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Redundant Actuation of Twisted and Coiled Polymer Muscles to
Improve Tracking Performance

Ian McGinty

Abstract—Twisted and coiled polymer muscles (TCPMs) are a
type of artificial muscle with a remarkable power-to-weight ratio.
However, actuation dynamics are slow compared to other artifi-
cial muscles. This work aims to improve dynamic performance
by incorporating redundancy. Specifically, this work examines
if TCPM bundles of heterogeneous geometries containing high-
force low-bandwidth actuators and low-force high-bandwidth
actuators have a substantially better tracking performance than
that of bundles of homogeneous geometries. First, a white-box
model was created to simulate TCPM dynamics as a function
of geometric parameters. The model revealed fiber diameter is
the only geometric parameter that represents a trade-off between
TCPM bandwidth and maximum realizable force for isometric
force tracking. Next, an optimum feedforward controller was
designed to distribute the reference among redundant actua-
tors. Finally, a brute-force optimization was conducted to find
the optimum configurations of heterogeneous and homogeneous
TCPM bundles and the associated tracking performances. Opti-
mal homogeneous configurations outperformed all heterogeneous
configurations irrespective of number of TCPMs in parallel or
reference signal. For unidirectional configurations, a nontrivial
fiber diameter optimizes tracking performance. For antagonistic
configurations, tracking performance improves monotonically
with increasing fiber diameter.

NOMENCLATURE

Fiber and Coil Geometry

C Spring index
d Fiber diameter
D Coil diameter
l Fiber length
L0 Compressed coil length
n TCPMs or pairs of TCPMs in parallel
N Coil turns
sp Polymer chain length
w Stretch ratio
βf Fiber bias angle
φ Angular fiber twist insertion
Φ Nondimensional twist insertion

Electrothermal Parameters
Ac Convective surface area
cp Specific heat capacity of nylon 6,6
Cth Thermal mass of actuator
h Convection coefficient
K Electrothermal steady state gain
K1,2,3 Empirically determined coefficients
R Electrical resistance of heating element
V Applied voltage
T Actuator temperature
Ta Ambient temperature

Tmax Maximum temperature of linear region
Tmin Minimum temperature of linear region
∆T T − Ta

∆Ts Incremental step in temperature
ρn Density of nylon 6,6
ωBW Electrothermal and TCPM bandwidth

Thermomechanical Parameters
c Thermal force per blocked torque
Ei Untwisted Young’s modulus

Ez Twisted axial Young’s modulus
Ft Total applied force about coil axis
F Thermal force generated by blocked torque

Gzθ Twisted transverse shear modulus
Gij Untwisted shear modulus
Sij Untwisted fiber stiffness matrix coefficient
S′

ij Twisted fiber stiffness matrix coefficient

ui Assumed fiber displacement field
z–ρ–θ Fiber coordinate system
1–2 Polymer chain coordinate system
αij Untwisted thermal expansion coefficient
δθ Assumed angular fiber twist per length
δz Assumed axial fiber expansion
εij Total strain
εMij Mechanical strain

νij Poisson’s ratio
σij Stress
τb Blocked torque

Optimal Control

A State matrix
B Input matrix
F ′ Linearized force-temperature slope
Fa Linearized force-temperature offset
∆Fr Range of realizable force
Fmin Minimum force such that T > Tmin

J Total cost minimized by optimal control
Jt Tracking cost
Jc Control effort cost
p Costates
r Offset reference such that y − r = F − rF
rF Reference signal
R Weighting matrix
R0 Weighting scalar
u Input vector of squared voltages
umax Maximum control such that T < Tmax

umin Minimum control such that T > Tmin

y Output vector
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I. INTRODUCTION

A. Motivation

Twisted and coiled polymer muscles (TCPMs) were in-
troduced by Haines et al. in 2014 to address the current
limitations of artificial muscles: large hysteresis, low work
capacity, and cost [1]. Although hysteresis in large-stroke
TCPM applications is not negligible [2], it is significantly
smaller than comparable shape memory alloy artificial muscles
[1]. The work-to-weight ratio of TCPMs can exceed 100 times
that of the human bicep [1]. Radial thermal expansion and
axial thermal contraction of highly-drawn polymer fibers drive
thermal actuation of TCPMs [1]. Heating a twisted precursor
fiber generates a torsional stroke with instantaneous speeds up
to 70 000 rpm [3]. Coiling the twisted fiber and constraining
both ends from rotating produces linear stroke.

This simple working principle lends itself to readily avail-
able materials and an inexpensive manufacturing process.
Highly drawn polymer fibers are commercially available as
fishing line or sewing thread, often made of nylon 6,6 or
polyethylene1. The precursor fiber is then held under constant
tension and twisted about its axis. If the number of twists
inserted exceeds the critic twist number, elastic instability of
the fiber results in spontaneous coil nucleation. Coils continue
to form if twist is continually inserted until the entire fiber
forms a helical coil, resulting in an autocoiled TCPM. Tension
of the precursor fiber dictates the ratio of coil diameter to
fiber diameter, referred to as spring index. Spring indices
of approximately 2 are typical of autocoiled TCPMs [4].
Alternately, the spring index of the coil can be tuned by
wrapping the twisted fiber around a mandrel before the onset
of spontaneous coil nucleation. If the chirality of fiber twist
and coil match, this so-called homochiral TCPM contracts
when heated. If they are opposite, the heterochiral TCPM
expands when heated. The coil is annealed before the mandrel
is removed, resulting in a mandrel-coiled TCPM.

This work addresses a notable drawback of TCPMs: slow
dynamic performance, with bandwidths on the order of
0.05Hz in free air [5]. Other drawbacks include low efficiency
on the order of 1% [1] and sensitivity to humidity [6].
This work quantifies dynamic performance as the integral of
squared reference-tracking error, referred to as tracking cost.
Reference signals often contain large-amplitude low-frequency
components and low-amplitude high-frequency components; a
square-wave reference contains components with amplitudes
inversely proportional to frequency. Likewise, certain muscle
geometries are better suited to producing large forces at
low frequencies, and vice versa. Therefore, actuating bun-
dles of redundant muscles of heterogeneous geometries in
parallel (heterogeneous bundles) may increase performance
over a specified range of frequencies compared to bundles
of redundant muscles of homogeneous geometries in parallel
(homogeneous bundles).

1This work specifically considers nylon 6,6 actuators because they possess
superior contractile strokes and a larger operating temperature range than
polyethylene actuators [1].

The Macro-Mini approach in robotics similarly uses redun-
dancy to provide high-frequency torque with a low impedance.
Zinn et al. proposed combining a high-force low-frequency
series elastic actuator with a low-force high-frequency direct-
drive actuator [7]. The reference signal is accordingly par-
titioned into low-frequency and high-frequency components
before being distributed to the respective actuators [7]. This
work differs from Zinn et al. in that the two or more actuators
in parallel differ only in geometry. TCPM frequency range
is also not pre-allocated; a multi-input single-output optimal
feedforward controller is used to distribute control among
TCPMs.

Contraction of heterochiral TCPMs is driven by Joule
heating, while expansion is driven by convective cooling. A
single unidirectional TCPM thus possesses a heating-cooling
dynamic asymmetry. Symmetry is realized in an antagonis-
tic configuration. Antagonistic configurations consist of two
bundles of TCPMs of the same chirality opposing each other,
or of two bundles of TCPMs of opposite chirality anchored
adjacent to each other. This work considers both unidirectional
configurations and geometrically-symmetric antagonistic con-
figurations.

Both forced and natural convective cooling of TCPMs is
considered in literature. Forced convective cooling requires a
fan [5] [8] or heat exchanger [9] to increase the rate of TCPM
cooling. Modulating the fan or heat exchanger controls the
rate of convective heat transfer [8]. However, the weight, cost,
and complexity of cooling equipment undermine these same
principle advantages of TCPMs. Furthermore, the importance
of cooling is mitigated in an antagonistic setup. Therefore, this
work considers natural convection.

This work considers dynamic performance in the context
of gripping applications, to which TCPMs lend themselves.
Grippers are often attached to fixed multi-axis robots. TCPMs
are often tethered to and powered by a fixed power source,
rather than a portable battery, due to their low efficiency.
Gripping tasks often involve interacting with a safety-critical
or delicate environment, such as robot-human interaction or
produce handling, making compliance advantageous. Like
many artificial muscles, TCPMs are a form of compliant
actuator. Soft grippers often engage with their environment
to some constant desired force irrespective of feedback, and
then later disengage. Therefore, this work investigates force-
tracking performance of a square-wave reference using a
predictive feedforward controller.

B. Hypothesis

This work hypothesizes that the force-tracking performance
of n TCPMs of heterogeneous geometries in parallel is
substantially improved compared to that of homogeneous
geometries, where a substantial improvement is defined as at
least a 10% reduction tracking cost. An isometric 1N square-
wave force-tracking task is considered, such that bundle can
be scaled to handle any desired application force. Thus n
then represents the number of actuators employed per unit
of required force, and therefore the complexity of the actuator
bundle.
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To validate this hypothesis, this work simulates the tracking
performance of both heterogeneous and homogeneous bundles
for n ∈ {2, 3, 4} unidirectional TCPMs in parallel, and for
n = 2 pairs of antagonistic TCPMs in parallel. Control
is allocated between n redundant TCPMs via Pontryagin’s
minimum principle. The model is based on white-box nylon
6,6 TCPM models in literature.

C. Report Structure

This work is organized as follows. Chapter 2 introduces a
dynamic white-box model that relates geometric parameters
and control input to generated force for a single TCPM.
Chapter 3 proposes an optimal controller to allocate a feed-
forward control signal among redundant TCPMs. Chapter 4
describes a brute-force investigation that identifies configura-
tions of heterogeneous and homogeneous TCPM geometries
that minimize tracking cost. Chapter 5 contains results, includ-
ing optimum geometries and the associated simulated force
responses. Chapter 6 and 7 are the discussion and conclusion,
respectively.

II. WHITE-BOX TCPM MODEL

A. TCPM Geometric Parameters

To determine if the simulated force-tracking performance
of n parallel TCPMs differs between homogeneous and
heterogeneous bundles, a white-box model relating tracking
performance to geometric parameters of any individual TCPM
is required. Figure 1 and 2 respectively show relevant fiber and
coil geometric parameters.

Twisted fiber geometry is fully characterized by fiber length
l, diameter d, and nondimensional twist insertion Φ. Twisting
the fiber φ radians results in Φ = φd

2l . A TCPM is homochiral
for φ > 0 and heterochiral for φ < 0. TCPMs are constrained
from untwisting such that φ is constant. Fiber bias angle
βf(ρ) = tan φρ

l is the radially-dependent angle of the polymer
chain to the axis of the fiber. Characterizing twist insertion
with Φ ensures the outer fiber bias angle βf(ρ = d/2) =
arctanΦ does not scale with d or l. Note βf is assumed to
be temperature independent. In untwisted nylon 6,6 precursor
fibers, the axial and radial thermal expansion of polymer
chains can respectively be as large as −4% [1] and 1% [10] for
changes in temperature of 200◦C. The corresponding change
in βf is less than 1% for |βf | < 35◦2 and is considered
negligible.

A fully-compressed coil of N turns at ambient temperature
Ta is fully characterized by 5 geometric parameters: N , l, d,
spring index C, and compressed coil length L0. Two additional
parameters describe a stretched coil heated to temperature T :
coil diameter D and stretch ratio w. These 7 parameters are re-
duced to 4 independent parameters using the two trigonometric
relationships shown in Figure 2 and the definition L0 = Nd.
Thus, the white-box TCPM model is a function of independent

2For a tubular fiber section of radius ρ shown in Figure 1, sinβf = φρ
sp

,

where sp is polymer chain length. As a first order approximation,
dβf
βf

=
tan βf
βf

(dρρ −
dsp
sp

). This approximation ignores the shearing stresses caused

by adjacent concentric tubular fiber sections.

d

l

βf sp

1
2
φd

Fig. 1: Geometry of a twisted fiber of diameter d and length
l. Twist insertion φ twists highlighted polymer chain of length
sp into a helix, defined by angle βf with respect to the fiber
axis.

d
l

L0

Cd πNCd

(a)

d

wL0

D

l

πND

(b)

Fig. 2: (a) Coil geometric parameters at ambient temperature
Ta and fully compressed length L0. Ambient coil diameter
is defined in terms of spring index C. (b) Coil geometric
parameters at heated temperature T and stretched to length
wL0, where w is the stretch ratio.

fiber and coil geometric parameters Φ, d, C, w, and l. Note the
temperature dependence of d and l are considered negligible
when used to define coil geometry. However, the stresses
induced by radial and axial thermal strains are not ignored.

B. TCPM Modeling in Literature

White-box models in literature generally decompose the
dynamic model into two submodels. The thermoelectric sub-
model relates applied voltage squared V 2 to fiber temperature
T . The thermomechanical submodel relates T to generated
force axial to the coil Ft or coil length contraction ∆L.



4

The electrothermal dynamics of TCPMs are often described
as a first-order system in literature [5] [11] [12]. Yip and
Niemeyer first proposed a linear first-order TCPM electrother-
mal model that only considers Joule heating and convection
per Newton’s law of cooling [5]. Yip and Niemeyer’s linear
model ignores the temperature dependence of the Joule heat-
ing element, while other authors consider resistance a linear
function of temperature [13] [11]. Masuya et al. found the
nonlinear effects of radiative heat transfer, thermal energy
transduced into mechanical energy, and the temperature depen-
dence of the natural convection coefficient are negligible for
operating temperatures less than 120◦C [14]. This work also
uses Newton’s law of cooling to describe TCPM dynamics.
However, all TCPM literature uses grey-box techniques to
determine the convective heat transfer coefficient [5] [11] [12].
Therefore other literature outside the context of TCPMs is
required to analytically determine the heat transfer coefficient
for white-box modeling.

Most thermomechanical dynamic models in literature at-
tribute dynamic effects to viscous damping [5] [12] [15].
Van der Weijde et al. and Huang et al. notably account
for the observed viscoelastic effects of stress relaxation and
creep by employing the standard linear solid model [16] [17].
In both cases, mechanical dynamics are much slower than
thermal dynamics and require system identification techniques
to identify unknown parameters. For simplicity, this work
ignores thermomechanical dynamic and hysteretic effects.

Static thermomechanical models are classified as either free-
torsion or blocked-torque models. Both model types predict a
nonlinear relationship between coil length and temperature.
Thermomechanical nonlinearities were also experimentally
observed by Masuya et al. [14]

Free-torsion models initially relate ∆T to fiber untwist. If
the precursor fiber is twisted, an increase in temperature drives
fiber untwist [18] [19] [20] [21]. Figure 1 demonstrates how
thermal expansion of fiber diameter d and thermal contraction
of the wrapped polymer chain of length sp changes fiber bias
angle βf . Haines et al. then relates fiber untwist to coil length
contraction ∆L using Love’s helix equation [1], a purely
geometric relationship. This implementation predicts length
contraction independent of elastic material properties. It has
been validated on nylon TCPMs for temperatures up to 120◦C
and outer fiber bias angles of 24◦ [1].

Blocked-torque models initially determined the reaction
torque, or blocked torque τb, associated with in increase
in temperature ∆T assuming the fiber is constrained from
untwisting. Yang and Li first relate ∆T to blocked torque
τb via shear stresses σzθ [22], therefore incorporating elastic
material properties. Tang et al. further simplified this relation-
ship by assuming certain stress and strain contributions were
negligible based on observations from finite element analysis
[10]. Castigliano’s method then relates blocked torque applied
about the axis of the fiber to both coil length contraction ∆L
and applied force about the axis of the coil Ft [22] [10]. Tang
et al. validated this model on nylon TCPMs for temperatures
up to 180◦C and fiber bias angles of 44◦ [10]. This model is
validated for a larger range of temperature and twist insertion
than any other model in literature. As a blocked-torque model,

it incorporates elastic material properties. Tang et al. also
experimentally determine more transverse isotropic nylon 6,6
material properties for use in their model than any other work.
This work accordingly models TCPM thermomechanics using
the Tang et al. model.

C. Electrothermal Model

Applied voltage V drives an increase in actuator temperature
∆T = T − Ta due to Joule heating. The electrothermal
dynamics are described via Newton’s law of cooling:

CthṪ =
V 2

R
− hAc∆T , (1)

where Cth is the actuator thermal mass, R is the actuator
electrical resistance, h is the convection coefficient, and Ac

is the actuator convective surface area. This model assumes
fiber and heating element temperature are identical and ho-
mogeneous throughout the actuator. It also takes the lumped
mass assumption where conduction is negligible compared to
convection, which is valid for Biot numbers less than 0.1.

Fiber properties Cth and Ac can be expressed in terms of
fiber diameter d and fiber length l. Assuming the thermal mass
of the heating element is negligible compared to that of the
fiber, Cth = cpρn

π
4
d2l, where cp and ρn are respectively the

specific heat capacity and density of nylon 6,6. Ignoring the
surface area contribution of the heating element and the ends
of the nylon fiber, Ac = πdl.

Similarly, convective coefficient h can be expressed in terms
of the coil geometric parameters: fiber diameter d, spring index
C, stretch ratio w, and fiber length l. Hauser experimentally
determined natural convective coefficients for horizontal coils
as a function d, C, and w. [23]. Hauser relates convection
coefficient h to geometric properties d, C, and w and the
thermophysical properties of air [23]:

h =
λw

dπC
K1 , (2)

where λ is the thermal conductivity of air. Empirically deter-
mined coefficients K1, K2, and K3 are functions of standard
gravity g and the thermal expansion coefficient β, Prandtl
number Pr, and kinematic viscosity ν of air3 [23]:

K1 = (1.3248 + 0.0343K2 + 0.0029K2
2 − 0.00003K4

2 )
K2 ,

K2 = log10 g + log10
βPr∆T

ν2
+ 3 log10 K3 ,

K3 = d

(

1 +
πC − 1

w

)

.

Equation 2 is valid for −6 < K2 < 4. The third term of
K2 is a function of coil geometry, while the second term
of K2 and λ in Equation 2 are temperature dependent. For
anticipated operating range Tmin = 110◦C and Tmax = 160◦C
(see Subsection II-F), variation in K2 over the range of
operating temperatures is less than 1% compared to variation
in K2 due to anticipated range of geometries. Temperature

3Per [23], β is evaluated at Ta +∆T , while λ, Pr, and ν are evaluated at
Ta + 1

2∆T .
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dependence of K2 is thus ignored. If λ(∆T ) is approximated
as λ(∆T = 1

2
Tmax +

1
2
Tmin), resulting in less than 5% error,

convection coefficient h is independent of temperature.

The Laplace transform of Equation 1 in terms of fiber and
coil geometric parameters is:

∆T (s)

V 2(s)
=

K

s/ωBW + 1
, (3)

where steady state gain

K =
1

Rλ

C

wK1l
(4)

and bandwidth

ωBW =
4λ

πρncp

wK1

Cd2
. (5)

Note λ and K1 are assumed to be temperature-independent.
Equation 3 is then independent of temperature if Joule heating
element resistance R is also assumed to be temperature
independent. Therefore, a constantan heating element is used,
which has a resistivity temperature coefficient of 2×10−5 K−1

[24].

Operating temperature must be kept between Tmin and
Tmax, as discussed in Section II-F. This is physically realized
via input saturation. To enforce these operating conditions
across all input frequencies, V 2 is conservatively constrained
such that KV 2 ∈ [Tmin, Tmax].

D. Fiber Thermomechanical Model

If the temperature of a twisted precursor fiber constrained
from rotating about its axis is elevated ∆T above the environ-
mental temperature Ta, then the fiber produces a counteracting
blocked torque τb. This torque is a function of fiber diameter
d and twist insertion φ.

Twist insertion rotates the material properties of a straight
fiber by angle βf , defined with respect to the axis of the fiber
(see Figure 3). Note βf within the fiber is radially dependent:
tanβf(ρ) = φρ

l . Highly drawn untwisted nylon 6,6 fibers
possess transverse isotropic material properties with untwisted
stiffness matrix [25]

S =



















1
E1

−ν12

E1

−ν12

E1
0 0 0

−ν12

E1

1
E2

−ν23

E2
0 0 0

−ν12

E1

−ν23

E2

1
E2

0 0 0
0 0 0 2+2ν23

E2
0 0

0 0 0 0 1
G12

0
0 0 0 0 0 1

G12



















−1

, (6)

where E1 and E2 are Young’s moduli, G23 is the trans-
verse shear modulus, ν12 and ν23 are Poisson’s ratios, and
subscripts 1 and 2 respectively denote untwisted axial and
radial component axes in Figure 3 (a). Rotating the elastic
material properties βf from the 1–2 coordinate system to the
z–ρ–θ coordinate system in Figure 3 (b) results in a radially-
dependent twisted stiffness matrix S′ = PSPT, where rotation
matrix [26]

1

2

z

ρθ

(a)

1

2

φ

βf
βf

(b)

Fig. 3: A fiber in the (a) untwisted and (b) twisted state. Indi-
vidual polymer chains at radii d/2 and d/4 are highlighted for
clarity. Twisting the fiber φ radians rotates precursor material
properties by radially-dependent fiber bias angle βf(ρ). To
obtain radially-dependent material properties of the twisted
fiber, precursor-fiber properties in the 1–2 coordinate system
are rotated to the z–ρ–θ fiber coordinate system.

P =

















c2β s2β 0 0 0 2cβsβ
s2β c2β 0 0 0 −2cβsβ
0 0 1 0 0 0
0 0 0 cβ sβ 0
0 0 0 −sβ cβ 0

−cβsβ cβsβ 0 0 0 c2β − s2β

















, (7)

cβ denotes cosβf , and sβ denotes sinβf . Similarly rotating
thermal expansion coefficients αi results in [26]

αz = α1 cos
2 βf + α2 sin

2 βf , (8)

αθ = α1 sin
2 βf + α2 cos

2 βf , (9)

αρ = α2 , (10)

αzθ = 2(α2 − α1) cosβf sinβf , (11)

where subscripts z, ρ, and θ denote twisted properties defined
per the coordinate system in Figure 3. Axial thermal expansion
coefficient α1 is negative while radial thermal expansion
coefficient α2 is positive for nylon 6,6. Note that αzθ $= 0 for
βf $= 0 such that twist insertion results in some nonzero shear
thermal expansion coefficient αzθ. Accordingly, a change in
temperature ∆T generates a blocked torque τb if the fiber is
constrained from rotating.

Blocked torque is computed by decomposing the fiber core
into tubular layers of a finite thickness ∆ρ. Stiffness matrix
coefficients S′

ij and thermal expansion coefficients αi are
defined based on the bias angle of the layer. The following
radially-dependent displacement field is imposed on each layer
[22]:

(

uρ uθ uz

)

=
(

uρ(ρ) δθρz δzz
)

. (12)

Infinitesimal strain theory relates displacements per Equation
12 to mechanical strains εM . Constitutive relationships equate
stress and mechanical strain via the stiffness matrix. A suf-
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ficiently small step in temperature4 ∆Ts drives increment in
stress [22]:

∆σzθ(ρ, T ) = S′

16ε
M
z + S′

26ε
M
θ + S′

36ε
M
r + S′

66ε
M
zθ (13)

= S′

16(εz − αz∆Ts) + S′

26(εθ − αθ∆Ts)

+ S′

36(εr − αρ∆Ts) + S′

66(εzθ − αzθ∆Ts) , (14)

where ε denotes total strain, and S′

ij and αi are temperature de-
pendent. Tang et al. proposed two simplifications to Equation
14. First, the fiber was allowed to axially expand or contract
while still being constrained from rotating (δθ = 0), resulting
in strains εz = δz and εzθ = δθρ = 0. Second, a finite element
analysis investigating internal strains of a twisted fiber revealed
that circumferential strain εθ and the contribution of radial
mechanical strain to shearing stress S′

36ε
M
r are negligible [10].

Equation 14 is then

∆σzθ = S′

16(∆δz−αz∆Ts)−S′

26αθ∆Ts−S′

66αzθ∆Ts , (15)

where ∆δz is determined by assuming no axial force is applied
to fiber such that the integral of the axial stress over the fiber
cross section is zero (σz = 0) [10]:

∆δz =

∑d/2
ρ=0(S

′

11αz + S′

12αθ + S′

16αzθ)πρ∆ρ
∑d/2

ρ=0 S
′

11πρ∆ρ
∆Ts . (16)

Blocked torque is determined by taking the summation of
the incremental moment induced by shear stress ∆σzθ(ρ, T )ρ
across the fiber cross section and from temperature Ta to T .
As ∆ρ → 0 and ∆Ts → 0, the summation becomes [22]

τb = 2π

∫ T

Ta

∫ d/2

0

dσzθ(ρ, T )

dT
ρ2 dρdT . (17)

E. Coil Thermomechanical Model

A blocked torque τb applied about the axis of a coiled
fiber drives coil length contraction ∆L as a function of total
applied load about the axis of the coil Ft, where ∆L is change
in length from fully-compressed coil length L0 at ambient
temperature (see Figure 4). Castigliano’s method predicts ∆L
is linear with applied load Ft and blocked torque τb [22] [10]:

∆L = f1Ft − f2τb , (18)

where f1 and f2 are nonlinear functions of coil geometric
parameters. Experimental observations confirm TCPM thermal
contraction f2τb is independent of applied load Ft [1] [4] [10].
Independent of ∆L, the force generated by blocked torque is
F = f2

f1
τb = cτb, where thermal constant

c =

[

d

2π
√
γ

(

γ +

(

2Gzθ

Ez
− 1

)

w2

)

+
πd

4
√
γ(γ − w2)

(

γ +

(

Gzθ

Ez
− 1

)

w2

)]−1

. (19)

4Step in temperature ∆Ts should not be confused with the difference in
actuator temperature T and ambient temperature Ta, ∆T .

τb

τb
FtFt

wL0

d

D

Fig. 4: A TCPM of N turns and a total applied axial force of
Ft. If the fiber is constrained from untwisting, temperature-
dependent blocked torque τb drives coil length contraction.

Note that γ = π2C2+1, and that Ez and Gzθ are the average
axial Young’s modulus and transverse shear modulus over
the cross section of the twisted fiber5. Equation 19 accounts
for strain energies from torsion induced by τb, and the axial
loading, bending, torsion, and shear caused by Ft about the
coil axis. Thus, this nonlinear relationship is valid for large
deflections. Coil curvature effects present for low coil indices
are ignored [28].

This implementation of Castigliano’s method in conjunction
with the blocked-torque model from Subsection II-D closely
agrees with experimental testing in literature. Tang et al.
validated this model for an autocoiled nylon 6,6 TCPM with
a spring index less than 2 for temperatures up to 180◦C [10].
To confirm this work correctly numerically implements this
thermomechanical model, this work exactly reproduced the
analytical results of Tang et al.

F. Model Linearization

Figure 5 shows the complete nonlinear TCPM model used to
simulate performance. Model parameters include K, ωBW, τb,
and c. Bandwidth ωBW is independent of nondimensional fiber
twist Φ and fiber length l, thus Φ and l affect the steady state
force generated per input V 2 without influencing dynamics.
Because input saturation constrains realizable steady state
actuator temperature such that KV 2 ∈ [Tmin, Tmax], the
thermal forces F is independent of l. Note l also affects
TCPM stiffness and thus contraction ∆L, when not loaded
isometrically. The nonlinear dependence of blocked torque τb
on temperature T (and thus the nonlinearity of the model)
is driven by both temperature-dependent material properties,
and the nonlinear relationship between material properties and
blocked torque.

electrothermal model thermomechanical model

V 2 T τb
F

K(d,C,w,l)
s/ωBW(d,C,w)+1

τb(T, d,Φ) c(d, C,w)

Fig. 5: A block diagram of the nonlinear first-order TCPM
model, partitioned into the electrothermal and thermomechan-
ical submodels. Model parameters K, ωBW, τb, and c are
functions of geometric parameters d, C, w, l, and Φ.

5Elastic moduli Ez and Gzθ depend on both temperature and twist
insertion. However, for γ " w2, the temperature and twist dependent of ratio
Ez/Gzθ is negligible such that both Ez and Gzθ are taken as constants. [27]
provides a method for computing Ez and Gzθ as functions of temperature
and twist insertion.
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20 40 60 80 100 120 140 160 180
-4

-3

-2

-1

0
α
1
×

10
4
/K

−
1
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Fig. 6: Axial thermal expansion coefficient α1 of a 0.5mm
diameter nylon 6,6 fiber as a function of temperature, as
experimentally determined by Tang et al. [10] Expansion
coefficient between 20◦C and 40◦C is assumed constant.

TABLE I: Elastic moduli [10], Poisson’s ratios [29], and radial
thermal expansion coefficient [1] used in this work and used
by [10]. Elastic moduli are of a 0.5mm diameter nylon 6,6
fiber as measured by [10]. Twisted elastic moduli correspond
to an outer fiber bias angle of 44◦(Φ = 0.96).

E1

GPa

E2

GPa

G23

GPa
ν12 ν23

Ez

GPa

Gzθ

GPa

α2

K−1

2.66 0.56 1.13 0.48 0.26 2.2 0.43 8.1·10−5

This work uses material properties used by Tang et al. Their
implementation of an identical thermomechanical model is
validated for the largest temperature range in literature, and
closely agrees with experimental results [10]. Tang et al. exper-
imentally determined axial thermal expansion coefficient as a
function of temperature, shown in Figure 6. All other material
properties are approximated as temperature independent and
shown in Table I.

Blocked torque is approximately linear with temperature for
110◦C to 160◦C (see Figure 7) using the material properties
shown in Figure 6 and Table I. The blocked torque generated
at 110◦C is small compared to that compared that at 160◦C.
Above 160◦C the TCPMs are at risk of melting. TCPMs are
thus constrained to only operate in the approximately linear
region, realized via input constraints. Replacing the nonlinear
τb block in Figure 5 with a linear approximation between
Tmin =110◦C and Tmax =160◦C results in a linear first-order
TCPM model.

III. OPTIMAL CONTROL

A. Linear Model of Multiple TCPMs

The linear model proposed in Subsection II-F is used to
construct an optimal controller which allocates control among
redundant TCPMs. A linear fit is applied to the thermomechan-
ical model for temperature range ∆Ti ∈ [Tmin−Ta, Tmax−Ta]
for each individual TCPM i. Thermal force as a function of
temperature for TCPM i is thus approximated as

Fi ≈ F ′

i∆T i + Fai . (20)

Note that force offset Fai corresponds to thermal force if the
linear fit is extended to ambient temperature Ta such that
∆Ti = 0, and represents a physically unrealizable force.
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e
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d = 0.8mm
d = 0.6mm
d = 0.4mm

Fig. 7: Blocked torque as a function of temperature for various
fiber diameters d with a constant outer fiber bias angle of
35◦(Φ = 0.70). The region between 110ºC and 160ºC is
approximately linear.

The state space representation of n unidirectional TCPMs
in parallel is

Ṫ = A∆T +Bu (21)

y = F ′T
∆T (22)

where A and B are n × n diagonal matrices such that
Aii = −ωBWi and Bii = ωBWiKi, u is an n × 1 vector
of control inputs, and total thermal force produced by n
TCPMs is F ≈ y +

∑

Fa. The state space representation
of n pairs of symmetrically-antagonistic TCPMs in parallel
consists of a 2n-dimensional system. Diagonal state and output
matrices thus repeat such that Akk = Aii = −ωBWi and
Bkk = Bii = ωBWiKi where k = 2i. Similarly, for the
2n × 1 output matrix F ′

k = −F ′

i , and for the linear offset
Fak = −Fai such that

∑

Fa = 0.

B. Pontryagin’s Minimum Principle

A logical cost function to optimally distribute control
between n TCPMs weighs both Jt, squared tracking error
between thermal force F and force reference rF, and the
weighted control effort Jc:

J = Jt + Jc =
1

2

∫ tf

t0

(y − r)2 + uT
Rudt , (23)

where reference r = rF +
∑

Fa such that y − r = F −
rF , and n × n diagonal matrix R weighs control effort. The
corresponding Hamiltonian is a function of states ∆T and
costates p:

H (∆T ,u,p, t) =
1

2
y2 − ry +

1

2
r2

+
1

2
uT

Ru+ pT(A∆T +Bu) . (24)
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Because of input constraints u ∈ [umin,umax], the Riccati
equation cannot be employed. Therefore Pontryagin’s mini-
mum principle is used to solve for optimal control u∗, states
∆T ∗, and costates p∗ that minimize cost J :

Ṫ ∗ =
∂H

∂p
= A∆T ∗ +Bu∗ , (25)

ṗ∗ = −
∂H

∂∆T
= −F ′F ′T

∆T ∗ −Ap∗ + rF ′ , (26)

with boundary conditions ∆T ∗(t0) = ∆T0 and p∗(tf ) = 0,
where u∗ satisfies H (∆T ∗,u∗,p∗, t) ≤ H (∆T ∗,u,p∗, t)
such that

u∗ =











umin, for −R−1Bp∗ ≤ umin

−R−1Bp∗, for umin < −R−1Bp∗ < umax

umax, for −R−1Bp∗ ≥ umax .
(27)

Equation 27 represents the vector of time-dependent control
signals allocated to n TCPMs which minimizes cost J . Sub-
stituting Equation 27 into Equation 25 results in a system of
nonlinear ordinary differential equations with split boundary
values. Solving this system results in optimal costates p∗ and
thus optimal control u∗.

C. Influence of Weighting Matrix

Tracking cost Jt quantifies tracking performance. However,
applying Pontryagin’s minimum principle to the Hamiltonian
defined by Equations 24 results in control that minimizes total
cost J . Total cost J is a function of control effort cost Jc =
1
2

∫ tf
t0

uTRudt, which conserves control effort. With TCPM
efficiency already on the order of 1% [1], TCPMs are not
suitable for efficiency-critical applications. Conserving control
effort is not a priority. Therefore, a small R is selected such
that that minimizing J effectively minimizes Jt independent
of Jc. For a sufficiently small R, further reducing R, and
therefore further reducing Jc, has negligible impact on Jt.

Weighting matrix R represents the fundamental trade-off
between performance and control effort. As R approaches 0,
Equation 27 converges to bang-bang control. If the rate of
change of the reference is greater than the maximum rate of
change of the system, the system will saturate and effectively
act as a bang-bang controller. However, a bang-bang controller
does not describe how to share control effort between actuators
when the rate of change of the reference is less than what
the system is capable of. Therefore, it does not resolve the
redundancy inherent to a multi-input single-output system.

Some weight on controller effort is required to prevent bang-
bang control. The relative weight of control effort should be
independent of TCPM geometry, such that weighted effort
is consistent across geometric configurations of TCPMs. The
following diagonal weighting matrix as a function of scalar
R0 is chosen:

Rii =
R0

numax
2
i

. (28)

Equation 28 results in control effort cost

Jc =
1

2

∫ tf

t0

n
∑

i=1

R0u2
i

numax
2
i

dt . (29)

Equation 29, and the fact input ui is constrained such that
ui ∈ [Tmin/Ki, Tmax/Ki], bounds Jc such that

Jc
tf − t0

∈
[

R0T 2
min

2T 2
max

,
R0

2

]

. (30)

As a result, the bounds of Jc are not a function of the number
of TCPMs in parallel n or of electrothermal steady state gain
Ki, which is a function of TCPM geometry. Scalar R0 now
quantifies the trade-off between performance and weighted
control effort independent of TCPM geometry.

IV. OPTIMIZATION

A. Design Variables

TCPM tracking cost is minimized with respect to geometric
parameters to determine the optimal tracking performance for
heterogeneous and homogeneous bundles of n TCPMs. The
geometry of any TCPM is described by nondimensional twist
insertion Φ, fiber diameter d, spring index C, stretch ratio
w, and fiber length l (see Subsection II-A). The dependence
of design variables on tracking performance is investigated to
reduce the dimensionality of the optimization.

Fiber length l does not affect the range of realizable thermal
forces, nor does it affect TCPM dynamics (see Subsection
II-F). Thus, it can be ignored from the optimization without
affecting cost.

Non-dimensional twist insertion Φ also does not affect
actuator dynamics. Without this trade-off between maximum
force and dynamics, the largest possible value of Φ is se-
lected to maximize τb per Equations 15-17. Twist insertion is
constrained by the onset of autocoiling, which is a function
of precursor fiber tension during twist insertion6 Fm, axial
Young’s modulus E1, and transverse shear modulus G2 such
that [4] [30]

Φ =
2
√
2πE1

πG2d

√

Fm . (31)

The maximum fiber stress before fiber rupture is assumed to
be independent of diameter such that maximum manufacturing
tension Fm scales with fiber cross section d2. As a result,
maximum Φ per Equation 31 is also independent of fiber
diameter. Pilot experiments revealed a 0.8mm nylon 6,6 fiber
(Eurofysica, Spoeltje ijzerdraad) ruptured before the onset of
autocoiling when fiber tension was greater the 5N. Thus, a
maximum value of Φ = 0.70 was selected, corresponding
to an outer fiber bias angle of 35◦. Pilot experiments were
conducted on a custom TCPM manufacturer. The design of
the manufacturing setup is detailed in Appendix A.

The maximum realizable stretch ratio w is dependent on
spring index C. Autocoiled TCPMs typically have spring
indices of approximately 2 and are capable of strokes up to
20% (w = 1.2), while mandrel coiled TCPMs with C = 6

6Wu and Zheng empirically validated this relationship for a 0.6mm
diameter fiber for twist insertions up to 3.1 rad/mm [18].
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Fig. 8: Contour plots of (a) bandwidth ωBW and (b) range of realizable force ∆Fr based on the linearized model of a single
unidirectional TCPM. (c) TCPM geometry relates ∆Fr to ωBW as shown for d ∈ [0.2mm, 0.8mm] and C ∈ {2, 3, 4, 5, 6}.
The slope for C = 2 is −1.3.

are capable of strokes up to 50% (w = 1.5) [1]. Both the
thermomechanical and electrothermal models are functions of
stretch ratio w. Per Castigliano’s method (Equation 19), the
dependence of thermomechanical model on w is negligible
for π2C2 + 1 * w2. This simplification is valid even for
the worst case scenario of an autocoiled TCPM with a stretch
ratio of w = 1.2 and C = 2. The variation in bandwidth ωBW

due to w is small compared to that of the anticipated range of
spring indices and fiber diameters. Because its effect on TCPM
performance is minor, a constant stretch ratio of wi = 1.2 is
selected, rather than included as a design variable.

Decreasing spring index C monotonically increases both
bandwidth ωBW and range of realizable forces ∆Fr due to
the input constraints:

∆Fr = F ′(Tmax − Tmin) . (32)

This monotonicity is not analytically apparent in Equations 5
or 19. However, it is visible over d ∈ [0.2mm, 0.8mm] and
physically-realizable spring indices C ∈ [2, 6] as shown in
Figure 8a and 8b. The trade-off between ∆Fr and ωBW (see
Figure 8c) represents the fundamental trade-off between low-
force high-bandwidth TCPMs and high-force low-bandwidth
TCPMs. Decreasing C is constrained by the onset of auto-
coiling, such that C = 2 is chosen to increase both ∆Fr and
ωBW .

Fiber diameter di for each TCPM i is thus the only
nontrivial geometric parameter with respect to tracking per-
formance. Figure 8 demonstrates increasing di increases range
of realizable force while decreasing bandwidth. Tracking cost
is therefore minimized with respect to fiber diameter di for
n ∈ {2, 3, 4}, resulting in n design variables per optimization.
Fiber diameters between 0.2 and 0.8mm are considered,
which are commercially available as finishing line or sewing
thread. Hauser’s convection coefficient model is valid for this
range of fiber diameters in conjunction with the other specified
geometric parameters.

B. Numerical Methods

Each geometric optimization across n fiber diameters min-
imizes the tracking cost of the linearized system. Error in
performance, and therefore tracking cost, is thus solely due
to dynamic performance. It is not confounded with error
associated with the linear approximation.

Matrices A, B, and F ′ describe the linear system per Equa-
tions 21 and 22. The electrothermal gain Ki and bandwidth
ωBWi are calculated per Subsection II-C to construct state
matrix A and input matrix B. Numerically integrating Equa-
tion 17 provides blocked torque τbi as a nonlinear function
of temperature Ti for each TCPM i. Applying a linear fit for
Ti ∈ [Tmin, Tmax] results in a linear relationship between τbi
and ∆Ti. Output matrix F ′ is then the element-wise product
of the slope of this linear relationship and of temperature-
independent thermal constant ci.

Pontryagin’s minimum principle determines optimal control
and associated increase in actuator temperatures ∆T per
Section III. Optimal ∆T ∗ is initially found for an arbitrary
value of weighting matrix scalar R0 = 0.2, which quantifies
the trade-off between reducing tracking cost Jt and control
effort cost Jc. The split-boundary-value problem described
by Pontryagin’s minimum principle (Equations 25 and 26)
is solved using MATLAB’s bvp4c function. This function
implements the Lobatto IIIa collocation formula on integra-
tion subregions dictated by a specified initial mesh. If the
residuals between the numerical and continuous solutions to
the ordinary differential equations at any subregion exceed a
specified tolerance, the mesh adapts and the numerical solution
is reevaluated [31]. Memory limitations constrain maximum
mesh density to an integer 2× 106/n points.

Weighting matrix scalar R0 is iteratively halved and the
split-boundary-value problem reevaluated until the tracking
cost Jt of two subsequent iterations converges within 2%.
Further reducing weighted control effort thus has negligible
impact on reducing tracking cost. As R0 is reduced, control
approaches bang-bang control. Mesh convergence within the
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bvp4c function thus becomes highly sensitive to switching
times and therefore mesh densities. To improve mesh con-
vergence, the numerical solution and mesh produced by each
iteration is provided as an initial guess to the subsequent
iteration. If mesh density is exceeded, the initial step in R0 is
decomposed into recursively smaller subintervals. Evaluating
the split-boundary-value problem for each subinterval pro-
duces a guess solution and mesh for the next subinterval. This
is repeated until a guess is produced that enables evaluating the
split-boundary-value problem for the initial step in R0 with-
out exceeding the mesh density limit. Appendix B contains
pseudocode that implements tracking cost convergence with
respect to R0 as described.

C. Brute-Force Investigation

Multiple brute-force investigations computed optimal track-
ing cost for n ∈ {2, 3, 4} unidirectional TCPMs in parallel,
and for n = 2 pairs of antagonistic TCPMs in parallel.
All investigations considered fiber diameters between 0.2mm
and 0.8mm. For n = 2 TCPMs in parallel, unidirectional-
bundle fiber diameters were incremented by 0.5mm, while
antagonistic-bundle diameters were incremented by 1mm. All
other n-dimensional heterogeneous investigations incremented
fiber diameter by 2mm. All 1-dimensional homogeneous
investigations incremented fiber diameter by 0.25mm.

All previously described brute-force investigations were
repeated for each reference signal shown in Figure 9. Each
reference signal rF has a range of rF ∈ [Fmin, Fmin + 1N].
Because input saturation constrains minimum temperature
Tmin, Fmin is the minimum thermal force the combination of
n TCPMs can produce: Fmin =

∑

F ′

i (Tmin − Ta) +
∑

Fai.
An initial condition of ∆T0 = Tmin − Ta was provided such
that tracking error is not dominated by the transient response
from an initial offset.
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(c) Multisine with components from 0.1Hz to 0.01Hz.

Fig. 9: Reference signals defined with respect to minimum
realizable force Fmin.

Multisine tracking performance was investigated to assess if
square-wave tracking results were generalizable to less specific
tracking tasks. The multisine in Figure 9c was constructed in
a similar manner as [16] to mitigate sharp peaks. It consists
of 5 components:

rF(t) = b+ a
5

∑

i=1

sin(2πfi(t− t0) + θi) , (33)

with component frequencies fi evenly spaced between 0.01
and 0.1Hz. Constants a and b scale and shift the reference
such that rF ∈ [Fmin, Fmin + 1N]. Time shift t0 ensures
rF(0) = Fmin, which corresponds to initial state condition
∆T0 = Tmin − Ta. Finally, phase offset θi = θ0 − πi2/5,
where pseudo-randomly generated θ0 = 0.9058 rad.

V. RESULTS

All results shown are for TCPM geometries with spring
indices of C = 2, outer fiber bias angles of 35◦(Φ = 0.70),
and stretch ratios of w = 1.2 per Subsection IV-A. Results are
from the linearized model unless explicitly stated.

Figure 10 shows unidirectional-configuration homogeneous-
bundle tracking cost as a function of fiber diameter for all
reference signals. It also shows tracking cost for heterogeneous
bundles relative to the minimum homogeneous tracking cost
for the corresponding reference signal. Figures 11, 12, and
13 show optimal control, temperature, and force predicted
by the linear and nonlinear models as functions of time for
each reference signal. Plots are displayed for the optimal
n = 2 homogeneous bundle of d = 0.45mm and an arbitrary
heterogeneous bundle of d1 = 0.4mm and d2 = 0.8mm.

Figure 14 similarly shows relative tracking cost as a function
of fiber diameters for heterogeneous bundles of n = 2
antagonistic pairs of TCPMs. Relative tracking cost is defined
with respect to minimum tracking cost, which was achieved
by fiber diameters of d1 = d2 = 0.8mm. Time plots are
contained in Appendix C.

Figure 15 displays the optimal tracking of various sinusoidal
force references by individual TCPMs (n = 1) of varying
diameters. Both unidirectional and antagonistic configurations
are displayed for comparison.

Table II contains the minimum tracking costs, and corre-
sponding optimal fiber diameter, predicted by the linear model
for various homogeneous bundles and reference signals. The
table also contains tacking cost of the nonlinear model fed the
optimal control derived from the linear model.

VI. DISCUSSION

A. Tracking Performance Improvement

This work hypothesized that the force-tracking performance
of heterogeneous bundles of n TCPMs in parallel would
be substantially improved compared to that of homogeneous
bundles. Force-tracking performance is defined as minimizing
tracking cost Jt. The minimum homogeneous-bundle tracking
cost outperformed all heterogeneous-bundle tracking costs
identified via brute force (see Figures 10 and 14 respectively
for unidirectional and antagonistic configurations of n = 2).
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Fig. 10: Tracking cost Jt for unidirectional configurations of TCPMs for reference signals (a), (b), and (c). Left: Jt for
homogeneous bundles of n TCPMs in parallel as a function of fiber diameter d. Right: Relative tracking cost for heterogeneous
bundles of n = 2 TCPMs in parallel as a function of fiber diameters d1 and d2. Relative tracking cost is defined with respect
to the minimum homogeneous-bundle tracking cost for n = 2.
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(b) Temperature of TCPM i. Input constraints ensure actuator temperature remain between 110ºC and 160ºC.
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(c) Force generated by each TCPM i, and combined force of all TCPMs in parallel.
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(d) Combined force generated by all TCPMs in parallel, as predicted by linear and nonlinear models proposed in Section II.

TCPM 1 TCPM 2 Reference Linear Model Nonlinear Model

Fig. 11: (a) Optimal control, (b) temperature, and (c)(d) force as a function of time for n = 2 unidirectional TCPMs in
parallel. Left: response of the heterogeneous bundle with fiber diameters d1 = 0.4mm and d2 = 0.8mm. Right: response of
the homogeneous bundle with optimal fiber diameter d = 0.45mm which minimizes tracking performance.
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(a) Optimal normalized control, where a value of 1 corresponds to saturation of TCPM i.
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(b) Temperature of TCPM i. Input constraints ensure actuator temperature remain between 110ºC and 160ºC.
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(c) Force generated by each TCPM i, and combined force of all TCPMs in parallel.
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(d) Combined force generated by all TCPMs in parallel, as predicted by linear and nonlinear models proposed in Section II.

TCPM 1 TCPM 2 Reference Linear Model Nonlinear Model

Fig. 12: (a) Optimal control, (b) temperature, and (c)(d) force as a function of time for n = 2 unidirectional TCPMs in
parallel. Left: response of the heterogeneous bundle with fiber diameters d1 = 0.4mm and d2 = 0.8mm. Right: response of
the homogeneous bundle with optimal fiber diameter d = 0.45mm which minimizes tracking performance.
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(a) Optimal normalized control, where a value of 1 corresponds to saturation of TCPM i.
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(b) Temperature of TCPM i. Input constraints ensure actuator temperature remain between 110ºC and 160ºC.
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(c) Force generated by each TCPM i, and combined force of all TCPMs in parallel.
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(d) Combined force generated by all TCPMs in parallel, as predicted by linear and nonlinear models proposed in Section II.

TCPM 1 TCPM 2 Reference Linear Model Nonlinear Model

Fig. 13: (a) Optimal control, (b) temperature, and (c)(d) force as a function of time for n = 2 unidirectional TCPMs in
parallel. Left: response of the heterogeneous bundle with fiber diameters d1 = 0.4mm and d2 = 0.8mm. Right: response of
the homogeneous bundle with optimal fiber diameter d = 0.45mm which minimizes tracking performance.
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Fig. 14: Relative Tracking cost Jt for antagonistic configurations of heterogeneous bundles (n = 2) for reference signals (a),
(b), and (c). Relative tracking cost is defined with respect to the minimum homogeneous-bundle tracking cost, which occurs
at fiber diameters d1 = d2 = 0.8mm. Note that Jt is monotonic with d for antagonistic configurations.
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(a) Unidirectional configuration of n = 1 TCPM.
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(b) Antagonistic configuration of n = 1 pair of TCPMs.

d = 0.8mm d = 0.6mm d = 0.4mm

Fig. 15: Optimal force tracking of 0.05Hz and 0.1Hz sinusoidal references by individual TCPMs (n = 1) of varying diameters.
Fiber diameters of d = 8, 6, and 4mm correspond to TCPM bandwidths of ωBW = 0.01, 0.03, and 0.08Hz, respectively.



16

TABLE II: Tracking error of various homogeneous bundles
with respect to reference signals rF shown in Figure 9.
Bundles consist of n unidirectional TCPMs in parallel, or of
n antagonistic pairs of TCPMs, with fiber diameter d that
minimizes tracking cost Jt of the linear model. Nonlinear
tracking cost is calculated by feeding the nonlinear model the
optimal control derived from the linear model.

Unidirectional Antagonistic
Linear Nonlinear Linear Nonlinear

rF n d/mm Jt/(N2 s) Jt/(N2 s) Jt/(N2 s) Jt/(N2 s)

(a) 2 0.45 4.5 4.8 1.4 2.7
(a) 3 0.35 3.4 3.5 — —
(a) 4 0.32 2.7 2.9 — —
(b) 2 0.45 10.6 10.8 3.8 4.8
(b) 3 0.38 8.3 8.4 — —
(b) 4 0.32 6.7 6.9 — —
(c) 2 0.45 0.81 0.85 0.00025 0.52
(c) 3 0.35 0.39 0.40 — —
(c) 4 0.30 0.20 0.23 — —

This was the case for all reference signals, number of TCPMs
in parallel (n ∈ {2, 3, 4} for unidirectional actuation), and for
both unidirectional and antagonistic configurations (n = 2).
Homogeneous bundles of the optimum fiber diameter thus
outperform heterogeneous bundles, invalidating the proposed
hypothesis.

B. Unidirectional Actuation

Tracking cost Jt is convex with respect to fiber diameter
d for unidirectional actuation of heterogeneous bundles, as
shown in Figure 10. Note that d is the only geometric
parameter that is nontrivial with respect to force-tracking per-
formance, as demonstrated in Subsection IV-A. This apparent
convexity suggests heterogeneous bundle performance only
improves as it converges on the optimal homogeneous bundle.
No local or global minima appear in regions with a substantial
difference in fiber diameter. Even the best performing het-
erogeneous bundles of substantially different fiber diameters
have an average fiber diameter close to that of the optimal
homogeneous bundle, suggested by the oblong shape of the
5% contours in Figure 10.

Choice of reference signal has little effect on tracking cost
as a function of fiber diameter. The optimal unidirectional ho-
mogeneous fiber diameter, assumed to be the global minimizer,
is d = 0.45mm for all reference signals. Contour shapes are
generally similar between reference signals. Figure 10c reveals
multisine relative tracking performance is slightly more sensi-
tive to deviations from optimal homogeneous fiber diameter.
This is because the minimum tracking cost is substantially less
than that of the square-wave references, as each square-wave
corner causes a large spike in tracking error.

The maximum rates of heating and cooling for unidirec-
tional TCPMs are a function of actuator temperature T , and
are not necessarily the same value. Rearranging Equation 1
in terms of electrothermal model parameters ωBW and K, the
rate of temperature change is

Ṫ = ωBW(Ku− T + Ta) , (34)

where Ku ∈ [Tmin, Tmax] to ensure operation in the linear
region. Because T ∈ [Tmin, Tmax], the maximum possible rate
of heating for unidirectional TCPMs is greater than that of
cooling:

Ṫ

ωBW
∈ [Ta + (Tmax − Tmin), Ta − (Tmax − Tmin)] . (35)

This heating-cooling asymmetry is particularly apparent in
Figures 11 and 12, where the error is dominated by cooling
dynamics.

Optimal control allocates the reference signal between
unidirectional heterogeneous actuators as shown in Figures
11, 12, and 13. During rapid increases in reference force,
such as during the leading edges of square waves, control of
both actuators saturate. Immediately before instances of rapid
cooling and if all actuators are not already saturated, more
normalized control effort is allocated to the high-bandwidth
smaller-diameter actuator. High-bandwidth actuator tempera-
ture is therefore maximized to minimize Equation 34 on the
onset of cooling. The high-bandwidth fiber reaches maximum
temperature immediately before rapid drops in reference force,
exemplified by the trailing edge of square waves in Figures 11
and 12, and at times 32 s and 123 s in Figure 13. Based on
only this qualitative description of optimal control allocation,
it is unclear if or to what extent allocating control between
heterogeneous TCPMs improves tracking performance com-
pared to homogeneous TCPMs. Numerical evaluation across
a range of fiber geometries ultimately reveals optimal homo-
geneous unidirectional bundles outperform all heterogeneous
unidirectional bundles.

C. Antagonism

Determining the optimal antagonistic configuration is trivial,
suggested by the monotonic trend of increasing fiber diameter
and decreasing tracking cost shown in Figure 14. Heating
dynamics drive both increasing and decreasing force in an-
tagonistic configurations. Optimal antagonistic TCPM geome-
tries thus try to decrease actuator temperature to increase
the maximum possible rate of heating, rather than minimize
or maximize temperature before respective periods of rapid
heating or cooling.

The triviality of fiber diameter selection for antagonistic
configurations is highlighted by Figure 15b. Antagonistic
TCPMs outperform TCPMs of smaller fiber diameters for
all shown sinusoidal tracking tasks. This is not the case for
unidirectional TCPMs shown in Figure 15a. Predictive control
ensures no phase lag between reference and TCPM response,
even when reference frequency is substantially higher than
TCPM bandwidth. The low bandwidth of TCPMs with large
diameter fibers imply a long settling time. However, the
corresponding increase in range of realizable forces ∆Fr

ensures the maximum rate of change of thermal force Ḟ is
larger than that of any TCPM with a smaller diameter fiber
(see first 5 seconds of Figure 15b(right)).

The fundamental trade-off between ∆Fr and ωBW deter-
mines if the maximum Ḟ is greater than that of any higher-
bandwidth TCPM. Equation 22 implies Ḟ = F ′Ṫ such that
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Ḟ ∝ F ′ωBW per Equation 34. Figure 8c shows F ′ ∝ ω−1.3
BW .

In total Ḟ ∝ ω−0.3
BW , meaning low-bandwidth TCPMs produce

both a greater maximum rate of change of force and larger
range of realizable forces. This rationale is only valid for an-
tagonistic configurations. Per Equation 34 these configurations
only consider heating dynamics. Optimal geometries always
maximize Ṫ and Ḟ by minimizing actuator temperature T . If
Ḟ was proportional to ωBW raised to a power greater than −1
(slope of Figure 8c greater than −1), it is hypothesized that
antagonistic actuator selection would no longer be trivial. This
may be the case for antagonistic artificial muscles other than
TCPMs that also have first-order dynamics.

D. Spring Index

Decreasing spring index increases TCPM bandwidth ωBW

and the thermal force generated per blocked torque c. A
larger ωBW and c suggest spring index should be minimized
to maximize isometric force-tracking performance. Spring
index is ultimately constrained by the onset of spontaneous
coiling nucleation during twist insertion. Therefore, autocoiled
TCPMs outperform homochiral mandrel-coiled TCPMs in
isometric force tracking. Note that autocoiled TCPMs are
exclusively homochiral. Mandrel coiling is still required to
manufacture heterochiral TCPMs of a small spring index.

Increasing spring index provides benefits outside the context
of isometric feedforward force tracking. Spring index influ-
ences coil inductance, where a small index may negatively
affect self-sensing ability when applicable. Thus, for closed-
loop control applications, a small spring index may have an
indirect negative effect on tracking performance by degrading
the quality of the self-sensed measurement signal. Spring
index also influences range of length contraction. TCPMs
with a spring index of C = 6 are able to achieve 50%
contraction, compared to a maximum 20% contraction for
autocoiled TCPMs (C ≈ 2) [4].

For isotonic position tracking, length contraction ∆L is
linear with f2τb per Castigliano’s method (Equation 18). In
this case, decreasing fiber diameter increases both bandwidth
and thermomechanical gain such that spring index selection
becomes nontrivial. A heterogeneous configuration would thus
consist of a single TCPM with the smallest fiber diameter
required to prevent failure under load. The TCPM spring index
would be nonuniform, with an optimal controller regulating
the temperature of different regions of the TCPM. However,
f2 ∝ ω−7

BW such that the maximum rate of length contraction

L̇ ∝ ω−6
BW for an antagonistic configuration. Thus, maximizing

spring index minimizes antagonistic position-tracking cost.

E. Nonlinearity

Tracking error predicted by the linear and nonlinear models
of optimal unidirectional homogeneous bundles differs by less
than 8%7 per Table II. Error caused by the slower cooling
dynamics thus dominates tracking cost for unidirectional con-
figurations. This renders the error associated with the lineariza-
tion of blocked torque negligible, which is not the case for

7The linear and nonlinear models differ by 15% for n = 4 unidirectional
multisine tracking.

the optimal antagonistic homogeneous bundle. The improved
dynamic performance of antagonistic configurations reduces
overall tracking error, which makes the relative contribution of
the linearization error more pronounced. Minimum antagonis-
tic tracking error between linear and nonlinear models differs
by multiple orders of magnitude per Table II.

The temperature nonlinearity is characterized by an increase
in slope at around 80◦C followed by an extended approx-
imately linear region, as shown in Figure 7. Experiments
conducted by Haines et al. [1] and Tang et al. [10] show the
same qualitative nonlinear behavior in nylon 6,6 TCPM tensile
actuation. Tang et al. hypothesize the nonlinearity is caused
by the increase in axial thermal expansion coefficient above
80◦C [10]. However, Tang et al. and this work ignore the
substantial temperature dependence of elastic moduli, which
may decrease by a factor of 4 between 110◦C and 160◦C [32].
It is also unclear if Tang et al. accounted for the temperature
dependence of elastic moduli per [33] when measuring axial
thermal expansion coefficient as a function of temperature,
which is also used in this work.

The temperature dependence of both elastic material prop-
erties and thermal expansion coefficients substantially impact
TCPM nonlinearity. However, these properties as a function
of temperature also vary substantially within literature due to
variation between nylon 6,6 fibers and testing conditions. Tang
et al. are the only authors that experimentally determines both
axial and transverse nylon 6,6 elastic moduli and nylon 6,6
axial thermal expansion coefficient for same testing conditions
[10], although they only consider axial thermal expansion
coefficient temperature-dependent. Notably, Choy et al. sep-
arately investigate nylon 6,6 thermal expansion coefficients
[34] and stiffness matrix coefficients [32] for the required
temperature ranges of this work. However, draw ratio, moisture
sensitivity, and other manufacturing and environmental pa-
rameters significantly affect material properties between fibers
and testing conditions. As a result, selectively implementing
different material properties across literature, such as from [34]
and [32], results in nonlinear behavior that does not agree with
the qualitative trends discussed above.

Above the glass transition temperature, polymers possess
greater intermolecular mobility which can result in substan-
tial changes in material properties [35]. The glass transition
temperature of nylon 6,6 is highly moisture dependent, vary-
ing from 100◦C for desiccated nylon 6,6 to 0◦C for 8%-
water-content-by-mass nylon 6,6 [32]. Thus, moisture content
may substantially affect minimum operating temperature Tmin.
Large moisture contents may even result in a linear thermo-
mechanical model such that Tmin = Ta and minimum input
umin = 0V2.

VII. CONCLUSION

This work investigated if the simulated force-tracking per-
formance of TCPM bundles of heterogeneous geometries was
substantially superior to that of homogeneous geometries.
Tracking performance is a function of spring index and
fiber diameter, among other geometric parameters. TCPM
geometry governs the trade-off between actuator bandwidth
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and maximum realizable actuator force. Decreasing spring
index increases both bandwidth and maximum force such that
autocoiled TCPMs are always preferred for isometric force-
tracking tasks. For unidirectional configurations of TCPMs,
the relationship between tracking performance and fiber di-
ameter is nontrivial. For antagonistic configurations, increasing
fiber diameter monotonically improves tracking performance.
The optimal homogeneous bundles outperformed all con-
sidered heterogeneous bundles for both unidirectional and
antagonistic configurations across 3 reference signals.

Heterogeneous actuator bundles may be advantageous out-
side the scope of this work. This work assigned control
to redundant TCPMs via an optimal predictive feedforward
controller. Disturbance and noise rejection via closed-loop
control was not considered. The self-sensing ability of TCPMs
allow for low-cost implementation of closed-loop control.
This context may further accentuate the advantages of het-
erogeneous actuators, where high-force actuators track a low-
frequency reference and low-force actuators contribute to high-
frequency disturbance and noise rejection. Additionally, het-
erogeneous bundles may outperform homogeneous bundles of
artificial muscles with a different geometric trade-off between
bandwidth and maximum realizable force.

APPENDIX A
PROPOSED TCPM MANUFACTURING SETUP

Introduction

A custom TCPM manufacturer was developed to address
limitations of previous methods of manufacturing TCPMs.
The proposed setup is available at TU Delft. This setup was
designed to repeatably manufacture mandrel-coiled TCPMs,
as automated methods for manufacturing autocoiled TCPMs
are well-established in literature.

Only one work in literature proposes an automated method
of coiling mandrel-coiled TCPMs [36]. Three motors are used:
one to twist the fiber, one rotate the mandrel, and one to
translate the mandrel to set coil pitch. While this method
is viable, recreating such a setup was beyond the scope of
this work. Two different methods of manufacturing TCPMs
were previously proposed at TU Delft. Both methods had
limitations, as detailed in the subsection’s below. To address
these limitations, a new method for mandrel-coiled TCPM
manufacturing is proposed.

This work ultimately concluded autocoiled TCPMs out-
perform mandrel-coiled TCPMs for isometric force-tracking
tasks. Therefore, further work on this setup was abandoned.

Previous Method of Manual TCPM Manufacturing

TCPMs manufactured at TU Delft were previously con-
structed as described by [13]. While TCPMs constructed
for [13] and [16] were repeatable, TCPMs constructed for
other master’s theses were not. This variability suggests the
manufacturing method is highly skill-dependent.

This procedure has the following features and limitations:

• Feature: Twist insertion and mandrel coiling are con-
ducted under constant and uninterrupted fiber tension.

• Limitation: Twisting speed is variable, which may affect
TCPM repeatability [37].

• Limitation: Number of twists inserted per length is not
controlled, as neither fiber length nor motor speed is
controlled.

• Limitation: Manufacturing is time consuming because 4
fixation steps (crimping, knot tying, etc.) are required.
First, both ends of the fiber must be fixed before twisting.
After twisting and before coiling, one of end of the
mandrel must be fixed to the twisted fiber. After coiling,
the other end of the fiber must be fixed to the mandrel.

Previous Method of Automated TCPM Manufacturing

Figure 16 shows an alternate previously-proposed and con-
structed TCPM manufacturer. This setup is capable of contin-
uously producing twisted fiber. The motor on the right rotates
the large central spindle at a constant speed. One spool of
precursor fiber and one spool of heating-element wire are
located within the spindle. Both fibers are fed through a first
set of pulleys anchored to the spindle. A set screw determines
the maximum clearance between the pulleys, and thus friction
as the fiber is pulled between the pulleys. Fiber tension is
therefore determined by the torque applied to a set screw. The
fiber and wire are then fed through a second set of pulleys
anchored to the frame on the left. A smaller speed-controlled
motor and encoder attached to the second set of pulleys draws
the fiber and wire at a constant feed rate.

Cornelis Mfr Placeholder

Fig. 16: Machine capable of continuously producing twisted
fiber. As shown, the machine consists of 2 brushed DC motors,
2 sets of 2 pulleys, and a large spindle.

As displayed, this configuration is only capable of producing
twisted-but-not-coiled fibers. Using an additional motor and
linear motor to control mandrel coiling was proposed, but
never implemented.

This procedure has the following features and limitations:

• Feature: Number of twists inserted per length is con-
trolled by syncing the speeds of the large and small
motors.

• Feature: Rate of twist insertion is tightly controlled.
• Feature: In theory, only two fixation steps are required:

one to fix the continuously drawn twisted fiber to each
side of the mandrel.
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Ian Mfr Placeholder

Fig. 17: Machine proposed to address current limitations of manufacturing mandrel-coiled TCPMs. The setup consists of a
hand drill, a plastic mount, the mandrel, a paperclip, a brushed DC motor with encoder, driving electronics, a sled, and a
weight. The precursor fiber is highlighted for clarity. The 4-piece mandrel previously developed at TU Delft is also shown.

• Limitation: Friction between pulleys determined by
torque applied to a set screw is an indirect way to control
fiber tension. Fiber tension must be very consistent to
ensure a repeatable onset of autocoiling.

• Limitation: The pulleys are observed to ware with time,
further reducing fiber-tension consistency.

Proposed Design Requirements

Based on the observed features and limitations of previous
TCPM manufacturing methods, the design requirements for a
new manufacturer are:

1) Constant tension. The fiber must be held at a constant
and uninterrupted tension throughout both the twisting
and coiling process. This ensures a consistent onset of
autocoiling.

2) Constant twist insertion per length. The fiber length
and number of twists inserted both must be repeatable.
Therefore, twists inserted per length is also repeatable.

3) Reduced number of fixations. The number of fixation
steps allowed in limited to 2. This reduces manufactur-
ing time.

Proposed Method of Automated TCPM Manufacturing

Figure 17 shows the proposed TCPM manufacturer. It con-
sists of a position-controlled Maxon 377622 brushed DC mo-
tor with encoder. The EPOS3 positioning controller (Maxon)
is powered by a LSP-1403 DC power supply (Voltcraft). The
motor is mounted on a sled that can translate with one degree
of freedom. The sled in contained on the track via a hard

stop on either end. A string connected to a weight is fed over
a pulley and attached to the sled. It is attached such that the
string tension the sled experiences acts through the motor axis.
A hook protrudes from the sled which is attached to the motor
via a shaft collar. The hook is supported by a bearing such
that axial load from the hook acts through the bearing and not
the motor. A stationary plastic mount is attached to the other
end of the T-slotted aluminum.

The proposed manufacturing procedure is as follows:

1) Attach the precursor fiber and heating-element wire to
the mandrel.

2) Place the mandrel in the chuck of a hand drill. Align
the mandrel in the plastic mount as shown.

3) Tie a single loose slip knot using both the fiber and wire
through a paperclip. The slip knot should be located
about 1m away from the mandrel-fixation point.

4) Place a spacer (not shown) in between the hard stop
located closer to the center of the T-slotted aluminum
and the sled.

5) Hook the paper clip into the hook protruding from the
motor axle. Pull the slip knot tight such that the sled
contacts the spacer and the spacer contacts the hard
stop. The weight ensures the fiber is under tension while
the knot is tightened. The spacer ensures the distance
between the mandrel and the knot is repeatable.

6) Remove the spacer. Use the EPOS3 driver to rotate the
motor a fixed number of revolutions.

7) Remove the mandrel from the plastic mount. Use the
hand drill to rotate the mandrel and coil the fiber. Ensure
the sled does not contact the hard stops on either end of
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the track while coiling.
8) Wrap the paper clip around the mandrel to effectively

crimp it in place. Alternatively, it may be more re-
peatable to use the 4-piece mandrel (shown in Figure
17) to constrain the coiled fiber. Further investigation is
required, as this adds an extra fixation step.

This procedure meets the specified design requirements, as
detailed below.

1) Constant tension. The weight-sled system ensures the
fiber is under constant tension during twisting and coil-
ing. Note the pulley generates substantially more friction
than expected. To alleviate this issue, the pulley should
be removed and the setup oriented vertically.

2) Constant twist insertion per length. The position-
controlled motor tightly controls twist insertion. Man-
ufacturing procedure steps 2-5 control fiber length.

3) Reduced number of fixations. Initially fixing the pre-
cursor fiber to the mandrel reduces one fixation step
compared to the previous method of manual TCPM
manufacturing. Crimping the paperclip to the mandrel is
so easy it effectively does not count as another fixation
step. The total number of fixation steps is then two.

APPENDIX B
PSEUDOCODE FOR TRACKING COST CONVERGENCE

The following pseudocode iteratively halves weighting
matrix scalar R0 until tracking cost Jt converges between
2 successive iterations within 2% (see Subsection IV-B).
Scalar R0 dictates the relative contributions of tracking
cost and control effort cost to total cost, which optimal
control minimizes. Using a provided guess mesh and
solution, pseudocode function solveSBVP(R0, guess) solves
the split-boundary-value problem defined by Equations 25
and 26 which are a function of R0. The pseudocode is
robust to mesh density limit errors. If mesh density limit is
exceeded, the initial step in R0 is broken into recursively
smaller subintervals. The saveCosts.m function that
implements this pseudocode is available on GitHub
(https://github.com/imcginty/TCPM-Optimal-Force-Tracking),
along with all other code used to model TCPMs and allocate
control.

[ J t , g u e s s ] = halveR0 ( R0 , 0 , 1 , i n i t i a l G u e s s )
l oop u n t i l J t c o n v e r g e s

R0 = R0 / 2
[ J t , g u e s s ] = halveR0 ( R0 , 0 , 1 , g u e s s )

f u n c t i o n [ J t , guess , x ] = halveR0 ( R0 , x , dx , g u e s s )
l oop u n t i l x = 1

[ J t , newGuess ] = solveSBVP ( R0 / ( 1 + x+dx ) , g u e s s )
i f maximum mesh d e n s i t y i s exceeded

[ J t , guess , x ] = halveR0 ( R0 , x , dx / 2 , g u e s s )
x = x + dx / 2

e l s e
g u e s s = newGuess
x = x + dx

APPENDIX C
ANTAGONISTIC TIME PLOTS

Figures 18, 19, and 20 show optimal control, temperature,
and force predicted by the linear and nonlinear models as
functions of time for each reference signal. Plots are displayed
for the optimal n = 2 homogeneous bundle of d = 0.8mm
and an arbitrary heterogeneous bundle of d1 = 0.4mm and
d2 = 0.8mm.
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(a) Optimal normalized control, where a value of 1 corresponds to saturation of TCPM i.
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(b) Temperature of TCPM i. Input constraints ensure actuator temperature remain between 110ºC and 160ºC.
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(c) Force generated by each TCPM i, and combined force of all TCPMs in parallel.
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(d) Combined force generated by all TCPMs in parallel, as predicted by linear and nonlinear models proposed in Section II.

TCPM 1 TCPM 2 TCPM 3 TCPM 4 Reference Linear Model Nonlinear Model

Fig. 18: (a) Optimal control, (b) temperature, and (c)(d) force as a function of time for n = 2 antagonistic pairs of TCPMs in
parallel. Left: response of the heterogeneous bundle with fiber diameters d1,3 = 0.4mm and d2,4 = 0.8mm. Right: response
of the homogeneous bundle with optimal fiber diameter d = 0.8mm which minimizes tracking performance.



22

0 50 100 150 200

0.6

0.7

0.8

0.9

1

Time/s

N
o
rm

a
liz

e
d

C
o
n
tr

o
l

0 50 100 150 200

0.6

0.7

0.8

0.9

1

Time/s

N
o
rm

a
liz

e
d

C
o
n
tr

o
l

(a) Optimal normalized control, where a value of 1 corresponds to saturation of TCPM i.
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(b) Temperature of TCPM i. Input constraints ensure actuator temperature remain between 110ºC and 160ºC.
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(c) Force generated by each TCPM i, and combined force of all TCPMs in parallel.
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(d) Combined force generated by all TCPMs in parallel, as predicted by linear and nonlinear models proposed in Section II.

TCPM 1 TCPM 2 TCPM 3 TCPM 4 Reference Linear Model Nonlinear Model

Fig. 19: (a) Optimal control, (b) temperature, and (c)(d) force as a function of time for n = 2 antagonistic pairs of TCPMs in
parallel. Left: response of the heterogeneous bundle with fiber diameters d1,3 = 0.4mm and d2,4 = 0.8mm. Right: response
of the homogeneous bundle with optimal fiber diameter d = 0.8mm which minimizes tracking performance.
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(a) Optimal normalized control, where a value of 1 corresponds to saturation of TCPM i.
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(b) Temperature of TCPM i. Input constraints ensure actuator temperature remain between 110ºC and 160ºC.
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(c) Force generated by each TCPM i, and combined force of all TCPMs in parallel.
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(d) Combined force generated by all TCPMs in parallel, as predicted by linear and nonlinear models proposed in Section II.

TCPM 1 TCPM 2 TCPM 3 TCPM 4 Reference Linear Model Nonlinear Model

Fig. 20: (a) Optimal control, (b) temperature, and (c)(d) force as a function of time for n = 2 antagonistic pairs of TCPMs in
parallel. Left: response of the heterogeneous bundle with fiber diameters d1,3 = 0.4mm and d2,4 = 0.8mm. Right: response
of the homogeneous bundle with optimal fiber diameter d = 0.8mm which minimizes tracking performance.
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no. B2, pp. 82–87, 1985.

[24] R. Rajput, A textbook of electrical engineering materials. Firewall
Media, 2004.

[25] C. Lamuta, S. Messelot, and S. Tawfick, “Theory of the tensile actuation
of fiber reinforced coiled muscles,” Smart Materials and Structures,
vol. 27, no. 5, 2018.

[26] S. Sharafi and G. Li, “A multiscale approach for modeling actuation
response of polymeric artificial muscles,” Soft matter, vol. 11, no. 19,
pp. 3833–3843, 2015.

[27] R. B. Pipes and P. Hubert, “Helical carbon nanotube arrays: mechanical
properties,” Composites Science and Technology, vol. 62, no. 3, pp. 419–
428, 2002.

[28] S.-M. An, J. Ryu, M. Cho, and K.-J. Cho, “Engineering design frame-
work for a shape memory alloy coil spring actuator using a static two-
state model,” Smart Materials and Structures, vol. 21, no. 5, p. 055009,
2012.

[29] J. Sweeney and I. M. Ward, Mechanical Properties of Solid Polymers.
John Wiley & Sons, 2012.

[30] A. Ross, “Cable kinking analysis and prevention,” American Society of
Mechanical Engineers, 1977.

[31] “Solving boundary value problems,” , MathWorks, Tech. Rep. r2022a,
jun 2022.

[32] W. Leung, K. Ho, and C. Choy, “Mechanical relaxations and moduli of
oriented nylon 66 and nylon 6,” Journal of Polymer Science: Polymer
Physics Edition, vol. 22, no. 7, pp. 1173–1191, 1984.

[33] V. Wasan, “Sag method for the determination of coefficient of linear
thermal expansion of carbon fibres,” Carbon, vol. 17, no. 1, pp. 55–58,
1979.

[34] C. Choy, F. Chen, and K. Young, “Negative thermal expansion in
oriented crystalline polymers,” Journal of Polymer Science: Polymer
Physics Edition, vol. 19, no. 2, pp. 335–352, 1981.

[35] L. W. McKeen, The effect of temperature and other factors on plastics
and elastomers. William Andrew, 2014.

[36] W. Chen, Y. Zhang, Q. Gao, J. Liu, L. Wang, and J. Xu, “A fabrication
device producing twisted and coiled polymer actuators for use in soft
robots,” in 2019 IEEE 9th Annual International Conference on CYBER
Technology in Automation, Control, and Intelligent Systems (CYBER).
IEEE, 2019, pp. 734–739.

[37] L. Saharan and Y. Tadesse, “Fabrication parameters and performance
relationship of twisted and coiled polymer muscles,” in ASME Inter-
national Mechanical Engineering Congress and Exposition, vol. 50688.
American Society of Mechanical Engineers, 2016, p. V014T11A028.


