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Summary

Increasing environmental concerns paired with the rising demand of high-speed transportation motivate
the study and development of alternative, unconventional transportation methods. One such example
is the Hyperloop, a newly proposed mode of passenger and freight transportation.

Hyperloop comprises pods that are propelled through a partially evacuated tube at velocities of
300𝑚/𝑠. These pods are accelerated by means of a magnetic linear accelerator, while being levitated
by electromagnets. Passengers can enter and exit the pods at stations located either at the ends
of the tube, or branches along the tube. The Hyperloop is meant to have several key benefits over
conventional (public) transportation systems, with the most important ones of it being significantly
more energy efficient, faster and cheaper for travel distances of up to approximately 2000𝑘𝑚. Air
travel would remain the most efficient means of transport for ’long-haul distances’, cost-wise, since the
infrastructural costs of the Hyperloop would rise tremendously if a tube system were to be constructed
for those stretches.

Within the tube, the low pressure environment consequently leads to a low air density, which in
turn results in a significant reduced amount of drag compared to vehicles travelling at the same speeds.
Although the pods are intended to travel at pressures of approximately 0.1% of the atmospheric pres-
sure, the remaining air within the tube still necessitates a careful aerodynamic design and analysis of
the pod. The movement of the pod through a (confined) low pressure environment combined with
transonic speeds compose a unique flow regime that is rarely encountered, and as such also poses its
own unique fluid dynamic challenges. Coping with the Kantrowitz limit which is associated to choked
flow is one such example.

The objective of this research is to develop an aerodynamic shape optimization procedure for a
Hyperloop pod, which is realized by developing a low-fidelity aerodynamic solver coupled to an opti-
mization scheme. The solver is first of all capable of analyzing axisymmetric pod geometries, where
distributions of flow parameters are predicted as well as the total aerodynamic drag as a main figure of
merit. Secondly, the solver is implemented in an optimization routine which is capable of producing a
pod shape that minimizes the aerodynamic drag compared to a baseline geometry. This baseline pod
is based off a combination from literature findings regarding aerodynamic pod shapes and functional
top level requirements set by HARDT Hyperloop. The solver is validated by means of results obtained
with Computational Fluid Dynamics simulations based on Reynolds-Averaged Navier-Stokes equations,
where a two-equation turbulence model is employed.

The solver is based on the assumption that the flow through the tube and along the pod can be
modeled as if it were flowing through a nozzle. It is furthermore assumed that the flow field properties
are uniform across each specific longitudinal cross-section within the tube. As such, the flow is modeled
and classified as a quasi-one-dimensional nozzle flow. To allow for a computationally efficient means of
analyzing a high number of pod shapes, the geometry is parameterized by means of the class-shape-
function transformation method, allowing the entire geometry to be described by 24 design variables.
These variables are altered by the optimizer, where use is made of a gradient-based sequential quadratic
programming algorithm.

The solver solutions agree well with the numerical results when comparing flow distributions close
to the tube wall. This accuracy is less pronounced when the results are compared to the distributions
directly over the pod surface. The implications of the quasi-one-dimensional flow assumption are
apparent. Nonetheless, the overall trend of aerodynamic parameters is well captured, as well as the
prediction of the total aerodynamic drag of the pod.

The optimization resulted in a drag reduction of 11.2%, from 4.08𝑘𝑁 to 3.63𝑘𝑁. The pod length
was shortened from 49𝑚 to 47.6𝑚, mainly due to a reduction in nose length. Since the top level
requirements yield an operating condition in which the Kantrowitz limit is violated, the presence of
choked flow is imminent. A nose that is as short as possible is therefore beneficial since the presence
of a high pressure peak in front of the pod is inevitable. In contrast, the tail has been elongated with
the introduction of a concavity, allowing for a more gradual flow expansion and a relieved choking
effect.
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1
Introduction

1.1. Rationale
It is evident that many sectors focus on becoming more environmentally friendly. This is due to the
depletion of natural resources, but this focus also offers many benefits in terms of marketing, public
relations and costs. One of these sectors which is inspiring and striving to become greener is the
transport sector.

The detrimental effects on the environment due to transportation is raising concerns, mainly be-
cause of the ever growing travel networks and developments within this sector, triggered by the con-
tinuously rising demand of interconnected, high-speed travel. It is forecasted that by 2050, 41% of
the world traffic market share (and 71% in North America) is projected by high-speed transport [1].
Along with the exploitation of non-renewable energy sources, regulative authorities are necessitated
to set rules and regulations that become more stringent by the decade with a focus on reducing noise
and greenhouse gas emissions. In light of this and the aforementioned rising demand of high-speed
transportation, a new means of transport which adheres to these demands and regulations is necessary.

Hyperloop is a new transportation method that can comply to these regulations while showing sig-
nificant benefits over conventional transportation methods. The system comprises passenger pods that
are propelled through a tube where the pressure is reduced to 0.1-1% of the atmospheric pressure [2].
The reduced pressure consequently means that the density is also decreased for the same tempera-
ture, since these are then linearly proportional to each other. This low density results in a significantly
lower amount of aerodynamic drag experienced by the pods. The pods are levitated by electromagnets
while being propelled by a magnetic linear accelerator to an intended operating velocity of 300𝑚/𝑠.

Though the Hyperloop is intended to have a direct ’A-to-B’ connection, the transportation mode
highly resembles transportation by means of train. At the same time, it tackles the goal of having
a high operational speed (𝑀፨፩፞፫ፚ፭።፨፧ፚ፥ ≈ 0.88) while maintaining a high energy efficiency, thereby
resembling a typical aerospace design problem. It can thus be regarded as a combination of train and
air transportation, merging ground transport and aerospace technologies to attain a fundamental new
capability. The result is a high-capacity mode of transportation that is optimized for emission reductions
while travelling at airliner speeds. The Hyperloop also addresses NASA’s research goals for growth in
demand, sustainability, and technology convergence for high-speed transport [3].

The aerodynamic characteristics play a significant role in the overall performance of a vehicle.
Evidently, this is also the case for the Hyperloop, where finding an adequate aerodynamic design of the
pod is necessary in order to reach the earlier mentioned airliner speeds while simultaneously fulfilling
the low energy requirements. However, the design of the pod is not an external aerodynamic problem
as is with the aerodynamic design of aircraft, trains or automobiles for instance.

Since the pod is confined by the low pressure tube, it has become an internal aerodynamic problem
and as such, unveils new fluid dynamics challenges which need to be carefully addressed during the
design process. The physical challenge that is the most critical is governed by the Kantrowitz limit,
and is typical for internal transonic aerodynamics [4]. Violation of this limit will result in a significant
amount of drag increase, which could nullify all promised potential benefits of the Hyperloop.
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It is therefore of paramount importance to carefully investigate these aerodynamic related chal-
lenges in order to realize the intended performance benefits of the Hyperloop. This thesis project
comprises an investigation on these problems in order to develop an aerodynamic design and opti-
mization procedure for the Hyperloop pod.

1.2. Research Objective
The main goal of this research project is to find a shape for the Hyperloop pod which minimizes the
aerodynamic drag compared to a baseline pod geometry and to analyze the flow behaviour around the
pod in general, thereby contributing to the further development of the Hyperloop.

This project furthermore aims to introduce and contribute to the knowledge on the aerodynamic
performance of vehicles in rarefied, internal environments. From the research proposal, it became
clear that performing optimization routines focusing on aerodynamic phenomena that are critical for
the Hyperloop is the next step to be undertaken after preliminary sizing processes have already been
conducted. From previous investigations, it also became clear that the main Hyperloop concept is
feasible but refinements and further investigations are a necessity [5]. Therefore this project is intended
to delve into a more detailed analysis of the Hyperloop pod, focusing on the aerodynamic aspects.

The goal and objectives of this project are to be realized by developing and utilizing a simplified
aerodynamic solver. The outputs will be compared against results of Computational Fluid Dynamics
(CFD) simulations in order to validate the aerodynamic solver. Additionally, the solver can be utilized
to investigate the effect of external parameters, such as the tube radius or internal tube pressure,
on the aerodynamic drag. As such, the solver allows for the further exploration of the aerodynamic
characteristics for a relative wide and unexplored design problem that still has a relative wide and
unexplored design space.

This research project is carried out at HARDT Hyperloop, a company that is realizing and com-
mercializing the Hyperloop concept. Its vision is to have on-demand, high-speed transportation for
everyone and to create a world where distances do not matter; a world where the freedom exists to
live and work wherever one wants.

HARDT Hyperloop aims at providing a high-speed tube transportation system that is, in compari-
son to current modes of transportation, safer, faster, cheaper, more efficient, more convenient, more
resistant to weather and less disruptive to those along the route. It is an origin-to-destination system
where vehicles do not have stops in between. It is supported by the concept that all vehicles share
the main tube during high-speed travel and can get on and off from their departure or arrival station
through ’exit ramps’, where the tube splits off in branches. The system should be ideal for travelling
between the distance of 50𝑘𝑚 to 2000𝑘𝑚 in 5 to 120 minutes [6]. The system of HARDT comprises
four main elements: tube and track, vehicle, station and related services.

1.3. Research Questions
Following from the rationale and the main objective of this research project, the main research question
is evident: What is the optimal shape of a Hyperloop vehicle? In order to answer this question, sub-
questions are formulated that guide the process in solving the main question:

• What are the key parameters for the aerodynamic design of the pod and how are they related to
the generation of aerodynamic drag?

• What are the key physical phenomena that contribute to the drag generation of the pod?

• What are the main (valid) assumptions for a simplified aerodynamic solver applicable to this fluid
dynamic problem, and what are their implications on the governing fluid dynamic equations and
the real physical problem?

• What are the consequences/changes of the optimized shape compared to the baseline?

1.4. Outline
This report starts-off with a literature review regarding the aerodynamic aspects of the Hyperloop, as
well as fluid dynamic analyses and optimization techniques for vehicle aerodynamic shape optimization.
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The methodology that was developed and carried out in order to arrive at an aerodynamic solver for
the shape optimization is presented and discussed in Chapter 3. Thereafter, the solver is validated by
means of CFD analyses, which will be discussed in Chapter 4. The model is then used to perform an
optimization and to assess the influence of different parameters on the aerodynamic drag, which is
done in Chapter 5. Finally, the report is concluded and recommendations are given for possible future
work based on this research project in Chapter 6.





2
Literature review

It is evident that there is little to no literature available on the Hyperloop specifically focusing on its
aerodynamic aspects, since the concept is relatively new and in its first developing stages. Further-
more, the related technology itself is still at a proof of concept stage. Nonetheless, the aerodynamic
considerations for the Hyperloop can be related to several systems and flow models that already have
been developed or at least analyzed for a relative longer period, for instance the analysis of magnetic
levitation (Maglev) trains placed in a confined low pressure environment. Therefore, this literature
review will be based on these considerations when gaining background knowledge regarding the state-
of-the-art. This chapter will start-off with an introduction to the flow field that a Hyperloop pod is
exposed to, and the various methods of solving the main flow parameters in such an environment.
Since CFD analyses are to be conducted within the scope of this research project, a section is ded-
icated to the theory of CFD which is applicable for the analysis of a Hyperloop pod, introduced and
discussed in Section 2.5. Thereafter, in Section 2.6, different aerodynamic shape optimization methods
that are the most common are introduced and touched upon. Finally, the chapter is concluded with a
brief discussion and conclusion on the main literature findings in Section 2.7.

2.1. Flow Regime
The Hyperloop pod travels in an unconventional flow regime: high-subsonic Mach numbers with rela-
tively low Reynolds numbers. The low Reynolds number is a consequence of the low density environ-
ment, which in turn results from the low internal tube pressure. The Reynolds number for this flow is
in the order of 10኿, implying that the flow will transition from a laminar to turbulent flow somewhere
over the pod surface [7], or, a transition point exists over the pod surface.

Both laminar and turbulent flows will yield different performance characteristics and it is therefore
important to carefully capture the transition point. Furthermore, at these low Reynolds numbers the
boundary layer is prone to separation as the boundary layer is relatively thick [8]. Boundary layers
separate rather easily when a relatively large adverse pressure gradient is present and the boundary
layer has thickened considerably. These phenomena all lead to a significant amount of increased drag.
A proper aerodynamic design is needed to reduce or avoid separation as much as possible in order to
keep the associated pressure drag to a minimum.

Finally, the near vacuum environment paired with a transonic flow in a confined area all contribute
to unique flow conditions affecting the design of the pod. The most notable effects will be described
in subsequent sections.

2.1.1. Kantrowitz Limit
Since the pod is confined by the tube, the design problem is defined as an internal aerodynamic
problem and as such poses its own challenges and phenomena that need to be addressed. The most
significant aerodynamic design criterion for vehicles encountering transonic flows in a confined space is
the Kantrowitz limit [9], which constraints the operability of the system. Violating this limit can possibly
lead to a three-fold increase in the drag coefficient of the pod [7].
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The Kantrowitz limit is a theoretical concept that refers to the physical phenomenon of choked
flow, which forms a limiting factor for the Hyperloop performance when it occurs. This happens when
the local air flow reaches a Mach number of 1, imposing sonic conditions. While the pod is travelling
at high-subsonic speeds, these sonic conditions can be easily reached as the flow is accelerated in
the bypass region between the pod and the tube. When the pod speeds up further, a large pressure
increase in front of the pod builds up because the mass flow that can go around the pod is limited.

Choked flow is associated with the Venturi effect and is a limiting condition where the mass flow
cannot increase further downstream, even when the downstream pressure is further decreased. The
air cannot bypass the pod and is accumulated in front of the pod. The pod then acts as a syringe,
pushing the column of air ahead of it through the tube. This phenomenon occurs at the minimum
section (throat) between the pod and the tube [10] and it directly imposes a relationship between the
pod size and tube size. These two dimensions are not independently variable and have to be coupled
when designing the Hyperloop pod.

In general, avoiding the exceedance of the Kantrowitz limit can be done in two main ways. The
first option is to decrease the ratio of cross-sectional areas between the pod and tube - also known
as the blockage ratio (𝛽 = 𝐴፩፨፝/𝐴፭፮፛፞) which allows more air to bypass the pod at a lower velocity.
The second option is to make use of a compressor embedded in the pod that compresses air entering
through the front of the pod. This compressed air is then fed through a duct in the pod which finally
leaves the pod through a nozzle at the rear. This second option is the one that was proposed in the
original introduction of the Hyperloop [2].

2.1.2. Aerodynamic Disturbances
In conventional ground transportation systems, the presence of shockwaves and their related implica-
tions are rarely considered due to the relatively low operating speed. Shockwaves occur when the local
flow velocity exceeds the speed of sound, and are characterized by an abrupt change in pressure, tem-
perature and density of the flow. The occurrence of shockwaves is prevalent for the Hyperloop system
as the pods are intended to travel in a domain of mixed subsonic and supersonic flow, also termed as
a transonic flow regime. The shock can for instance be a recompression shock, which terminates a
preceding supersonic region.

For example, it was found that at a blockage ratio of 0.5 and an operating speed of M = 0.57,
(weak) shockwaves are already observed at the rear of a so-called vacuum train as seen in Figure
2.1 [11]. Furthermore, normal shockwaves coexist with oblique shockwaves that are generated by the
interaction and continuous reflection between the tube and vehicle walls. However, for the same speed
but at lower blockage ratio (𝛽 = 0.25), no shocks were observed. Depending on blockage ratio and
operating speeds, the flow can locally reach speeds of approximately Mach 2.5.

Figure 2.1: Presence of shockwaves at M = 0.57

While shocks can be present in design conditions for wings, on non-lifting bodies such as a Hyperloop
pod, the presence of shocks are undesired and should be avoided [10]. This is because shockwaves
produce drag due to the total pressure loss that is associated to shockwaves [12]. Therefore, next to
the general pressure drag and friction drag, a third type of drag (which in essence can be regarded as
an additional pressure drag term) is introduced with shockwaves: wave drag.

Next to the additional drag, shockwaves can cause the boundary layer to separate at the foot
of the shock, and separation is to be avoided as it significantly increases the pressure drag. When
boundary layer separation occurs, a wake is created between the body and the continuous streamlines.
Consequently, a large deficiency in momentum is present in the wake which can give rise to a significant
amount of drag. In addition to the drag rise due to flow separation, the pressure distribution over a
body is also altered significantly [13]. However, since the internal tube pressure is very low and the
shock effect decreases in proportion to the ambient pressure level, the presence of shocks are not as
critical as would be in a standard open environment at sea-level. It is for these considerations that
both the internal tube pressure and the blockage ratio should remain as low as possible in order to
enhance the energy efficiency. It should be noted that these considerations are purely based on the
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aerodynamic efficiency. Regarding the entire Hyperloop system, it is evident that the operating costs
for instance would be negatively affected by a decreasing blockage ratio, which generally implies that
the tube diameter has to increase.

Nevertheless, shockwaves directly affect the drag of a tube train in a detrimental manner which
consequently results in an overall efficiency losses. It again shows how the operating speed is one
of the limiting factors in the aerodynamic design of a Hyperloop pod. For future work, the design
optimization of the vehicle shape is also needed for the control of the shockwaves [7, 14].

Hence, for a given operating speed and fixed propulsion system, a possible aerodynamic design
strategy is one in which the aerodynamic drag due to shockwaves is reduced. Minimizing supervelocities
on these components to prevent the onset of supersonic flow and associated shockwaves can be a
design approach in finding an optimal aerodynamic shape for the Hyperloop pod.

2.2. Governing Design Parameters
Bodies in transonic flows generally experience drag to two main mechanisms: through wake forming
due to the separation of the flow as previously described and through the generation of shockwaves.
The skin friction drag in turn is a function of the shear stress and is mostly due to the viscous effects of
a fluid. Every component of a body that is wetted by the flow will give rise to a friction drag component.

In general, the aerodynamic drag is quadratically proportional to the operating velocity of a vehicle,
and is composed of the pressure drag and viscous drag that are dependent on the vehicle shape and
length. For relatively short vehicles, the total drag is mostly composed by the pressure drag, while on
an elongated vehicle such as a train, the total drag is dominated by the viscous drag to a large extent
[15]. However, for a tube train this is the other way round. The main reason for this is that the internal
tube pressure is very low compared to the atmospheric pressure at sea level. Furthermore, the pod
can be regarded as a piston in a cylinder. The pressure drag is therefore the dominating component in
the total aerodynamic drag. Besides the square of the train operating speed, the drag of a tube train
system is linearly proportional to the internal tube pressure unlike a ground system. As an ideal gas
is dealt with, a pressure change leads to a linearly proportional change in air density for a constant
temperature, which yields the linear change in drag.

In a tube train system, the ratio between the pressure drag and viscous drag is approximately 10:1
when the blockage ratio is 0.25, but increases to 20:1 when the blockage ratio is 0.75 [11]. It shows
how much the pressure drag is dominating, but more importantly shows that the ratio between these
drags is highly dependent on blockage ratio.

It is found that the maximum operating speed (before choking occurs) is inversely proportional to
both the blockage ratio and internal tube pressure. Again, it is evident that both internal pressure and
blockage ratio should be minimized in order to enhance the aerodynamic efficiency. The blockage ratio
can of course not be continuously minimized as it is limited by the maximum tube size, or equivalently
the minimum vehicle size. An optimal value for this parameter therefore has to be found. A reasonable
value for this ratio should lie within 0.25-0.7 regarding aerodynamic considerations [16].

From these findings it can be deduced that the three most important initial aerodynamic design
parameters of the Hyperloop are: blockage ratio, internal tube pressure and pod operating speed.
These parameters are coupled and have a large impact on one another. It is also found that the
operating speed of the pod does not have a significant effect on the relationship between the blockage
ratio and the internal tube pressure, which is to be expected since these are mainly external parameters.
The total drag of a tube train with a fixed operating speed is linearly proportional to the internal tube
pressure and is significantly affected by this [14, 17].

2.3. Preliminary Vehicle Shape Analysis
While the parameters described in the previous section are important to the overall drag of the system,
the vehicle shape in itself of course also significantly impacts the aerodynamic performance. Intensive
studies about the aerodynamic analysis and energy efficiency of a tube train system already date
back to 1970, where a project was undertaken by the Transportation Bureau of the United Sates [18].
According to this study, the drag coefficient, 𝐶ፃ, of a tube train ranges from 0.015 to 0.11 when the
vehicle nose and rear both have a semicircular shape. These coefficients were found for a Reynolds
number in the order of 10኿ and a blockage ratio ranging from 0.125 to 0.5, comparable to the Hyperloop
pod design conditions.
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More extensive research has been conducted on different head and tail shapes of a Maglev train in
an evacuated tube by Ma et al. [19]. In this study, a focus was laid on the pressure difference between
the nose and tail of the vehicle, in essence the main driver of pressure drag. The different shapes that
were investigated can be seen in Figure 2.2.

Figure 2.2: Investigated shapes for the head and tail of an evacuated tube train

It was observed that different head shapes of the tube trains do not cause a significant difference in
aerodynamic drag effects. There was however a shape which can be regarded as the desired direction
in searching for an optimal shape, which is the linear head design. The linear head yields the lowest
drag amongst different investigated shapes. It was furthermore observed that the pressure difference
increases with blockage ratio regardless of nose shape, and that the pressure at the head is directly
affected by the tail type.

Regarding tail shapes, a blunt-shaped (rectangular) tail yields the lowest pressure difference for
a blockage ratio of 0.25. However, under the blockage ratio of 0.36, the pressure difference of the
train with this tail is greater than compared with a semicircle tail. It again shows that the blockage
ratio is an important factor that has an influence on the ’optimal’ shape, thereby affecting the pressure
difference and ultimately the total drag of the vehicle. Finally, it was found that with increasing internal
tube pressure, the effect of drag reduction by vehicle shape manipulation increases very slowly when
the pressure is less than 1𝑘𝑃𝑎, but rapidly when the pressure is above 10𝑘𝑃𝑎 [20].

In another, more recent study (2017) on tube train shapes, it was observed that the pressure
difference was lowest for a train with an elliptical head shape and a similar but more blunt tail when
the air pressure was 100 Pa [14]. This combination dramatically reduced the amount of aerodynamic
drag compared to other shape combinations. The simulated results showed that the shape of the pod
significantly affects the aerodynamic drag. Furthermore, the energy usage is found to be relatively
insensitive to pod length. Therefore, the system would scale favorably to much higher passenger
capacities than originally proposed [21], mostly due to the relative low friction drag that comes as a
cost for lengthening the vehicle. A general agreement can be observed regarding the different studies
in which the tail of the train should be more blunt-shaped compared to the head. An optimal ratio
between the nose length and vehicle diameter lies within the range of 1.5-2.5, according to a study
which focused on nose and tail lengths of Maglev trains in an evacuated tube [22].

As mentioned before, the low Reynolds number environment can lead to boundary layer separation
at relative ease. A study on a Hyperloop pod which is scaled down in size showed that for a head
shape with an inflection point that is too pronounced, the boundary layer that is still laminar at that
point already separates at relatively low adverse pressure gradients [7]. While the skin friction drag
is low due to the laminar flow over the pod surface, the total drag is still high due to the relatively
high pressure drag that results from the large wake starting from this inflection point. This laminar
separation has to be prevented in order to reduce the amount of pressure drag.

Based on these findings, another possible design strategy could therefore be to transition the bound-
ary layer to a turbulent one close to the front of the pod, such that higher adverse pressure gradients
can be tolerated before separation occurs. It is known that turbulent boundary layers can tolerate
higher adverse pressure gradients, with an increased friction drag as detrimental side effect. It how-
ever weighs up against the much higher pressure drag increase when the boundary layer separates. A
key part to this aerodynamic design strategy is therefore to ensure that the transition point is moved in
front of the so-called natural transition point close the nose area of the pod, or simply said to trip the
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boundary layer. It must however be noted that the findings in this study were based on flow conditions
that differ from the full-scale system, where Reynolds and Mach numbers of 6⋅10ኾ and 0.3 respectively
are considered (as opposed to 𝑅𝑒 ≈ 10኿ and 𝑀 ≈ 0.9 for the full-scale system), implying that the flow
behaviour regarding the separation past the inflection point do not necessarily have to hold for the
full-scale pod.

2.4. Simplified Aerodynamic Model
Optimization problems require an analysis model to quantify the objective function and constraints.
These analysis models are coupled to an optimization algorithm, which manipulates the design variables
at every iteration. In most cases, the accuracy of the optimized solution is dependent on the analysis
model.

A simplified aerodynamic model that is of relatively low computational cost is useful for rapid design
iterations. While CFD analyses are more accurate in the prediction of flow fields and aerodynamic
quantities, performing these for every design iteration are computational expensive and therefore in-
herently time inefficient. A simplified model will therefore be developed which will be coupled to an
optimizer. A suitable aerodynamic shape optimization scheme will be followed, which will be introduced
in Section 2.6.

2.4.1. Assumptions
A first step in developing a low-fidelity flow model is to make assumptions in order to simplify the
governing equations and conditions. A possible methodology in developing such model is to base it
on a quasi-1D flow assumption. This implies that different flow parameters are uniform along each
section and vary primarily along one direction 𝑥 for instance (i.e.: 𝐴 = 𝐴(𝑥), 𝑝 = 𝑝(𝑥), 𝜌 = 𝜌(𝑥)
etc.). Furthermore, the flow is assumed to be steady, inviscid and adiabatic. The gas is assumed to be
an ideal gas. For accelerating flows (favorable pressure gradients), the idealization of isentropic flow
is generally a realistic model of the actual flow behavior [23]. The flow is therefore assumed to be
isentropic.

2.4.2. Continuum versus Free Molecule Flow
As mentioned before, the Hyperloop pods travel in an unconventional flow regime, where the low
amount of air inside the tube is of particular interest. It is therefore required to verify whether the fluid
can be modeled as a continuum, where each fluid element represents a large number of molecules. The
mean free path, 𝜆, is the average distance traveled by a particle (e.g. a molecule) between successive
collisions with neighbouring molecules. If the scale of a certain body of influence denoted by 𝑑 is orders
of magnitude higher than 𝜆, the flow will appear to this body as a continuous substance. The amount
of collisions between the molecules and the body surface are at a sufficiently high frequency such that
this body is ’not able’ to distinguish the individual molecular collisions [24]. Such flow is accordingly
termed as continuum flow.

On the contrary, if 𝜆 is in comparable order as the body scale, these collisions between molecules
and body surface occur infrequently up to the extent where each individual impact can be felt by the
body. Such flow is then termed as free molecular flow. If this is the case, statistical mechanics will
have to be utilized to predict the flow behaviour.

One quantifiable way of determining whether a flow can be modeled as a continuum is through the
Knudsen number [25]. This number is in essence the ratio between the mean free path of a molecule
and a macroscopic length scale of interest. This number can be determined as follows:

𝐾፧ =
𝐾፛𝑇

√2𝜋𝑑ኼ𝑝𝐿
(2.1)

When 𝐾፧ ≪ 1, the fluid can be modeled as a continuum. Otherwise, molecular mechanics will have
to be utilized for the analysis. For the flow regime that the Hyperloop pod encounters, the Knudsen
number is in the order of 10ዅ኿ [4] which is well below the continuum threshold. Therefore, continuum
mechanics are applicable for this aerodynamic problem.
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2.4.3. Aerodynamic Forces and Moments
The aerodynamic forces and moments on every arbitrarily shaped body exposed to a fluid, no matter
how complex they may be, is due to only two sources: the pressure and shear stress distributions
over the body surface. For any arbitrary surface, the pressure is acting in a normal direction onto the
surface whereas the shear stress acts tangentially to the surface.

The integration of the pressure and shear stress distributions over an entire body surface then leads
to a resultant force and moment that both act on this body. This resultant force can subsequently be
split into two components: lift and drag. Obtaining the shear stress and pressure distributions is
therefore key in determining the overall aerodynamic performance. The main aerodynamic quantity of
interest will be the drag for the case of a Hyperloop vehicle in the scope of this project.

2.4.4. Pressure Distribution over Non-Lifting Bodies
The Mach number and geometry of a vehicle directly affect the supervelocities over a non-lifting body.
In high-subsonic conditions, the local velocity can exceed the speed of sound thereby creating shock-
waves or expansion waves. The generation of these waves has a detrimental effect on the drag con-
tribution as was already discussed before, which is why it is of paramount importance to understand
the relation between geometries and associated supervelocities. The local velocity is directly tied to
the pressure coefficient 𝐶፩. For an incompressible flow, a well-known expression that relates the two
parameters is given by:

𝐶፩ = 1 − (
𝑉
𝑉ጼ
)ኼ (2.2)

Alternatively, the pressure coefficient can be expressed as a function of Mach number:

𝐶፩ =
2

𝛾𝑀ኼጼ
( 𝑝𝑝ጼ

− 1) (2.3)

This relation directly stems from Bernoulli’𝑠 equation, which states that the square root of the
local pressure is inversely proportional to the local velocity. Under the assumption that the difference
between the local velocity and free-stream velocity is negligibly small (i.e. 𝑉 = 𝑉ጼ+Δ𝑉 and Δ𝑉/𝑉ጼ ≪ 1),
equation 2.2 can be reduced to:

𝐶፩ = −2
Δ𝑉
𝑉ጼ

(2.4)

This equation provides a relatively simple relation between the pressure coefficient and the super
velocity, Δ𝑉, over a body. This relation was applicable to a fluid particle along a streamline. A sim-
ilar relation can be found when the perpendicular direction is considered along a curved streamline.
Assuming inviscid, irrotational flow and that the dimensions of a fluid particle can be described by its
length Δ𝑙 and width Δ𝑤, the second law of Newton applied on this particle can be defined as [26]:

𝑚𝑉ኼ
𝑟 = (𝑝 + Δ𝑝 − 𝑝)Δ𝑙 (2.5)

Furthermore, the pressure difference for a particle can be expressed as Δ𝑝 = (𝑑𝑝/𝑑𝑤)Δ𝑤 with its
mass 𝑚 = 𝜌Δ𝑤Δ𝑙. Combining and substituting these expressions into equation 2.5 yields:

𝜌𝑉ኼ
𝑟 = 𝑑𝑝

𝑑𝑟 (2.6)

From equation 2.6, it can be deduced that the pressure is increasing outward from the center of
curvature. Additionally, a free body diagram of a fluid particle on a curved (convex) streamline is shown
in Figure 2.3 [27].
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Figure 2.3: Geometrical definitions and pressure acting on a fluid particle on a curved streamline

Since the curve is convex, the normal vector 𝑛 is in the same direction as 𝑟, consequently yielding
a positive pressure gradient 𝑑𝑝/𝑑𝑛. Since the pressure at a location far away from the wall should
be equal to the free-stream pressure, it can be concluded that 𝑝 at the wall is to be lower than this
free-stream pressure. Therefore, it can be deduced that a convex shape leads to a pressure reduction,
or consequently a negative pressure coefficient. The opposite is true for a concave shape, since the
pressure gradient is negative by definition.

These findings can be combined with the earlier relation between local pressure and super velocity
(equation 2.4). It can now be stated that a convex geometry leads to a positive value of Δ𝑉, since
𝐶፩ decreases. Convex geometries therefore lead to higher local velocities when compared to the
freestream velocity. Similarly, concave shapes therefore lead to lower local velocity when compared to
the free-stream velocity. Finally, it can also be stated that the larger the local curvature, the larger the
amplification of the local supervelocities. These findings provide a fundamental (qualitative) analysis
regarding the pressure distribution over the Hyperloop pod, which can possibly be a combination of
convex and concave shapes.

2.4.5. Compressibility Effects
The qualitative relation between local curvature and supervelocity was based on an incompressible
flow. As a Hyperloop pod is travelling in a transonic flow regime, compressibility effects need to be
taken into account. While the derived relations still hold, the pressure coefficients are mostly affected
in their numerical values due to compressibility effects. The compressible pressure coefficient can be
related to the incrompressible one through the well-known Prandtl-Glauert compressibility factor:

𝐶፩ =
𝐶፩ᑚᑟᑔᑠᑞᑡᑣᑖᑤᑤᑚᑓᑝᑖ
√1 −𝑀ኼጼ

(2.7)

This factor not only gives a more accurate value of the pressure coefficient by means of a correction,
it more importantly shows that the pressure coefficient, and thus local supervelocities, are related to
the compressibility of air for a body in high-subsonic conditions.

Although the Prandtl-Glauert rule is simple to apply, it has been observed that this rule generally
underpredicts experimental data [10]. This is why several improvements have been made regarding
this correction of which one is the Karman-Tsien rule [28] given by:

𝐶፩ =
𝐶፩,ኺ

√1 −𝑀ኼጼ + ፌᎴᐴ
(ኻዄ√ኻዅፌᎴᐴ)

ፂᑡ,Ꮂ
ኼ

(2.8)

This compressibility correction is more accurate due to the fact that non-linear aspects of the flow
are accounted for, while the Prandlt-Glauert rule is purely based on linear theory. Comparable to the
Karman-Tsien rule is Laitone’s rule [29] given by:

𝐶፩ =
𝐶፩,ኺ

√1 −𝑀ኼጼ + [
ፌᎴᐴ(ኻዄ

ᒈᎽᎳ
Ꮄ ፌᎴᐴ)
ኼ

√1 −𝑀ኼጼ]𝐶፩,ኺ
(2.9)

Laitone’s rule is more recent than both aforementioned compressibility corrections and is also more
accurate than the Prandtl-Glauert rule, but not necessarily than the Karman-Tsien rule.



12 2. Literature review

Figure 2.4 shows the three presented compressibility corrections, where in the same figure experi-
mental data is shown for the variation in pressure coefficient with free stream Mach number for a NACA
4412 airfoil [10].

Figure 2.4: Three compressibility corrections compared with experimental results for a NACA 4412
airfoil

It can be observed that the Prandtl-Glauert rule underpredicts the experimental data as was stated,
whereas the other two rules are more accurate. For the aerodynamic solver, the use of Laitone’s rule
or the Karman-Tsien rule is therefore desired.

2.4.6. Transonic Channel Flow
The flow behaviour around the pod can be modeled as a flow through a channel, with pod surface
and tube wall posing as the channel walls. As such, the flow domain can be regarded as a supersonic
(convergent-divergent) nozzle assuming that there will be a minimum section somewhere between
the pod and wall surfaces. The velocity distribution around the pod can then be based on the area
contraction between the inlet area and the (minimum) space between the tube wall and pod surface.

The area-velocity relation, directly following from the mass conservation principle, can serve as a
starting point to solve the flow field. This relation gives a relative easy qualitative relation of whether
a flow is accelerating or decelerating through a specific passage, similar to the discussion regarding
concavities and convexities in the previous subsection. It can directly be concluded that a decrease in
cross-sectional area leads to an increase in velocity and a static pressure drop for subsonic flow. This
is the other way round for supersonic flow:

𝑑𝐴
𝐴 = −𝑑𝑉𝑉 (1 −𝑀

ኼ) (2.10)

As the flow is assumed to be isentropic, stagnation conditions are constant throughout the flow
domain. The isentropic relations can then be used as a reference in order to obtain local properties,
which for the pressure, temperature and density are given as such respectively:

𝑝፭
𝑝 = (1 + 𝛾 − 12 𝑀ኼ)

ᒈ
ᒈᎽᎳ (2.11)

𝑇፭
𝑇 = 1 + 𝛾 − 12 𝑀ኼ (2.12)

𝜌፭
𝜌 = [1 + 𝛾 − 12 𝑀ኼ]

Ꮃ
ᒈᎽᎳ (2.13)
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Finally, from the continuity equation given, a relation between the local area and throat area can
be derived from which the local Mach number can be estimated:

𝐴
𝐴∗ =

1
𝑀[

1 + ᎐ዅኻ
ኼ 𝑀

ኼ

᎐ዄኻ
ኼ

]
ᒈᎼᎳ
Ꮄ(ᒈᎽᎳ)

(2.14)

Equations 2.11 to 2.14 form the set of equations that are fundamental to the analysis of one-
dimensional (1D) isentropic flow through a nozzle. Combining the expression for the pressure coeffi-
cient given earlier by equation 2.3 with the isentropic relation given by equation 2.11, a relation can be
established between the free-stream Mach number, local Mach number and pressure coefficient [27]:

𝑀ኼ = 2
𝛾 − 1[

1 + ᎐ዅኻ
ኼ 𝑀

ኼ
ጼ

(1 + ኻ
ኼ𝛾𝑀

ኼጼ𝐶፩)
ᒈᎽᎳ
ᒈ
− 1] (2.15)

These sets of equations derived from the conservation principles can be used in order to predict
the pressure distribution.

2.4.7. Panel Method
Aside from the transonic channel approach, a panel method can also be developed in order to predict
the aerodynamic properties of the Hyperloop pod. In such a method, the surface is divided into
straight lines between surface contour points, which are termed - as its name suggests - panels. This
method relies on the superposition of singularities on each of these panels. A piecewise variation of the
vorticity on discrete segments of the vehicle surface is sought for. An example of such discretization
with a vorticity distribution applied on an airfoil is shown in figure 2.5 [30].

Figure 2.5: Replacement of an airfoil by vortex panels of linearly varying strength

Panel methods are not restricted to the use of a vortex singularity to represent a certain surface.
Source and doublet singularities may also be used. This method requires large sets of algebraic equa-
tions to be solved simultaneously, generated by the tangency-boundary condition. There are different
types of panel methods, but they all follow the same general steps [31]:

1. The first step is choosing the number and type of singularities, where each singularity has an
unknown strength. For example, if N number of singularities are present, there are N unknown
strengths. Therefore, N equations are needed.

2. Discretizing the aerodynamics surface into N panels or segments. The panels do not necessarily
need to have the same size, but it can reduce computational time if they are. The panels should
be concentrated in regions where the variables are expected to undergo rapid changes. This most
often happens in regions of rapid geometry change. For example, at the head and tail of the
Hyperloop pod, relative large curvature changes are expected and as such, more panels should
be clustered in those regions.

3. Placing the control points. In solving a differential equation, the general solution must be gen-
erated where boundary conditions are applied for the specific case. The panel-solution method
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is based on satisfying the surface-tangency boundary condition as mentioned. Since there are N
unknowns, this boundary condition then has to be satisfied at N points on the surface. These N
points are the so-called control points, and placement follows logically similar to the placement
of the singularities.

4. Writing one equation for each control point. Here, the influence of all of the singularities and the
free-stream at a fixed control point is summed. Then, it is required that the net local velocity is
tangent to the surface at that control point or, equivalently, that the normal component of velocity
at the control point is zero. To accomplish this, the relative position of the control point relative to
the location of all of the singularities is required, as well as the geometrical slope of the surface.
In addition, it must be decided how the singularities are to be distributed on their respective
panels. So-called higher-order vortex panel methods may use a curved panel. These methods
also represent the vorticity as a linear or nonlinear variation along each panel. In general, higher-
order panel methods achieve greater accuracy than using combined singularities on flat panels
but at the expense of a more complicated formulation and generally with additional computation
time required.

5. Imposing the Kutta condition (if necessary). To produce a realistic solution, lifting airfoils with a
sharp edge require the Kutta condition; other geometries, such as ellipses and cylinders, do not.
The Kutta condition is a principle that holds for steady-flows. Briefly said, the condition is used
to ensure that the flow at the trailing edge is smooth, implying that the vorticity at the trailing
edge is to be zero. By imposing this condition, one of the equations discussed in the previous
step can be omitted, thereby reducing the required number of control points by one. It is very
well possible that this condition should be imposed as well in the analysis of a Hyperloop pod, as
it is possible that the pod geometry ends in a sharp tail.

6. Finally the system of equations generated by Steps 4 and 5 can be solved. Solving for N unknown
singularity strengths requires the solution of a full N by N matrix. Evidently, the more panels
that are used (i.e., the larger the value of N), the more accurately the method represents the
continuous vorticity distribution along a continuous surface. This can lead to more accurate
results, however with an increased computational time as cost.

The solution to this method will initially be inviscid (potential) flow predictions, leading only to a
prediction of lift. In order to make this method relevant for the Hyperloop pod analysis, the viscous
component is to be added, which leads to the prediction of drag. This can simply be achieved by
introducing a boundary layer theory.

2.5. Theory of Computational Fluid Dynamics
In the scope of this thesis project, CFD simulations are performed in order to verify the simplified
aerodynamic solver. CFD is extensively used for analysis and design of engineering applications, and
is a branch of fluid mechanics that numerically solves and analyzes problems involving fluid flows [32].
Some of these numerical methods are finite element, finite difference, and finite volume methods
that are using spatial and time discretizations. The goal of any CFD simulation is to study details of
a particular fluid dynamics phenomena in a controlled environment. In this section, the governing
equations of fluid dynamics are presented. Afterwards, turbulence modelling is discussed with respect
to applications on the Hyperloop. Next, boundary conditions and mesh generation are discussed and
an overview of CFD on tube train applications will be presented.

2.5.1. Mathematical Model of Fluid Dynamics
The starting point of any numerical method is a mathematical model, i.e. the set of the governing
equations of fluid dynamics along with the boundary conditions [33]. These fundamental governing
equations form the cornerstones of every CFD model. These equations are the continuity, momentum
and energy equations, which are mathematical representations of the following three physical principles
respectively:

1. conservation of mass

2. Newton’s second law (F = ma)
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3. conservation of energy

The governing equations that follow from these laws will be be briefly described and will be given
in their conservation form: the form where the control volume is fixed in space with the fluid moving
through it. This results in the equations being in their partial differential equation form.

From the first physical principle, the continuity equation follows directly and is given by:

𝜕𝜌
𝜕𝑡 + ∇ ⋅ 𝜌𝑢 = 0 (2.16)

Following from Newton’s second law, the momentum equations can be derived which states that the
temporal change of the linear momentum of a (material) fluid element equals the sum of the forces that
act on it. For a fluid element, the forces acting on it can be divided into two sources: body forces (e.g.
gravity, electromagnetic forces) and surface forces due to the pressure and shear stress distributions
as was mentioned earlier. The momentum equation can then be defined as:

𝜕(𝜌𝑢፣)
𝜕𝑡 +

𝜕(𝜌𝑢።𝑢፣)
𝜕𝑥።

= − 𝜕𝑝𝜕𝑥፣
+
𝜕𝜏።፣
𝜕𝑥።

+ 𝜌𝑓፣ (2.17)

where 𝜏።፣ represents the shear stress, which for a Newtonian fluid is given by:

𝜏።፣ = 𝜇(
𝜕𝑢።
𝜕𝑥፣

+
𝜕𝑢፣
𝜕𝑥።

) − 23𝜇
𝜕𝑢፤
𝜕𝑥፤

𝛿።፣ (2.18)

A Newtonian fluid is one in which the viscous stresses that arise from the flow are linearly propor-
tional to the local strain rate (i.e. 𝜏 ∝ Ꭷፕ

Ꭷ፭ ) at every point within the fluid domain [34]. For the vast
majority of all aerodynamic problems, the fluid can be assumed to be Newtonian [32].

The final conservation law is that of energy. The physical law states that the total energy of a closed
system is conserved. Energy can neither be created nor destroyed, but rather can be transformed from
one form to another. Applying this law to a finite control volume, the following equation is established:

𝜕
𝜕𝑡 (𝜌𝐸) +

𝜕
𝜕𝑥፣

(𝜌𝑢፣𝐸 + 𝑢፣𝑝 + 𝑞፣ − 𝑢።𝜏።፣) = 𝜌𝑔፣𝑢፣ (2.19)

As mentioned, the above equations form the cornerstone for each CFD model. However, additional
equations are required in order to obtain all the flow-field variables, as there are a total of 5 equations
and 6 unknowns.

In general, it is reasonable to assume the gas behaves like a perfect gas. For such gases, the
equation of state holds and is given by:

𝑝 = 𝜌𝑅𝑇 (2.20)

However, by introducing a sixth equation, a new unknown 𝑇 is introduced which is the temperature.
A final, seventh equation can be provided in order to close the entire system. This final equation is
valid for a calorically perfect gas:

𝑒 = 𝑐፯𝑇 (2.21)

Historically, the momentum equations in the three spatial directions for a viscous flow were identified
as the Navier-Stokes equations. However, in modern CFD nomenclature, the Navier-Stokes equations
have been expanded into the entire set of equations that was presented in this section. Therefore,
equations 2.16 to 2.21 are the so-called Navier-Stokes equations and form the mathematical model
behind the CFD model.

2.5.2. Turbulence Modelling
The Reynolds numbers that are encountered in the Hyperloop flow regime are still too high for Direct
Numerical Simulation (DNS) to be a viable option, given the state of the current computational power
and for the coming few decades [35]. DNS attempts to obtain a numerical solution to the unsteady
Navier-Stokes equations, and is (currently) only applicable to relatively low Reynolds number flows.
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The main limitation is the spatial grid and time scale requirements in order to capture all important
motions in a turbulent flow.

Turbulence is a fluid flow phenomenon which can mainly be characterized by unsteadiness, irregular
fluid motions on a wide physical scale range and rapid mixing. For the anticipated future, real-life fluid
dynamic problems still require turbulence models in order to solve these. Reynolds-Averaged Navier–
Stokes (RANS) equations combined with turbulence modelling provide an adequate model of turbulent
flow effects. Modelling the flow behaviour in such fashion mainly provides additional momentum trans-
fer by means of Reynolds stresses, although heat and mass transfer are also enhanced by the presence
of turbulence. In CFD simulations for the tube trains and Hyperloop pods, RANS-based CFD is the main
method in modelling the aerodynamic characteristics (as opposed to DNS and LES). These equations
are based on Reynolds decomposition, which implies that a quantity is decomposed in a time-averaged
and a fluctuating quantity:

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢̄(𝑥, 𝑦, 𝑧) + 𝑢ᖣ(𝑥, 𝑦, 𝑧, 𝑡) (2.22)

In this equation, the overbar represents the time-averaged quantity, whereas the prime represents
the fluctuating quantity. The RANS equation can then be given as:

𝜕⟨𝑢⟩
𝜕𝑡 + ∇ ⋅ (⟨𝑢⟩⟨𝑢⟩) + 1𝜌∇⟨𝑝⟩ −

1
𝑅𝑒∇ ⋅ ∇⟨𝑢⟩ = −∇ ⋅ ⟨𝑢

ᖣ̲ ⟩⟨𝑢ᖣ̲ ⟩ (2.23)

In the RANS equation, the term −⟨𝑢ᖣ̲ ⟩⟨𝑢ᖣ̲ ⟩ is equal to 𝜏።፣ which is also known as the Reynolds stress
tensor. This term is non-linear and is responsible for the fact that there are more unknowns than
equations available [32]. This lack of equations is also known as the closure problem. Therefore, the
Reynolds stress term needs to be solved with empirical approximations, which has led to the creation
of numerous so-called turbulence models. These models serve the purpose of exactly what the name
implies: using a model to predict the effects of turbulence. The turbulence models can generally be
divided into two categories: Eddy Viscosity Models (EVM) and Reynolds Stress Models (RSM).

The main observation made in EVMs is the fact that turbulence leads to momentum exchange
between fluid elements. The Reynolds stress is assumed to be proportional to a parameter called the
eddy viscosity 𝜈ፓ:

− ⟨𝑢ᖣ̲ 𝑢ᖣ̲ ⟩ = 2𝜈ፓ𝑆።፣ −
2
3𝛿።፣𝑘 (2.24)

As such, the six independent components stemming from the Reynolds stress are now reduced to
one scalar field 𝜈ፓ. This parameter can be expressed as a function of the mean velocity field in different
ways, which thus leads to different models [36]. The eddy viscosity is a field quantity and is not to be
confused with the kinematic viscosity which is a material property.

RSMs in turn, attempt to directly solve the model transport equations for all components of the
unknown Reynolds stress tensor [37]. The model transport equations involve approximations of higher-
order correlations and the dissipation rate tensor. As such, RSMs are able to account for complex
interactions in turbulent flow fields and are by design superior to EVMs for flows with strong streamline
curvature and for secondary flow structures induced by turbulence. The main reason is due to the
elimination of the assumption that the turbulent stress is related to the mean shear stress. At the
same time however, the six additional partial differential equations result in a too high computational
cost for engineering applications. RANS equations yield sufficient accurate results in most general
engineering cases.

There is a large number of turbulence models that each have their own pros and cons. Understand-
ing their strengths and weaknesses is of paramount importance in order to achieve accurate results
from CFD simulations. For brevity, only relevant models which have been applied to (Maglev) trains in
an enclosed environment will be discussed. For these applications, the most common models found in
literature are the 𝑘 − 𝜖, 𝑘 − 𝜔 SST and the Spalart-Allmaras model, which are all EVMs. These models
will be briefly touched upon.

𝑘 − 𝜖 Model
The 𝑘 − 𝜖 model is an EVM and is a so called two-equation model. It is one of the most widely used
turbulence model in general, first proposed by Jones and Launder [38]. In this model, an equilibrium
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is assumed between turbulence production and dissipation. This results in two partial differential
equations (PDE) for the turbulence kinetic energy 𝑘 and the dissipation rate 𝜖.

Also in literature, where CFD simulations on the Hyperloop pod were performed, the 𝑘 − 𝜖 model
was the most common model amongst the three that are discussed. The model gives good results for
both external aerodynamic problems as well as wall-bounded flows, which therefore makes it suitable
for the Hyperloop pod simulations. A drawback of this model is its inaccuracy for cases where relative
large adverse pressure gradients exist [35].

𝑘 − 𝜔 Model
The 𝑘−𝜔model was first proposed by David C. Wilcox [39], and is also a widely implemented turbulence
model. Similar to the 𝑘 − 𝜖 model, this is a two-equation model and attempts to predict turbulence by
solving PDEs for the kinetic energy 𝑘 and the specific turbulence dissipation rate 𝜔. It is highly similar
to the 𝑘−𝜖 model but the small differences lead to a large effect on the difference between turbulence
prediction.

Compared to the 𝑘 − 𝜖 model, this model gives superior results for boundary layer flows and for
flows with higher pressure gradients and where separation occurs. It is also possible to blend the two
models, which leads to the SST model as proposed by Florian Menter [40]. This model is used for the
design of the Massachusetts Institute of Technology Hyperloop pod competition for instance [7], as
separation in their design is expected, and the 𝑘 −𝜔 model is known for handling separated flows well
where large adverse pressure gradients exist.

Spalart-Allmaras Model
The final model which is commonly used for CFD analyses is the Spalart-Allmaras Model, and is based on
a postulated transport equation for a viscosity-like variable which is also known as the Spalart-Allmaras
variable [41].

This model is very robust compared to the previous two, and is computationally more efficient as it
only requires one transport equation. It also generally leads to superior results for attached flows and
for the prediction of the separation location, but is less suitable for the prediction of the reattachment
location [42].

2.5.3. Numerical Model
The Hyperloop pod is set to run at a speed of 300𝑚/𝑠 or equivalently at a Mach number of 0.88
when the ambient temperature is assumed to be 288.15𝐾. Assuming that an ideal gas is dealt with,
the equation of state holds and yields a scaling of the air density with the air pressure. The ambient
pressure is assumed to be equal to the internal tube pressure, which for this design will be at 100𝑃𝑎.

As the Reynolds number of the flow field is in the order of 10኿, the presence of turbulence is
expected, and a suitable turbulence model will have to be chosen in order to account for the turbulence
production. As mentioned before, the k-𝜖 model was the one that was chosen (approximately 90% of
all cases) the most in literature.

A steady, viscous flow field was assumed in most cases. There are however also arguments that
simulations involving the Kantrowitz limit has to be unsteady [7]. The presence of choked flow and the
resulting pressure build-up is said to be an inherently unsteady phenomenon, which thus has a chance
of preventing solution convergence if steady simulations are performed. A careful setup of the inlet
and outlet boundary conditions is therefore necessary in order to take these phenomena into account.

The mass and momentum is defined through the total pressure at the inlet of the domain, which
will be based off the Mach number and the static ambient pressure. This is also the case for the total
temperature, which in general will also be prescribed for the inlet condition.

All solid surfaces require a wall boundary condition. When a fluid is in contact with a solid body,
the fluid will not have any velocity relative to the body at the contact surface. This is also known as
the no-slip condition for viscous flows and is a Dirichlet boundary condition [43]. This is applicable to
the vehicle ’walls’ for instance.

For the simulation of a vehicle travelling through confined spaces, it is common practice to assume
that the object is stationary while the walls are moving at the speed of which the vehicle is intended
to travel. Therefore, a tangential velocity of 300𝑚/𝑠 at the wall is to be prescribed.
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2.6. Aerodynamic Shape Optimization
The main goal of all aerodynamic design methods, whether analytical, computational or experimental
is to find an improved shape of an object in terms of an aerodynamic figure of merit compared to a
previous shape while adhering to specified constraints. In the case for this thesis project, the main
figure of merit is the aerodynamic drag or drag coefficient, which is to be minimized by means of an ap-
propriate optimization scheme. Aerodynamic Shape Optimization methods can roughly be categorized
into three basic categories:

1. Inverse surface methods

2. Inverse field methods

3. Numerical optimization methods (gradient based)

These methods have their own pros and cons and will be further touched upon in this section.

2.6.1. Inverse Surface Method
An inverse design method is one in which a geometry is modified until it produces a prescribed target
distribution of a certain quantity. In most cases, the target distribution is a pressure or velocity distri-
bution. For compressible flows, this method can be further sub-categorized into a transonic potential
flow method and the Euler and Navier-Stokes method.

Transonic Potential Flow
One of the transonic potential flow methods is to replace the Neumann surface boundary condition,
𝜕𝜙/𝜕𝑛, with a Dirichlet boundary condition 𝜙 within a CFD analysis code, first done by Tranen [44].
The velocity potential 𝜙 is obtained by integrating a desired target velocity distribution. The shape
of the vehicle is then modified in an iterative fashion with the computed normal velocity through the
surface.

Another common method is the extended Lighthill’s method by McFadden and Garabedian [45].
This method builds forth on Lighthill’s method [46], which comprised the design of a 2D profile in order
to attain a desired pressure distribution. In the extended method, the flow equation is first solved for
a certain given mapping ℎ፨. The mapping is then updated by setting the surface speed to a desired
target: 𝑞 = 𝑞፝. The flow equation is subsequently solved for this new mapping ℎኻ, and this process
is repeated. Compared to the aforementioned method, it has an advantage due to the fact that it
does not require modifications to the boundary conditions. All solutions will therefore remain valid
throughout the optimization process.

Euler and Navier-Stokes
Another type of inverse surface method is the Euler and Navier-Stokes method, most commonly known
through the work of Campbell [47]. A difference between the actual and a target pressure distribution
is translated into adjustments of surfaces through the relationship of surface curvature and pressure
for subsonic flows. For supersonic flows, the surface slope is taken instead of the curvature. These
curvatures and slopes are calculated plane by plane:

Δ𝑛 + 𝛽ኻ
𝜕
𝜕𝑥Δ𝑛 + 𝛽ኼ

𝜕
𝜕𝑦Δ𝑛 + 𝛽ኽ

𝜕ኼ
𝜕𝑥ኼΔ𝑛 + 𝛽ኾ

𝜕ኼ
𝜕𝑦ኼΔ𝑛 = 𝛽኿Δ𝑐፩ (2.25)

In equation 2.25, Δ𝑛 is the local normal surface displacement and 𝛽። is the user specified quantities.

2.6.2. Inverse Field Method
With an inverse field method, the vehicle design is based on objectives or constraints that are imposed
on the configuration surface but everywhere in the flow field. As its name suggests, it is also a method
where the design is modified until a certain target is met.

One of these methods is proposed by Garabedian and Korn [48], which is based on a hodograph
transformation. A hodograph transformation is one in which nonlinear partial differential equations are
transformed into their linear counterparts [49]. It is achieved by interchanging the dependent and
independent variables in the equation to achieve this linearity.
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This method is useful for optimization procedures with a focus on shock control, as it can guarantee
a shock-free flow field. It has been proven successful in the development of shock-free transonic airfoils,
which could thus be a desired method as one of the mentioned design strategies for the Hyperloop
pod was to prevent the generation of shockwaves. A disadvantage of this method is the fact that the
method is not applicable to three dimensional flows.

Another popular inverse field method is the Fictitious Gas Concept (FGC) first introduced by So-
bieczky [50]. The FGC is originally designed for potential flow, and its main goal is to design airfoil
and wing shapes as well as turbomachinery components which exhibit this shock-free nature at design
conditions [51].

The fundamental concept behind this method is that the governing equations for the fluid dynamic
problem in consideration are modified locally. The flow is solved with an altered perfect gas-dynamic
law within the supersonic region of the flow. This results in a preliminary elliptic behaviour within this
supersonic domain, consequently leading to a so-called fictitious part of the flow [52]; hence the name
of this method.

For both inverse surface and inverse field methods, a shared main disadvantage is that the objective
of a target pressure distribution is built directly into the design process and thus cannot be changed to
any arbitrary objective function.

2.6.3. Numerical Optimization Method
The final common aerodynamic shape optimization is the numerical optimization method. A gradient
based optimization method is most common within this category.

It is common to first parametrize the geometry that is to be altered, in order to allow for the
evaluation of a high number of different geometries against a relatively low computational cost. There
exists numerous parametrization techniques, but they can more or less be generalized through the
following method: the geometry which is to be modified is parametrized and defined by weights, 𝑎።,
combined with a certain shape functions 𝑏።. The geometry can then be represented by:

𝑓(𝑥) =
፧

∑
።዆ኻ
𝑎።𝑏።(𝑥) (2.26)

Subsequently, a cost function 𝐼 or objective function is defined which contains the parameter that
is to be maximized or minimized. The function in itself should be a function of the weights 𝑎።. It can
then be related to the gradient 𝜕𝐼/𝜕𝑎። through:

𝛿𝐼 =
፧

∑
።዆ኻ

𝜕𝐼
𝜕𝑎።

𝛿𝑎። (2.27)

The gradient of the function is used to determine a direction within the feasible design space for
improvement, which can be a reduction in drag for instance. The figure of merit is typically described
by a function termed as the objective function.

2.7. Discussion and Conclusion
A study regarding the aerodynamic considerations of the Hyperloop was performed, where literature on
Hyperloop relatable systems is assessed, as well as literature on (shape) optimization methods and CFD
simulations. The Hyperloop is a newly proposed transportation mode that can give answers to the rising
demand of high-speed, sustainable travel. A sustained global economy growth requires faster, cheaper,
safer and more efficient transportation modes. In a Hyperloop system, pods are propelled through a
reduced pressure tube while being magnetically levitated. The airliner speeds at which the pods travel
combined with its means of propulsion result in a significant time and energy reduction compared
to conventional transport systems for similar medium distances (up to approximately 2000𝑘𝑚). The
Hyperloop can provide a direct, on-demand, low-emission and energy efficient means of transportation.

A careful design is necessary in order to achieve the (performance) benefits and in particular the
aerodynamic design. A Hyperloop pod travels in an unconventional flow regime: very low Reynolds
numbers (order 10኿) with high Mach numbers (Mach 2.5 locally). This brings with it its own unique
challenges that have to be dealt with. The (aerodynamic) design of the Hyperloop is comparable to a
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typical aerospace problem, that tackles the same strategic goals of having low-carbon propulsion and
highly efficient vehicles.

Literature has shown that there already has been research conducted on the aerodynamics, but
still on a conceptual and preliminary level. The main aerodynamic challenge will be coping with the
Kantrowitz limit which is associated to choked flow. Violating this limit could lead to a three-fold increase
in drag coefficient compared to operations in non-choked conditions. The most important parameters
concerning the aerodynamic design are the blockage ratio, vehicle speed and operating tube pressure.
For the blockage ratio, a feasible range lies within 0.25 - 0.7.

Furthermore, the speed regime in which the pods is operative means that shockwaves will be
present, which is detrimental to the aerodynamic performance of the pod. Again, a careful and ade-
quate design needs to be developed in order to cope with these aerodynamic phenomena in order to
achieve the aforementioned benefits of this transportation system.

While the operating pressure within the tube is at a mere 100𝑃𝑎, the shape of the vehicle still
significantly affects the overall aerodynamic performance. Investigations on basic shapes have shown
that a vehicle with an elliptical head and semicircular tail yield the lowest pressure difference between
the front and back of the vehicle for low blockage ratios. However, different combinations of head and
tail shapes were found to be more efficient at higher blockage ratios. Once again, the importance of
this parameter is noted.

A suitable range for the ratio of nose length to pod diameter should lie within 1.5 - 2.5. A longer
nose and tail is beneficial for the aerodynamic drag reduction, but the effects are less pronounced
with increasing length. The relative thick boundary layer due to the low Reynolds number means that
separation can occur at relative ease, and a design that promotes turbulent flow is therefore a possible
design strategy.

For the prediction of general aerodynamic quantities through a simplified aerodynamic flow model,
the channel flow approach or panel method are considered to be suitable methods. Through the fact
that the pod and tube walls form a channel, the typical nozzle flow calculation scheme can be followed
in order to compute the flow field around the pod if the channel approach is taken.

Within the CFD analyses that were conducted to obtain the above mentioned aerodynamic findings,
it was observed that RANS-based simulations with a 𝑘 − 𝜖 turbulence model is the most widely used
model for the aerodynamic analysis of these tube trains. The main reason for this model to be chosen
over others is mainly due to the fact that it performs well for wall-bounded flows in particular, thus
similar to flow within a tube as is the case for the Hyperloop pod.

These findings from literature regarding aerodynamic design considerations of the Hyperloop pod
serve as a good starting point for the development of an aerodynamic design and optimization proce-
dure. This literature study serves as a foundation of the research project.



3
Aerodynamic Shape Optimization

Methodology

In this research project, an aerodynamic solver is developed which is capable of aerodynamically ana-
lyzing a Hyperloop pod and determine the drag of the pod. In this case, CFD analyses are performed in
order to validate the solver method. Furthermore, the solver is utilized to perform a shape optimization,
in which the aim is to reduce the aerodynamic drag of the pod.

This chapter will cover the procedure that was taken in order to arrive at the aerodynamic model
that is capable of analyzing the flow behaviour around the Hyperloop pod. The main goal of this model
is to predict the aerodynamic drag of the pod. Afterwards, the model is coupled to a gradient-based
optimization scheme, in which a shape is sought for that has the lowest aerodynamic drag. In Section
3.1, the main assumptions made and their implications on the governing fluid dynamic equations are
discussed. Section 3.2 will cover the main procedure that was developed in order to derive main flow
parameters (e.g. p, T) with which the aerodynamic drag can be determined. Thereafter, in Section
3.3, the baseline pod will be presented which is based off requirements as set by HARDT combined
with main findings from literature. This baseline pod will act as a reference in determining potential
aerodynamic performance improvements. Finally, Section 3.4 will be covering the parametrization
method of the geometry which is required in order to allow for the solver to analyze a large number of
geometries in a short amount of time.

3.1. Main Assumptions and Governing Equations
In order to arrive at a simplified aerodynamic model, assumptions and simplifications are made in
order to reduce the complexity of the model, thereby reducing computational efforts. It is evident
however, that the physical problem still needs to be correctly represented, which means that care must
be taken in making these simplifications. Validation of the model with CFD is therefore important, in
order to assess the ability of the model to simulate the physical problem and to investigate which of
the neglected effects are causes for any possible but acceptable discrepancies.

First of all, the flow around the pod is modeled as a flow through a channel with a varying area,
where the pod surface and tube wall pose as channel walls. As such, the flow domain can be regarded
as a compressible (convergent-divergent) nozzle, assuming that there will be a minimum section some-
where over the pod surface, equivalent to the location of the throat. It is furthermore assumed that
the variation in area is gradual, which means that the flow is modeled as a quasi-1D flow. This type
of flow is one in which all relevant flow parameters vary primarily in one direction, which is the flow
direction 𝑥 in this case. The most important implications that come with this assumption are listed
below:

• Flow parameters uniform along each section: 𝐴 = 𝐴(𝑥), 𝑝 = 𝑝(𝑥) etc.

• 𝑉፱ ≠ 0

•
ፕᑪ
ፕᑩ
≪ 0
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• ፕᑫ
ፕᑩ
≪ 0

The flow is furthermore assumed to be isentropic. For accelerating flows (favorable pressure gradi-
ents), the idealization of isentropic flow is generally a realistic model of the actual flow behavior [23].
This supports the isentropic flow assumption, as the flow around the pod is in an accelerating state for
the largest part in the region of interest. The isentropic flow assumption mainly implies that certain
quantities, the total temperature for instance, are assumed to be constant throughout the flow domain.

Finally, the flow is assumed to be steady and inviscid, with the air assumed to behave as an ideal
gas. The main implications of this assumption is that the heat capacity ratio 𝛾 is equal to 1.4 for air
and that the ideal gas law is valid for calculations.

The quasi-1D flow assumption evidently has its implications on the governing fluid dynamic equa-
tions. How these equations relate specifically to the flow field under consideration will be briefly
discussed in the following subsections.

3.1.1. Conservation of Mass
The first discussed governing equation is based on the physical principle that mass can neither be
created nor destroyed. The mass conservation in its integral form is given by [53]:

𝜕
𝜕𝑡∰𝒱

𝜌𝑑𝒱 +∯
ፒ
(𝜌⃗⃗𝑉 ⋅ 𝑑𝑆) = 0 (3.1)

This equation is also known as the continuity equation, which for a steady flow ( ᎧᎧ፭ = 0) reduces
to:

∯
ፒ
𝜌⃗⃗𝑉 ⋅ 𝑑𝑆 = 0 (3.2)

When looking at a specific section of the flow passage within the nozzle and regarding it as a control
volume that spans across station 1 to station 2, the application of the mass conservation equation 3.2
to this specific section in the main flow direction, the following is noted: as for each specific cross-
sectional area, 𝐴, the density and velocity are assumed to be constant, these can be taken out of the
integral. This then leads to a simplified balance equation:

− 𝜌ኻ𝑢ኻ∬
ኻ
𝑑𝐴 + 𝜌ኼ𝑢ኼ∬

ኼ
𝑑𝐴 = 0 (3.3)

and finally further simplifies to:

𝜌ኻ𝑢ኻ𝐴ኻ = 𝜌ኼ𝑢ኼ𝐴ኼ (3.4)

The analysis for this specific section can essentially be applied to any section along the flow pas-
sage, which means that a more general equation can be formulated for the mass flow where the flow
parameters are thus only a function of 𝑥 due to the quasi-1D assumption. This mass flow rate is to
stay constant:

𝑚̇ = 𝜌(𝑥)𝑢(𝑥)𝐴(𝑥) = 𝐶 (3.5)

3.1.2. Conservation of Momentum
The momentum equation relies on the physical principle that a force is equal to the time rate of change
of momentum. The conservation of momentum equation for an inviscid flow, without body forces, is
given in its integral form by:

𝜕
𝜕𝑡∰𝒱

𝜌⃗⃗𝑉𝑑𝒱 +∯
ፒ
(𝜌⃗⃗𝑉 ⋅ 𝑑𝑆)⃗⃗𝑉 = −∯

ፒ
𝑝 ⋅ 𝑑𝑆 (3.6)

which again for a steady flow reduces to

∯
ፒ
(𝜌⃗⃗𝑉 ⋅ 𝑑𝑆)⃗⃗𝑉 = −∯

ፒ
𝑝 ⋅ 𝑑𝑆 (3.7)
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As for the same implications with the conservation of mass, the density and velocity are constant for
a specific cross-sectional area and can thus be taken out of the integral. Together with this assumption
and again looking at a specific location within the passage leads to the following relation:

𝑝ኻ𝐴ኻ + 𝜌ኻ𝑢ኼኻ𝐴ኻ +∫
ፀᎴ

ፀᎳ
𝑝𝑑𝐴 = 𝑝ኼ𝐴ኼ + 𝜌ኼ𝑢ኼኼ𝐴ኼ (3.8)

This equation can be rewritten in its differential form:

𝑝𝐴 + 𝜌𝑢ኼ𝐴 + 𝑝𝑑𝐴 = (𝑝 + 𝑑𝑝)(𝐴 + 𝑑𝐴) + (𝜌 + 𝑑𝜌)(𝑢 + 𝑑𝑢)ኼ(𝐴 + 𝑑𝐴) (3.9)

which after rearrangement leads to:

𝐴𝑑𝑝 + 𝐴𝑢ኼ𝑑𝜌 + 𝜌𝑢ኼ𝑑𝐴 + 2𝜌𝑢𝐴𝑑𝑢 = 0 (3.10)

Finally, from the findings of the conservation of mass, it was noted that the mass flow is given by
the product of the density, area and flow velocity and is furthermore to remain constant. Hence, the
derivative of this product is equal to zero. This implies that the second and third terms in equation
3.10 can be omitted. This then results in the so-called Euler’s equation:

𝑑𝑝 + 𝜌𝑢𝑑𝑢 = 0 (3.11)

3.1.3. Conservation of Energy
The final fundamental equation that is covered is the energy equation. Since the density is not constant
for a compressible flow, this additional relation is required to complete the system. The energy equation
is based on the physical principle that energy can neither be created nor destroyed. It can only change
in form. Again, for an inviscid, steady and adiabatic flow without body forces, the energy equation is
given by:

∯
ፒ
𝜌(𝑒 + 𝑉

ኼ

2 )
⃗⃗𝑉 ⋅ 𝑑𝑆 = −∯

ፒ
𝑝⃗⃗𝑉 ⋅ 𝑑𝑆 (3.12)

Applying the above equation again to the aforementioned control volume within the flow passage
yields:

𝜌ኻ(𝑒ኻ +
𝑢ኼኻ
2 )(−𝑢ኻ𝐴ኻ) + 𝜌ኼ(𝑒ኼ +

𝑢ኼኼ
2 )(𝑢ኼ𝐴ኼ) = 𝑝ኻ𝑢ኻ𝐴ኻ − 𝑝ኼ𝑢ኼ𝐴ኼ (3.13)

which after rearrangement leads to the following balance equation:

𝑝ኻ𝑢ኻ𝐴ኻ + 𝜌ኻ𝑢ኻ𝐴ኻ(𝑒ኻ +
𝑢ኼኻ
2 ) = 𝑝ኼ𝑢ኼ𝐴ኼ + 𝜌ኼ𝑢ኼ𝐴ኼ(𝑒ኼ +

𝑢ኼኼ
2 ) (3.14)

Dividing this equation by the mass balance relation (equation 3.4) yields:

𝑝ኻ
𝜌ኻ
+ 𝑒ኻ +

𝑢ኼኻ
2 = 𝑝ኼ

𝜌ኼ
+ 𝑒ኼ +

𝑢ኼኼ
2 (3.15)

Finally, noting that the quantity 𝑝/𝜌 + 𝑒 is equal to the enthalpy ℎ, the energy equation can be
expressed as:

ℎኻ +
𝑢ኼኻ
2 = ℎኼ +

𝑢ኼኼ
2 (3.16)

An important implication of the energy equation is therefore that the quantity ℎ + 𝑢ኼ/2, which is
equal to the total enthalpy ℎ፭, remains constant throughout the flow.
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3.2. Computation of Aerodynamic Quantities
As the flow is modeled as a quasi-1D nozzle flow, the computation of relevant aerodynamic quantities
and distributions is to a large extent based on the ratio of the local area between the pod surface and
tube wall, and the area of the throat. This will become evident with the implications of the simplifications
that were discussed in the previous section. It is important to note that the pod is axisymmetric with a
circular cross-section. As such, circular areas are taken when computing area ratios and only one half
of the flow path is modeled to save computational time.

3.2.1. Mach Number Distribution
To predict the flow velocity around the pod, an expression is derived which relates the ratio of local
area and throat area to the local Mach number. In order to arrive at this expression, the continuity
equation that was earlier derived (equation 3.4) is applied to the throat section, where the flow reaches
sonic conditions. The throat section is denoted by the superscript ∗:

𝜌∗𝑢∗𝐴∗ = 𝜌𝑢𝐴 (3.17)

subsequently, the ratio between the local and throat areas can be expressed as:

𝐴
𝐴∗ =

𝜌∗𝑢∗
𝜌𝑢 = 𝜌∗𝑎∗

𝜌𝑢 = 𝜌∗
𝜌ፓ
𝜌ፓ
𝜌
𝑎∗
𝑢 (3.18)

Due to the isentropic flow assumption, the stagnation density can be expressed as a fraction of its
static value in terms of the Mach number alone as a variable:

𝜌ፓ
𝜌 = (1 + 𝛾 − 12 𝑀ኼ)

Ꮃ
ᒈᎽᎳ (3.19)

at sonic conditions, this relation becomes:

𝜌∗
𝜌ፓ
= ( 2

𝛾 + 1)
ᎽᎳ
ᒈᎽᎳ (3.20)

With expressions for the first and second term on the right hand side of equation 3.18 and noting
that last term in this equation is the inverse of the Mach number, a relation can be obtained which
relates the Mach number to the ratio of local area to throat area:

( 𝐴𝐴∗)
ኼ
= 1
𝑀ኼ [

2
𝛾 + 1(1 +

𝛾 − 1
2 𝑀ኼ)]

ᒈᎼᎳ
ᒈᎽᎳ

(3.21)

The Mach number distribution around the pod can then be based on the local area between the
tube and pod for a given throat area. At any given area ratio, the resulting Mach number can either
be sub- or supersonic due to the quadratic nature of the equation.

Since the inflow is subsonic, the flow cannot become supersonic up to the throat, where it then
reaches sonic conditions. The flow behaviour after the throat however, depends on the boundary
condition which is the pressure ratio across the nozzle, or in this case, the pressure ratio between the
front and back of the pod.

The pressure build-up in front of the pod, due to violation of the Kantrowitz limit, always ’guarantees’
a sufficiently high pressure ratio (>1.893) [54] to sustain a supersonic flow throughout the diverging
passage. This implies that after the throat, the flow will always expand to local supersonic speeds.
From this qualitative analysis, a general flow profile can already be predicted: the flow is subsonic up
to the throat where it then expands and accelerates to supersonic velocities.

3.2.2. Pressure Distribution
Not only is the Kantrowitz limit responsible for a supersonic outlet, from literature, it became clear that
this limit which is associated to the choking of the flow is the largest contributor to the aerodynamic
drag of the pod. This then also has its implications on the determination of the pressure distribution
over the pod, and thus also the computation of the pressure drag. By determining the pressure drag
based off a pressure distribution that follows directly from the velocity distribution, the build-up of
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the pressure in front of the pod due to choking is not taken into account. Since the flow is choked,
this ’traditional’ approach does not suffice in predicting the pressure distribution over the pod, as it
naturally yields an under-predicted pressure drag. Therefore, the pressure is to be determined from
the ’required’ mass flow rate.

First of all, realizing that sonic conditions are reached at the throat location, the local velocity is
thus equal to the local speed of sound:

𝑢∗ = 𝑎 = √𝛾𝑅𝑇∗ (3.22)

This expression can be used to find an expression for the mass flow rate at the throat. Combining
this equation with the earlier found relations for the continuity and total density, given by equations
3.17 and 3.20 respectively, the mass flow at the throat can be expressed as follows:

𝑚̇ = 𝜌ፓ[
𝛾 + 1
2 ]

ᎽᎳ
ᒈᎽᎳ
√𝛾𝑅𝑇∗𝐴∗ (3.23)

Again, since the flow is assumed to be isentropic with air as an ideal gas, the total conditions of the
density is given by:

𝜌፭ =
𝑝፭
𝑅𝑇፭

(3.24)

while the static temperature can be related to the total temperature by:

𝑇፭
𝑇 = 1 + 𝛾 − 12 𝑀ኼ (3.25)

For the conditions at the throat, the static temperature can be expressed in terms of the stagnation
temperature according to:

𝑇∗
𝑇፭
= [1 + 𝛾 − 12 ]

ዅኻ
(3.26)

Combining equations 3.24 and 3.26 with equation 3.23 yields an expression for the choked mass
flow rate:

𝑚̇፜፡፨፤፞፝ =
𝑝፭
𝑅𝑇፭

[𝛾 + 12 ]
ᎽᎳ
ᒈᎽᎳ
√𝛾𝑅𝑇

∗

𝑇፭
𝑇፭𝐴∗

which after rearrangement yields:

𝑚̇፜፡፨፤፞፝ =
𝑝፭𝐴∗

√𝑇፭
√𝛾
𝑅(

2
𝛾 + 1)

(᎐ዄኻ)/(᎐ዅኻ)
(3.27)

The choked mass flow rate is therefore only dependent on the stagnation properties and the area
of the throat, while in the general case, the mass flow rate is given by:

𝑚̇ = 𝑝፭𝐴
√𝑇፭

√𝛾𝑅𝑀(1 +
𝛾 − 1
2 𝑀ኼ)ዅ

ᒈᎼᎳ
Ꮄ(ᒈᎽᎳ) (3.28)

With the known inflow conditions, the choked mass flow through the tube can be determined. In
this case, the static temperature is 288.15𝐾, while the velocity is 300𝑚/𝑠. With the Mach number
distribution and stagnation conditions known, the static temperature can also be computed at every
location with the earlier mentioned isentropic equation 3.25. This relies on the assumption that the
total temperature remains constant over the domain.

In agreement with the continuity equation, it is evident that the amount of air that bypasses the
pod is to be conserved, which follows from the conservation of mass principle. The mass flow rate is
therefore to stay constant throughout the flow passage. As discussed in Section 3.1.1, the mass flow
equation simplifies to the product of the density, velocity and local area between the tube and pod.
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With the local temperature known, the local speed of sound can be obtained and thus also the local
velocity with the known local Mach number. The density that follows from the sustained mass flow rate
can then be determined by:

𝜌(𝑥) =
𝑚̇፫፞፪፮።፫፞፝
𝐴(𝑥)𝑉(𝑥) (3.29)

with the known (distribution of) static quantities, the static pressure can be determined according
to the ideal gas law:

𝑝(𝑥) = 𝜌(𝑥)𝑅𝑇(𝑥) (3.30)

Finally, the pressure can be integrated over the surface in order to obtain the total pressure drag.
The pressure acts normal onto the pod surface, so it must be noted that only the component that
contributes to the pressure drag is to be taken into account, i.e. the component projected along the
direction of travel:

𝐷፩፫፞፬፬፮፫፞ =∬
ፒ
𝑝(𝑥)𝑐𝑜𝑠(𝜃)𝑑𝐴 (3.31)

In this equation, 𝜃 is the angle between the surface normal and the pressure drag direction.

3.2.3. Viscous Effects
The development of the boundary layer is an important aspect for the determination of the viscous drag
and heat transfer for instance. However, for this internal aerodynamic problem, it more importantly
affects the aerodynamic characteristics through its influence on the effective height of the pod. Since
the length of the pod is a few orders of magnitudes higher compared to the height between the pod and
the tube, the thickness development of the boundary layer can play a significant role on the velocity
distribution. This effect is more pronounced for the specific flow conditions of the pod, where low
Reynolds number contribute to a faster growth in boundary layer height.

The boundary layer characteristics are highly dependent on the Reynolds number of the flow, which
thus has to be determined first. The dynamic viscosity 𝜇 which is needed to compute the Reynolds
number is determined according to Sutherland’s law [55]:

𝜇 = 𝜇ኺ
𝑇ኺ + 𝐶
𝑇 + 𝐶 (

𝑇
𝑇ኺ
)
ኽ/ኼ

(3.32)

For this case, the boundary layer is modeled to behave according to a Blasius boundary layer,
which assumes that the pressure remains constant throughout the height of the boundary layer [56].
Furthermore assuming that the development of the boundary layer can be modeled as that over a flat
plate, the thickness 𝛿 for a laminar flow is then given by the Blasius solution:

𝛿፥ፚ፦።፧ፚ፫ =
5.0𝑥
√𝑅𝑒፱

(3.33)

The flow regime is considered as a transitional one, implying that at a certain point downstream of
the nose, the laminar boundary layer transitions into a turbulent one which grows at a faster rate. Thus,
a so-called transition point exists somewhere over the pod surface. The inclusion and determination
of the transition point is not only important for the correct prediction of the friction drag, but more
importantly for the determination of the effective pod height.

The value of the length 𝑥 at which this transition happens is typically termed as the critical length
𝑥፜፫።፭. This critical distance then allows for an associated critical Reynolds number 𝑅𝑒፜፫።፭ which, when
continuing with the flat plate assumption, is approximately 5 ⋅ 10኿ [57]. As such, the transition point
can be determined:

𝑥፜፫።፭ =
𝜇ጼ𝑅𝑒፜፫።፭
𝜌ጼ𝑉ጼ

(3.34)

After this transition point, the boundary layer then grows according to:
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𝛿፭፮፫፛፮፥፞፧፭ =
0.37𝑥
𝑅𝑒ኻ/኿፱

(3.35)

The boundary layer thickness is typically defined as the distance between the wall to a certain point
where the flow velocity has reached 99% of the outer flow velocity. While the concept of a boundary
layer thickness is often used to qualitatively analyze flow behaviour, a more ’fluid mechanically correct’
measure to characterize the boundary layer is the displacement thickness 𝛿∗, defined as:

𝑈𝛿∗ = ∫
ጼ

፲዆ኺ
(𝑈 − 𝑢)𝑑𝑦 (3.36)

𝑈 is the velocity on the outer edge of the boundary layer at a certain position 𝑥. Since the flow
near the wall is retarded, the streamlines are displaced outwards in order to satisfy continuity. This
displacement is thus described by 𝛿∗, and is in effect a measure to account for the missing mass flow
due to the boundary layer [58]. Again, for a flat plate, this thickness is given by:

𝛿∗፥ፚ፦።፧ፚ፫ =
1.72𝑥
√𝑅𝑒፱

(3.37)

Subsequently, the displacement thickness for a turbulent boundary layer is given by:

𝛿∗፭፮፫፛፮፥፞፧፭ =
0.020𝑥
𝑅𝑒ኻ/዁፱

(3.38)

This displacement thickness is added to the height of the pod, which then results in a so-called
effective height. The inviscid flow outside the boundary layer therefore ’sees’ a different body than the
original geometry. This effective dimension is then used to determine local area ratios for the calculation
of the Mach number distribution. A visualization of this effective height is shown in Figure 3.1. The
boundary layer thickness visualized by the dashed line is highly exaggerated for clarity purposes and
does not represent the actual thickness development.

Figure 3.1: Boundary layer growth over the Hyperloop pod

The gradual increase in boundary layer thickness implies that the Mach number is always increasing
over the flat surface of the pod, as the effective area between the tube and pod is decreasing with
downstream location. The location of the throat will therefore always be around the end of the constant
radius section, as the local area will increase again due to the geometry of the tail (i.e. where the pod
radius decreases again). The flow will therefore reach sonic conditions close to the tail section, where
it then expands afterwards.

Besides the influence on the velocity distribution and thereby on the pressure drag, the viscous
effects of course also causes the generation of skin friction drag. However, the skin friction drag is
deemed to have a minimal impact on the design and thus optimization of the pod, since it generally
accounts for 5-10% of the total drag as was concluded from literature investigations. It is therefore
opted to use semi-empirical equations for the skin friction coefficient, instead of obtaining a skin shear
stress distribution to predict the skin friction drag. A more accurate skin friction drag would be predicted
if the shear stress distribution was determined, but the added complexity and hence longer optimization
process does not weigh up against the relative small increase in accuracy for prediction of the friction
drag. The Blasius solution yields a friction coefficient relation for a laminar flow as given by [59]:

𝐶፟,፥ፚ፦።፧ፚ፫ =
0.664
√𝑅𝑒፱

(3.39)
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As is known, the skin friction drag for a turbulent flow is higher, resulting in a higher skin friction
coefficient. For the turbulent flow, Prandtl’s one-seventh-power law is used [8]:

𝐶፟,፭፮፫፛፮፥፞፧፭ =
0.027
𝑅𝑒ኻ/዁፱

(3.40)

Finally, the skin friction drag can be determined by integrating the coefficient over the surface of
the pod:

𝐷፟፫።፜፭።፨፧ =∬
ፀ,፥ፚ፦።፧ፚ፫

𝐶፟,፥ፚ፦።፧ፚ፫
𝜌𝑉ኼ
2 𝑑𝐴 +∬

ፀ,፭፮፫፛፮፥፞፧፭
𝐶፟,፭፮፫፛፮፥፞፧፭

𝜌𝑉ኼ
2 𝑑𝐴 (3.41)

3.3. Baseline Hyperloop Pod
A baseline geometry is defined first in order to have a reference and a basis for the optimization
procedure. This baseline design is based off main findings from literature, since no prior model was
defined yet.

From literature, it became clear that a combination of an elliptical nose combined with a similar
but more blunt tail yields the lowest amount of pressure drag. Furthermore, an advised range for the
length of the nose and tail were given that should lie between 1.5 - 2 times the diameter of the vehicle.
A geometry based on these findings is therefore taken as baseline design, in order to provide an initial
point that can possibly accelerate the optimization procedure.

As per top level requirements (set by HARDT), the geometry of the pod is only fixed in terms of its
length and radius of the constant section, which are to be 39𝑚 and 1.7𝑚 respectively.

In terms of operational requirements, the internal tube pressure is set at a pressure of 100𝑃𝑎,
which is then regarded as the free-stream pressure. The geometrical and flow parameters are given
in Table 3.1.

Table 3.1: Geometrical and flow parameters of the Hyperloop

Geometrical parameters Description Value Unit
𝐿፜፨፧፬፭ፚ፧፭ Constant section length 39 m
𝑅፩፨፝ Pod radius 1.7 m
𝑅፭፮፛፞ Tube radius 2.15 m
𝐿፧፨፬፞ Nose length 6 m
𝐿፭ፚ።፥ Tail length 4 m
𝛽 Blockage ratio 0.625 -

Flow parameters Description Value Unit
𝑝፭፮፛፞ Internal tube air pressure 100 Pa
𝑇፭፮፛፞ Internal tube air temperature 288.15 K
𝜌፭፮፛፞ Internal tube air density 0.0012 kg/mኽ

𝑉፩፨፝ Pod velocity 300 m/s
𝑚̇፫፞፪፮።፫፞፝ Required mass flow rate 5.268 kg/s

𝑅𝑒 Reynolds number 9.735⋅10኿ -
𝑅𝑒፜፫።፭ Reynolds number 5⋅10኿ -
𝑥፜፫።፭ Transition point 26.00 m

Combining the main findings of literature regarding an aerodynamic efficient shape with the top
level requirements, a baseline model was formed which is shown in Figure 3.2. The nose and tail have
lengths of 6𝑚 and 4𝑚 respectively.
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Figure 3.2: Geometry of the baseline Hyperloop pod

3.4. Pod Shape Parametrization
To allow efficient geometrical sweeps in order to perform the aerodynamic analysis described in Section
3.2 on a large number of geometries, parametrization of the pod shape is required. Shape parametriza-
tion is the process of finding parametric equations in order to describe a certain geometry. Since this
is a 2D optimization where only one half of the geometry has to be described, the geometry is essen-
tially defined by a curve. Shape parametrization is necessary in order to translate the system into a
mathematical representation suitable for (aerodynamic) analysis, which at the same time should allow
for enough freedom in geometrical changes when coupled with an optimization scheme.

More importantly, the parametrization allows for a significantly reduced time in the overall opti-
mization procedure, as the geometry is described by a smaller set of variables when compared to the
original representation consisting of Cartesian coordinates.

The class-shape function transformation method (CST) proposed by Boeing [60] is used for the
parametrization of the Hyperloop pod. As the name suggests, the parametrization is based on two
functions: a class function 𝐶(𝑥) and a shape function 𝑆(𝑥). A general curve 𝜁(𝑥) is then described by:

𝜁(𝑥) = 𝐶ፍᎳፍᎴ (𝑥) ⋅ 𝑆(𝑥) (3.42)

The properties and purposes of these functions are briefly touched upon in the subsequent sections.

3.4.1. Class Function
The class function can be regarded as a template for a certain shape. It guarantees that characteristic
geometrical features of the overall shape are preserved when the shape is altered for an optimization
process. In an aerodynamic problem for instance, a streamlined shape is generally desired, which thus
can be guaranteed by a specific class function. The mathematical definition of the class function is
given by:

𝐶ፍᎳፍᎴ (𝑥) = 𝑥ፍᎳ ⋅ (1 − 𝑥)ፍᎴ , 0 ≤ 𝑥 ≤ 1 (3.43)

The coefficients 𝑁ኻ and 𝑁ኼ are responsible for the characteristic shape of the geometry. In Figure
3.3, examples are given as to how certain values for the coefficients of the class function affect the
overall shape for a shape function of unity.
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Figure 3.3: Geometries for different class functions based on a unit shape function

3.4.2. Shape Function
The shape function is in essence the sum of Bernstein polynomials multiplied by scaling factors in a
vector of same length. The mathematical description of this function is given by:

𝑆(𝑥) =
፧

∑
።዆ኻ
(𝐴)። ⋅ 𝑆።(𝑥) (3.44)

In this equation, (𝐴)። is the vector of scaling factors, while 𝑆።(𝑥) are the Bernstein polynomials.
These polynomials are formed through linear combinations of Bernstein basis polynomials and are
restricted to the interval [0,1] [61]. The 𝑛 + 1 number of basis polynomials are defined by:

𝑆።,፧(𝑥) = (
𝑛
𝑖 )𝑥

።(1 − 𝑥)(፧ዅ።); 𝑖 = 0, ..., 𝑛 (3.45)

The coefficient 𝑛 indicates the order of the polynomial. As an example, these polynomials up to the
fourth order are given as defined by equations 3.46 to 3.50. A fourth order polynomial (n = 4) thus
implies that five (n+1) basis polynomials are required.

𝑏ኺ,ኺ = 1 (3.46)

𝑏ኺ,ኻ(𝑥) = 1 − 𝑥, 𝑏ኻ,ኻ(𝑥) = 𝑥 (3.47)

𝑏ኺ,ኼ(𝑥) = (1 − 𝑥)ኼ, 𝑏ኻ,ኼ(𝑥) = 2𝑥(1 − 𝑥), 𝑏ኼ,ኼ(𝑥) = 𝑥ኼ (3.48)

𝑏ኺ,ኽ(𝑥) = (1 − 𝑥)ኽ, 𝑏ኻ,ኽ(𝑥) = 3𝑥(1 − 𝑥)ኼ, 𝑏ኼ,ኽ = 3𝑥ኼ(1 − 𝑥) 𝑏ኽ,ኽ(𝑥) = 𝑥ኽ (3.49)

𝑏ኺ,ኾ(𝑥) = (1 − 𝑥)ኾ, 𝑏ኻ,ኾ(𝑥) = 4𝑥(1 − 𝑥)ኽ, 𝑏ኼ,ኾ = 6𝑥ኼ(1 − 𝑥)ኼ

𝑏ኽ,ኾ(𝑥) = 4𝑥ኽ(1 − 𝑥) 𝑏ኾ,ኾ(𝑥) = 𝑥ኾ (3.50)

To have an illustrative example, both third and fourth order polynomials are shown in Figure 3.4.
An important property that can be noted is that the sum of these polynomials is always equal to 1 over
the defined domain of 𝑥 as illustrated by the dashed line in the figures.
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(a) (b)

Figure 3.4: Bernstein polynomials of third (a) and fourth (b) order

As mentioned, these Bernstein polynomials are then multiplied with the scaling factors to finally
form the shape factor. As such, the shape of this dashed line formed by the sum can be manipulated.
An example of the effect of this scaling is seen in Figure 3.5. In this case, the fourth curve has been
scaled by 0.3, yielding a concavity at the aft section of the curve.

Figure 3.5: Effect of scaling on a unit shape function

Finally, when multiplying this with the earlier discussed class function, the shape of the original
curve that was to be parametrized is obtained. Therefore, when altering the shapes in an optimization,
the only parameters that need to be varied are the scaling factors of the shape function, also known as
the CST coefficients. The length of the CST vector (i.e. amount of CST coefficients required) depends
on the degree of the Bernstein polynomials.

3.4.3. Curve Fitting
It is now evident that when using the CST method as curve parametrization technique, the values that
are to be sought for in order to represent a certain curve are the scaling factors 𝐴።. The baseline
configuration is given as Cartesian coordinates, and a specific set of scaling factors has to be found to
represent this curve. In essence, this curve fitting is a small optimization problem in itself, where a set
of scaling factors is sought for that yields the lowest difference in original coordinates and the ones
obtained from parametrization. Thus, an error function can be defined which is to be minimized, in order
to match the coordinates produced by the CST method to that of the original Cartesian coordinates:
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𝜖(𝑥̄) =
ፍ

∑
።዆ኻ
(𝑦ፂፒፓ,።(𝑥̄) − 𝑦፜ፚ፫፭፞፬።ፚ፧,።)ኼ (3.51)

In the error function, N represents the total number of Cartesian coordinate points. Furthermore,
the square of the error is taken in order to ensure convergence towards a positive error value.

3.4.4. Parametrization Values
The first step in parametrizing the nose and tail of the baseline model is to determine the number of
CST coefficients that yields the most accurate representation of the original curve. In Section 3.4.2,
it was noted that the sum of the basis polynomials is always equal to one. For a horizontal line,
it therefore does not matter whether a first or fifth order polynomial is used as the same result is
achieved. For a curve of arbitrary shape however, the order of the polynomial does in fact matter and
different accuracies are obtained for different orders, where the accuracy is expressed by the error
function as was defined by equation 3.51.

Generally, a higher order curve leads to more accurate curve parametrizations. However, it is evident
that a higher order curve also results in a longer optimization process as more CST coefficients are to be
modified. On the other hand, a certain minimum number of coefficients is required in order to ensure
design flexibility and an accurate parametrization. A curve order comparison is therefore performed
which shows the error trend for an increasing number of CST coefficients. This comparison is done for
the geometry of the nose with CST coefficients varying from 1 to 20. The respective errors are shown
in Figure 3.6a. For clarity, the errors from 6 CST coefficients onwards are also shown in Figure 3.6b.

(a) (b)

Figure 3.6: Errors for 1 to 20 CST coefficients

For relative low numbers of CST coefficients, it can be noted that the error decreases rapidly when
the number of coefficients is increased. After 5 CST coefficients, the error already drops several orders
of magnitudes, in the range of 10ዅ኿. From 10 coefficients onwards, the reduction in error is negligibly
and relatively small. A further increase in number of coefficients yields a relative large increase in
computational time compared to the minimal error reduction. Therefore, it is decided to use 10 CST
coefficients for the parametrization of the nose and tail geometries, where the difference between the
CST coordinates and original Cartesian coordinates is in the range of 0.58⋅10ዅ኿. The values of the
initial CST coefficients to create the baseline geometry are listed in Table 3.2.
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Table 3.2: Values of CST coefficients for the baseline design

CST፧፨፬፞ Value CST፭ፚ።፥ Value
1 -0.131 11 0.9999
2 0.3518 12 0.9999
3 0.4096 13 0.9999
4 0.6768 14 0.9997
5 0.8394 15 0.9987
6 0.8046 16 0.9124
7 0.9911 17 0.7802
8 0.9993 18 0.9561
9 0.9998 19 0.4332
10 0.9999 20 0.4893





4
Aerodynamic Model Validation

In the scope of this research project, CFD simulations are performed in order to validate the low-
fidelity aerodynamic solver. Since no experimental data is available regarding aerodynamic aspects of
the Hyperloop, CFD analyses are a relative reliable and efficient way in gaining confidence in the solver
results in the scope of this project. One could of course also argue about the validity of the CFD results,
which ideally are to be validated as well. Since this is not possible, the verification process of the CFD
results are an integral part and need to be carefully addressed. For this research project, ANSYS Fluent
is used to perform the CFD simulations, which is based on a finite volume method.

This Chapter will start off with a discussion on the numerical model that is employed for the simula-
tions. In Section 4.2, the meshing of the geometry and computational domain properties are presented.
Thereafter, in Section 4.3, the setup of the overall simulation model is touched upon. Section 4.4 will
present the results of the simulation, where at the same time comparisons are made with the results
obtained from the aerodynamic solver. Finally, a verification process is presented for the CFD proce-
dure and is discussed in Section 4.5, with a general discussion and conclusion of the given in Section
4.6.

4.1. Numerical Model
Numerical methods are based on a discrete representation of solution and operators. This usually
requires the projection of the continuous functions onto a discrete mesh of cells. Fluent is based on a
finite volume method, which represents the solution as cell averages. Compared to the finite element
and finite difference method (two other commonly used methods), the finite volume method is relatively
robust and fast. In Fluent, the general scalar transport equation is converted into an algebraic one that
is solved numerically.

In a finite volume method, the computational domain is divided into control-volumes that are non-
overlapping: the finite volumes. These finite volumes are treated as a control volume on which the
conservation laws are then evaluated for each volume individually [62]. The solution then consists of
the cell average, and are associated with the cell centers. However, the solution does represent that
of the entire cell.

Volume integrals containing a divergence term are transformed into surface integrals by means of
Gauss’s theorem, while the surface integrals are approximated by numerical quadrature rules. The
fluxes Ψ which are a function of a certain conserved quantity 𝜙 over the finite volume determine the
time evolution of the cell average as:

𝜕
𝜕𝑡𝜙 = −∇ ⋅ Ψ (4.1)

These conservation laws are then integrated over the finite volume as given by equation 4.2.

𝜕
𝜕𝑡 ∫ፕ̄

𝜙𝑑𝑉 = −∫
ፕ̄
∇ ⋅ Ψ𝑑𝑉 (4.2)

35
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As mentioned, the volume integral is then rewrote to a surface integral. For a square control volume,
this then leads to:

∫
𝒱̄
∇Ψ ⋅ 𝑑𝒱 = ∫

ፒ𝒱
𝑛 ⋅ Ψ𝑑𝑆 = ∫

ፒᑣᑚᑘᑙᑥ

𝑛 ⋅ Ψ𝑑𝑆 − ∫
ፒᑝᑖᑗᑥ

𝑛 ⋅ Ψ𝑑𝑆 + ∫
ፒᑦᑡ

𝑛 ⋅ Ψ𝑑𝑆 − ∫
ፒᑕᑠᑨᑟ

𝑛 ⋅ Ψ𝑑𝑆 (4.3)

Since the flux that enters a certain volume is equal to the flux that leaves the volume, this method
is termed as a conservative method. Together with the appropriate boundary conditions, an algebraic
system of equations is obtained, which is then solved numerically in order to arrive at the solution.

4.1.1. Numerical Solver
For the numerical solver, a pressure-based solver is chosen as opposed to the density-based solver.
Initially, the pressure-based solver was meant to be used for incompressible flows, while the density-
based solver was meant for compressible flows. However, in later Fluent versions, both methods have
been redefined in such way that their suitable operating conditions have been extended to a wide range
of flow conditions [63].

Both methods utilize the moment equations to obtain the velocity field. The density-based solver is
desired when complex flow interactions occur such as compressible flow with combustion for instance.
Since there are no apparent complex flow structures present or expected in the flow field around the
pod, the pressure-based solver is used as it requires less memory and is more flexible in the solution
procedure, thereby accelerating convergence.

The pressure-based solver obtains the pressure by solving an equation for the absolute pressure or
a pressure correction term, which in turn is obtained by the manipulation of the conservation equations.
The solver employs an algorithm which belongs to the projection method. This method aims at deriving
the pressure equation from the continuity and momentum equations while ensuring that the continuity
is satisfied through pressure corrections.

Within the pressure-based approach, a segregated solver is opted for, which in this case is the
Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm [64]. A segregated solver
sequentially solves for the pressure correction and momentum as opposed to a coupled solver, which
does that simultaneously. The SIMPLE algorithm determines the pressure field by utilizing a relationship
between the velocity and pressure corrections, whereby it enforces the mass conservation law. This
algorithm is known for its robustness for general transitional and turbulent flow, which is why it is
chosen.

4.1.2. Spatial Discretization
For the spatial discretization, a second-order accuracy is desired. A second-order upwind (SOU) scheme
is therefore used for the spatial discretization. The SOU scheme offers a higher accuracy when com-
pared to a first-order upwind scheme since an additional data point is introduced for the approximation
of the spatial derivative. In Fluent, this is achieved at cell faces through a Taylor series of the solution
about the cell centroid [65]. This is done for the pressure, momentum, turbulent kinetic energy and
turbulent dissipation rate. The face value 𝜙፟ is then determined by:

𝜙፟,ፒፎፔ = 𝜙 + ∇𝜙 ⋅ ⃗⃗𝑟 (4.4)

It is evident that ∇𝜙, which is the gradient of the upstream cell, needs to be determined in order
to obtain the face value 𝜙፟. To compute this gradient, the least squares cell-based gradient evaluation
is used.

The least-squares cell-based method assumes that the solution varies linearly. This method is
superior in terms of accuracy compared to a Green-Gauss cell-based gradient method and is comparable
to a node-based gradient method, which are the two alternatives for the determination of the gradient
within Fluent. While the latter is even more accurate, it is also computationally more expensive. Since
there are no complex geometrical features present in this problem, it is expected that the mesh will
have a relative simple topology, which is why the least-squares method is deemed to be suitable for
this case. For a relatively simple mesh, a least-squares method is sufficient [66]. The change in cell
values between a certain reference cell 𝑐ኺ and an arbitrary neighbouring cell 𝑐ኻ along a certain vector
Δ𝑟። is then given by:
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(∇𝜙)𝑐ኺ ⋅ Δ𝑟። = (𝜙፜ᑚ − 𝜙፜ኺ) (4.5)

For each neighbouring cell that surrounds the reference cell, a system of equations can then be
defined [67]:

[𝑀](∇𝜙)𝑐ኺ = Δ𝜙 (4.6)

In this equation, 𝑀 is the coefficient matrix that is only dependent on the geometry. Furthermore,
(∇𝜙)𝑐ኺ is the cell gradient (given by 𝜙፱ ̂𝑖 + 𝜙፲ ̂𝑗 + 𝜙፳𝑘̂) whereas Δ𝜙 is the difference vector (𝜙፜ኻ −𝜙፜ኺ).
This (over-determined) linear-system of equations is then solved by the Gram-Schmidt process, which
yields a matrix of weights for each cell [68]. There are therefore three components for each of these
weights (one for each spatial direction for a 3D problem). The gradient at the cell center can then be
computed by multiplying the weight factors by the difference vector [69]:

(𝜙፱)፜ኺ =
፧

∑
።዆ኻ
𝑊፱𝑖0 ⋅ (𝜙፜። − 𝜙፜ኺ) (4.7)

(𝜙፲)፜ኺ =
፧

∑
።዆ኻ
𝑊፲𝑖0 ⋅ (𝜙፜። − 𝜙፜ኺ) (4.8)

(𝜙፳)፜ኺ =
፧

∑
።዆ኻ
𝑊፳𝑖0 ⋅ (𝜙፜። − 𝜙፜ኺ) (4.9)

4.2. Mesh and Geometry Generation
The generation of the grid is an important aspect regarding the accuracy of the CFD simulation. The
finite volumes as discussed in Section 4.1 are in essence the cells that are generated. An erroneously
generated grid can lead to discretization errors and thus can affect the accuracy of a simulation. Dis-
cretezation errors can generally be lowered with a finer mesh, against the cost of a higher compu-
tational time. A trade-off therefore has to be made while meeting a certain accuracy threshold. The
discretezation error will be further touched upon in Section 4.5.

Since in this problem, an internal flow is dealt with and no complex geometrical features are present
as mentioned, the mesh can be relatively simple in terms of its topology and geometry. There is not
much ’freedom’ for the flow since it is confined by the tube, and the flow passage is relatively small
when disturbed by the presence of the pod. Since the mean flow direction is more or less distinct and
in one direction, a structured grid is deemed to be most suitable in order to capture the different flow
phenomena.

Structured grids have a relative simple topology and simple implementation. It therefore generally
leads to faster convergence compared to an unstructured grid. To properly resolve the boundary layer,
prism layers are added in order to improve the accuracy at wall boundaries. In order to alleviate
computational efforts, a wall function is employed such that a much coarser yዄ resolution can be used.
The employed wall function will be discussed in more detail in Section 4.3.

The inlet is positioned at 10𝑚 in front of the pod, a relative small distance, since there is no note-
worthy fluid phenomena to be expected in that region. The outlet however, is positioned approximately
twice the vehicle length away measured from the tail of the pod. As mentioned, expansion waves are
expected to be present near the tail section, which have the possibility to be reflected by the tube walls.
A sufficiently large domain is therefore required in order to analyze this and other fluid phenomena.
The mesh for the entire domain and a close-up around the pod are shown in Figures 4.1 and 4.2. The
mesh consists of 4217 nodes, with the computational domain thus being 110𝑚 by 2.15𝑚.
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Figure 4.1: Mesh of the entire computational domain

Figure 4.2: Close-up of the mesh around the pod

4.3. Model Set-up
With the geometry modeled and a generated grid, the numerical model can now be set-up. This
includes the modification of the material (air) and the employment of an appropriate viscous model.
Furthermore, an appropriate mathematical model is also designated for the simulation. Finally, the
boundary conditions that apply to this problem are also required to be set-up. These different aspects
will be covered in this section.

4.3.1. Material Properties
As mentioned before, the air is assumed to behave as an ideal gas, which means that it is also set
as an ideal gas within Fluent. This implies that the density will be determined from the ideal gas law,
which is an appropriate relationship for compressible flows.

The operating pressure for the air in this case is set to match the internal pressure of the tube,
which is 100𝑃𝑎. In Fluent, the operating pressure acts as a reference pressure for calculating the
so-called gauge pressure. The absolute pressure is then the sum of the operating pressure and the
gauge pressure:
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𝑝ፚ፛፬ = 𝑝፨፩ + 𝑝፠ፚ፮፠፞ (4.10)

The pressures are split-up in this way in order to avoid numerical round-off errors as much as
possible [70]. This is especially significant for regions with a low Mach number in a compressible flow,
since in those regions the overall pressure drop is small compared to the absolute static pressure. The
pressure changes tend to go to zero as the Mach number goes to zero.

The pressures that are reported and computed by Fluent are the gauge pressures, which means
that the operating pressure has to be added to the results in order to arrive at the absolute pressure.
The absolute pressure is equivalent to the one that would be encountered in the real environment.

For the definition of the fluid viscosity, Sutherland’s law is deployed similar to the law used to deter-
mine the dynamic viscosity for the aerodynamic solver, where it is also dependent on the temperature.
In this case, a variation of the law is chosen, which is the Sutherland’s law with three coefficients:

𝜇 = 𝜇ኺ(
𝑇
𝑇ኺ
)
ኽ/ኼ𝑇ኺ + 𝑆

𝑇 + 𝑆 (4.11)

4.3.2. Energy Equation
Since a compressible flow is dealt with, the energy equation has to be deployed as it is now coupled
to the continuity and momentum equations. In Fluent, the energy equation is solved in the following
form [71]:

𝜕
𝜕𝑡 (𝜌𝐸) + ∇ ⋅ (⃗⃗𝜈(𝜌𝐸 + 𝑝)) = ∇ ⋅ (𝑘፞፟፟∇𝑇 −∑

፣
ℎ፣ ⃗⃗𝐽፣ + ( ̄𝜏̄ ⋅ ⃗⃗𝜈)) + 𝑆፡ (4.12)

The first three terms on the right side of of this equation determine the energy transfer due to
conduction, species diffusion and viscous dissipation respectively. Furthermore, the parameter 𝑘፞፟፟ is
the effective conductivity which depends on the turbulence model being used. The turbulence model
is defined in the viscous model, which will be discussed next.

4.3.3. Viscous Model - Turbulence Modelling
For this fluid dynamic problem, RANS-based CFD analyses are performed. As found from literature,
RANS-based simulations are the most widely used simulation methods for general CFD applications.
Furthermore, it was also noted that the 𝑘 − 𝜖 model was the most widely employed turbulence model
amongst the different RANS turbulence models. The main reason for this can be accounted to the fact
that this model performs well for wall-bounded flows.

Therefore, in this research project too, a 𝑘−𝜖 model is opted for. However, a slight variation of this
model is used: the 𝑘 − 𝜖 realizable model. This variation was first proposed by Shih et. al [72] and is
an improvement over the standard model for several reasons.

The standard 𝑘 − 𝜖 model is a semi-empirical one and attempts to describe turbulence by means
of two transport equations (PDEs): one for the turbulence kinetic energy 𝑘 and one for the dissipation
rate of the turbulent energy 𝜖. While the transport equation for the kinetic energy stems from an
exact equation, the one for the dissipation rate is derived from physical reasoning. Consequently, this
equation bears little resemblance compared to its mathematical exact counterpart.

The ’realizable’ aspect in the improved model implies that certain mathematical constraints are
satisfied regarding the Reynolds stresses and as such, are more consistent with turbulent flow physics.
A first improvement implemented in the realizable model is therefore a new transport equation for 𝜖,
which is derived from an exact equation for the transport of the root mean-square vorticity fluctuation
[73]. For the realizable model, the transport equation for 𝑘 is given by:

𝜕
𝜕𝑡 (𝜌𝑘) +

𝜕
𝜕𝑥፣

(𝜌𝑘𝑢፣) =
𝜕
𝜕𝑥፣

[(𝜇 + 𝜇፭
𝜎፤
) 𝜕𝑘𝜕𝑥፣

] + 𝐺፤ + 𝐺፛ − 𝜌𝜖 − 𝑌ፌ + 𝑆፤ (4.13)

while the equation for 𝜖 is given by:

𝜕
𝜕𝑡 (𝜌𝜖) +

𝜕
𝜕𝑥፣

(𝜌𝜖𝑢፣) =
𝜕
𝜕𝑥፣

[(𝜇 + 𝜇፭𝜎Ꭸ
) 𝜕𝜖𝜕𝑥፣

] + 𝜌𝐶ኻ𝑆𝜖 − 𝜌𝐶ኼ
𝜖ኼ

𝑘 + √𝜈𝜖
+ 𝐶ኻᎨ

𝜖
𝑘𝐶ኽᎨ𝐺፛ + 𝑆Ꭸ (4.14)
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Evidently, the transport equation for 𝑘 has remained unchanged compared to the standard model.
In both equations, 𝐺፤ is the turbulence kinetic energy generated due to velocity gradients, whereas
𝐺፛ is the turbulence kinetic energy generated due by buoyancy. Furthermore, 𝑌ፌ in the kinetic energy
transport equation which represents the fluctuating dilatation that contributes to the dissipation in a
compressible turbulent flow. In compressible flows, the turbulence is affected by dilatation (widening)
dissipation, which is more apparent for high Mach number flows. Finally, 𝜎፤ and 𝜎፞ are turbulent Prandtl
numbers, whereas 𝑆፤ and 𝑆፞ are source terms for the turbulence.

A new ’feature’ in this improved transport equation for 𝜖 is that the production term (second term
on the right hand side in equation 4.14) no longer involves the production of 𝑘. This way, the turbulent
spectral energy is better represented. Furthermore, the singularity that was present in the standard
model has been removed in the improved 𝜖 equation. As in all 𝑘 − 𝜖 models, the eddy viscosity 𝜇፭ is a
function of both 𝑘 and 𝜖, given by:

𝜇፭ = 𝜌𝐶᎙
𝑘ኼ
𝜖 (4.15)

Here lies the second difference between the standard and the realizable 𝑘 − 𝜖 model. In the eddy
viscosity equation, 𝐶᎙ is no longer a model constant which was the case for the standard model. This
parameter is now computed by:

𝐶᎙ =
1

𝐴ኺ + 𝐴፬
፤ፔ∗
Ꭸ

(4.16)

The coefficient 𝐶᎙ is now a function of the mean rotation and strain rates (given by 𝑈∗) as well as
the turbulence quantities 𝑘 and 𝜖, while 𝐴ኺ and 𝐴ፒ are model constants. The eddy viscosity is therefore
more dependent on the local flow field which means that it is predicted more accurately compared to
the standard model [74].

These two main differences from the standard model lead to the fact that the realizable model
gives superior results for flows where separation and recirculation occur, as well as boundary layer
flows under strong adverse pressure gradients. Furthermore, it also provides improved predictions for
the spreading of (axisymmetric) jets and abilities to capture the mean flow of complex structures more
accurately. For a wide range of flows (e.g. rotating flows, channel flows, etc.), the realizable model
is validated and proven to be substantially better than the standard model [75, 76]. Since the flow in
this research problem is assumed to behave as a flow where (a region of) separation is assumed to be
presented within a channel, the realizable model is chosen.

Finally, when employing the 𝑘−𝜖 model, a near-wall treatment is to be chosen. Turbulent flows are
significantly affected by the presence of walls [77], and thus especially in the case for the flow around
a Hyperloop pod which is wall-bounded.

An obvious effect of walls on the velocity profile is the no-slip condition, which will be discussed in
the next subsection. A less obvious effect however, is also present due to the walls. Very close to the
wall, the normal fluctuations are reduced by kinematic blocking, while the tangential fluctuations are
reduced due to viscous damping. When the outer part of the near-wall region is considered, the large
gradients in mean velocity that exist cause the turbulence to be rapidly augmented by the production of
turbulence kinetic energy [78]. Therefore, an adequate near-wall model is required in order to obtain
an accurate solution.

As mentioned, it is desirable to have a wall function that allows for coarser yዄ values, in order to
reduce the number of nodes and thereby the computational effort. Therefore, a so-called enhanced
wall function is employed. This wall function guarantees the correct asymptotic behavior for both small
and large values of 𝑦ዄ and gives a reasonable representation of velocity profiles for cases where 𝑦ዄ
falls within the wall buffer region with an automatic adaption [79]. It is therefore not necessary to
have a 𝑦ዄ value close to 1 to accurately resolve the boundary layer, nor is it required to stay within a
specified range of 𝑦ዄ values as is the case for the standard wall function for instance.

4.3.4. Boundary Conditions
To have a properly defined CFD problem that results in a unique solution, relevant information on (flow)
variables are to be specified at the boundaries of the flow domain, better known as the boundary
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conditions. Defining the boundary conditions means that the boundaries have to be located first, at
which the information is supplied.

The data required at a certain boundary depends on the type of the condition, whereas the boundary
conditions themselves mainly depend on the physical models that are employed for the problem. These
conditions must be well defined and properly chosen as they have a significant effect on the solution.
For this specific problem, there are a total of 5 boundary locations: inlet, outlet, tube wall, pod wall
and symmetry plane.

For the inlet, a mass flow boundary condition is used, which is intended for compressible flows.
This provides a prescribed mass flow rate at the inlet equation, which is to match the flow condition of
300𝑚/𝑠 at a tube area of 14.52𝑚ኼ. Furthermore, a total temperature has to be prescribed, which is
332𝐾 based on a Mach number of 0.88.

In physical terms, the specification of a mass flux allows for the variation of total pressure accord-
ingly to the interior solution. This is in contrast to the more general pressure inlet boundary condition,
where the total pressure is specified and thus fixed, while the mass flux varies [80]. In the analysis
of the flow around the pod, it is more important to match the prescribed mass flow rate than a total
pressure, since the choked flow will cause a pressure build-up in front of the pod.

For the outlet, a so called pressure far-field outlet is used. This condition is used to model a free-
stream compressible flow at ’infinity’, where the static conditions and free-stream Mach number are
prescribed.

To bound both fluid and solid regions, wall boundaries are used. In a viscous flow, a no-slip
condition is enforced at the walls, which was briefly touched upon in the previous subsection regarding
wall effects. One such wall is the surface of the pod. Due to the viscous effects, the fluid that is in
direct contact with the wall ’sticks’ to the surface, and no slipping is present, hence the name of the
condition. Physically, this condition implies that the tangential fluid velocity is equal to the wall velocity,
whereas the normal component is equal to zero.

The no-slip condition is also applied to the tube wall. In addition, a moving wall boundary condition
for this location is employed, to simulate the movement of the pod through the tube. Therefore,
a translational wall motion is invoked moving with an absolute velocity of 300𝑚/𝑠 in x-direction. A
general heat flux is applied for the thermal conditions at the wall.

Finally, the bottom part of the flow domain, coinciding with the x-axis, is modeled as an axis bound-
ary condition. This axis acts as the centerline of the pod which is axisymmetric as discussed. The
boundary conditions and their specifications are listed in Table 4.1 below.

Table 4.1: Specification of boundary conditions

Boundary Type Specifications Value Unit
Inlet Mass flow inlet Mass flow rate 5.268 kg/s

Total temperature 332.78 K
Outlet Pressure far-field Static pressure 100 Pa

Free-stream Mach number 0.882 -
Pod surface Wall No-slip condition - -
Tube wall Wall Translational velocity 300 m/s

No-slip condition
x-axis Axis Plane of (rotational) symmetry - -

4.4. Results and Comparison with Aerodynamic Solver
The flow field around the pod is depicted in Figure 4.3 , where a contour plot of the local Mach number
is shown for the entire domain as well as a close-up on the pod which is shown in Figure 4.4. The
results of the simulation show that for the baseline model, the aerodynamic drag is approximately
3.98𝑘𝑁.
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Figure 4.3: Mach contours around the baseline pod - full domain

Figure 4.4: Mach contour plot - close-up on the aft region

From the contour plots, it can be seen that the maximum Mach number throughout the domain
is 2.67, which occurs at the end section of the tail in front of the (oblique) shock wave that is clearly
visible. Recalling the analogy that was made between this flow domain and the flow through a nozzle,
the flow behaviour can more accurately be regarded as a flow through an overexpanded nozzle. This
implies that the exit pressure is lower than the back pressure, which in this case is the internal tube
pressure. The jet therefore has to pass through oblique shocks in order to rise back up to the tube
pressure. Additionally, these shocks are reflected due to the presence of the tube walls, where they
then slowly fade out and are barely visible after three reflections. A small region of separated flow
is also noted approximately 1𝑚 before the end of the tail. Finally, expansion fans on the upper and
lower surface of the pod are observed at the location of the throat, where the flow accelerates and
transitions from subsonic to supersonic velocities. The residuals of the velocities, continuity, energy
and turbulence model and their convergence histories are shown in Figure 4.5.

Figure 4.5: Residuals monitor

It can be seen that after approximately 550 iterations, the residuals drop to their converged values,
as all residuals drop below 1e-5 except for the continuity, which is at approximately 1e-3. The x-
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velocity requires a larger number of iterations to drop to its converged level, since this is the mean flow
direction.

The pressure and Mach number distributions throughout the domain are shown in Figures 4.6 and
4.7 respectively. For brevity, the results of the aerodynamic solver are presented as well in the same
figure in order to make comparisons. The origin of the domain is placed at the nose of the pod, which
is why the graph of the domain starts at −10𝑚. Additionally, the distributions along the surface of the
pod are shown as well.

(a) (b)

Figure 4.6: Pressure distributions of the domain (a) and the pod surface (b)

(a) (b)

Figure 4.7: Mach number distributions of the domain (a) and the pod surface (b)

From the pressure distributions, the high pressure peak that exists at the nose is evident due to
violation of the Kantrowitz limit. It can furthermore be noted that the modeled distributions generally
agree well with the CFD results, where the main trend is captured as well. This is however to a
lesser extent when the distribution directly over the pod surface is compared, due to the 2D effects
that were not taken into account with the solver. The same holds for the comparison of Mach number
distributions, where the maximum Mach number of 2.7 agrees well with that found in the entire domain,
but again do not hold for distributions directly over the pod surface.

These results will be further interpreted and elaborated in Section 4.6, after the CFD results have
been verified. Similar distributions of various flow quantities are presented in Appendix 4.4.
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4.5. Verification of Numerical Model
As mentioned before, there is no aerodynamic experimental data available (yet) of a Hyperloop pod.
Therefore, the CFD simulations cannot be validated. The verification process is therefore the only
method towards building confidence in the obtained CFD results. Errors of numerical solutions can
typically be classified under three categories:

• Discretization errors, attributed to the difference between the exact solution of the conservation
equations and the solution as obtained by the algebraic system of equations due to discretization
of these equations

• Convergence errors, defined as the difference between the exact solution and the iterative solu-
tion

• Modeling errors, which can be described as the difference between the real physical problem and
the solution of the mathematical model

Various procedures can be followed in order to verify the simulation results, and to determine
whether the aforementioned errors are present in the solutions.

4.5.1. Grid Convergence
An important verification process is to check for discretization errors. These errors depend on both the
grid quality and cell size. A grid convergence check is therefore performed in order to ensure that the
final solution is independent of the grid, by running the simulation again for a higher mesh resolution.
When the results are comparable, this gives the confidence that the solution is independent on the
mesh.

First of all, the general mesh is refined by increasing the number of cells within the entire domain.
The total number of cells is increased by a factor of approximately 4 over the entire domain domain,
yielding a total of 12,668 cells. Furthermore, additional inflation layers are added to the pod surface,
from 3 to 7 layers. A close-up of the refined mesh around the nose area of the pod is shown in Figure
4.8.

Figure 4.8: Nose area refined mesh - First refinement

Finally, a second level of refinement is employed by means of an adaptive mesh, where refinements
are made at the location of the expansion waves, shockwaves and their reflections. This second refined
mesh is shown in Figure 4.9. Subsequently, the Mach contours around the tail area of the pod for the
coarse and adapted meshes are shown and compared in Figure 4.10, where the upper and lower parts
correspond to coarse and adapted mesh solutions respectively.
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Figure 4.9: Tail area adapted mesh - Second refinement

Figure 4.10: Tail area Mach contours for the coarse (upper half) and adapted mesh (lower half)

The contour plot of the refined mesh shows a similar flow domain and flow behaviour compared
to the coarse mesh solution, with comparable maximum Mach numbers (0.78% difference) attained
throughout the fluid domain. The location of the expansion waves are similar and the (reflected)
oblique shock waves are clearly visible again and at the same location as well. A notable difference
is that the thicknesses of these waves are reduced in this case. This also confirms that the refined
mesh is converging towards a realistic solution, since these locations are better resolved, the exact
boundaries of these expansion waves can also be better solved for.

4.5.2. Residual Analysis
Analyzing the residual trends is one of the most fundamental measures in determining whether a so-
lution is converged or not. It directly quantifies the error in the solution of the system of equations.
The trends of the baseline simulation were already shown and discussed. For both refined meshes,
the convergence history of the residuals is shown in Figure 4.11. As expected, more iterations are re-
quired for convergence due to the higher number of cells, with approximately 1150 and 1450 iterations
required in order to achieve convergence for the first and second refined meshes respectively.

Figure 4.11: Residuals of the first (left) and second (right) refined meshes

The overall convergence trend is similar to the one found for the coarse mesh, where a rather
sudden decrease in RMS values is observed for the residuals after a certain amount of iterations.
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In addition to the trend of the residuals, an additional monitor is set-up in order to assess the
convergence of the drag, which is the main figure of merit in this research project. The trends of the
total drag for the three different meshes are shown in Figure 4.12.

Figure 4.12: Drag convergence monitor for three different meshes

For all three meshes, the trend for the total drag is similar with slightly different final values. After
a certain amount of iterations, the drag reaches its final value and remains constant. The final values
for the total drag are 3981𝑁, 3954𝑁 and 3952𝑁 for the coarse, refined and second refined meshes
respectively, a difference of approximately 0.73% between the coarse and both refined meshes. Again,
the denser grids require more iterations towards convergence as expected. It is noted that the drag
requires a substantial lower amount of iterations to reach its final value compared to the residuals.
These observations are positive contributions towards gaining confidence in the CFD results.

4.5.3. Conservation of Quantities
A third way in verifying the results is to look at the mass conservation throughout the domain, and
specifically at the boundaries. If mass conservation is satisfied, the net mass flow rate over the domain
should be equal to 0. This can be confirmed by looking at the rate at the inlet and outlet of the domain.
The flow rates at the inlet and outlet are 5.268924𝑘𝑔/𝑠 and -5.2689174𝑘𝑔/𝑠 respectively, yielding a net
flow rate of 6.65⋅10ዅዀ. The negligible net flow rate thus confirms that mass is conserved throughout
the domain.

4.6. Discussion and Conclusion
CFD simulations were performed in order to validate the aerodynamic solver which was described in
Chapter 3. The CFD simulations yielded reliable solutions as far as verification processes concerned.
Grid checks showed that the solution is independent of the grid and general conservation laws are
satisfied with a proper convergence of different residuals. The results from the simulations are therefore
regarded as a proper benchmark for the aerodynamic solver.

The implications of (exceeding) the Kantrowitz limit are evident from the pressure distributions,
where a high pressure is observed at the nose of the pod. This pressure peak is higher than the
pressure peak that is to be expected due to a stagnation point at the nose, implying that the pressure
peak has build-up significantly due to the flow being choked. As was expected, the flow accelerates
through the bypass areas up to sonic conditions at the throat, which is located at the inflection point
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where the pod transitions from the constant radius section to the tail section.
Results from CFD simulations and results obtained from the aerodynamic solver show good agree-

ment regarding distributions of aerodynamic quantities of interest. The overall trend is well captured
and for the main distribution of interest, that of the pressure, the difference in average values is ap-
proximately 9.8%. The differences were most notable at the nose section and tail sections of the
pod.

From the comparison of pressure distributions, it became clear that the pressure over the flat surface
of the pod is slightly overpredicted by the solver. The prediction of the boundary layer development
plays a crucial role in this accuracy. As discussed, the boundary layer thickness adds an effective
height towards the original radius of the pod, thereby influencing the acceleration of the flow through
the bypass area. The behaviour of the boundary layer modeled through the Blasius solution shows
the limitation of assuming a gradual, monotonic growth in boundary layer thickness. Therefore, the
difference in pressure increases with downstream position, as the difference in boundary layer thickness
increases.

The development also depends on the transition point, which in this case was based on a critical
Reynolds number associated to that of a flat plate. It must be noted that the critical Reynolds number
is strongly dependent on the degree of perturbation of the outer flow, where higher values of 𝑅𝑒፜፫።፭
can be reached for particular smooth flows (up to 3⋅10ዀ) [8, 59]. The assumption that the flow is
highly perturbed (leading to the current 𝑅𝑒፜፫።፭ value of 5⋅10኿) along with the fact that the flat plate
assumption is made, possibly add to the inaccuracy in predicting the boundary layer development.

The inaccuracy of the pressure development over the flat portion of the pod has little influence on
the prediction of the pressure drag since there is no pressure component parallel to the flow direction,
and the pressure distributions of the nose and tail sections are more critical in that sense. It is however,
related to the difference in predicted throat area, which indirectly influences the pressure peak at the
nose location. The pressure peak at the nose is overpredicted by the solver by approximately 3.5%
due to an underpredicted throat area, suggesting that the displacement thickness at the throat location
is overpredicted. It is likely that the boundary layer decreases in thickness close to the throat location
due to suction caused by the low pressure area around the tail, which is in this case is not modeled
either. This thus leads to an overpredicted pressure drag, with 3.88𝑘𝑁 and 3.67𝑘𝑁 determined by the
solver and CFD respectively. The opposite is noted for the friction drag, where the solver predicts a
lower drag of 217.49𝑁 compared to 278.2𝑁 found through CFD. This difference is mainly attributed to
the employed turbulence model which assumes a fully turbulent flow, whereas the solver assumes a
partially laminar flow region. This combination results in a higher total drag predicted by the solver,
with 4.1𝑘𝑁 compared to the earlier mentioned 3.95𝑘𝑁 obtained with CFD.

Other limitations of the solver are clear as well. Only the distributions starting from nose to end
of the pod can be predicted by the solver. As such, phenomena like the oblique shock waves and its
reflections are not modeled and their effects are not taken into account. However, it is assumed that
these waves do not have a significant impact on the aerodynamic drag of the pod, since the shocks
are relatively weak due to the low pressure environment and do not significantly alter the pressure
distributions.

The implications of the quasi-1D flow assumption are clearly visible in the distributions of the flow
parameters. When comparing the solver and CFD results, the distributions agree well with each other
for a location close to the tube wall, where similar trends and maximum values are reached for instance.
However, when comparing the results with the distributions directly over the pod surface, a larger
difference is observed. Clearly, the 2D effects are visible here showing that the quantities do not
remain constant over the lateral direction for a certain longitudinal section, but are certainly disturbed
by the presence of the pod. The results of the solver should therefore be interpreted as mean properties
that are averaged over each local cross-sectional area.

Evidently, the velocity of the flow is lower close to the pod due to the viscous effects and the
interaction with the boundary layer. Furthermore, the small region of separation at the trailing edge
of the tail is not modeled either, leading to an underpredicted pressure by the solver at that specific
section. Nonetheless, the important trends and prediction of total drag are considered to be accurate
enough and adequate in having a low computational cost model that can predict the flow behaviour
and the total aerodynamic drag. The added complexity of predicting and modeling a separated flow
which is a highly random process, is deemed to not weigh-out against the little improve in accuracy for
the drag prediction and flow field. The solver is thus regarded as a suitable low-fidelity model that can
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be utilized to assess the influence of different parameters on the drag of the pod and to be coupled to
an optimization routine.



5
Specification and Results of

Optimization

In general terms, an optimization problem can be regarded as a problem where the optimal solution
is found from all feasible solutions. What is regarded as optimal is then defined by the objective
function. This function, together with the constraints, then form the design space in which all feasible
solutions lie. A proper specification of the optimization problem is required in order to adequately
define and structure the problem, and is thereby an important aspect in any optimization procedure.
A mathematical description is often the starting point of an optimization problem, which states what
exactly is to be optimized, the constraints its subjected to and the bounds in which the different
design variables can lie. The validation of the aerodynamic solver allows it to be used for optimization
procedures regarding the drag reduction of the Hyperloop pod. By means of the sequential quadratic
programming method, an improved shape of the Hyperloop pod in terms of its aerodynamic drag is
sought after.

5.1. Normalization of Parameters
For the optimization routine, the sequential quadratic programming method is used, which is a gradi-
ent based, iterative method for constrained optimization procedures. When a gradient-based search
algorithm is used, the magnitude of the variables is an important factor to consider. Since the variables
can vary by large order of magnitudes (e.g. CST coefficients compared to the drag), all variables are
normalized. This is done such that all variables that are involved with the optimization process have
the same order of magnitude, in order to reduce the inaccuracy of the optimizer. In this optimization
problem therefore, the design variables, constraints, bounds and objective function are all normalized
with respect to their initial values.

5.2. Design Vector
For the optimization problem, a design vector is required in which all variables that are allowed to
vary are included. Furthermore, the objective function and constraints are all functions of these design
variables.

In this case, the size of the design vector 𝑥̄ is governed by the number of CST coefficients that are
required for the geometries of the nose and tail, as it mainly consists of those parameters. The design
vector therefore consists of 24 design variables: the 20 CST coefficients and design 4 variables for the
definition of the lengths and radii of the nose and tail.

The initial design variables along with their values are listed in Table 5.1, with a total of 24 design
variables as mentioned. In addition, the upper and lower bounds of the CST coefficients are set at 1.8
and 0.2 respectively to reduce the design space while still allowing sufficient design flexibility, while the
lower bounds of the nose and tail lengths are set in light of minimum pod volume requirements.

49
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Table 5.1: Optimization design variables

𝑥̄ኺ Entry Design parameter Initial value Unit
1:20 CSTኻ∶ኼኺ CSTኺ (Table 3.2) -
21 R፧፨፬፞ 1.7 m
22 R፭ፚ።፥ 1.7 m
23 L፧፨፬፞ 6 m
24 L፭ፚ።፥ 4 m

5.3. Constraints
As mentioned, this optimization problem is one in which constraints are present. These are set in order
to achieve a solution that is not only mathematically feasible, but moreover also physically feasible.
Evidently, one such physical constraint is that the radius of the pod cannot exceed that of the tube.
It must be noted that it does not suffice to mathematically state that the pod radius is to be smaller
than the tube radius. The effective radius of the pod is the limiting factor, which means that the
boundary layer height must be included in this constraint. This is thus regarded as a so-called inequality
constraint, and is mathematically described by:

𝑔ኻ =
𝑅፩፨፝,፞፟፟፞፜፭።፯፞ − 𝑅፭፮፛፞

𝑅፩፨፝,ኺ
≤ 0 (5.1)

Again, the inequality constraint is normalized by the initial pod radius. Besides this inequality con-
straint, there are also 2 equality constraints for this problem. One of the limitations of the solver is
that it cannot predict flow separation. Therefore, a possibility exists in which geometries are deemed
feasible where a relative large gradient in the local curvature is found. In reality, this would impose
an area of flow separation which naturally does not lead to an improved aerodynamic performance.
Therefore, a constraint is introduced which ensures a continuous and somewhat smooth transition be-
tween the nose and constant section. A similar case arises for the tail section, which therefore yields
2 normalized equality constraints. These constraints are also set in light of volume requirements.

The last section of the nose and first section of the tail are constrained to have the same radius
as the constant section. This constraint will still allow for changes in the nose and tail radii, and are
defined by:

ℎኻ =
𝑦፧፨፬፞,፞፧፝ − 𝑅፩፨፝

𝑅፩፨፝
= 0 (5.2)

ℎኼ =
𝑦፭ፚ።፥,፛፞፠።፧ − 𝑅፩፨፝

𝑅፩፨፝
= 0 (5.3)

5.4. Constants
Some of the parameters that are required for calculations but stay constant throughout the optimization
process are part of the constant vector 𝐶̄. The parameters that are contained within by this vector are
listed in Table 5.2.
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Table 5.2: Parameters that remain constant during the optimization process

𝐶̄ Entry Parameter Description Value Unit
1 𝑇 Static temperature 288.15 K
2 𝑝 Static pressure 100 Pa
3 𝑉 Pod velocity 300 m/s
4 𝛾 Ratio of specific heats 1.4 -
5 𝑅 Gas constant 287 J/kg⋅K
6 𝑀ጼ Free-stream Mach number 0.88 -
7 𝐶፩ Specific heat at constant pressure 1005 J/kg⋅K
8 𝑅𝑒 Free-stream Reynolds number 9.735⋅10኿ -
9 𝑞 Dynamic pressure 54.41 Pa
10 𝑅፭፮፛፞ Tube radius 2.15 m
11 𝑅፩፨፝ Pod radius (constant section) 1.7 m
12 𝜇 Dynamic viscosity 1.812⋅10ዅ኿ kg/m⋅s

5.5. Formal Specification
The optimization can finally be mathematically specified. As the objective of this optimization problem
is to minimize the aerodynamic drag of the pod, the objective function will consist of the drag, ex-
pressed as a function of the design variables. The objective function, constraints and bounds are then
formulated as follows:

min
፱̄

𝐽(𝑥̄)

where

𝐽(𝑥̄) =
𝐶ፃ(𝑥̄)

ኻ
ኼ𝜌𝑉

ኼ𝑆
𝐷።፧።፭።ፚ፥

subjected to the inequality (𝑔ኻ) and equality (ℎኻ,ኼ) constraints:

𝑔ኻ(𝑥̄) ≤ 0
and

ℎኻ,ኼ(𝑥̄) = 0
with bounds

𝑥ፋ፧ ≤ 𝑥̄ ≤ 𝑥ፔ፧ for n = 1,2,...,24

5.6. Implementation in MATLAB
The optimization is performed in MATLAB, where use is made of 𝑓𝑚𝑖𝑛𝑐𝑜𝑛, a non-linear programming
solver. This function finds the minimum of a constrained, non-linear multivariable function. The basic
syntax for this function is as follows:

𝑥 = 𝑓𝑚𝑖𝑛𝑐𝑜𝑛[@(𝑥) 𝐻𝐿፨፛፣(𝑥, 𝑥0, 𝐶), 𝑥, 𝐴, 𝑏, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏,@𝑥 𝐻𝐿፧፨፧፥፜፨፧(𝑥, 𝑥0, 𝐶), 𝑜𝑝𝑡𝑖𝑜𝑛𝑠]

The function starts at the initial design vector 𝑥ኺ and attempts to find a minimizer x of the function
described in 𝐻𝐿፨፛፣, subject to the linear (in)equalities c(x) and c፞፪(x) defined in 𝑛𝑜𝑛𝑙𝑐𝑜𝑛, which is
specified as a function handle. In this case, 𝑥ኺ is the initial design vector as specified in Section 5.2.

Additionally, the optimization can be further specified in 𝑜𝑝𝑡𝑖𝑜𝑛𝑠. The most important options in this
case are the different tolerances. These tolerances determine the stopping criteria of the optimization,
thus also affecting the number of iterations. A total of 3 tolerances are present for this problem:
function tolerance, step tolerance and constraint tolerance.
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The function tolerance, 𝑇𝑜𝑙𝐹𝑢𝑛, is a lower bound regarding the change of the objective function
for an iteration. In this case, 𝑇𝑜𝑙𝐹𝑢𝑛 is set at 1e-4, as an improvement of the objective function in the
order of 1e-5 is deemed to not weigh out against the added computational time.

The step tolerance, 𝑇𝑜𝑙𝑋, is similar to this with the difference that it is related to the stepsize of each
iteration. This tolerance is set at 1e-8. Both tolerances are lower bounds, meaning that the iteration
process will end when the last performed step is smaller than either 𝑇𝑜𝑙𝐹𝑢𝑛 or 𝑇𝑜𝑙𝑋. Both tolerances
are illustrated in Figure 5.1 [81].

Figure 5.1: Implications of the function and step size tolerances

The constraint tolerance 𝑇𝑜𝑙𝐶𝑜𝑛 ensures that the constraints are satisfied with a certain margin.
In this case, the tolerance acts as an upper bound as opposed to the previous two tolerances. The
optimizer will therefore not be halted when this tolerance is satisfied, but serves as a confirmation of
the solution to be feasible.

Finally, within 𝑓𝑚𝑖𝑛𝑐𝑜𝑛, a sequential quadratic programming (SQP) algorithm is opted for due to
its robustness, higher accuracy and numerical efficiency compared to other available algorithms [82].
The SQP method solves a quadratic programming subproblem at each iteration, which consists of a
quadratic approximation of the Lagrangian function [83, 84]. The Hessian of this Lagrangian function
is approximated, for which the solution of this subproblem is then used to form the basis for the next
iteration step. The Lagrangian based on the optimization problem as stated in the previous section is
given by:

ℒ(𝑥̄, 𝜆, 𝜎) = 𝐽(𝑥̄) − 𝜆ፓ𝑔(𝑥̄) − 𝜎ፓℎ(𝑥̄) (5.4)

5.7. Results and Comparison With Baseline
The final geometry that resulted from the optimization routine is shown in Figures 5.2 and 5.3 for a
comparison with the baseline geometry. The initial and final design parameters that led to the optimized
geometry are listed in Table 5.3.

Figure 5.2: Optimized pod geometry

Figure 5.3: Comparison of optimized and baseline pod geometry
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𝑥̄ Entry Parameter Initial value Final value Normalized optimal value
1 CSTኻ -0.0131 -0.0118 0.9008
2 CSTኼ 0.3518 0.3869 1.0997
3 CSTኽ 0.4096 0.4505 1.0998
4 CSTኾ 0.6768 0.7030 1.0387
5 CST኿ 0.8394 0.8291 0.9877
6 CSTዀ 0.8046 0.7401 0.9198
7 CST዁ 0.9911 0.8919 0.8999
8 CSTዂ 0.9993 0.9938 0.9944
9 CSTዃ 0.9998 0.8991 0.8992
10 CSTኻኺ 0.9999 0.8999 0.8999
11 CSTኻኻ 0.9999 1.0999 1.1001
12 CSTኻኼ 0.9999 0.8998 0.8998
13 CSTኻኽ 0.9999 0.8994 0.8995
14 CSTኻኾ 0.9997 0.8919 0.8921
15 CSTኻ኿ 0.9987 0.8124 0.8135
16 CSTኻዀ 0.9124 0.8702 0.9537
17 CSTኻ዁ 0.7802 0.6872 0.8808
18 CSTኻዂ 0.9561 0.4090 0.4278
19 CSTኻዃ 0.4332 0.3049 0.7038
20 CSTኼኺ 0.4893 -0.1311 0.2679
21 R፧፨፬፞ 1.7 1.8891 1.1111
22 R፭ፚ።፥ 1.7 1.5456 0.8439
23 L፧፨፬፞ 6 1.8 0.3000
24 L፭ፚ።፥ 4 6.8 1.7000

Table 5.3: Initial and final design variables

From both Figure 5.3 and the final values of 𝑥̄ኼኽ and 𝑥̄ኼኾ, it can firstly be noted that the nose of the
optimized pod has shortened substantially, which is now equal to 1.8𝑚. The opposite is true for the
tail, which length has increased from 4𝑚 to 6.8𝑚. As such, the overall length of the pod has decreased
from 49𝑚 to 47.6𝑚. Furthermore, a concavity in the shape is noted at the tail section which then
transitions into a convex shape. The distributions of the Mach number and pressure of the baseline
and optimized geometries are also compared and shown in Figure 5.4.

(a) (b)

Figure 5.4: Comparisons of the Mach number (a) and pressure (b) distributions of the baseline and
optimized geometry
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The distributions show a similar trend in both quantities for both geometries. Since the nose has
shortened, the flow velocity in front of the optimized shape builds up more quickly, leading to a higher
pressure gradient in that region. The flow then reaches sonic conditions again at the throat, which is
now located at approximately 41𝑚 downstream of the nose. The flow expands again after the throat
section, where it can be seen that it expands more gradually for the optimized geometry. Furthermore,
the pressure peak at the nose is slightly reduced for the optimized geometry.

The optimization converged after 37 iterations, in which the objective function has been evaluated
1724 times. The (normalized) objective function has been reduced to 0.8879, thus equivalent to a
drag reduction of 11.2% with a final value for the total drag of 3.63𝑘𝑁. Additional details regarding
the convergence history are presented in Appendix B.1.

5.8. Validation of Optimized Geometry
As was specified in the research objective, the result of the optimization will also be analyzed be means
of CFD simulations. The same procedure is followed as was presented and discussed in Chapter 4. The
flow field around the optimized shape is shown in Figure 5.5.

Figure 5.5: Mach contours of the optimimized geometry

Figure 5.6: Mach contours tail area - optimized geometry

The contour plots show a similar flow behaviour as for the baseline geometry, where the high
pressure region in front of the nose is observed again. The expansion waves are visible again at the
tail section. The maximum Mach number throughout the domain has reduced from 2.67 to 2.51, and
the region of separated flow has further reduced as well. In agreement with the aerodynamic solver,
this geometry has a lower total drag, albeit a lower reduction of 7.2% with a total drag now equal to
3.66𝑘𝑁. Again, a closeup on the tail region is depicted and is shown in Figure 5.6. Similar convergence
trends of the residuals and the drag convergence are observed as was earlier discussed for the baseline
simulations. These monitors are shown in Appendix B.2.

5.9. Discussion and Conclusion
The aerodynamic solver that was set-up and described in Chapter 3 has been coupled to an optimization
scheme, with the goal of finding a pod shape that has the lowest aerodynamic drag while adhering
to certain geometrical and functional requirements. An SQP algorithm is utilized, which is a gradient
based, iterative method for constrained nonlinear optimization. The optimization led to a total drag
reduction of approximately 11.2 %, which took 1724 function evaluations spread over 37 iterations.
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From the geometries, it is clear that the nose has shortened substantially for the optimized geometry,
while the opposite is true for the tail section, leading to a reduction in total pod length from 49𝑚 to
47.6𝑚. This is also seen through the final values of the design variables, where the nose and tail
lengths are on their lower and upper bounds respectively.

Since the pod is operating at a combination of blockage ratio and velocity where the Kantrowitz
limit is exceeded, the pressure build-up in front of the pod is prevalent and cannot be avoided by
shape manipulation alone (assuming that the tube radius stays constant). Therefore, streamlining
the nose would have no effect in reducing this high pressure area as would be the case for external
aerodynamics. It is therefore most efficient to shorten the nose section in order to minimize the friction
drag. The design variable of the nose length is therefore on its lower bound, which was set in order to
meet the volume requirements.

The shortening of the nose not only contributes to a lower friction drag, but more importantly
contributes to a less developed boundary layer when the throat location is reached. Since the distance
from the nose up to the throat is now lower, the thickness of the boundary layer at that location is also
smaller, leading to a larger throat area. The larger throat area will have an effect on the entire Mach
number distribution, since this distribution is dependent on the ratio of local area to throat area. The
choking effect has therefore also reduced due to this larger throat area, which led to a slightly lower
pressure peak for the optimized geometry. Recalling the equation of the choked mass flow rate, it is
noted that this quantity is proportional to the throat area:

𝑚̇፜፡፨፤፞፝ ∝
𝑝ኺ𝐴∗

√𝑇ኺ
(5.5)

Thus, an increase in throat area leads to a larger choked mass flow rate. Combined with the
implication that the general (effective) bypass area has increased as well, overall larger velocities over
the pod are observed, analogous to lower pressures. This can also be seen in Figure 5.4, where the
Mach numbers are compared.

While the shape of the nose has little influence on the pressure drag, the tail section does to a
large extent influence the amount of this drag component. Evidently, the expansion process starts
from the tail section onwards, where the expansion fans are also visible. The more streamlined and
thus more gradual decrease in radius compared to the baseline geometry allows for a more gradual
flow expansion, as can be seen from the pressure comparison figure, where the pressure gradient is
lower at the tail section for the optimized geometry. Furthermore, the Mach contour plots also show a
smaller area of separation compared to the baseline design.

When looking at the CFD results, the decrease in drag was less, where a reduction of 7.19% was
achieved. This was to be expected as the aerodynamic solver is more ’optimistic’ in its prediction due
to different flow phenomena that are not taken into account, such as the flow separation at the tail
section for instance. The aforementioned implications of the assumptions regarding the boundary layer
model for the aerodynamic solver also cause the deficit in drag reduction.
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Conclusion and Recommendations

Increasing environmental concerns and the rising demand of high-speed transportation has motivated
the research and development of the Hyperloop. A careful aerodynamic design and analysis of this
new transportation mode is necessary in order to realize the promised the benefits. The HARDT Hyper-
loop encounters an unconventional flow regime: low Reynolds numbers (slightly under a million) with
relatively high Mach numbers (M≈2.7 locally) in a confined space. This brings with it its own unique
aerodynamic challenges that have to be dealt with, and thus necessitates a thorough and careful in-
vestigation on the (relatively unknown and wide) aerodynamic design space of the pod.

The main aim of this research project is to investigate the aerodynamic characteristics of the Hy-
perloop pod, whereby the objective is to find a pod shape that minimizes the total drag compared to
a baseline geometry while adhering to certain (functional) requirements.

This Chapter will discuss the main conclusions drawn from this research project, whereby the main
research question and its sub-questions that were initially presented are referred back to and answered.
Thereafter, recommendations are made for possible improvements and continuation based off this
work.

6.1. Research conclusions
To realize the objective of this research project, an aerodynamic solver was developed and CFD simu-
lations were performed in order to validate this solver. As far as the verification of the numerical model
concerned, the results of the CFD simulations were deemed as a proper benchmark and reliable source
for the validation of the aerodynamic solver. The results of the aerodynamic solver agreed well with
that of the CFD simulations when the baseline pod was analyzed. The main trend was captured regard-
ing the flow behaviour, expressed in distributions of various parameters. The differences between the
two results were approximately 11.8% on average for different flow quantities. The largest differences
were mainly observed at the nose of the pod. In general, quantities were overpredicted by the solver,
which was also the case for the pressure. The predicted aerodynamic drag was therefore also higher
for the solver, with a predicted total drag of 4.01𝑘𝑁 as opposed to the 3.95𝑘𝑁 found through CFD
simulations for the baseline pod.

What are the key parameters for the aerodynamic design of the pod and how are they related
to the generation of aerodynamic drag?
The first question can partially be answered from literature findings, which has shown that there already
has been research conducted on the aerodynamics of systems relatable to the Hyperloop, but still on
a preliminary level and without experiments. The main findings herein is that the most important
parameters regarding aerodynamic considerations of the pod are the blockage ratio, vehicle speed and
operating pressure. The blockage ratio plays an important role in a fluid dynamic condition associated
to the Kantrowitz limit. Furthermore, the blockage ratio also affects the shape of the pod that yields
a lowest pressure drag. While these three parameters are fixed as a (functional) requirement, it is
nonetheless fundamental to understand how a variation in these parameters affect the total drag.
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These insights can for instance be used when an optimization is done regarding a velocity profile of
the pod. The effects of these external parameters are discussed in more detail in Appendix A.2.

From literature investigations on basic nose and tail shapes (e.g. circular, triangular, etc.) for Maglev
trains in a partially evacuated tube, it was concluded that an elliptical nose paired with a similar but
more blunt tail yielded the lowest amount of pressure drag for a blockage ratio comparable to the one
that is dealt with in this research project. Furthermore, an advised range for the length of the nose
was given which should lie between 1.5-2 times the diameter of the vehicle. A longer tail would lead
to a negligible drag reduction. In light of these findings, a baseline geometry was designed which also
fulfilled the functional requirements as set by HARDT, in order to make quantifiable comparisons. This
resulted in a pod with a total length of 49𝑚 and a diameter of 3.4𝑚, with nose and tail lengths of 6𝑚
and 4𝑚 respectively. This design was presented in Figure 3.2.

What are the key physical phenomena that contribute to the drag generation of the pod?
The development of the boundary layer is key in this internal flow problem. The boundary layer
is relatively thick due to the low Reynolds numbers, thereby decreasing the effective bypass area.
This boundary layer along with the transition into a turbulent one over the mid-section of the pod
consequently lead to a relative small throat area, resulting in a low choked mass flow rate.

The implications of exceeding the Kantrowitz limit, associated to choked flow, are evident through
the large pressure peak observed at the front of the pod, which is higher than the stagnation pressure
as would be the case in the ’standard scenario’ if the flow were not to be choked. Expectedly, the
flow accelerates through the bypass areas up to sonic conditions at the throat, which is located at the
inflection point where the pod transitions from the constant section towards the tail section.

What are the main assumptions for a simplified aerodynamic solver applicable to this fluid
dynamic problem, and what are their implications on the governing fluid dynamic equations
and the real physical problem?
The driving assumption for the development of the solver was modelling the flow as an isentropic,
quasi-1D flow through a nozzle. The implications of several assumptions made for the development of
the solver were clearly visible in the distributions of different quantities. When comparing the results of
the solver with that of CFD, the distributions well agree with each other for the general domain, where
similar trends and maximum values are reached for instance. However, when comparing the results
with the distributions over the pod surface, a larger difference is observed. Clearly, the 2D effects are
visible here showing that the quantities do not remain constant over the lateral direction for a certain
longitudinal section, but are certainly disturbed by the presence of the pod.

The flow velocity is lower close to the pod due to the viscous effects and the interaction with the
boundary layer. Nonetheless, the important trends and prediction of total drag are considered to be
adequate in having a low computational cost model that can predict the flow behaviour and the total
drag. The added complexity of predicting and modeling a separated flow which is a highly random
process, is deemed to not weigh out against the little improve in accuracy for the drag prediction and
flow field model. The solver is thus regarded as a suitable low-fidelity model that can be utilized to
assess the influence of different parameters on the drag of the pod and to be used as an optimization
tool.

The development of the boundary layer plays a crucial role in the accuracy of the solver. As dis-
cussed, the boundary layer adds an effective height to the pod through the so-called displacement
thickness, thereby influencing the acceleration of the flow. The behaviour of the boundary layer mod-
eled through the Blasius solution shows the limitation of assuming a gradual, steady growth in boundary
layer thickness, as well as assuming the transition behaviour to be based off a flow over a flat plate.
Therefore, the difference in pressure increases with increasing upstream position. The presence of
shock waves and flow separation are not taken into account, though the effects of the shockwaves on
the total drag are relatively small in this case due to the low internal tube pressure.

What are the consequences of the optimized pod shape compared to the baseline?
The solver was subsequently coupled to an optimization scheme with an SQP algorithm, which is a
gradient based optimization method. The 24 design variables were altered in order to find the geometry
with a lower drag compared to the baseline model. The optimization led to a drag reduction of 11.2%,
which took 1724 function evaluations spread over 37 iterations.
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The optimized geometry was reduced in total length by 1.4𝑚, whereby its nose has shortened in
contrast to the elongation of the tail section. This is also seen through the final values of the design
variables. Streamlining the nose would have little effect on the pressure drag (due to exceeding the
Kantrowitz limit), which ultimately led to the shortening of the nose, thereby minimizing friction drag.

Besides the reduction in friction drag, the reduction in nose length more importantly contributes to
a less critical choking effect as the throat area has increased, consequently leading to a lower pressure
peak for the optimized geometry.

While the shape of the nose has little influence on the pressure drag, the tail section does to a
large extent influence the amount of this drag component. Evidently, the expansion process starts
from the tail section onwards, where the expansion fans were also visible. The more streamlined and
thus more gradual decrease in radius compared to the baseline geometry allows for a more gradual
flow expansion, where the pressure gradient is lower at the tail section for the optimized geometry.
The choking effect is further alleviated by the concavity present at the tail section. Furthermore, the
Mach contour plots also showed a smaller area of separation compared to the baseline design.

When looking at the numerical results, the drag reduction was less, where a reduction of 7.19%
was achieved. Similar flow characteristics are observed compared to the baseline geometry, where
expansion fans are visible followed by oblique shock waves that are reflected by the tube walls. In
addition, the region of separated flow has been reduced.

The overpredicted drag reduction was to be expected as the aerodynamic solver is more ’optimistic’
in its prediction due to different flow phenomena that are not taken into account, such as the flow
separation at the tail section for instance. The mentioned limitations of the solver also play a role in the
discrepancy of the predicted drag reduction, as are the observed differences between the numerical
method and the aerodynamic solver. In particular, the boundary layer development can be easily
manipulated by adjusting the length of the vehicle which resulted in an adjustment of throat area of
relative ease. In reality, the manipulation of the boundary layer is a more complex process involving
more factors, such as the viscosity that is not constant for compressible flows.

What is the optimal shape of a Hyperloop vehicle?
To arrive back at the main question of this research project, a combination of the answers to the above
presented questions gives rise to an answer and can thus be brief.

In very generic terms, if the blockage ratio is fixed as well as the shape and constant section length
of the pod, an optimal shape is one in which the nose is blunt and the tail is streamlined and where the
choking effect is alleviated as much as possible. In this case specifically, the functional requirements
lead to a short, bluntly shaped nose. The tail section was more streamlined, and together with the
concavity present, the choking effect was alleviated. The optimal shape was presented in Section 5.7
and shown in Figure 5.2.

6.2. Recommendations for Future Work
Based on the results and drawn conclusions of this research project, additional research questions and
opportunities for the enhancement of the current work can be invoked.

• First of all, the aerodynamic solver can be further extended in order to improve its accuracy
regarding the prediction of aerodynamic quantities. Since the development of the boundary layer
is rather crucial for the velocity distribution and hence the distribution of flow parameters of
interest, more focus on this development can significantly improve the accuracy of the solver.
Investigations on a more accurate transition location (or the 𝑅𝑒፜፫።፭ applicable to these conditions
and geometries in that sense) could already lead to notable solver improvements. While the
solver at its current state already provides valuable insights in terms of distributional trends, the
improvement in accuracy can be beneficial regarding the optimization process in particular, where
more confidence in the optimized results and direction of optimization can then be gained if the
overall solver accuracy is increased. It must however be noted that these additions to the solver
should not come against a demanding increase in computational effort, as this would nullify the
benefits and purpose of having a low-fidelity aerodynamic model capable of analyzing a large
number of pod geometries in a relatively small amount of time. Whether this is the case or not
should be assessed in future work.
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• The solver evidently omits structural, economic, infrastructural and performance considerations.
Undoubtedly, these are aspects that are of equal importance regarding the entire design of the
Hyperloop. For future work, these are thus to be considered and incorporated in order to arrive
at a final (detailed) pod design, where the feasible design space can be more accurately defined
by (physical) bounds and constraints. In view of this remark, the aerodynamic solver can be
embodied into a broader multi-disciplinary design optimization framework. A first step herein
could be to extend the optimization procedure to an aero-structural pod optimization, where the
drag is to be minimized while the pod weight is within certain thresholds.

• Recommendations can also be made regarding the analysis of (baseline) pod geometries. In
this research project, only axisymmetric pods were considered. While this might be beneficial
regarding manufacturing processes for instance, it does not necessarily have to be so regarding
aerodynamic aspects. Investigations on different (non-symmetric) geometries might result in
shapes that have a lower total drag. As such, it allows for trade-offs to be made at later design
stages between lower manufacturing costs and possibly lower vehicle drag for instance. Further-
more, the constant section that is present in the current pod design could possibly be altered to
a non-flat section or a typical droplet shape that is monotonically decreasing in radius, thereby
matching the increase in boundary layer growth to a certain extent. This can then result in an
effective pod height that to a certain degree remains constant, which could possibly be beneficial
in terms of the aerodynamic drag. Besides the constant effective pod height, a non-axisymmetric
shape could also lead to a shape that generates a certain amount of lift. While an induced drag
term will most likely be introduced, the generated lift could be utilized in order to alleviate the
required power for the pod levitation system, which could improve the efficiency considering the
entire system.

• Recommendations can finally be made regarding the optimization procedure. Different optimiza-
tion algorithms can be opted for which might alleviate the computational effort. It is known for
some cases that gradient based algorithms are relatively slow when the current point is close
to the optimal point. This was also the case for the current optimization, where 10 of the 37
iterations were required to move to the optimum from a relatively close point (as can be seen in
the convergence details given in Appendix B.1). While on one hand, the rate of convergence can
be manipulated with the adjustment of certain tolerances, it is on the other hand more desirable
to achieve faster convergence in a ’natural’ manner. For further interest, investigations on alter-
native optimization algorithms can be done in which this issue can be avoided. Additionally, the
optimization problem can be further extended to a population based algorithm such as a genetic
algorithm, where multiple candidate solutions are maintained and improved in order to arrive at
a global minimum [85].
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A
Pod aerodynamic characteristics

A.1. Comparison of flow parameters

In addition to the comparisons of the pressure and Mach number distributions presented in Section
4.4, the distributions of the temperature and density are given in figures A.1 and A.2 respectively.

(a) (b)

Figure A.1: Temperature distributions of the domain (a) and the pod surface (b)
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(a) (b)

Figure A.2: Density distributions of the domain (a) and the pod surface (b)

Similar conclusions can be drawn regarding the differences between the results of the solver and
CFD, where the solver result generally well agrees with the numerical results, but to a lesser extent
when compared to the distributions directly over the pod surface.

In addition, the distributions for the pressure coefficients as well as the total temperature variation
within the domain obtained by CFD are shown in Figure A.3.

(a) (b)

Figure A.3: Pressure coefficient (a) and total temperature (b) distributions

As mentioned, an isentropic flow was assumed in the solver implying that the total temperature
remains constant over the entire flow domain. To assess the validity of this assumption, the distribution
of the total temperature obtained from CFD is shown in Figure A.3b. It can be seen that the total
temperature is certainly not constant. The value drops gradually but with an insignificant amount for
the largest part, with a decrease of 1.46% from the nose up to approximately 45.2𝑚. Over the final
3.8𝑚, the value drops drastically due to the irreversibilities associated to flow separation to the final
value of 288𝑘, equal to the static value. The isentropic flow assumption therefore generally holds for
the majority of the flow, except for the last part of the tail section, adding to the inaccuracy of the
solver.

A.2. Effect of external parameters on total drag
From literature, it was concluded that the most important external parameters that affect the total
aerodynamic drag are the blockage ratio, internal tube pressure and operating velocity. Though these
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three parameters are fixed as a requirement in this thesis project, it is nonetheless fundamental in
gaining more understanding of how the drag varies with a different set of these parameters. This
might provide valuable insights when considering the operational aspects of the Hyperloop system and
possible future optimization procedures regarding those aspects. The change in drag with operational
speed might for instance be useful when a certain velocity profile is to be defined.

First of all, the blockage ratio is varied from 0.1 to 0.85. In this case, the radius of the pod
is kept constant, where the tube radius is varied. The change in drag can be seen in Figure A.4,
where the current blockage ratio (0.625) is depicted as well. As expected, the drag rises rapidly with
increasing blockage ratio since the bypass area is decreased, leading to a stronger choking effect. It
can furthermore be noted that a quadratic relation exists between the drag and blockage ratio.

Figure A.4: Variation of drag with blockage ratio

The changes in drag due to a change in internal tube pressure and velocity are shown in Figure
A.5. The drag varies linearly with increasing internal tube pressure. A rapid increase in drag can be
seen when the velocity exceeds ≈99.5𝑚/𝑠. After this velocity, the flow becomes choked which causes
the drag to drastically rise. This ’critical speed’ can be found based on the choked mass flow rate and
is thus dependent on the throat area. It is therefore also dependent on the blockage ratio. Before
this critical speed is reached, a quadratic relation can be observed between the drag and pod velocity.
After this, the relation changes to a more or less linear relation.
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(a) (b)

Figure A.5: Variation of drag with internal pressure (a) and velocity (b)

A.3. Additional CFD verification procedures
It is often emphasized that the CFD simulations are a crucial part in the validation of the aerodynamic
solver. Therefore, additional verification procedures to the ones that were presented in Section 4.5
are carried out. As discussed, far-field boundary conditions are necessary for imposing external flow
conditions on the computational domain. The real physical flow domain is evidently too large to in-
corporate in a computational domain. A pressure far-field condition was therefore used in order to
allow for the reduction in size of the computational domain, and consequently the computational time.
This boundary condition models a free-stream condition at infinity, where the Mach number and static
conditions are imposed. However, to correctly approximate the ’true infinity conditions’, the far-field
boundary must be placed far enough from the object of interest. If placed too closely, the boundary
condition can produce artificial effects.

In the specific case of the pod analyses, an artificial effect can for instance be the erroneous
amount of reflected oblique shocks in order to satisfy the far-field condition. A simulation is therefore
performed with an increased computational domain size, where the inlet and outlet are placed 50𝑚 in
front of the pod and approximately 200𝑚 behind the pod respectively (compared to the original 10𝑚
and 51𝑚), thereby having a total domain length of 300𝑚. The Mach contours around the tail area for
this simulation is shown in Figure A.6, while the pod in the entire computational domain is shown in
Figure A.7.

Figure A.6: Tail area Mach contours in an increased computational domain size

The contours show a similar flow behaviour compared to the earlier presented CFD results, where
the oblique shocks are reflected and barely visible after three reflections, with again the shocks at the
same location. The increased inlet distance also yield a similar high pressure region, where finally a
total drag of 3.97𝑘𝑁 is computed. With the same flow behaviour and approximately 0.25% difference
in predicted drag, it can be concluded that the initial computational domain is sufficiently large to
incorporate the far-field conditions, which saves a large amount of computational time compared to
the current domain. This can also be noted from the converge histories of the residuals and total drag,
shown in Figures A.8a and A.8b respectively, where approximately 2100 iterations are required to reach
convergence (compared to the original 550).
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(a) (b)

Figure A.8: Convergence history of the residuals (a) and total drag (b)

Since the tube walls are relatively close to the pod, the effect of these walls are investigated further
by means of adding prism layers to the tube walls. A close up of this mesh around the pod area is
shown in Figure A.9 with the corresponding Mach contour plot shown in Figure A.10.

Figure A.9: Mesh around the pod with prism layers added to the tube wall

Figure A.10: Mach contours of the mesh with prism layers at the tube wall

Once again, similar flow behaviours are observed with no notable differences in the bypass area
specifically, and the total drag is in comparable orders (3.96𝑘𝑁). The results of the additional ver-
ification procedures therefore give more confidence in the independence of the numerical results to
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the computational grid and boundary conditions. This is also the case for the results of the optimized
geometry, since those are obtained with only the first (coarse) mesh and small computational domain.

As a final verification procedure, the simulation is performed with a different turbulence model.
Since the flow is assumed to be transitional, a simulation is performed with the transition SST model.
This model was not used in the initial analyses due to its relative high computational requirements
(solving 4 transport equations) and inaccuracy for wall bounded flows compared to the 𝑘 − 𝜖 model.
For brevity, only the Mach number and pressure distributions along the wall for the pod length are
shown, and can be seen in Figures A.11a and A.11b respectively

(a) (b)

Figure A.11: Distributions along the tube wall of the Mach number (a) and pressure (b)

Similarities are found for the differences between the solver and CFD results. Again, the pressure
peak is overpredicted, however by a smaller amount (2.23% overprediction). When the flat section
of the pod is reached, the pressure is underpredicted by the solver due to a higher pressure gradient,
leading to an intersection between the distributions. Again, the inaccuracy increases with downstream
location to a maximum difference of 11.3% at the start of the tail section (at 𝑥 = 45𝑚).

This trend is analogous to the Mach number distribution, however with smaller values of differences
between the solver and CFD results. The maximum Mach number corresponds well with that encoun-
tered in the entire flow domain, but to a lesser extent to the maximum Mach number along the tube
wall.





B
Optimization details

B.1. Convergence history of optimization parameters
In addition to the final values of the design variables as was given in Table 5.3, the MATLAB command
window with additional iteration information is shown below. In accordance with the discussion in Sec-
tion 5.9, the optimization took 37 iterations constituting 1724 function evaluations (F-count), where the
normalized objective function f(x) has been reduced to its final value of 8.885421e-01. The feasibility
of the solution given in the fourth column can be regarded as the adherence to the constraints, which
ideally should be as close as possible to 0.

I t e r F−count f ( x ) F e a s i b i l i t y Step length step op t ima l i t y
0 45 1.000000e+00 1.000e−04 4.915e+00
1 90 9.903462e−01 7.228e−04 1.000e+00 8.522e−02 1.998e−01
2 138 9.853521e−01 1.046e−03 4.900e−01 2.075e−01 1.418e+00
3 192 9.849528e−01 1.031e−03 4.035e−02 1.507e−02 1.539e+00
4 239 9.733364e−01 4.523e−03 7.000e−01 4.543e−01 2.167e+00
5 284 9.157984e−01 2.629e−03 1.000e+00 3.000e−01 9.342e−01
6 329 9.063392e−01 1.314e−03 1.000e+00 1.550e−01 5.903e−01
7 374 9.061892e−01 1.866e−07 1.000e+00 5.148e−02 5.047e−01
8 419 9.042419e−01 1.574e−04 1.000e+00 3.873e−02 3.583e−01
9 464 9.027015e−01 9.515e−05 1.000e+00 5.434e−02 4.360e−01
10 509 8.954363e−01 7.320e−04 1.000e+00 1.930e−01 4.973e−01
11 554 8.944062e−01 1.339e−04 1.000e+00 1.137e−01 3.842e−01
12 599 8.920750e−01 1.607e−04 1.000e+00 1.037e−01 3.838e−01
13 644 8.916557e−01 5.844e−05 1.000e+00 4.122e−02 5.083e+00
14 689 8.910973e−01 4.349e−05 1.000e+00 2.736e−02 2.749e−01
15 734 8.911540e−01 1.306e−16 1.000e+00 9.472e−03 6.867e−02
16 779 8.908968e−01 1.306e−16 1.000e+00 4.601e−02 3.508e−02
17 824 8.906338e−01 1.306e−16 1.000e+00 5.106e−02 3.441e−02
18 869 8.903899e−01 1.306e−16 1.000e+00 4.827e−02 6.442e−02
19 914 8.901044e−01 1.306e−16 1.000e+00 5.720e−02 3.361e−02
20 959 8.900586e−01 1.306e−16 1.000e+00 1.141e−02 1.387e−02
21 1004 8.899001e−01 1.306e−16 1.000e+00 3.943e−02 1.402e−02
22 1049 8.898803e−01 1.306e−16 1.000e+00 6.232e−03 1.400e−02
23 1094 8.897812e−01 1.306e−16 1.000e+00 3.141e−02 1.392e−02
24 1139 8.893078e−01 1.306e−16 1.000e+00 1.554e−01 1.357e−02
25 1184 8.888528e−01 1.306e−16 1.000e+00 1.585e−01 1.330e−02
26 1229 8.888166e−01 1.306e−16 1.000e+00 1.443e−02 1.328e−02
27 1274 8.886832e−01 1.306e−16 1.000e+00 5.393e−02 1.321e−02
28 1319 8.886291e−01 1.306e−16 1.000e+00 2.222e−02 1.319e−02
29 1364 8.886287e−01 1.306e−16 1.000e+00 5.616e−04 2.893e−03
30 1409 8.886272e−01 1.306e−16 1.000e+00 2.799e−03 2.722e−03
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Norm of F i r s t −order
I t e r F−count f ( x ) F e a s i b i l i t y Step length step op t ima l i t y
31 1454 8.886199e−01 1.306e−16 1.000e+00 1.384e−02 1.894e−03
32 1499 8.885903e−01 1.306e−16 1.000e+00 6.567e−02 1.274e−03
33 1544 8.885640e−01 1.306e−16 1.000e+00 8.867e−02 1.789e−03
34 1589 8.885626e−01 1.306e−16 1.000e+00 1.611e−03 1.746e−03
35 1634 8.885563e−01 1.306e−16 1.000e+00 7.798e−03 1.537e−03
36 1679 8.885425e−01 1.306e−16 1.000e+00 3.285e−02 1.364e−03
37 1724 8.885421e−01 1.306e−16 1.000e+00 1.186e−02 5.074e−05

A visual representation concerning the convergence histories of the objective function and the
constraints is given in Figures B.1 and B.2 respectively. As was discussed in Section 6.2, the reduction
in objective function value is relatively small starting from approximately 1200 function evaluations, or
equivalently the 27፭፡ iteration, which sometimes occurs for gradient based algorithms.

Figure B.1: Convergence history of normalized objective function
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(a) (b)

Figure B.2: Convergence histories of the normalized equality (a) and inequality constraints (b)

B.2. Residual monitor of optimized geometry simulation

The convergence history of the residuals and the drag for the optimized geometry are shown in Figures
B.3 and B.4 respectively. Once again, similar trends in the convergence history are observed. The
amount of iterations required for convergence are comparable to that of the baseline geometry for the
coarse mesh.

Figure B.3: Convergence history of the residuals for the optimized geometry
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Figure B.4: Convergence history of the total drag for the optimized geometry
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