of ǫ.

• Ds is the dissipation term.

• Df is the diffusion term. This term can be divided into molecular diffusion of ǫ and
diffusion of ǫ. Respectively, the part with ν forms the molecular diffusion and the
part with the νt forms the diffusion of ǫ.

The equations (2.8), (2.9) and (2.10) represent the k − ǫ model and are employed to
calculate the eddy viscosity νt by equation (2.8). A transport model in the form of
k − ǫ model was first proposed by (Harlow & Nakayama, 1968). The presented k − ǫ
model in this section is developed by (Launder & Spalding, 1974). The constants of
the k − ǫ turbulence model are called the closure coefficients, their standard values are
given in Table 2.1. These constants have been tuned by using experimental data as well
as numerical simulations. In the paper of (Launder & Spalding, 1974) it is mentioned
that the simulations and recommendations for free shear flows on the paper (Launder,
Morse, Rodi, & Spalding, 1972) are used to come up with the latest values of the closure
coefficients. Moreover, in the paper of (Launder & Spalding, 1974) it is noted that the
values of the constants are appropriate to plane jets and mixing layers, so basically for
free shear flows. Shear flow is a flow which is predominantly one-dimensional in nature.
Shear flow remote from a wall is called free shear flow. However, almost in all engineering
applications there is a wall present. The standard k − ǫ model can not deal with a flow
in a presence of a wall. To incorporate the presence of a wall in a flow situation wall
functions are employed together with the k − ǫ model. In the next section this approach
is explored.

Nowadays, there are more variants of k − ǫ model. Therefore, sometimes the presented
model in this section is called the standard k− ǫ model. In this thesis, only the presented
k − ǫ model is employed and analysed.
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2.2.1 Wall-bounded flows

The k − ǫ model is only valid for fully developed high Reynolds number turbulent free
shear flows. However, this model is often used to solve engineering applications where
almost always a wall is present. Close to the wall the mean velocity decreases and at the
wall it is zero, i.e. no-slip condition holds. The viscosity becomes the dominant factor
close to the wall. This effect is not incorporated in the standard k − ǫ model. For wall-
bounded flows the effect of the viscosity can not be ignored. In (Salim & Cheah, 2009) the
performance of turbulence models are examined for wall-bounded flows by using different
near wall treatment methods. There it is illustrated that the standard k−ǫ model needs a
wall function. A wall function replaces the model equations close to the wall. To be more
precise about the distance from a wall to a point in a boundary layer the non-dimensional
scale y+ is introduced. The measure in terms of y+ of a distance y from a wall is defined
as

y+ =
V∗y

ν
(2.11)

where V∗ is the friction velocity defined as V 2
∗ = τw/ρ and τw is the wall shear stress.

For turbulent flows the flow close to the wall is divided in three regions (layers). This
division is due to the different dominant stress factors in different layers. Very close to the
wall the viscous effects are dominant and the velocity goes to zero. This layer is called the
viscous sublayer. This layer is also responsible for the high dissipation of the turbulent
kinetic energy. Outside this layer the effect of the viscosity decreases and the Reynolds
stresses increase. When the viscosity effects are negligible Reynolds stresses are the dom-
inant factor and the flow is fully turbulent. This region is called the fully turbulent region
or the log-law region, the latter name comes from its velocity profile. The region between
the viscous sublayer and the log-law region is called the buffer layer, which is a transition
layer from viscous sublayer to the log-law region. The range of each layer is determined
in terms of y+ value, approximate values for each layer are given in Table 2.2 together
with their velocity profiles.

Subdivision Range layer Velocity profile

Viscous sublayer y+ < 5 ux = V 2
∗ y/ν

Buffer layer 5 < y+ < 40 ux/V∗ = f(V∗y/ν)

Log-law region y+ > 40 ux/V∗ = (1/κ) ln(V∗y/ν) +A

Table 2.2: Subdivision of near-wall region (Davidson, 2004).

The standard wall function applied on the k − ǫ model is based on the velocity profile
of the log-law region. Technically, that means that the first cell centre from the wall,
measured in terms of y+, should be in the log-law region. The field between the first
cell centre and the wall is bridged with the standard wall function. So this area is not
solved in the regular way. In this manner the mesh is made coarse near the wall and this
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saves a substantial amount of computational time. At the first cell centre from the wall
named Z the flux of the momentum is supposed to obey the following relation (Launder
& Spalding, 1974; Hanjalic, 2004):

U∗ =
1

κ
lnEy∗ (2.12)

where

U∗ =
UZC

0.25
µ k0.5Z

τw/ρ

y∗ =
C0.25
µ k0.5Z yZ

ν
,

where κ is the von Karman constant, standard used value of it is 0.41, E is an empirical
constant. UZ , kZ , yZ are evaluated at the first cell centre Z. They represent respectively
the mean velocity of the fluid, turbulent kinetic energy and distance from the wall to the
cell centre Z.

The kinetic energy equation is solved for all the grid points. However, adjacent to the
wall the diffusion term is assumed to be zero in the kinetic energy equation (2.9) and
the production and the dissipation of k are computed with a different equation. The
production term in the kinetic energy equation (2.9) is determined with the following
expression

P = τw
∂U

∂y
= τw

τw
κρC0.25

µ k0.5Z yZ
. (2.13)

The dissipation in the k equation is evaluated with

ǫZ =
C0.75
µ k1.5Z

κyZ
. (2.14)

The standard way is not to solve the rate of the dissipation of the kinetic energy equation
(2.10) at the first cell centre Z, instead the previous expression (2.14) is used to calculate
the ǫ.

Boundary conditions imposed to the kinetic energy on the wall is ∂k
∂n

= 0, n is the local
coordinate normal to the wall. This is due to the numerical concerns, it avoids underes-
timation of the kinetic energy and singularity of k.

Note that the presented wall function is developed for not separated flows, separation will
definitely decrease the accuracy of the prediction. And it is assumed that universality
holds for the viscous and logarithmic layer for wall-bounded flows. Meaning that the
scaled velocity is approximately the same for different wall-bounded flows, see Table 2.2.
For wall-bounded flows the standard k− ǫ model consist of the presented k− ǫ model and
the presented wall function.
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2.3 Distribution of the Uncertain Coefficients

The closure coefficients of the standard k − ǫ model were determined by (Launder &
Spalding, 1974) for the plane jets and mixing layers. However, in almost every engineer-
ing problem the flow is bounded by a wall. The presence of a wall is incorporated in the
standard k − ǫ model with the wall-function approach. Nevertheless, the values of the
standard constants are kept the same as for free shear flows. Definitely, this procedure
brings uncertainty in the simulations of engineering applications.

The constant parameters of the k− ǫ model and the employed wall function are assumed
to be uncertain, see for the list Table 2.3. Each parameter from the list is analyzed with
the aim to obtain a distribution for it, the results are presented in the subsections for
each uncertain parameter.

Determining the distributions of the uncertain parameters is part of the uncertainty quan-
tification methodology. The uncertainties are quantified in this section by find an expres-
sion for the parameter if possible, by using data from literature or/and by using expert
opinion. Analytical relations are derived by applying the k − ǫ equations to a known
simple flow. However, it is not possible to derive a relation for each parameter, therefore,
often information from literature is used to determine the distributions. The uncertain
variables in the obtained relations are propagated with the Monte Carlo method. For this
purpose one million random numbers are generated according to the distribution of the
uncertain variable.

Uncertain parameters Present in equation

Cµ Closure coefficient eddy viscosity relation and wall function
Cǫ1 Closure coefficient production term ǫ
Cǫ2 Closure coefficient dissipation term ǫ
σǫ Closure coefficient diffusion term ǫ
σk Closure coefficient diffusion term k
E Smoothness of the wall wall function
κ Von Karman constant wall function

Table 2.3: Parameters of the k− ǫ model and wall function that are considered as uncertain
in this thesis.

2.3.1 Closure coefficient Cµ

A relation can be derived for the k− ǫ model parameter Cµ by considering the boundary
layer region. In the logarithmic (log-law) layer it is assumed that the ǫ is equal to the pro-
duction of k relatively at high Reynolds number, see reference (Durbin & Pettersson Reif,
2011),

ǫ ≈ P. (2.15)
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Figure 2.1: Turbulent kinetic energy budget in a boundary layer. This figure is a copy from
(Durbin & Pettersson Reif, 2011).

The production term is defined as P := −uv ∂U
∂y

and a definition for the Reynolds stress is

−uv := νt
∂U
∂y

. Multiplying the equality (2.15) with the eddy viscosity νt and substituting
the definition of P together with the definition of the Reynolds stress yields

νtǫ ≈ νtP = νt(−uv
∂U

∂y
) = (uv)2. (2.16)

In this phase the turbulence stress to intensity ratio uv/k can be used. In normal cases
its value is assumed to be 0.3. Substituting this ratio in the equation (2.16) yields the
known expression for the eddy viscosity

νt =
(0.3k)2

ǫ
= Cµ

k2

ǫ
. (2.17)

However, the production of k is not exactly equal to the dissipation rate of k in the log
layer. In reference (Durbin & Pettersson Reif, 2011) a turbulent kinetic energy budget is
shown by using DNS data where the behaviour of production and dissipation terms are
illustrated, see for the copy Figure 2.1. The Reynolds number of the boundary layer Rδ of
the DNS data is 5300 which is much smaller than the considered airfoil simulation in this
thesis. This could introduce an uncertainty up to five percent (from an expert opinion 1)
with the considered Reynolds number.

To account for the observed difference between the production and dissipation of k equa-
tion (2.15) is adapted to

P = A · ǫ, (2.18)

where A is defined as N(1, 0.062) to account for the inequality between the production
and dissipation of k.

1Dr. S.J. Hulshoff, TU DELFT
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The consequence of the last equation for the eddy viscosity relation (2.17) is

νt =
(0.3k)2 ·N(1, 0.062)

ǫ
= 0.32 ·N(1, 0.062)

k2

ǫ
. (2.19)

A constant value of 0.3 for the ratio of stress and intensity is used to come up with the
relation (2.17). However, the ratio of turbulence stress and intensity is not constant. In
(Townsend, 2003) the variability of the stress-intensity ratio uv/k is given for a group of
flows, see Table 2.4. In this table distinction is made between large and small pressure
gradients, however, a scale is not given for what small or large gradient is. In the airfoil
simulation a large gradient occurs at the stagnation point. At other places on the airfoil
the gradient is not so large as at the stagnation point. Considering the data in Table
2.4 it can be concluded that the mean value of the ratio uv/k should be smaller than 0.3
which is used in the standard case. In (Davidson, 2004) it is stated that the ratio uv

k
is

about 0.28.

Group of flows uv/k S.D.

All 0.26 0.06
Wall layers with small pressure gradients 0.3 0.08
Wall layers with large pressure gradients 0.16 0.04

Table 2.4: Stress-Intensity ratio for different flow groups from (Townsend, 2003). S.D.
denotes the standard deviation.

In the book written by (Pope, 1998) a graph is given of Cµ as a function of y+, which is
copied in Figure 2.2. That graph is obtained by direct numerical simulation for channel
flows. For y+ > 100 Cµ oscillates around 0.085 with an amplitude of 0.01. Between
y+ > 40 and y+ < 100 Cµ increases from 0.04 to 0.085. For smaller y+ values Cµ de-
creases linearly towards 0.005. Because the wall function is employed approximately at
y+ ≈ 40 the Cµ value for y+ < 40 is not considered in the determination of Cµ. From
the figure follows that Cµ equal to 0.09 is appropriate for flows not to close to a wall, for
flows adjacent to a wall its value should be decreased.

Considering these facts, the input distribution of the stress-intensity ratio is defined as
uv
k

= N(0.27, 0.052). The constant Cµ is then obtained with Cµ = N(0.27, 0.052)2 ·
N(1, 0.062). The values of Cµ in the distribution below 0.04 is truncated because of the
wall function. And to prevent possible errors by applying the PC method the distribu-
tion of Cµ is truncated on the right tail for Cµ ≥ 0.15 where P (Cµ ≥ 0.15) = 0.012. The
truncated distribution of Cµ is depicted in Figure 2.4a.

2.3.2 Closure Coefficient Cǫ2

A relation for the closure coefficient Cǫ2 can be found by assuming a decaying homoge-
neous, isotropic turbulence. The homogeneous turbulence flow means a flow in which the
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Figure 2.2: The profile of Cµ from DNS of channel flow from (Pope, 1998).

statistics are not dependent of position. Isotropic turbulence is a turbulent flow where the
statistical properties of the fluctuations have no directional preference. For the decaying
turbulence the k − ǫ model simplifies to

dk

dt
= −ǫ (2.20)

dǫ

dt
= −Cǫ2

ǫ2

k
. (2.21)

A power law solution is sought for the simplified equations

k =
k0

(t/t0 + 1)n
. (2.22)

Putting the last equation in the simplified equations of the model and after some algebra
an expression for the coefficient Cǫ2 is obtained as a function of the decay exponent n

Cǫ2 =
n+ 1

n
(2.23)

By fitting the curve k = k0(x/x0 + 1)−n through measurements of grid generated turbu-
lence in a wind tunnel, the decay exponent n can be found. For the standard value of Cǫ2

equation (2.23) gives a decay exponent of 1.087. However, in the references (Durbin &
Pettersson Reif, 2011; Pope, 1998) it is stated that the decay exponent has a variability
with a range of 1.3 ± 0.2. In another source (Wilcox, 1994) the decay exponent is given
in a narrower range, n = 1.25±0.06. Which shows the clustering of the decay component
around a mean. (Mohamed & LaRue, 1990) suggest that the decay exponent is clus-
tered around 1.3. In reference (Comte-Bellot & Corrsin, 1966), the values of the decaying
exponent for small changes in the set-up like the mean velocity and the grid layout are
tabulated, see for the copy of the values Table 2.5.
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Mean Velocity [m/s] 10 20 8.5 10 10 20 20
n 1.33 1.27 1.27 1.26 1.25 1.27 1.24

Mean velocity [m/s] 27 10 20 10 20 10 20
n 1.22 1.19 1.18 1.3 1.27 1.33 1.39

Table 2.5: Decay exponent of grid turbulence from (Comte-Bellot & Corrsin, 1966).

From the data in Table 2.5 a normal distribution is defined for n. The obtained distribu-
tion in this way for the decay exponent n is N(1.27, 0.0552) which is in agreement with
the data from other mentioned sources. Subsequently, the distribution of Cǫ2 is obtained
by using the relation (2.23). The left and right tails are truncated due to the applica-
tion of PC method respectively for Cǫ2 ≤ 1.7 and Cǫ2 ≥ 1.9 where the probabilities are
P (Cǫ2 ≤ 1.7) = 0.002 and P (Cǫ2 ≥ 1.9) = 0.002. The truncated distribution of Cǫ2 is
depicted in Figure 2.4b.

2.3.3 Closure Coefficient σǫ

The σǫ constant is present in the diffusion term of the ǫ equation. In the subsection for
Cǫ1 the relation (2.29) is derived for the logarithmic layer where the constant σǫ is present.
However, using that equation with the defined distributions yields convergence problems.
Therefore, expert opinion is used to get a distribution for this constant. In the book of
(Chen & Jaw, 1998) it is mentioned that the value of σǫ is in the range of [1,1.3]. Because
there was no other data about this coefficient that range is used to define the uniform
distribution U(1, 1.3) for σǫ, see Figure 2.4e.

2.3.4 Von Karman constant κ

The Von Karman constant κ is present in the expression that defines the logarithmic
velocity profile near a boundary. Because the presence of κ in the wall function its value
in the log layer is required. Although its name suggest a constant the Von Karman
constant is not constant of nature, in the source (Durbin & Pettersson Reif, 2011) κ is
given in the range 0.41 ± 0.2. In the reference (Osterlund, Johansson, Nagib, & Hites,
2000) κ is investigated along y+, for the desired logarithmic layer its value varies between
0.37 and 0.44. To contain the specified range in the literature for κ a uniform distribution
of U(0.37, 0.44) is defined, see Figure 2.4f.

2.3.5 Closure Coefficient Cǫ1

The standard value of the closure coefficient Cǫ1 is fixed by examining the model be-
haviour for the spreading rate in a plane mixing layer, see reference (Launder, 1972).
The difference between the constants Cǫ2 and Cǫ1 is a measure of the spreading rate of
free shear flows, see (Durbin & Pettersson Reif, 2011). This parameter can be calibrated
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Figure 2.3: The Reynolds shear stress −uv normalized by the wall shear velocity from (Kim
et al., 1987).

by using growth rates of homogenous sheared turbulence in relation with the following
expression

P

ǫ
− 1 =

Cǫ2 − Cǫ1

Cǫ1 − 1
. (2.24)

This relation expresses the growth rate to the excess of the production P to the dissipation
ǫ. However, employing this relation yields convergence problems. Therefore, a different
method is applied to find an appropriate distribution of Cǫ1. An expression is derived for
the logarithmic layer that provides a distribution of Cǫ1.

In the logarithmic layer it is assumed that the production is approximately equal to the
dissipation. This approximation was also used for the determination of the distribution
Cµ. There it is shown that, actually, P = A · ǫ, where A is defined as N(1, 0.062). Fur-
thermore, in the log layer it is assumed that the stress is constant −uv = V 2

∗ and that the
log law can be stated as ∂U

∂y
= V∗

κy
. However, in Figure 2.3 it is shown by using the DNS

results and experimental results that the assumption −uv = V 2
∗ is not true. Actually it is

dependent on y+. The deviation in the constant-stress layer assumption is corrected with
the normal distributed correction term of N

(
0.68, 0.022

)
so −uv = V 2

∗ ·N
(
0.68, 0.022

)
.

Substituting the assumption for the Reynolds stress term in the definition of the produc-
tion term together with the relation for ∂U

∂y
yields

P = −uv
∂U

∂y
= N

(
0.68, 0.022

)
· V

3
∗

κy
. (2.25)

Hence, the relation between the production P and the dissipation ǫ is

P ·N(1, 0.062) = N
(
0.68, 0.022

)
·N(1, 0.062)

V 3
∗

κy
= ǫ. (2.26)
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The eddy viscosity can be written in a different form by using the assumption for the
constant-stress layer and the relation for the ∂U

∂y
. The eddy viscosity gets the form

νt ≡
uv
∂U
∂y

= N
(
0.68, 0.022

)
· κyV∗. (2.27)

The k − ǫ model uses a different form to calculate the eddy viscosity namely νt = Cµ
k2

ǫ
.

This implies together with the equation (2.26) that

N
(
0.68, 0.022

)
· κyV∗ =

Cµk
2y

N (0.68, 0.022) ·N(1, 0.062)V 3
∗

. (2.28)

Solving the latter equation for k gives k =
N(0.68,0.022)·

√
N(1,0.062)V 2

∗√
Cµ

. Substituting the

derived equations for k, νt and ǫ in the transport equation for ǫ (2.10) yields the following
relation

Cǫ2 − Cǫ1 =
N

(
0.68, 0.022

)
κ2

√

N(1, 0.062)σǫ
√
Cµ

. (2.29)

By using the already defined distributions of κ, σǫ, Cǫ2 and Cµ in the latter equation the
distribution of Cǫ1 is determined see Figure 2.4c. The distribution of Cǫ1 is truncated
before applying the PC method at the left and the right tail for Cǫ1 ≤ 1.18 and Cǫ1 ≥ 1.61
with the probability P (Cǫ1 ≤ 1.18) = 0.0054 and P (Cǫ1 ≥ 1.61) = 0.0078.

2.3.6 Closure Coefficient σk

The diffusion in the k equation is modelled with

T = −αt∇k (2.30)

where αt is some unknown diffusivity. In the k equation this diffusivity is taken as
αt = ν + νt

σk
. The constant σk is defined to make the diffusivity flexible, however, in

the most cases σk is assumed to be one. Even in some literature this constant is not
mentioned at all and it is not programmed in the standard version of the OpenFOAM.
In the reference (Chen & Jaw, 1998) the range of this constant is stated between 0.8 - 1.
By using this range a uniform distribution σk = U (0.8, 1) is defined, see Figure 2.4g.

2.3.7 Smoothness parameter E

To take into account the smoothness of the wall, the smoothness parameter E is present
in the standard wall function. This parameter is also inserted in the wall function to have
more control on the wall function and to adapt its value to empirical observations. To see
the effect of variations in this parameter it is assumed to be variable. In the original paper



18 Quantification of the parametric uncertainties of the standard k − ǫ model

where k − ǫ model is explained (Launder & Spalding, 1974) a value of E = 9.0 is stated
for smooth walls, in OpenFOAM and (Fluent, n.d.) the standard programmed value of
E is 9.8. However, what value E should have for rough walls is not stated. The object
in the simulations in this thesis is an airfoil which can be considered as a smooth object.
Because E is also inserted in the wall function to have more control on the wall function
a normal distribution is considered with a standard deviation of one, E = N(9.8, 1). The
distribution of E is shown in Figure 2.4d. On both sides the tails are truncated before
applying the PC method for E ≤ 7 and E ≥ 12.6 with the probabilities P (E ≤ 7) = 0.003
and P (E ≥ 12.6) = 0.003.
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Figure 2.4: The determined distributions of the standard k − ǫ model parameters.
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Chapter 3

Numerical Setup, Deterministic

Simulations and Experimental Data

This chapter forms the numerical/technical bridge to the uncertainty quantification anal-
ysis. To get the desired outputs from the turbulent flow around the airfoil DU96-W-180
numerical simulation techniques are employed. This chapter gives information about the
numerical setup of the simulations and it illustrates the solved state variables around
the airfoil DU96-W-180. The setup of the simulations is explained in Section 3.1. A
mesh convergence study is performed in Section 3.2 to obtain a mesh which results in less
discretization error and affordable computational time. The results of the solved state
variables are presented in Section 3.3 together with the pressure coefficient Cp and the
skin friction coefficient cf . The deterministic numerical results of the lift and drag coef-
ficients for different angles of attack are compared with the experimental data in Section
3.4. As last in this chapter the uncertainties in the experimental data are estimated in
Section 3.5.

3.1 Performing the simulations

The meshes are generated with the software Pointwise and have a circular framework
called the O-type mesh. The simulations are performed with the software OpenFOAM.
OpenFOAM comprises many solvers that are designed to solve specific problems in con-
tinuum mechanics. Besides the solvers, there are utilities available for pre- and post-
processing of the data. The solver that is build to solve the incompressible turbulent flow
by using the RANS equations is the simpleFoam. As stated in the user guide of (Open-
FOAM Team, 2011) simpleFoam is a steady-state solver for incompressible turbulent flow.

The name of the solver simpleFoam is derived from the algorithm that is used to solve
the RANS equations. The algorithm that is used is called the semi-implicit method for
pressure-linked equations (SIMPLE), this method has been developed by (Patankar &
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Spalding, 1972) especially to solve the steady-state problems. The main idea is to apply
a pressure correction formula p = p∗ + p′ where p∗ is the first guess value, hereafter p′ is
determined which is called the pressure correction term. Next, p is updated and p∗ gets
the value of p for the next iteration. The SIMPLE algorithm is explained in detail by
(Anderson, 1995). The underrelaxation technique is used to improve the stability of the
simulation. Further second-order schemes are used for the pressure and the velocity and
first-order schemes are used for the k and the ǫ.

Specification of the boundary conditions for k and ǫ

The boundary conditions for the k and the ǫ are based on some assumptions and re-
lations. The flow in a wind tunnel has turbulent variations. This imperfection can be
measured and it is called the turbulence intensity I. The definition of it is u′

U
, herein u′

is the standard deviation of the turbulent fluctuation and U is the mean velocity. The
experimental data used in this thesis comes from a wind tunnel where the turbulence
intensity of the wind tunnel is given as a function of the freestream velocity in (Timmer
& Rooij, 2003). There is no data available about the real turbulence intensity in case of
turbulent flow around an airfoil. Therefore, the turbulence intensity of the wind tunnel
is used for the simulations. A formula is given in the user guide of (OpenFOAM Team,
2011) to calculate the k just in front of the airfoil

kairfoil = 1.5(V∞
I

100
)2, (3.1)

where V∞ is the freestream velocity. The simulated turbulent flow is of a decaying type.
Thus, the turbulent kinetic energy has to reach the value kairfoil just in front of the airfoil.
The horizontal distance x from the airfoil to the framework of the mesh is used to define
the k∞ at the mesh boundary, see Figure (3.1), with the following formula (Platteeuw,
2008)

k∞ =
kairfoil
x−n

, (3.2)

where n is the decay exponent. The kinetic energy of the decaying turbulence is governed
by the equation V∞

∂k
∂x

= −ǫ. From this equation the ǫ can be obtained at the boundary
of the mesh

ǫ∞ = n · V∞ · k∞. (3.3)

For the initial condition of the ǫ the following relation is used (OpenFOAM Team, 2011)

ǫairfoil =
C0.75
µ k1.5airfoil

l
(3.4)

where l is the turbulent length scale.
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Figure 3.1: View of the numerical setup.

3.2 Mesh Convergence Study

It is important for the UQ analysis that the discretization error is small with respect to
the effects of the uncertainty. Therefore, a convergence study is performed in this section.
Since the partial differential equations (pde) are discretized on discrete points, increasing
grid density will approximate the real solution to the pde more accurately.

The disturbances in an incompressible flow travel in all the directions. Hence, the
freestream conditions should be reached at the boundary of the mesh without intro-
ducing non-physical gradients. Furthermore, the discrepancy between the obtained mesh
and theoretical infinite large mesh should be not too large in the sense that the numerical
errors should not play a role in the UQ analysis. The largest generated mesh, in number
of cells, is assumed as the infinite large mesh. The following two steps are carried out to
obtain a mesh for UQ analysis

1. The distance of the airfoil to the inflow/outflow is determined. This distance is
called the farfield length.

2. The mesh density is increased in overall domain. The effect of the y+ value is
considered by the end choice of the mesh on which subsequent simulations are
performed.

3.2.1 Determination of the Farfield Length

The farfield length can be seen as the distance where the inflow is started with the de-
fined freestream properties to the airfoil. Because the framework of the mesh has almost
a circular shape the farfield length can be considered as the radius of the circle.

The simulations to determine the farfield length are done at a Reynolds number of 3 · 106
and at an angle of attack α of 0.42◦.

The force coefficients Cl and Cd are plotted for varying farfield lengths in Figure 3.2. An
asymptotical convergence can be seen in Figure 3.2 for Cl and Cd. However after about 23
metre there is a small non-convergent behaviour. This can be caused due to the different
boundary conditions for k and ǫ at each mesh. Although the conditions are determined
by the same formula the decay of the turbulence is not exactly the same in each mesh.
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Figure 3.2: Force coefficients as a function of farfield length.

Other reasons for the undesired behaviour are the presence of spacing constraints in the
mesh, the wall function and the different length scales that are solved. Neglecting the
non-convergent behaviour, the farfield length is determined as 20 metre which is 33.3c
where c is the chord of the airfoil which is 0.6 m. From now on the farfield length of the
generated meshes is larger and close to 20 metre. The exact farfield length can not be
specified with Pointwise.

3.2.2 Increasing overall mesh density

The overall mesh density is increased by increasing the grid points along the airfoil and
by decreasing the growth rate of the cells. In this manner the mesh density is increased
in two directions. From now on the simulations are done at Reynolds number 2 · 106,
Mach number 0.15 and angle of attack 1.45◦. There is experimental data available of
fully developed turbulent flow over the airfoil DU96-W-180 for these conditions. Eventu-
ally that experimental data is used for the UQ and calibration analyses of the k−ǫ model.

To see the effect of the y+ value on the result two different kind of meshes are generated.
The difference between these meshes is the distance of the first cell to the wall. One
has a distance of 0.0004m and the other has a distance of 0.0005m to the first cell. The
force coefficients from the simulations are plotted in Figure 3.3 as a function of number
of cells in the mesh. An asymptotical convergence can be seen for both force coefficients
as the total cells increases. However, it is obvious that after almost 1.5 million cells a
total convergence is not reached. The main reason therefore is the different solved length
scales. The result of the largest mesh is assumed to be converged for making further
decisions. The error that is introduced because of this assumption is very small. The
discrepancy of the simulations in absolute percents with respect to the greatest grid are
plotted in Figure 3.4.

Not only the accuracy of the result is important for choosing the right mesh. The com-
putational time is also a decisive factor. Especially in the context of uncertainty quan-
tification the time required to simulate the problem should not be too excessive. The
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Figure 3.3: Force coefficients as a function of total cells.
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Figure 3.4: Discrepancy of the force coefficients with respect to the results of the largest
mesh.
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Figure 3.5: Required computational time to converge.

Figure 3.6: A close-up of the final mesh around the airfoil.

required computational time to have a converged simulation is depicted in Figure 3.5. As
it is expected the required time for convergence increases with increasing mesh density.

The meshes with the different first cell distance show similar convergence behaviour.
However, the y+ values of the meshes with the first cell distance of 0.0005 m are more in
the favourable layer. So, the first cell distance of 0.0005 is used at further simulations.
Considering the discrepancy of the results with respect to the mesh with the largest num-
ber of cells and the computational time the mesh with total cells of 407320 is chosen for
further simulations. Which has a discrepancy of 0.5438 % for Cl and -0.8899 % for Cd

with respect to the largest mesh. A close-up of the selected mesh for UQ analysis around
the airfoil is given in Figure 3.6

The order of the simulations is close to one. This is illustrated in Figure 3.7.

In the previous section it was mentioned that the kinetic energy decays. To confirm this
behaviour k is plotted in Figure 3.8a from the inflow towards the airfoil. The pressure
residual for the converged mesh is shown in Figure 3.8b to illustrate the convergence.
The force coefficients are converged after 16000 iterations. After this iteration number
the pressure residual shows no improvement which also confirms the achieved convergence.
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Figure 3.7: Order of the simulation with respect to the results of the largest mesh which is
denoted as Z in the figure. Exact order one is also illustrated.
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Figure 3.8: The decay of k in (a) and the pressure residual in (b).

3.3 Results from the simulation

The variables that are solved by using the RANS and the standard k−ǫmodel are p, u, k, ǫ
and νt. The solution of those variables are presented in this section for the simulation with
the selected mesh in Section 3.2 at R = 2 · 106, M = 0.15 and α = 1.45◦. The presented
figures give an idea about the correctness of the simulations and familiarize the reader
to the solved problem. The solution of the five state variables are illustrated in Figure 3.9.

The value of the pressure field is relative because the simulation is performed at incom-
pressible flow conditions. The coupling between the pressure and the velocity field is
obvious. Higher intensity of k is observed near the airfoil. In reference (Durbin & Pet-
tersson Reif, 2011) it is mentioned that the k − ǫ model predicts larger k around the
stagnation point, the production term of k (2.9) rises too much near the stagnation point
and the leading edge curvature. The ǫ has very high values just near the airfoil surface.
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Outside this small layer its value decreases towards the normal value of the flow. The
maximum eddy viscosity is present just at the trailing edge and at the flow behind the
airfoil. Behind the airfoil the eddy viscosity dies down slowly.

(a) p (b) u (c) νt

(d) k (e) ǫ

Figure 3.9: The numerical solution of the state variables (a) p, (b) u, (c) νt, (d) k and (e)
ǫ around the airfoil DU96-W-180.

The pressure coefficient Cp and the skin friction cf on the upper and the lower surface
are shown in Figure 3.10. The wiggles on the Cp and cf are mainly caused because of
the piecewise linearly constructed airfoil shape with only 200 points. This is discovered
after the analyses were performed with the current mesh. However, the error in the force
coefficients due to the introduced uncertainty in the airfoil geometry is smaller than 0.05
%. A calculation based on the performed simulation showed that 90 % of the drag is
caused by the pressure.

3.4 Comparison of numerical simulations and experimental

results

The experimental data of the airfoil DU96-W-180 consists of measurements for 24 differ-
ent angles of attack α (also denoted as AoA) in the range -4.71 to 14.64 degrees. The
measurements were carried out on fully developed turbulent flow conditions at R = 2 ·106
and M = 0.15. To compare the experimental data with the deterministic results of the
standard k − ǫ model the turbulent flow over the airfoil is simulated for fifteen different
angles of attack. The experimental data and the results of the numerical simulations for
Cl and Cd and the discrepancy between the experimental and numerical data are plotted
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Figure 3.10: The Cp and cf around the airfoil DU96-W-180.

in Figure 3.11.

First, the experimental results are discussed:

• The lift coefficient varies almost linearly with angle of attack for low-to-moderate
angles of attack. It increases up to 10.15 degrees, from that point the lift coefficient
starts to decrease. Which shows that the airfoil is stalled after an angle of attack
of 10.15 degrees. Stalled airfoil occurs due to the flow separation which occurs
generally at relatively high angles of attack. Stalled airfoil leads to precipitous
decrease in lift and increase in drag.

Secondly, the experimental data is compared with the numerical results:

• The prediction of Cl by the k − ǫ model agrees quite well up to the stalled airfoil.
After the stalled airfoil the lift coefficient continues to increase in the numerical
results. The k − ǫ model has more difficulty with the prediction of the drag coeffi-
cient. Approximately between 5 and 9 degrees it is overpredicting the drag and after
the stalled airfoil the drag does not increase enough to catch up the experimental
results. From the stalled airfoil the discrepancy between the experimental and nu-
merical data grows. Besides, the k − ǫ model has not the ability to account for the
effects of the separation. Neither has the employed wall function the capability to
simulate the separation correctly. Therefore, for the calibration process the stalled
airfoil data is not used.

3.5 Uncertainty in experimental data

The experimental data contains uncertainties which can be caused by many factors like
the small differences in the inlet conditions, measurement errors by the apparatus. For
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Figure 3.11: The experimental and numerical results for Cd and Cl. The discrepancy of the
numerical simulations with respect to the experimental data [%] is shown in
(c).

instance, the experiments with the airfoil DU96-W-180 are carried out two times almost
at the same angle of attack, namely at α 0.42◦ and 0.421◦. Nevertheless, the results have
still different force coefficients which indicate definitely the presence of uncertainties.
These measurements and the polynomial regression analysis are used to make a guess of
the experimental error. Because of the large influence of separation on the results the
regression analysis are carried out for a limited angles of attack of [−4.71◦, 7.61◦] for which
Cl is expected to be linear. The polynomial regression analysis of linear polynomial has
the following form

Y = β0 + β1x+ ǫ (3.5)

where Y is the random variable, x is called the regressor and ǫ is the random error and
β0 and β1 are the regression coefficients. It is assumed that the error term is normal
distributed with mean zero and variance σ2. The method of least squares is used to
estimate the regression coefficients of the polynomial. In matrix form the method of least
squares is

(XTX)β = XTy. (3.6)

β is the matrix with the regression coefficients, X is the regressor and y is the response
variable. X and y are defined in the following form

X =







1 x1 x21 ... xm1
1 x2 x22 ... xm2
1 ... ... ... ...
1 xn x2n ... xmn







y =
[
y1 ... yn

]T
,

where n is the number of data points andm is the order of the polynomial. The polynomial
fitting is performed for orders one to four for the experimental data of Cl and Cd see
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Cl Cd

σ 0.0035 0.0000777

Table 3.1: The standard deviations of the experimental uncertainty.

Figures 3.12a and 3.12b. After the regression coefficients are determined the variance of
the random error can be determined with the equation

σ2 =
SSE

n− p
(3.7)

where p is the dimension of the β matrix (p× 1). SSE is defined as

n∑

i=1

(yi − ŷi)
2 (3.8)

where ŷ represents the result of the fitted polynomial and y is the experimental data.

At two different AoA there are two sets of measurements available. These data is used
to calculate the average variation in the experimental data. In that way obtained exper-
imental variation and the determined standard deviation from the regression analysis for
one to four orders are shown in Figures 3.12c and 3.12d. The standard deviation of Cd

agrees well with the experimental variation for cubic polynomial. The standard devia-
tion of Cl is converged for cubic polynomial which has lower value than the experimental
variation. To certainly capture the value of the experimental variation its value is defined
as the standard deviation of the experimental error of Cl. The standard deviation of the
measurements error of Cd is taken as the standard deviation of cubic regression analysis.
The standard deviations of Cl and Cd of the uncertainty in the experimental data are
summarized in Table 3.1. These standard deviations are used in the calibration process.
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Figure 3.12: Polynomial regression analysis to find the standard deviation of Cl and Cd

from the experimental data.



Chapter 4

Propagating Uncertainty with

Probabilistic Collocation

The next step in the uncertainty quantification (UQ) process is the propagation of the
uncertainties in the model parameters through the k − ǫ model to quantify the effects of
the uncertainties on the force coefficients. For that purpose the Probabilistic Collocation
(PC) method is very appropriate. The derivation of PC method is illustrated in Section
4.1. Subsequently, UQ analysis is performed for one, three and five dimensions (1-D,
3-D and 5-D) respectively in Sections 4.2, 4.3 and 4.4 at α = 1.45◦. 5-D UQ analysis is
performed at the angles of attack of 1.45◦, 4.54◦ and 7.61◦. As a result of the analysis the
response surfaces and the probability density functions of Cl and Cd are presented. For
the 5-D analysis the seven uncertain parameters are reduced to five by discarding the less
influential parameters. There are arisen convergence problems for some of the required
simulations. One example of such a case is illustrated in Section 4.5.

4.1 Probabilistic Collocation method

The uncertainty can be propagated efficiently, especially for not too many uncertain pa-
rameters, with the Probabilistic Collocation method. The PC method is developed by
(Babuska et al., 2007) and (G. J. A. Loeven et al., 2007) independently of each other.
The derivation of the PC method and its properties are stated in this section.

Normally, fixed input values are used to obtain the output of a model. However, by
assuming at least one parameter of a model as random the problem becomes stochastic.
Mathematically, the solution of a stochastic problem is given in this way u (x, t, ω) where x
denotes position, t is time and ω denotes the stochasticity of the solution. The solution is
represented by a polynomial chaos framework which divides the problem in a deterministic

33
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and a stochastic part. The solution by PC method is represented as

u(x, t, ω) ≈
Np∑

i

ui(x, t)Li(ξ(ω)) (4.1)

where Np is the number of collocation points for a polynomial of order p, ξ is the random
basis for number of uncertain parameters and Li represents the Lagrange basis polyno-
mials which are defined as

Li(ξ(ω)) =

Np∏

j=1,j 6=i

ξ(ω)− ξ(ωj)

ξ(ωi − ξ(ωj)
. (4.2)

Very nice property of the Lagrange basis polynomials is that they possess the property of
the Kronecker delta Li(ξ(ωj)) = δij .

The principles of the PC method is demonstrated by using the following general stochastic
differential equation

D (x, t, ω;u(x, t, ω)) = S (x, t, ω) (4.3)

in this equation D is a differential operator, the solution depends on x, t and ω, S
represents a source term and the solution of the problem is u(x, t, ω). Weighted residual
method is applied to get a solution with zero residual for the expanded form of the
solution. The weight function is for this case the Lagrangian polynomial chaos multiplied
with a desired output f(ξ). The source term S is assumed to be not present. The
weighted residual method makes use of the property of the variational principle to define
the following equation

∫ ∞

−∞

D



x, t, w;

Np∑

i

ui(x, t)Li(ξ(w))



Lk(ξ)f(ξ)dξ = 0 ∀ k. (4.4)

The power of the PC method lies in the fact that it uses Gauss quadrature to evaluate
the last given integration. Gauss quadrature is a numerical integration technique which
can integrate polynomials exactly up to 2n−1 order where n is the number of points and
it is defined as

∫ b

a

w(x)f(x)dx ≈
n∑

i=1

wif(xi), (4.5)

where the function f is evaluated at the point xi and the corresponding weight of xi is
wi. Approximating the integration (4.4) with the Gauss quadrature yields the following
summation

N∑

l=1

wlD



x, t, ωl;

Np∑

i

ui(x, t)Li(ξl)



Lk(ξl)f(ξl) = 0. (4.6)
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Incorporating the Kronecker delta property of the Lagrange basis polynomials yields

N∑

l=1

wlD



x, t, ωl;

Np∑

i

ui(x, t)δil



 δklf(ξl) = 0. (4.7)

Again making use of the Kronecker delta property results in

N∑

l=1

wlD (x, t, ωl;ul(x, t)) δklf(ξl) = 0. (4.8)

Finally, the Kronecker delta shows that the last equation should be evaluated for k

wkD (x, t, ωk;uk(x, t)) f(ξk) = 0. (4.9)

For nontrivial solution the last equation can be zero only for u(x, t, ωk) = uk(x, t). Hence,
the PC method results in decoupled realizations of uk(x, t) at the Gauss quadrature points.
The considered physical phenomenon in this thesis is solved in a steady state manner,
therefore, equation (4.1) reduces to

u(ω) ≈
Np∑

i

uiLi(ξ(w)). (4.10)

The PC method results in decoupled set of equations which makes the method non-
intrusive. Non-intrusiveness means that it is not necessary to adapt the code of any
software for uncertainty quantification purposes, which simplifies the UQ analysis enor-
mously. The derivation of the PC method illustrates that for UQ analysis any mathemat-
ical model should be evaluated at the points specified by the Gauss quadrature rule. The
points and their corresponding weights depend on the distribution of a variable. These
values can be determined with the Golub-Welsch algorithm which is explained in the ref-
erences (G. J. A. Loeven, 2010; Witteveen, 2009). After the evaluation of any model at
the specified points the desired response surface can be constructed with equation (4.10).
The required number of collocation points Np to approximate the response surface by
order p is Np = (p+1)d where d is the number of uncertain parameters. For multidimen-
sional UQ analysis the tensor product is applied to the Gauss quadrature points of each
uncertain parameter. The amount of computational work to perform the PC method is
equal to Np deterministic simulations. At high number of uncertain parameters the curse
of dimensionality arises. Especially for computationally expensive problems like in the
field of fluid dynamics the high dimensionality can make the PC analysis intractable. To
reduce the dimensionality of a problem sensitivity analysis can be performed to discard
any uncertain parameter that has less effect on the solution.
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4.2 Separately propagated uncertain parameters

In this section, the effect of the uncertain parameters on the force coefficients Cl and Cd

is investigated by one dimensional UQ analysis. This means that only one parameter is
uncertain at each analysis. The uncertain parameters that are considered for UQ analysis
are Cµ, Cǫ1, Cǫ2, σǫ, σk, E and κ, detailed information about them is given in Table
2.3. These uncertain parameters belong to the standard k − ǫ model for wall-bounded
flows. The physical phenomenon that is considered is the turbulent flow over the airfoil
DU96-W-180. For each uncertain parameter a pdf is defined based on algebraic analysis,
experimental results and/or expert opinions in Section 2.3. The pdf of each parameter
is used to perform the UQ analysis with the PC method. The PC method is performed
for the orders one to six. These analysis correspond with 27 deterministic simulations for
each parameter, hence, in total 189 deterministic simulations are performed for 1-D UQ
analysis. The conditions of the simulations are α = 1.45◦, R = 2 · 106 and M = 0.15.
From the results of these simulations the response curves are constructed for one to six
orders of Cl and Cd. The relative error is determined for the orders one to five to con-
firm the exponential convergence of the simulations. For the sixth order the probability
density function of Cl and Cd are determined. Also their statistical mean µ and standard
deviation σ are calculated at the sixth order.

The relative error of the approximation is calculated by comparing the response curve of
the order p with the response curve of the order p+ 1. The expression to determine the
relative error for order p (Tatang, Pan, Pring, & McRae, 1997; G. J. A. Loeven, 2010) is

εp =

√

1
Np+1

∑Np+1

i=1 wi

(

Cp+1
li − Ĉli

)2

1
Np+1

∑Np+1

i=1 Ĉli

(4.11)

where Np+1 is the number of collocation points for the order p + 1, wi are the Gauss
quadrature weights, Cli represents the lift coefficient Cl and Ĉli denotes the values of Cl

approximated by the response curve of order p at the collocation points of p + 1 order.
The relative error for Cd can be determined in the same way as for Cl by using the values
of Cd in equation (4.11).

The response curves, the relative error and the pdf of Cl and Cd are presented in Figures
4.1 to 4.7 for the seven uncertain parameters.

Readily the statistical quantities mean µ and variance σ2 can be obtained with the PC
method by using the following formula

µ =

Np∑

i=1

uiwi, (4.12)

σ2 =

Np∑

i=1

[

(ui − µ)2
]

wi. (4.13)
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Figure 4.1: UQ analysis with PC method for uncertain Cµ. The response curves, relative
error, pdf, experimental data with its uncertainty and deterministic simulation
of Cl and Cd are presented.
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Figure 4.2: UQ analysis with PC method for uncertain Cǫ1. The response curves, relative
error, pdf, experimental data with its uncertainty and deterministic simulation
of Cl and Cd are presented.
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Figure 4.3: UQ analysis with PC method for uncertain Cǫ2. The response curves, relative
error, pdf, experimental data with its uncertainty and deterministic simulation
of Cl and Cd are presented.
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Figure 4.4: UQ analysis with PC method for uncertain σǫ. The response curves, relative
error, pdf, experimental data with its uncertainty and deterministic simulation
of Cl and Cd are presented.
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Figure 4.5: UQ analysis with PC method for uncertain σk. The response curves, relative
error, pdf, experimental data with its uncertainty and deterministic simulation
of Cl and Cd are presented.
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Figure 4.6: UQ analysis with PC method for uncertain E. The response curves, relative
error, pdf, experimental data with its uncertainty and deterministic simulation
of Cl and Cd are presented.
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Figure 4.7: UQ analysis with PC method for uncertain κ. The response curves, relative
error, pdf, experimental data with its uncertainty and deterministic simulation
of Cl and Cd are presented.
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The standard deviation σ is the square root of the variance. The mean and the standard
deviation of the pdf’s for the uncertain parameters are determined at the sixth order
approximation and tabulated in Table 4.1. The coefficient of variation CV

CV =
σ

µ
(4.14)

for each parameter is calculated to have a dimensionless quantity about the dispersion of
the Cl and Cd, see Table 4.2.

Observations from the results

The relative errors are decreasing for increasing order for all the response curves of the
uncertain parameters. Only for the response curve of Cd for uncertain Cǫ2 a small increase
is observed in the relative error for the fourth order. The main observation is that the
drag coefficient is more sensitive to the applied uncertainty than the lift coefficient. For
Cd the most influential parameters are Cµ, Cǫ1 and κ. The parameter Cµ is proportional
to the eddy viscosity νt, Cǫ1 is present in the production term of ǫ and κ is present in
the wall function. The most influential parameters for Cl are Cµ, Cǫ1, Cǫ2 and κ. The
parameter σk has almost negligible effect on the force coefficients. The discretization
error, which is 0.5438 % for Cl and -0.8899 % for Cd can be compared with 6 · CV to
notice the importance of UQ analysis, note that 6·CV captures 99.7 % of the distribution.
The discretization error is 8.3 % and 1.74 % respectively for Cl and Cd of the range of
the pdf’s of Cµ Cl and Cǫ1 Cd.

Parameter
Cl Cd

µ σ µ σ

Cµ 0.4415430570 0.0048409934 0.0121882539 0.0005827331

Cǫ1 0.4439190276 0.0043111502 0.0127764787 0.0008526840

Cǫ2 0.4337857816 0.0038759657 0.0118629137 0.0001776686

σk 0.4442072196 0.0003220107 0.0125415285 0.0000094980

σǫ 0.4436463584 0.0006019471 0.0123567540 0.0001012472

κ 0.4456758321 0.0037309947 0.0123774769 0.0005839866

E 0.4446196874 0.0012640659 0.0125396060 0.0001987166

Table 4.1: The mean and the standard deviation of Cl and Cd for the uncertain parameters,
determined at sixth order of approximation.

4.3 Simultaneously propagated three uncertain parameters

In previous section UQ analysis is performed by propagating the uncertainty separately
for the seven uncertain parameters. In this section based on the results of 1-D UQ anal-
ysis three uncertain parameters are selected from the core k − ǫ model parameters to
perform simultaneously UQ analysis. Therefore, the most influential parameters on the
force coefficients Cµ, Cǫ1 and Cǫ2 are chosen from the five core k − ǫ model parameters.
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Parameter
CV [%]

Cl Cd

Cµ 1.0963808146 4.7811044567

Cǫ1 0.9711568748 6.6738577615

Cǫ2 0.8935206872 1.4976812885

σk 0.0724910975 0.0757321116

σǫ 0.1356817346 0.8193673895

κ 0.8371543721 4.7181390824

E 0.2843027326 1.5847118057

Table 4.2: Coefficient of variation of the distributions of Cl and Cd for the seven uncertain
parameters.

The discarded parameters σǫ and σk have the least influence on the force coefficients
from the seven uncertain parameters. In this way the combined effect on the solution is
investigated. The three-dimensional (3-D) UQ analysis is performed for the orders one to
four. This requires respectively 8 + 27+ 64+ 125 = 224 deterministic simulations. There
is one simulation not converged among the third order simulations and there are three
simulations not converged among the fourth order simulations. Especially that is the case
for low value of Cµ combined with a low difference between Cǫ2 and Cǫ1. Still to have
reasonable outputs for the not converged simulations they are predicted with the kriging
method. Kriging uses the available data to predict the value at the unobserved location.
Therefore is the Matlab toolbox DACE (IMM-TR-2002-12, 2002) used.

The relative error and the standard deviation for orders one to three are depicted in
Figure 4.8. The decrease of the relative error for increasing order for Cl is lower than
the decrease in relative errors for Cµ, Cǫ1 and Cǫ2 for 1-D UQ. It is important that the
relative error is negligible compared to the standard deviation of the distribution to have
negligible effects of the approximation error on the solution. A factor of ten between the
standard deviation and the relative error is acceptable. If only the standard deviation is
considered to decide which order is acceptable for further analyses then for Cl the second
order and for Cd the third order are acceptable.

The probability density function of Cl and Cd are determined at the fourth order approx-
imation. The pdf of the force coefficients, the experimental value with its uncertainty and
the outcome of the deterministic simulation are illustrated in Figure 4.9. The uncertainty
in the experimental value is shown with the three-sigma rule which incorporates 99.7 % of
the possible experimental measurement. Note that the deterministic simulation indicates
the numerical simulation with the standard values of the model parameters. The pdf of Cl

has a very long left tail, however, the probability that Cl < 0.3 is very small. The distri-
bution of the experimental data is inside the stochastic response. The standard deviation
of the experimental data is 18.5 % and 8.3 % respectively of the standard deviations of
Cl and Cd. The coefficients of variation are calculated from the fourth polynomial order.
These are for Cl 4.43 % and for Cd 8.01 %. The combined effect of the three uncertain
parameters on the Cl as well as on the Cd is much larger than the CV for separately
propagated uncertainties. The statistics of the pdf for the force coefficients as a result
of three-dimensional UQ analysis are summarized in Table 4.3 for the fourth order of
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Figure 4.9: The pdf of (a) Cd and (b) Cl as a result of 3-D UQ analysis with the uncertain
parameters Cǫ1, Cǫ2 and Cµ, obtained at the fourth order. The experimental
data with the three-sigma rule and the outcome from the deterministic simula-
tion are shown as well.

approximation.

The response surfaces from the fourth order approximation are plotted in Figure 4.10 for
Cd and Cl by reducing the variables to two by keeping Cµ constant at each figure. There
are five collocation points for the fourth polynomial order that is the reason of the five
subfigures. The large variation in Cl is located in a small area in the Cǫ1 and Cǫ2 plane.

4.4 Simultaneously propagated five uncertain parameters

Because of the curse of dimensionality the final UQ analysis is performed by propagating
the uncertainty simultaneously only in five parameters. Therefore, two uncertain param-
eters which have small effect on the solution are discarded from the UQ analysis. The
most influential five parameters are determined based on the coefficient of variation from
the 1-D UQ analysis, see Table 4.2. Hence, the most influential five uncertain parameters
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µ σ CV [%]

Cd 0.011723791 0.000938852 8.008
Cl 0.426325374 0.018868536 4.426

Table 4.3: Statistics of the pdf from 3-D UQ analysis for the fourth polynomial order.
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Figure 4.10: The response surfaces of Cd and Cl from 3-D PC analysis obtained at the
fourth order, in each subfigure Cµ is constant.
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µ σ CV [%]

α = 1.45◦

Cd 0.011600718 0.001079582 9.306
Cl 0.427247309 0.020524388 4.804

α = 4.54◦

Cd 0.014354805 0.001464606 10.20
Cl 0.744055135 0.043421038 5.84

α = 7.61◦

Cd 0.020304288 0.002629112 12.95
Cl 1.005712914 0.100426089 9.99

Table 4.4: The statistics of the pdf’s from 5-D UQ analysis for AoA of 1.45◦, 4.54◦ and
7.61◦.

on the force coefficients are Cµ, Cǫ1, Cǫ2, E and κ. The order of the approximation of
the response surfaces are based on the previous results of UQ analysis and the available
computational resource. The curse of the dimensionality plays a huge role at this stage,
therefore, low orders of approximation are preferred.

Third order approximation is chosen for the two most influential parameters on the force
coefficients Cµ and Cǫ1. For the other three parameters Cǫ2, E and κ second order approx-
imation is employed. For these order of approximations the total number of deterministic
simulations required to propagate the uncertainty simultaneously with the PC method is
432. The five dimensional UQ analysis is performed for three different angles of attack
namely 1.45◦, 4.54◦ and 7.61◦. The range with separation is avoided. As a result of this
analysis the pdf of Cl and Cd are presented for the AoA 1.45◦, 4.54◦ and 7.61◦ in Figure
4.11. The mean, standard deviation and the coefficient of variation of these pdf’s are
given in Table 4.4.

There are 5, 18 and 51 simulations not converged from the numerical simulations respec-
tively at AoA of 1.45◦, 4.54◦ and 7.61◦. The outputs of these simulations are predicted
with the kriging method. This introduces uncertainty in the response surfaces, however,
the introduced uncertainty is mainly located in the tails of the pdf’s. The discretization
error is 11.8 % and 10.7 % of the standard deviation of the pdf for α = 1.45◦ respectively
for Cl and Cd. This illustrates the negligible effect of the discretization error compared
to the effects of the uncertainty. The CV of the pdf’s for 5-D UQ are larger than for 3-D
UQ analysis at α = 1.45◦. For increasing AoA an increase in the CV is observed for both
the force coefficients.

4.5 Convergence problems

Some of the simulations for the UQ analysis did not converge. The reason therefore is that
the changed model parameters are not able to simulate the flow accurately. Especially, the
simulations do not converge for low value of Cµ combined with a low difference between
Cǫ2 and Cǫ1. Actually, from the results appeared that the model creates separation at
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Figure 4.11: The pdf of the response surface of Cd and Cl as a result of 5-D UQ analysis with
the uncertain parameters Cǫ1, Cǫ2, Cµ, κ and E for the AoA of 1.45◦, 4.54◦

and 7.61◦. The experimental data and its 3σ and deterministic simulation
result are depicted as well.
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the trailing edge on the upper surface. To show this behaviour results from one of the
not converged simulations are illustrated in Figure 4.12.



Chapter 5

Bayesian Calibration

The second main objective of this thesis is to calibrate the standard k − ǫ model param-
eters to the experimental data of the turbulent flow over the airfoil DU96-W-180. The
calibration is performed for the parameters Cµ, Cǫ1, Cǫ2, κ and E. The parameters σǫ
and σk were discarded because of their negligible influence on the force coefficients. The
calibration is performed with the Bayesian Inference/Calibration method in combination
with the Markov Chain Monte Carlo (MCMC) method. These are explained respectively
in Sections 5.1 and 5.2. The standard k− ǫ model is evaluated with the surrogate models
that are built in Section 4.4 for AoA 1.45◦, 4.54◦ and 7.61◦. In Section 5.3 the Bayesian
inference is applied for the AoA 1.45◦, 4.54◦ and 7.61◦ by using two experimental data of
the corresponding α. Hereafter, the model parameters are calibrated by using the max-
imum available data which is six. However, because the model could not be calibrated
accurately for this case two other calibrations are performed by employing four and five
experimental data. These calibrations can be found in Section 5.4. Subsequently, the
calibrated sets presented in Section 5.4 are used to simulate the considered phenomenon.
The results of these simulations are presented and discussed in Section 5.5.

5.1 Bayesian Inference

The civilisation of today is based on learning new facts which eventually helps each person
in making wise decisions. The way each person acts is in this way influenced positively by
gathering new information. Besides that, one’s decision is constantly influenced by new
learned information. For instance, going on holiday may depend on the new gathered
information about the weather conditions. Frequently, new information is in this way
used to update an old decision. A similar thought can also be conducted in mathematics.
Usually, a mathematical model of a physical system is developed to predict the desired
outputs, also called the quantities of interest like the force coefficients. Running the model
for the same inputs will produce the same values as output. The method of prediction of
the desired outputs in this way is called the forward modelling. If the model does not meet
the expectations the model can be partially changed by adding/removing extra terms or

51
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completely changed by developing a new mathematical model. A third way between these
options is to adapt the model parameters by using the measurements of the observable
parameters. Making use of the measurements of the observable parameters to improve
the existing model of a physical system is called the inverse modelling.

The framework used for calibration in this chapter is called the Bayesian inference which
is based on the Bayes’ rule ((Montgomery & Runger, 1994)), named after the English
mathematician Thomas Bayes. The Bayes’ rule is derived from the conditional probability.
The conditional probability of the events A and B is

P (A|B) =
P (A ∩B)

P (B)
, (5.1)

where P (B) is the probability of the event B. The probability P (A|B) indicates the
conditional probability of the event A given that the event B has occurred. P (A ∩ B)
represents the intersection probability of the events A and B. In the same manner the
probability P (B|A) can be calculated

P (B|A) = P (A ∩B)

P (A)
, (5.2)

where P (A) is the probability of the event A. Because the probability of the intersection
of two events is the same irrespective of the order the following relation is obtained

P (A|B)P (B) = P (B|A)P (A). (5.3)

The probability P (A|B) can then be calculated as

P (A|B) =
P (B|A)P (A)

P (B)
, (5.4)

which is called the Bayes’ rule/theorem. Bayes’ theorem can be used to calibrate a model
to experimental data. This methodology is called the Bayesian calibration/inference. In
the calibration process the probability P (B) is often to difficult to calculate and because
it acts only as a normalizing term independent of A it is left out from the relation. Intro-
ducing the model parameter vector θ and the vector containing the observable parameters
data d Bayesian inference becomes

P (θ|d) ∝ P (d|θ)P (θ). (5.5)

P (d|θ) is denoted as the likelihood which is the probability that the model will predict
the data d given the parameters θ. In this context P (θ) is called the prior. The prior
is the uncertainty in the model parameters before the observations. For instance, in a
mass force relation model the distribution of the measurements of mass can be used as
the prior. P (θ|d) denotes the posterior probability of θ given the data d.
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5.1.1 Bayesian calibration of the k − ǫ model parameters

In this thesis the inverse modelling is applied to fit the experimental data of force coeffi-
cients to the force coefficients as outputs of the simulated turbulent flow over the airfoil
DU96-W-180. The mathematical model consists of the RANS equations with the stan-
dard k − ǫ model.

The statistical model that is considered for the Bayesian calibration is

d = m(θ) + e, (5.6)

where m(θ) denotes the model to calculate the quantities of interest with the model pa-
rameters θ, e is the observational uncertainty of the observable parameters and d denotes
the observable parameters. The observable parameters and the quantities of interest of
the model m(θ) are the force coefficients Cl and Cd in this thesis. The measurement error
is assumed to be normal distributed with mean zero and the standard deviation is deter-
mined from the measurements of Cl and Cd in Section 3.5. The employed model (5.6)
indicates that an observable parameter can be obtained from the mathematical model
plus the experimental uncertainty. So, the model is assumed to have no model inade-
quacy.

The quantities of interest from the standard k− ǫ model are obtained by using surrogate
models. The surrogate models of Cl and Cd are built in Section 4.4 for the angles of at-
tack 1.45◦, 4.54◦ and 7.61◦ for the five most influential uncertain parameters on the force
coefficients. These are Cµ, Cǫ1, Cǫ2, E and κ. For the mentioned AoA there are in total
six experimental data and six surrogate models available. The priors of the parameters
are determined in Section 2.3.

The likelihood term in formula (5.5) is not explicitly defined. The statistical model (5.6)
is used to define the likelihood in the following manner with p denoting the probability
density function

p(d|θ) = p(e) = p(d−m(θ)) ∝ exp

{

−(d−m(θ))2

2σ2

}

, (5.7)

where the σ denotes the standard deviation of the experimental error, note that the
experimental uncertainty in equation (5.5) is known. For multiple data n the likelihood
term takes the following form

n∏

i=1

exp

{

−(di −mi(θ))
2

2σ2
i

}

. (5.8)

The data used for the calibration consist of the force coefficients Cl and Cd. The Bayesian
calibration in terms of the force coefficients can be formulated as

p
(
θ|dCl,i

, dCd,j

)
∝ Li

(
dCl,i

|θ
)
Lj

(
dCd,j

|θ
)
p (θ) (5.9)
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where L is the likelihood term, i and j denote the number of data used in the calibra-
tion process. First, the model parameters are calibrated for the three mentioned AoA
separately, by using the force coefficients at that α. Hereafter, the model parameters are
calibrated by using more than two experimental data by combining the data at the three
AoA. The set of parameters that maximizes the p(d|θ) is determined for each calibration.

The posterior distribution of the parameters can be obtained by applying the Bayesian
inference (5.5) in combination with Markov Chain Monte Carlo method which is the
subject of the next section.

5.2 Markov Chain Monte Carlo

The calibrated posterior distributions of the model parameters can be numerically ob-
tained with Markov Chain Monte Carlo method (MCMC). MCMC is a Monte Carlo
based method with a special sampling technique that has the Markov property. Essen-
tially, Markov property means that the next generated number for a variable is only
dependent on the current value of that variable. The next value of a parameter is gener-
ated from a distribution called the proposal distribution. In that way generated sequence
of numbers is called Markov Chain. The generated sequence of numbers for sampling from
the posterior distribution in this thesis is based on the Metropolis Sampler (N. Metropo-
lis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953). The procedure of the Metropolis
Sampler, which consists of five steps, is explained for one variable as follow:

1. Initialize a value Xt for the variable and start with t = 1.

2. Based on the previous value of the variable generate a candidate point C from a
proposal distribution.

3. Evaluate the current value and the candidate point C of the variable with the
Bayesian inference formula 5.5. Subsequently calculate a measure for the correctness

of the value C with respect to the current value with α(Xt, C) = min
{

1, π(C)
π(Xt)

}

,

where π represents the evaluation of the Bayesian inference.

4. Generate a value U from a uniform distribution U(0, 1). Compare α and U : if
U ≤ α accept the candidate point C and set Xt+1 = C else reject the candidate
point and set Xt+1 = Xt.

5. Set t = t + 1 to go to the next step in the Markov chain and repeat steps 2 to 5
until a sufficient t steps have been done.

Metropolis sampler examines the proposal and makes sure that it can be part of the
posterior distribution only if it meets the Bayesian inference check. The proposal function
to generate a candidate C is assumed to be normal distributed with the mean Xt and
an appropriate standard deviation. Because there are more than one model parameters
present the same procedure is applied in the same loop to each model parameter θ and
each parameter has its own proposal function. The first steps in the chain are discarded
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for obtaining the posterior distributions. Because in begin the method is searching the
right path. The discarded amount of steps is called the burn-in period, which is specific
to each problem. The used burn-in period in this thesis has at least four digits. More
information about the MCMC method and the sampling technique can be found in the
lecture notes of (Walsh, 2004).

5.3 Calibration by using two experimental at a specific AoA

The calibrations are performed separately for the AoA 1.45◦, 4.54◦ and 7.61◦ by using
one experimental data of Cd and one experimental data of Cl. The posterior and the
prior pdf’s of the force coefficients for the mentioned AoA are presented in Figure 5.1.
The standard k− ǫ model is correctly calibrated to the employed experimental data. The
posterior distributions of each uncertain parameter and the two dimensional marginal
distributions are shown in Figures 5.2, 5.3 and 5.4 respectively for AoA 1.45◦, 4.54◦ and
7.61◦. At α is 1.45◦ and 4.54◦ the posteriors of the uncertain parameters are not well
informed by the calibration. They have generally normal distributions with large standard
deviations. At α = 7.61◦ especially κ and Cµ are well informed by the calibration. The
dependency between the marginal distributions of some of the parameters can be observed,
for instance Cµ and Cǫ1 are dependant on each other. The set of the model parameters
that maximizes the p(d|θ) for three AoA are given in Table 5.1.

α = 1.45◦ α = 4.54◦ α = 7.61◦

Cµ 0.064838581232235 0.062843326004833 0.045569293680172

Cǫ1 1.446778176122390 1.474144640778667 1.450359562897191

Cǫ2 1.784840284059740 1.780602820025083 1.789552703990991

E 9.707624032319995 9.719702135853517 10.250712875283829

κ 0.423731263070804 0.397253048073403 0.370117542537733

Cl 0.422391308595715 0.736106520933257 1.015428752370740

Cd 0.011545899252120 0.013089049538845 0.016503410620547

Table 5.1: The set of parameters that maximizes the p(d|θ) and the corresponding Cl and
Cd for three AoA.

5.4 Combined calibrations at AoA 1.45◦, 4.54◦ and 7.61◦

The previous calibrations illustrated that the calibration process works well for one angle
of attack with the experimental data of Cl and Cd. However, the main objective is to
obtain one set of parameters that can predict the experimental data at different AoA.
Therefore, the available six surrogate models and six experimental data for the AoA 1.45◦,
4.54◦ and 7.61◦ are employed to calibrate the model parameters. Hereafter, the calibration
is performed by employing four and five experimental data. The reason therefore will be
clear at the discussion of the results. The pdf’s of the prior and the posterior distributions
for the calibration with six, four and five experimental data are respectively illustrated in
Figures 5.5, 5.6 and 5.7.
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Figure 5.1: Posterior and prior pdf’s of Cl and Cd at three different AoA.



5.4 Combined calibrations at AoA 1.45◦, 4.54◦ and 7.61◦ 57

0.05 0.1 0.15
Cµ

Posterior distribution Cµ

(a) Cµ

Cµ

C
ε 

1

 

 

0.05 0.1 0.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

10

20

30

40

50

60

70

80

90

(b)

1.2 1.3 1.4 1.5 1.6
Cε 1

Posterior distribution Cε 1

(c) Cǫ1

Cµ

C
ε 

2

 

 

0.05 0.1 0.15
1.7

1.75

1.8

1.85

1.9

10

20

30

40

50

60

70

80

(d)

Cε 1

C
ε 

2

 

 

1.2 1.3 1.4 1.5 1.6
1.7

1.75

1.8

1.85

1.9

20

40

60

80

100

120

(e)

1.7 1.75 1.8 1.85 1.9
Cε 2

Posterior distribution Cε 2

(f) Cǫ2

Cµ

E

 

 

0.05 0.1 0.15
7

8

9

10

11

12

5

10

15

20

25

30

35

40

(g)

Cε 1

E

 

 

1.2 1.3 1.4 1.5 1.6
7

8

9

10

11

12

5

10

15

20

25

30

35

40

45

50

(h)

Cε 2

E

 

 

1.7 1.75 1.8 1.85 1.9
7

8

9

10

11

12

10

20

30

40

50

60

(i)

7 8 9 10 11 12
E

Posterior distribution E

(j) E

Cµ

κ

 

 

0.05 0.1 0.15
0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

10

20

30

40

50

60

70

80

(k)

Cε 1

κ

 

 

1.2 1.3 1.4 1.5 1.6
0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

10

20

30

40

50

60

70

80

90

100

(l)

Cε 2

κ

 

 

1.7 1.75 1.8 1.85 1.9
0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

20

40

60

80

100

120

(m)

E

κ

 

 

7 8 9 10 11 12
0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

10

20

30

40

50

60

(n)

0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44
κ

Posterior distribution κ

(o) κ

Figure 5.2: Posterior distributions of the uncertain parameters and the 2-D marginal dis-
tributions are presented respectively at the diagonals and off-diagonals for
α = 1.45◦.
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Figure 5.3: Posterior distributions of the uncertain parameters and the 2-D marginal dis-
tributions are presented respectively at the diagonals and off-diagonals for
α = 4.54◦.
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Figure 5.4: Posterior distributions of the uncertain parameters and the 2-D marginal dis-
tributions are presented respectively at the diagonals and off-diagonals for
α = 7.61◦.
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The fit to the experimental data by the calibration with the six experimental data is not
accurate. Only for the distributions at α = 4.54 it is accurate. The main reason for the
incapability of the model parameters to predict the experimental data at those AoA is the
experimental data of Cd at α = 7.61◦. This experimental data lies just on the left tail of
the prior distribution of the Cd. Therefore, the calibration is performed again but now by
discarding the experimental data at α = 7.61◦ from the calibration process. Hence, the
calibration is performed with four experimental data at the AoA 1.45◦ and 4.54◦. The
distributions at α = 7.61◦ are predicted with the calibrated parameters. The results of the
calibration with four experimental data are accurate for AoA 1.45◦ and 4.54◦. However,
the predicted results of α = 7.61◦ are not accurate. As last the calibration is performed
by only discarding the experimental data of Cd at α = 7.61◦ which proves that the main
source of the error is this data. This data is the error in the sense that the k−ǫ model has
difficulty with predicting this quantity. For the last performed calibration the posteriors
of the force coefficients for the calibrated data are good. The predicted distribution of Cd

at α = 7.61◦ is not accurate.

The posterior and 2-D marginal distributions of the uncertain parameters are presented
in Figures 5.8, 5.9 and 5.10 respectively for the performed calibration with six, four and
five experimental data. For the calibrations with six and five experimental data the pa-
rameters Cµ, Cǫ1 and Cǫ2 are well informed by the calibrations. The calibration with
six experimental data yields peculiar distributions for κ and E. And κ and E are less
informed by all the calibrations presented in this section.

Remarkably, the starting points for the calibration with the MCMC algorithm have influ-
ence, especially, on the posterior distributions of the model parameters. This is illustrated
in Figure 5.11. Therefore, the calibrations with the six experimental data are carried out
again with 25 different starting points to obtain the comprehensive posterior distribution
of the model parameters. In this way obtained comprehensive posterior distributions of
the force coefficients and the model parameters from the calibration with six experimental
data are respectively illustrated in Figures 5.12 and 5.13. The posterior distributions of
the model parameters illustrate that there are more distinct sets of parameters to calibrate
the model to the experimental data. The posterior distributions of the force coefficients
indicate that there are differences between the used set of parameters in predicting the
force coefficients, however, these differences do not result in more accurate predictions of
the experimental data.

The set of the model parameters that maximizes the p(d|θ) for the combined calibrations
are given in Table 5.2.

5.5 Simulations with the calibrated parameters

The calibrated uncertain parameters in the previous sections are used to simulate the tur-
bulent flow over the airfoil DU96-W-180 for varying angles of attack. The results of the
simulations with the calibrated parameters in Section 5.4 are compared with the experi-
mental data, deterministic simulations, with each other and at three angles of attack with
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Figure 5.5: Posterior and prior pdf’s of Cl and Cd of the calibration with six experimental
data at α = 1.45◦, α = 4.54◦ and α = 7.61◦.
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Figure 5.6: Posterior and prior pdf’s of Cl and Cd of the calibration with four experimental
data at α = 1.45◦ and α = 4.54◦. The posterior distributions at α = 7.61◦ are
predicted with the calibrated parameters.
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Figure 5.7: Posterior and prior pdf’s of Cl and Cd of the calibration with five experimental
data at α = 1.45◦, α = 4.54◦ and α = 7.61◦. The posterior distribution of Cd

at α = 7.61◦ is predicted with the calibrated parameters, because it was not
taken into account at the calibration.
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Figure 5.8: Posterior distributions of the uncertain parameters and the 2-D marginal distri-
butions are presented respectively at the diagonals and off-diagonals, as a result
of calibration with six experimental data.
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Figure 5.9: Posterior distributions of the uncertain parameters and the 2-D marginal distri-
butions are presented respectively at the diagonals and off-diagonals, as a result
of calibration with four experimental data.
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Figure 5.10: Posterior distributions of the uncertain parameters and the 2-D marginal dis-
tributions are presented respectively at the diagonals and off-diagonals, as a
result of calibration with five experimental data.
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Figure 5.11: Depending on the first guess of the uncertain parameter the calibrated param-
eters can be different which is illustrated with two different starting points.
Figure 5.8 is obtained with the start points of red color.
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Figure 5.12: Posterior and prior pdf’s of calibration with 25 different start points and with
six experimental data at α = 1.45◦, α = 4.54◦ and α = 7.61◦.
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Figure 5.13: Posterior distributions of the uncertain parameters and the 2-D marginal dis-
tributions are presented respectively at the diagonals and off-diagonals, as a
result of calibration with six experimental data. 25 different start points are
used to obtain these results.
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6 data 4 data 5 data

Cµ 0.103756725470 0.079599012885 0.080946311920

Cǫ1 1.606746810726 1.554258910368 1.440408062517

Cǫ2 1.825437489682 1.829759937789 1.700294406334

E 9.860082597488 9.892992729003 9.718884014073

κ 0.397352652958 0.424436897217 0.422958687887

Cl α = 1.45◦ 0.415366404929 0.414243778403 0.416187919734

Cd α = 1.45◦ 0.010865914980 0.011442509924 0.011494560596

Cl α = 4.54◦ 0.732142549175 0.737075284310 0.742111666179

Cd α = 4.54◦ 0.013165248206 0.013174244709 0.013171550904

Cl α = 7.61◦ 1.026592646798 0.893664888587 1.015300258003

Cd α = 7.61◦ 0.017150183340 0.019660632958 0.018499655145

Table 5.2: The set of calibrated model parameters that maximizes p(d|θ) and the prediction
of the force coefficients with the calibrated set at three different AoA. Note that
respectively for 4 data and 5 data the experimental data of α = 7.61◦ and the
experimental data Cd at α = 7.61◦ is not used in the calibration process, they
are only predicted.

the surrogate models. These results of the numerical simulations and their discrepancy
with respect to the experimental data are depicted in Figure 5.14 for the force coefficients.
At large AoA the simulations with the calibrated parameters did not converge, so, their
results are not given in the figure.

The discrepancy of the numerical simulations with the calibrated parameters in Section
5.3 with respect to the experimental data are illustrated in Figure 5.15.

The discussion of the results is presented in the following list respectively for Cl and Cd:

• Cl: Remarkably, the calibrations that are performed with two data for one α result
in better simulations than the simulations for combined α. Especially the calibrated
set at α = 1.45◦ is very good. Up to α = 5◦ the combined calibrations result also
in good predictions of Cl.

Note that there are large differences in the predictions of the surrogate models and
the numerical simulations with the calibrated set for four, five and six data with a
maximum of 8.9903 % at α = 7.61◦, see Table 5.3.

• Cd: The discrepancies of the simulations with respect to the experimental data
have a similar oscillating curve with a different position on the ordinate. Which
calibrated set of parameters is more accurate depends on the AoA because of the
peculiar path of Cd for the calibrated range. However, the calibrations with four
and five data give quite good results for α up to five degrees. The discrepancy of
the surrogate models with the numerical simulations increases up to 6.25% for Cd.
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Figure 5.14: Numerical simulations with calibrated parameters are compared with the de-
terministic simulations and experimental data in (a) and (b). The difference of
the simulations with the calibrated parameters and the surrogate model with
respect to the experimental data [%] are illustrated in (c) and (d). The number
behind the data refers to the amount of experimental data used to calibrate
the model.
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Figure 5.15: The discrepancy with respect to the experimental data of all the numerical
simulations that are performed with the calibrated set of parameters.

α = 1.45◦ α = 4.54◦ α = 7.61◦

Data 6 Cl 1.0519 1.8835 8.9903

Data 6 Cd -0.2567 -0.6741 -5.3406

Data 5 Cl 0.7730 2.4534 4.2004

Data 5 Cd -0.0780 -6.2446 -4.4420

Data 4 Cl 0.2665 1.6506 -8.5418

Data 4 Cd -0.0090 -5.0831 4.7292

Table 5.3: The discrepancy of the surrogate model in [%] with respect to the calibrated
simulations.



Chapter 6

Conclusions & Recommendations

In this final chapter of the thesis the conclusions and recommendations are stated. Before
that the main objectives of the thesis are summarized:

• Quantify the uncertainty in the model parameters of the k − ǫ model.

• Propagate the uncertainty in the parameters through the k− ǫ model to investigate
the effect of them on the force coefficients Cl and Cd.

• To improve the prediction capability of the k − ǫ model perform calibration with
the Bayesian inference method.

6.1 Conclusions

To quantify the uncertainty in the model parameters a literature research is performed.
By using simplified relations, experimental data and expert opinions the distributions
of the uncertain parameters are determined. However, the determined distributions are
not unique. Moreover, using different relations to define the distributions in the used
methodology leads to convergence problems. Therefore, defining the distributions be-
came an iterative procedure.

From the UQ analysis with separately propagated parameters (1-D) appeared that for
the lift coefficient Cl the most influential uncertain parameter is Cµ with coefficient of
variation (CV) of 1.096 % and for the drag coefficient Cd it is Cǫ1 with CV of 6.674 %.
The discretization error is 8.3 % and 1.74 % of the range of Cµ Cl and Cǫ1 Cd. Hence, the
discretization error can be considered as small compared to the uncertainty in the model
parameters.
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From the results of 1-D UQ analysis the most influential five parameters on the force
coefficients are determined. These are Cµ, Cǫ1, Cǫ2, κ and E. Subsequently the prob-
ability density functions (pdf) of the force coefficients are determined with the simul-
taneously propagated uncertainty for those five parameters for three different angles of
attack α = 1.45◦, α = 4.54◦ and α = 7.61◦. The range of the experimental data and the
force coefficients is finite. For α = 1.45◦ the discretization error is 11.8 % and 10.7 %
respectively of the standard deviations of Cl and Cd. Which illustrates the importance of
the uncertainty quantification. Furthermore, the CV of the force coefficients increase for
increasing α. Respectively for α = 1.45◦ and α = 7.61◦ the CV of Cl is 4.804 and 9.99 %
and the CV of Cd is 9.306 and 12.95 %.

Subsequently, the five most influential parameters are calibrated by using surrogate mod-
els of the standard k − ǫ model.

The parameters are readily calibrated to the experimental data at one α.

The calibrations by combining experimental data at the three α of 1.45◦, 4.54◦ and 7.61◦

did not result in accurate fits to the experimental data. Main reason therefore is the model
inadequacy to predict the drag coefficient accurately at high α. When the experimental
data at α = 7.61◦ is discarded from the calibration, thus the process is carried out with
data at α is 1.45◦ and 4.54◦, the predictions of the force coefficients become more accurate
up to α = 5◦. Neglecting only the Cd at α = 7.61◦ results in similar accuracy with respect
to neglecting the complete data at α = 7.61◦ up to α = 5◦.

Discrepancy is observed between the surrogate models and the numerical simulations,
especially, at α is 4.54◦ and 7.61◦. Which definitely deteriorates the calibration process.
The absolute maximum discrepancy is 8.9903 % for Cl at α = 7.61◦ and 6.2446 % for Cd

at α 4.54◦.

6.2 Recommendations

• To overcome the time consuming iterative process of defining the distributions,
due to convergence problems, one can be freer in defining the distributions. Still,
the basis of this analysis should be the analytic relations, nevertheless, it is not
unacceptable if the defined distributions do not meet those relations. After all, the
k − ǫ model is an invention with calibrated constants to predict turbulent flows,
which is a very difficult subject.

• Although it is not tested fixing the difference between Cǫ2 and Cǫ1 may decrease
the convergence problems.

• To improve the accuracy of the surrogate models the order of the polynomials should
be increased, which is especially necessary for high α. If the required high amount
of simulations exceeds the computational resources the number of uncertain param-
eters can be decreased further.

• To take into account the model inadequacy of the k − ǫ model a term could be
introduced in the statistical model used to calibrate the model.
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• More data can be used in the calibration process like the pressure or skin friction
along the airfoil to take into account the local effects along the airfoil.

• Because the k − ǫ model needs a wall function to simulate a wall bounded flow it
has more variables than only the k − ǫ equations. This inserts more uncertainties
in the problem and makes the UQ more complex. Like the y+ value of the first cell,
which is different for every generated mesh and the solution is dependent on that
value. The applied procedure in this thesis can be performed for a model which
do not need wall functions like the SST k − ω model. Then, only the real model
parameters have to be calibrated.
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