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Executive summary 

Climate change intensifies the frequency and severity of floods - the most devastating and costly 

climate-induced hazard. Since most flood damage occurs in urban areas, where population and 

infrastructure are concentrated, adaptation to climate-related flooding is particularly necessary for 

coastal flooding in cities. Government adaptations such as dikes or beach nourishments are important, 

yet insufficient in the face of worsening hazards. They reduce the hazard probability, but the local actions 

at the household level determine the extent of damages and inequalities in its distributional impacts on 

various societal groups. To design effective policies and risk reduction strategies it is critical to 

understand the factors that motivate household adaptation intentions. How and why households adapt to 

climate-induced hazards is increasingly studied – especially for flooding. What remains a challenge is 

to quantify the speed and scope of the system-level adaptation uptake and the resulting damage 

prevention. This is especially the case for distributional impacts, which are often neglected. Quantifying 

both aggregate and distributional impacts of household climate change adaptation (CCA) on flood risk 

fosters the design of tailored flood risk management (FRM) policies which allocate resources to the 

societal groups that need them most.  

This thesis presents a state-of-the-art agent-based flood model (flood-ABM) in downtown Shanghai, 

China to understand the role of household CCA in reducing coastal flood risk both in its aggregate and 

distributional impacts. To model the households’ exposure to climate-induced floods we overlayed the 

geolocations of 18.039 residential buildings with 21 inundation maps that depict dike failures and 

dike overtopping under different climate-change scenarios. We further parameterized households using 

context-specific micro-level survey data from Shanghai and depicted households’ adaptation decisions 

using an extended version of the Protection Motivation Theory which takes into consideration both 

internal and external factors.  

We conclude that autonomous household adaptation (adaptation without government policy) to climate 

change plays an essential role in reducing flood damage (up to 50%) in downtown Shanghai. However, 

despite the considerable adaptation uptake, the residual damages increase over time due to the effects of 

sea level rise and land subsidence. This shows that autonomous household adaptation alone is not 

sufficient to keep pace with the increasing severity of climate-related flooding, as it is constrained 

by barriers in the form of measure costs and regulations. Therefore, external incentives are needed to 

overcome these barriers. When designing such policies, it is necessary to take into consideration the 

differences in the adaptation uptake and damage prevention between societal household groups. Our 

results indicate that households with lower worry, self-efficacy, and income adapt measurably slower 

to climate-induced floods. For example, the average proportion of high-income households adopting 

wet-proofing increases by 30% in absolute terms over the simulation period, compared to less than 10% 

for low-income households. The slower adaptation makes these household groups significantly more 

vulnerable. For example, high-income households prevent on average of 59%, while low-income 

households prevent only 27% of flood damage for a 1000-year flood in 2040 under the Representative 

Concentration Pathway (RCP) 8.5. Hence, households with lower income, worry, and self-efficacy 

levels are more vulnerable to flood events, which can further reduce their adaptive capacity and lead to 

a vicious cycle. 
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The methodological contributions of this thesis to the state-of-the-art in flood-ABMs are as follows: 

First, we populate households in our flood-ABM with context-specific micro-level survey data. Second, 

we base the households’ adaptation behaviour on an extended version of the Protection Motivation 

Theory. Lastly, we link households’ adaptation decisions to climate-induced floods using inundation 

maps that integrate climate dynamics. Thus, our ABM enables more realistic modelling of household 

CCA to coastal flooding. Next to these methodological contributions, our results provide new insights 

for the FRM debate. On the one hand, we provide context-specific insights on the aggregate impact of 

behavioural household CCA on flood risk in China, which are scarce in flood risk literature. On the other 

hand, our results show the distributional impacts of household CCA, which can help design tailored 

FRM policies that allocate resources to the societal groups that need them the most. Hence, our work is 

an important contribution at the interface of behavioural household CCA and social vulnerability 

research. 

The societal relevance of this thesis can be expressed in terms of social, cultural, environmental, and 

economic impacts. Our model can inform the public debate and FRM policies on the social inequality 

of climate change by quantifying the differences in flood damage prevention between various socio-

economic household groups (social impact). Moreover, our model is one of the first flood-ABMs that 

integrate behavioural theories for agent decision-making in the Global South (cultural impact). In 

addition, the results of this thesis could inform FRM policy in Shanghai and therefore contribute to 

reducing the adversities of climate change (environmental impact). Lastly, the flood-ABM can 

contribute to determining the cost-effectiveness of government policies and household adaptation 

actions (economic impact). 

Our results have implications for local FRM policies in Shanghai. Based on the distributional effects, 

we suggest subsidies for lower-income classes, awareness campaigns for households with lower worry 

levels, and information campaigns for lower self-efficacy groups. In addition, we suggest the idea of a 

“build back better fund” to ensure that the households’ adaptive capacity remains intact after severe 

flood events.  

The model results and our analysis are subject to limitations. The model could be improved by including 

additional adaptive actions (e.g., insurance), comparing the adaptation gap between different behavioural 

theories (e.g., with the Prospect Theory), refining human-flood interactions (e.g., coupling the ABM 

with flood models) and extending social interactions (e.g., to family and friends). Furthermore, we 

recommend including company adaptation and indirect damages in the model.  

Our flood-ABM can be used for a multitude of additional experiments. We suggest analysing the 

impact of policies e.g., subsidies on the adaptation behaviour. Next, we suggest comparing the benefit 

and costs of household adaptive actions for different socio-economic groups. Additionally, the model 

can be used to compare the adaptation behaviour of a set of ‘personas’ that combine multiple attribute 

levels e.g., low income and low self-efficacy. Lastly, we recommend applying the model to two or more 

countries and comparing the household adaptation under different environmental, institutional, and 

cultural contexts.  
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1. Introduction 

1.1. Research problem 

Climate change intensifies the frequency and severity of natural hazards such as floods, heatwaves, and 

droughts (IPCC, 2014a). This leads to large economic damage (Stern, 2007) and the loss of numerous 

lives (Patz et al., 2005). Flooding, in particular, is considered one of the most devastating and costly 

climate-related hazards (Aerts et al., 2014; Hoegh-Guldberg et al., 2018). By 2080, the population at 

risk of coastal storm surge flooding is expected to grow from 75 to 200 million considering a medium 

climate change scenario which projects a 40 cm rise in sea level (McCarthy et al., 2001). As most flood 

damage occurs in urban areas where population and infrastructure are concentrated (Jha et al., 2011), an 

adaptation to climate-induced coastal floods is especially necessary for coastal cities.  

Research has shown that traditional public adaptation measures such as dams, reservoirs, or beach 

nourishments are important but insufficient in the face of worsening hazards (Fankhauser et al., 1999; 

Mendelsohn, 2000; Stern, 2007; Takao et al., 2004). If these top-down measures fail to mitigate the 

damage of climate-induced floods, individuals are left vulnerable (Takao et al., 2004). Consequently, 

additional adaptation at the individual and household levels is necessary (Adger et al., 2005; de Wit et 

al., 2008; Takao et al., 2004; van Valkengoed & Steg, 2019). Such household-level adaptation measures 

include for instance elevating the building, strengthening the housing foundations to withstand water 

pressures, or moving valuable assets to higher floors (Noll, Filatova, Need, et al., 2022). 

Recognizing the pivotal role of households in successfully adapting to climate change, governments are 

seeking effective approaches to encourage household adaptation (Kievik & Gutteling, 2011; Vulturius 

et al., 2018). To develop such flood risk management (FRM) policies it is essential to apprehend the 

households’ motivating factors for climate change adaptation (CCA) (Noll, Filatova, & Need, 2022; 

van Valkengoed & Steg, 2019). These factors are increasingly being studied - in particular for flood 

hazards (Berrang-Ford et al., 2021; van Valkengoed & Steg, 2019). Research recognizes that the drivers 

and barriers of household CCA to floods can differ among cultural, social, environmental and 

institutional contexts (Noll et al., 2020; Noll, Filatova, Need, et al., 2022). Additionally, it is 

acknowledged that these factors can differ for adaptation types which vary in effort and cost (Noll, 

Filatova, Need, et al., 2022). Moreover, there is an increasing understanding of the effect of prior and 

additionally intended adaptation on a household’s intention to adapt to climate-induced floods (Noll, 

Filatova, & Need, 2022). 

To inform FRM policies, it is not only necessary to determine how and why households adapt, but also 

to quantify the impacts of household CCA on flood risk. Contemporary flood risk models which 

integrate household CCA predominantly focus on aggregate impacts of household CCA – see for 

instance Abebe et al. (2020), Y. Han et al. (2021) and Michaelis et al. (2020). Quantifying the aggregate 

impacts of household CCA is important as it provides insights into the cumulative speed and scale of 

behavioural household adaptation, which helps policy makers to prioritize the most effective CCA 

strategies at the municipal, provincial, and national levels. However, such aggregate impacts alone do 

not suffice to inform FRM policies as the differences in the adaptation diffusion and damage prevention 

amongst various societal household groups are neglected. Quantifying the distributional impacts of 

household CCA on flood risk is therefore of high relevance, as these insights can help design tailored 

FRM policies that allocate resources to the societal groups that need them most (Bubeck et al., 2020).  
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This thesis aims to address this research gap and quantify both the aggregate and distributional impacts 

of household CCA to provide FRM policies with insights on the role of household CCA in reducing 

coastal flood risk. 

1.2. Research questions 

Based on the research gap explained in the previous sub-chapter we derive the main research question 

of this thesis. By answering this research question, we aim to provide new insights for FRM policies: 

“What role does household climate change adaptation  

play in reducing coastal flood risk?” 

To answer this main research question, we formulate the following sub questions (SQs). The first SQ 

aims at determining the flood risk of households: 

SQ1: ”How can we determine the coastal flood risk of households for different climate-induced flood 

scenarios?” 

The second SQ aims at understanding how households adapt to flooding i.e., which adaptation measures 

they can take and how these measures differ in reducing flood risk.  

SQ2: ”What are the households’ main climate change adaptation measures and how do they reduce 

coastal flood risk?” 

Now that we know how households adapt, it is necessary to understand why they adapt. Hence, we need 

to understand the behavioural factors that influence household adaptation intentions, resulting in the 

third SQ:  

SQ3: ”What are the behavioural factors that motivate household flood-adaptation intentions?” 

While these first three SQs build the foundation for quantifying the risk reduction by household 

adaptation the following two SQs aim to quantify the aggregate and distributional effects. For the 

aggregate impacts, we are interested in the households’ cumulative adaptation uptake and flood damage 

reduction under different climate-induced flood scenarios, resulting in the fourth SQ:  

SQ4: ”What are the aggregate impacts of household adaptation to climate-induced coastal floods in 

terms of adaptation uptake and damage prevention?” 

Lastly, we want to understand the distributional impacts of the adaptation uptake and how this is 

translated into flood damage prevention for different socio-economic and socio-behavioural household 

groups for different food scenarios. This leads to the last SQ: 

SQ5: ”What are the distributional impacts of household adaptation to climate-induced coastal floods 

in terms of adaptation uptake and damage prevention?” 

As explained in chapter 1.1, the insights in both the aggregate (SQ4) and the distributional impacts (SQ5) 

can be applied to better understand the role of household CCA in reducing coastal flood risks and thus 

answer the main research question. 
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1.3. Systems perspective and link to CoSEM program 

Integrating human dynamics into flood risk assessment to inform FRM policy requires a 

multidisciplinary approach (Aerts et al., 2018), which takes into account the interaction between the 

human and physical subsystems (Schanze, 2006). The human subsystem, which comprises household 

decision-making, is embedded in and interacts with the physical subsystem, which includes dikes and 

flood events (Abebe et al., 2019). Interactions between the two subsystems across different 

organizational, temporal and spatial scales in combination with the learnings from previous flood events 

characterize this human-flood system as a complex adaptive system (CAS) (Abebe et al., 2019). Hence, 

complex system properties such as emergence, path dependence, or instability may need to be taken into 

consideration (Nikolic, 2009). Thus, this thesis topic fits nicely into the Complex Systems Engineering 

and Management (CoSEM) study program as it addresses the impact of socio-behavioural household 

adaptation on the complex adaptive human-flood system. 

1.4. Research approach 

As shown in Figure 1, there are several ways to study the role of household CCA in the human-flood 

system (Law & Kelton, 1991): Experimentations with the real human-flood system over time e.g., in the 

form of longitudinal surveys – see for instance Bubeck et al. (2020), and Noll, Filatova, & Need (2022) 

are cost and effort intensive and do not allow studying the system under different flood scenarios (‘what 

if’). Thus, we select a modelling approach. A physical model can capture efficacy, as shown by 

Yorkshire Flood Resilience (2021), but is insufficient to investigate the system interactions between the 

flood events and household actions. Therefore, we chose a mathematical model. As the human-flood 

system interactions appear too complex to be evaluated analytically, we take a simulation modelling 

approach. 

 

Figure 1: Ways to study a system (Source: adapted from Law & Kelton (1991), blue colour highlight 
our scoping decisions)  
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To study the complex adaptive human-flood system we require a simulation modelling approach that is 

multidisciplinary, generative, and adaptive (Nikolic & Kasmire, 2013). Agent-based modelling 

(ABM), a bottom-up simulation method where heterogeneous actors interact with each other and with 

the environment (Macal & North, 2010) fulfils these requirements (Nikolic & Kasmire, 2013). 

Moreover, ABM is well suited to quantify the aggregate impacts of household climate adaptation for 

flood risk assessment as it takes into account interactions in social networks, the effect of behavioural 

biases, as well as feedback across different organizational, temporal and spatial scales which can 

exacerbate flood risks (Taberna et al., 2020). Furthermore, ABM enables to capture the heterogeneity of 

household adaptation behaviour (Aerts, 2020), which is especially important for studying the 

distributional impacts of household adaptation.  

Due to the data specificity which is essential for quantifying household CCA to coastal floods (see 

chapter 4), it is difficult to create a generic ABM. Hence, we choose a case study approach instead. As 

the complicated model structure of behaviourally rich ABMs can lead to severe modelling challenges 

such as high data collection, model construction, testing, validation, and computing efforts (Z. Sun et 

al., 2016) we solely conduct one case study.  

1.5. Outline 

This thesis is structured as follows: Chapter 2 describes the theoretical frameworks and concepts which 

are necessary to understand the research methods. Chapter 3 details the research methods and presents 

the research framework that guides our research. Chapter 4 shows the data for integrating household 

behavioural dynamics into flood risk assessment. Chapter 5 presents the ABM on behavioural household 

CCA, the model evaluation, and the experimental setup. Chapter 6 shows the results of the experiments 

with the flood-ABM. The concluding Chapter 7 discusses the results and the relevance of this thesis to 

science, society, and policy as well as the limitations and future research. The appendices report on 

further details. 
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2. Theoretical foundations 

2.1. Integrating household CCA behaviour into flood risk assessment 

Before we can detail the research methods, we need to define the theoretical frameworks and core 

concepts our methods build upon. In general, understanding the role of household CCA adaptation in 

reducing flood risk is an interdisciplinary endeavour that involves methods from both the natural and 

social sciences (Aerts et al., 2018). To structure this large research field we apply a multidisciplinary 

framework that integrates the human behaviour dynamics into flood risk assessment: the extended risk 

assessment framework of Aerts et al. (2018) shown in Figure 2. It consists of three parts: (i) risk 

assessment, (ii) risk reduction, and (iii) behavioural factors1, which align with our first three SQs. In 

essence, it shows that food risk and flood events can influence the behavioural factors of stakeholders 

based on which they make adaptation decisions which in turn can influence their flood risk. We further 

detail the three parts and the underlying concepts in the following. 

 

Figure 2: Extended risk assessment framework including SQs (Source: adapted from Aerts et al. 
(2018) as described in the note below the figure)2 

Risk assessment (i): This part of the framework constitutes the traditional flood risk assessment (Aerts 

et al., 2018) where flood risk can be seen as a function of hazard, exposure, and vulnerability (see Box 

1 for the detailed definition of flood risks and its components). This part of the framework links to SQ1. 

  

 
1 Aerts et al. (2018) use the terminology disaster risk reduction. For simplicity reasons, we refer to it as risk reduction. 
2 It is important to note that the framework extends the traditional risk assessment framework shown in (i) and is therefore 

labelled as extended by Aerts et al. (2018). We do not extend the framework of Aerts et al. (2018), but solely align the text 

in the framework with our thesis. 
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Box 1: Definitions of key terms and concepts for this thesis (Sources: Idea of the box with definitions 
is adapted from Abebe (2020); individual sources for definitions are listed inside the box) 

Adaptation: “The process of adjustment to actual or expected climate and its effects. In human systems, 

adaptation seeks to moderate or avoid harm or exploit beneficial opportunities. In some natural systems, human 

intervention may facilitate adjustment to expected climate and its effects” (IPCC, 2014a, p.1758)  

Flood: “The overflowing of the normal confines of a stream or other body of water, or the accumulation of water 

over areas not normally submerged.” (IPCC, 2014a, p.1765)  

• Coastal flood: “Coastal flooding is caused by a combination of high tides, storm surges and wave 

conditions.” (Horsburgh et al., 2017, p.219) 

Flood risk: “Risk is often represented as probability of occurrence of hazardous events or trends multiplied by 

the impacts if these events or trends occur. Risk results from the interaction of vulnerability, exposure, and 

hazard.” (IPCC, 2014a, p.1772) 

• Hazard: “The potential occurrence of a natural or human-induced physical event or trend or physical 

impact that may cause loss of life, injury, or other health impacts, as well as damage and loss to property, 

infrastructure, livelihoods, service provision, ecosystems, and environmental resources.” (IPCC, 2014a, 

p.1766) 

• Exposure: “The presence of people, livelihoods, species or ecosystems, environmental functions, 

services, and resources, infrastructure, or economic, social, or cultural assets in places and settings that 

could be adversely affected.” (IPCC, 2014a, p.1765) 

• Vulnerability: ”The propensity or predisposition to be adversely affected. Vulnerability encompasses a 

variety of concepts and elements including sensitivity or susceptibility to harm and lack of capacity to 

cope and adapt.” (IPCC, 2014a, p.1775) 

Flood risk assessment: “The qualitative and quantitative scientific estimation of flood risks.” (IPCC, 2014a, 

p.1772)*3 

Flood risk management: “Processes for designing, implementing, and evaluating strategies, policies, and 

measures to improve the understanding of flood risk, foster flood risk reduction and transfer, and promote 

continuous improvement in flood preparedness, response, and recovery practices, with the explicit purpose of 

increasing human security, well-being, quality of life, and sustainable development.” (IPCC, 2014a, p.1763)* 

 

Risk reduction (ii): The second part of the framework aligns with SQ2 and focusses on risk reduction. 

Stakeholders can react to the threat posed by flooding and adapt (see Box 1 for the detailed definition of 

adaptation). Flood adaptation can be distinguished based on multiple dimensions. First, there is a 

differentiation between administrative adaptation e.g., by the government and private adaptation e.g., 

by households (Grothmann & Reusswig, 2006). While we specifically focus on household adaptation, 

we take the effects of administrative adaptation such as dikes on flood risk into account. Next, there is a 

difference between autonomous and planned adaptation (Fankhauser et al., 1999). While autonomous 

adaptation entails “natural or spontaneous adjustments in the face of a changing climate” (Carter et al., 

1994, p.32), planned adaptation require conscious interventions. Fankhauser et al. (1999) note that this 

distinction depends on the stakeholder perspective e.g., a household adapting to floods is autonomous 

from the government’s perspective but planned from the household’s perspective. Within this thesis we 

apply the ‘government’s perspective’, defining household adaptation as planned if it results from policy 

interventions and as autonomous otherwise.4  

 
* The definition for disaster risk of the IPCC was adjusted to flood risk – see italic text. 
4 It is to be noted that our definition of autonomous household adaptation can differ to other studies or reports e.g., IPCC 

(2014b). 
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Furthermore, one can distinguish between pre-event adaptation before a flood to prepare for flood 

events and post-event adaptation after a flood such as a flood recovery or emergency response (Abebe, 

2020). We are interested in studying the effects of mid-, to long-term adaptation, and hence we exclude 

short-term post-event emergency response from the scope. Moreover, adaptation actions can be 

permanent or non-permanent (Abebe et al., 2020; Erdlenbruch & Bonté, 2018). Measures are 

considered non-permanent if they expire, fail, are forgotten or are abandoned. We consider both 

permanent and non-permanent measures.  

Behavioural factors (iii): The last part of the framework includes the behavioural factors that motivate 

households’ adaptation intentions (Aerts et al., 2018). This part links to SQ3. Flood experience, flood 

risk perception, self-efficacy, response-efficacy, trust in measures, trust in government, responsibility, 

and negative affect are motivational factors which are often observed in studies focusing on flood 

adaptation (van Valkengoed & Steg, 2019). To determine such motivational factors, behavioural 

theories can be applied (Noll, Filatova, & Need, 2022). We explain such a theory in more detail in the 

subsequent chapter 2.2. 

2.2. Theoretical foundations of behavioural household CCA  

Villamor et al. (2022) provide a structured overview of behavioural theories which can be applied to 

CCA. One of the most commonly used theories to explain households' intentions to adapt to floods is 

the Protection Motivation Theory (PMT) (Babcicky & Seebauer, 2017).  

The PMT consists of two major processes: Threat appraisal and coping appraisal. While threat 

appraisal describes “how a person assesses a threat’s probability and damage potential to things he or 

she values, assuming no change in his or her own behavior”, coping appraisal includes the ability of a 

person “to cope with and avert being harmed by the threat, along with the costs of coping” (Grothmann 

& Reusswig, 2006, p.104). Noll, Filatova, Need, et al. (2022) extend the base PMT to account for 

preceding flood engagement, external influences by media and peers, climate-related beliefs, and the 

demographic background (Figure 3). This extension takes both internal (also referred to as 

“interpersonal”) and external (also known as “intrapersonal”) factors into consideration which are 

considered relevant for behavioural adaptation (Noll, Filatova, Need, et al., 2022; Wilson et al., 2020). 

 

Figure 3: Extended Protection Motivation Theory including the 16 socio-behavioural factors (Source: 

created based on Noll, Filatova, Need, et al. (2022))  
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3. Research methods 

3.1. Research gaps in flood-ABMs 

To determine the research gaps in ABMs that focus on individual flood adaptation (flood-ABMs), we 

conduct a structured literature review according to the guidelines of Kable et al. (2012). Due to the 

considerable number of flood-ABMs, we review the literature in two rounds. A first round on 

identifying existing reviews on flood-ABMs and then a second round to scope down on research gaps 

identified in the first round. Further details on our structured literature review methodology are shown 

in Appendix A Literature review. 

In the first round, we identified three recent reviews by Aerts (2020), Taberna et al. (2020) and Zhuo 

& Han (2020) that highlight three major research gaps in flood-ABMs. First, empirical data for 

decision-making often stems from expert knowledge or secondary literature (Aerts, 2020; Taberna et al., 

2020). The minority of flood-ABMs base the agent behaviour on case-related micro-level data e.g., 

from surveys (Aerts, 2020; Taberna et al., 2020). Not only does this lack of empirical data make the 

validation and benchmarking of these ABMs difficult (Aerts, 2020), but the use of aggregate data for 

critical behaviour parameters can be misleading policy (Erdlenbruch & Bonté, 2018). Second, the 

decision-making in the majority of the flood-ABMs relies on ad-hoc assumptions instead of behavioural 

theories (Aerts, 2020; Taberna et al., 2020; Zhuo & Han, 2020). The theoretical foundation of decision-

making has several advantages such as enabling the testing of alternative theories in case of data 

scarcity, fostering interdisciplinary communication, facilitating model improvements, and ensuring 

faster and more sustainable scientific progress (Bell et al., 2015; Groeneveld et al., 2017; Klabunde & 

Willekens, 2016). Moreover, “using more robust theories to manifest agents would allow a more in-

depth analysis of the interactions” (Taberna et al., 2020, p.17). Lastly, Aerts (2020) and Taberna et al. 

(2020) highlight the importance of integrating ABMs with numerical flood models as flood events 

and flood damage influence household adaptation decisions. According to Abebe et al. (2020), this is 

often neglected in flood-ABMs. A two-way feedback between the human and the physical subsystem is 

recommended to show the effects of adaptation actions on future floods (Aerts, 2020; Taberna et al., 

2020) – see for instance Abebe et al. (2019). Taberna et al. (2020) further highlight that flood events 

which are integrated into the ABM should reflect the evolvement of flood hazards with climate change. 
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In the second round, we conduct a structured literature review on the application of behavioural theories 

in flood-ABMs – one of the previously mentioned methodological research gaps.5 Within our second 

round, we identify 13 articles that describe flood-ABMs which integrate behavioural theories (see Table 

4 in Appendix A.2). We notice that these ABMs are only applied in Europe and the United States. Flood-

ABMs incorporating behavioural theories appear to be underrepresented in the Global South. This 

might be explained by the fact that most empirical work on factors motivating individual CCA is 

conducted in Europe and North America (Hopkins, 2015; van Valkengoed & Steg, 2019). According to 

Noll et al. (2020), empirical work on private adaptation in the Global South is lacking despite floods 

being common in all parts of the world (EM-Dat, 2019). As empirical data enables integrating 

behavioural theories into flood risk assessment (Aerts et al., 2018) the lack of empirical data may hinder 

the development of flood-ABMs with behavioural theories in these nations. As a result, there is not only 

a lack of knowledge about what drives household adaptation in the Global South (Noll et al., 2020), but 

also a lack of understanding about the speed and extent of household CCA in these countries. 

“Institutional transplantation” (De Jong et al., 2002) of policy measures from a country in the Global 

North to a country in the Global South might be flawed due to potential differences in adaptation drivers 

and barriers (Noll et al., 2020). This makes it more difficult to inform FRM policies and puts the Global 

South, which is disproportionally impacted by climate-induced hazards (IPCC, 2014b) at greater risk 

(Noll et al., 2020). To overcome this gap, we focus our ABM on a coastal city in the Global South. 

In summary, we create a state-of-the-art flood-ABM that approaches all three methodological research 

gaps identified in the first literature review round: We integrate case-specific survey data with the 

extended version of the PMT described in chapter 2.2 and apply inundation maps under different 

climate change scenarios as one-way inputs to depict the influence of climate-induced floods on the 

adaptation behaviour. Moreover, to overcome the gap in behavioural flood adaptation studies in the 

Global South we focus our ABM on a coastal city in Asia, which we further detail in subsequent 

subchapter 3.2. 

  

 
5 This second round review offers the following benefits. On the one hand, additional databases and search strings are researched, and 

hence more papers can be identified. On the other hand, it enables a new and more detailed perspective of the flood-ABMs and their 

features 
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3.2. Case study scope 

For our case study, we choose Shanghai as a coastal city of the Global South for the following reasons. 

First, Shanghai has been affected by flooding for a long time and is considered one of the most flood-

exposed cities in the world (Hanson et al., 2011; Nicholls et al., 2008). This is partly due to the low 

average elevation of 4 m (K. Xu et al., 2021), which means that about 85% of the area is at risk of high 

water levels and frequent storm surges (Du et al., 2020). Between 1949 and 2005, more than 1800 flood-

related deaths were counted (Wen & Xu, 2006). Shanghai is most susceptible to flooding from typhoon-

induced storm surges (S. Xu & Huang, 2011). For instance, in 1997 Typhoon Winnie led to a rise of the 

Huangpu River to 5.99 m (Du et al., 2015) causing seven deaths and a direct economic loss of 80 million 

USD (K. Xu et al., 2021). Sea level rise, land subsidence, and socioeconomic development are likely to 

increase the severity and frequency of flooding in the future (Ke, 2014; J. Wang et al., 2012; K. Xu et 

al., 2021; J. Yin et al., 2020). 

Second, Shanghai with its 25 million inhabitants (National Bureau of Statistics of China, 2021) is an 

economic powerhouse of the Chinese mainland (Ke, 2014). Due to its dense population, rapid growth 

and economic importance, the flood impact is far-reaching (Ke et al., 2016). Hence, FRM is a high 

priority in Shanghai (Ke, 2014). 

Next, Shanghai currently relies mainly on top-down structural flood-adaptation measures such as 

dikes or floodwalls (Du et al., 2015). Due to its structural flood defence system, which is designed to 

withstand 1000-year floods, Shanghai is seen as one of the most well-protected cities against flooding 

in China (Du et al., 2020). However, sea-level rise and land subsidence increase the likelihood of dike 

overtopping and failure by storm surges in Shanghai (Ke et al., 2021; J. Yin et al., 2020). The publicly-

funded flood defences successfully reduce the probability of flooding towards a predefined safety norm, 

e.g., a 100-year or 1000-year return period usually based on historical records, not always accounting 

for the new normal due to climate change. Moreover, public flood defence infrastructure creates 

unintended consequences, like the ‘safe development paradox’ (Burby, 2006) also known as the ‘dike 

paradox’ (Hartmann & Spit, 2016) or ‘levee effect’ (Tobin, 1995). These defences attract more people 

and capital to the newly protected locations and eventually increase risks – see also Haer et al. (2020). 

Yet should an adverse event occur, private adaptation actions determine how much damage a hazard 

will impose, and how quickly individuals and communities will recover. Therefore, studying the effect 

of household adaptation is necessary to improve the flood resilience of any coastal city, even as centrally 

protected as Shanghai. 

Lastly, micro-level survey data and climate-induced inundation maps are available for Shanghai. On 

the one hand, we have access to the results of a survey conducted in Shanghai in April 2020 as part of 

the ERC project ‘SCALAR’. This survey examines the adaptation intentions of 933 households for 18 

different household-level actions – see Noll, Filatova, & Need (2022) and Noll, Filatova, Need, et al. 

(2022). On the other hand, we have access to inundation maps of Du et al. (2020) and J. Yin et al. (2020) 

which depict the flood depth for storm surge floods under different climate change scenarios and return 

periods in Shanghai. This data is essential for overcoming the aforementioned methodological research 

gaps. 
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3.3. Research framework for studying household CCA in Shanghai 

Figure 4 summarizes the entire research framework for studying household CCA in Shanghai. It guides 

the research in this thesis and hence depicts the relationship between the sub questions, the main research 

steps, simulation process phases, and the key in/outputs of these phases e.g., data and the thesis chapters. 

More specifically, we create the ABM following the simulation process steps by Nikolic et al. (2013). 

While Nikolic et al. (2013) define verification and validation as individual process steps, Balci (1994) 

highlights that validation, verification, and testing (VV&T) should be seen as a continuous activity 

throughout the entire simulation lifecycle. As a result, we modify the lifecycle of Nikolic et al. (2013) 

by integrating VV&T into the most important process steps (Figure 4). To keep this thesis concise, we 

use the appendix for documenting details. Specifically, we use the ODD protocol (Grimm et al., 2020) 

to describe the ABM. We explain the research framework in the following based on the simulation 

process steps of Nikolic et al. (2013): 

Problem Identification: To identify our problem and to determine the research scope we conduct a 

literature review on flood-ABMs. The results of this review were already presented in this chapter. The 

review methodology can be found in Appendix A Literature review. Moreover, we exchange with two 

flood modelling researchers at the beginning of the process, one who specifically focuses on flood risk 

in Shanghai, and use this feedback to improve the scoping.  

System Identification and Decomposition: Within this process phase we decompose the human-flood 

system and determine the input data for our ABM. This is described in Chapter 4 Data for integrating 

human dynamics into flood risk assessment and in Appendix B.6 Input Data. Specifically, we apply the 

extended risk assessment framework of Aerts et al. (2018) shown in chapter 2.1 to decompose the system 

into three parts (i) risk assessment, (ii) risk reduction, and (iii) behavioural factors and to answer the 

first three SQs. In terms of risk assessment (i), we determine the exposure of households to flood 

hazards by overlaying the inundation maps with geospatial residential building data from our study area 

in QGIS. Moreover, we review existing flood studies to determine the exposed asset values and the 

depth-damage curves to assess the households’ vulnerability. This provides the data for all the three risk 

components (hazard, exposure, and vulnerability) which is needed to determine the flood risk of 

households and to answer the first SQ. For the risk reduction (ii), we analyse micro-level survey data 

in our study area and review existing flood studies to cluster the individual measures into measure 

categories and to determine the characteristics of these measure categories. This answers the second SQ. 

In terms of behavioural factors (iii), we create logistic regression models for each measure category in 

SPSS based on context-specific micro-level survey data to determine the effect of socio-behavioural 

factors on the intention of households to adapt the measures of the respective measure category. We use 

the resulting regression coefficients in combination with the extended Protection Motivation Theory to 

model the households’ CCA decisions. This helps us answer SQ3. We also apply additional linear 

regression models to model the social household interactions and to depict the number of households 

that intend but do not realize their adaptation. To verify the system decomposition and data we apply the 

tests outlined by Balci (1994) in Appendix E.1 System and Objectives Definition VV&T and Appendix 

E.2 Data VV&T.  

Concept and Model Formulization: Based on the decomposed system inventory, a conceptual model 

is created. This conceptual model is highlighted among others with flow-charts. We validate our 

conceptual model with three different flood-ABM experts in Appendix E.3 Conceptual Model VV&T 

and use their feedback for model improvements. We transform the conceptual model into a formal 

model, which is described in the form of pseudo code and a model narrative (Nikolic et al., 2013). We 

describe the conceptual model in chapter 5.1 Conceptual model and provide all the details on the 

conceptual and formal models in the ODD protocol in Appendix B Model description – ODD. 
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Computational model: Based on the formal model, we code a computational model using Netlogo 6.2.2 

(Wilensky, 1999). We describe the requirements of this computational model as well as the applied 

programming practises in Appendix C Software Implementation. We verify this computational model 

using steps outlined by Balci (1994) and Wilensky & Rand (2015) in Appendix E.4 Computational 

Model VV&T. 

Experimentation: We conduct experiments using the computational model. The experiments are set up 

to answer SQ4 and SQ5. We summarize the experimental setup in Chapter 5.3 Experimental setup and 

provide the details e.g., on the number of replications required in Appendix D Experimentation. We then 

run these experiments on our ‘Shanghai-Flood-ABM’ server of the TU Delft Faculty of Technology, 

Policy, and Management. Moreover, we conduct a sensitivity analysis of the programmed model, which 

we detail in Appendix E.5 Sensitivity Analysis. This provides further insights on model improvements 

and helps us with the analysis in the next step. 

Data Analysis: In chapter 6  Results we describe and analyse the results of our experiments. On the one 

hand, we analyse the aggregate impacts of household adaptation to answer SQ4. On the other hand, we 

analyse the distributional impacts to answer SQ5. We use Appendix F Data analysis to document data 

analysis details. 

Model Use: In chapter 7 Conclusions and discussion we use the insights on the aggregate and 

distributional effects of household adaptation to answer our main research question and to discuss the 

potential impacts of our findings on flood risk management policies.  
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Figure 4: Research framework linking research questions to research steps, thesis chapters, simulation 
process phases, and in/outputs (Source: simulation process phases adapted from Nikolic et al. (2013), 

risk assessment framework adapted from Aerts et al. (2018), validation, verification and testing 
adapted from Balci (1994)) 
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4. Data for integrating 

human dynamics into flood 

risk assessment in Shanghai 

4.1. Data on hazard, exposure, and vulnerability 

To determine the potential flood damage in our ABM we combine hazard, exposure, and vulnerability 

data (Figure 5). Specifically, we use inundation maps which depict the probability, depth and location 

of climate-induced floods and overlay them with geospatial residential building data to determine the 

inundation depth of residential buildings for the different flood scenarios. In combination with asset 

values of building and contents and depth-damage curves, we can evaluate the direct and tangible flood 

damage to residential buildings in our ABM.  

 

Figure 5: Data for flood risk assessment (Source: hazard picture from J. Yin et al. (2020), exposure 
picture from OpenStreetMap (2022)) 

4.1.1. Determining the severity of climate-induced storm surge floods 

In Shanghai, extreme water levels at the coast and Huangpu river are mainly caused by storm surges, 

high tides, heavy rainfall, and upstream flooding (J. Yin et al., 2020). This thesis focusses on storm 

surges combined with high tides, which cause one of the greatest flood risks in Shanghai (S. Xu & 

Huang, 2011; J. Yin et al., 2013). We assess the damage based on the flood depth, as it is the most 

frequently utilized metric for determining flood severity (Apel et al., 2009; Merz et al., 2007), and as it 

appears to be one of the most influential parameters on flood damage (Penning et al., 1995; Wind et al., 

1999). To represent the flood scenarios in the model we use 21 inundation maps drawn by J. Yin et al. 

(2020), which depict dike overtopping and breaching for storm surges in Shanghai under the effect of 

sea-level rise and land subsidence. These inundation maps show the flood location and depth in the years 

2010, 2030, 2050 and 2100 for ten, one-hundred, and one-thousand-year floods and for different 

Representative Concentration Pathways (RPC) in Shanghai (J. Yin et al., 2020).  
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4.1.2. Determining households’ exposure to climate-induced floods 

As the scope of this thesis is household adaptation, we focus on residential buildings, which are an 

essential part of the flood risk assessment in Shanghai (Shan et al., 2019; Wu et al., 2019; Z. Yin et al., 

2011). Government-provided residential building data appears scarce. Instead, the location of residential 

buildings in Shanghai can be retrieved from OpenStreetMap (2022) (OSM). By overlapping the 

location of the residential buildings with the inundation maps, we determine the inundation levels of the 

residential buildings for each flood scenario (details in the ODD protocol, Appendix B.6.1).  

Within Shanghai, we specifically focus on 18.039 residential buildings in the seven city centre districts 

Huangpu, Changning, Putuo, Yangpu, Xuhui, Jing ‘an, and Hongkou (Figure 6) for the following 

reasons. First, our analysis highlights that the residential buildings in the city centre are most exposed to 

floods, accounting for 55-100% of the inundated residential buildings depending on the flood map of J. 

Yin et al. (2020). Shan et al. (2019) also demonstrate that residential buildings in Shanghai's city centre 

districts are among the most exposed to extreme flooding (5000-year flood). Second, our comparison 

with official statistics from the Shanghai Municipal Statistics Bureau (2020) shows that the city centre 

districts have by far the highest mapping accuracy (90%) in terms of the number of buildings in OSM. 

Finally, according to our analyses, the majority (66%) of survey respondents in Shanghai with a 

recognisable zip code live in the city centre districts. (Details in the ODD protocol, Appendix B.6.1). 

 

Figure 6: Residential buildings in Shanghai city centre districts (n = 18.039) (Source: data adjusted 
from OpenStreetMap (2022)) 
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Figure 7 depicts the number of inundated residential buildings in the city centre districts for different 

flood scenarios. When comparing the 10-, 100- and 1000-year flood events, we notice that a 10-year 

flood in 2100 under the RCP 8.5 scenario affects more residential buildings than a 100-year flood in 

2050 and a 1000-year flood in 2010. This highlights the significant effects of sea-level rise and land 

subsidence on the exposure of households in the Shanghai city centre and underlines the need for 

promoting household adaptations complementary to the government-led adaptation to cope with the 

adversities of climate change. The details of this analysis together with a comparison with another risk 

study in Shanghai can be found in the ODD protocol in Appendix B.6.1. 

 

Figure 7: Number of inundated residential buildings for different flood scenarios in the Shanghai city 
centre – building considered inundated if inundation level is larger than foundation height of 0.1 meter 

(Source: based on data from J. Yin et al. (2020), OpenStreetMap (2022), and Shanghai Municipal 
Statistics Bureau (2020)) 

To determine the exposed residential asset values, we use additional data on the residential building and 

content values in Shanghai. For the building value, we follow Wu et al. (2019) and determine the 

construction cost per square meter (861 €/sqm) using official data from the Shanghai Municipal Statistics 

Bureau (2020). For the content value, we use the data of Ke (2014) to determine the value of popular 

household items which are fragile to inundation for a small building. With the assumption that the 

content value increases with the household size, we determine the content value per square meter (209 

€/sqm). Using the heterogeneous building size data from the survey we can determine the total building 

and content value for each household in the ABM. Details on the asset values and comparison with 

values used in other risk assessments are shown in the ODD protocol in Appendix B.6.1.4.  

  



17 

4.1.3. Measuring households’ vulnerability to climate-induced floods 

Within this study, we focus on direct tangible damage (Merz et al., 2010) in the form of building and 

content damage. The direct and tangible flood damage is determined using depth-damage curves (Merz 

et al., 2010), which depict the relationship between hazard characteristics (e.g., water depth) and damage 

extent (Hu et al., 2019). We chose the depth-damage curves of Wang (2001) (Figure 8), as they focus 

on building and content damage of residential buildings in Shanghai and have been applied in other risk 

assessments (Ke, 2014; Shan et al., 2019). A more detailed overview and comparison with other depth-

damage functions in Shanghai are shown in the ODD protocol in Appendix B.6.2. 

 

Figure 8: Depth-damage functions (Source: based on data from Wang (2001)) 
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4.2. Data on households’ CCA measures 

For this thesis, we have employed unique micro-level data from the aforementioned survey about factors 

motivating households’ adaptation intentions. The survey examines 18 different household-level actions 

in Shanghai. As empirical evidence shows that households’ CCA intentions to floods in Shanghai can 

differ depending on the measure type (Noll, Filatova, Need, et al., 2022), we categorize 10 of the 18 

measures into three groups - elevation, wet-proofing, and dry-proofing6: Elevation entails raising the 

building ground level above the most-likely flood level (Lasage et al., 2014). Wet-proofing means that 

floodwater can enter the building while the damage is limited by adjusting the interior or building 

structure (Du et al., 2020) e.g., by strengthening the housing foundations to withstand water pressures. 

Dry-proofing assures that floodwater is kept from entering the building (Du et al., 2020) e.g., in the 

form of sandbags.  

The three categories differ in terms of their effectiveness in reducing flood damage, their cost, their 

lifetime, and implementation time (Table 1). While elevation is very effective in reducing flood damage 

below the elevation level, it is also costly and requires the longest implementation time. Wet-proofing 

is less effective but can reduce damages at high flood depths. In addition, wet-proofing has a similar cost 

to elevation but has a shorter implementation time. Dry-proofing has greater effectiveness than wet-

proofing but reduces flood damage only at lower flood depths. In addition, dry-proofing has the lowest 

cost and a similar implementation time to wet-proofing. We assume that dry-proofing is the only non-

permanent measure. Further details are provided in the ODD protocol in Appendix B.6.3. 

Table 1: Household climate change adaptation measures and characteristics 

 

  

 
6 This categorization appears to be common for flood risk assessment (de Moel et al., 2013; Du et al., 2020; Lasage et al., 2014).  
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4.3. Empirical micro-foundations of behavioural household CCA 

4.3.1. Regression models to determine factors influencing households’ CCA intentions 

To determine the behavioural factors that influence households’ CCA intentions, we estimate logistic 

regression models for each adaptation measure category (elevation, wet-proofing, dry-proofing – see 

chapter 4.2) based on the survey data. A binary dependent variable indicates for each measure category 

whether a survey respondent intends to adapt at least one of the measures in the respective category. The 

16 socio-behavioural variables of the extended PMT are the independent variables (see the ODD 

protocol, Appendix B.6.4.1). 

Following Bubeck et al. (2013), we apply a backward stepwise regression. This means that for each 

adaptation measure category we start with the so-called ‘full models’ that include all 16 independent 

variables (see the ODD protocol, Appendix B.6.4.2). Next, for each adaptation measure category, the 

non-significant independent variables are removed step-by-step from the model, resulting in the ‘best-

fitting’ models that only include significant independent variables (p<.05) (see the ODD protocol, 

Appendix B.6.4.3). As we aim to quantify the distributional impacts, we need to be able to compare the 

influence of the socio-behavioural variables between the different adaptation measure categories. 

Moreover, the behaviour should be based on at least all the base PMT variables. Therefore, we create 

three ‘final models’ for each adaptation measure category which include all the base PMT variables as 

well as the PMT extension variables which show a significant effect in at least one of the best-fitting 

models (see the ODD protocol, Appendix B.6.4.4). As a result, the variables ‘Gender’, ‘Government 

Measure Insufficiency’, and ‘General Media’ are not included in our final models.7  

 

Figure 9: Flow chart of the binary logistics regressions for the intention to adapt elevation, wet-
proofing, and dry-proofing measures (Source: adjusted from Bubeck et al. (2013)) 

The final models of elevation, wet-proofing, and dry-proofing explain 54%, 29%, and 47% of the 

variance in intending to implement measures of the respective category. This corresponds to a good to 

very good explanatory power for psychological studies (Bubeck et al., 2013).  

  

 
7 In comparison, Bubeck et al. (2013) only include independent variables in the final models which were found significant in at least one 

of the best-fitting models. However, this would lead to the exclusion of core PMT variables such as Perceived Flood Damage and Response 

Efficacy in our final models. Hence, the approach is altered as explained. 



20 

4.3.2. Effect of socio-behavioural factors on households’ CCA intentions 

Figure 10 shows the resulting odds ratios with the 95% confidence intervals of the final models for 

elevation, wet-proofing, and dry-proofing. Odds ratios depict the change in the odds of the dependent 

variable (intention to adapt) when the independent variable (e.g., worry) changes by one unit (Sperandei, 

2014). When the odds ratio is larger than 1, the likelihood of the dependent variable increases and vice 

versa (Bubeck et al., 2013). In the following, we discuss the role of socio-behavioural attributes on the 

intention of Shanghai households to adapt to floods. For an overview of the significance of the factors, 

we refer to the ODD protocol in Appendix B.6.4. 

 

Figure 10: Comparison of odds ratios for final models of elevation, wet-proofing, and dry-proofing for 
the subset of the 2020 Shanghai survey data (n=933) (Source: adjusted from Noll, Filatova, Need, et al. 

(2022) 8) 

Regarding threat appraisal, perceived flood probability and damage appear to have a low positive effect 

on the adaptation intention. Worry on the other hand provides significant and positive explanatory power 

for all measures: With each 1-point increase in worry, the odds that a household intends to adapt are 1.6 

times higher. 

For coping appraisal, the effect of self-efficacy and costs is noticeable. Self-efficacy has a significant 

and consistently positive impact on households’ adaptation intentions. Especially for dry-proofing, the 

positive effect of self-efficacy is very high. For each 1-point increase in self-efficacy, the likelihood that 

a household intends to dry-proof is 2.4 times higher. The included dry-proofing measures (e.g., fixing 

water barriers, installing a pump, or anti-backflow valves) appear more technically challenging than wet-

proofing measures (e.g., moving/storing valuable assets on higher floors), which might explain the 

higher effect of self-efficacy for dry-proofing. Looking at cost, elevation appears to have a considerable 

negative impact on adaptation intention. For each 1-point increase in cost, the odds that a household 

intends to elevate are 0.6 times lower. Additionally, the confidence interval for elevation is considerably 

smaller than for wet- or dry-proofing. Elevating a house appears to be considered more cost- and time-

intensive than dry- and water-proofing measures. 

 
8 Although Noll, Filatova, Need, et al. (2022) use the same survey data for their cross-national comparison, the results in the effects of the 

socio-behavioural variables can differ due to differences in the regression technique (logistic vs Bayesian beta regression), the number of 

respondents included (933 vs 842), the adaptation measure categories (elevation, wet-proofing, dry-proofing vs structural, non-structural), 

and the number and types of independent variables included (13 vs 16).  
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Overall, these observations seem in line with past research which shows that threat and coping appraisal 

appear important predictors of household adaptation (Bubeck et al., 2013; Grothmann & Reusswig, 

2006; Noll, Filatova, Need, et al., 2022; Zaalberg et al., 2009).  

Regarding preceding flood engagement, the effects observed from dry- and wet-proofing are mixed 

and generally weak due to large confidence intervals. However, prior undergone adaptation in other 

measure categories has a strong negative effect on the intention to elevate the building. When a 

household has already adapted one other dry-or wet-proofing measure, the likelihood that a household 

intends to elevate is 60% lower. This observation contradicts the empirical results of Noll et al. (2022), 

who identified a positive impact of prior adaptations on the adaptation of structural measures. A logical 

explanation for this type of behaviour would be that once households implement wet, or dry-proofing 

measures, they no longer deem it necessary to apply further adaptation measures, as the vulnerability of 

the building structure and content are reduced. 19% of the survey respondents have previous experience 

with floods. However, flood experience appears a weak predictor for all categories. This overlaps with 

the findings of van Valkengoed & Steg (2019) who highlight in their review on factors motivating 

climate-change adaptation that experience is relatively weakly related to adaptation. Other empirical 

evidence suggests a strong influence of flood experience on household adaptation intentions – see for 

instance Bubeck et al. (2013). 

Regarding the background, the effect of age is consistently small and negative for all three measure 

categories. The effect of education is not consistent and rather uncertain. Overall, the effect of the two 

background variables is small and inconsistent, which appears in line with previous research (Bubeck et 

al., 2012, 2013; Grothmann & Reusswig, 2006; Noll, Filatova, Need, et al., 2022; Zaalberg et al., 2009).  

59% of the respondents believe in climate change. The belief in climate change negatively affects 

adaptation intention, which is explained in more detail by Noll, Filatova, Need, et al. (2022). 

Regarding the external influences, the effects of family and friends’ expectations on a household's 

adaptation intentions are positive and consistent for all measure categories. With an increase in social 

influence by 1, the likelihood of adaptation intention increases between ~50% for wet-proofing and 

~80% for elevation and dry-proofing. These findings appear consistent with previous research which 

shows the relevance of interactions in social networks on individual CCA (Bubeck et al., 2013; 

Figueiredo et al., 2009; Haer et al., 2016; H. Kunreuther et al., 2013; Lara et al., 2010; Lo, 2013; Noll, 

Filatova, Need, et al., 2022; van der Linden, 2015). The influence of social media is consistently positive. 

A cross-national comparison shows however that the effect is small compared to other countries, which 

may be explained by the restriction of the Chinese internet (Noll, Filatova, Need, et al., 2022).  

The effects of the socio-behavioural factors for elevation, wet-proofing, and dry-proofing are applied in 

the ABM to model households’ CCA decisions. In addition to the binary logistics regression models, we 

also estimate two linear regression models for the intention-behaviour gap (see the ODD protocol, 

Appendix B.6.4.5) and the social network interactions (see the ODD protocol, Appendix B.4.6).  
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4.4. Integrating the case data in the ABM 

As the household attributes influence household behaviour, we require a synthetic household 

population with attribute values that represent the real Shanghai population as closely as possible 

(Chapuis et al., 2022; L. Sun & Erath, 2015). Hence, we create a population of 18.039 households via 

direct sampling from the micro-level survey data (933 households) with as many households living in 

apartments/houses as indicated by the macro-level residential building data (18.039 buildings). 

Appendix B.5.1 in the ODD protocol provides further details on the approach as well as the descriptive 

statistics of the synthetic household population attributes. 

Figure 11 highlights how the case data from the extended risk assessment framework components is 

integrated into the ABM. Data on the asset values (see chapter 4.1.2), the depth-damage curves (see 

chapter 4.1.3), the adaptation measures (effectiveness, cost, life-and implementation time – see chapter 

4.2), and the odds ratios of the 13 behavioural factors for elevation, wet- and dry-proofing (see chapter 

4.3) are captured by the global parameters. The synthetic population data is used for the parameters of 

the heterogeneous households, which are the agents in our ABM. At the start of a simulation run each 

household from the synthetic population is randomly assigned to a residential building with a 

corresponding building type (apartment/house) (details see the ODD protocol, Appendix B.5.1). 

 

Figure 11: Integration of risk assessment, risk reduction, and behavioural factor data in the ABM 

(Source: risk assessment framework components from Aerts et al. (2018)) 

  



23 

5. An ABM of adaptation 

behaviour to climate-induced 

flooding 

5.1. Conceptual model 

In this chapter, we describe our spatially explicit flood-ABM that integrates case-specific survey data 

with the PMT and applies inundation maps as one-way inputs to depict the influence of climate-induced 

flood events on the adaptation behaviour. Specifically, we describe our conceptual model using the main 

ABM building blocks which are the agent parameters and states (chapter 5.1.1), rules and actions 

(chapter 5.1.2), as well as interactions with other agents and with the environment (chapter 5.1.3) (Macal 

& North, 2010; Nikolic & Kasmire, 2013). We describe the model details in the ODD protocol in 

Appendix B, which also includes a summary of all the model assumptions in Appendix B.8 as well as a 

model narrative in Appendix B.9.  

5.1.1. Agents, parameters, and states 

Households are the agents in our ABM. Households are therefore non-mobile and are represented by the 

residential buildings in which they live. In the case of multi-story buildings, we assume that households 

live on the ground floor. Households have two state variables: Adaptation state and flooded. For each 

of the three measures elevation, wet-proofing, and dry-proofing, households can have different 

adaptation states: Do nothing means that the household has not started implementing the measure yet. 

When the household decided to start implementing the measure, but the implementation is not yet 

finished, the adaptation status is implementing. In this case, we assume that the adaptation measure does 

not reduce any flood damage. When the household finished the implementation of the measure, the 

measure can reduce flood damage, and the status is adapted. We assume that a household can adapt 

multiple measures (e.g., elevation and wet-proofing) at the same time. The second state variable flooded 

depicts if a household is flooded9. Table 2 provides a detailed description of all the model parameters 

and the agent states, including their data types, value ranges and sources. 

  

 
9 Following Abebe et al. (2020) we assume a household to be flooded if the inundation depth is 0.1 meters higher than the ground level of 

the building.  
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Table 2: Model parameters 

 

10 

 

 
* Indices: t = tick; i = PMT attribute (e.g., worry); h = household; m = measure (e.g., elevation); d = damage category (e.g., content); s = 

flood scenario (e.g., 10-year flood in 2030 under RCP 8.5 scenario); n = neighbour). 

** For the descriptive statistics of the base values of the household parameters we refer to Appendix B.5.1.3 in the ODD protocol. 

*** As we often combine multiple sources, we cannot list the individual sources in the table due to space constraints. Therefore, we refer 

to the respective sections in the input data chapter of the ODD protocol in Appendix B.6 for a detailed listing of the sources. 
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5.1.2. Household climate change adaptation rules and actions 

We apply the three final logistics regression models for elevation, wet-proofing, and dry-proofing (see 

chapter 4.3.2) in combination with the synthetic population data (see chapter 4.4) in our ABM to 

determine the households’ adaptation actions. In each year (one time-step) each household determines 

the adaptation action in a randomized order for each of the three adaptation measures based on the 

respective adaptation status Adapt_statush,t,m. This is shown in Figure 12 and explained in the following. 

 

Figure 12: Conceptual model – household adaptation actions and rules 

If a household has not yet taken an action (adaptation status is do nothing – see the yellow box in Figure 

12) a household checks whether the specific measure should be implemented based on the empirically-

derived and theory-based probability of implementation from the survey data and additional adaptation 

rules.  

𝑂𝑑𝑑𝑠ℎ,𝑚 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑚 ×  ∏ 𝑂𝑅𝑖,𝑚
𝑎𝑖, ℎ,𝑚

𝐼

𝑖=1

 (1) 

Equation 1 determines the odds Oddsh,m of a household h to intend to implement measure m, where 

ORi,m is the odds ratio of PMT attribute i for measure m (see Figure 10), ai,h,m is the heterogeneous 

attribute level of the PMT attribute i of household h for measure m (see Table 2)11, and Constantm is the 

intercept (Haer et al., 2016). The odds express the likelihood that the household intents to adapt divided 

by the likelihood that it will not (Erdlenbruch & Bonté, 2018). Based on the odds we can determine the 

yearly probability of a household h to intend the implementation of a measure m, by dividing Oddsh,m 

with (1 + Oddsh,m) (Haer et al., 2016). However, households who intend to adapt, do not necessarily 

follow through with their adaptation intention (Grothmann & Patt, 2005) due to barriers in the form of 

time, knowledge, money, or social support (Grothmann & Reusswig, 2006). Hence, we introduce an 

intention gap parameter Intention_Gap - also referred to as ‘intention-behaviour gap’ (Noll, Filatova, 

Need, et al., 2022) - which is derived from the ERC project’s longitudinal survey data in Shanghai. It 

captures the average percentage of households that put their adaptation intention into action within 

approximately one year (details in the ODD protocol, Appendix B.6.4.5). 

 
11 As the PMT variables Response Efficacy, Self Efficacy, Cost, and Undergone Other depend on the adaptation measure, a household can 

have different attribute levels for the same variable. 
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By multiplying the Intention_Gap parameter with the probability of a household h to intend the 

adaptation of measure m, we can determine the yearly probability Prob_Implementh,m of household h to 

implement measure m (see equation 2). 

𝑃𝑟𝑜𝑏_𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡ℎ,𝑚 =  (
𝑂𝑑𝑑𝑠ℎ,𝑚

1 + 𝑂𝑑𝑑𝑠ℎ,𝑚
) × 𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝐺𝑎𝑝 (2) 

  

To determine if a household starts the implementation of the measure, we compare Prob_Implementh,m 

to a threshold Implement_Thresholdh,m in the form of a random number between 0 and 1 which is 

generated yearly for each measure m of a household h. If the probability is higher than the threshold the 

adaptation status is set to implementing, on the condition that the following two adaptation rules are 

adhered to, which take into consideration additional regulative and financial barriers. First, we assume 

that elevation measures cannot be implemented by tenants (HH_statush = Rent) and households that live 

in apartment buildings (Build_Typeh = Apartment). Second, households can only implement a measure 

if it is affordable, hence if their savings (Savingsh) exceed the measure cost (Costm). We mark the year 

when household h starts the implementation of the measure m (Implement_starth,m).  

Furthermore, our model explicitly treats the process of implementation of adaptation measures and their 

lifetime. If at the start of a time step a household is in the process of implementing a certain measure 

(adaptation status is implementing – see the green box in Figure 12), the model determines based on 

the starting time of the implementation Implement_starth,m, the current tick, and the implementation time 

Implement_timem of the respective measure m if the measure implementation is finished. If the measure 

is implemented, the adaptation status is changed to adapted and the time is marked when household h 

ended the implementation of the measure m (Implement_endh,m). At model initialization, the 

implementation finish time of households that start the simulation with an adapted measure is set to a 

period of 0-9 years before the simulation start following a uniform distribution.  

If a household has already implemented a measure (adaptation status is adapted – see the red box in 

Figure 12) the model determines for household h if the measure m expires based on the ending time of 

the implementation Implement_endh,m, the current tick, and the lifetime Life_timem. We assume that 

elevation and wet-proofing measures are permanent, while dry-proofing measures are non-permanent 

and can expire after their lifetime Life_timem (see chapter 4.2). If a measure expires, the adaptation status 

is set back to do nothing.  
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5.1.3. Household interactions and adaptation dynamics 

In our model households interact with other agents, with the environment and with themselves (Figure 

13). These interactions can influence both a household’s socio-behavioural attributes and therefore its 

probability to implement a measure (see the green colour in Figure 13) and a household’s savings (see 

the blue colour in Figure 13), which influence the ability to finance adaptation. We explain these 

interactions and the emerging adaptation dynamics in the following. 

 

Figure 13: Household interactions: The green colour indicates the influence on a household’s 
probability to adapt (socio-behavioural model) while the blue colour depicts the impact on a 

household’s savings (economic model)12 

5.1.3.1. Interaction of households within their social network 

Scientific literature highlights the relevance of interactions in social networks (Bubeck et al., 2013; 

Figueiredo et al., 2009; Haer et al., 2016; H. Kunreuther et al., 2013; Lara et al., 2010; Lo, 2013; Noll, 

Filatova, Need, et al., 2022; van der Linden, 2015), and more specifically in an individual’s 

neighbourhood on climate-adaptation decisions (H. C. Kunreuther & Erwann, 2009). Following the 

findings of Noll, Filatova, Need, et al. (2022) our regression results for Shanghai specifically also show 

a significant and consistently positive effect of Social Influence on the intention to adapt. Hence, we 

create a social network, where households adjust their Social Influence attribute level based on the 

adaptation behaviour of their direct nearest neighbours, which positively influences the probability of a 

household implementing a measure. 

For each residential building, we determine the IDs of the nearest other residential buildings in QGIS. 

Based on the survey data on the number of adapted households in a household’s social network, and the 

aggregated percentage of the households that adapted at least one measure, we estimate the 

heterogeneous social network size for each household. By combining the IDs of the nearest neighbours 

with the social network size we can determine the social network for each household. Using a linear 

regression, we determine the effect of the number of neighbouring households that adapted at least one 

measure (independent variable) on the Social Influence attribute (dependent variable). The social 

interactions are in more detail described in the ODD protocol in Appendix B.4.6.  

 
* As we build the social network on proximity, we differentiate a direct neighbourhood which is influenced by a household’s decisions 

(which are closest to the household) and an indirect neighbourhood, which influences the household’s social influence parameter but do 

not necessarily need to be direct neighbours of the household (details see ODD protocol, Appendix B.4.6) 
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In reality, the social network of family and friends might reach beyond the neighbourhood. For instance, 

the adaptation decision of one’s parents who live in a different city might still influence one’s adaptation 

decision. This is neglected within this model. 

5.1.3.2. Interaction of households with the environment and the flood hazards 

In our model, time and flood hazards are part of the environment. Every year, a household’s savings 

change heterogeneously as indicated by the respondents in the survey. Hence, with the increase in ticks, 

the financial ability of households to afford adaptation measures can increase.  

In terms of flood hazards, we assume a household to be flooded if the inundation depth is larger than the 

building foundation – see also Abebe et al. (2020). For each inundated household, we determine the 

potential direct and tangible flood damage based on the respective building and content values and depth 

damage curves as well as the predefined inundation depth of the occurring flood scenario (Figure 5). If 

the household has implemented at least one adaptation measure the flood damage reduction is 

determined using the effectiveness of the adapted measure(s)13. By deducting the damage reduction from 

the potential damage, the residual damage is determined. The occurrence and the severity of floods 

influence the adaptation behaviour in two ways. 

On the one hand, floods impact the savings of households. We assume that households pay for the flood 

damage out of their savings: While households that own their building pay for both the building and the 

content damage, households that are tenants only pay for the content damage. This means that household 

adaptation decisions can reduce the impact of future floods on their savings and hence their ability to 

afford other adaptation measures (see Chapter 5.1.3.3). 

On the other hand, we assume that flood events impact the PMT attribute Flood Experience. Within the 

survey, households indicate the monetary damage extent of their last experienced flood. In case of no 

previous experience, the Flood Experience is zero. When a household is impacted by a flood in the 

model, we update the Flood Experience to the residual flood damage. This change in the attribute level 

can positively influence the probability to intend a measure due to the small but positive odds ratios of 

Flood Experience for all measures (see chapter 4.3). Consequently, adaptation decisions of households 

which reduce the flood damage also reduce the influence of the Flood Experience on the adaptation 

behaviour. As each flood affects each household and their behaviour differently, we randomly vary the 

odds ratio of Flood Experience for each household in the range of one standard deviation from the mean 

effect of flood experience on the adaptation intention.  

In reality, the adaptation behaviour can also influence the environmental processes e.g., placing sandbags 

in the street can change the flood hydraulics. This is not considered since we use existing flood maps 

and do not couple the ABM with numerical flood models as suggested by Abebe et al. (2019). 

  

 
13 In case multiple measures are adopted at the same time, we first determine the impact of the elevation, then of the dry-proofing and lastly 

of the wet-proofing measure (details see ODD protocol, Appendix B.7.9). 
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5.1.3.3. Interaction of households with themselves 

According to the empirical evidence (Noll, Filatova, & Need, 2022) the action of a household to 

implement a measure of a certain category (e.g., wet-proofing) influences the household’s own 

likelihood and ability to implement measures in the remaining categories (e.g., elevation and dry-

proofing). We integrate these findings in our ABM as follows. 

On the one hand, we assume that, when a household implements a measure of a certain category (e.g., 

wet-proofing), the Undergone Other attribute is set to 1 for the remaining adaptation measure categories 

(e.g., elevation and dry-proofing). The change in the attribute level influences the probability of 

intending the measure of the respective categories in the subsequent ticks. For instance, the likelihood 

that a household intends to adapt an elevation measure is 60% lower, when a wet-, or dry-proofing 

measure was already undergone (see chapter 4.3). When a measure expires, the Undergone Other 

attribute can also be reset to 0 (details in the ODD protocol, Appendix B.7.6).  

On the other hand, the implementation decisions impact current and future savings. The savings are 

reduced by the measure cost when a household starts the measure implementation. This immediately 

reduces the households’ ability to finance and hence implement other measures. At the same time, 

households reduce their vulnerability to future flooding with the adaptation and thus reduce the impact 

of flood damage on their future savings.  

Following this conceptual model, we coded a computational model using Netlogo 6.2.2 (Wilensky, 

1999), which is openly accessible via https://github.com/jlechn01/Shanghai-Flood-ABM. Details 

regarding the software implementation are shown in Appendix C. 

5.2. Model evaluation 

ABMs are valid if they fulfil their purpose (Edmonds et al., 2019). Our flood-ABM aims to understand 

the aggregate and distributional impacts of household adaptation. Hence, we are not interested in 

building a predictive model that can forecast the future effectiveness of household adaptation in 

Shanghai. Instead, we aim for an explanatory model, which allows us to study the causal chain between 

household-level adaptation behaviour and system-level adaptation diffusion and damage prevention. 

According to Edmonds et al. (2019, p.6) “for explanatory purposes, the structure of the model is 

important, because that limits what the explanation consists of.” Therefore, we validated our conceptual 

model with three different flood-ABM experts. To further underline the credibility of our flood-ABM, 

we conducted a series of verification and validation tests for the different process phases of the 

simulation as suggested by Balci (1994). One of these tests is a one-factor-at-a-time (OFAT) sensitivity 

analysis, which enables insights into the formation of emergent patterns in our ABM and into the 

robustness of these patterns (ten Broeke et al., 2016). Details on the model validation, verification and 

testing are provided in Appendix E. 
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5.3. Experimental setup 

We select 2020 as the starting point for our experiments, as the survey and inundation data are from 

this year. Furthermore, we choose a 30-year time horizon as this allows us to observe the medium- to 

long-term effects of behavioural adaptation while containing the uncertainties of future developments 

such as technological advances that are associated with longer time horizons (Taberna et al., 2020). 

Moreover, we simulate our experiments with all 18.039 households in the Shanghai city centre. Each 

experiment is replicated 100 times. Details on how we determine the number of replications are provided 

in Appendix D.2.  

To understand the impacts of household adaptation to climate induced-floods we run our model under 

seven different predetermined flood scenarios (Figure 14). These scenarios vary in the number of 

floods occurring (no flood vs. one flood vs. two floods), the year of the flood events (early flood in 2021 

vs. late flood in 2040), the flood probabilities (100-year flood vs. 1000-year flood), as well as the 

Representative Concentration Pathways (RCP 8.5 vs. RCP 2.6). The seven flood scenarios No flood, 

2021_100_RCP8.5, 2021_1000_RCP8.5, 2040_100_RCP8.5, 2040_1000_RCP8.5, 

2040_1000_RCP2.6, and 2020_100_RCP8.5 + 2040_1000_RCP8.5 are shown in Figure 14.14 Further 

details on the selection of the flood scenarios can be found in Appendix D.1. For all other global model 

parameters, we apply the base values as shown in Table 2.  

 

Figure 14: Overview of the seven flood scenarios. A flood scenario can be composed of multiple flood 
events. Scenario S1 consists of no flood event, scenarios S2 to S6 have one flood event and scenario 

S7 consists of an early 100-year and a late 1000-year flood event 

  

 
14 We do not need to compose additional scenarios that compare the impacts of adaptation with no adaptation, as this is automatically 

determined by the simulation model. 
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For each experiment, we observe both the aggregate and the distributional impacts of household CCA. 

In terms of aggregate effects (SQ4), we observe the cumulative adaptation behaviour and damage 

prevention. In terms of distributional impacts (SQ5), we observe the adaptation uptake and the damage 

prevention of different household groups in our heterogeneous population of agents. Therefore, we 

differentiate among agents with various socio-behavioural attributes: worry, self-efficacy, social 

network size, and income. Worry and self-efficacy are selected as the PMT core attributes because both 

have a consistently positive and significant effect on the intention to adapt. Social network size is 

included because it affects a household's level of social influence, which also has a consistently positive 

and significant impact on the intention to adapt. All three constitute a set of socially-constructed limits 

to adaptation. Finally, we select income as a traditional suspect for inequality because it is an important 

indicator of a household's savings, which constrain its ability to adapt. For comparability of the results, 

we transform the four attributes into 3-point scales (low, medium, and high, see Appendix D.3).  

It is to be noted that while we focus on household adaptation, the effects of administrative adaptation 

on flood risk e.g., in the form of dikes are indirectly considered via the inundation maps. Moreover, 

within our experiments, we only consider autonomous household adaptation, hence adaptation 

without additional external policies e.g., subsidies (see chapter 2.1 for our definitions).  
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6.  Results 

6.1. Aggregate impacts of household adaptation  

To answer SQ4 we analyse the aggregate impacts of household adaptation both in terms of the general 

adaptation behaviour and the effects of the flood scenarios.  

6.1.1. General aggregate household adaptation behaviour 

Figure 15-A shows the adaptation diffusion of the three measure categories averaged for all flood 

scenarios. We observe multiple patterns.  

First, we observe that the three measures start with different penetration rates at the beginning of the 

simulation. While 33% of the households adapted wet-proofing in 2020 (blue graph in Figure 15-A), 

9% adapted dry-proofing (green graph in Figure 15-A) and 2% of the population adapted elevation 

measures (orange graph in Figure 15-A). These differences can be explained by the number of survey 

respondents that already adapted elevation, wet-proofing, or dry-proofing (see the ODD protocol, 

Appendix B.5.1.3). For our analysis this means that we need to take into consideration the starting points 

when comparing the adaptation diffusion of measures.  

Second, we identify plateaus in the adaptation uptake until 2022 for wet- and dry-proofing (blue and 

green graph in Figure 15-A) and until 2023 for elevation (orange graph in Figure 15-A). These plateaus 

can be explained by the different measure implementation times. This implies the delay between the 

adaptation decision and the measure adaptation that needs to be considered when drawing conclusions 

about the adaptation uptake.  

Lastly, we observe a decline in the adaptation of wet-proofing starting from 2040 until 2048 (green 

graph in Figure 15-A). This pattern can be explained by the expiration of wet-proofing measures and 

their subsequent re-implementation. In practical terms, this means that if a flood occurs during this 

period, households with expired wet-proofing measures are vulnerable. 

 

Figure 15: Diffusion of household adaptation over time: (A) shows the three measure categories, (B) 
shows all possible combinations of the three measure categories elevation, wet-proofing, and dry-

proofing 
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Regarding the uptake in adaptation, dry-proofing is most popular, followed by wet-proofing and lastly 

elevation. For instance, while the mean percentage of households that adapted dry-proofing increases 

from 9% in 2020 to 49% in 2040 (green graph in Figure 15-A), wet-proofing grows from 33% to 55% 

(blue graph in Figure 15-A) and elevation from 2% to 3% (orange graph in Figure 15-A) in the same 

period. The low adoption of the elevation measure results primarily from the rule that only house owners 

can elevate. Since 94% of households live in apartments and 16% are tenants (see Appendix B.5.1.3), a 

large fraction of the population is not able to implement elevation measures, despite possible adaptation 

intentions. This highlights the significant impact of this additional adaptation rule which mimics 

regulative barriers on the adaptation diffusion. The faster adaptation of dry-proofing compared to wet-

proofing is mainly a result of their cost difference (1706 € vs. 4027 €). Households which are not able 

to finance wet-proofing might still afford dry-proofing. When the measure cost is not considered for 

decision-making, wet-proofing is adapted at a similar rate as dry-proofing as shown in the sensitivity 

analysis in Appendix E.5.2.1. This underlines the importance of savings on the households’ ability to 

realize adaptation intentions. Moreover, a considerable share of households adapts both wet- and dry-

proofing measures (see light purple graph in Figure 15-B). Households that adapt multiple measures 

are better protected from the adversities of climate-induced floods. 

6.1.2. Impact of climate-induced floods on aggregate household adaptation behaviour 

As explained in chapter 5.1.3.2, flood events impact both the savings, which influence a household’s 

adaptive capacity and the flood experience, which effects a household’s adaptation intention. To 

determine the aggregate impacts on climate-induced flood risk, we need to understand the impact of the 

flood scenarios on the households’ flood experience and ability to finance measures. Figure 16-A depicts 

the percentage of households which have personally experienced a flood15. It shows the increase in flood 

experience depending on the severity and year of the flood event. Even when no flood occurs, 16% of 

households have flood experience which is derived from the survey data (see the ODD protocol, 

Appendix B.5.1.3). Figure 16-B shows the number of households who want to adapt but do not have the 

savings to do so. It highlights that from the first tick where households can decide whether they want to 

adapt, the share of households which are not able to do so is approximately 17%. With the occurrence 

of 1000-year flood events (e.g., dark green graph in Figure 16-B), we notice an increase in the inability 

to finance adaptation intentions as the savings are reduced by the flood damages. In theory, the effects 

of flood experience and savings on the adaptation diffusion are opposing as flood experience increases 

the probability to adapt due to the small but positive odds ratios while lower savings limit a household’s 

ability to finance a measure. We discuss their impacts on the adaptation diffusion and prevented flood 

damages in the following. 

The effect of the seven flood scenarios on the adaptation diffusion is shown in Figure 16-C. When 

comparing the trajectories of the flood scenarios, the 1000-year flood in 2021 (dark green graph in 

Figure 16-C) stands out as the adaptation uptake increases at a lower rate. This can be explained by the 

fact that the severe flood damage at the beginning of the simulation significantly decreases the savings 

of the exposed households which reduces their ability to finance subsequent adaptation. This can also 

be seen by the incline in the number of households who cannot afford the measure implementation in 

comparison to the other scenarios (dark green graph in Figure 16-B). The increase in flood experience 

(dark green graph in Figure 16-C) and the subsequent increase in the probability of implementing a 

measure, do not appear to compensate for the significant decrease in savings. Starting from the year 

2045, a similar pattern appears to occur for the other 1000-year flood events (yellow and baby blue 

graphs in Figure 16-C), where the adaptation trajectories continue declining while the remaining 

scenarios appear to increase again. 

 
15 To compare the scenarios, we show the binary flood experience. In our model, the flood experience is a 6-point variable that captures 

the flood damage of the last experienced flood – see chapter 5.1.1.  
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Figure 16: Influence of flood scenarios on the flood experience of households (A), the percentage of 
households that would like to adapt but cannot afford adaptation (B), the household adaptation 

diffusion (C), and the overall flood damage and damage reduction (D)16 

Figure 16-D shows for the flood scenarios the total prevented flood damages in the Shanghai city 

centre due to individual adaptation as well as the residual flood damages. For the 2021 single flood 

scenarios, on average 21% of the Shanghai residential flood damage is prevented due to autonomous 

household adaptation (see Figure 16-D) as 36% of households adapted at least one measure at the time 

of the flood event (see Figure 16-C). For the 2040 flood scenarios, the total potential flood damage 

increases significantly due to sea-level rise and land subsidence. Moreover, we observe a measurable 

difference of 5.6 Mil. € in total potential flood damage between the RCP 2.6 and the RCP 8.5 scenario 

(see Figure 16-D) which highlights the increase in flood risk for Shanghai households for more severe 

climate change scenarios. With an increase in the average share of adapted households to approximately 

74% in 2040 (see Figure 16-C), the mean flood damage prevention also rises to between 51% and 56% 

depending on the flood scenario (see Figure 16-D). Hence, for the 2040 flood scenarios, the relative 

prevented flood damage is more than twice as large as for the 2021 flood scenarios. In essence, this 

means that with an increase in severity and frequency of climate-induced flood hazards over time, 

households also considerably uptake their adaptation efforts, which can make them less vulnerable in 

relative terms. Nevertheless, the absolute residual flood damage of flood scenarios in 2040 is still larger 

than in 2021. For instance, the residual damage for a 1000-year flood under the RCP 8.5 scenario is 14.5 

Mil. € in 2021 compared to 24.8 Mil. € in 2040 (see grey bars in Figure 16-D). This implies that 

autonomous household CCA is important but insufficient to cope with the increasing severity of climate-

induced floods, necessitating additional policies that further motivate household adaptation.  

 
16 See the Appendix F.1 for standard deviations of flood damage. 
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The differences in the total damage prevention between the adaptation measures can be explained by 

their effectiveness in reducing damage and their diffusion at the time of the flood event (Figure 15-A). 

This is in more detail explained in Appendix F.1.  

In practical terms this analysis of the aggregate impacts underlines the importance of a household’s 

savings on the adaptation behaviour: On the one hand, the results show that large floods reduce the 

household’s savings in such a way that they limit the household’s future adaptive capacity which makes 

them more vulnerable for future floods. On the other hand, households tend to opt for more inexpensive 

adaptation measures due to financial constraints despite other initial adaptation intentions.  

6.2. Distributional impacts of household adaptation 

To answer SQ5, we analyse the distributional effects of the adaptation uptake and how this translates 

into damage prevention in our heterogeneous population of agents. 

6.2.1. Adaptation uptake for different household groups 

Figure 17 shows for each level (low, medium, high) of worry, self-efficacy, social network size, and 

income the percentage of households within the household group that adapted an elevation (orange), 

wet-proofing (blue), or dry-proofing (green) measure. 

 

Figure 17: Impact of (A) worry, (B) self-efficacy, (C) social network, and (D) income levels (low, 
medium, high) on the adaptation of elevation, wet-, and dry-proofing measures over time 
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Figure 17-A highlights that households with high worry levels adapt on average faster. For instance, in 

the year 2030 on average 10% more households with high worry levels adapt wet-, and dry-proofing 

measures (dark blue and green colour in Figure 17-A) than medium-worry households (medium blue 

and green colour in Figure 17-A) despite a relatively similar starting point. This is a result of the high 

and positive odds ratios of worry for all adaptation measures. Consequently, these household groups are 

more prepared if a flood occurs which reduces the impact of flood events on their savings which in turn 

benefits their financial capability to adapt further measures in the future. 

A similar pattern can be seen for self-efficacy in Figure 17-B. Especially for dry-proofing, the difference 

in the speed of the adaptation between household groups with high and low self-efficacy is prominent. 

For example, while the percentage of households that adapted wet-proofing with high self-efficacy 

grows from 23% in 2020 to 64% in 2030 (dark green colour in Figure 17-B), the percentage of low self-

efficacy levels only increases from 3% to 31% in the same period (light green colour in Figure 17-B). 

This can be explained by the exceptionally high and positive odds ratio of self-efficacy for dry-proofing 

intentions. This implies that household groups which have the knowledge and the physical ability to 

undertake measures themselves or the financial backing to pay professionals to do so will be more 

prepared if a flood occurs.  

The differences in the adaptation uptake for households with different social network sizes appear less 

prominent than for the other socio-behavioural factors (Figure 17-C). On the one hand, this might be 

explained by the rather small increase of the social influence attribute (0.263) when one more direct 

neighbour adapts at least one measure (see the ODD protocol, Appendix B.4.6). On the other hand, the 

diffusion through the social network takes time. When a direct neighbour of a household adapts at least 

one measure, the household’s social influence attribute level increases which increases the probability 

to implement a measure. If this probability surpasses the adaptation threshold, the implementation time 

needs to be exceeded before the measure is adapted and other potential neighbours are influenced. 

We observe the most dominant effect in terms of adaptation speed and scope for income (Figure 17-D). 

Especially for the more expensive elevation and wet-proofing measures, low- to middle-income 

households adapt very little. For instance, the mean proportion of high-income households that adapt 

wet-proofing measures increases from 35% to 65% over the simulation lifetime (dark blue graph in 

Figure 17-D), while the low to medium income levels grow less than 10% in absolute terms (lighter blue 

graphs in Figure 17-D). This can be explained by the fact that a household’s savings are dependent on 

income. Hence, high-income households have more financial capacity to adapt which makes them less 

vulnerable to future floods. Low and medium-level households lack the financial backing to put into 

practice their adaptation measures. This means that in the event of a flood their savings and hence their 

future adaptive capacity are further reduced making them more and more vulnerable to the increasing 

threat of climate-induced flooding over time.  

For dry-proofing, a faster adaptation also means that the measures will expire earlier which explains that 

for certain time intervals households with lower attribute levels have a higher adaptation diffusion. For 

instance, in the year 2048, households with low self-efficacy (light green in Figure 17-B) adapt more 

than households with medium self-efficacy (medium green in Figure 17-B). This highlights the 

importance of renewing non-permanent adaptation measures in time as otherwise, household groups 

with attribute levels that favour the flood adaptation uptake can become even more vulnerable than less 

adaptive groups.  
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6.2.2. Damage prevention for different household groups 

With the knowledge on the differences in the adaptation uptake, we analyse the prevented damage within 

the respective household groups for worry, self-efficacy, social network size, and income for the flood 

scenarios (Figure 18). To enable better comparability of the results, we analyse the relative damage 

prevention17. 

Both self-efficacy (Figure 18–B) and income (Figure 18-D) show a considerable difference in damage 

reduction between high, medium, and low attribute levels for all flood scenarios18. For instance, 

households with low self-efficacy reduce damage by 48%, medium self-efficacy households by 51% and 

high self-efficacy households by 60% for a 1000-year flood in 2040 (Figure 18-B). For the same flood 

scenario, low-income households prevent on average 27%, medium-income households 34% and high-

income households 59% of flood damage within their group (Figure 18-D). These differences between 

the household groups can be explained by the differences in the adaptation diffusion in the group at the 

time of the flood event (see previous subchapter 6.2.1). The difference between high- and medium-

worry level households in the adaptation uptake is also recognizable in the prevented damage (Figure 

18–A). Similarly, our previous findings on the lower effect of the social network on the adaptation 

diffusion are reflected in the similarities in damage reduction between the groups (Figure 18–C).  

 

Figure 18: Impact of (A) worry, (B) self-efficacy, (C) social network, and (D) income levels on the 
relative damage reduction for six different flood scenarios 

 
17 The building and content values of households from different societal groups e.g., different income classes, can differ, 

leading to differences in absolute flood damage and hence also absolute damage prevention between the groups. Thus, we 

use the relative damage reduction (prevented damage divided by the total potential flood damage) as a metric to compare the 

groups.  
18 In Appendix F.2 we apply the Welch’s ANOVA (W-test) and the Brown-Forsythe test (F*-test) which show that there are 

significant differences of the mean damage reduction between the groups for each socio-behavioural factor (worry, self-

efficacy, social network size, and income).  
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Overall, it needs to be mentioned that our results are very dependent on the timing of the flood events. 

For flood events in 2021, the adaptation uptake within a household group depends on the number of 

households within the group that adapted a measure in the survey. It does not yet take into consideration 

the adaptation uptake during the simulation. For flood events in 2040, the adaptation of measures is 

heavily impacted by the expiration of the wet-proofing measures – the most adapted measure category 

during the simulation runs. Hence, the flood scenarios are by accident constructed in such a way that 

other model mechanisms such as the measure expiration and the measure implementation time appear 

to overshadow the differences in the adaptation uptake between the attribute levels. Different flood 

scenarios, e.g., with flood events in 2030 may lead to different patterns in the damage reduction.  

The practical takeaway from the distributional results is that household groups with lower worry, self-

efficacy, and income adapt measurably slower to climate-induced floods, which makes them more 

vulnerable to climate-induced floods. Therefore, policies need to be designed that specifically target 

these disadvantaged household groups.  
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7. Conclusions and discussion 

7.1. Answering the main research question 

This thesis presented an agent-based model (ABM) to understand the role of household climate change 

(CCA) adaptation in reducing coastal flood risk in downtown Shanghai, China. In the following, we 

answer each sub-question (SQ), which in combination with each other provides a holistic perspective 

that helps answer the main research question. 

SQ1: ”How can we determine the coastal flood risk of households for different climate-induced flood 

scenarios?” 

To determine the flood risk, we combined context-specific hazard, exposure, and vulnerability data. To 

model the households’ exposure to climate-induced floods we overlayed the geolocations of 18.039 

residential buildings in the Shanghai city centre districts from OpenStreetMap with 21 inundation 

maps for storm surges that depict dike failure, dike overtopping, sea level rise and land subsidence under 

different climate-change scenarios in Shanghai. The results indicate that a 10-year flood in 2100 under 

the RCP 8.5 scenario leads to a higher exposure of residential buildings than a 100-year flood in 2050 

and a 1000-year flood in 2010 (Figure 7). This underlines the nonlinear impacts of sea-level rise and 

land subsidence on the households’ exposure in the Shanghai city centre. Furthermore, it emphasizes the 

need to promote household adaptations that complement government-level measures to address the 

adversities of climate change. In combination with context-specific depth-damage curves and asset 

values for residential buildings and contents, we determined the direct and tangible flood damages of 

each household in our ABM. In SQ2, we show how households can adapt to reduce their flood risk. 

SQ2: ”What are the households’ main climate change adaptation measures and how do they reduce 

coastal flood risk?” 

We applied unique micro-level survey data on factors motivating household’s adaptation intentions in 

Shanghai (n=933) and categorized ten of the individual measures into three household-level measure 

categories: Elevation, wet-proofing, and dry-proofing. We further analysed the context-specific survey 

data to determine the average cost of the adaptation categories and compared these costs with other risk 

studies. Furthermore, we reviewed risk studies to determine the measures’ effectiveness in reducing 

flood damage, as well as their life- and implementation times.  

We concluded that the three adaptation actions differ in terms of damage reduction effectiveness, cost, 

lifetime, and implementation time. While elevation is very effective in reducing flood damage below the 

elevation level, it is also costly and requires the longest implementation time. Wet-proofing is less 

effective but can reduce damage at high flood depths. In addition, wet-proofing has a similar cost to 

elevation but has a shorter implementation time. Dry-proofing has greater effectiveness than wet-

proofing but reduces flood damage only at lower flood depths. In addition, dry-proofing has the lowest 

cost and a similar implementation time to wet-proofing. We assume that dry-proofing is the only non-

permanent measure. Now that we know how households adapt, it is necessary to understand why they 

adapt.  

  



40 

SQ3: ”What are the behavioural factors that motivate household flood-adaptation intentions?” 

To specify households’ adaptation behaviour, we relied on the most prominent theory used to examine 

climate change adaptation (CCA): the Protection Motivation Theory (PMT). We use an extension of 

the base PMT, which next to threat and coping appraisal also accounts for preceding flood engagement, 

external influences by media and peers, climate-change beliefs as well as the demographic background 

(Noll, Filatova, Need, et al., 2022). This extension allowed us to consider not only internal but also 

external factors which are considered relevant for behavioural adaptation (Noll, Filatova, Need, et al., 

2022; Wilson et al., 2020).  

To determine the impact of these factors on the household’s adaptation intentions, we created logistic 

regression models based on the micro-level survey data for each adaptation measure category (elevation, 

wet-proofing and dry-proofing). Our results show for the base PMT variables, that worry, and self-

efficacy provide high positive explanatory power for all adaptation actions. Overall, these observations 

appear in line with past research which shows that threat and coping appraisal are an important predictor 

of household adaptation (Bubeck et al., 2013; Grothmann & Reusswig, 2006; Noll, Filatova, Need, et 

al., 2022; Zaalberg et al., 2009). The results for the extended PMT variables show a consistent and 

positive effect on the adaptation intention of the external influence parameters, which include the 

expectation of family and friends as well as social media. These findings appear consistent with previous 

research which show the relevance of interactions in social networks on individual CCA (Bubeck et al., 

2013; Figueiredo et al., 2009; Haer et al., 2016; H. Kunreuther et al., 2013; Lara et al., 2010; Lo, 2013; 

Noll, Filatova, Need, et al., 2022; van der Linden, 2015). It is to note that adaptation intentions do not 

necessarily lead to adaptation actions (Grothmann & Patt, 2005). Hence, we included adaptation barriers 

in the form of a household’s savings and adaptation regulations in our model and included an intention-

behaviour gap parameter. 

The answers to the first three SQs provide the data for our flood-ABM which we use for experiments to 

answer SQ4 and SQ5. 

SQ4: ”What are the aggregate impacts of household adaptation to climate-induced coastal floods in 

terms of adaptation uptake and damage prevention?” 

In terms of aggregate impacts, our results show that a household’s savings appear to be a relevant 

adaptation barrier. On average, about one-fifth of households are hindered by a lack of savings from 

acting upon their adaptation intentions. Therefore, households tend to opt for more inexpensive 

adaptation measures such as wet-proofing. This explains why from 2020 until 2040 on average 40% of 

the household population adapts dry-proofing compared to 12% who uptake wet-proofing.  

Due to the increase in adaptation uptake the damage prevention rises from on average 21% for the single 

2021 flood scenarios to approximately 50% for the 2040 single flood scenarios. Nevertheless, the 

residual damages increase due to the effects of climate change. For instance, the residual damage for 

a 1000-year flood under the RCP 8.5 scenario rises from 14.5 Mil. € in 2021 to 24.8 Mil. € in 2040. This 

highlights that autonomous household CCA is very important to prevent flood damages when dikes 

break or are overtopped, but insufficient to keep up with the increasing severity of climate-induced 

flooding. Hence, households should be encouraged by FRM policies to further uptake adaptation.  

Our findings also indicate that the damages caused by 1000-year floods negatively impact the exposed 

households’ savings, reducing their ability to finance subsequent adaptations. This results in a 

measurable decrease in the aggregated adaptation uptake, increasing the households’ vulnerability to 

future floods. With the understanding of the aggregated behaviour, we take a closer look in the next SQ 

at how different household groups behave and what this means for their damage prevention. 
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SQ5: ”What are the distributional impacts of household adaptation to climate-induced coastal floods 

in terms of adaptation uptake and damage prevention?” 

To observe distributional impacts, we differentiated households with various socio-behavioural 

attributes: worry, self-efficacy, social network size, and income. As shown in SQ3, worry, self-

efficacy, and social network size (which impacts social influence) pose a set of socially-constructed 

adaptation limits as they significantly and positively influence a household’s probability to adapt. On 

the other hand, income is an important indicator of a household's savings, constraining the household’s 

adaptive capacity.  

Our results show that household groups with lower worry, self-efficacy, and income adapt measurably 

slower to climate-induced floods. The most dominant effect can be observed for income, followed by 

self-efficacy. For instance, the mean proportion of high-income households that adapt wet-proofing 

measures increases in absolute terms by 30% over the simulation lifetime, compared to less than 10% 

for the lower-income households. The slower adaptation uptake makes these household groups 

considerably more vulnerable. For instance, for a 1000-year flood in 2040 under the RCP 8.5 scenario, 

high-income households prevent on average 59% of the flood damage, while low-income households 

only prevent 27%. Combined with the results of SQ4, this implies that low-income households and their 

savings are more affected by flood events, which reduces their future adaptive capacity, leading to a 

vicious cycle as described by the United Nations (2017). These results are in line with other research 

findings which suggest that the adversities of climate change will have a disproportionate impact on 

already disadvantaged societal groups e.g., low-income, thus further increasing social inequality of 

climate change (Gourevitch et al., 2022; Hsiang et al., 2017; Ringquist, 2005; United Nations, 2017). 

Main research question: 

“What role does household climate change adaptation  

play in reducing coastal flood risk?” 

In summary, climate change increases the likelihood that the publicly-funded flood defences in Shanghai 

such as dikes are breached or overtopped, increasing households’ flood risk. At the same time, the public 

flood defence infrastructure entails unintended consequences e.g., attracting more people and capital to 

the newly protected areas and ultimately increasing the risks (‘self-development paradox’). If these top-

down measures fail due to the effects of climate change, the private adaptation actions determine the 

extent of the damage and the resilience of communities.  

We conclude that autonomous household CCA plays an essential role in reducing coastal flood risk 

when public flood defence infrastructures fail, even in well-protected coastal cities such as Shanghai. 

However, autonomous household CCA is not sufficient to keep pace with the increasing severity of 

climate-induced flooding, as it is limited by adaptation barriers in the form of measure costs and 

regulations. Therefore, additional policies are required to overcome these barriers and increase the 

adaptation uptake. These policies should take into account differences in adaptation behaviour and 

damage prevention among socio-economic household groups to avoid amplifying social inequalities 

of climate change. 
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7.2. Policy implications 

This thesis aims at understanding the role of household CCA in reducing coastal flood risk in Shanghai 

to gain new insights for policymakers. In the following, we discuss the potential implications of our 

results for flood risk management (FRM) policies. 

In terms of aggregate effects, the key takeaways for flood policies are as follows. First, our results 

indicate that autonomous household CCA can play a significant role in reducing residential flood damage 

in the Shanghai city centre (up to 50%) when dikes fail or are overtopped. However, due to the increase 

in the severity of climate-induced floods, the absolute residual damage increases despite the autonomous 

adaptation of households, necessitating government policies that further motivate household adaptation. 

This is in line with Fankhauser et al. (1999, p.74) who suggest that “…the main role for government will 

be to provide the right legal, regulatory and socio-economic environment to support autonomous 

adaptation.” Shanghai authorities should therefore reinforce their centralized FRM early on with greater 

involvement of individuals such as households, as also suggested by Du et al. (2020). Second, our 

results show that high measure costs appear a relevant barrier to household adaptation. About one-fifth 

of households are hindered by their financial situation from acting upon their adaptation intentions. 

Therefore, subsidization of the measure costs could be helpful. Alternatively, information campaigns 

could be beneficial to emphasize the use of low-cost measures such as storing expensive possessions on 

higher levels. Next, our findings show that households require external help to cover their flood damages 

after severe flood events. This would help households in financing subsequent adaptation intentions that 

result from the increased flood experience. Authorities could provide such relief in the form of a “build 

back better” fund. Lastly, our findings indicate that adaptation regulations – in our case the artificial 

rule that only households who own a house can implement elevation measures – can have a considerable 

impact on the adaptation uptake and hence damage reduction. For Shanghai policy makers this means 

that a change in local flood adaptation regulations could alter private adaptation uptake and the 

aggregated residential flood damage prevention. 

In terms of distributional effects, we analysed the influence of four socio-behavioural attributes - worry, 

self-efficacy, social network, and income - on the adaptation uptake and risk reduction. Our results show 

that household groups with lower worry, self-efficacy, and income levels adapt on average slower. This 

can make them vulnerable to climate-induced flooding, which in turn can result in a higher proportion 

of unmitigated flood losses, thus reducing households’ savings and their future adaptive capacity, 

resulting in a vicious cycle similar to the one described by the United Nations (2017). Especially income 

plays a dominant role on the speed and scope of household adaptation and damage prevention. Shanghai 

authorities should therefore specifically subsidize flood adaptation measures for the first- and 

second-income quintiles of households (‘low-income’) to allocate monetary resources to the societal 

groups that need them the most. In addition, awareness campaigns that educate lower worry households 

about the magnitude of the threat posed by climate-induced flooding could be beneficial. To increase 

the awareness of the threat of climate-induced floods, additional policies could be designed that foster 

climate change education – see for instance Q. Han (2015). Furthermore, information campaigns 

could be helpful to increase the ability of lower self-efficacy households to undertake measures 

themselves. Our results also underline that fast-adapting household groups can become vulnerable if 

flood events occur at the time when their non-permanent adaptation measures have expired. Shanghai 

authorities should therefore regularly encourage households to renew their non-permanent measures 

in time.  
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7.3. Scientific relevance  

7.3.1. Methodological research contributions 

The main methodological research contributions of this thesis are as follows.  

First, we populate households in our flood-ABM with context-specific micro-level survey data. On the 

one hand, this leads to more realistic agent behaviour and model results (Chapuis et al., 2022) which 

increases the suitability of our flood-ABM to inform policies (L. Sun & Erath, 2015). On the one hand, 

the empirical micro-foundation of household behaviour simplifies the validation and benchmarking of 

our flood-ABM (Aerts, 2020). 

Next, we base the households’ adaptation behaviour on an extended version of the most prominent theory 

used to examine CCA: the Protection Motivation Theory (PMT). The extended PMT takes not only 

internal but also external factors into consideration which are considered relevant for behavioural 

adaptation (Noll, Filatova, Need, et al., 2022; Wilson et al., 2020). Furthermore, the theoretical 

foundation of behavioural household CCA is beneficial for sustainable and fast scientific progress, 

interdisciplinary communication, testing of alternative theories and the in-depth analysis of agent 

interactions (Bell et al., 2015; Groeneveld et al., 2017; Klabunde & Willekens, 2016; Taberna et al., 

2020). 

Lastly, we apply inundation maps in our flood-ABM which depict the effects of sea level rise and land 

subsidence for different Representative Concentration Pathways on dike breaking and overtopping. We 

then link the households’ adaptive decisions to these climate-induced floods. An integration of such 

climate dynamics is especially important since private adaptation determines the damage extent when 

public flood defence infrastructures fail, which is becoming more likely due to climate change (J. Yin et 

al., 2020).  

In summary, we conclude that our ABM enables more realistic modelling of household CCA to coastal 

flooding. This increases the credibility of our flood risk assessment and its suitability for FRM policies. 

7.3.2. Insights for flood risk management debate 

Our results also provide new insights for FRM research.  

On the one hand, we quantify the impacts of behavioural household CCA in Shanghai, China. 

Currently, most work on behavioural household adaptation focuses on Europe and North America (see 

chapter 2.2). As cultural, social, environmental and institutional contexts matter for behavioural CCA of 

households, transplantation of FRM policies from Europe and North America to Asia is not 

recommended (Noll et al., 2020; Noll, Filatova, Need, et al., 2022). We provide context-specific insights 

on the cumulative scope and extent of behavioural household CCA in China, which could be applied to 

inform local FRM policies. Hence, the results of this thesis are an important addition to the scarce 

adaptation evaluations in China (Du et al., 2019, 2020).  

On the other hand, in contrast to most contemporary flood risk models which integrate household CCA, 

we not only quantify the aggregate but also the distributional impacts of household CCA on flood risk. 

Aggregate impacts alone do not suffice to inform FRM policies as the differences in the adaptation 

diffusion and damage prevention amongst various societal household groups are neglected 

Consequently, it is essential to also quantify the distributional impacts of household CCA. Our results 

can provide policymakers with insights into the adaptation behaviour and risk reduction of different 

societal groups, e.g., low-income, or low self-efficacy households. These insights can help design 

tailored FRM policies which allocate resources to the societal groups that need them the most. Therefore, 

this work is an important contribution at the novel interface between behavioural household CCA and 

social vulnerability research - see Aerts et al. (2018). 
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7.4. Societal relevance  

The societal impact of research is becoming more and more important in academia (Bornmann, 2013). 

According to Bornmann (2013, p.218), this entails the “(a) social, (b) cultural, (c) environmental, and 

(d) economic returns (impact and effects) from results (research output) or products (research 

outcome)…”19. We will apply these four dimensions to discuss the potential societal impacts of this 

thesis. In our case, the ‘results’ are the research findings, while the ‘product’ is the flood-ABM. 

7.4.1. Social impact 

Social benefits refer to research contributions to a nation’s social capital for instance for approaching 

social issues, policymaking or public debate (Bornmann, 2013). A pressing social issue of climate 

change is the inequality between those who cause the problem and those who suffer from the 

consequences (Roberts, 2001). The inequality exists both between different nations (‘inter-country’) and 

within nations themselves (‘within-country inequalities’) (United Nations, 2017). According to the 

United Nations (2017) especially ‘within-country’ inequality, which they refer to as ‘social inequality’, 

has received little attention. Our thesis helps contribute to the debate on social inequality of climate 

change by studying the distributional impacts of household CCA on flood risk. Our results quantify the 

extent of the social inequality of climate change in terms of flood damage prevention between different 

socio-economic household groups. For instance, we show that high-income households (5th income 

quintile) prevent on average of 59%, while low-income households (1st and 2nd income quintile) prevent 

only 27% of flood damage for a 1000-year flood in 2040 under the RCP 8.5 scenario. Between 2002 and 

2012 the top 40% of the high-income population in China was responsible for more than 58% of the 

indirect carbon emissions (Liu et al., 2019). Thus, the portion of the population that appears to be less 

responsible for climate change and the resulting increase in the severity and frequency of flood hazards 

also appears to be less able to adapt. This comparison is not only relevant for the public debate, but it 

also can be very helpful in designing tailored FRM policies that allocate resources to the societal groups 

that need them most, thus addressing the social inequalities of climate change (see Chapter 7.2). 

7.4.2. Cultural impact 

Cultural benefits entail research contributions to a nation’s cultural capital e.g., in the terms of cultural 

preservation (Bornmann, 2013). Cultural contexts play an important role in individual CCA motivations 

(Noll et al., 2020). Yet, most empirical work on factors motivating individual CCA is conducted in 

Europe and North America (Hopkins, 2015; van Valkengoed & Steg, 2019). Household-level survey 

data on adaptation intentions to climate-induced floods are underrepresented for nations in the Global 

South (Noll et al., 2020). As argued in chapter 1.3, this scarcity of micro-level survey data may restrict 

the development of flood-ABMs that integrate behavioural theories. Our structured literature review 

underlines that flood-ABMs which integrate behavioural theories and focus on bottom-up precautionary 

flood adaptation are only applied in Europe and North America (see chapter 1.3). Hence, the Global 

South not only lacks an understanding of how and why households adapt to climate-induced floods (Noll 

et al., 2020) but also lacks knowledge of the speed and scope of household adaptation and subsequent 

damage prevention, which can be generated from the aforementioned flood-ABMs. Due to the potential 

differences in the drivers and barriers across cultures, it might be misleading to apply flood risk 

mitigation strategies from a country in the Global North to a country in the Global South (Noll et al., 

2020). Ultimately, this makes it more difficult to inform FRM policies and puts the Global South, which 

is disproportionally impacted by climate-induced hazards (IPCC, 2014b) at greater risk (Noll et al., 

2020).  

 

 
19 It should be noted that these dimensions are not mutually exclusive (Bornmann, 2013). 
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Within this thesis, we developed to our knowledge one of the first flood-ABMs in the Global South 

that bases the agent behaviour on behavioural theories. The results take into consideration the local 

contexts of Shanghai households e.g., how they perceive floods or their relationship towards social 

media. Hence, we argue that this thesis contributes to Shanghai’s cultural capital. This can also be seen 

as a contribution toward ‘inter-country’ inequality, which we mentioned previously under the social 

impact in Chapter 7.4.1. 

7.4.3. Environmental impact 

Environmental benefits include the research contributions to a nation’s natural capital (Bornmann, 

2013) e.g., combatting the effects of climate change. The Special Report on the Ocean and Cryosphere 

in a Changing Climate by the IPCC (2019) discovered that sea level rise is happening more quickly than 

previously thought, necessitating faster climate-change adaptation of coastal cities. Our results provide 

further understanding of the speed and scope of household adaptation that is necessary for flood risk 

management policies. Hence, the results of this thesis could contribute to a better protection of 

households against the adversities of climate change and therefore have a positive environmental impact. 

Consequently, this thesis contributes to Sustainable Development Goal 13 which focuses on taking 

“urgent action to combat climate change and its impacts” (United Nations, 2022). 

7.4.4. Economic impact 

Economic benefits entail the research contributions to a nation’s economic capital (Bornmann, 2013) 

e.g., improving public spending. Our flood-ABM could have a positive economic impact both on the 

government- and on the household-level, as explained in the following. On the government level, our 

flood-ABM can be used to understand the impact of policies such as subsidies on the household 

adaptation uptake and the cumulative prevention of direct and tangible residential flood damage under 

different climate change scenarios. These benefits could be compared with the respective costs of the 

policy measure e.g., from other countries, to generate new insights into the efficiency of policies for 

stimulating private CCA to flooding. This could help policymakers prioritize the most efficient policies 

and potentially allow a comparison with the efficiency of government-level adaptation measures such 

as dikes. Hence, it could make the government’s risk mitigation strategies more cost-effective and 

therefore contribute to the economic capital of Shanghai. On the household level, the flood-ABM can 

provide insights into the benefits and costs of different household adaptation actions (elevation, wet-, 

and dry-proofing) for different flood scenarios. This information could be used by households to make 

more efficient adaptation decisions and therefore positively contribute to the households’ economic 

capital.  

However, limitations of assessing the adaptation effectiveness and efficiency need to be carefully 

considered (Adger et al., 2005): Limitations when assessing the effectiveness of CCA in reducing 

damage include 1) the uncertainty about the effect of adaptation measures, 2) the dependence on actions 

by others (e.g., response to flood-warning), 3) the uncertainty of the future system states (e.g., change 

of hazard characteristics due to climate change, socio-economic developments, technological 

innovations), and 4) the unintended impacts of adaptation on other parts of the human-flood system (e.g., 

higher downstream damage due to upstream adaptation). Limitations of assessing the adaptation 

efficiency i.e., a comparison of the costs and benefits of adaptation are 1) the distribution of benefits and 

costs (e.g., between private and public actors), 2) the consideration of non-market goods (e.g., aesthetic 

impacts), and 3) the timing of the adaptation action (long-term vs. short-term). In addition, it needs to 

be mentioned that the purpose of our model is of explanatory and not predictive nature. Hence, a model 

adjustment is required if the model purpose is altered to make financial predictions (Edmonds et al., 

2019). 
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7.5. Limitations and recommendations for future research 

The model results and our analysis are subject to limitations. Our one-factor-at-a-time sensitivity 

analysis shows that the adaptation measure cost and the intention-behaviour gap have a measurable 

impact on the households’ adaptation behaviour. Moreover, the foundation height, and specifically the 

depth-damage curve as well as the asset value significantly influence the total flood damage. Hence, 

these parameters should be further researched to improve the credibility of the results. Specifically, 

longitudinal surveys would be helpful in better understanding the intention-behaviour gap (Noll et al., 

2020; Noll, Filatova, & Need, 2022; Noll, Filatova, Need, et al., 2022). On the one hand, such surveys 

could be useful in further understanding the extent to which adaptation intentions lead to actions (Noll, 

Filatova, & Need, 2022; Noll, Filatova, Need, et al., 2022). On the other hand, longitudinal surveys could 

help determine the socio-behavioural and environmental factors that influence the implementation of the 

previously intended (Noll, Filatova, & Need, 2022) and unintended adaptation actions. However, our 

sensitivity analysis also shows several limitations – see Appendix E.5.3. For instance, the one-factor-at-

a-time sensitivity analysis does not allow for the exploration of interaction effects, which is why we 

recommend an additional global sensitivity analysis (ten Broeke et al., 2016). 

In terms of the households’ adaptation behaviour, our model focuses only on elevation, wet-proofing, 

and dry-proofing measures. To make the model more realistic further adaptation actions such as flood 

insurance (Haer et al., 2016, 2017; Y. Han & Peng, 2019), or the movement of households from high-

risk areas (de Koning & Filatova, 2020; Haer et al., 2016) could be included. In terms of decision-

making, the model behaviour is sensitive to the adaptation rules e.g., that only households that own a 

house can elevate. Hence, we recommend supporting these assumptions with further research on 

formal and informal adaptation rules in Shanghai and suggest a structured approach for integrating 

these rules in the flood-ABM – see Abebe et al. (2019). Additionally, research has shown that 

behavioural theories influence the adaptation behaviour in flood-ABMs (Haer et al., 2017). The 

difference in the adaptation behaviour between different behavioural theories is also known as the 

‘adaptation gap’. Hence, we suggest evaluating the adaptation gap in our flood-ABM for different 

behavioural theories such as the Prospect Theory, or the Expected Utility Theory. Alternatively, 

intelligent decision-making models in the form of machine learning methods could be integrated to 

make the household behaviour even more realistic (Zhuo & Han, 2020). In terms of agents, we currently 

only focus on households. To provide a more holistic perspective on the impact of private adaptation to 

climate-induced floods, the model could include company adaptation (Taberna et al., 2020).  

The model would also benefit from refining human-flood interactions. This includes coupling the 

ABM with numerical flood models to account for influences of the adaptation behaviour on the flood 

hydraulics – see Abebe et al. (2019). Moreover, we recommend extending the influence of flood events 

to other household attributes such as worry, or perceived flood probability and damage (Lechowska, 

2018), which would increase a flood’s impact on the probability to adapt. In addition, we suggest 

modelling households with a flood memory – see Bhattacharya-Mis & Lamond (2014) and de Guttry 

& Ratter (2022).  

We also recommend further extending the social interactions. This includes making the social network 

dynamic, as in real life social connections can change over time. Moreover, we suggest extending the 

impact of household actions in the social network to additional parameters. For instance, Bubeck et 

al. (2013) argue that actions in the neighbourhood could influence the cost perception of a measure. In 

our model, a household’s social network is represented via its closest neighbours. In reality, the social 

connections might reach beyond the neighbourhood e.g., family or friends. Hence, we recommend taking 

such additional social ties into consideration.  
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The experiments performed in this thesis represent only a fraction of the ABM’s potential use cases. In 

the following, we describe additional experiments that can be conducted. Our flood-ABM allows us to 

further analyse the impact of policies such as subsidies, or information campaigns – which are discussed 

in Chapter 7.2 – on the adaptation uptake and damage reduction. The external effect of such policies 

could be simulated by altering the attribute levels of households e.g., cost perception in case of subsidies. 

By comparing the cost of such policies with the prevented damage, insights on the policy efficiency 

could be generated (see the economic impact in Chapter 7.4.4). Moreover, experiments can be designed 

to compare the benefits and costs of household adaptation. Especially with regards to distributional 

effects, this could be very insightful e.g., ‘does private adaptation yield a better benefit-cost ratio for 

high-income or low-income households?’ Furthermore, our model allows observing the adaptation 

behaviour of household subgroups that combine multiple attribute levels e.g., low income and low 

worry. On the one hand such household subgroups or ‘personas’ could be determined in a participatory 

manner for instance using interviews with policy makers – see Adler (2005) and Aquino & Filgueiras 

(2005). The participatory development would also enhance the suitability of the ABM for the analysis 

of flood risk management (FRM) policies (Ghorbani et al., 2014). On the other hand, data-driven 

classification methods such as the Latent Class Analysis could be applied to determine the different 

subgroups of households and to gain more insights into the heterogeneity of flood adaptation – see 

Bubeck et al. (2020). Comparing the adaptation diffusion and risk reduction for a set of household 

subgroups in our flood-ABM could therefore provide more detailed insights for FRM policies. While 

we only apply the inundation maps of J. Yin et al. (2020) in the experiments of this thesis, the ABM also 

includes data from the inundation maps of Du et al. (2020). Hence, we recommend comparing the effect 

of the flood maps which differ in hazard characteristics on the household climate change adaptation 

behaviour. Although our model focuses on Shanghai it can be applied to other case locations by 

updating the input data. Hence, it could be used to compare household adaptation diffusion in two 

different countries with different environmental, institutional, and cultural contexts to generate further 

insights into cross-contextual transplantation of policies.  
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A.  Literature review 

To identify research gaps in the application of flood-ABMs, we conduct a literature review according to 

the guidelines of Kable et al. (2012) on the use of ABMs for individual adaptation to floods. We review 

the literature in two rounds: A first-round on finding existing reviews on flood-ABMs and then a second 

round to detail research challenges identified in the first round. In this appendix we show our 

methodology and provide the results. We discuss the results in chapter 1. Please note that this literature 

review has been conducted as part of the ‘Master Thesis Preparation Course’ (SEN2321). 

A.1. Round 1 literature review 

Due to a large number of ABM applications in flood adaptation research, we specifically search for 

existing literature reviews on flood-ABMs. As shown in Figure 19, the search string for the first round 

is composed of keywords from three domains: ABM, flood, and literature review.  

 

Figure 19: Round 1 search string composition 

The bibliography search engines Scopus and Web-of-Science are used. Entries in the titles, keywords, 

and abstracts are searched for. In addition, only English-language articles and articles published in the 

final stage are included on Scopus.  

The first-round review was conducted on the 23rd of November 2021 and resulted in 10 hits in Scopus 

and 2 hits in Web-of-Science. The results are further filtered in two stages, as shown in Figure 20. First, 

articles which are not literature reviews are removed. Second, articles are excluded which focus 

exclusively on hydrological modelling or short-term operational response such as emergency 

management. After accounting for duplicates one additional article is identified via backward 

snowballing and hence three records are included. 
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Figure 20: Round 1 search scheme depicting the number of articles 

 

Table 3: Round 1 results overview 

Reference 
Scope of  

reviewed articles 

Number of 

reviewed articles 

Year range of  

reviewed articles 

Aerts (2020) 

Flood adaptation effectiveness in 

decreasing flood risk, economic loss, and 

optimizing the efficiency of evacuations 

18 2016-2020 

Taberna et al. (2020) 

Socioeconomic impacts and responses to 

urban floods, specifically the mid-and 

long-term adaptive behaviour and 

resilience to climate-induced flooding. 

28 2017-2020 

Zhuo & Han (2020) 

Flood risk management perspective on the 

link between human/institutional decisions 

and behaviour to flood risk. 

61 2009-2020 

 

As shown in Table 3, we can identify three suitable literature reviews with slightly different but 

overlapping research scopes. Consequently, they provide a broad perspective on our research field. One 

important feature explored in these reviews is the modelling accuracy of the agent decision-making. All 

three reviews point to two gaps which we discuss in chapter 1. 
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A.2. Round 2 literature review 

The research string – see Figure 21 – combines keywords from three research fields: ABM, flooding, 

and (behavioural) theory. The bibliography search engines Scopus and Web-of-Science are used. Entries 

in the titles, keywords, and abstracts are searched for. In addition, only English-language articles are 

included. Moreover, only articles published in the final stage, as well as journal articles, are included on 

Scopus.  

 

Figure 21: Round 2 search string composition 

The review was conducted on the 25th of November 2021 and resulted in 36 hits in Scopus and 19 hits 

in Web-of-Science. A multi-stage screening is applied to the results as shown in Figure 22. Articles 

without bottom-up precautionary flood-adaptation ABMs incorporating behavioural theories are 

excluded. Moreover, as the results are retrieved from two databases, duplicates are removed, resulting 

in six articles. In addition, six articles are identified via backward snowballing and hence twelve articles 

are included. 

 

Figure 22: Round 2 search scheme depicting the number of articles 

As shown Table 4, we depict which behavioural theories are used in the ABMs. Moreover, we show the 

geographical scope to understand in which areas knowledge has already been generated with the help of 

flood-ABMs with behavioural theories. Three different behavioural theories can be identified: the 

Expected Utility Theory (EU), the Protection Motivation Theory (PMT), and the Prospect Theory (PT). 

Their characteristics and differences for the application in a flood risk context are discussed in the three 

existing literature reviews of Aerts (2020), Taberna et al. (2020), and Zhuo & Han (2020). Moreover, 

their advantages and disadvantages in the context of climate change adaptation are summarized by 

Villamor et al. (2022). Hence, we refer to these papers and will not further compare them in this thesis. 

Regarding the geographical scope, we notice that the ABMs are only applied in Europe and the United 

States. We discuss these results further in chapter 1.  
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Table 4: Round 2 results overview 

Reference 
Behavioural theories 

Geographical scope 
EU PMT PT 

Abebe et al. (2020)  X  Hamburg (GER) 

De Koning & Filatova (2020) X  X Greenville & Beaufort (US) 

De Koning et al. (2017) X  X Greenville (US) 

Erdlenbruch & Bonté (2018)  X  Aude & Var (FR) 

Filatova (2015) X   Beaufort (US) 

Filatova et al. (2011) X   Coast region (NL) 

Haer et al. (2016)  X  Rotterdam-Rijnmond (NL)  

Haer et al. (2017) X  X Heijplaat (NL) 

Han & Peng (2019)   X Miami-Dade County (US) 

Han et al. (2021)  X  Miami-Dade County (US) 

Magliocca & Walls (2018) X  X Different regions (US) 

Michaelis et al. (2020)  X  
Floodplain of the river Po 

(IT) 
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B. Model description – ODD  

In this chapter we describe the model using the ODD protocol (Grimm et al., 2020), which is extended 

by a summary of the model assumptions and a model narrative. With regards to the process steps of 

Nikolic et al. (2013), it details the system identification and decomposition, the concept formulization 

and the model formulization.  

B.1. Purpose and Patterns 

The higher-level purpose of this model is to understand the role of household climate change adaptation 

to coastal floods in Shanghai. We are not interested in building a predictive model that can forecast how 

many households adapt in a certain year. Instead, we aim for an explanatory model - see Edmonds et al., 

(2019) - which allows us to study the “causal chain” between the agent’s adaptation behaviour and 

system-level impact on the flood risk.  

More specifically, we build the model to understand both the aggregate and distributional effects of 

household climate change adaptation. In terms of aggregate effects, we want to build a model that helps 

us understand how households’ adaptation decisions influence the overall mitigated flood damage. In 

terms of distributional impacts, the model should help in understanding how household groups with 

different socio-behavioural attribute levels adapt differently and what this means for the flood risk of the 

group.  

On the one hand, the model could be used by scientists to understand the impact of different policy 

measures e.g., subsidies or information campaigns on the adaptation behaviour of households. On the 

other hand, the model could be used by policymakers to generate insights into the adaptation behaviour 

and risk exposure of different social groups. This could foster the design of multi-actor cross-scale flood 

adaptation strategies that address “within-country inequalities” of climate change (United Nations, 

2017).  
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B.2. Entities, State Variables, and Scales 

B.2.1. Entities 

Two entities are considered in this model: Households and the environment.  

Households: We only consider households as agents in this model as we focus on household adaptation 

to climate induced floods. Households are static and are represented by the residential buildings in which 

they live which means that each household lives in one residential building and vice versa. In the case 

of multi-story buildings, it is assumed that households live on the ground floor.  

Environment: The environment includes the flood events and the time. To represent flood events, we 

apply inundation maps. The flood depth, location, and probability depend on the respective flood 

scenario. 

Other entities such as companies, or the government were not included as they are not within our research 

scope. 

B.2.2. State Variables 

Households have two state variables: Adaptation status and flooded. Table 2 in the main text summarizes 

the agent states together with the model parameters, the variable type, value range, and source. 

B.2.2.1. Adaptation status 

Within our model, for each of the three measure categories elevation, wet-proofing, and dry-proofing, 

households can have different adaptation states:  

• Do nothing (adaptation status = 0): The household either has not started implementing yet, or 

the measure has expired.  

• Implementing (adaptation status = 1): The household decided to start implementing the measure, 

but the implementation is not yet finished. If this is the case, we assume that the adaptation 

measure is not “active” yet and does not reduce any flood damage that occurs while the 

implementation is ongoing.  

• Adapted (adaptation status = 2): The household finished the implementation of the measure, and 

the measure is now able to reduce flood damage.  

We assume that a household can adapt multiple measures at the same time. E.g., a household can elevate 

and dry-proof at the same time. 

B.2.2.2. Flooded  

This state determines whether a household is flooded or not. We assume a household to be flooded if 

the residential building in which the household lives has an inundation depth which is larger than the 

elevation of the building foundation. This assumption also is considered in other flood ABMs – see 

Abebe et al. (2020). The building flood depth is extracted at the location of the centroid of the building 

polygon. The flood depth of a residential building is determined by overlaying the inundation map with 

the residential building map.  
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B.2.3. Scales 

B.2.3.1. Temporal scales 

The selection of an appropriate temporal scale is highly relevant for flood-ABMS (Taberna et al., 2020, 

p.8):  

“Risk propagates through time. Moreover, resilience encompasses the risk framework and the system’s 

ability to cope with a shock considering its capacity to learn, adapt, recover and self-organize. 

Therefore, the temporal dimension is crucial to capture critical transitions happening in such systems.”  

Three factors determine the temporal scale: The time step, the starting point, and the time horizon.  

• Time step: In our model, one year reflects one time step. This appears to be the standard in socio-

hydrology flood-ABMs – see Taberna et al. (2020). 

• Starting point: We choose 2020 as the starting point for our model, as the majority of the input 

data (survey & inundation maps) is from this year. Hence, the monetary data (e.g., measure cost) 

is transformed into 2020 values. 

• Time horizon: The main goal is to study the impact of socio-behavioural factors motivating 

household adaptation over time and not to study short-term post-event flood responses or 

recovery. Hence, we are interested in studying the effect of household adaptation in the mid-to 

long term. A time horizon of 30 years appears a good trade-off for studying both social dynamics 

and environmental processes. A similar time horizon is chosen by Erdlenbruch & Bonté (2018) 

and Han & Peng (2019). Longer time horizons would better capture the impact of sea-level rise 

and land subsidence on the flood risk – see J. Yin et al. (2020). However, long-term horizons 

(50-100 years) pose the issue of increasing uncertainty in socioeconomic projections such as 

technological innovations (Taberna et al., 2020) and therefore 30 years appear more suitable.  

B.2.3.2. Spatial Scale 

The ABM does not have a direct spatial component itself. Instead, the spatial model components are 

determined in QGIS and loaded into the ABM in the form of data tables to improve the simulation time. 

• Inundation maps: The inundation maps are overlayed with the residential building data to 

determine the inundation depth of each residential building.  

• Nearest neighbours: Instead of determining the nearest neighbours within the simulation model, 

the N nearest neighbours of each residential building are determined in QGIS via the distance 

matrix. Hence, each household knows the IDs of the N closest residential buildings which are 

used in the simulation model to call the respective household and exchange information.  

Geographically, the ABM focusses on the city centre districts of Shanghai. 20 To improve the simulation 

time, the model is designed in such a way that Shanghai city centre districts can be easily added to or 

removed from the experiment via switches in the user interface without requiring further adjustments in 

the program or data (see software implementation, Appendix C.1). Technically, the spatial area can be 

increased to all Shanghai districts. This would however limit the speed of the simulation and it would 

require higher data quality of residential buildings in the non-city centre districts (see ODD protocol, 

Appendix B.6.1.2). 

  

 
20

 See chapter 3.2 for scoping decisions on Shanghai and in particular the city centre districts. 
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B.3. Process Overview and Scheduling 

After declaring and initializing the parameters in the setup function, the process for every tick goes as 

shown in Figure 23 and as described in the following: 

 

Figure 23: Process overview and scheduling 

B.3.1. Determining household action based on the adaptation status 

Each household determines for each of the adaptation measures elevation, wet- and dry-proofing the 

action based on the respective adaptation status.  

Households can already start the simulation with implemented adaptation measures, depending on 

whether or not the respective survey respondent that is assigned to the household indicated that previous 

measures in the respective measure category were already undertaken. Therefore, all adaptation states 

need to be checked to start from the first tick.  

If the adaptation status is do nothing (0) the sub model Check Implementation Start (Appendix B.7.4) is 

called. Based on the attribute levels of households and the odds ratios from the regression analysis as 

well as additional rules for the regulative and economic barriers, it is determined whether or not the 

household starts the implementation of the measure. In this case, the adaptation status is changed to 

implementing (1). Else, the status stays at do nothing (0). If the implementation time of the measure is 

set to 0 and the measure implementation is started, the sub model Check Implementation Finish 

(Appendix B.7.5) is entered, as in this case, the measure would be implemented in the tick in which the 

decision is made to implement.  

If the adaptation status is implementing (1) the sub model Check Implementation Finish (Appendix 

B.7.5) is called. Based on the starting time of the implementation, the current tick, and the 

implementation time of the respective measure it is determined if the measure implementation is 

finished. If so, the adaptation status is changed to adapted (2), otherwise, it stays at implementing (1). It 

is important to note that every household which starts the implementation also finishes it after the 

implementation time is passed. If a household adapts at least one measure, the indirect neighbours 

increase their count of the number of neighbours who adapted at least one measure by one. 
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If the lifetime of the respective measure is set to 0 and the measure is adapted, then the sub model Check 

Adaptation Expiration (Appendix B.7.6) is called immediately, as the measure would expire in the tick 

in which it is implemented.  

If the adaptation status is adapted (2) the sub model Check Adaptation Expiration (Appendix B.7.6) is 

called. Based on the finish time of the implementation, the current tick, and the lifetime of the respective 

adaptation measure, it is determined if the measure expires. Some measures are assumed permanent 

(elevation and wet-proofing) and hence have an “infinite” lifetime, while others are assumed non-

permanent (dry-proofing) and can expire (see the Appendix B.6.3.2). If a measure expires, the adaptation 

status is set back to do nothing (0), otherwise, it stays adapted (2). If a household transitions from 

adapting at least one measure to zero measures, the adaptation count of the indirect neighbours is 

decreased by one.  

B.3.2. Determining flood damage (reduction) based on the flood status 

After checking and updating the adaptation status the model determines the influence of potential flood 

events. In other words, this means we assume that floods occur at the “end” of a year. Based on the 

inputs in the user interface it is determined which flood scenario occurs in which tick.  

In case of a flood event, the flood depth is determined for each household by looking at the respective 

inundation depth which was pre-determined in QGIS (see sub model Check Flood Depth in Appendix 

B.7.7). If a household is flooded the flood damage is assessed for the building structure and content using 

the respective value and depth-damage-curve (see sub model Check Flood Damage in Appendix B.7.8). 

If a household is flooded and the household has implemented at least one adaptation measure the flood 

damage reduction of the measure is determined using the respective effectiveness level and damage 

reduction effectiveness (see sub model Check Flood Damage Reduction in Appendix B.7.9). Based on 

the flood damage, the savings and flood experience are adjusted (see sub model Update Flood 

Experience and Savings in Appendix B.7.10). In case there is no flood event, these steps are skipped. 

B.3.3. Updating the agent parameters and checking simulation end 

This process step updates agent parameters based on the actions and interactions in this tick.  

First, the agent state flooded is reset for the next tick. Second, based on the adaptation of the direct 

neighbours of a household in this tick, the social influence variable is adjusted. This must be done before 

the probability is recalculated. Third, for each adaptation measure the probability to implement the 

measure is calculated together with the implementation threshold. Afterwards, the model checks if the 

time horizon is passed, and ends the simulation run. Otherwise, the process starts from step i again and 

the tick counter is increased by one. More details can be found in the sub-model Update agent 

parameters in Appendix B.7.2.  
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B.4. Design Concepts 

B.4.1. Basic Principles 

The adaptation decisions in our model are based on the Protection Motivation Theory, on the most 

prominent theory used to examine climate change adaptation to floods (Babcicky & Seebauer, 2017). A 

description of the PMT which we use in this model can be found in the Chapter 4.3 in the main text and 

in the input data chapter of the ODD protocol in Appendix B.6. 

B.4.2. Emergence 

In our model, households make adaptation decisions based on their heterogeneous parameters and states. 

These decisions can influence the household’s own future adaptive actions as well as the adaptation 

decisions of the household’s neighbours. Moreover, flood events effect the households’ adaptation 

decisions (details see Interaction). Hence, the cumulative adaptation behaviour and the flood mitigation 

is a result from the interactions of multiple heterogeneous households with each other in a social network 

and with the environment. It is therefore more than the sum of individual household actions and can 

potentially lead to emergent system-level behaviour. 

B.4.3. Adaptation 

The adaptation of households is in detail described in the Chapter 5.1.2 in the main text. 

B.4.4. Prediction 

One could argue that within the model, three predictions based on regression analysis take place:  

First, the calculation of the probability to intend to adapt a measure is based on the results of a binary 

logistics regression (see the Appendix B.6.4). Hence, one could say that we try to predict a household’s 

probability to intend to adapt in each time step based on its attribute values.  

Second, the change in the social influence parameter based on the amount of adapted direct neighbours 

is calculated using the beta factor of a linear regression model (see the Appendix B.4.6). One could say 

that we try to predict by how much the social influence parameter changes if one more direct neighbour 

adapts at least one measure.  

Lastly, the intention gap, which results from the average slopes of three linear regressions (see the 

Appendix B.6.4) is used to “predict” the number of households which put their adaptation intention into 

action. 

B.4.5. Sensing 

Household agents are assumed to know when their direct neighbours adapt to flooding. Moreover, 

households realize when their non-permanent measure expires. 
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B.4.6. Interaction 

In summary, agents interact within their static social network and adjust their social influence attribute 

level based on the adaptation behaviour of the households within their direct neighbourhood, which 

positively influences the probability of a household implementing a measure. In the following, we further 

detail our decisions. 

Why do we include a social network?  

On the one hand, previous research shows the relevance of interactions in social networks on individual 

climate change adaptation (Bubeck et al., 2013; Figueiredo et al., 2009; Haer et al., 2016; H. Kunreuther 

et al., 2013; Lara et al., 2010; Lo, 2013; Noll, Filatova, Need, et al., 2022; van der Linden, 2015). On 

the other hand, our binary logistics regression results (see input data – behavioural factors) show that 

the influence of a household’s social network is one of the strongest predictors on the adaptation 

intention for all measures.  

Which households are included in the social network?  

Following Erdlenbruch & Bonté (2018) we decide to represent a household’s social network via its 

neighbours. We assume that a household can see the process of installing the adaptation measures of its 

neighbours. Research also suggests that the likelihood of an individual’s adaptation increases if the 

majority of residents in a neighbourhood adapt to floods (H. C. Kunreuther & Erwann, 2009). 

We determine the neighbours based on proximity as in our opinion proximity matters in flooding 

following the logic: “If households who are physically close to me adapt, then I am likely more 

influenced by their actions compared to households which are further away and have other physical 

conditions (e.g., live on a hill).”  

Instead of determining the nearest neighbours within the ABM itself, which would increase the 

computational effort, the 15 nearest neighbours of each residential building are determined in QGIS via 

the distance matrix. We choose 15 neighbours as this appears a reasonable maximum network size of a 

household’s neighbours. Hence, each household knows the IDs of the 15 closest residential buildings 

which are used in the simulation model to call the respective household and exchange information. There 

are however two caveats to this approach:  

First, we need to make sure that in case of spatial down- or upscaling of the model (e.g., selecting only 

one city centre district), a household still has access to the information of its neighbours. Therefore, we 

assume that each household can only consider the households within the same district as a neighbour. 

Hence, adding or removing districts does not impact the neighbourhood of households. However, this 

means that there are no connections across districts, which means that adaptation diffusion through the 

social network is limited to the district.  

Second, as the nearest neighbours for each household are based on proximity, this means that the 

neighbourhoods are one-directional: If household A is neighbour to household B, household B does not 

necessarily need to be a neighbour of household A, as B might have other neighbours which are closer 

than A. As a result, we need to distinguish between a direct and an indirect neighbourhood: Direct 

neighbours are the households which are closest to me and hence which influence me with their actions. 

In other words, these are the households that I consider neighbours. Indirect neighbours on the other 

hand are the households which consider me a direct neighbour and hence, which I influence with my 

actions. 
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How many households are included in the social network?  

We assume the social network size Soc_neth of a household h to be heterogeneous. We use the number 

of adapted households NN_adapth,t in a household’s social network (data from survey) and the 

percentage of the households which adapted at least one measure (data from survey) to estimate the size 

of the household’s social network Soc_neth, as explained in the following.  

For each household we know from the survey data the number of households in the social network which 

have taken some adaptive action towards flooding Adapted_soc_neth. From the survey data (933 

households) we know the proportion of households in Shanghai which adapted at least one measure 

(64%), and which did not (36%). By combining these two data points we can estimate that the social 

network size is approximately 3 times the size of the adapted social network for each household as shown 

in Equation 3: 

𝑆𝑜𝑐_𝑛𝑒𝑡ℎ =  𝐴𝑑𝑎𝑝𝑡𝑒𝑑_𝑠𝑜𝑐_𝑛𝑒𝑡ℎ  × 3 (3) 

 

What actions of households within a social network are influential?  

Following Haer et al. (2016) and Erdlenbruch & Bonté (2018), we assume that a household is influenced 

by the adaptation actions of the household’s (direct) neighbourhood. We do not distinguish between the 

different types of adaptation measures a neighbour is taking. Also, we assume that the number of 

measures a direct neighbour adapts is not influential, but whether they adapt at least one measure or not.  

How are these actions influencing a household? 

For the household interaction, we use the social influence parameter Soc_infh that captures how much 

the social network expects a household to prepare for flooding. As the odds ratio of this social influence 

parameter is a strong indicator for adaptation intention (see the Appendix B.6.4.4), the change within the 

social network can lead to behaviour change of the household.  

We model that a household feels more influenced to intend an adaptation measure by its social network 

(Soc_infh) when the number of households in the social network which have undergone at least one 

measure NN_adapth,t increases as there is a moderate correlation of 0.479 between Soc_infh and 

Adapted_soc_neth in the survey data. By applying a linear regression, we determine that when 

Adapted_soc_neth increases by 1 point (one more household in the social network adapts at least one 

measure), then Soc_infh increases by 0.263 (see Table 5). 

Table 5: Linear regression model for social influence (Source: input data from Noll, Filatova, Need, et 
al. (2022)) 
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From tick 1 when the number of direct neighbours which implement at least one adaptation measure 

increases by 1, the social influence variable increases by 0.263 (beta of the linear regression). If later at 

a later point in time the adaptation measure of a neighbouring household expires and it no longer has 

any adaptation measure installed, the social influence parameter Soc_infh of the influenced neighbours 

decreases by 0.263 considering the following conditions:  

First, Soc_infh is an attribute with a value range from minimum (1) “They do NOT expect me to prepare 

for flooding” to maximum (5) “They strongly expect me to prepare for flooding” (see the Appendix 

B.6.4.1). These minimum and maximum values cannot be exceeded.  

Second, the decrease in the number of direct neighbours with at least one adaptation measure 

NN_adapth,t does not necessarily mean that Soc_infh changes. For instance, if a household has a very 

high social influence (Soc_infh = 5) and a large number of neighbours that adapted a measure 

(NN_adapth,t = 15) which now decreases by 1 as the adaptation measure expires for one neighbour, this 

does not necessarily mean that Soc_infh decreases automatically. To determine below which threshold 

of adapted neighbours (NN_adapth,t) Soc_infh starts to decrease, we use the parameters of the linear 

regression (see Table 5) according to the equation 4:  

𝑆𝑜𝑐_𝑖𝑛𝑓ℎ =  2.385 + 0.263 × 𝑁𝑁_𝑎𝑑𝑎𝑝𝑡ℎ,𝑡 (4) 

 

Hence, we implement that if NN_adapth,t falls below 10, then Soc_infh decreases below 5.  

For the interaction of agents with the environment and with themselves we refer to Chapter 5.1.3.3 in 

the main text . 
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B.4.7. Stochasticity 

Stochasticity is included both in setup (Appendix B.7.1) and in the go function (Appendix B.7.3).  

Matching of households to residential buildings in Setup: Each residential building (either apartment 

or house) has a different location, which determines the inundation depth for the different flood 

scenarios. The synthetic population data shows us which household lives in an apartment or a house. 

However, we do not know which households live in which building. Hence, for each run ,we need to 

match the synthetic population of households from the survey data to the residential buildings from 

OpenStreetMap based on the building type they live in. We decide to re-match households with 

residential buildings randomly within each simulation run as relying on one random matching might be 

highly influential on the simulation results. For instance, households with attribute levels that favour 

adaptation (.e.g., high worry) might be randomly matched to houses that are highly exposed to floods, 

which might influence the flood risk. For more details see the Appendix B.5.1. 

Determining the threshold for the adaptation probability: For each run we need to determine both 

the probability of a household to implement an adaptation measure and the threshold to which this 

probability is compared. If the probability of implementation is higher or equal to the threshold, the 

implementation starts under the condition that the other adaptation rules are met. While the probability 

of implementation is determined based on the Protection Motivation Theory, the threshold is randomly 

generated as a number between 0 and 1 for each tick. This random number is generated for each 

household for each measure. For instance, a household A might have a threshold of 0.3 for elevation, 

0.5 for wet-proofing, and 0.9 for dry-proofing, while household B might have different thresholds. The 

reason why we choose an individual instead of a unified threshold is that there would be jumps in the 

adaptation diffusion, as everybody has the same threshold in a specific time step e.g., very low or very 

high, which seems unrealistic. For more details see the Appendix B.4.3.  

Order in which households determine the adaptation of the measures: The order in which 

households assess the adaptation status of the three adaptation measures influences the decision-making, 

as no savings might be left for the implementation of other measures. As a result, we randomly vary for 

every agent and every tick the order in which households assess the adaptation status of the adaptation 

measures. 

Implementation finish time of measures which have been implemented before the simulation start: 

If a household indicated in the survey that they already adapted a measure, then we need to set the 

implementation end time of the measure. As measures have a lifetime, they expire based on when the 

implementation was started. Hence, the adaptation diffusion of households needs to generate a realistic 

expiration pattern. Thus, we assume that households that implemented a measure before, did so in the 

10 previous years following a uniform distribution. 

Lifetime of dry-proofing measure: We assume a normally distributed lifetime of adaptation measures 

with a mean of 20 years and a standard deviation of 2 years to create a more realistic adaptation curve. 

Odds ratio of Flood Experience: As each flood affects each household and their behaviour differently, 

we randomly vary the Odds Ratio of Flood Experience for each household in the range of one standard 

deviation from the mean effect of flood experience on the adaptation intention. 
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B.4.8. Collectives  

Within our model, agents interact within their social network. These social networks can be considered 

explicit collectives in which adaptation actions can influence other households (details see the 

Appendix B.4.6). 

B.4.9. Observation 

Per time step the simulation model can track for each household the adaptation status of each measure, 

the flood experience, the number of adapted direct neighbours, the flood damage to building structure 

and content, the household savings and the benefit and the cost of each adaptation measure. Based on 

these parameters the following aggregated information can be retrieved for each time-step: the number 

of flooded households (if the flood damage is larger than 0, there is a flood), the number of adapted 

households, the potential flood risk in terms, the total avoided annual building and content damage by 

each adaptation measure, the residual damage, and cost by each adaptation measure. In summary, the 

model can be used to observe the adaptation diffusion, the adaptation effectiveness, and the adaptation 

efficiency. In addition, these KPIs be observed for different household groups based on their attribute 

levels e.g., low-worry households that adapt elevation measures. 

For our experiments, we observed both the aggregate and the distributional impact of household 

adaptation. In terms of aggregate effects, we observed for each tick the number of households that 

adapted no measure, only elevation, only wet-proofing, only dry-proofing, both elevation and wet-

proofing, both elevation and dry-proofing, both wet- and dry-proofing, all measures, and at least one 

measure. Moreover, we observed per tick the total building and content damage for all households. 

Additionally, we let the model output in each tick the total mitigated flood damage by each adaptation 

measure. Furthermore, we observed in each tick the total household savings, the total number of 

households that want to adapt but cannot afford an adaptation, and the total number of households with 

flood experience.  

For the distributional effects, we observed for worry (Worryh), self-efficacy (SEh), social network size 

(Soc_neth), and income (incomeh) for each attribute level low, medium, and high (see experimentation 

appendix): 

• The relative number of households within the group (with the same attribute level) which adapted 

an elevation measure, a wet-proofing measure, and a dry-proofing measure, 

• the total flood damage within the group, and the 

• the total mitigated damage by elevation, wet-proofing, and dry-proofing within the group. 
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B.5. Initialization 

B.5.1. Initialization of synthetic population 

B.5.1.1. General Overview 

We require a population of households with attribute levels which represent the real Shanghai population 

as good as possible. Such a "simplified microscopic representation of the real target population” is 

referred to as a synthetic population (Chapuis et al., 2022, p.1). “The goal of population synthesis is to 

effectively and efficiently utilize the available microsamples — together with the complementary 

aggregated/marginal information on each attribute of interest—to create a realization of population that 

could satisfy the underlying population structure as much as possible” (Sun & Erath, 2015, p.50):  

• Micro-level data: On the one hand, we have micro-level survey data of 933 households in 

Shanghai. It specifies for each household the building type, the household status, the building 

size, as well as the 13 socio-behavioural factors motivating flood adaptation. Of the 933 

households, 92.1% live in apartments, while 7.9% live in houses.  

• Macro-level data: On the other hand, we have macro-level residential building data from Open 

Street Map and the inundation maps of J. Yin et al. (2020) for the Shanghai city centre. It captures 

the 18039 residential buildings in the Shanghai city centre districts and their attributes (building 

type, district, and inundation depth for each flood scenario). Of the 18039 residential buildings, 

94% are apartments and 6% are residential buildings. This macro-level data is included in the 

‘Macrolevel_data.csv’ file.  

B.5.1.2. Creation of synthetic population 

To create our synthetic population, we first need to create 18039 households and in a second step match 

these households to the residential buildings.  

Creation of households:  

Our goal is to create 18039 households where exactly 94% (16949) live in an apartment and 6% (1090) 

live in a house. At the same time, the underlying population structure of the households should be 

changed as little as possible (e.g., the correlation of the attributes should stay similar to the survey). To 

create these 18039 households, we select individual household data via direct sampling from the survey 

data. The answer of each of the 933 survey respondents is used to populate the attributes of 14 

households. After that, 4977 households remain to be populated, of which 4923 need to be apartments 

and 54 houses to match the overall building type distribution. These remaining households are directly 

and randomly populated from the survey data until the number of apartments and houses required is 

reached. The resulting synthetic population of households is captured in the ‘Microlevel_data.csv’ file.  

This method produces a synthetic population which is similar to the sample data for instance in terms of 

the correlations between the variables – see Table 6. However, using probability distributions would 

enable a more diverse set of agent properties and variations between the properties. For each simulation 

run a new synthetic population could be created, which would allow “the model to consider and produce 

alternative and potentially more realistic populations” (Harland et al., 2012, p.3). Alternatively, we could 

choose one synthetic population for all simulation runs. This would enable us to better quantify the 

impact of changing other parameters on the simulation results which according to (Harland et al., 2012, 

p.3) “can be very important for policy evaluation”. As our model purpose is to understand the aggregate 

and distributional impacts of household climate change adaptation to draw new insights for flood risk 

management policies we choose one fixed synthetic population for all simulation runs.  
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Table 6: Correlation coefficient comparison between survey data and synthetic population  

 

Matching of households to residential buildings:  

Each residential building (either apartment or house) has a different location, which determines the 

inundation depth for the different flood scenarios. The synthetic population data shows us which 

household lives in an apartment or a house. However, we do not know which households lives in which 

building. Hence, for each run we match the synthetic population of households from the survey data to 

the residential buildings from Open Street Map based on the building type they live in. We decide to re-

match households with residential buildings randomly within each simulation run as relying on one 

random matching might be highly influential on the simulation results. For instance, household with 

attribute levels that favour adaptation (.e.g., high trust and frequency of social media) might be randomly 

matched to houses that are highly exposed to floods, which might influence the drastically impact on the 

flood risk.  

In case the geographical scope is reduced to a subset of city centre districts, only the respective 

residential buildings will be matched with households from the synthetic population.  

B.5.1.3. Attribute values of synthetic household population 

Table 7 summarizes the descriptive statistics of both the PMT and non-PMT attributes of the synthetic 

household population. The frequency distributions of these attributes are further shown in more detail in 

the histograms in this subchapter.  
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Table 7: Descriptive statistics of synthetic household population attributes (n=18039) (Source: 
Adjusted from Noll, Filatova, Need, et al. (2022)) 

21 

 
* Following Noll, Filatova, Need, et al. (2022) we average the response scores of the individual measures included in each measure category. 

** Following Noll, Filatova, Need, et al. (2022)  we model the belief variable C.C. Belief as a dummy variable instead of using scales. 

*** Following Noll, Filatova, Need, et al. (2022) we average probability (media frequency) and affect (media trust). 

**** The response options are applied together with the yearly earnings to determine the savings of a household. 

***** The response options are applied together with the savings to determine the yearly change in savings. 



66 

 

Figure 24: Histogram - threat appraisal 

 

 

Figure 25: Histogram - coping appraisal 
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Figure 26: Histogram - preceding flood engagement 

 

 

Figure 27: Histogram - social backgrounds and climate beliefs 
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Figure 28: Histogram – external influence 

 

 

Figure 29: Histogram – accommodation 
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Figure 30: Histogram – economic background 

B.5.2. Initialization of other parameters 

At model initialization, the implementation finish time of households that start the simulation with an 

adapted measure is set to a period of 0-9 years before the simulation start following a uniform 

distribution. Parameters which are not set with values from the input data are set to 0 and changed in the 

model during the ticks.  
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B.6. Input Data  

The purpose of this subchapter is to create verifiability and replicability for the generation and 

transformation of the input data. We structure the following subchapters based on the extended risk 

assessment framework of Aerts et al. (2018): (Disaster) Risk assessment, (Disaster) risk reduction, and 

behavioural factors (and perception).  

B.6.1. Risk assessment: Exposure data 

B.6.1.1. Location data from the survey 

The goal of this analysis is to determine in which districts the survey respondents live. This information 

can help in the scoping decision on certain districts. 

We use the zip codes in the survey data to determine the city districts in which the survey respondents 

live. 933 households are included in the survey data of which 657 have a zip code. Shanghai zip codes 

have six digits are in the format of 20xxxx (Shanghaimap360.com, 2022). Based on this information we 

can determine that 525 of the 627 responses with zip codes are located in a Shanghai district. Of these 

525 respondents, we can assign 447 directly to one of the Shanghai districts. The zip code of the other 

74 responses appear unidentifiable.  

 

Figure 31: Comparison of the distribution of survey respondents and population in Shanghai (Source: 
respondents data from Noll, Filatova, Need, et al. (2022), population data form Shanghai Municipal 

Statistics Bureau (2020)) 

The results are shown in Figure 31 and compared to the distribution of the Shanghai population which 

is based on official data from the Shanghai Municipal Statistics Bureau (2020). The results show that 

two-thirds of the survey respondents are located within the Shanghai City Centre districts, also referred 

to as Downtown Shanghai. A considerable portion, 23%, lives in Pudong. The comparison with the real-

life distribution shows that the share of respondents who reside in the city centre districts is considerably 

more than the share of Shanghai inhabitants living in the city centre. This insight supports the decision 

to scope down on the city centre districts, as their behaviour is best captured in the survey data.  

However, this analysis is limited in multiple aspects. First, the survey respondents only make up a 

fraction (0.004%) of the population in Shanghai. Second, the location of 36% of the survey respondents 

is unknown. 
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B.6.1.2. OSM building data  

As we focus on household adaptation, the scope of this thesis is residential buildings, which are an 

essential part of the flood risk assessment in Shanghai (Wu et al., 2019; Z. Yin et al., 2011). Government-

provided residential building data appears scarce. Instead, the location of residential buildings in 

Shanghai can be retrieved from Open Stream Map (OSM). OSM is a free digital map of the world, where 

the data is collected by volunteers (Openstreetmapwiki, 2022). We downloaded the OSM data in March 

2022. 

However, the OSM data shows some deficits concerning the labelling of the buildings:  

• Residential vs Non-residential: 53 % of the buildings in entire Shanghai are not labelled 

regarding their building use (residential/non-residential) in OSM. Hence, we use official statistics 

of the Shanghai Municipal Statistics Bureau (2020) to label the unlabelled buildings in such a 

way that the distribution of residential/non-residential buildings in OSM matches the real-life 

data.  

• Apartment vs House: 56% of the buildings we consider residential are not labelled regarding 

their building type (house/apartment). Again, we use official statistics of the Shanghai Municipal 

Statistics Bureau (2020) to label the unlabelled buildings in such a way that the distribution of 

house/apartment residential buildings in OSM matches the real-life data.  

These two data transformation steps are described in detail in the following subchapters. 

B.6.1.2.1. Residential vs. Non-Residential Buildings 

In Shanghai, OSM depicts 69.539 buildings of which 27.008 are labelled as residential buildings and 

5.799 as non-residential buildings. The remaining 53% of the buildings are not labelled in terms of their 

building use (residential/non-residential) – see Figure 32. 

 

Figure 32: Pre-adjusted distribution of OSM buildings in Shanghai districts (Source: data from 
OpenStreetMap (2022)) 

Hence, for each district, we label the unlabelled OSM buildings using the real-life frequency 

distributions of residential and non-residential buildings from the Shanghai Municipal Statistics Bureau 

(2020) (see Figure 33).  
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Figure 33: Real distribution of buildings in Shanghai districts (Source: data from Shanghai Municipal 
Statistics Bureau (2020)) 

Figure 34 shows the resulting distribution of the OSM buildings after the additional labelling of the 

building type.  

 

Figure 34: Adjusted distribution of OSM buildings in Shanghai districts (Source: data adjusted from 
OpenStreetMap (2022)) 

The comparison of the adjusted OSM data with the official government statistics (see Figure 35) reveals 

the accuracy of the OSM residential building data. Overall, 48% of the residential buildings are depicted 

in OSM in terms of the number of buildings. Figure 35 shows that the mapping accuracy differs greatly 

for the different districts. While the city centre districts (Huangpu, Changning, Putuo, Yangpu, Xuhui, 

Jing ‘an, and Hongkou) show an accuracy of 90%, districts such as Boashan or Fengxian have a 9% 

accuracy.  
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The low overall mapping accuracy of residential buildings might be linked back to the Surveying and 

Mapping Law of the People's Republic of China, which prohibits private surveying and mapping 

activities (National People’s Congress, 2022). We can overcome this problem by scoping down on the 

districts with high mapping accuracy.  

 

Figure 35: Comparison of adjusted residential building data with government statistics (Source: 
building data adjusted from OpenStreetMap (2022), official statistics from Shanghai Municipal 

Statistics Bureau (2020)) 

B.6.1.2.2. Apartment vs. House 

The survey data of Noll, Filatova, Need, et al. (2022) which is used to depict the behaviour of the 

household distinguishes the type of residential building (house/apartment) the households live in. Hence, 

we also want to distinguish the residential buildings in OSM into houses and apartments. OSM also 

allows distinguishing different residential building types via the ‘building’ key (Openstreetmapwiki, 

2022). As depicted in Table 8, we use the description Openstreetmapwiki (2022) to assign the different 

building key values to three building categories: House, Apartment, and Unidentified.  

Table 8: Differentiation between houses and apartments using building key in OSM (Source: values 
and descriptions from Openstreetmapwiki (2022)) 

 

Figure 36 shows the resulting distribution of the residential building types in Shanghai. From the 36.253 

residential buildings, 10.858 are labelled as apartment buildings and 5.040 as houses according to our 

definition. The remaining 20.355 residential buildings are unlabelled, as they either have the key 

Building=Residential OR Building=Yes, which does not provide information on the type of the 

residential building. 
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Hence, we apply the same approach as before with the residential/non-residential building data 

transformation. For each district, we label the unlabelled OSM residential buildings using the real-life 

frequency distributions of houses and apartment buildings from the Shanghai Municipal Statistics 

Bureau (2020) (Figure 37). In reality, 93% of the residential buildings are apartments and 7% are houses.  

 

 

Figure 36: Pre-adjusted distribution of residential building types in Shanghai districts (Source: data 
from OpenStreetMap (2022)) 

 

Figure 37: Real distribution of residential building types in Shanghai districts (Source: data from 
Shanghai Municipal Statistics Bureau (2020)) 

The resulting distribution of apartments and houses for the different Shanghai districts is shown in Figure 

38. Here, 84% of the residential buildings are apartments and 16% are houses. This means that the share 

of houses in our transformed data is about twice as large as in reality. This can be explained by the fact 

that the share of labelled houses in OSM is very high (5040 ~ 14%) – see Figure 36.  
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Figure 38: Adjusted distribution of OSM residential building types in Shanghai districts (Source: data 
adjusted from OpenStreetMap (2022)) 

To verify the accuracy of our transformed data, we compare the number of apartments and houses in 

each district with the official data from the Shanghai Municipal Statistics Bureau (2020) – see Figure 39 

and Figure 40. 

Regarding the apartments, our comparison shows that across all the Shanghai districts we only map 47% 

of the apartment buildings in terms of the number of buildings (see Figure 39). The city centre districts 

such as Xuhui, Putuo, Yangpu, Hongkou, and Huangpu show the lowest deviations.  

 

Figure 39: Comparison of adjusted distribution of residential apartment buildings from OpenStreetMap 
(2022) with government statistics from Shanghai Municipal Statistics Bureau (2020). 

The comparison of the distribution of residential houses in OSM with official government statistics 

highlights that proportionally more houses (22%) are included in our model than in real-life (Figure 40). 

For the ABM results, this would mean that the effectiveness of the elevation measure, which is assumed 

not possible for apartments, might be overestimated.  
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Figure 40: Comparison of the adjusted distribution of residential houses from OpenStreetMap (2022) 
with government statistics from Shanghai Municipal Statistics Bureau (2020). 

To summarize, Figure 41 shows the categorized OSM buildings in the Shanghai districts.  

 

Figure 41: Adjusted OSM building types in Shanghai districts illustrated in QGIS (Source: data 
adjusted from OpenStreetMap (2022)) 
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B.6.1.3. Exposure of residential buildings of Shanghai districts 

By overlaying the location of the residential buildings of OSM with the inundation maps of Yin et al. 

(2020) in QGIS, we determine the inundation levels of each residential building in Shanghai for each of 

the 21 flood scenarios. It is important to note that we consider households flooded if the inundation level 

is larger than 10 cm, which we assume to be the building foundation height.  

We analyse the inundation depths of the residential buildings under the different flood scenarios as this 

provides important information for the experimental setup. On the one hand, we are interested in the 

difference in the number of inundated households between the Shanghai districts. On the other hand, we 

are interested in how the type of the different flood scenarios which are defined by the probability of the 

flood (10-year, 100-year, 1000-year), the year in which the flood occurs (2010, 2030, 2050, 2100), and 

the Representative Concentration Pathway (RCP 8.5, RCP 2.6) influence the inundation depths of the 

residential buildings in Shanghai.  

B.6.1.3.1. Exposure of residential buildings in Shanghai 

The Shanghai districts are exposed differently to the flood scenarios. According to Yin et al. (2020, p.10) 

“the most susceptible areas to the magnified flood hazard are Chongming island and the Huangpu River 

floodplain including the city centre, where the inundation distance exceeds 10–20 km inland”. We are 

interested in what this means for the difference in the number of inundated residential buildings in the 

districts. Figure 42 and Figure 43 depict the distribution of the number of inundated buildings for the 

RCP 8.5 and the RCP 2.6 scenario respectively. 

 

Figure 42: Proportional and absolute distribution of inundated residential buildings (RCP 8.5) (Source: 
inundation data adjusted from J. Yin et al. (2020), building data adjusted from OpenStreetMap (2022))  
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Figure 43: Proportional and absolute distribution of inundated residential buildings (RCP 2.6) (Source: 
inundation data adjusted from J. Yin et al. (2020), building data adjusted from OpenStreetMap (2022)) 

The results show that the distribution only changes slightly between the RCP 8.5 and the RCP 2.6 

scenarios. Regarding the distribution between the districts our analysis highlights that the residential 

buildings in the city centre (grey colour) are most exposed to the floods, accounting for 55-100% of the 

inundated residential buildings depending on the flood scenario. On the one hand, this can be explained 

by the fact that the city centre districts make up 48.7% of the residential buildings in our data (see the 

previous subchapter). On the other hand, the city centre districts are among the most exposed to the flood 

scenarios according to Yin et al. (2020).  

The distribution of the number of flooded households in the city centre districts is depicted in Figure 44. 

The Xuhui District (dark blue colour) is most prominent for 2010, 2030 and 2050 scenarios. In the 2100 

scenario, also other districts such as Changning, Putuo, or Yangpu are impacted. Huangpu (light blue 

colour) also has a considerable portion (~10-30% depending on the scenario) of inundated residential 

buildings. The prominence of Xuhui and Huangpu can be explained by the fact that they are located 

directly next to the Huangpu river and are therefore directly affected during floods - see also Figure 3 of 

Yin et al. (2020). 

 

Figure 44: Inundated residential buildings for city centre districts (RCP 8.5) (Source: inundation data 
adjusted from J. Yin et al. (2020), building data adjusted from OpenStreetMap (2022))  
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As we want to understand the influence of floods on household adaptation, we need to select a set of 

districts which have exposure to floods. As a result, we choose the city centre districts as the 

geographical scope within Shanghai. To design a reasonable experimentation plan we analyse the 

inundation depths of the residential buildings in the Shanghai city centre in more detail in the following 

subchapter. 

B.6.1.3.2. Exposure of residential buildings in the Shanghai city centre 

Figure 45 shows the impact of a 1000-year flood under the RCP8.5 and RCP2.6 scenarios in 2010, 2030, 

2050, and 2100. The 1000-year flood already has a considerable impact in 2010 with ~12% of 18.039 

residential buildings inundated. With an increase in years, the effects of sea-level rise and land 

subsidence lead to more severe floods - see Yin et al. (2020) – and hence to an increase in the number 

of inundated residential buildings. Moreover, with an increase in years, the differences between the RCP 

scenarios in terms of number of inundated residential buildings and the depth of inundation itself become 

larger. In 2100, 95% of residential buildings are flooded under the RCP 8.5 scenario, and 86% under the 

RCP 2.6 scenario.  

 

Figure 45: Comparison of RCP 8.5 with RCP 2.6 scenario for 1000-year floods (Source: inundation 
data adjusted from J. Yin et al. (2020), building data adjusted from OpenStreetMap (2022))  

In Figure 46 the impact of a 100-year flood is shown. While the flood barely has any impact in 2010, 

and a measurable but rather small impact of less than 10% in 2030 and 2050, the number of inundated 

households increases sharply to 77% in 2100 for the RCP 8.5 and 37% for the RCP 2.6 scenario because 

of sea-level rise and land subsidence.  

The exposure of residential buildings under the 10-year flood is depicted in Figure 47. The influence of 

this flood on the residential buildings in Shanghai in the years 2010, 2030, and 2050 is very small as less 

than 1% of the residential buildings are flooded. In 2100, 15% of residential buildings are flooded under 

the RCP 8.5 and 10% under the RCP 2.6 scenario.  
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Figure 46: Comparison of RCP 8.5 with RCP 2.6 scenario for 100-year floods (Source: inundation 
adjusted data from J. Yin et al. (2020), building data adjusted from OpenStreetMap (2022))  

 

Figure 47: Comparison of RCP 8.5 with RCP 2.6 scenario for 10-year floods (Source: inundation data 
adjusted from J. Yin et al. (2020), building data adjusted from OpenStreetMap (2022))  

When comparing the 10-, 100- and 1000-year flood events, we notice that a 10-year flood in 2100 under 

the RCP 8.5 scenario floods more residential buildings than a 100-year flood in 2050 or a 1000-year 

flood in 2010. This highlights again the large effects of climate change in the form of sea-level rise and 

land subsidence on the exposure of households in Shanghai and underlines the need for further household 

adaptation in the Shanghai city centre.  
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B.6.1.4. Asset Values 

Within our model we differentiate building and content values. 

B.6.1.4.1. Building Value 

We assume households would rebuild their residential building if their building were damaged. 

Therefore, construction costs are of interest to determine the replacement value. This is in line with the 

suggestions of with Huizinga et al. (2017). To determine the construction costs we follow Wu et al. 

(2019) and determine the construction cost per square meter using official data from the Shanghai 

Municipal Statistics Bureau (2020). Specifically, we divide the value of the buildings completed by the 

floor area completed (see Table 9).  

Table 9: Calculation of construction costs based on data for residential buildings (Source: in table) 

 

Our calculation for previous years shows that the construction costs increased by 72% between 2010 

and 2019 and by 20% between 2015 and 2019. This highlights the importance to use a contemporary 

value.  

To verify our construction costs, we compare them with values used in other flood risk assessment 

studies in Shanghai – see Table 13 and Figure 48. The comparison shows that our construction costs are 

approximately 30% larger than the ones used in other flood risk assessments in Shanghai. This might be 

traced back to the increase in construction costs over the last years. 

A limitation of using the construction value per sqm of floor area for our case study is that a majority of 

the buildings in Shanghai are multi-story apartment blocks (Shanghai Municipal Statistics Bureau, 

2020). The construction cost per sqm of the multi-story apartment might not reflect the cost per sqm of 

the first building floor. The building values might therefore be overestimated.  

Table 10: Comparison of construction costs with values from the literature (Source: in table) 
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Figure 48: Comparison of building values (Source: Data adjusted from Ke (2014), Shanghai Municipal 
Statistics Bureau (2020), and Z. Yin et al. (2011)) 

To determine the total value of a residential building, we require the building size. Within the survey, 

households can indicate the size of their accommodation. The respective frequency distribution is shown 

in Figure 49. The average building size of the survey participants is 98.9 sqm/household. According to 

China’s National Bureau of Statistics (2016), the per capita residential building area in Chinese cities 

(urban areas) is 36.6 in 2016 (China Banking News, 2017). With ~2.69 people per household in Shanghai 

in 2017 (Shanghai Municipal Statistics Bureau, 2020), this leads to 98,45 sqm/household, which is 

almost identical to the mean of our distribution. This validates the use of the distribution of our survey 

for the household size. We apply this data to generate the building values of the households. 

 

Figure 49: Distribution of accommodation size of survey participants (Source: survey data adjusted 
from Noll, Filatova, Need, et al., 2022) 

 

 



83 

B.6.1.4.2. Content Value 

Ke (2014) uses popular household items which are fragile to inundation to determine the household 

content value by multiplying the items in the inventory from official survey results with price 

estimations. As the content values gathered by Ke (2014) are based on popular household items such as 

refrigerators, washing machines, TVs, etc. we assume that these items are possessed by the smallest 

building class of 44 sqm. Moreover, we assume that with an increase in household size the value of the 

building content increases. Hence, we calculate the ratio between the building value for the 40 sqm 

building and the overall content cost. This leads to a content value of 209 EUR/sqm or 24% of the 

building value. We can then use this ratio to calculate the content values for the remaining building 

classes.  

The difference between the fixed content value of Ke (2014) and our approach is illustrated in Figure 

50. Especially with higher building sizes, the content value is considerably different. It is to be noted 

that we adjusted the values of Ke (2014) to inflation and change in currency. 

 

Figure 50: Comparison of content values (Source: data adjusted from Ke (2014)) 

 

B.6.1.5. Validation of residential building exposure 

Based on the number of inundated buildings (see the Appendix B.6.1.3.2) and the asset values22 (see the 

Appendix B.6.1.4) we determine the exposed assets in the Shanghai city centre in monetary terms for 

validation purposes – see Figure 51. The results show a total exposure of residential buildings of up to 

1.8 Bil. Euros (109) under a 1000-year flood in the RCP 8.5 scenario in 2100.  

 

 
22 Calculation is based on an average building size of 98.9 sqm: Average building value of 85153 EUR and content value of 20670 EUR. 
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Figure 51: Exposure of residential assets in Mil. € in Shanghai city centre districts (Source: inundation 
data adjusted from J. Yin et al. (2020), building data adjusted from OpenStreetMap (2022))  

To validate our results we compare them with studies of similar scope in Shanghai. Shan et al. (2019) 

estimate the flood damage of residential buildings and household properties in Shanghai based on 

extreme storm flood scenarios of 1/200, 1/500, 1/1000 and 1/5000-year. A comparison of the asset 

exposure in the city centre districts with Shan et al., (2019) for a 1000-year flood shows that our 

estimated exposure is ~1% in comparison to Shan et al., (2019). This large difference can be explained 

by three factors: The asset price, the footprint area of the residential buildings, and the flood maps.  

First, Shan et al. (2019) apply an average residential building price of 6.764 €/sqm23 which is ~8 times 

higher than our value of 861 €/sqm which is derived from the average construction cost24. Second, the 

footprint area of residential buildings (in the Shanghai city centre) which is used by Shan et al. (2019) 

to determine the asset value is ~200 km². In comparison, the total footprint area of the households’ 

residential buildings taken into consideration in this study is ~1.8 km². This difference results from our 

assumption that one building is occupied by one household. Lastly, the difference in the flood maps 

themselves might explain the differences in exposure.  

Table 11: Validation of residential asset exposure for city centre districts 

Exposed Assets  

[Bil. € (109)] 

1000-year  

(Shan et al., 2019)25 

1000-year in 2100 

(RCP 8.5) 

Residential buildings 149.54 1.46 

Household properties 7.01 0.35 

Total 156.55 1.81 

 

In summary, this divergence appears acceptable in the light of the different study scopes. While Shan et 

al. (2019) aim to determine the risk exposure of all residential assets in Shanghai, we focus on the asset 

values of 18.039 households in Shanghai. 

  

 
23 Value is inflation- and currency-adjusted. 
24 To determine the impact of this value on our ABM, we include the value of Shan et al. (2019) in our sensitivity analysis (see verification 

and validation appendix). 
25 Adapted from CNY to EUR; Applying share of city centre district of 41.4%  
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B.6.2. Risk assessment: Vulnerability data – Depth-Damage Functions 

Wang (2001), Yu et al. (2012), J. Yin et al. (2011), Z. Yin et al. (2011) and Shi (2010) provide depth-

damage curves in Shanghai.  

- Wang (2001): This function is based on historical flood events. It is applied in the flood risk 

assessment models of Ke (2014) and Shan et al. (2019). 

- Yu et al. (2012): The underlying data steam from survey data and insurance records after a flood 

event. According to Ke (2014), it underestimates the flood damage as other cities are included in 

the data. 

- J. Yin et al. (2012): It differentiates depth-damage functions for multi-story houses, high-rise 

houses, and villas. However, there is no differentiation between structure and content damage. 

Hence, it does not apply to our study. 

- Z. Yin et al. (2011): This function focuses on the Jing’an district. The data for the content-

damage function stems from survey data, interviews, and local content prices in shops. The data 

for the building damage is retrieved from building construction costs.  

- Shi (2010, cited by Shan et al., 2019): This function is applied by Wu et al. (2019). As the 

depth-damage curve only focuses on content damage, it is not applicable for our study. 

The functions of Wang (2001), Yu et al. (2012), and Z. Yin et al. (2011) are shown in Figure 52. To 

enable better comparability between the different damage functions, the continuous functions of Z. Yin 

et al. (2011) are transformed into discrete functions.  

 

Figure 52: Comparison of depth-damage functions for residential buildings and content damage in 
Shanghai (Source: data from Wang (2001), Z. Yin et al. (2011), and Yu et al. (2012)) 

  



86 

While the differences between the functions of Wang (2001) (dark green colour) and Yu et al. (2012) 

(dark blue colour) are minor for the content damage the building damage is between 5%5 and 15% 

higher for Wang (2011) (light green colour). The content-damage curve of Z. Yin et al. (2011) (light 

purple colour) is similar to Wang (2001) and Yu et al. (2012) in terms of the slope of the curve. However, 

the damage is between 5% and 15% lower than indicated by Yu et al. (2012). See also Ke (2014) for a 

more detailed discussion of the depth-damage curves. 

The depth-damage function for building damage of Z. Yin et al. (2011) (dark purple colour) differs 

greatly from the ones of Wang (2001) and Yu et al. (2012). While Wang (2001) and Yu et al. (2012) 

depict building damage of approximately 12% between 1.5 and 2 meters, Z. Yin et al. (2011) show a 

damage of 100%. This deviation might be traced back to different definitions of maximum damage.  

We select the depth-damage curves of Wang (2001), as they appears most suitable for urban Shanghai 

and they are is applied in other risk assessment studies – see Ke (2014) and Shan et al. (2019). 
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B.6.3. Risk reduction: Data on adaptation measures 

B.6.3.1. Adaptation measure categories 

The survey examines 18 different structural and non-structural household-level actions (Table 12). We 

categorize ten of these adaptation measures from the survey into elevation, wet-proofing, and dry-

proofing measures – see Table 13. 

Table 12: Overview of all household level-actions in survey (Source: measures from survey data of 
Noll, Filatova, Need, et al. (2022)) 

 

 

Table 13: Categorization of adaptation measures (Source: measures from survey data of Noll, Filatova, 
Need, et al. (2022)) 
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B.6.3.2. Adaptation measure effectiveness 

The effectiveness of adaptation measures is described by two factors which we will refer to as the 

effectiveness which is the influence of the adaptation measure on the building and content damage 

reduction and the effectiveness level, which is the inundation level until which the measure is effective 

in reducing the damage. In the following we describe the values selected for elevation, wet-proofing and 

dry-proofing. 

Elevation: Within the survey data elevation is defined as “raising the level of the ground floor above 

the most likely flood level”. Therefore, we assume that the elevation measure increases the buildings’ 

ground floor (which is assumed to be 10-cm above the ground) by 30-cm above the 100-year flood level. 

This is in line with Du et al. (2020). We choose the flood level from the 2030 scenario, as this can be 

considered a “current” flood-level from a 2020 perspective. Moreover, we choose the RCP8.5 scenario. 

However, we only have the inundation levels of the buildings for different flood scenarios and not the 

actual elevation level. Hence, we assume that if a household’s inundation level for a 100-year flood in 

2030 under the RCP 8.5 scenario is zero, then the ground floor will be elevated by only 30cm.  

Wet-Proofing: We apply a 40% effectiveness in reducing building and content damage, as this is line 

with values outlined by ICPR (2002), DEFRA (2008) and Kreibich et al. (2005). For the effectiveness 

level, we follow Lasage et al. (2014) and de Moel et al. (2013) who assume that households place their 

valuable goods on the second floor, which is estimated to be 3 meters high.  

Dry-Proofing: Similar to de Moel et al. (2013) we choose an effectiveness value of 85% in line with 

ICPR (2002) and DEFRA (2008). For the effectiveness level we follow Bubeck & de Moel (2010), de 

Moel et al. (2013) and Lasage et al. (2014) with 1 meter. According to de Moel et al. (2013, p.901) “dry 

proofing walls above a certain level is not useful, as the pressure difference between water outside and 

lack of water inside the building would make it structurally unstable and could result in failure of the 

outside walls.” 

The use of this data is limited by the fact that the effectiveness of the measures depends heavily on the 

local flood conditions (Kreibich et al., 2015). The values which we selected stem mainly from studies 

that were conducted in Europe and North America. The local conditions of the building and content 

value, and the damage caused by the flood might differ substantially from our context in the Shanghai 

city centre.  
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B.6.3.3. Adaptation measure cost 

For the costs of the adaptation measures, two different sources are available. On the one hand, 

households which indicated in the survey that they adapted a measure in the past can indicate the cost of 

the measure. We first determine the average individual measure costs (e.g., installing a pump) and then 

we sum the individual measure costs for each measure category (see Table 14). This leads to average 

costs of 4040 € for elevation, 4027 € for wet-proofing and 1706 € for dry-proofing. 

Table 14: Adaptation measure cost data from survey (Source: survey data adjusted from Noll, Filatova, 
Need, et al. (2022)) 

 

On the other hand, we can use cost data which is applied in other risk assessment studies, such as Du et 

al. (2020) who provide the implementation cost for elevation, wet- and dry-proofing in Shanghai – see 

Table 15. 
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Table 15: Adaptation measure cost data from literature (Source: data adjusted from Du et al. (2020)) 

 

Figure 53 shows a comparison of the cost data from the two different sources for different building sizes: 

While elevation is cheaper using the data of Du et al. (2020) below a building size of ~90sqm, wet-

proofing and dry-proofing costs are always more expensive (as our minimum building size is 44 sqm). 

For this study, we select the cost data from the survey, as it is directly linked to the adaptation measures 

which are included in our categories: elevation, wet-, and dry-proofing. Moreover, it appears in a range 

which is more compatible with the income of the households. The cost data from Du et al. (2020) is 

however used for the sensitivity analysis (see the Appendix E.5.1). 

 

Figure 53: Comparison of adaptation measure cost sources (Source: data adjusted from Du et al. 
(2020) and from Noll, Filatova, Need, et al. (2022)) 
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B.6.3.4. Adaptation measure lifetime and implementation time 

Following Du et al. (2020) we assume that the elevation and wet-proofing measures are permanent and 

hence have an “infinite” lifetime, while dry-proofing measures are assumed non-permanent and can 

expire. The mean lifetime for dry-proofing is set to 20 years – following Du et al. (2020). However, we 

assume the lifetime to be normally distributed with a standard deviation of 2 years.  

Du et al. (2020) indicate the implementation time of dry-proofing measures to be 2 years. As the 

measures included in the wet-proofing category appear to require a similar sort of effort and time to 

implement, we assume wet-proofing measures to also have an implementation time of 2 years. For 

elevation measures, we assume 3 years of implementation as the effort to elevate the building appears 

larger than the effort to dry-proof or wet-proof buildings. The times are summarized in Table 16. 

Table 16: Life- and implementation time of measures (Source: dry-proofing data adjusted form Du et 
al. (2020))  

Measure Implementation time 

[years] 

Lifetime [years] 

Elevation 3 (Assumption) Inf. 

Wet-Proofing 2 (Assumption) Inf. 

Dry-Proofing 2 (Du et al., 2020) N(20,2) 
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B.6.4. Behavioural factors  

For a description of the approach, we refer to 4.3 chapter in the main text. 

B.6.4.1. Dependent and independent variables 

The 16 socio-behavioural variables of the extended PMT are the independent variables. Dependent and 

independent variables are further shown in Table 17. Figure 54 further highlights the socio-economic 

background variables of the survey respondents. 

 

Figure 54: Background of respondents26 (Source: survey data from Noll, Filatova, Need, et al. (2022))  

 

  

 
26 Gender, age, and education are selected as independent variables for the regression analysis 
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Table 17: Overview of dependent and independent variables (n=933) (Source: adjusted from Noll, 
Filatova, Need, et al. (2022)) 

27 

 
* Following Noll, Filatova, Need, et al. (2022) we average the scores of the individual measures included in each measure category . 

** Following Noll, Filatova, Need, et al. (2022) we model C.C. Belief and Gov. Meas. Insuff. as dummy variables instead of scales. 

*** Following Noll, Filatova, Need, et al. (2022) we average probability (media frequency) and affect (media trust). 
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B.6.4.2. Full Models 

We check the correlation matrixes of all full models for the presence of high correlations to avoid 

multicollinearity issues. The correlations for the full models of elevation, wet-proofing and dry-proofing 

are shown in Table 18, Table 19, Table 20. For the full models, the correlations are smaller than |0.67|. 

According to Field (2009) correlations with coefficients higher than 0.8 cause multicollinearity issues.  

Table 18: Full Model – Elevation – Correlations between independent variables (n = 933) (Source: 
survey data from Noll, Filatova, Need, et al. (2022)) 

 

 

Table 19: Full Model – Wet-Proofing – Correlations between independent variables (n = 933) (Source: 
survey data from Noll, Filatova, Need, et al. (2022)) 
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Table 20: Full Model – Dry-Proofing – Correlations between independent variables (n = 933) (Source: 
survey data from Noll, Filatova, Need, et al. (2022)) 

 

The Full Models for elevation, wet-proofing, and dry-proofing are shown in Table 21, Table 22, and 

Table 23. Figure 55 compares the odds ratios of these models.  

Table 21: Full Model – Elevation (n = 933) (Source: survey data from Noll, Filatova, Need, et al. 
(2022)) 
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Table 22: Full Model – Wet-Proofing (n = 933) (Source: survey data from Noll, Filatova, Need, et al. 
(2022)) 

 

 

Table 23: Full Model – Dry-Proofing (n = 933) (Source: survey data from Noll, Filatova, Need, et al. 
(2022)) 
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Figure 55: Comparison of odds ratios for full models (Source: adjusted from Noll, Filatova, Need, et 
al. (2022)) 

B.6.4.3. Best-Fitting Models 

Table 24 shows the significant variables for each of the three best-fitting models. Worry, Self Efficacy, 

Age, Social Influence, and Social Media are significant independent variables in for all three best-fitting 

models. Elevation has the most (9) and wet-proofing the least (6) significant independent variables. Cost, 

Undergone Other, as well as Flood Experience only play a significant role for the elevation model. The 

variables Gender, Government Measure Insufficiency, and General Media are insignificant for all 

measure categories and are hence not included in the final models 

Table 24: Overview of significant variables and p-values of the three best-fitting models for the three 
different categories of adaptation actions (Source: adjusted from Bubeck et al. (2013)) 
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B.6.4.4. Final Models 

We also check the correlation matrixes of all final models for the presence of high correlations to avoid 

multicollinearity issues. The correlations for the final models of elevation, wet-proofing and dry-

proofing are shown in Table 25, Table 26, and Table 27 . For the final models, the correlations are 

smaller than |0.24|, which is under the threshold outlined by Field (2009).  

Table 25: Final Model – Elevation – Correlations between independent variables (n = 933) (Source: 
survey data from Noll, Filatova, Need, et al. (2022)) 

 

 

Table 26: Final Model – Wet-Proofing – Correlations between independent variables (n = 933) 
(Source: survey data from Noll, Filatova, Need, et al. (2022)) 
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Table 27: Final Model – Dry-Proofing – Correlations between independent variables (n = 933) 
(Source: survey data from Noll, Filatova, Need, et al. (2022) 

 

Table 28, Table 29, and Table 30 show the final models for elevation, wet-proofing, and dry-proofing. 

The odds ratios of the final models for elevation, wet-proofing, and dry-proofing are compared and 

discussed in the main text in chapter 4.3.2. 

Table 28: Final Model – Elevation (n = 933) (Source: survey data from Noll, Filatova, Need, et al. 
(2022)) 
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Table 29: Final Model – Wet-Proofing (n = 933) (Source: survey data from Noll, Filatova, Need, et al. 
(2022)) 

 

 

Table 30: Final Model – Dry-Proofing (n = 933) (Source: survey data from Noll, Filatova, Need, et al. 
(2022)) 
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B.6.4.5. Intention Gap 

To determine the proportion of households that realize their intention, we look at the slopes of three 

linear regression models (independent variable: #HHs that intended measure, dependent variable: #HHs 

that implemented measure) between the survey waves 1 to 2, 2 to 3, and 3 to 4 in Shanghai. From wave 

1 to 2 64.8%, from wave 2 to 3 15.6% and from wave 3 to 4 3% of the households who intended to adapt 

actually adapted – see Figure 56. The intention gap is the average slope, hence 27.8%. The longitudinal 

survey data shows that households also adapt if they did not intend to do so before. This behaviour is 

neglected in this model. 

 

Figure 56: Slopes for the ratios on adaptation intention to action between the different survey waves 
(Source: survey data from Noll, Filatova, Need, et al. (2022)) 
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B.7. Sub-models 

This subchapter further explains the sub-models, which are also shown in Figure 23 in the process 

overview. We detail these sub models using pseudo code, as suggested by Nikolic et al. (2013). 

B.7.1. Setup 

B.7.1.1. Setup Global Parameters  

All global parameters are either initialized via the user interface or directly in the code  

Interface:  

• Districts: Via on/off switches users can include/exclude city centre districts form the simulation  

• Damage: User can select the source of the depth damage function. 

• Time: User can select the time horizon and the starting year of the simulation. 

• Economic Model: User can decide if the economic processes should be taken into consideration. 

• Cost-Source: User can decide the source of the cost data. 

• Intention Gap: User can indicate the percentage of people who intend to adapt and follow through 

with the adaptation. 

• Asset Value: User can indicate the building cost per sqm. Based on the building cost the content cost 

per sqm are calculated (24.2%). 

• Effectiveness: Users can select the adaptation effectiveness ratios for building and content damage 

and the effectiveness levels. 

• Foundation Height: Users can indicate the foundation hight. 

• Flood: User can select the representative concentration pathway of floods which occur after 2020, 

the number of floods (up to three), and for each flood separately the year of the flood event as well 

as the probability of the flood (10, 100, 1000-year flood).  

• Policy Impact: The user can simulate the effect of a hypothetical policy measure on a set of 9 socio-

behavioural factors motivating household adaptation which might be influenced by policies. For each 

of these 9 factors, they can increase or decrease the attribute levels of all households by a x-point 

value up to the maximum or down to the minimum.  

Code:  

• Binary Logistics Regression: the odds ratios for all the 13 socio-behavioural factors for elevation, 

wet-proofing and dry-proofing, the intention gap parameter are initialized. 

• Linear Regression: The beta and intercept are initialized. 

• Cost: The cost for the three types of adaptation measures are initialized. 

• Time: The lifetime and implementation time are initialized. 

• Building: The selected depth-damage are initialized. 

• Flood: Based on the inputs of the user interface, for each tick the respective name of the flood 

scenario is captured (see sub-subfunction initiate floods).  

• Districts: Based on the switches in the user interface the name of the selected districts are added to 

a list. 
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Initiate floods: 

This sub-sub-function determines which flood map is used in which tick based on the inputs of the user 

in the user interface.  

• Probability: Based on the input either a 10-, 100-, or 1000-year flood map is selected. 

• Year: We have flood maps for the years 2010, 2030, 2050 and 2100. Hence, we divide the time 

into intervals of years where a certain flood map year is selected. Before 2020 the 2010 flood 

maps are chosen. From 2020 until 2039 the 2030 flood maps are selected. From 2040 until 2074, 

the 2050 flood maps are selected. From 2075 on the 2100 flood maps are chosen.  

• RCP: Depending on the RCP (2.6. or 8.5) the respective flood maps are chosen. This is only 

relevant for “future” flood maps, hence flood maps starting from the year 2030.  

The name of each flood map is then put in a list at the item of the tick in which the flood occurs. It is 

important to note that only one flood can occur in one year. If two floods are selected for one year, the 

model asks the user to change the calibration respectively.  

B.7.1.2. Setup Household Parameters  

Macro-level data:  

First the macro-level data is loaded: The CSV file “Macrolevel_data.csv” is read row by row, where 

each row represents one residential building. Depending on whether or not the residential building is 

part of the set of districts which is selected for this simulation run, a new turtle is created, and the values 

from the CSV file (ID, building type, district, inundation levels, and ids of the 15 nearest neighbours) 

are loaded in the respective turtle parameters. When the file is finished, a verification of the loading is 

executed.  

Micro-level data:  

Then the households are loaded from the synthetic population and matched randomly to the buildings: 

The CSV file “Microlevel_data.csv” is read row by row, where each row represents one household. If 

the household is living in an apartment, it is randomly matched with one of the apartment turtles which 

have not been matched yet with a household and the turtle is populated with the parameters from the 

household: Survey ID, 13 socio-behavioural factors motivating flood-adaptation, building size, 

household status, number of households in the social network which have adapted at least one measure, 

income, savings, and yearly change of savings. Then, the social network size is immediately determined 

by multiplying the number of households in the social network which adapted at least one measure with 

the factor to determine the entire social network size of each household (see the Appendix B.4.6). 

Depending on which policy applies, the respective attribute values of the impacted socio-behavioural 

factors are immediately changed. The same procedure applies for houses. Hence, if no more unassigned 

residential buildings are left, then the remaining rows in the Microlevel CSV file are skipped. In the end 

we verify that no unmatched building remain.  
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To setup households the model iterates trough two loops. 

In a first loop, for each household first, the value of both the building structure and content is determined 

by multiplying the building size in sqm with the building/content value per sqm. Second, the undergone 

other parameter (UG_otherh) is determined for each adaptation measure depending on which measure is 

already undergone. Third, the direct neighbourhood is initiated: Currently each household has 15 nearest 

neighbours in the list Direct_NN_IDsh (which is the maximum size of the social network). However, not 

every HH has a network size of 15. Instead, the households have heterogeneous social network sizes 

which is included in the Soc_neth parameter. Therefore, we need to reduce the list Direct_NN_IDsh so 

that its length matches the individual network size variable Soc_neth. When doing so it is important the 

most remote nearest neighbours are removed from the list. This can be done by reducing the list form 

the right, as the list Direct_NN_IDsh is sorted by increasing distance. Lastly, the household checks 

whether their direct neighbours have adapted at least one measure and adjust the counter for the number 

of adapted direct neighbours (NN_adapth,t) accordingly, as shown in Figure 57. 

 

Figure 57: Pseudo code – Initiate adapted neighbours 

In a second loop we aim to initiate the indirect neighbours. A second loop through all turtles is required, 

because in order to determine the indirect neighbours, the direct neighbours of all turtles need to be 

already defined. First, the indirect neighbourhood is initiated. Each household adds the turtles to the list 

of indirect nearest neighbours where the household itself is included in the list of direct nearest 

neighbours. Next, the remaining household parameters are determined in the same loop to save 

computational time. The adaptation status parameter is adjusted in tick 0 depending on whether or not a 

measure has already been implemented. The remaining household parameters are set to 0. Lastly, the 

direct neighbourhood, the indirect neighbourhood, the cost calculation, and the agent state are verified 

with sanity checks.  

Update agent parameters:  

The setup finishes by updating the agent parameters. At a first glance it seems counter-intuitive to 

already update parameters in tick 0. However, in order to start the Go function in tick 1, we need to 

determine the probability of implementing a measure, as well as the implementation threshold. This is 

something that needs to be done every tick. To save unnecessary functions, we therefore already call the 

Update agent parameters function in tick 0.  
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B.7.2. Update agent parameters 

This function is executed for each household in a random order. After setting flooded to 0, as in the next 

tick all households are no longer flooded, two major subfunctions are executed. The first concerns the 

social interaction. The second concerns the calculation of the probability to implement and the respective 

implementation threshold. The pseudo code for this function is shown in Figure 58.  

Social interaction: This subfunction cannot be executed in the setup (tick 0), as the social influence 

parameter in tick 0 already reflects the number of adapted direct neighbours. First, we determine the 

change in number of adapted direct neighbours (NN_adapth,t) from the last tick to the current tick. If the 

number of direct adapted neighbours increased, we adjust the social influence value of the household by 

adding the size of the change multiplied with the factor which determines by how much the social 

influence changes if the number of neighbours that adapted in the social network changes by 1 

(Beta_soc_inf). The maximum value of the social influence parameter (5) can however not be exceeded. 

If the number of neighbours which adapted decreased e.g., due to expiration of measures, we only 

decrease the social influence variable if the number of adapted neighbours is less than 10. 10 is the 

threshold below which the number of adapted neighbours needs to be for the social influence value to 

be below 5 (see Design Concepts - Interaction). If the value is below 10, we change the social influence 

parameter as explained. The minimum value of the social influence parameter (1) can however not be 

exceeded. Further details on the social interaction can be found in Design Concepts - Interaction. 

Probability to implement: This subfunction calculates the probability of implementation for each 

measure and hence is executed for each measure (elevation, wet-, and dry-proofing). First, the 

implementation threshold is set as a random number between 0 and 1. After that we adjust the odds ratio 

for the flood experience for each household. As each flood affects each household and their behaviour 

differently, we randomly vary the odds ratio of flood experience for each household in the range of one 

standard deviation from the mean effect of flood experience on the adaptation intention. Next, the odds 

are calculated based on intercept, odds ratios, and attribute levels. Based on the odds, the probability of 

“intending” to implement a measure is calculated. By multiplying the probability to intent, a measure 

implementation with the intention gap parameter we get the probability to “implement”. The intention 

gap parameter is generated from the survey data (see the Appendix B.6.4.5). This is also in detail 

described in the Design Concepts (Appendix B.4.3). Lastly, we verify that the value range of the 

probability is correct (between 0 and 1). 

 

Figure 58: Pseudo code – Update agent parameters 
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B.7.3. Go 

The pseudo code for the Go function is shown in Figure 59. After updating the savings of household 

based on the yearly savings increase28 and the number of adapted neighbours, the function checks in a 

random order the adaptation status of the adaptation measures at the beginning of the tick and executes 

the respective subfunctions: 

• If the adaptation status is do nothing (0) the function Check Implementation Start (Appendix 

B.7.4) is called for the respective measure.  

• If the adaptation status is started (1) the function Check Implementation Finish (Appendix 

B.7.5) is called for the respective measure.  

• If the adaptation status is finished (2) the function Check Adaptation Expiration (Appendix 

B.7.6) is called for the respective measure.  

If a flood occurs in this tick, all households are asked to check the flood depth (function Check Flood 

Depth). At the end of the go function, the agent parameters are updated by calling the respective function 

Update Agent Parameters (Appendix B.7.2). If the tick exceeds the time horizon, the simulation is 

stopped. 

 

Figure 59: Pseudo code – Go 

  

 
28 We assume the change in yearly savings cannot be negative (see overview assumptions) 
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B.7.4. Check implementation start 

The pseudo code for this function is shown in Figure 60. This function is called in GO for each household 

and is only entered with adapt_statush,t,m = 0 (do nothing). Also, this function is called in Go separately 

for each measure type (elevation, wet-proofing, dry-proofing).  

If the probability to implement the measure is larger than the implementation threshold, the adaptation 

status is set to 1 (started). Also, the tick when the implementation of the measure was started is marked 

in order to be able to determine later when the implementation is finished. In addition, if the 

implementation time of the measure is zero, we need to check if the implementation is finished, and 

hence enter the function Check Implementation Finish (Appendix B.7.5). 

For the elevation measure, there are two additional conditions that a household needs to fulfil in order 

to be able to implement an elevation measure. First, a household must not implement elevation measures 

if they rent: Only 3% of survey respondents who rent indicated that they elevated their house. This 

appears reasonable as an elevation of the house requires a substantial interference with the house 

foundation, which we assume a tenant does not have the rights for. Second, a household must not 

implement elevation measures if they live in an apartment: We assume that the foundation of a 

residential apartment building is collective property of all households within the respective apartment 

building. Therefore, an individual household cannot drive the decision to elevate the entire apartment 

building itself. We assume the same is the case in Shanghai. As a result, we assume that a household 

living in an apartment cannot implement an elevation measure.  

Moreover, households can only start the adaptation if their savings are larger than the cost of the intended 

adaptation measure. When a household has enough savings to implement the measure, these savings are 

immediately reduced by the measure cost, so that the household does not go into debt by adapting further 

measures in the same tick. This is also explained in the conceptual model in the Chapter 5.1 in the main 

text. 

 

Figure 60: Pseudo code – Check implementation start 
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B.7.5. Check implementation finish  

This function is called for each household and is only entered with adapt_statush,t,m = 1 (started). Also, 

this function is called in Go separately for each measure type (elevation, wet-proofing, dry-proofing).  

Based on the starting time of the implementation, the current tick, and the implementation time of the 

respective measure it is determined if the measure implementation is finished. When the implementation 

time is at the end, the adaptation status of measure at current tick is set to “adapted” (2), Undergone 

(UGh) is set to 1 and the tick when the implementation of the measure is finished is marked to later be 

able to determine when the lifetime is expired. In addition, the undergone other parameter is adjusted 

for the other measures. When the household adapts his first measure (UG_otherh,m = 0), the adaptation 

counts of all the household’s indirect neighbours is increased by one. If the lifetime of the respective 

measure is set to 0 and the measure is adapted, then the function Check adaptation expiring (Appendix 

B.7.6) is called immediately, as the measure would expire in the tick in which it is implemented. The 

pseudo code for this function is shown in Figure 61. 

 

Figure 61: Pseudo code – Check implementation finish 
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B.7.6. Check adaptation expiring  

This function is called for each household and is only entered with adapt_statush,t,m = 2 (adapted). Also, 

this function is called in Go separately for each measure type (elevation, wet-proofing, dry-proofing).  

Based on the finish time of the implementation, the current tick, and the lifetime of the respective 

adaptation measure, it is determined if the measure expires. When the lifetime of the measure is at the 

end, set adaptation status of measure at current tick back to “do nothing” (0) and set undergone (UGh) 

to 0. Also, if applicable, adjust the undergone other parameter. When the only adaptation measure of the 

household expires (UG_otherh,m = 0), the adaptation count for the indirect neighbours is reduced by one. 

The pseudo code for this function is shown in Figure 62. 

 

Figure 62: Pseudo code – Check adaptation expiring 
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B.7.7. Check flood depth 

This function is called for each household in GO. We can then determine if a household is flooded by 

calling the inundation level of a household for the current flood scenario. This data is predetermined by 

overlapping the inundation maps with the location of the residential building in which the household is 

living (see the Appendix B.6.1.3). If the inundation is higher than the foundation-level, then we consider 

the household flooded.  

When a household is flooded, we set floodedh to 1, and we need to check the flood damage. Hence, 

Check Flood Damage (Appendix B.7.8) is called for this household. After that we update the flood 

experience and household savings by calling the function Update Flood Experience and Savings (as 

the flood experience takes into consideration the flood damage and damage reduction, this function 

needs to be called after updating the flood damage, see the Appendix B.7.10). The pseudo code for this 

function is shown in Figure 63. 

 

Figure 63: Pseudo code – Check flood depth 
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B.7.8. Check flood damage 

The pseudo code of this function is shown in Figure 64. This function is called by each household that 

is considered flooded. Within this function, we determine the total potential building and content damage 

(prevented damage + residual damage) and update the respective parameters. In our model we do this 

by using two sub functions called Check Building Damage and Check Content Damage. The damage 

for both building and content can be determined by multiplying the value of building/content with the 

proportional damage to the building/content for the current inundation depth of the building. The 

proportional damage is retrieved from the selected depth-damage function. The depth-damage functions 

used in this model are discrete (often also called ‘step damage function’), which explains the different 

inundation intervals. It is important to note that we need to take into consideration the foundation height 

when determining the building/content damage.  

We further verify the flood damage calculation by making sure that the damage to building/content is 

not larger than the value of building/content. Now that the potential total flood damage is assessed we 

are interested in understanding by how much the damage is reduced via the active adaptation measures 

of the household. Hence, the function Check Flood Damage Reduction (Appendix B.7.9) is called.  

 

Figure 64: Pseudo code – Check flood damage 
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B.7.9. Check flood damage reduction 

This function is called by each household that is considered flooded. It is only executed if at least one 

measure is undergone (UGh,m). The pseudo code for this function is shown in Figure 66. An important 

assumption for this function is that there is an order in which the measures reduce damage: First 

elevation, then dry-proofing, then wet-proofing:  

If implemented, the elevation measure reduces the damage first. This is logical, if the building is elevated 

above the flood level, then all the damage is reduced by the elevation measure, even if the other measures 

are implemented. If the water reaches the building despite the elevation, then dry-proofing (if 

implemented) reduces the remaining damage which is not reduced by the elevation measure. This is also 

logical. If dry proofing, does its job right, water does not enter the building and hence the damage that 

can be reduced via wet-proofing is smaller. If damage remains after applying elevation and dry-proofing 

measures, then the wet-proofing measures (if implemented) decreases the remaining damage. 

Following the order of the damage reduction, which is explained above, we start with the elevation 

measure. If the elevation measure is implemented, we want to determine the benefit of the elevation 

measure, which is the mitigated damage. The mitigated damage is the difference between the total 

damage without the elevation measure minus the remaining damage after applying the elevation measure 

for both content and building.29 We call the respective functions check building damage and check 

content damage for this (see the Appendix B.7.8). If the elevation level is higher than the flood level, 

the benefit of the measure equals the entire avoided damage. There is however one caveat of using a 

discrete (‘step’) depth-damage function compared to a continuous depth-damage function: When the 

inundation depth after the elevation measure is in the same inundation class (e.g. < 0.5, 0.5-1 etc.), the 

benefit of applying the elevation measure is 0, as the damage before applying the elevation measure is 

the same as the damage after applying the elevation measure due to the use of the stage depth damage 

function. This is a limitation of this model. If the elevation measure is not implemented, the benefit of 

the measure is 0. However, we do not need to change anything as the benefit of the elevation measure is 

initiated with zero in the setup and does not need to be changed.  

Moreover, we define a local variable for the building elevation which equals the foundation height if no 

elevation measure is implemented. If the building is elevated, the building elevation is set to 30cm above 

the inundation level in case of a 100-year flood in 2030 under the RCP 8.5 scenario including the 

building foundation. 

Now we need to determine the damage reductions of the dry-proofing and wet-proofing measures. Here, 

we need to take into consideration that each measure type has a different effectiveness level, and that 

each measure type has a different effectiveness factor in reducing flood damage. Taking this into 

consideration, we can distinguish four flood level intervals, see also Figure 65:  

1. If the inundation level is smaller than the building elevation: There is no damage remaining 

which can be reduced by dry-proofing or wet-proofing (if implemented). The benefit is 0.  

2. If the inundation level is higher than the building elevation and smaller than both the dry- and 

wet-proofing effectiveness levels: Both dry-proofing and wet-proofing can reduce the remaining 

damage. Both measures have a benefit if they are both implemented.  

3. If the inundation depth is higher than the building elevation and within one of the dry- or wet-

proofing effectiveness levels: Only the one measure which is still within its effectiveness level 

has a benefit if it is implemented.  

 
29 As the depth-damage curves are not linear, we cannot determine the mitigated damage by using the damage percentage value of the 

building elevation from the depth-damage curve. Instead, we need to determine the mitigated damage by calculating damage without 

elevation and subtracting the damage with elevation.  
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4. If the inundation depth it is out of both the dry- and wet-proofing effectiveness levels: Both dry- 

and wet-proofing are not effective within this inundation range and hence, we assume the benefit 

is 0.  

 

Figure 65: Visualization of different intervals of inundation levels 

Hence, we need to determine the benefit only if the inundation level is in the interval 2 or 3.  

If the inundation level is within both the dry- and wet-proofing effectiveness levels (interval 2), we need 

to determine if the measures are undergone. If dry-proofing is undergone, we set the benefit of dry-

proofing in this tick to the damage which remains after the building elevation multiplied with the 

effectiveness of the dry-proofing measure. If wet-proofing is undergone, we set the benefit of wet-

proofing in this tick to the damage which remains after the building elevation and the dry-proofing 

multiplied with the effectiveness of the wet-proofing measure.  

If the inundation level is in a range where only wet- or dry-proofing is still active (interval 3) we wet the 

benefit of the measure which is still active to the damage which remains after the building elevation 

multiplied with the effectiveness of the respective measure.  

We verify the damage reduction by making sure that the sum of the flood damage reductions of the 

different measures cannot be larger than the flood damage itself, and that a benefit (damage reduction) 

can only occur if the measures is active.  

 

Figure 66: Pseudo code – Check flood damage reduction 
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B.7.10.  Update Flood Experience and Savings 

When a household is impacted by a flood in the simulation, we update the Flood Experience attribute 

Fl_exph to the new flood damage value after taking into consideration the damage mitigation by the 

adaptation measures. The flood experience is a parameter with a 6-point scale, as shown in Table 31. 

Table 31: Updating flood experience based on the flood damage range 

Flood damage range 

[EUR] 

Flood Experience 

[0] 0 

(0;1270) 1 

[1270;2540) 2 

[2540;3810) 3 

[3810;5080) 4 

[5080; inf.) 5 

 

Moreover, the savings needs to be adjusted. We assume that households pay for the flood damage out 

of their savings: While households that own their building have to pay for both the building and the 

contents damage, households that are tenants only have to pay for the contents damage. Hence, we 

reduce the savings for building owners by the full building and content damage, and the savings of 

tenants by the content damage (after taking into consideration the impact of the adaptation measures on 

the respective damage category). The pseudo code for the function is shown in Figure 67.  

 

Figure 67: Pseudo code – Update flood experience and savings  
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B.8. Model assumptions 

Table 32: Summary model assumptions 1 

 Assumption Reasoning for assumption Potential impact on results 

H
a
za

rd
 

We focus on storm 

surges with high tides. 

Storm surges combined with high tides cause one of the 

greatest flood risks in Shanghai (S. Xu & Huang, 2011; J. 

Yin et al., 2013).  

Rainstorm-induced floods, which make up a large portion of the floods in 

Shanghai (Quan, 2014) are not taken into consideration. Hence, flood risk and 

the impact of household adaptation might be underestimated. 

We measure flood 

intensity with flood 

depth. 

Flood depth is the most commonly used parameter to 

measure the flood intensity (Apel et al., 2009; Merz et al., 

2007), one of the most influential parameters on flood 

damage (Wind et al., 1999), and the most commonly 

available flood parameter (Poussin et al., 2011). 

Other variables such as flood duration, flow velocity, and sediment or 

contamination load (Poussin et al., 2011; Putra et al., 2015) are not taken into 

consideration and hence the flood risk and the impact of household adaptation 

might be underestimated. 

Each year (step) only 

flood can occur. 

On the one hand, this aligns with our inundation maps that 

indicate the yearly probability of a flood occurrence. On the 

other hand this is applied in other flood-ABMs – see Abebe 

et al. (2020). 

In reality, multiple foods can occur in the same year. As we apply 

predetermined flood scenarios, this assumption does not appear to influence our 

simulation output. 

We ignore the impact of 

the agent behaviour on 

the flood hydraulics. 

Creating and linking a numerical flood-model of Shanghai 

to our ABM exceeds the scope of this thesis.  

The influence of the adaptation actions e.g., placing sandbags in front of the 

house on the flood hydraulics are not considered. “With a two-way linkage, 

hazards affect human actions, but social activities have consequences on future 

floods.” (Taberna et al., 2020, p.7). This is neglected and hence the human-flood 

system dynamics cannot be fully depicted. 

E
x
p

o
su

re
 

We only consider 

households as agents. 

Including multiple agent types in our model and studying 

their impact on the adaptation effectiveness exceeds the 

scope this thesis. 

The adaptation behaviour of other actors such as companies are neglected. As a 

result, “the backbone of regional resilience and recovery – the role of firms that 

provide households with jobs and income – is entirely overlooked.” (Taberna et 

al., 2020, p.16).  

Households are static Movement of households is not included in the survey as an 

adaptation measure and hence this is not modelled. 

The movement of households e.g., out of high-risk areas is not taken into 

consideration– see Haer et al. (2016). The lack in mobility might overestimated 

the flood risk and hence the effectiveness of the remaining mitigation measures. 

Each household lives in 

one residential building 

and vice versa.  

On the one hand, this appears to be a common assumption in 

flood-ABMs – see for instance Abebe et al. (2020). On the 

other hand, data on the number of living-accommodations 

within each residential building appears scarce in Shanghai. 

The majority of citizens in Shanghai live in apartments (Shanghai Municipal 

Statistics Bureau, 2020). A residential building in OSM can consist of multiple 

apartments. This means that the number of households is drastically 

underestimated which might leads to an underestimation of the flood risk and 

the cumulative adaptation effectiveness. 

In case of multi-story 

buildings, it is assumed 

that households live on 

the ground floor.  

On the one hand, this appears to be a common assumption in 

flood-ABMs – see for instance Abebe et al. (2020). On the 

other hand, the data on the number of stories within each 

residential building appears poor. 

Households which live on the ground floor have a higher exposure to flooding. 

Therefore, our hypothesis is that they would be more willing to adapt than 

people living in higher floors which are less exposed to floods. The majority of 

survey participants (82%) does not use the ground floor. This means that within 

our model the behaviour of households living mainly on the first floor or higher 

is used to model the behaviour of households living on the ground floor. As a 

result, the probability to intend adaptation measures and consequently the 

adaptation effectiveness might be impacted. 

The building flood depth 

is extracted at the 

location of the centroid 

of the building polygon. 

This information can be extracted from QGIS. In reality, damage would occur when water reaches the building structure (the 

edges of the polygon), which would thus be the relevant flood inundation. The 

flood depth of the building might thus slightly differ to reality.  

We assume that 

residential buildings have 

a floor elevation of 0.1 

meter.  

In our experience buildings tend to have a small floor 

elevation. This assumption also is considered in other flood 

ABMs – see Abebe et al. (2020). 

This means that we consider a building inundated if the flood depth is 0.1 meter 

higher than the ground level of the building. In reality, not all buildings might 

have such an elevation and might be flooded already at a lower inundation level. 

Furthermore, in reality, buildings may have basements, which are neglected 

with this assumption. Thus, the exposure and therefore the flood risk of 

households might be underestimated. 

Households do not forget 

floods. 

Although literature suggests that flood experience can 

decrease over time (- see for instance Bhattacharya-Mis & 

Lamond (2014), and de Guttry & Ratter (2022)), we do not 

assume this to be the case in our model. This assumption is 

in line with other flood ABMs e.g., Abebe et al. (2020) 

Our regression results show that flood experience has a positive impact on the 

adaptation intention. Hence, as we assume a perfect memory of flood 

experience, the probability to adapt will be higher compared to an imperfect 

memory. As a result, the adaptation rate might be overestimated. As the Odds 

Ratios for Flood experience are however small, the impact of this assumption is 

likely small. 
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We only focus on direct 

tangible damages. 

Including indirect and intangible damages in Shanghai 

exceeds the scope for this thesis. 

Indirect damages e.g., business interruptions or intangible damages e.g., death 

are neglected. The impact of mostly non-structural adaptation behaviour e.g., 

storing emergency kits can therefore not be studied. Moreover, this leads to an 

underestimation of the potential flood risk and hence also damage reduction. 

For the assessment of 

building damages, we 

consider the construction 

cost. 

On the one hand, we have contemporary and official 

information available from the Shanghai Statics Bureau. On 

the other hand, this approach appears to be common in flood 

risk research – see Huizinga et al. (2017), and Wu et al. 

(2019) 

Building damages consider the cost of reconstruction, i.e., the cost it would take 

a household to hire a construction company to repair the flood damage to the 

building structure. This means that we don’t consider the “market price” of a 

new home in case the building is damaged to such an extent that it is no longer 

habitable. As shown by Shan et al. (2019) this can lead to a drastic 

underestimation on the flood risk.  

We apply damage 

reduction values for dry- 

and wet-proofing from 

sources from the Global 

North (Europe or United 

States). 

The Shanghai values provided by Du et al. (2020) for the 

damage reduction effect of wet-, and dry-proofing are 

assumed 100%, which does not appear reasonable when 

comparing it with other values from studies from the Global 

North. Hence, we apply the values from the Global North 

for the damage reduction effect of wet- and dry-proofing. 

As explained by Kreibich et al. (2015, p.977) damage reduction effects of 

measures from different studies have a large spread “since the effectiveness 

depends on the specific local conditions during a flood.” The local conditions in 

Europe and the US might differ drastically from those in Shanghai e.g., flood 

type, flood intensity, flood duration, building quality, materials used, urban vs 

rural environment,… – see Huizinga et al. (2017). The damage assessment 

therefore contains considerable uncertainty. 
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Table 33: Summary model assumptions 2 

 Assumption Reasoning for assumption Potential impact on results 
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Adaptation measures are 

split into elevation, wet-

proofing and dry-

proofing. 

First, the measure effectiveness (and cost) appear to differ measurably 

between the categories. Second, this categorization provides a suitable trade-

off between modelling effort and details. Lastly, this categorization appears to 

be common in flood risk assessment (de Moel et al., 2013; Du et al., 2020; 

Lasage et al., 2014)  

The effectiveness of the individual measures within the 

different categories can differ measurably – see Kreibich et al. 

(2015). By categorizing the measures, we need to apply an 

overall effectiveness of the measure category. This might lead 

to uncertainty in the outcome. 

Survey respondents 

intend to elevate, dry-or 

wet-proof, if they intend 

at least one individual 

measure within the 

respective category. 

To create a binary logistics regression model, we require binary values for the 

intention to elevate, wet-proof and dry-proof. Therefore, we set these values to 

1 if at least one adaptation measure within the respective category is intended. 

The difference between households which intend one vs all 

adaptation measure within an adaptation category (elevation, 

wet-proofing, dry-proofing) is neglected. This impacts the 

resulting odds ratios and hence the probability to intend to 

adapt, which influences the adaptation rate and hence the 

adaptation effectiveness.  

Elevation and wet-

proofing measures are 

assumed permanent, dry-

proofing non-permanent. 

Following Du et al. (2020) we assume that the elevation and wet-proofing 

measures are permanent and hence have an “infinite” lifetime, while dry-

proofing measures are assumed non-permanent and can expire. After the 

lifetime is expired, households will no longer have dry-proofing implemented 

and benefit from the respective damage reduction. 

Over time, less households will have adapted the dry-proofing 

measure than without this assumption. Hence, this assumption 

influences the adaptation diffusion, measure effectiveness, and 

flood risk. 

Dry-proofing measures 

have a normally 

distributed lifetime. 

We assume a normally distributed lifetime of adaptation measures with a 

mean of 20 years and a standard deviation of 2 years to create a more realistic 

adaptation curve. 

This assumption directly influences the adaptation diffusion of 

dry-proofing measures, measure effectiveness, and flood risk. 

We assume an intention 

gap between households 

who intend to adapt and 

households who actually 

adapt. 

Households who intend to adapt do not necessary follow through with their 

adaptation intention (Grothmann & Patt, 2005) due to barriers in the form of 

time, knowledge, money, or social support (Grothmann & Reusswig, 2006). 

Hence, we introduce an intention gap parameter Intention_Gap which is 

derived from our longitudinal survey data in Shanghai. It captures the average 

percentage of household that put their adaptation intention into action within 

approximately one year  

This parameter has a direct influence on the number of 

households who undertake adaptation measures. Therefore, it 

directly influences the adaptation diffusion and the adaptation 

effectiveness. Variations in this parameter may thus have a 

significant result on the model outcome. 

A household can adapt 

multiple measures at the 

same time. 

The adaptation measures (elevation, wet-proofing, dry-proofing) pursue 

different mitigation. Therefore, it makes sense that households are able to use 

these different strategies at the same time to protect them from flood damage.  

Households with attributes that favour adaptation intention as 

well as with high savings likely adapt multiple measures, 

which has a positive effect on the adaptation diffusion and the 

flood risk. 

A household must not 

implement elevation 

measure if they rent. 

Only 3% of survey respondents who rent indicated that they elevated their 

house. This appears reasonable as an elevation of the house requires a 

substantial interference with the house foundation, which we assume a tenant 

does not have the rights for. 

Tenants who intend to adapt an elevation measure are hindered 

to do so by this rule. Hence, the adaptation diffusion decrease 

and the risk increases. The effect of this assumption might be 

small due to the small number of tenants in the survey (16.2%). 

A household must not 

implement elevation 

measure if they live in an 

apartment. 

We assume that the foundation of a residential apartment building is collective 

property of all households within the respective apartment building. Therefore, 

and individual household cannot drive the decision to elevate the entire 

apartment building itself. As a result, we assume that a household living in an 

apartment cannot implement an elevation measure. 

Households living in apartments which intend to adapt 

elevation measures are hindered to do so by this rule (less 

adapted households, more risk). This institution is likely to 

have a large impact on the simulation results, as the majority of 

households live in apartment buildings. 

Household can only 

implement a measure if 

they can afford the cost. 

We think it is important to include the financial capability of a household to 

adapt, as this is an important adaptation barrier (Grothmann & Reusswig, 

2006). Hence, households can only implement a measure if their savings 

exceed the measure cost. 

This means that households which would like to intend to 

adapt but cannot afford it do not implement the measure. 

Hence, the adaptation diffusion will be lower and the flood risk 

higher as households are more vulnerable. 

Households cannot take 

loans. 

Loan-taking of households exceeds the scope of this thesis. With loan-taking, households that do not have the savings 

could still finance and hence implement adaptation measures. 

Hence, our assumption likely leads to an underestimation of 

the adaptation uptake and thus of the damage prevention.  

The elevation measure 

increases the floor 

elevation to a level which 

is 30 cm higher than a 

current 100-year flood-

level. 

Within the survey data of Noll, Filatova, Need, et al. (2022) elevation is 

defined as “raising the level of the ground floor above the most likely flood 

level”. Therefore, we assume that the elevation measure increases the 

buildings ground floor (which is assumed to be 10-cm above the ground) by 

30-cm above the 100-year flood level. This is in line with Du et al. (2020). We 

choose the flood level from the 2030 scenario, as this can be considered a 

“current” flood-level from a 2020 perspective. Moreover, we choose the 

RCP8.5 scenario. However, we only have the inundation levels of the 

buildings for different flood scenarios and not the actual elevation level. 

Hence, we assume that if a household’s inundation level for a 100-year flood 

in 2030 under the RCP 8.5 scenario is zero, then the ground floor will be 

elevated by 30cm.  

This assumption directly influences the elevation level and 

hence the damage reduction.  

 

 The adaptation measure 

reduces damage after the 

implementation time is 

passed.  

We assume that the measure is only active and able to reduce damage after the 

implementation time is passed. If a flood happens during the implementation 

of a measure, the damage reduction by that measure will not take place. 

In reality, even if an adaptation measure is only partially 

implemented e.g., only half the house structure is wet-proofed, 

the damage would be reduced in case of a flood. This is 

neglected in our model. Hence, this may have a negative effect 

on the damage reduction and hence flood risk 

 Households receive an 

early warning to put up 

non-structural measures 

such as placing sandbags, 

which are included in the 

measure categories. 

Implementing the effect of warning systems in our model is out of scope for 

this master’s thesis. Therefore, we assume that all households receive an early 

warning and take the warning seriously 

By assuming that all households receive a flood-warning in 

time, we might overestimate the effectiveness of the adaptation 

measure and hence underestimate the flood risk. 
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Table 34: Summary model assumptions 3 

 Assumption Reasoning for assumption Potential impact on results 
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We assume that 

households that 

implemented a measure 

before, did so in the 10 

previous years (uniform 

distribution). 

The median age group in the survey is 25-34 years old (~30). Hence, we 

assume that households that indicated in the survey that they already 

adapted a measure, did so in previous 10 years based on a uniform 

distribution for every simulation run. 

This assumption influences when the non-permanent measure 

expires and hence directly influences the adaptation diffusion. 

Households can only 

adapt if they intend to do 

so before.  

With the PMT, we determine the probability of a household to intend to 

adapt. As we based the agent behaviour on the PMT, we assume that a 

household can only start implementing an adaptation measure, if this is 

intended before.  

The survey data shows that households also adapt which did not 

intend to do so before. This behaviour will hence be neglected in 

our model. As a result of our assumption, the total amount of 

households which adapt might be underestimated, which might 

lead to an overestimation of the flood risk.  

For the damage reduction 

assessment of a flood, we 

first determine the impact 

of the elevation, then of 

the dry-proofing and 

lastly of the wet-proofing 

measure. 

The adaptation categories differ with regards to their damage reductio 

approaches. If the flood level is below the elevation level, the elevation 

measure contributes to 100% decrease in the flood damage. Although other 

measures also might have been implemented, they were not responsible for 

the decrease in damage and hence will not be accredited for it. If the flood 

level is above the elevation level, then the damage which is not avoided by 

the elevation measure can be decreased by the dry-proofing measure, which 

tries to avoid water from reaching or entering the building. Only if water 

enters or reaches the building, wet-proofing measures can reduce damage. 

Therefore, wet proofing measures can only reduce the damage which is not 

reduced by elevation and dry-proofing measures. 

As a result of this logic, the dry-, and wet-proofing measure 

might be less effective when multiple measures are combined. 

The yearly change in 

savings cannot be 

negative. 

Although a considerable portion of households indicate that their future 

savings will decrease, we assume that this is not possible. The main reason 

is that the majority of our households are from the 5th income percentile and 

hence we assume that households can only have a yearly change of savings 

which is large than or equal to 0. 

As a result of this assumption, the average savings of a household 

will be higher and hence more households are able to afford the 

adaptation measure cost. 

We randomly vary the 

odds ratio for Flood 

experience for every 

household between the 

mean and the standard 

deviation. 

As each flood affects each household and their behaviour differently, we 

randomly vary the odds ratio of flood experience for each household in the 

range of one standard deviation from the mean effect of flood experience on 

the adaptation intention. 

This assumption introduces more stochasticity into how the flood 

experience of households influences their probability to intend an 

adaptation measure and hence makes the adaptation diffusion 

more diverse.  
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The social network of the 

household is represented 

via its closest 

neighbours. 

On the one hand, previous research shows the relevance of interactions in 

social networks on individual climate change adaptation (Bubeck et al., 

2013; Figueiredo et al., 2009; Haer et al., 2016; H. Kunreuther et al., 2013; 

Lara et al., 2010; Lo, 2013; Noll, Filatova, Need, et al., 2022; van der 

Linden, 2015). On the other hand, our binary logistics regression results 

show that the influence of a household’s social network is one of the 

strongest predictors on the adaptation intention for all measures.  

 

In reality, the social network (in particular family and friends) 

might reach beyond neighbourhood. For instance, the adaptation 

decision of one’s parents which live in a different city might still 

influence one’s adaptation decision. This is neglected within this 

model.  

Each household can only 

consider the households 

within the same district 

as a neighbour.  

We need to make sure that in case of spatial down- or upscaling of the 

model (e.g., selecting only one city centre district), a household still has 

access to the information of its neighbours. Therefore, we assume that each 

household can only consider the households within the same district as a 

neighbour. Hence, adding or removing districts does not impact the 

neighbourhood of households. 

As a result of this assumption there are no social ties across 

districts. Hence, adaptation diffusion through the social network 

is limited to the district. In reality, households can be influenced 

by the behaviour of households in other districts. This is 

neglected in the model.  

The neighbourhood 

behaviour influences the 

social influence 

parameter of a 

household. 

We assume the agent interaction influences the social influence parameter 

of a household as the odds ratio of the social influence parameter is a strong 

indicator for adaptation intention. 

. 

The adaptation behaviour could also influence other agent 

parameters e.g., cost perception. According to Bubeck et al. 

(2013, p.1336) “the observation that the majority of the 

neighbours have implemented a certain flood mitigation measure 

(or not), can be regarded as a good indication that the respective 

measure is cost-effective (or not)”. Including the influence of 

social network on other household parameters might increase the 

effect of the social network on the adaptation diffusion. 

 

Assumptions are an important part of the conceptual model which according to Balci (1994, p.157) 

“should be explicitly specified.” Hence, we list our assumptions together with the reasoning behind each 

assumption as well as the potential impact of the assumption on the model results in Table 32, Table 33, 

and Table 34.  
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B.9. Model narrative 

 

Figure 68: Model narrative (Source: created with Pixton (2022)) 
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For the model formulization Nikolic et al. (2013, p.88) recommend a model narrative, which is “an 

informal description of the generative theory of the system under study, leading to emergent patterns we 

are interested in exploring”. For our model, we explain the narrative with the help of a comic – see 

Figure 68. Within the narrative we distinguish two hypothetical household agents: The first household 

represented by Wei has PMT attribute levels which favour adaptation intention such as high perceived 

flood probability, high perceived flood damage, high worry, flood experience, a young age, high 

education, and high social influence. The second household represented by Jiahong has PMT attribute 

levels which do not favour adaptation intention e.g., low trust in social media, high age, low education, 

low flood probability perception, low flood damage perception, and low worry. 

In addition, the following concepts are shown within the narrative: interaction with other households 

and the environment, the intention gap, the adaptation states (Do nothing, Implementing, Adapted), and 

the different adaptation measures. Due to the model size not every possible flood scenario, agent attribute 

combination and concept can be depicted. However, the narrative gives a good code-independent 

understanding of “which agent does what and with whom” (Nikolic et al., 2013, p.88). 
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C.  Software Implementation 

This appendix chapter details the software implementation of the model. 

C.1. Program requirements 

Following Robinson (2008) we define the requirements for our model: 

• Run-speed: It is important that the model experiments can be conducted in reasonable time. This is 

one of the high-priority requirements of the model and will be prioritized over other design criteria, 

such as visual display. 

• Visual display: Is not an important requirement for our model. In our model, there is not movement 

of the households. However, some form of graphical representation of the ABM processes are 

desirable.  

• Ease-of-use: The model should be intuitive to calibrate and initiate. User should be able to change 

the agent parameters e.g., the socio-behavioural factors of the households via the GUI. Moreover, 

users should be able to change the environment over the GUI e.g., different flood scenarios, or 

different damage curves. 

• Flexibility and model/component reuse: A model should be created which can be easily adapted 

to other geographic locations. This means that the model should be created in a manner, that changes 

in geographic context only influence the model data and not the main parts of the model structure.  

We implement the model in Netlogo Version 6.2.2., as it is an easy-to-use ABM software with lots of 

documentation available, simple syntax, and an extensive online community (Nikolic et al., 2013). 

Moreover, as run-speed is one of the most important requirements, we improve the simulation time in 

the model as follows: 

Outsourcing computation: We outsourced computational steps within the ABM to the input and output 

data. Regarding the input data we designed the model in such a way that all spatial model components 

are determined in QGIS and loaded into the ABM as simple data tables. On the one hand, we overlay 

the inundations maps with the residential building data to determine the inundation depth of each 

building. Hence, the inundation does not need to be determined by the ABM itself. On the other hand, 

instead of determining the nearest neighbours within the simulation model, the 15 nearest neighbours of 

each residential building are determined in QGIS via the distance matrix. Hence, each household knows 

the IDs of the 15 closest residential buildings which are used in the simulation model to call the 

respective household and exchange information. We outsourced computation to the output data analysis 

by letting the ABM only track the fundamental parameters (adapted HHs, flood damage, benefit and 

cost) which are required to determine the final reporting KPIs e.g., the NPV. These calculations itself 

are done post-simulation in our data analysis program e.g., SPSS.  

Enabling easy spatial up- and downscaling of the model: The model is designed in such a way that 

Shanghai city centre districts can be easily added to or removed from the model via switches in the user 

interface without requiring further adjustments in the program or data. No adjustments in the program 

are needed, as the program only loads the buildings from the macrolevel csv-file which are included in 

the setup. Moreover, the data does not need to be adjusted as each household can only consider the 

households within the same district as a neighbour. Hence, adding or removing districts does not impact 

the neighbourhood of households. As the number of households has a big influence on the simulation 

time, this function enables the program to also work on computers with less computational power by 

simply reducing the number of districts included in the simulation. 
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Avoiding unnecessary calculation steps: During the setup, only the data which is required for the 

simulation is loaded into the model e.g., households which are not part of the scope are skipped while 

reading the csv files. During the execution, functions are only entered when it is necessary e.g., when 

there is no flood, a flood depth assessment is not necessary. Moreover, unnecessary loops are avoided 

e.g., instead of first letting all households determine their flood depth, then letting all households 

determine their flood damage, and finally letting all household determine their flood damage reduction 

(3 loops through all households), we use one loop and let first the first household determine its flood 

depth, flood damage, and flood damage reduction and then the second one and so on.  

C.2. Applied programming practises 

In line with Nikolic et al. (2013) we apply the following programming practices: 

• Version Control: We regularly create a new model version. 

• Code documentation: Besides the conceptual and formal model, we document within the code itself 

via extensive comments. 

• Naming conventions: We adhere to the naming conventions established in the conceptual model. 

• Bug Tracking: As Netlogo does not offer a debugging function, we develop a simple debugging 

function ourselves which gives out the micro-level information of important functions. This allows 

for bottom-up testing, execution monitoring, and execution tracing. 
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D.  Experimentation 

This appendix chapter provides supplementary information on the experimental setup of the ABM. 

D.1. Design of flood scenarios 

The ABM enables a selection of the RCP and up to three floods for each of which the time of occurrence 

and the flood probability can be selected. Based on this selection, the corresponding floods maps of J. 

Yin et al. (2020) with different Representative Concentration Pathways (RCP2.6 vs RCP8.5), different 

years (2010, 2030, 2050, 2100) and different flood probabilities (10-, 100-, 1000-year flood) are applied. 

This leads to a multitude of potential flood scenarios. Due a restriction in time and computation power, 

not all these scenarios can be examined. Therefore, a selection of the most relevant scenarios is 

conducted. 

We select the flood scenarios based on the time of the flood events, the flood probabilities, the 

Representative Concentration Pathways, as well as the number of floods occurring, 

Time of flood event: Our simulation span reaches from 2020 (tick 0) until 2050. Hence, until the year 

2039, the 2030 flood maps will be selected and from 2040 onwards the 2050 flood maps are chosen by 

the model. Therefore, we distinguish between an early flood based on the 2030 flood maps and a late 

flood based on the 2050 flood maps. For the early flood we choose the year 2021 (first tick) as this 

allows us to best observe how flood events shortly after the simulation start impact the adaptation 

behaviour in the long-term. For the late flood event we choose the year 2040, as the simulation runs end 

in the year 2050 and it might take some years until patterns of change become visible. Within our 

scenarios we assume floods to occur 10 years earlier than indicated by the flood-maps (we use 2030 in 

2021 and the 2050 in 2040). This means that we might overestimate the effect of sea-level rise and land 

subsidence in our scenarios. However, the Special Report on the Ocean and Cryosphere in a Changing 

Climate by the IPCC (2019) discovered that sea level rise is happening more quickly than previously 

thought. This justifies in our opinion the earlier application of the inundation maps. 

Probability of floods: Based on the flood maps and the location of the residential buildings the 

inundation depth of each household are determined (see ODD protocol, Appendix B.6). For the city 

centre districts our analysis of the input data shows that in the event of a 10-year flood 0% of households 

are flooded in 2030 and 1% of households in 2050 for both RCP scenarios. Hence, the 10-year flood 

event is very close to the no flood event and therefore we only investigate the 100- and 1000-year 

probabilities. 

Representative Concentration Pathway: The RCP impacts the effect of sea-level rise and hence the 

severity of the floods. Our analysis results show that with increase in years (2010, 2030, 2050, 2100) the 

difference between the RCP 2.6 and RCP 8.5 in terms of the number of flooded residential buildings 

increases (see ODD protocol, Appendix B.6.1.3.2). For the 100-year flood, the difference between the 

RCP 2.6 and RCP 8.5 scenario both for a flood in 2030 and 2050 in terms of flooded households is 

negligible (< 1%). For the 1000-year flood, the difference between the RCP 2.6 and the RCP 8.5 scenario 

is negligible in 2030 (~1%). In 2050 the difference between the RCP scenarios accounts for ~800 

households (~5%). Hence, we only compare the RCP scenarios in this case. For the years and 

probabilities where the difference between the RCP scenarios is negligible, the RCP8.5 scenario is 

chosen. 

 



123 

 

Number of floods: Regarding the number of floods, we decide on scenarios with zero, one, and two 

floods occurring per simulation run. A scenario without a flood enables us to determine how households 

adapt in the absence of floods. The other scenarios allow us to examine the adaptation behaviour in the 

presence of one or two floods. For the scenario with two floods, we want to determine the combined 

effect of a 100-year flood in an earlier period where the effects of sea-level rise and land subsidence are 

small (low severity) to a 1000-year flood in a later period with larger effects of sea-level rise and land 

subsidence (high severity). Similar to Taberna et al. (2021), this scenario mimics a climate tipping point, 

where the severity of the flood increases. 

As a result of these decisions, the following seven flood scenarios emerge: No flood, 2021_100_RCP8.5, 

2021_1000_RCP8.5, 2040_100_RCP8.5, 2040_1000_RCP8.5, 2040_1000_RCP2.6, and 

2020_100_RCP8.5 + 2040_1000_RCP8.5. 

D.2. Number of replications per experiment 

We follow the approach outlined by Lorscheid et al. (2012) to determine the number of replications per 

experiment. Hence, we estimate the coefficient of variation for different response variables with 

increasing number of simulation runs. As response variables we choose the percentage of households at 

the end of the simulation time (tick 30) which have adapted an elevation, a wet-proofing, and a dry-

proofing measure. We measure the response variable in each run in the last tick. Moreover, as suggested 

by Lorscheid et al. (2012) we apply two different scenarios. A “normal” flood scenario with no flood 

occurring and an “extreme” flood scenario with a 100-year flood occurring in 2021 and a 1000-year 

flood occurring in 2040.  

Table 35: Error variance matrices (Source: Adapted from Lorscheid et al. (2012)) 

 

The error variance matrices in Table 35 suggests that the coefficient of variation for the three response 

variables are stable with 100 replications (see green marking) in terms of a difference criterion of 0.001. 

Therefore, we select 100 replications per experiment. 
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D.3. Experimentation output  

Table 36: Attribute levels for simulation output (n=18039)  

 

To make the results more significant and to better compare the variables of interest for each socio-

behavioural attribute, we convert the socio-behavioural attributes of the synthetic population of 

households into 3-point scales for the output of our experiments as shown in Table 36.  
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E. Verification and Validation  

Model validation and verification are arguably two of the most critical steps in the simulation lifecycle. 

Whereas “model validation deals with building the right model”, “model verification deals with building 

the model right“ (Balci, 1994, p.165). Tests are applied to perform the validation and verification of 

simulation models (Balci, 1994; Rabe & Spiekermann, 2008). Validation, verification, and testing 

(VV&T) can help to avoid errors of type 1, 2, and 3 in the simulation model – see Balci & Nance (1985). 

While Nikolic et al. (2013) define verification and validation as separate steps in the life-cycle, Balci 

(1994) highlight that VV&T should be seen as a continuous activity throughout the lifecycle. As a result, 

we modify the lifecycle of Nikolic et al. (2013) by integrating VV&T into the most important process 

steps. Since models are abstractions of the real-world system, our tests do not provide formal proof of 

the absolute correctness of a model, but merely confirm the credibility of our model (Balci, 1989; Rabe 

& Spiekermann, 2008). 

E.1. System and Objectives Definition VV&T 

System and Objectives Definition Verification and Validation is used to check the credibility of the 

system definition. The system identification should be examined especially with regards to changes over 

time, environment, counterintuitive behaviour, tendency to low performance and dependency 

relationships. Errors in the system definition can otherwise lead to type 2 and type 3 errors. (Balci, 1994).  

• Changes over time: While the system structure consisting of household as actors, residential 

buildings as objects, and floods as the environment will likely stay similar over the simulation time 

horizon (30 years), the values of the system parameters likely change over time. The dynamics of 

climate change over time are integrated via the flood maps. Socio-economic developments e.g., the 

amount of households and buildings in Shanghai due to population growth, the building and content 

values, or the effectiveness of adaptation measures due to technological advances are assumed static 

in our model. To limit the effect of the neglecting changes over time for the aforementioned 

parameters, we choose a time horizon of 30 years (see ODD protocol, Appendix B.2.3.1).  

• Environment: The identification of the system boundary has been validated via conversations with 

ABM as well as flood modelling experts. 

• Counterintuitive behaviour: One counterintuitive behaviour which is included in this model is the 

negative influence of belief in climate change on the adaptation intention, as highlighted by Noll, 

Filatova, Need, et al. (2022). 

• Drift to low performance: Drift to low performance describes the performance decrease of system 

components over time, such as the wear and tear of machinery (Balci, 1994). In our case, the 

effectiveness of adaptation measures might decrease over time. Therefore, we have introduced the 

expiration for dry-proofing measures. 

• Dependencies: “In a complex stochastic system, many activities or events take place simultaneously 

and influence each other. The system complexity can be overcome by way of decomposing the 

system into subsystems and subsystems into other subsystems.” (Balci, 1994, p.156) We follow this 

advice and decompose the system based on the extended risk assessment framework of Aerts et al. 

(2018). 
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E.2. Data VV&T 

For the validation and verification of the data, further Consistency Checking and Face Validation tests 

proposed by Balci (1994) are performed. In addition to the tests for data validation, indicators for the 

quality of data preparation are provided in the form of questions (Balci, 1994) which we answer in the 

following. 

On the one hand, the question is raised whether the identified and processed input parameters accurately 

represent the real-world system (Balci, 1994). To represent the household behaviour, we apply survey 

data from 933 survey respondents of Shanghai, of which 66% of the survey respondents located in 

Shanghai city centre. To model the residential buildings, we use OSM data with 18039 residential 

buildings in the city centre with an accuracy of 90% to the real-world data in terms of the number of 

mapped buildings. To model the floods, we apply inundation maps from local Shanghai experts which 

include dike breaking and overtopping, the effect of sea level rise and land subsidence. Hence, we 

conclude that the input parameters appear to represent the real-world system in an adequate manner. 

Furthermore, the reliability of the data collection tools needs to be evaluated (Balci, 1994). This also 

includes the quality of the data sources. Data for the hazard, vulnerability, risk reduction and behaviour 

factors stems from peer-reviewed academic models or papers (details see ODD protocol, Appendix B.6). 

As government-provided residential building data appears scarce, the location of residential buildings in 

Shanghai is retrieved from OSM, a licence-free digital map of the world, where the data is collected by 

volunteers. These volunteers act independently of each other and are usually not experts in data 

collection and preparation, leading to data quality concerns (Haklay, 2010). However, an analysis by 

Zheng & Zheng (2014, p.187) shows “that the OSM data in Beijing and Shanghai is mostly complete, 

with high positional accuracy.” Therefore, OSM appears a suitable source for open-source data in 

Shanghai. In terms of residential buildings, we compare the accuracy of the building data ourselves and 

focus on the districts in Shanghai with the highest mapping accuracy of residential buildings. 

Balci (1994) also raises the question of whether the data transformations are completed correctly. For 

residential building data, the application of the correct OSM filter tag is of great importance. The 

correctness of the filter tag is verified, for example, by searching for the filtered elements after applying 

the filter tag. Regarding the inundation data, merging the 21 inundation maps with the residential 

buildings has a great error potential. Hence, we check that the inundation at the building location is 

mapped correctly and verify that the maximum inundation levels of households are within reasonable 

ranges.  

Lastly, Balci (1994) asks about the actuality of the data. The residential building data stems from 2022, 

the inundations maps from 2020, the survey data from 2020 and the adaptation measure data is from 

>2010. Hence, we can conclude that the data appears up to date. However, it should be noted that some 

data in the real-world system changes during the modelling process. For example, new residential 

buildings might be added by mappers in OSM, which are consequently not represented in the simulation 

model. 

It is to be noted that next to the Data VV&T mentioned in this subchapter, we perform additional data 

verification and validation within the input data subsection of the ODD protocol (Appendix B.6). For 

instance, we compare the residential building data to government statistics (Appendix B.6.1.2), or 

validate the risk exposure with other risk assessment studies in Appendix (B.6.1.5). Further verification 

and validation tests can be found in the individual input data subchapters. 
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E.3. Conceptual Model VV&T 

To be able to verify and validate the complicated model structure, Balci (1994) suggests to follow a 

structured approach for the conceptualization. Hence, we apply the extended risk assessment framework 

of Aerts et al. (2018) as a foundation for our conceptual model. We verify this conceptual model using 

Consistency Checking tests. More specifically we check the model for contradictions, and adhere to 

naming conventions (Balci, 1994).  

To validate the conceptual model, we apply Face Validation tests (Balci, 1994) with flood-ABM experts. 

Expert Interviews can provide an indication if the model appears reasonable, which according to Nikolic 

et al. (2013, p.129) is an “appropriate way to address the validation of agent-based models”. During the 

interviews the conceptual model structure and assumptions are discussed with the expert in order to 

determine if the model has a “face value”. However, there are several challenges related to expert 

validation (Nikolic et al., 2013): First, experts assess the validity of the ABM with their own internal 

model which is shaped by their world views and might contain inexplicit biases. Therefore, we provide 

a detailed list of the model assumptions to the experts prior to the interview to avoid misunderstandings. 

Second, especially for behaviourally-rich models, experts might assume how the model functions instead 

of understanding it, resulting in potentially misleading conclusions. Hence, we conduct the face 

validation with three flood-ABM experts who have different academic backgrounds. 

E.4. Computational Model VV&T 

To verify the computational model we apply tests, which are described in the following 

Unit testing: Unit testing checks that individual units work correctly (Wilensky & Rand, 2015). 

According to (Wilensky & Rand, 2015, p.317) these tests make sure that “future changes to our code do 

not disrupt previous code”. We apply a multitude of such unit-testing functions (listed in the following). 

If these unit tests detect an error, a user-message appears that informs the user about the error and helps 

them better identify the problem. 

• Verify-flood-calibrations: Makes sure that only one flood can occur per year. 

• Verify-direct-neighbourhood: Verifies that the number of direct neighbours which have been 

assigned to a household match the network size of the respective household. 

• Verify-indirect-neighbourhood: Checks that the number of households which consider a household 

a direct neighbour is calculated correctly. 

• Verify-cost-calculation: Verifies that each household which starts the simulation with an 

implemented adaptation measure also pays for the measure. 

• Verify-agent-state: Checks that when a measure is marked as undergone (UG = 1) that the 

adaptation state for this measure needs to be 2 (adapted). 

• Verify-position-flood-scenario: Makes sure that the flood scenario which is selected is included in 

the csv file. 

• Verify-adapt-change: Verifies that when a household adapts it correctly asks its direct neighbours 

to increase their adaptation count of the indirect neighbours. 

• Verify-flood-damage: Checks that the damage is lower than the value of the content/building. 

• Verify-flood-damage-reduction: Checks that the damage reduction is lower than the damage to the 

content/building. 

Bottom-up testing: In bottom-up testing, first the functions of the sub models and then the functions of 

the higher-level model are tested (Balci, 1994). For instance, we first test whether the flood damage is 

calculated correctly and then test whether the flood damage reduction is executed accordingly. 
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Execution monitoring: According to Balci (1994, p.139) “execution monitoring is used to reveal errors 

by examining low-level information about activities and events which take place during model 

execution.” For instance, for our model we monitored the updating of the count of nearest neighbours of 

a household that adapted a measure. 

Execution tracing: In execution tracing, the execution of the simulation is monitored step by step for 

the household (Balci, 1994). For our case, all the calculation steps to determine the benefit of an 

adaptation measure in a tick are checked manually step by step using a self-built debug function. 

E.5. Sensitivity Analysis 

To gain insights in the generation of emergent patterns in our ABM and to examine the robustness of 

these patterns we apply a local one-factor-at-a-time (OFAT) sensitivity analysis, where starting from a 

base case, we change one parameter30 or assumption at a time, while keeping the remaining parameter 

values constant (ten Broeke et al., 2016). Next to the ability of OFAT to examine emergent patterns and 

model robustness, OFAT has the advantage of requiring less computational effort than other sensitivity 

methods (ten Broeke et al., 2016).  

E.5.1. Parameter selection and parameter variation  

Due to runtime constraints, not all parameters can be included in the sensitivity analysis. Moreover, not 

all parameter values can be assessed. Hence, we approach the sensitivity analysis in two steps: First, we 

preselect the most relevant parameters based on literature insights and exchange with flood-ABM 

experts. Second, for each of the selected parameters we determine a set of values that we derive from 

literature and the survey data. The selected parameters, the base case and their variation is shown in 

Table 37 and explained in the following: 

Table 37: Sensitivity scenarios (Source: see explanation in main text) 

 

 
30 As we categorize adaptation measures into elevation, wet-, and dry-proofing measures, the parameters that refer to the adaptation 

measures are lists which contain three values, one for each of the three measure categories. Within the sensitivity analysis, we vary the 

parameter values for all three measures at the same time.  
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Intention gap: The intention gap parameter is multiplied by the probability of intention to determine 

the probability to implement. Hence, the larger the intention gap the higher the probability to implement 

and hence the number of adapted households. Moreover, the flood-ABM experts suggested examining 

the influence of this parameter. Hence, we include it in our sensitivity analysis. The intention gap for 

our base case is 27.8% (see ODD protocol, Appendix B.6.4.5). For the parameter variation we choose 

50% and 150% of the base case as these values appear realistic (see intention gap values between 

different survey waves). Moreover, we are interested in the model behaviour without the intention gap 

(=100%). 

Effectiveness in damage reduction: The effectiveness parameter has a direct influence on the avoided 

flood damage. Research shows a high variability for this parameter – see Kreibich et al. (2015). Hence, 

we include this parameter in the sensitivity analysis. For wet-proofing, we apply a 40% reduction of 

content and building damage for our base case (see ODD protocol, Appendix B.6.3.2). For the sensitivity 

analysis we set this value to 20% and 60% in line with values shown by Kreibich et al. (2015) for wet-

proofing. For dry-proofing we assume an 85% damage reduction for building and content damage for 

our base case (see ODD protocol, Appendix B.6.3.2). We choose to vary this parameter to a 50% in line 

with values outlined by Kreibich et al. (2015) and 100%. Varying the effectiveness of the elevation 

measure is in our opinion not necessary as we assume it to be at 100%31. This leads to two sensitivity 

scenarios for the adaptation measures: Measure effectiveness low and Measure effectiveness high.  

Effectiveness level: The effectiveness level determines below which inundation level the measures can 

reduce damage. This parameter has a direct influence on the avoided flood damage and is hence included 

in our sensitivity analysis. For wet-proofing, we follow de Moel et al. (2013) and apply a level of 3 

meters in our base case (see ODD protocol, Appendix B.6.3.2). Other sources such as Du et al. (2020) 

apply a value of 1.8 meters. Hence, we choose 1.8 meter for the varied wet-proofing effectiveness level 

to test the sensitivity. For dry-proofing we follow Bubeck & de Moel (2010), de Moel et al. (2013), and 

Lasage et al. (2014) with an effectiveness level of 1 meter in our base case (see ODD protocol, Appendix 

B.6.3.2).. For the parameter variation, we are interested in how the model behaviour changes if we reduce 

the parameter by 50%. Overall, we combine the parameter variations into one sensitivity scenario: 

Effectiveness level low. 

Foundation height: The foundation height has a direct influence exposure of households and hence the 

flood damage as well as the flood experience and is therefore included in the sensitivity analysis. For 

our base case, we follow Abebe et al. (2020) and apply a foundation height of 0.1 meters. For the 

sensitivity analysis, we choose 0 meters and 0.2 meters. 

Adaptation Measure Cost: Households only adapt if they can afford to pay for the adaptation measure 

costs. Therefore, the measure costs have a direct influence on the adaptation diffusion and flood risk and 

appears relevant to study in our sensitivity analysis. For our base case, we select the cost data from the 

survey, as it is directly linked to the adaptation measures which are included in our categories (see ODD 

protocol, Appendix B.6.3.3). For the sensitivity analysis, we compare two scenarios. In a first scenario 

we use the cost data of Du et al. (2020) for elevation, wet-proofing, and dry-proofing in Shanghai. 

Compared to our survey-based cost data, their measure costs stem from local engineering experts. 

Moreover, while we assume fixed cost for all measure categories, Du et al. (2020) apply cost values per 

m2 for dry-proofing measures and per m3 for elevation measures. In a second scenario, we assume that 

the measure costs are fully subsidized by the government, which means that households no longer need 

to pay for the measure from their own savings32. 

 
31

 Either the building is elevated above the inundation level, or it is not. If it is above the level, there is no flood damage (neglecting the 

potential damage to the elevated building foundation). If it is below, flood damage occurs according to the depth-damage function. 

. 
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Asset Cost: The building and content value have a direct influence on the flood damage and hence the 

flood experience as well as household savings and might therefore be very influential for the model 

outcomes. For our base case, we base the building value on the construction costs and the content values 

based on the house items which are susceptible to flooding (details see ODD protocol, Appendix 

B.6.1.4). For the parameter variation, we base the building value on the average building price following 

Shan et al. (2019) while applying the same building to content value ratio (24%) as in the base case 

(details see ODD protocol, Appendix B.6.1.4).  

Depth-Damage Function: Our review shows that the depth-damage functions in Shanghai can differ 

substantially (details see ODD protocol, Appendix B.6.2) and therefore they are included in the 

sensitivity analysis. For our base case, we select the depth-damage curve of Wang (2001) – the reasons 

for the selection of this function are explained in the ODD protocol in the Appendix B.6.2. For the 

parameter variation, we apply the functios of Yu et al. (2012) and Z. Yin et al. (2011)33 to our model. 

E.5.2. Sensitivity results 

Similar to our main experiments we run the sensitivity experiments from 2020 until 2050. However, due 

to runtime constrains, we limited our replications per experiment to 50. For the flood scenario, we select 

the climate tipping point scenario (100-year flood in 2021 and a 1000-year flood in 2040 under the RCP 

8.5 scenario). We examine the influence of the parameter variations on the adaptation diffusion, and the 

total potential flood damage 

E.5.2.1. Adaptation diffusion 

Figure 69, Figure 70, and Figure 71 depict the effects of the parameter variations on the adaptation 

diffusion, the number of households who cannot afford adaptation, and the average household savings. 

In the following we analyse the effect of the parameter variation on the adaptation diffusion.  

 

 

Figure 69: Sensitivity - Adaptation diffusion  

 
33 As shown in the ODD protocol Appendix B.6.2, we transfer the continuous depth-damage function of Z. Yin et al. (2011) into a discrete 

function. 
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Figure 70: Sensitivity - Percentage of households that cannot afford adaptation  

 

 

Figure 71: Sensitivity - Mean savings per household  
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Depth damage function: In the model, the depth damage function influences the flood damage. On the 

one hand, this effects a household’s flood experience attribute level which influences the probability of 

a household to adapt. The higher the flood damage and hence the flood experience, the higher the 

probability to adapt. On the other hand, the flood damage impact the savings and hence a household’s 

financial capability to adapt. The higher the flood damage, the lower the savings, and the lower the 

capability to adapt. Hence, the effects on the adaptation diffusion are in theory opposing. Our sensitivity 

results show that the different depth damage functions do not appear to have a large impact on the 

adaptation behaviour (see red graphs in Figure 69). This might be explained by multiple factors. First, 

the aforementioned opposing effect of adaptation probability and financial capacity. Second, it appears 

that independent of the depth-damage function, the damages caused by the flood are so large that the 

households are not able to afford adaptation in the following ticks. This is supported by the fact that the 

depth-damage function has a considerable effect on the average household savings (see red graphs in 

Figure 71), but the average number of household who cannot afford the adaptation (see red graphs in 

Figure 70) remains similar to the base case.  

Measure effectiveness and effectiveness levels: The measure effectiveness influences the impact of 

flood events on the flood experience and savings of adapted households. In theory, the higher the 

effectiveness the smaller the change in adaptation probability and the smaller the reduction of the 

household’s savings due to the lower flood damage (and vice versa). Our results in Figure 69 (blue 

graphs) indicate that the change in effectiveness and effectiveness level do not appear influential on the 

adaptation diffusion of households, which can be explained by multiple factors. First, the opposing effect 

of adaptation probability and financial capacity. Second, it seems although the change in effectiveness 

impacts the influence of the flood on the household savings (see blue graphs in Figure 71), it does not 

appear relevant as the savings appear already low previous to the flood event. This is supported by the 

fact that the average number of households who cannot afford the adaptation (see blue graphs in Figure 

70) remains similar to the base case 

Foundation height. In our model, the decrease in foundation height leads to an increase in the exposure 

of households. The decrease in the foundation height means that on the one hand, more households will 

be flooded and on the other hand that the inundation depths of households which have been flooded 

before increases even further, which in theory should lead to an increase in flood damage. As explained 

before, with the increase in flood damage, the flood experience increases and hence the probability to 

adapt while the savings decrease and hence the capability of households to undertake action. The results 

in Figure 69 (orange graphs) shows that a change in the foundation height leads to a small but not 

significant change in the adaptation diffusion which can be explained as follows: Households that 

already have been flooded before are even less capable to adapt, as their flood damage either stays the 

same or decreases even further having a negative effect on the savings (see orange graphs in Figure 71) 

and hence their adaptation capabilities. Households which are now considered flooded have less savings 

and hence less capability to finance the adaptation which results in a decrease in the adaptation diffusion.  

Intention gap: In theory, the larger the intention gap (more households that intend to adapt also take 

action) the higher the probability to adapt and hence also the higher the number of adapted households. 

Our results overlap with this theory. With no intention gap (all households that intend also take action), 

~35% of the household population adapt at least one measure between 2022 and 2023, which is a 

considerable faster increase in the adaptation diffusion than in the base case (see dark green graph in 

Figure 69). Moreover, the intention gap influences the time of the measure expiration. The larger the 

intention gap parameter, the faster households adapt and hence the dry-proofing measures will expire at 

an earlier point in time. Depending on the time of the flood event this can either be beneficial or 

detrimental. Similarly, with a lower intention gap parameter, it takes longer for the diffusion of 

adaptation measures in the population.  
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If a flood occurs right at the beginning of the simulation, the slower adaptation rate might have a 

significant effect on the flood risk. Overall, we conclude that the intention gap has a significant influence 

on adaptation diffusion of households. 

Measure cost: In our model the measure costs directly influence the ability of households to afford the 

measure and hence they directly influence the adaptation diffusion. Our results indicate the drastic effect 

of this parameter. In case households do not have to pay for their adaptation measures (fully subsidized), 

almost 100% of households adapt at least one measure by 2040 (see light purple graph in Figure 69). 

The majority of households even adapt multiple measures - especially wet- and dry-proofing (see purple 

graphs in Figure 72). This shows the restrictive effect of the savings on the adaptation diffusion. When 

the cost data of Du et al. (2020) is applied, where wet-proofing and dry-proofing are more expensive 

than in the base case with the survey data, a sharp drop in the adaptation diffusion over time can be 

noticed (see dark purple graph in Figure 69). Households either no longer can afford to adapt or if they 

manage to have enough savings to adapt, savings decrease by the high measure cost, which hinders 

subsequent adaptation actions – which is reflected in the significant change in savings (see dark purple 

graph in Figure 70) and number of households that cannot afford adaptation (see dark purple graph in 

Figure 71). 

 

Figure 72: Sensitivity - Fully subsidized measure cost - Diffusion of adaptation measure combinations 
within the household population34 

Asset value: Similar to the change in the depth-damage curve, the change in the asset value influences 

the impact of flood events on the household’s behaviour (flood experience, savings). As with the depth-

damage curves, also the asset value does not appear to have lots of impact on the adaptation diffusion 

(see yellow graph in Figure 69).  

  

 
34 It is important to note that we do not change the cost perception attribute levels of households as we want to determine the impact of the 

savings constraint on the model behaviour. 
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E.5.2.2. Total potential flood damage  

 

Figure 73: Sensitivity - Total flood damage (2020-2050) without adaptation for different sensitivity 
scenarios 

Figure 73 shows the total flood damage over the entire simulation without household adaptation for the 

sensitivity scenarios which have an influence on the flood damage. For the base case we determine a 

total flood damage of 55 Mil. € with 57% building (light grey) and 43% content damage (dark grey). 

This value changes significantly especially when changing the asset value and the depth damage 

function, as explained in the following. 

Foundation height: The foundation height influences the household exposure and hence the total 

potential flood damage. While the total damage decreases to 45 Mil. € with 0.2 m in foundation height, 

the total damage increases to 70 Mil. € without including any foundation height. The ratio between 

building and content damage stays similar to the base case.  

Depth Damage: The depth damage function also has a considerable effect on the flood damage. Using 

the depth-damage function on Yu et al. (2012) the total flood damage is 39% lower than in the base case. 

We also notice a change in the distribution of building (72%) and content damage (28%). Using the 

depth-damage function of Yin et al., the damage increases to 247 Mil. €, with 96% building and 4% 

content damage. This drastic jump can be explained by the high proportional building damage at low 

inundation levels (100% damage below 2 meters), which might result from a different definition of 

maximum building damage (see ODD protocol, Appendix B.6.2).  

Asset Value: By using the actual housing price instead of the construction price, the flood damage 

increases drastically to 436 Mil. €. This sharp incline in flood damage overlaps with the observations of 

Shan et al. (2019), who compare their building-price based results to the construction-price based results 

of Wu et al. (2019).  
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E.5.2.3. Flood damage prevention 

 

Figure 74: Sensitivity - Total flood damage mitigation (2020-2050) for different sensitivity scenarios  

Figure 74 depicts the changes in the prevention of flood damage for the different sensitivity scenarios. 

In the base case, on average 26.1 Mil. € in flood damage is prevented by household adaptation, which 

can be broken down into 1.3 Mil. € damage by elevation, 6.7 Mil. € by wet-proofing and 18.1 Mil. € by 

dry-proofing. The change in the flood damage reduction for the different scenarios can be explained by 

the change in the adaptation diffusion, the flood damage (see previous subchapters) and the measure 

effectiveness. This is explained in the following. 

Change in adaptation diffusion: The measure cost and the intention gap significantly influence the 

adaptation diffusion (see chapter E.5.2.1). The change in measure cost leads to a significant change in 

the flood damage reduction. In case of full subsidization of measure cost the average mitigated damage 

increases to 41 Mil. € and with the cost data of Du et al. (2020) it decreases to 20 Mil. €. In comparison 

the effect of the intention gap is lower, with a total mitigated damage of 24 Mil. € for a 13.9% intention 

gap, 27 Mil. € for the 41.7% intention gap, and 28 Mil. € for the 100% intention gap. This can be 

explained by the timing of the flood event. The majority of the flood damage is caused by the 2100 flood 

in 2040. A glance at the adaptation diffusion (see green graphs in Figure 69) shows that despite their 

varying trajectories, the differences between the intention gap scenarios are rather small at year 2040, 

which explains the small differences in the reduced flood damage. Hence, we conclude that the effect of 

the intention gap parameter on the flood damage reduction depends on the timing of large flood events. 

We therefore recommend additional flood scenarios for future experiments. 

Change in flood damage: The foundation height, depth damage function and asset value have a 

significant influence on the flood damage which is reflected in the flood damage reduction (see Figure 

74). Specifically, the depth-damage function of Z. Yin et al. (2011) which leads to a flood damage 

reduction of 111 Mil. € and the building-price based asset values with a flood damage reduction of 200 

Mil. € have a high influence on the flood damage reduction. 

Change in the measure effectiveness: The measure effectiveness and the effectiveness level directly 

influence the flood damage reduction (see Figure 74). The low effectiveness scenario leads to a reduced 

damage of 16 Mil. €, while the high effectiveness scenario results in a reduced damage of 32 Mil. €. 

Reducing the effectiveness level results in a reduced flood damage of 19 Mil. €.  
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E.5.2.4. Summary of sensitivity results 

Table 38 summarizes the influence of the sensitivity scenarios on the adaptation diffusion, the total flood 

damage, and the flood damage mitigation. Our OFAT sensitivity analysis shows that the adaptation 

measure cost and the intention gap have a measurable impact on the adaptation behaviour of households. 

Moreover, the foundation height, and specifically the depth-damage curve as well as the asset value 

significantly influence the total flood damage. Hence, these parameters should be further researched to 

improve the credibility of the results. 

Table 38: Summary of sensitivity results 
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E.5.3. Limitations of sensitivity analysis 

Our sensitivity analysis shows several limitations. 

First, due to the model complexity as well as computational restrictions we perform a local sensitivity 

analysis where we only vary one input parameter at a time. However, since we do not know whether the 

model is linear, we cannot make any statements about the effects of changing two or more parameters 

at the same time (Saltelli et al., 2008) which limits the significance of our sensitivity results. 

Second, due to computational constraints not all parameters and assumptions can be included in the 

sensitivity analysis which limits our understanding of the formation of emergent patterns as well as the 

robustness of these patterns. Neglected parameters and assumptions include for instance the household 

population size, the confidence intervals of the Odds Ratios, the measure lifetime, the measure 

implementation time, the time horizon, the inundation maps, as well as the assumption of non-negative 

yearly change in savings.  

Third, our variation of the parameters is limited. On the one hand, the number of parameter variations is 

relatively small due to the large impact on the computational time. This makes it difficult to understand 

the model linearity as well as model tipping points (ten Broeke et al., 2016). On the other hand, we do 

not change parameters at equal intervals, as we base our parameter variation mostly on values applied 

in other risk assessment studies. This makes the comparability of the model sensitivity between the 

parameters more difficult.  

Further limitations are the reduced number of replications per experiment, which are set at 50 due to 

computational limits instead of the 100 repetitions for the main experiments. Additionally, the sensitivity 

observations are only valid for the selected flood scenario. With change in flood scenario the patterns 

might change e.g., if a large flood occurs at an earlier point in time e.g., in 2025, the intention gap might 

have a larger influence on the damage reduction.  
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F. Data analysis 

This subchapter provides supplementary information to the results described in Chapter 6. 

F.1. Details on aggregate impacts of household adaptation 

In addition to the results shown in the main text (see Chapter 6), Figure 75 and Figure 76 give a more 

detailed insight into the stochasticity of the flood damage and flood damage prevention. The standard 

deviations of the building and content damage are relatively small. As we use predetermined flood maps 

for the flood scenarios, the only variation between the simulation runs stems from the random matching 

of the households to the residential buildings. As the building and content values of each households 

differs, the aggregated flood damage varies to some extend between the simulation runs of a flood 

scenario.  

 

Figure 75: Mean total flood damage (2020-2050) for different flood scenarios without household 
adaptation 

The standard deviations of the mitigated flood damage by the different adaptation measures are more 

noticeable (see Figure 75). They can be explained by two factors. On the one hand, the flood damage 

itself varies for each simulation run as explained above and hence the damage prevention varies. On the 

other hand, within each run households make different adaptation decisions, leading to the differences 

in the prevented flood damage.  
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Figure 76: Total prevented flood damage (2020-2050) by household adaptation 

The differences in the total damage mitigation between the adaptation measures (Figure 76Figure 75) 

can be explained by their effectiveness and their diffusion at the time of the flood event. While elevation 

(orange colour) has a relatively high effectiveness with a 100% damage reduction below 0.3 meter above 

the 100-year flood level in 2030, wet-proofing (blue colour) reduces damage by 40% below 3.0 meter 

and dry-proofing (green colour) by 85% below 1 meter (details see ODD protocol, Appendix B.6.3.2). 

For the 2021 flood, on average 3% adapted elevation, 33% wet-proofing and 9% dry-proofing measures 

(see Chapter 6.1.1). Hence, the most damage is mitigated by wet-proofing in 2021 due to the medium 

penetration rate and medium effectiveness, followed by dry-proofing with a low penetration rate and 

high effectiveness and followed by elevation with a very low penetration rate and very high 

effectiveness. For the 2040 flood the situation changes. On average 4% adapted elevation, 55% wet-

proofing and 49% dry-proofing measures(see Chapter 6.1.1). As dry-proofing has a high penetration rate 

and high effectiveness it now mitigates the most damage, followed by wet-proofing with a high 

penetration rate and medium effectiveness and followed by elevation with a very low penetration rate 

and very high effectiveness. 
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F.2. Differences in damage prevention between household groups 

In the main text in chapter 6.2.2 we showed the differences in damage prevention of household groups 

with different worry, self-efficacy, social network, and income levels. The question arises if the 

differences in relative damage prevention between the groups (of the same socio-behavioural factor) are 

statistically significant. Hence, we apply a one-way analysis of variance (ANOVA) for worry, self-

efficacy, social network size, and income. For each ANOVA analysis, the dependent variable is the 

relative flood damage prevention, while the independent variables are the three groups (low, medium, 

and high)35 for the respective socio-economic factor worry, self-efficacy, social network, and income 

(see chapter 5.3 and Appendix D.3). The main assumptions underlying an ANOVA are a normal 

distribution of the dependent variables as well as a homogeneity of variances (Delacre et al., 2019; Stahle 

& Wold, 1989). We test these assumptions in the following.36 

F.2.1. Testing normality assumption of ANOVA 

For each flood scenario and for each household group we test the damage prevention of the different 

levels within the group for normality by calculating the z-scores of each item with regards to the 

skewness and kurtosis. To determine the z-scores, we divide the skewness and kurtosis values by the 

respective standard deviations as shown in Table 39 (Mishra et al., 2019). As we replicate each 

experiment 100 times (see Appendix D.2), our sample sizes are 100 for each flood scenario. Therefore, 

we apply the cut-off value for the z-scores of +-3.29 (Kim, 2013). All z-scores are within the 

aforementioned range. Next to this numerical method of detecting normality, we also conducted a visual 

method (Mishra et al., 2019), by looking at the histograms of the results. Based on the results of both 

the numerical and visual method we conclude the distributions to be normal. Thus, the first assumption 

for ANOVA is satisfied. 

 

  

 
35 As a household can only be part of one group (low, medium, high) for each socio-behavioural factor, we conclude that the 

groups are independent of each other. 
36 In addition to the normality and homogeneity of variances we also tested the dependent variable on outliers based on an 

inter-quartile range multiplier of 3. No such outlier has been identified.  
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Table 39: Kurtosis and Skewness z-scores for household groups (n=100 for each flood scenario) 

 

  



142 

F.2.2. Testing homogeneity of variances 

To test the homogeneity of variances we apply Levene’s test (Glass, 1966) as shown in Table 40. The 

results show a significant value (p<.05) for all flood scenarios and for all household groups. Hence, we 

reject the assumption of equal variances within the household groups. This means that the assumption 

of homogeneity of variances is violated and hence an ANOVA cannot be applied. Although numerous 

investigations suggest a robustness of the hypothesis of homogeneity of variances for equal sample sizes 

(which is the case in our data) for the ANOVA F-test, Rogan & Keselman (1977) argue that this is not 

always the case. Hence, we apply alternative tests that appear more robust against heterogeneous 

variances in the subsequent subchapter F.2.3. 

Table 40: Levene’s test for homogeneity of variances for relative damage reduction based on mean  
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F.2.3. Robust Tests 

We apply tests which are more robust against heterogeneous variances, namely Welch’s ANOVA (W-

test) and the Brown-Forsythe test (F*-test) (Delacre et al., 2019; Roth, 1983) as shown in Table 41. Both 

the W-test and the F*-test show significant results (p<.05) for all household groups for all flood 

scenarios. Hence, we can reject the null hypothesis of equal means of damage reduction between the 

household groups 

Table 41: Robust Tests – Welch and Brown-Forsythe 

 

The aggregate statistics above show that not all group means are equal. However, we don't know which 

discrepancies between group means are statistically significant. A multiple comparisons post-hoc test 

can be applied to find significant differences between particular groups (Toothaker, 1993). In cases of 

heterogeneous variances, like in ours, the Games-Howell test can for instance be applied (Lee & Lee, 

2018). Due to time constraints of this thesis, we do not perform such a post-hoc test, and conclude for 

our analysis that for each socio-behavioural variable, there is at least one significant difference between 

the three groups.  
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