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A POD-based variational multiscale method (VMM) for large eddy simulation (LES)
of turbulent channel flows is proposed. The incompressible Navier–Stokes equations are
solved using a residual-based VMM technique, and the residual-based model coefficient
is adopted from Taylor et al. [1998] “Finite element modeling of blood flow in arteries,”
Comput. Methods in Appl. Mech. Eng. 158(1–2), 155–196. A generalized-α method is
applied for the temporal integration. Numerical results show that four or higher wall-
normal modes need to be applied for reproducing most of the turbulent characteristics.
Results of large vortex structures and the low velocity streaks prove that the turbulent
channel flows are well estimated by the proposed approach. The statistical analysis of
the turbulent velocities confirms its reliability in turbulent channel flows.

Keywords: Variational multiscale method; proper orthogonal decomposition; turbulent
channel flow.

1. Introduction

Turbulent flow exists widely in nature and industry, for which a precise solution is
hard to be determined not only because time-dependent phenomena are involved,

∗Corresponding author.
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but it also relates to high-dimensional data and variational multiscale problems
[Moin and Moser (1989); Wei and Hu (2016)].

The high-dimensional dataset can be degraded to get a low-dimensional model
by the reduced order model (ROM) technique, which allows the possibility to cap-
ture most of the phenomena in the original dimensions. The ROM based on a proper
orthogonal decomposition (POD), also known as Karhunen–Loeve decomposition,
has been widely used to obtain low-dimensional descriptions of turbulent systems.
One of the earliest applications of POD modes in turbulence was implemented
by Lumley [1967]. It provided an objective, energy-based criterion to help identify
key motions in the turbulent flows, which stands as a bridge between the mathemat-
ical systems and the empirical quest for coherent structures. This approach was also
applied to analyze turbulent flow characteristics by constructing low-dimensional
models [Lumley (1967); Moin and Moser (1989); Aubry et al. (1988); Amsallem
et al. (2009)]. Bakewell et al. measured two-point correlations of one velocity com-
ponent in the wall region of a fully developed turbulent pipe flow, and reconstructed
the two-point correlation tensor using incompressibility and a closure assumption
[Bakewell and Lumley (1967)]. A dominant large-scale structure of the flow in the
wall region, obtained with the aid of a mixing length approximation, was consisted
of randomly distributed counter-rotating eddy pairs of elongated streamwise extent.
Moin et al. successfully performed a comprehensive POD analysis based on a flow
data base [Moin and Moser (1989)]. They proved that coherent structures can be
extracted by decomposing the velocity into characteristic eddies, which dominate
the production of important statistics. The POD modes were also computed from a
similar direct numerical simulation (DNS) of channel flow in Sirovich [1991] and Ball
et al. [1991], in which the temporal behavior of the coefficients ak(t) of the empir-
ical eigenfunction were extracted directly from numerical database. The obtained
time series showed strong intermittency, as one would expect from the experimental
observations of the bursting process.

Theoretically speaking, the solution to the variational multiscale problem in tur-
bulence can be decomposed into the resolved and unresolved scales, as u = ū + u′.
The variational multiscale method (VMM) is a consistent approach to account for
the effects of unresolved scales on computing numerical solutions [Hughes and San-
galli (2007)]. Simplified equations for the resolved problem of ū can be achieved by
eliminating the unresolved scale u′ through analytical derivations. The simplified
resolved equations using the VMM was initially integrated to the large eddy simula-
tion (LES) in Hughes et al. [2000], which can be called by VMM-LES technique. The
VMM-LES technique decomposes the solution space of the Navier–Stokes equations
into large, small and unresolved scales. In pioneering studies, the effect of unresolved
scales on the large-scale equations was ignored, and a Smagorinsky type model in
the small-scale equations was introduced to account for the dissipation of “miss-
ing small scales” [Hughes et al. (2001a,b)]. Lately, a single model for the effect of
unresolved scales was applied to the resolved-scale equations [Calo (2005); Bazilevs
et al. (2007)]. Previous work demonstrates that the numerical results obtained by
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VMM-LES technique coincide well with experimental observations of variational
multiscale turbulent phenomena.

Although the high-dimensional and variational multiscale problems in turbulent
flows can be individually considered by the POD and VMM-LES techniques, the
comprehensive studies on the joint effect of this two properties are still not easily
available. Some progress has been done on this topic. For example, Wang et al. tested
four closure models for the POD-based ROM of structurally dominated turbulent
flows past a circular cylinder. They showed that the dynamic unresolved-scale and
the variational multiscale models resulted in the best accuracy with a high level of
computational efficiency [Wang et al. (2012)]. In our previous study, the POD was
applied to construct small scales using VMM for a stochastically forced Burgers
problem [Chen et al. (2015)]. The numerical implementation with the VMM model
was proven to be able to avoid the stability issue, which exists in most applications
of POD. However, its applications in turbulent flows still need to be progressed,
which becomes the initiation of present study.

In this paper, we construct the small-scale models in the variational multi-
scale formulations for the LES of turbulent channel flow by using truncated sets
of POD modes (Sec. 2). The simplified resolved equations by VMM-LES technique
was solved to examine the feasibility of the application of POD-based VMM-LES.
Results and discussions about amplitudes of POD modes, vortex structure and sta-
tistical analysis are presented in Sec. 3. Conclusions and perspectives of this study
are summarized in Sec. 4.

2. Methods and Models

2.1. VMM for Navier–Stokes equations

As shown in Fig. 1, the turbulent flows at Reτ = 180 is considered in a rectangular
channel of Lx = 6, Ly = 2 and Lz = 4. The Reynolds number Reτ = uτδ/ν, where
uτ =

√
τ/ρ is friction velocity, which is based on wall shear stress τ and density

ρ, δ is half the channel thickness and ν is the kinematic viscosity. The turbulent
channel flow can be described by the incompressible Navier–Stokes equations,

∂u

∂t
+ ∇ · (u ⊗ u) + ∇p −∇ · 2ν∇su = f , in Ω, (1)

∇ · u = 0, in Ω, (2)

Fig. 1. Sketch of turbulent channel flows with numerical domain of (Lx = 6, Ly = 2, Lz = 4).
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where u represents velocities in turbulent flows, p denotes the pressure, f is the
body force and Ω denotes the computational domain of the channle. The symmetric
velocity gradient is defined by ∇su = 1

2 (∇u + ∇uT ).
The variational form of the incompressible Navier–Stokes equations is obtained

by taking the inner product of weighting functions W − {w, q}T with the strong
form (Eqs. (1) and (2)) and integrating over the space–time domain, Q. Doing so
yields a weak or variational form of the Navier–Stokes equations(

w,
∂u

∂t

)
− (∇w, u ⊗ u) + (q,∇ · u) − (∇ · w, p) + (∇sw, 2ν∇su) = (w, F ),

(3)

where (, ) represents an integration in the space domain, w and q represent weighting
functions corresponding to u and p, respectively.

Decomposing the weighting and solution spaces into resolved (W̄ , Ū) and
unresolved (W ′, U ′) scales, and neglecting the unresolved-scale system yields the
resolved-scale equations(

w̄,
∂ū

∂t

)
− (∇w̄, ū ⊗ ū) + (q̄,∇ · ū) − (∇ · w̄, p̄) + (∇sw̄, 2ν∇sū)

− (∇w̄, ū ⊗ u′) − (∇w̄, u′ ⊗ ū) − (∇w̄, u′ ⊗ u′) + (q̄,∇ · u′)

− (∇ · w̄, p′) = (w, f), (4)

where the large scales depend on {u′, p′}.
The simulation is carried out in a rectangular channel Ω = [0 Lx] × [0 Ly]×

[0 Lz]. The flow is driven by a constant force. The coordinate directions x, y,
z, following the usual convention, are aligned with the streamwise, wall-normal
and spanwise directions, respectively. The velocity components are likewise denoted
u = {u, v, w}. The boundary conditions are periodic in x- and z-directions, and no-
slip at y = 0 and y = Ly. The problem configuration is schematically illustrated
in Fig. 1. In the calculation of the integration in space, a Gauss quadrature rule is
applied. The variational equations above are advanced in time using a second-order
generalized-α method.

2.2. POD small-scale modes for resolved-scale equations

2.2.1. Preparation of reference data

In order to produce reference data for the POD, a simulation of the channel flow case
was carried out using a finite-volume method. A summary of simulation parameters
are listed in Table 1.

The Navier–Stokes equations were solved using variant of channelFoam solver of
OpenFOAM software package modified to include the forcing. For time integration a
second-order backward scheme (BDF2) is used, and for space the central differencing
(second-order) is used.
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Table 1. Summary of simulation parameters at Reτ = 180.

Description Symbol Value

Domain size Lx × Ly × Lz 6 × 2 × 4
Number of cells nx × ny × nz 128 × 128 × 128

Cell size hx Lx/nx = 4.69 × 10−2

First cell y+ y+
1 1.4

Fluid viscosity ν 1/Re = 5.56 × 10−3

Volumetric body force f 1
Courant number Co 0.4
Bulk velocity Ubulk ≈ 15.5
Maximum velocity Umax ≈ 20

Time step ∆t
Cohx
Umax

≈ 0.94 × 10−3

Simulation time T 200
Snapshot interval ts 0.25
Number of snapshots ns 800

In the simulation a homogeneous dynamic Smagorinsky SGS model is used
with van Driest delta with default parameters. Homogeneous here means that the
Smagorinsky coefficient is averaged over the whole domain.

First the preliminary simulation was run starting with parabolic profile
perturbed with random values. This simulation is run for sufficient time for
turbulence to develop fully. The result of the preliminary simulation is used as
an initial condition for the main simulation.

The simulation is run for 200 time units to generate data for the POD. Snap-
shots of the velocity (and later pressure) fields are stored every 0.25 time units. A
comparison of statistics between present and Jimenez’s simulations [Jimenez and
Moser (2007)] is carried out (Fig. 2). It shows statistics by the present simulation
are in a good agreement with Jimenez’s.

2.2.2. Construction of POD small-scale modes

The starting point of the procedure is the decomposition of the velocity u into its
mean and fluctuating part

u = U + ũ, (5)

where U is the horizontally averaged, time-dependent velocity.
Application of the POD theorem to turbulent channel flow with one direction of

flow inhomogeneity and two homogeneous directions can be found in Lumley [1967]
and Moin and Moser [1989]. A similar approach is used here, which is described
below. The Karhunen–Loeve expansion (or POD) requires the two-point correlation
tensor of fluctuations,

Rij(rx, y, y′, rz) = 〈ũi(x, y, z, t)ũj(x + rx, y′, z + rz, t)〉, (6)

where ũi (i = 1, 2, 3) are the instantaneous turbulent velocity fluctuations in the
streamwise, x, normal, y, and spanwise, z, directions, respectively. The 〈〉 denotes
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Fig. 2. Profiles of mean velocity 〈U〉 and root-mean-square (RMS) of fluctuating velocities
{urms, vrms, wrms} versus y+ = uτy/ν.

ensemble average which, owing to flow homogeneity in x- and z-directions, is cal-
culated by averaging in xz-plane as well as in time. It is actually more convenient
to compute and use the two-point spectral-density tensor Φij(kx, y, y′, kz) which is
the Fourier transform of the two-point correlation tensor in rx and rz , that is

Φij(kx, y, y′, kz) =
∫ ∫

e−ikxrx−ikzrzRij(rx, y, y′, rz)drxdrz , (7)

where kx and kz are the wave numbers in the x- and z-directions.
For computational purposes, the discrete Fourier transform of each instanta-

neous velocity field has been computed as

ûi(kx, y, kz, tn) =
∑
x,z

ũi(kx, y, kz, tn)e−ikxx−ikzz. (8)
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The two-point spectral density is obtained from

Φij(kx, y, y′, kz) =
1

Nt

Nt∑
n=1

ûi(kx, y, kz, tn)û∗
j (kx, y′, kz, tn), (9)

where Nt is the number of instantaneous flow fields used for ensemble averaging
and ∗ denotes complex conjugate.

Then the Karhunen–Loeve expansion leads to an algebraic eigenvalue and eigen-
function problem of the two-point correlation tensor,

Aφ(n) = λ(n)φ(n), (10)

where A is the two-point correlation tensor, a 3N × 3N matrix (N is the number
of discrete grid points in the normal direction) and

φ(n) = [φ(n)
1 (1), φ(n)

2 (1), φ(n)
3 (1), . . . , φ(n)

1 (N), φ(n)
2 (N), φ(n)

3 (N), ]T (11)

is the discretized nth eigenvector (of dimension 3N), with φ
(n)
1 (i) the streamwise

component of the nth eigenfunction at the ith grid point.
The eigenvalues are arranged in descending order with λ(1) as the largest eigen-

value. Hereafter we denote l,k as the streamwise and spanwise wavenumber index.
The first six eigenfunctions for the entire normal domain at l = 0, k = 2 are shown in
Fig. 3. Note that the eigenfunctions in the entire normal domain occur in pairs and
are closely symmetric at the centerline. Additionally, the Karhunen–Loeve eigen-
functions behave in the same manner as other typical eigenfunctions, namely, the
number of zero-crossing increases with the order of the eigenfunctions. Here it is
particularly significant that the streamwise, φ

(n)
1 , and vertical, φ

(n)
2 , components

have opposite (same) signs near the bottom (top) boundary, by which they make a
positive contribution to turbulence production (Reynolds stress).

Figure 4 shows profiles of eigenvalues and energy percentage versus the order
of the eigenmode at (l = 0, k = 2). Note that energy is concentrated into the

φ1
φ2
φ3

φ1
φ2
φ3

(a) (b)

Fig. 3. The first six eigenfunctions {φ1, φ2, φ3} of the velocity {u, v, w} at kx = 0, kz = 2. (a)
First, (b) second, (c) third, (d) fourth, (e) fifth, (f) sixth.
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Fig. 3. (Continued)
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Fig. 5. Relative contribution of the first (left top), second (right top), third (left bottom) and

fourth (right bottom) wall-normal mode to the total kinetic energy λ
(n)
lk /

P
λlk versus streamwise

(l) and spanwise (k) wave number.

first two wall-normal eigenmodes, the contribution of the first two modes is around
80% for the low wave numbers. The portion of the total fluctuating kinetic energy
contained in the first (λ1

lk/
∑

n λ
(n)
lk ), second (λ2

lk/
∑

n λ
(n)
lk ), third (λ2

lk/
∑

n λ
(n)
lk )

and fourth (λ2
lk/

∑
n λ

(n)
lk ) eigenfunction versus the streamwise and spanwise wave

number are shown in Fig. 5, respectively. It can be observed that for the first
two wall-normal modes the low wave numbers take dominant contributions, as the
order of the wall-normal mode increases the contributions do not remain in the low
wave number zone. This means if many wall-normal modes are required, a large
range of spanwise and streamwise wave numbers must be included to guarantee
consistency in frequency. Figure 6 shows the combined contribution of the first four
wall-normal modes to the total kinetic energy

∑4
n=1 λ

(n)
lk /

∑
λlk. In spite of the

energy distribution of the third and fourth wall-normal modes, overall the low wave
numbers still make the dominant contributions.

All the treatments to the velocity are separately applied to the pressure. The
first four modes are shown in Fig. 7. Again, the number of zero-crossing increased
with the order of the eigenmodes.
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Fig. 6. Relative contribution of the first four wall-normal modes to the total kinetic energy
P4

n=1 λ
(n)
lk /

P
λlk versus streamwise and spanwise wave number.
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Fig. 7. The first four eigenfunctions (POD modes, φ4) of the pressure (p) at kx = 0, kz = 2.
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2.3. Unresolved-scale models in VMM

The unresolved scales in the resolved-scale equations can be modeled by a standard
VMM unresolved-scale model

U ′ ≈ −τR(Ū), (12)

where R is a vector containing the momentum and continuity residuals of the
Navier–Stokes equations, the residual-based model coefficients proposed by Tay-
lor et al. [1998] are applied to τ .

Let x denote the coordinate in the physical space, and let ξ denote the coordinate
in the same point in parametric space. Let x = x(ξ) be a continuously differential
map with a continuously differential inverse

(
∂x

∂ξ

)−1

=
∂ξ

∂x
(13)

and let G be a second-rank metric tensor

G =
∂ξ

∂x

T ∂ξ

∂x
. (14)

The definition of τM and τC are expressed as follows.

τM =
C√

c1ū · Gū + c2ν2G : G + c3
1

∆t2

, (15)

τC =
ū · Gū

trG
, (16)

where : denotes a double contraction, C is a constant depending on the element
topology, and c1, c2 and c3 are positive constants depending on the type of dis-
cretization used. This definition of τM takes the orientation of the mesh with respect
to the velocity into account. The approximation of the gradient and divergence oper-
ator used in the definition of τC is based on kinematic considerations.

3. Results and Discussions

With the proposed POD-VMM technique, the LES simulations about turbulent
channel flows are implemented for examining the model characteristics. As men-
tioned in Sec. 2.1, the mean velocity of turbulent flow is used for the resolved large
scales in the simulations, while the POD modes are applied to the resolved small
scales and an unresolved-scale model proposed in Taylor et al. [1998] is employed.
It should be noted that, the truncation T (L, K, N) is defined as the set of spatial
φn

lk for POD-based model, such that 0 ≤ l ≤ L, 0 ≤ k ≤ K, n ≤ N .
Previous studies claims that the first two wall-normal modes might be able to

capture most of the turbulent characteristics, the feasibility of this idea has to be
verified at the first beginning of our studies. Two numerical examples for testing
are considered, as the first example with 481 POD modes is used with L = 8,
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Fig. 8. Evolution of the bulk velocity ubulk in time step tU/h.

K = 12 (Example 1), and the second one includes 1,121 modes with L = 15,
K = 20 (Example 2). Figure 8 shows the evolution of the bulk velocity ubulk with
respect to time step tU/h of the two examples. It shows that the bulk velocity of
both Example 1 sharply increases with time, but that of Example 2 increases more
slowly (Example 2 is aborted earlier, as the tendency in results is already clear at
time step of 6,000). The tendency of the increase in bulk velocity implies that the
flow fields are “laminarizing”, that is to say, the first two wall-normal POD modes
fail to capture most of the turbulent characteristics. This result can be confirmed by
examining the amplitude distributions and time histories of the high-order modes,
which are shown in Figs. 9 and 10. It can be seen that in both examples amplitudes
of the first 200 POD mode remains fluctuating as time increases, while amplitudes of
the higher order POD modes decay rapidly as time increases. It indicates that more
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Fig. 9. Amplitude a(t) distributions of all modes (left) and time histories of the last six modes
(right) of Example 1.
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Fig. 10. Amplitude (a(t)) distributions of all modes (left) and time histories of the last six modes
(right) of Example 2.

than two wall-normal modes should be used in order to reproduce the turbulence
flows.

Four wall-normal modes in the normal direction with L = 4 and K = 10 are
then implemented to capture turbulence characteristics, which applies 400 modes in
total. Notice that the modes in the normal direction increases, while the cut-off wave
number in the homogeneous directions reduces. Figure 11 shows the the amplitude
distributions of all modes at different time steps, from top to bottom, the increasing
time steps are as 4,000, 8,000, 12,000, 16,000 and 20,000. It is of interest to notice
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Fig. 11. Amplitudes of all modes at certain time step (0 ≤ l ≤ 4, 0 < k ≤ 10, n ≤ 4).
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that the amplitudes of all the modes are not constant as time step accumulates. The
fluctuation of amplitude could be a sign of turbulent flow. The fluctuating behavior
is also confirmed by a specific examination of the characteristics of amplitude at
low- and high-order modes, as shown in Figs. 12 and 13, respectively. As the first
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Fig. 12. Evolution of amplitudes of the first six modes (0 ≤ l ≤ 4, 0 < k ≤ 10, n ≤ 4).
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Fig. 13. Evolution of amplitudes of the last six modes (0 ≤ l ≤ 4, 0 < k ≤ 10, n ≤ 4).
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mode denotes the mean velocity basis, it can be observed in Fig. 12, top, that the
amplitude of the mean velocity basis stays between a small range from 0.95 to 1.0,
which is relatively constant and confirms that the numerical simulation is stable. As
the order of modes increases (from a1 to a6), the fluctuation of amplitude becomes
obvious as expected for a turbulent simulations. Noticeably, the amplitude evolution
of the low-order modes (a1–a6) seems to show periodic behavior, which implicitly
display intermittent behavior of turbulent flows. Figure 13 shows the variations of
amplitude at high-order modes (the last 6 ones) versus time step. The amplitude
of high-order modes fluctuates quickly as time step increases. It is important to
notice that the frequency of fluctuation of high-order modes is not only much more
than that of low-order modes, but also it does not decay as the order arises. These
results with four wall-normal modes confirms its feasibility in numerical simulations
for turbulent characteristics.

Figure 14 shows the instantaneous isosurfaces of the streamwise velocities
obtained by the LES module of OpenFOAM codes and the proposed POD-based
VMM-LES approach using four wall-normal modes. The isosurfaces in a range of
14.3 < U < 15.3 are extracted to display the near-wall structures. Results of the
widely used OpenFOAM codes (Fig. 14, left) can be applied as an reference data, in
which the turbulent characteristics in both large and small scales are well simulated.
According to the effects of viscosity and boundary confinement, large vortices are
induced by high shear stress distributed near the boundary. The large vortices are
transported by the flow in the rectangular channel, and break into several small
ones in their migrating the downstream domains. Vortices are almost absent at the
central area of the channel where the shear effect is vanished. These main charac-
teristics of the turbulent flow have also been well estimated by the proposed POD-
based VMM-LES approach using four wall-normal modes, such as the structure
distribution of large vortices, as shown in Fig. 14 (right). A similar conclusion can
be also obtained from Fig. 15, which shows the streaks of the streamwise velocity on

Fig. 14. Instantaneous isosurfaces of the streamwise velocity. The left figure represents the results
of OpenFOAM (as a reference data), and the right one is obtained with the proposed POD-based
VMM-LES approach using four wall-normal modes.
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Fig. 15. Streaks of the streamwise velocity on xz-plane at y+ = 10. The left figure represents
the results of OpenFOAM (as a reference data), and the right one is obtained with the proposed
POD-based VMM-LES approach using four wall-normal modes.

xz-plane at y+ = 10, obtained from the LES module of OpenFOAM codes and the
present model, respectively. The two approaches have successfully presented obvious
streaks in a 2D view, although the LES codes that uses more computational times
can show more detail of the flow structures. Both the 3D and 2D results show that
the proposed model successfully reproduces the main structures of turbulence flow,
which can be very appropriate for the predications of turbulent structures with a
very low cost of numerical computations.

The statistical analysis on the numerical results with the proposed POD-based
VMM-LES approach using four wall-normal modes is also carried our for a better
understanding of the model properties. The results of mean velocity and RMS of
fluctuating velocities are shown in Fig. 16, where the results of present model are
compared with the published DNS results in Jimenez and Moser [2007]. The mean
velocities obtained by present approach, as shown in the left-top of Fig. 16, are in
a good agreement with that of Jimenez’s DNS results, especially in the range of
y+ = 1–30 which denotes the location near the boundary (inner layer). Although
small deviation still exits for the outer layer (y+ > 30), the predicated RMS of
fluctuating velocities in the normal and spanwise directions (vrms and wrms) by
present approach coincide well with that of Jimenez’s DNS results, as shown in
the right-top and left-bottom of Fig. 16, respectively. It is of interest to notice
that a deviation between the two results still exits in the results on the streamwise
direction (urms), which implies that the increase of POD modes could be necessary
if a precise result on streamwise direction is required.

The distribution of Reynolds stress (−u′v′) of turbulent flows in y-direction is
presented in Fig. 17. The Reynolds stress (−u′v′) obtained by present approach
differs from Jimenez’s DNS results in the range of y = 0.1–0.6, even if they coincide
with each other in the other part. It results from the difference of fluctuating veloci-
ties between present model and Jimenez’s DNS results on the streamwise direction,
as mentioned above. It implies that, more wall-normal modes need to be adopted
in the POD-based VMM-LES technique to achieve more precise results of Reynolds
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Fig. 16. Statistical results of the mean velocity (left top) and RMS of fluctuating velocities (the
other three ones).
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Fig. 17. The distribution of Reynolds stress (−u′v′) of turbulent flows in y-direction.
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stress, as well as the fluctuating velocities on streamwise direction. This can be an
interesting point to be verified in our future study.

4. Conclusions

A POD-based VMM for LES of turbulent channel flows was proposed in this study.
We applied the residual-based VMM technique to solve the incompressible Navier–
Stokes equations. For the temporal integration, a generalized-α method is used. The
residual-based model coefficient proposed by Taylor et al. [1998] was employed in
the present model. Validation of the POD modes and careful analysis on the model
properties were presented. Numerical implementations on the turbulent channel
flows were preformed, and the numerical results of turbulent structures and the
statistical analysis were well organized with careful discussions, by the comparisons
to some classical published LES/DNS results. The main findings in present study
can be summarized as follows:

(1) The fluctuation of high-order modes, in the proposed POD-based VMM-LES
technique using two wall-normal modes, decays as the numerical time step accu-
mulates, while it remains fluctuating for that using four wall-normal modes.
Four or higher wall-normal modes need to be used to reproduce the turbulent
characteristics.

(2) The numerical results of structure distribution of large vortices and low velocity
streaks both demonstrate that the turbulent channel flow are well estimated by
the proposed approach using four wall-normal modes.

(3) The statistical results of turbulent channel flows obtained from the present
simulations are in a good agreement with previous LES/DNS results.

In summary, the reliability and feasibility of proposed POD-based VMM-LES
approach are confirmed by numerical implementations and statistical analysis. It
demonstrates that the proposed approach can efficiently and precisely simulate the
turbulent characteristics using Four wall-normal modes, especially for the large scale
structures. According to the present results, more modes are suggested to capture
the flow features at small scales, even if it is at the cost of more computational time.
A further study on the effect of higher wall-normal modes is still left for our future
work.
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